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ABSTRACT

The operating mechanism of thermionic arc cathodes is studied theoretically
and experimentally. A theoretical model is formulated including important
processes in the plasma of the cathode fall zone, at the plasma cathode inter-
face, and in the cathode interior. In principle, this model permits detailed
calculations of cathode performance solely from geometrical considerations
and the physical properties of the cathode material and the gas. An approximate
analysis indicates that the system has two different types of solution, the occur-
rence of which depends primarily upon how well the cathode is cooled. Well
cooled cathodes tend to operate with a concentrated arc spot, while very poorly
cooled cathodes operate without such a spot. Approximate solutions are worked
out in numerical detail for spot-mode operation of a semi-infinite cathode and
spotless mode operation of a thin rod shaped cathode cooled at one end. The
results of a series of experiments on rod shaped thoriated tungsten cathodes
are reported. The theory correctly predicts general trends of these data.

This technical documentary report has been reviewed and is approved.

LEO F. SALZBERG
Associate Director for
Materials Physics
Air Force Materials Laboratory

II



ASD-TDR-62-729,

Part II, Vol. 1

TABLE OF CONTENTS

I. Introduction ................................................

A. Objectives ........................................ 1.... . .
B. Background ............................................ 2
C. Present Report ........................................ 4

II. Summary .................................................. . 6

IIL Physical Processes ........................................ 8

A. Processes in the Cathode Fall Zone ...................... 8
B. Processes at the Cathode Surface ....................... 15
C. Processes in the Cathode Interior ....................... 22

IV. Theory of Thermionic Cathodes ............................. 25

A. Phenomenology ...................................... 25
B. Oversimplified Model ................................. 25
C. Theoretical Model for Thermionic Cathodes .......... 29
D. Approximate Methods of Solution ....................... 40

V. Quasi-one-dimensional Model .......................... 53

A. Preliminary Discussion ............................... 53
B. Quasi-one-dimensional Heat Flow in a Thin Rod

with Joule Heating and Side Radiation ................... 53
C. Arc Overflow ........................................ 74
D. Solution of the Quasi-one-dimensional Cathode

Model ............................................... 80
E. Numerical Results ................................... 85

VI. Experimental Studies of Rod Shaped Thoriated Tungsten
Cathodes ................................................. 123

A. Apparatus and Procedures ............................ 123
B. Re sult s .............................................. 126
C. Analysis of Data ..................................... 141
D. Comparison of Theory and Experiment .............. 154

VII. Discussion ............................................... 165

VIII. Recommendations for Further Work ........................ 167

- iv-



ASD-TDR-62-729,
Part II, Vol. 1

TABLE OF CONTENTS (Concl'd)

IX. References .................................................... 169

X. Appendixes

A. Numerical Procedure for Computation of Surface
Heat flux as a Function of Surface Temperature ........... 175

B. Program for Solution of Quasi-one-dimensional
Cathode Model ............................................. 177

-v -



ASD-TDR- 62-729,
Part II, Vol. 1

LIST OF ILLUSTRATIONS

Figure 1 Schematic Cross-sectional Diagram of Fall
Zone on a Thermionic Cathode ............................ 12

2 Graphical Solution of Oversimplified Model ................ 28

3 Division of Cathode Surface into "Active" and
"Inactive" Regions and Interface with Cooling System ...... 31

4 Cathode Heat Flux as a Function of Surface
Tem perature ......................................... 34

5 Ion Current Density as a Function of Surface

Tem perature ......................................... 35

6 Electron Current Density as a Function of

Surface Temperature .................................. 36

7 Total Current Density as a Function of
Surface Temperature ..................................... 37

8 Graphical Solution of Equation (63) ........................ 39

9 Thermal Conductivity of Tungsten ........................ 56

10 Electrical Resistivity of Tungsten ........................ 57

11 Total Emissivity of Tungsten ............................. 58

-vi --



ASD-TDR-62-729,
Part II, Vol. 1

LIST OF ILLUSTRATIONS (Cont'd)

Figure 12 One Dimensional Cathode Function G(tp,z) .......... 63

13 Tip Temperature versus Current and Cathode
Length (One Eighth Inch Thoriated Tungsten
Cathode in Helium) .................................. 87

14 Half-Height of Overflow Region versus Current and
Cathode Length (One Eighth Inch Thoriated Tungsten
Cathode in Helium) .................................. 88

15 Ratio of Total Current to Current Entering through
End versus Current and Cathode Length (One Eighth
Inch Thoriated Tungsten Cathode in Helium) ........ 89

16 Overflow Parameter A versus Current and Cathode
Length (One Eighth Inch Thoriated Tungsten
Cathode in Helium) .................................. 90

17 Current Density through End of Cathode versus
Current and Cathode Length (One Eighth Inch
Thoriated Tungsten Cathode in Helium) ............ 91

18 Heat Transfer from Cathode to Cooling System
versus Current and Cathode Length (One Eighth
Inch Thoriated Tungsten Cathode in Helium) ........ 92

19 Effective Voltage for Heat Transfer to Cooling
System versus Current and Cathode Length
(One Eighth Inch Thoriated Tungsten
Cathode in Helium) .................................. 93

20 Effective Voltage for Cathode Power Loss versus
Current and Cathode Length (One Eighth Inch
Thoriated Tungsten Cathode in Helium) ............ 94

21 Cathode Fall Voltage versus Current and Cathode
Length (One Eighth Inch Thoriated Tungsten
Cathode in Helium) .................................. 95

22 Ion Current Fraction versus Current and Cathode
Length (One Eighth Inch Thoriated Tungsten
Cathode in Helium) .................................. 96

- vii -



ASD-TDR-62-729,
Part II, Vol. I

LIST OF ILLUSTRATIONS (Cont'd)

Figure 23 Surface Electric Field versus Current and
Cathode Length (One Eighth Inch Thoriated
Tunsten Cathode in Helium) ........................... 97

24 Tip Temperature versus Current and Cold End
Temperature (One Eighth Inch by One Inch
Thoriated Tungsten Cathode in Helium) ............ 100

25 Ratio of Total Current to Current Entering

through End of Cathode versus Current and
Cold-End Temperature (One Eighth Inch by One Inch
Thoriated Tungsten Cathode in Helium) ............ 101

26 Heat Transfer from Cathode to Cooling System
versus Current and Cold End Temperature (One
Eighth Inch by One Inch Thoriated Tungsten

Cathode in Helium) .................................. 102

27 Tip Temperature versus Current Density and
Cathode Diameter (One Inch Thoriated Tungsten
Cathode in Helium) .................................. 103

28 Ratio of Total Current to Current Entering through
End of Cathode versus Current Density and Cathode
Diameter (One Inch Thoriated Tungsten Cathode
in Helium) ..... .................................... 104

29 Effective Voltage for Heat Transfer to Cooling
System versus Current Density and Cathode
Diameter (One Inch Thoriated Tungsten Cathode
in Helium) ..... .................................... 106

30 Effective Voltage for Cathode Power Loss versus
Current Density and Cathode Diameter (One Inch
Thoriated Tungsten Cathode in Helium) ............ 107

31 Ion Current Fraction versus Current Density and
Cathode Diameter (One Inch Thoriated Tungsten
Cathode in Helium) .................................. 108

32 Surface Electric Field versus Current Density and
Cathode Diameter (One Inch Thoriated Tungsten
Cathode in Helium) .................................. 109

-viii-



ASD-TDR-62-729,

Part II, Vol. 1

LIST OF ILLUSTRATIONS (Cont'd)

Figure 33 Tip Temperature versus Current and Cathode
Material (One Inch by One Eighth Inch Cathodes
in Helium) ...... ................................... 110

34 Ratio of Total Current to Current Entering through
End of Cathode versus Current and Cathode Material
(One Inch by One Eighth Inch Cathodes
in Helium) ........................................... 111

35 Effective Voltage for Heat Transfer to Cooling
System versus Current and Cathode Material (One
Inch by One Eighth Inch Cathodes in Helium) ........ 112

36 Effective Voltage for Cathode Power Loss versus
Current and Cathode Material (One Inch by One
Eighth Inch Cathodes in Helium) ..................... 113

37 Cathode Fall Voltage versus Current and Cathode
Material (One Inch by One Eighth Inch Cathodes
in Helium) ...... ................................... 114

38 Ion-Current Fraction versus Current and Cathode
Material (One Inch by One Eighth Inch Cathodes
in Helium) ...... ................................... 115

39 Surface Electric Field versus Current and Cathode
Material (One Inch by One Eighth Inch Cathodes
in Helium) ...... ................................... 116

40 Tip Temperature versus Current and Gas Type
(One Inch by One Eighth Inch Thoriated Tungsten
Cathode) ..... ...................................... 118

41 Surface Electric Field versus Current and Gas
Type (One Inch by One Eighth Inch Thoriated
Tungsten Cathode) ................................... 119

4Z Ion Current Fraction versus Current and Gas Type
(One Inch by One Eighth Inch Thoriated Tungsten
Cathode) ..... ...................................... 120

43 Ratio of Total Current to Current Entering through
End of Cathode versus Current and Gas Type (One
Inch by One Eighth Inch Thoriated Tungsten
Cathode) ..... ...................................... 121

-ix-



ASD-TDR-62-729,
Part II, Vol. I

LIST OF ILLUSTRATIONS (Cont'd)

Figure 44 Heat Transfer from Cathode to Cooling System versus

Current and Gas Type (One Inch by One Eighth Inch

Thoriated Tungsten Cathode) .......................... 122

45 Arc Assembly for Cathode Studies ................. 124

46 Tip Temperature as a Function of Time for a New

Thoriated Tungsten Cathode (Five Eighth Inch by

One sixteenth Inch, Helium) .......................... 127

47 Tip Temperature as a Function of Time for a New

Thoriated Tungsten Cathode (Two Inch by One

Ei-ghth Inch, Helium Argon) ........................... 129

48 Changes in Appearance of an Arc Operating on a

New Thoriated Tungsten Cathode ...................... 130

49 Appearance of Arc in Helium and Argon as a

Function of Current (Two Inch by One Eighth Inch

"Used" Thoriated Tungsten Cathode) .................... 131

50 Appearance of Arc in Helium and Argon as a

Function of Current (One Half Inch by One Eighth

Inch "New" Thoriated Tungsten Cathode) ............ 132

51 Appearance of Arc in Nitrogen (One Inch by One

Sixteenth Inch Thoriated Tungsten Cathode) ........ 135

52 Current Density versus Temperature for "Used"

Thoriated Tungsten Cathodes in Helium ........... 145

53 Analysis of Cathode Data for Electrical

Resistivity ....... .................................... 151

54 Results of Error Analysis for Estimates of B

from Cathode Data ................................... 153

55 Heat Transfer to Cathode Cooling System versus

Current (Helium) ...................................... 155

56 Heat Transfer to Cathode Cooling System versus

Current (Argon) ....... ............................... 156



ASD-TDR-62-729,

Part II, Vol. 1

LIST OF ILLUSTRATIONS (Concl'd)

Figure 57 Heat Transfer to Cathode Cooling System versus
Current (Nitrogen) .................................. 157

58 Cathode Temperature Distribution (Helium,
Two Inch by One Eighth Inch Cathode,
Twenty five Amperes) ............................... 158

59 Cathode Temperature Distribution (Helium, Two
Inch by One Eighth Inch Cathode, Fifty
three Amperes) ...................................... 159

60 Cathode Temperature Distribution (Helium, One
Inch by One Sixteenth Inch Cathode, Forty one
Amperes) .... ..................................... 160

61 Cathode Temperature Distribution (Helium, One
Inch by One Sixteenth Inch Cathode, Seventy four
Amperes) .... ..................................... 161

62 Cathode Temperature Distribution (Helium, One
Inch by One Eighth Inch Cathode, Twenty six
Amperes) .... ..................................... 162

63 Cathode Temperature Distribution (Helium, One
Inch by One Eighth Inch Cathode, Ninety six

Amperes) .... ..................................... 163

64 FORTRAN Listing of Main Program for Solution of
Quasi-One-Dimensional Cathode Model ............. 178

65 FORTRAN Listing of Subroutine START .............. 180

66 FORTRAN Listing of Function G ...................... 181

67 FORTRAN Listing of Function V ...................... 182

68 FORTRAN Listing of Subroutine DISTAN ........... 183

69 FORTRAN Listing of Subroutine OUTPUT .......... 184

70 Flow Chart for Main Program between Statements
5 and 200 ........................................... 188

-xi -



ASD-TDR-62-729,

Part II, Vol. 1

LIST OF TABLES

Table 1 Accommodation Coefficients for Ion Impact upon

Tungsten (Billiard Ball Approximation) ............... 18

2 Numerical Results of Approximate Cathode-
Spot Theory ............................................ 51

3 One Dimensional Cathode Function G(qb,z) ................. 60

4 One Dimensional Cathode Function V(tp,z) .............. 67

5 OneDimensional Cathode Function R(qi,z) ............... 70

6 Assumed Cathode Material Properties .................. 86

7 Gas Properties ........................................ 86

8 Summary of Experimental Data ......................... 136

9 Analysis of Cathode Data for Effective
Work Function ........................................ 143

10 Analysis of Cathode Data for Thermal Conductivity ...... 148

11 Analysis of Cathode Data for Electrical Resistivity ...... 152

-xii-



ASD-TDR-62-729,
Part II, Vol. 1

LIST OF SYMBOLS

The list below defines the principal notations used throughout the report; special
symbols used only once and defined in the text are omitted. After each definition,
the numbered equation or location where the symbol is first used is given in
parentheses.

Latin Symbols

A Richardson constant (17)

a quantity defined by (121)

a accommodation coefficient (Sec. II)

B parameter in resistivity formula (87)

b quantity defined by (122)

C integration constant in (90)

c specific heat of cathode material (64)

D cathode diameter (39)

E electric field intensity (6)

EC  electric field intensity at cathode surface (7)

F quantity defined by (150)

F(Ts) net heat flux into cathode surface as a function of surface
temperature (61)

G (tA, z) nondimensional distance function for quasi-one -dimensional

cathode (93)

H quantity defined by (158)

I total current (39)

Ie  current through end of cathode (Fig. 34)

total-current density (8)

-xiii-



ASD-TDR-62-729,
Part II, Vol. 1

LIST OF SYMBOLS (Cont'd)

j0 uniform current density along cathode (84)

current density at cold end of cathode (139j)

electron-current density (2a)

jE current density through hot end of cathode (130)

Ji ion-current density (2b)

(Ji)max upper limit to ion-current density based on kinetic theory (16)

Js current density through side of cathode (110)

K thermal conductivity of cathode (28)

k Boltzmann constant (14)

L cathode length (45)

M ion mass (3a)

m electron mass (3b)

n coordinate along outward-directed normal to cathode
surface (28)

ne  electron density (1)

ni  ion density (1)

p pressure (14)

Q total rate of heat transfer to cathode (66)

QO heat-transfer rate from cathode to cooling system (Sec. III)

q heat flux (28)

q" dq/dT (70)

q0 heat flux at cold end of cathode (105b)

-xiv-



ASD-TDR-62-729,
Part II, Vol. 1

LIST OF SYMBOLS (Cont'd)

qE heat flux through hot end of cathode (138)

R(0,z) nondimensional function for radiative heat loss from side
of cathode (101a)

r radial coordinate (67)

r. cathode spot radius (66)

S 1,S2 ,S3  cathode interface with cooling system, "inactive region"
of cathode surface, "active region" of cathode surface,
respectively (62)

s temperature exponent in resistivity formula (87)

T cathode temperature (28)

To temperature at cathode interface with cooling system (44)

Tav average temperature of cathode spot (66)

Tc  cutoff temperature for heat-flux function (69)

Tg gas temperature in ion-production zone (14)

Tm temperature at center of cathode spot (Sec. III)

T5 (x) "unperturbed" temperature distribution in cathode with
overflow (112)

Tns value of Tn(x) at x = L (113)

Tns temperature gradient at hot tip based on unperturbed
solution (116)

Ts  cathode surface temperature (17)

t time (64)

t(x) perturbation temperature distribution in cathode with
overflow (112)

-Xv-



ASD-TDR-62-729,

Part II, Vol. 1

LIST OF SYMBOLS (Cont'd)

to value of t(x) at cathode tip (129)

U electric potential (1)

'Gi mean thermal speed of ions in any given direction (15)

V quantity defined by (114)

V (b, z) nondimensional voltage function for quasi-one -dimensional

cathode (98a)

VC  potential fall across space-charge layer (3a)

Veff effective voltage for heat transfer to cooling system (151)

V1  ionization potential (12)

Vloss effective voltage for cathode power loss (Sec. IV)

v e  electron velocity (2a)

vi  ion velocity (2b)

W molecular weight of ions (8)

X coordinate in plasma normal to cathode surface (1)

coordinate along cathode axis (43)

y distance from tip of cathode (115)

z nondimensional Joule-heating parameter (91c)

z critical value of z (14)

Greek Symbols

a ion-current fraction, ji/j (8)

y constant in (72)

A quantity defined by (148)

-xvi-



ASD-TDR-62-729,
Part II, Vol. 1

LIST OF SYMBOLS (Concl'd)

AT temperature difference between center and edge of cathode

spot (71a)

AV resistive voltage drop along cathode (98a)

8 density of cathode material (64)

total emissivity (27)

"e electronic charge (1)

nnondimensional position coordinate (91b)

71s value of 17 at hot end of cathode (139a)

0 effective work function expressed as a temperature (17)

0 116090 (149a)

X nondimensional overflow parameter (127)

p electrical resistivity (35)

a Stefan-Boltzmann constant (27)

r nondimensional tip temperature (139n; also (167)

0 thermionic work function (18)

0b nondimensional temperature (91a)

0b0  nondimensional temperature at cold end of cathode (94)

Os nondimensional temperature at hot end of cathode (139a)

W quantity defined by (119)

Subs cripts

s cathode surface or tip

av average over cathode spot.

-xvii-



ASD-TDR-62-729,

Part II, Vol. I

I. INTRODUCTION

A. OBJECTIVES

Electrode phenomena in electric arcs have been studied experimentally and

theoretically by a number of investigators. The literature on cathode and

anode fall voltages, current densities, and operating mechanisms is volumi-

nous. Nevertheless, the design of electrodes for electric arc plasma genera-

tors has been carried out almost entirely on an empirical basis, because

there has existed no experimentally verified quantitative theory capable of

predicting the performance of an electrode of given properties and geometry

operating at a given current in a specified gas.

The development of electrothermal and electromagnetic space propulsion

systems and high-energy wind tunnels for simulation of atmospheric re-

entry has subjected plasma generator electrode subsystems to requirements

of unprecedented severity. The propulsion applications demand operating

lifetimes of many hundreds or thousands of hours, while arc driven wind

tunnels often call for operation at high currents and pressures with negli-

gible contamination of the gas stream. Rational design procedures based

upon proven theoretical models would facilitate meeting these requirements

and optimizing electrode configurations, or perhaps, in some instances, es-

tablish that the requirements cannot be met with a given type of electrode.

The present report describes a series of investigations whose objective has

been to develop a quantitative theoretical model for one particular kind of

electrode.

Several different types of arc cathode, distinguished by qualitatively different

electron emission mechanisms, have been investigated experimentally. 2

Carbon, tungsten, and certain other refractory metals operate as cathodes

with high surface temperatures at which the bulk of the observed current

density can be accounted for by thermionic emission. Cathodes of copper,

mercury, and other low-boiling-point metals carry very high current densi-

ties ( > 106 amp/cm2 ) which cannot be explained on the thermionic hypothe-

sis. The mechanism of the "hollow" or "cavity" cathode 3 is also uncertain.

The present investigation is primarily theoretical in nature, and has been

directed toward elucidation of the mechanism of thermionic cathodes. This

particular problem area was chosen because of the availability of experi-

mental data for guidance during formulation of the theoretical model and for

comparison with predictions of the theory. The data for cold cathodes and

hollow cathodes have been too incomplete and inaccurate to permit fruitful

theory construction; however, this situation is improving rapidly at the

present time.

Manuscript released by authors January 1963 for publication as an ASD Technical Documentary Report.
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The discovery that electron emission from a tungsten or carbon cathode oc-
curs by the thermionic mechanism does not constitute a complete solution to
"the cathode problem" for these materials. On the contrary, it provides only
a single relation among the numerous unknown quantities characterizing
cathode operation at a given current; namely, a relation among local electron
current density, local surface temperature, and local electric field strength
at the surface. Standing by itself, the thermionic emission relation throws
little light upon such basic questions as why the cathode sometimes operates
in the spot mode and sometimes in the spotless mode, and why the occurrence
of spot-mode operation depends upon cathode work function, total current, and
gas type. Moreover, without additional relations it is impossible to predict
quantitatively any of the key parameters of cathode performance, such as the
distributions of temperature and current density over the surface and the
total cathode power loss. What is required to investigate these questions is a
complete mathematical model for thermionic cathodes; i. e. , a system of
equations which can be solved (given the geometry and physical properties of
the cathode, the type of gas in which it is operating, and the total current)
to yield the surface temperature and current density, the electric field at the
surface, the cathode fall voltage, the ion current fraction, and the net heat
flux to the cathode surface. A crude approximation to such a mathematical
model is developed in the present report.

B. BACKGROUND

The current densities observed on carbon and tungsten cathodes operating in
the spotless mode are of the order of 10 3 amp/cmZ. These current densities
are low enough to be accounted for by assuming thermionic electron emis-
sion from the cathode surfaces at the observed temperatures.4 The higher
current densities ( - 10 4 to 10 5 amp/cm2 ) observed during spot-mode opera-
tion of hot cathodes can be explained, as suggested by Ecker 5 and Bauer, 6 in
terms of electron emission produced by the joint action of a high surface tem-
perature and a high electric field. The field is provided by the net positive
space charge in the cathode fall region lying between the surface and the
electrically neutral plasma. Lee, 7-8 and Lee and Greenwood, 9 have investigated
this approach in considerable detail with the objective of explaining cathode
phenomena in metal vapor arcs.

A number of attempts have been made to develop complete theoretical models
for particular types of cathodes. Weizel and Thouret, in their "contraction
theory, " focus attention on processes occurring in the cathode fall zone; i. e.
the space charge region in the gas adjacent to the cathode surface. They base
their considerations upon the Poisson equation, the equations for electron
and ion current densities in terms of mobilities and the electric field in-
tensity, and the heat conduction equation for the gas. By combining these
relations, they obtain a formula for cathode fall voltage in terms of the
current density, the temperature difference between the cathode and the plasma,

-2-



the fraction of the current carried by ions, and certain gas properties. This
formula indicates that the fall voltage decreases with increasing current
density; thus, contraction of the column into a cathode spot leads to a low
cathode fall. For excessively small fall zone thickness, some of the assumed
relations break down and the fall voltage begins to increase with further con-
traction. Weizel and Thouret conclude, from the Steenbeck principle of
minimum voltage, that the fall zone on actual cathodes operating in the spot
mode must be of the order of a few ion mean free paths. These authors also
apply the same set of ideas to cathodes operating in the spotless mode, and
conclude that in this case the ion current fraction must be about 0. 03; i. e. ,
that the current is carried almost entirely by electron emission.

The Weizel-Thouret theory is not a complete cathode model, since it does not
permit prediction of cathode performance solely from cathode geometry and
cathode and gas properties. To obtain numerical results from this theory, it
is necessary to assume values for some of the unknowns; e. g., current
density and ion current fraction. In essence, this shortcoming is a conse-
quence of these authors' disregard for processes occurring on the surface
and within the interior of the cathode.

ce5 , 11
Ecker 51 has constructed a complete cathode model which incorporates some
of the physical ideas of the contraction theory. He takes the current density
to be given by the sum of the electron emission current, as determined by the
surface temperature and the electric field at the surface, and the saturation
ion current, which depends upon the rate of production of ions in the contrac-
tion region and the rate at which the ions can be drawn to the surface. He
considers energy transfer to the surface by ion impact, transfer of neutrali-
zation energy, and heat conduction through the gas. He includes heat conduc-
tion in the cathode interior and assumes that this heat is given up to the
cooler gas outside of the conducting region. The final solution is determined
graphically using what Ecker terms the "E diagram, " a plot of ion saturation
current and ion defect current versus the contraction factor. The theory
shows that, in general, two or more solutions exist, corresponding to various
degrees of contraction. In other words, the theory predicts operation with
and without cathode spots. Ecker states that, for a given case, the operating
mode "selected" by the arc is the one with the lowest voltage requirement, in
accordance with the Steenbeck principle.

Ecker's theoretical model successfully accounts for many of the qualitative
features observed experimentally in cathode operation. In its existing form,
however, this theory is not satisfactory as a model for practical cathode de-
sign because the cathode geometry assumed for convenience in obtaining a
solution is very dissimilar to the cathodes used in actual plasma generators.
In addition, some of the physical assumptions employed in the theory appear
subject to some improvement.

-3-



6
Bauer has presented a model for the cathode spot on a spherical, radiation
cooled cathode. He assumes thermal field electron emission from the sur-
face, and obtains an approximate relation between the electron current
fraction and the cathode fall voltage by considering a rough balance between
the power injected into the gas by electrons accelerated through the fall zone
and the power required for production of ions. The power transferred to the
cathode from the fall zone is estimated from the kinetic and neutralization
energy of the ions, and is related to the spot temperature on the cathode by
means of an approximate heat conduction relation. Finally, a relation be-
tween this power and the overall cathode temperature outside of the spot
region is obtained by considering radiative cooling of the cathode as a whole.
This system of equations is deficient by one relation , so that Bauer is only
able to obtain values of the unknown quantities as functions of both current
density and total current. Thus, his attempt toward a cathode model is not
fully successful; nevertheless, it introduces a number of valuable simple ap-
proximations, some of which are employed in the present work.

The most recent cathode model is that of Lee and Greenwood, 9 for the case
of metal vapor arcs. Here again, a complete system of equations is not
presented. Four relations are given for determining five unknowns, in addi-
tion to which the cathode fall voltage is assumed known. However, two
inequalities are presented which set limits to the current at which arcs of
the type considered can operate. One of these inequalities is considered to
be responsible for the phenomenon of "current chop" in an alternating
current metal vapor arc.

C. PRESENT REPORT

Of the cathode theories summarized above, only that of Ecker is "complete"
in the sense that, in principle, it permits ab initio calculation of cathode per-
formance solely from geometrical considerations and the physical properties
of the cathode and the gas. The present report presents a new cathode model
which is complete in this sense. This new theory employs a number of rela-
tions used by previous investigators, but focuses attention upon the details of
heat flow in the cathode interior as a determinative factor of hitherto unem-
phasized significance.

Because many of the relations used are crude approximations, this model
must be regarded as only a preliminary formulation. However, it appears to
offer a conceptual solution to the thermionic arc cathode problem. It can be
improved by a straightforward but laborious refinement of its approximations
without significant alteration of its overall structure.

Section II of the report reviews the physical processes occurring in the
cathode fall zone, at the cathode surface, and in the interior. In section III,
a number of rough relations describing these processes are combined to
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yield a complete system of equations approximately describing the operation

of thermionic cathodes. Various approximate methods for solving this system

of equations are considered. Section IV deals with a particular approximate
solution, the quasi one dimensional model, which is applicable to long, thin,

rod shaped cathodes. Section V then describes a series of experiments

carried out with cathodes of this type, and presents a comparison of the ex-
perimental results with calculations based upon the theory. Finally, sec-

tion VI reviews the findings of the present work, and section VII suggests

possibly fruitful lines for further investigation.
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II. SUMMARY

This report presents the results of a theoretical and experimental study of the

operating mechanism of thermionic arc cathodes. The principal objective is

to develop an approximate theoretical model which is "complete, " in the sense

that it permits detailed calculations of cathode performance solely from geo-

metrical considerations and the physical properties of the cathode material

and the gas. If successful, such a theoretical model would have numerous

significant applications, including the design of cathodes with low power loss

and cathodes capable of operating without significant loss of material at high

pressures.

The operation of thermionic cathodes is dependent upon processes occurring in

the plasma of the cathode fall zone, at the plasma cathode interface, and in

the cathode interior. These processes are represented, in the present formu-

lation, by approximate relations which in some instances are quite crude, but

which appear to contain the essential physics of the situation. The entire sys-

tem of relations can be considered to define a steady state heat conduction

problem for the cathode interior, with an unusual boundary condition repre-

senting the processes in the plasma and at the surface. An approximate

analysis indicates that the system has two different types of solution, the oc-

currence of which depends primarily upon how well the cathode is cooled.

For a well cooled cathode, the actively emitting region of the surface con-

tracts until the ion current density drawn from the plasma reaches its maximum
value as determined by kinetic theory. This type of solution of the theoretical

model is provisionally identified with the experimental phenomenon of "spot

mode" operation. According to the theory, the current density and surface

temperature of a cathode operating in this mode rise with increasing pressure,

leading to cathode failure at the pressure level for which the spot temperature

reaches the melting point.

The other type of solution predicted by the theoretical model occurs only for

poorly cooled (or even heated) cathodes. In these solutions, a large region of
the cathode is at a high temperature and carries current. The ion current

density is less than the kinetic theory maximum. This type of solution is
provisionally identified with "spotless mode" operation as observed experi-

mentally. The present version of the theory indicates that the cathode tempera-

ture in spotless mode operation should be pressure independent.
0

Approximate solutions of these types are worked out in numerical detail for

two special cases. Solutions representing spot mode operation are obtained

for a semi-infinite cathode with zero temperature at infinity. Spotless mode
solutions are calculated for a thin, rod shaped cathode cooled at one end and

with the arc striking to the other end. For both cases, the dependence of
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cathode operating parameters upon current, gas type, and material properties
is explored numerically. In the case of the rod shaped cathode, geometrical
factors are also varied.

The results of a series of experiments on rod shaped thoriated tungsten
cathodes are reported. The data are analyzed to obtain estimates of the work
function, thermal conductivity, and electrical resistivity of the material, and
are compared with the results of theoretical calculations based upon the above
mentioned approximate theory for rod shaped cathodes. The data follow the
general trends predicted by the theory, but fail to provide a quantitative test
of the theory owing to occurrence in the experiments of certain phenomena not
represented in the theory.

Detailed recommendations are made for further work on the problems of
thermionic and cold cathodes.
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III. PHYSICAL PROCESSES

The present section presents a somewhat detailed discussion of the physical
processes which are likely to be of substantial importance in the operation of
thermionic cathodes. Ecker's recent review articlel 1 treats many of these
topics in greater detail. For convenience of presentation, the various proc-
esses are categorized according to their sites of action; i. e. , according to
whether they take place in the gas, at the surface, or within the cathode in-
terior.

A. PROCESSES IN THE CATHODE FALL ZONE

1. Space Charge

The cathode has a negative potential with respect to the arc plasma, and,
therefore, attracts positive ions toward its surface. At the same time,
plasma electrons are repelled. Thus, a region of positive space charge
exists adjacent to the cathode surface. This space charge region is re-
sponsible, in large part, for the existence of a cathode fall of potential and
of a high electric field at the cathode surface.

These effects are determined essentially by Poisson's equation,

d2 U/dx2 
= 4 ,,e(nl-nhe) (I)

where

U = electric potential

X = coordinate normal to cathode surface

ce = electron charge

ni  = ion density

ne = electron density.

The particle densities n. and ni vary through the space charge layer.
Back diffusion of electrons from the plasma is neglected in the present
discussion, although Ecker 1 2 has shown that this can be a major effect.
The particle densities are then related to the electron and ion current den-
sities, je and ii, and the mean velocities of the electrons and ions, ve and
vi , by

ne = je/eve (Za)

-8-



ni = ji/eVi (2b)

If the space charge layer is sufficiently thin that collisions within it can
be neglected (i. e., if the thickness is of the order of a mean free path or
less, as is usually the case' 2), then the current densities ie and ji are con-
stant, and the electrons and ions execute free trajectories in the electro-
static field resulting from their own space charge. In this case, all of
the ions at a given distance from the surface have approximately the same
velocity, since the ions start with relatively low thermal velocities at the
outer edge of the space charge layer, and all move in essentially the same
potential field. A similar statement is valid for the electrons emitted
from the cathode surface.

Mackeown, 13 in 1929, obtained a self-consistent solution to Poisson's equa-
tion (1) and the equations of motion for the charged particles in this thin,
collision free layer. His calculation proceeds as follows. Let x denote a
coordinate normal to the surface, with its origin at the surface. The zero
of electric potential is selected to make U = 0 at the surface x = 0. The
thermal energies of the emitted electrons at the cathode surface are always
negligible in comparison with the cathode fall voltage. To a somewhat
poorer approximation, the thermal velocities of the positive ions at the
outer edge of the space charge layer can also be neglected. Then, the
energy equations for the two types of charged particle become

I Mvi 2 =(Vc-U) , (3a)

12 U (3b)
2 e e

where M and m denote the ion and electron masses, respectively, and Vc is
the potential at the outer edge of the space charge layer. Use of (3) to
eliminate the velocities vi and ve from (2) and substitution of the result-
ing values for ne and ni into Poisson's equation (1) give a differential
equation for the potential:

dx 2  (vi ve

= - ji M(_ 2 eU (4)
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Since d2 U/dx2 = -dE/dx = + EdE/dU, where E denotes the electric field in-

tensity, this differential equation can immediately be integrated to give

= 16  M1/2 vau + jem1/2 F/i] + const. (5)

At the outer edge of the space charge layer, U = Vc and E has a relatively

low value. Approximating E = 0 at this point, one evaluates the constant

to obtain

E2-= 16r 1/2 m12(U VV

ViM1/2 U + jm l / 2 (vU-Vc)] (6)

One further integration, which must be performed numerically, gives U as

a function of x; i. e., a relation for the thickness of the space charge zone.

This integral has been evaluated by Mackeown 1 3 and by Lee, 7 with results

which are consistent with the original assumption that the space charge

layer has a thickness of the order of a mean free path or less. However,

the details of these results are not required for the purposes of the present

inve stigation.

Evaluation of (6) at the cathode surface, where U = 0, gives an expres-

sion for the magnitude of the surface field intensity Ec ,

16wVcl1/2

Ec 2  = 1(jiMI/2 -_je ml/ 2  (7)

Conversion to practical units gives

Ec = 873 Vc 1 / 4 [(1823W)1/ 2 Ji-je ]1/2 ,(8a)

or

Ec = 873Vcl/4 jl/ 2 [(1823W)1/2a -(-a)]1/2 (8b)
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where

Vc  = potential drop across space charge layer (volt)

i = total current density, je + ji (amp/cm2 )

W = molecular weight of ions (gm/mole)

a = ion current fraction, ji/j.

Small discrepancies between the numerical values appearing in (8) and
those given by Mackeown, and employed by most subsequent authors, are
a consequence of the use in (8) of modern values for the atomic constants.

Unless the ion current fraction a is very small, the term (1823 W)1/Za inequa-
tion (8) is much larger than 1 - a. In most cases, the latter term can be
neglected to a good approximation, and (8) then reduces to the Child-
Langmuir formula,

Ec = 5700WI/ 4 Vc1/ 4 ji1/ 2  , (9)

for a space charge layer consisting of particles of a single sign. Physically,
the validity of this approximation follows from the fact that the heavy posi-
tive ions have much lower velocities than the electrons, and thus require a
much longer time to traverse the space charge layer. If the electron and
ion current densities are at all comparable, the density of positive ions thus
greatly exceeds that of the electrons, so that the Mackeown layer is prin-
cipally a region of positive space charge.

2. Ion Production

Figure 1 schematically illustrates the structure of the active region on
a thermionic cathode, as presently understood. The hot, solid surface of
the cathode is separated from the still much hotter quasi-equilibrium
plasma of the positive column by a relatively thin cathode fall zone. The
fall zone, in turn, may be conceptually divided into two regions. The first
of these is the Mackeown space charge layer, discussed above, whose
thickness is only of the order of a mean free path or less.

In the arc column, the current is carried almost entirely by electrons be-
cause their mobility is much higher than that of the heavy positive ions.
In the Mackeown zone, however, energy balance considerations indicate
that a substantial fraction of the current must be carried by ions, as shown
below. Thus, ionization of neutral atoms or molecules must occur in the
intervening region. For this reason, the portion of the cathode fall zone
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extending from the outer edge of the Mackeown layer to the boundary of
the arc column is designated here as the ion production zone. It occupies
the largest fraction of the volume of the fall zone. A large part of the
cathode potential drop occurs, however, in the Mackeown zone. Experi-
mentally, the cathode fall is of the order of several volts.

The electrons emitted from the surface are accelerated by the electric
field in the Mackeown zone, and thus are injected as a beam into the ion
production zone. The kinetic energy reVc of these electrons is, in most
cases, too low to permit inelastic collisions producing excitation or ioniza-
tion of atoms or ions. The electrons are thus scattered elastically by the
heavy particles but, in general, lose only a little energy per such collision.
However, the beam electrons also collide with electrons already present
in the gas, and as a result the electron velocity distribution becomes
Maxwellian within a few mean free paths from the surface. The directed
motion of the beam electrons is thus destroyed, and these electrons join
the electron gas in the ion production zone. Their kinetic energy is quickly
distributed to a large number of "gas" electrons, and then transferred
to heavy particles by elastic collisions. Because of the vast number of
collisions occurring in a gas at atmospheric or higher pressure, this trans-
fer is relatively rapid.

The energy transferred from the electrons to the heavy particles is dissi-
pated to some extent by radiation and heat conduction to the cathode, but
most of it is presumably consumed in the ionization of neutral particles.
This idea provides the basis for a simple and useful approximate relation
which has been used previously by Bauer, 6 and which is discussed also by
Somerville. 14 Consider the portion of the ion production zone lying above
a unit area of the interface between this zone and the Mackeown space
charge layer. This region receives an energy influx of amount jeVc as
kinetic energy of the electron beam injected from the Mackeown zone. The
energy carried out of the region as potential energy of ionization is JhVi.
On the assumption that other energy gain and loss terms are negligible or
cancel one another, these two quantities can be equated to give JeVc = jiVi-

With

i aJ , (10)

Je = (1-a)j , (11)

this relation becomes

VC= aVI/(1-a) (12)
or

a = Vcv c + VI) . (13)

Equations (12) and (13) have only qualitative validity, because they
neglect a large number of energy influx and efflux processes affecting the
ion production zone. Some of the energy gain terms omitted are
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a. Joule dissipation in the ion production zone, and

b. Energy deposition in the zone by Auger electrons ejected from the

cathode surface and by neutralized ions rebounding from the surface.

The energy loss terms neglected include

1) Thermal energy carried away by electrons diffusing out of

the ion production zone into the arc column, *

Z) Heat conducted to the cathode surface,

3) Radiative losses,

4) Energy losses through the side boundaries of the zone, and

5) Energy carried out of the zone by convective motions of the

gas or by a cathode jet.

Several of these omitted terms are difficult to estimate accurately without
a considerable amount of additional work. However, it is clear that equa-

tions (12) and (13) give, at best, a very crude approximation to a much

more complicated relation which could be obtained, in principle, from a

detailed theory of the ion production zone.

In its application to a cathode model, (13) is employed essentially to

give the ion current ji as a function of 9e. As j, is increased, more elec-

tron beam energy is supplied to the ion production zone, and neutral atoms
are ionized at a greater rate. It is assumed that all ions thus formed dif-

fuse across the boundary of the Mackeown space charge layer, and then
are accelerated by the strong electric field in that region until they strike

the cathode surface. It should be noted, however, that there is an upper
limit to the ion current density, which would be reached if all of the atoms

in the ion production zone were ionized. This limiting ion current density

can be estimated 6 in the following way. The ion density in a fully (singly)
ionized gas at temperature Tg and pressure p is given by

(n)max = p/2k Tg (14)

since one-half of the particles in such a gas are ions. The mean thermal

speed of the ions in any given direction (e. g. , normal to the cathode sur-

face) is 1 5

Ui = Jk'T/2wM , (15)

*Bauer 6 includes a term representing this process in his equation corresponding to (12) or (13).
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where M is the ion mass. Hence, the maximum ion current density is

- PEe

(J)max = "e (ni)max ui = (16)
V/8n'MkT"

In strongly contracted cathode spots, this limit must be rather closely

approached over most of the spot area. In such cases equation (13) gives only an

upper limit to the value of ji/j .

B. PROCESSES AT THE CATHODE SURFACE

1. Electron Emission

In the arc column, almost all of the current is carried by electrons. Thus,

a source of electrons must exist at the cathode or in its vicinity. Elec-

trons as well as ions are produced, of course, in the ion production zone,

but in arcs of the type under consideration in this report, most of the elec-

trons originate from the cathode itself.

There exist many processes capable of extracting electrons from a metal

surface. 11 A number of these depend upon the impact of energetic particles

such as ions, excited atoms, and photons. Such processes have been in-

voked in several theories 1 6 , 17 to explain the operation of cold cathode arcs,

but probably do not play an important role in the case of hot, refractory

cathodes such as tungsten and carbon, whose surface temperatures are so

high that thermionic emission is sufficient to account for most of the ob-

served current.

Electron emission from a metal surface can be produced by a high surface

temperature, a high electric field at the surface, or both. The general

case is designated as thermal field (T-F) emission. 18 Murphy and Good 19

have presented several analytical approximations, valid in different regions,

for the emission current density as a function of temperature, field inten-

sity, and work function. The general case in which both temperature and

field are large has not been solved analytically, but Lee 7 - 9 has presented

the results of numerical computations for several values of the work func-

tion.

The field intensities for hot cathodes such as tungsten and carbon, calcu-

lated from Mackeown's equation (8), turn out to be low enough (<0lo6

v/cm) that the general T-F emission relation can be approximated with

good accuracy by the Richardson-Schottky formula for field enhanced ther-

mionic emission, 19

Je = ATs2 e- /Ts (17)
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where

0 = n609 4.4 V'c (18)

Here

A = Richardson constant (amp/cm Z OK )

Ts = surface temperature (OK)

0 = thermionic work function (volts)

Ec = surface electric field intensity (volts/cm).

According to the theoretical derivation of (17), A should be a universal
constant having the value 120 amp/cmZ OK2 for all materials. However,
Nottingham 2 0 emphasizes that experimental electron emission data are
not accurately represented by (17) in any respect. The experimental
values for A are usually smaller than the above theoretical values, in some
cases by two orders of magnitude or more. The 0 value required to fit
emission data differs, in general, from the true work function, and is de-
pendent upon temperature, polycrystallinity, and the presence of surface
monolayers. Deviations from linear dependence of In ie upon V occur at
low field intensities as well as at high fields, where the approximations
upon which (17) is based break down. For these reasons, equation
(17) must be regarded, in its application to arc cathodes, as a formula
of qualitatively correct form containing two empirical constants whose
values can be selected to fit, approximately, the behavior of any given
material.

2. Heat Transfer

Energy is supplied to the cathode surface by a number of mechanisms. Z1
Of these, the most important is ion bombardment. As an ion approaches
the metal surface to within a distance of the order of an atomic radius,
the potential barrier between the interior of the metal and that of the ion
is thinned and weakened until an electron from the conduction band of the
cathode can tunnel through and fall into the ground state of the neutralized
ion. The neutralization energy ce (VI-0) is delivered to the conduction elec-
trons of the metal, and may cause Auger ejection of an additional electron
from the cathode. The yield for this ejection process has been determined
by Hagstrum2 2 for the inert gas ions incident upon tungsten. It is about
one-quarter of an electron per ion for He+ and Ne+ about one-tenth for Ar+,
and still smaller for Kr+ and Xe. In all cases, it is roughly independent
of ion kinetic energy from 0 to 1000 electron volts. Most of the ejected
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electrons have energies in the range from about one-fifth to about three-

quarters of the available energy Vi-20, the average energy being roughly

1

That portion of the available energy Vi-20 which is not carried away by

the emergent electron, as well as the energy given up by ions which fail

to produce an Auger ejection, is presumably dispersed among the conduc-

tion electrons within the cathode near the surface, and thus appears as

heat in the metal. Let yi represent the Auger yield. Then, the average

amount of neutralization energy transferred to the surface as heat, per in-

cident ion, is given approximately by the expression

(-yi)(VI_-)+y+ i - 2(Vi-20) = V I  Y -) (19)
22

The first term on the left hand side represents the neutralization energy

for that fraction of the ions which do not produce an Auger ejection. The

second term is the amount of neutralization energy which is left in the

cathode for the ions which do yield an ejection. The right hand side, ob-

tained by simple algebraic reduction, shows that the ion neutralization sur-

face heating is reduced, as a consequence of the Auger effect, by about 20

percent in the case of a tungsten cathode operating in helium. For tung-

sten in argon, the reduction is about 7 percent. In an accurate theory,

one would certainly have to include this effect, at least for gases such as

helium and neon, where yi is relatively large. However, in view of the

uncertainties already present in other relations being used, it appears

justifiable to neglect the Auger effect altogether and approximate the heat

flux to the cathode surface due to ion neutralization by

qneut = ji (VI- ) .

(20)

The ions bombarding the surface carry kinetic energy approximately equal

to the energy teVc which they acquire in falling through the Mackeown

space charge layer. An ion or atom striking a solid surface, in general,

rebounds instead of transferring all of its kinetic energy to the surface.

The fraction of the incident kinetic energy which the particle loses is

termed the accommodation coefficient, denoted here by a. Ecker 2 1 has

reviewed the somewhat contradictory literature on this subject. At ener-

gies in the range of a few volts (i. e., of the order of Vc), it appears likely

that a lower limit to a can be estimated by considering the "billiard ball"

approximation for collision between the ion and an individual atom of the

metal surface. This approximation gives, from consideration of energy

and momentum conservation for a head on collision,

a = 4w Wi/(w c + w i )2 , (21)
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where Wi is the molecular weight of the ion, and Wc the atomic weight of

the cathode material. In the event of a glancing collision, less energy is
transferred in the initial collision, but the ion is very likely in this case
to collide with a second metal atom before escaping fromthe vicinity of the
surface. It is assumed that the ionic mass is less than the atomic mass
for the cathode material; in the opposite case, a should be essentially equal
to unity.

Table 1 lists values of a calculated from (21) for a number of ions,
assumed incident upon a tungsten surfa:e (Wc = 183.9). The accomoda-

tion coefficient, calculated in this approximation, is very low for helium
and other ions of low mass, but approaches unity as the ionic mass approach-

es the mass of the cathode atoms

TABLE 1

ACCOMMODATION COEFFICIENTS FOR ION IMPACT
UPON TUNGSTEN

(BILLIARD BALL APPROXIMATION)

Ion Wi  a

He +  4.0 0.08

Ne +  20.2 0.36

Ar± 39.9 0.59

Kr +  83.8 0.86

Xe+ 131.3 0.97

N +  14.0 0.26

N2 +  28.0 0.46

The portion of the ion kinetic energy which is not transferred directly to
the surface is carried by the rebounding atom back into the ion production
zone, where it is given up to ions and other atoms by collisions. This
energy transfer occurs within a few atomic mean free paths from the sur-

face, and has the effect of raising the temperature of the neutral gas near
the surface. As a result, the temperature gradient in the gas in this re-
gion is increased, and at least some of the additional heat thus deposited
in the ion production zone should flow back to the surface by heat conduc-
tion. It is assumed, for the sake of simplicity, that this process brings
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all of the rebound energy back to the surface; i. e., that the net heat flux
to the surface due directly or indirectly to transfer of ion kinetic energy is
given by

qkin = JiVc (22)

An upper limit to the heat flux reaching the surface by conduction through
the gas can be estimated using kinetic theory. The number of ions and
neutral particles striking unit area of the surface per second is nh Ui , where

nh is the density of heavy particles in the ion-production zone, and li is
given (15). The thermal energy carried by each such particle is
3kT /2, of which a fraction a is transferred to the surface. Thus,

p kTg 3kT kTg< _ . 3 a 3ap (23)
qk T ffM 2 2wM

With T - l0 4 °K and a "-0. 6, this gives an upper limit of about 5000 w/cm 2

9
for argon at 1 atmosphere pressure.

Since the ions and neutral particles in the ion production zone are assumed
to be in thermal equilibrium with each other, and since the masses are equal,
the thermal velocities are the same and the number of particles of each type
entering the Mackeown layer from the ion production zone is proportional
to the corresponding particle concentration. Most particles of either type
which cross the interface between the two zones eventually reach the sur-
face. The accommodation coefficients for transfer of kinetic energy should
be about equal. The ions, lcwever, have much more kinetic energy than the
neutrals, because the former are accelerated in passing through the
Mackeown zone. In addition, the ions transfer most of their neutralization
energy VI - -0 to the surface. Consequently, each ion hitting the surface
delivers an amount of energy which is at least one or two orders of magni-
tude larger than that transferred by a neutral particle. It follows that ion
bombardment heating is always more important than heat conduction, pro-
vided that the gas in the ion production zone is substantially ionized (more
than about 10 percent). This is certainly the case for the high current
densities associated with spot mode operation. It may conceivably not be
the case for low current operation without a cathode spot. To determine
the answer to this question in general, it would be necessary to construct
a detailed theory of the ion production zone. It is assumed in the present
report that cathode heating by conduction through the gas is negligible in
comparison with ion bombardment heating. Radiative heating and combus-
tion of the surface are also neglected. The total heat flux to the cathode
surface is then estimated to be, from (20) and (22),
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qneut + qkin = ji(Vc+VI- ) " (24)

The energy deposited in the cathode surface is disposed of by several
mechanisms. The bulk of this energy is consumed by thermionic emission
of electrons. Extraction of one electron from the surface by "pure" ther-
mionic emission requires an energy of 0 electron volts, where 0 is the
thermionic work function. If an electric field producing the Schottky effect
is present, this energy requirement is reduced, approximately, to the
value of the "effective work function":

Oeff = 9- 3.79x10 - 4 y' -c (25)

Calculations by Lee 8 show that the actual cooling energy per electron
emitted varies with temperature as well as with electric field intensity,
so that (25) is only a rough approximation, even in the region of field
strengths where the Richardson-Schottky formula (17) is a good approximation
to the exact T-F emission function. Lee's calculations indicate that at a
temperature of 3000 0 K and a field of 107 v/cm, the cooling effect is about
15 to 20 percent less than it would be in the absence of a field. Since it
has been necessary to make several other relatively crude approximations,
this correction to the cooling effect of electron emission will be neglected
in the present report. The heat flux absorbed by electron emission is then
approximated simply by

qe = Je • (26)

The input energy remaining after allowance for the power requirement of
electron emission is partly lost by thermal radiation,

qrad = a,Ts4 ' (27)

and partly conducted into the interior of the cathode,

q = K (dTr/dn)s . (28)

Here

U = Stefan-Boltzmann constant (5. 67 x 10 - 12 w/cm 2 OK4 )

S= total emissivity of surface
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Ts  = surface temperature (OK)

K = thermal conductivity of cathode material

Xr/dn = derivative of cathode temperature along an outward directed
normal to the surface (°K/cm).

Under some circumstances, an additional amount of heat is absorbed by
vaporization of the cathode material, but this plays little role in the case
of tungsten, which is the principal concern of the present study. Certain
other processes 2 l can become significant in some instances.

Combination of equations (24), (26), (27), and (28) now gives the energy
balance relation at the cathode surface,

Ji(Vc +Vi-¢) = je + K (OT/dn)s + aeTs4  (29)

Substitution of ji = aj , je = (1- a)j gives

j[a(V c + VI) - 01 = K(OT/on)s + acTs4 .30)

Finally, for cases in which ji <(Ji)max' elimination of a using (13) yields

j(Vc - ) = K(aT/an), + aT 4 
. (31)

In (30; or (31), the net electrical heating effect is represented by the
expression on the left hand side, while the terms on the right hand side
correspond to purely thermal effects.

Equation (30) provides the basis for a rough estimate of the ion current
fraction a for thermionic cathodes. Since the active region of the cathode
is at a high temperature, it loses heat by conduction and radiation; thus,
the right hand side of (30) is positive. Solution of (30) for a yields

1 K(aT/ n)s+ aGT " (32)

Thus, a has a lower limit of

amin = O/(Vc + V I ) ,

which with 0-,4 volts, Vc,- 5 volts, VI - 20 volts gives amin-0. 16. The pres-
ence of the second term in the bracketed expression of (32) makes the
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actual a value somewhat larger than this. This argument shows that a
much larger fraction of the current is carried by ions at the surface of the
cathode than in the arc column. 23

Thus far, attention has been paid only to processes occurring on the elec-
trically active portion of the cathode surface. Over the remainder of the
surface, there is no electrical heating. Heating by radiation from the arc
or from other hot surfaces in the system may occur, but, if so, will depend
to a major extent upon the details of the plasma generator configuration.
The same may be said of convective heating by arc heated gas flowing over
the cathode surface. These effects will not be considered further.

Energy losses occur from the entire exposed surface of the cathode, and
play a role of considerable significance. The radiative loss is, of course,
a flux aET4 where t is the total emissivity, and T the local surface tem-
perature. The convective loss is less readily calculable, since it depends
upon the distribution of gas temperature and velocity in the flow field near
the cathode. These quantities are strongly dependent upon the plasma
generator configuration and are difficult to calculate or to determine ex-
perimentally. In general, the convective loss should be larger, under
otherwise identical conditions, when the cathode is operated in a gas of
high thermal conductivity such as helium or hydrogen.

C. PROCESSES IN THE CATHODE INTERIOR

1. Heat Conduction

For a thermionic cathode to operate, a portion of its surface must be
maintained at high temperature. Heat then flows from this hot region to-
ward the cooler regions of the cathode. The steady flow of heat in a solid
with no interior sources or sinks is governed by the partial differential
equation,

V (KVT) = 0 , (33)

where K denotes the thermal conductivity. If K is independent of position,
(33) reduces to Laplace's equation

V2 T = 0 . (34)

Equation (33) or (34), of course, has an infinite variety of solutions.
Determination of the solution T (x, y, z) describing a particular physical
situation, such as the temperature field in a certain cathode, requires the
specification of an adequate set of boundary conditions. The steady heat
flow problem for a thermionic cathode has ordinary fixed temperature
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and radiative cooling conditions over certain portions of the surface, and
the boundary conditon (29) or (31) over the region where flow of
current is possible.

2. JQule Heating

Not only heat but also electric current flows in the interior of a cathode.
The flow of current produces a distributed source of resistive heating
throughout the interior with the magnitude pj 2 per unit volume, where p
is the resistivity of the metal (a function of temperature), and j the current
density. Equation (33) is, thus, replaced by2 4

V (KVT) + pj 2 = 0 . (35)

The current density is a function of position and is not "given, " but is part
of the solution of the problem. It is a vector determined locally by Ohm's
law

i- E/p , (36)

where E denotes the electric field vector, which in turn is equal to the
negative gradient of the electric potential function,

E = - VU. (37)

Since no sources of current exist in the cathode interior, I is solenoidal,

V Vi-  • VU =o. (38)

One is thus confronted with a system of two coupled partial differential
equations (35), (38).

Rich 2 5 has obtained an approximate solution to the problem of Joule heating
in the vicinity of a cathode spot, by assuming p = constant and a uniform
current density over a circular portion of the surface of a semi-infinite
body. His results show that for hot tungsten (p-100 x 10-6 ohm-cm) with
a current density of 105 amp/cm 2 , the Joule power in the spot region is
about 106 a3 watts, where a = spot radius (cm). The current is 1057ya2.
Thus, the voltage associated with Joule heating under these conditions is
about 3a volts. A current of 1000 amperes with the assumed current density
would require a spot size of only about 0. 06 centimeter, so that this effec-
tive voltage is small (- 0. 2 volt) even for the rather severe case assumed.
It may be concluded that Joule heating in the spot region is negligible for
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thermionic cathodes. This outcome is a consequence of the fact that radial

spreading of the current causes the power density pj 2 to decrease extremely

steeply with distance from the spot, so that the volume in which significant

heating occurs is very small.

If the cathode is not effectively semi-infinite, but is a rather long thin body

with axial current flow, Joule heating can become very significant at high

total currents, because a moderate power density is produced throughout

the entire volume of the cathode. The theory of Joule heating of long,

cylindrical tungsten cathodes is developed in section IV below.
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IV. THEORY OF THERMIONIC CATHODES

A. PHENOMENOLOGY

The variety of behavior exhibited by cathodes is impressive. Even a single
cathode, simply observed visually, presents a bewildering sequence of qualita-
tively different appearances as its environment and operating current are varied.
In a given gas, for example, at low currents, a tungsten cathode may operate in
the spot mode with a high current density. An increase of current beyond a
certain level causes transition to the spotless mode, with a lower current den-
sity. An increase in pressure brings back the spot. Operating in a different
gas at the same pressure and over the same range of currents, the cathode may
run either always in the spot mode or always without a spot. This richness of
phenomenology presents a severe and interesting challenge to any theoretical
model which may be proposed.

Apart from qualitative features such as those just mentioned, a successful
theoretical cathode model must predict quantitatively the observables of cathode
operation. For a given total current, these include the cathode fall voltage,
the power losses from the cathode by radiation and heat conduction to the cooling
system (if any), the temperature distribution in the cathode, and the distribution
of current density over the surface. In the absence of significant radiative or
convective heat transfer from the arc column to the cathode, this prediction
must be based solely upon the cathode geometry and the physical properties of
the cathode and gas.

B. OVERSIMPLIFIED MODEL

The cathode model presented below (section III C) is, in spite of the crudity of
many of its approximations, a fairly complex mathematical construction. To
clarify some of the basic ideas before undertaking a discussion of the complete
problem, the present section considers an oversimplified model for which the

analysis is elementary. This model is defined by the following assumptions:

1. The cathode is a cylindrical rod of diameter D and length L, one end

of which is held at a low temperature T0 . The other end is operating as a
cathode spot with a uniform current density.

2. The electron emission is purely thermionic (no Schottky effect).

3. Joule heating and radiative energy loss from the surface are neglected.
The current emission does not "overflow" down onto the curved side surface
of the cathode.

4. The thermal conductivity is a constant.
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It is virtually certain that no cathode satisfying these assumptions even roughly

can be constructed. This model is presented solely to illustrate a few of the

fundamental features of the more realistic cathode theory formulated in the

next section.

One parameter characterizing the operation of a cathode can always be chosen

arbitrarily, at least within certain limits. For the oversimplified model, the

total current I can be specified. Then, the current density is

j = 41/r D2  . (39)

The current density, in turn, is related to the surface temperature T. of the

active end of the cathode by Richardson's equation,

Je = (l-a) j = ATS 2 e 11 6 09/Ts (40)

where a denotes the fraction of the current carried by ions. This quantity is
given approximately by (13),

C

a V= - (41)

Vc + VI

in which the ionization potential V1 is known. However, Vc is not yet known and

does not appear in (40). At this stage, there are three unknowns, a , TP,
and VC , and only two equations, (40) and (41). It is now necessary to invoke

the surface energy balance relation (31).

j (Vc - 0) = K (dT/9n), . (42

The temperature gradient on the right hand side must be determined from the

solution of Laplace's equation (34). Under the assumptions of this over-

simplified model, the heat flow is one dimensional, and hence (34) becomes

d2 T/dx2 = 0 , (43)

with the boundary conditions

T (0) =T o  
(44)

T (L) =T s  
(45)

The solution of (43) satisfying (44) and (45) is )bviously

T = T o + (T s - T0 ) (x/L) (46)
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Hence,

(aT/n), - (Ts - T0 ) /L '47)

Substitution of (47) into (46) gives

j(Vc - ) - K(Ts - T0)/L (48)

Equations (40), (41), and (48) now provide a system of three equations
for the three unknowns a , T., and VC.

From (41)

V,
i-a=

Vc + VI

Hence, (40) becomes

V 1 0 -
I  (49)

A Ts2 e-169/Ts

Equation (48) can be rewritten

K (Ts - T0) (50)
jL

The pair of equations (49), (50) can be solved for Vc and Ts by a graphical
procedure, as illustrated in figure 2 for the case j= 1000 amp/cr?, VI = l5volts,
A = 120 amp/cmZ °K, 0 = 4 volts, K = 1 w/cm OK, To = 300'K, and L = 3 centi-
meters. The solution for this particular case is Vc = 4. 97 volts, a = 0. 249,
Ts = 32400 K. The corresponding net heat flux to the surface is 980 w/cm 2 .

It is worth noting that to determine the solution, even for this extremely simple
model, it is necessary to use relations describing processes in the gas, in the
cathode interior, and at the interface. Thus, the operation of a thermionic
cathode depends upon phenomena in both the solid and the gas and upon the
coupling between the two regions across the interface.

The system of equations (49), (50) is sufficiently simple that one easily sees
qualitatively how the solution depends upon various parameters. For example,
a change in L affects the slope of the straight line representing equation (50)
in figure 2 without modifying the curve for (49). The latter is so steep
that a substantial change in L produces only a slight alteration of the temperature
T. for the solution, although the cathode fall voltage Vc changes considerably. For
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this model, at least, stronger cooling of the cathode (achieved by reducing the
length), thus accomplishes very little by way of reducing the temperature which
the material must endure without melting. Of course, this is a consequence of
the fact that most of the cathode current is carried by electrons emitted therm-
ionically. The stronger cooling achieves its slight reduction of tip temperature
at constant current by increasing the ion current fraction a, so that the require-
ment for electron emission is reduced a little. The additional ion current thus
drawn from the gas naturally increases the heat flux to the cathode. The extra
heat flux can be handled by internal heat conduction, because the shortening of
the cathode with little change in tip temperature has increased the axial tempera-
ture gradient.

C. THEORETICAL MODEL FOR THERMIONIC CATHODES

The relations set down in section II to describe the processes occurring in the
gas region, in the cathode interior, and at the interface between these two regions
provide the basis for an approximate but complete mathematical model for therm-
ionic cathodes. The central feature of this model is the heat conduction problem
for the cathode interior. The present section formulates and discusses this
cathode model for the case in which Joule heating in the cathode interior is
neglected. It has been shown in paragraph 2 of section II C, on the basis of
Richts25 results, that Joule heating contributes little to the heating of a therm-
ionic cathode operating in the spot mode, and omission of this effect simplifies
the formulation of the problem considerably. When Joule heating is neglected,
the differential equation for the temperature distribution within the cathode is
(33)

V. (KVT) = 0 (51)

To discuss the boundary conditions for this equation, It is necessary to introduce
some notation for providing a generalized description of the cathode geometry.

The bounding surface of the cathode can be divided conceptually into three
portions, S1, S2, S3:

Sl: Interface between cathode and external cooling system.

S2: "Inactive region"; i. e. , surface through which no current can flow
because of geometrical separation from anode.

S3: "Active region"; i. e. , portion of surface through which current
can enter the cathode from the arc column. The entire region S3
need not be covered by current flow however. The actual cathode
spot may be much smaller than S3 .
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Possible ways of dividing the cathode surface into these three regions are il-

lustrated for several cases in Eigure 3. The dividing curve between S2 and

S53 is rather arbitrary in most cases. For the geometries (c) and (d) of figure 3

S2 can be omitted.

The boundary conditions on the temperature field within the cathode can now be

formulated with reference to this division of the cathode surface into regions.

This formulation of the boundary conditions is not necessarily applicable to all

geometrical configurations, but is reasonably general and can be modified

readily to treat special cases.

It is assumed that the material in contact with the cathode over the region S1 of

the surface is an excellent thermal conductor, such as copper. Then, S1 is a

surface of constant temperature to a good approximation, and the boundary

condition over this region is

T = To  on S1  (52)

Over the region S2 , by assumption, there is no current flow. Hence, there is

also no surface heating by ion bombardment. It is assumed for the present

formulation that radiative heating of the surface and convective heat exchange

between the surface and the gas can be neglected, although this is not always

the case. Then,

K = acT 4  on S2  ,(53)
51s

where a/an denotes the outward directed normal derivative.

In the "active region" S3 , the boundary condition is considerably more compli-

cated because it involves relations pertaining to the cathode fall zone and the

electrical heating of the surface. The condition in this region is essentially

equation (29).

K = jj (Vc + VI - ) - jeO - acTs onS 3  (54)

However, (54) contains the ion and electron current densities, which are

not "given" but are part of the solution of the problem. The electron current

density is related to the local surface temperature Ts and field intensity Ec by

the Richardson-Schottky equation (17),

Je = A Ts 2 e- 0 /Ts (55a)
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Here,

0 = 11609 , - 4.40 Vr , (55b)

and Ec is given by Mackeown's formula (8a)

Ec = 873 Vc1/ 4 [(1823W) 1 /2 V - 1 / 2  
(56)

The ion current density ji is represented by

ji = min [aje/(1-a), (Ji)ma.] , (57)

where min (x, y) = x or y, whichever is smaller; a is given by the rough energy
balance relation 113) for the ion production zone,

a = VcAv c + Vi) ; (58)

and (ii)max is the upper limit to the ion current density based on kinetic theory,
equation (16),

imax = Pce (59)

The gas temperature T9 in the ion production zone is roughly equal to 0. 15
VI/k if the gas in that zone is just fully ionized. The idea expressed by equa-
tion (57) is that the power ieVc brought into the ion production zone by the
electron beam emerging from the space charge layer is all consumed in pro-
ducing the ions which flow to the cathode, unless the ion current has reached
its limiting value (Ji )max ,in which case the excess power JeVc - JiVi is simply
lost by unspecified mechanisms. Actually, some of this excess power is likely
to produce extra ions in neighboring parts of the ion production zone where the
electron current density is not so high, and one could with equal justification
use other approximations in place of (57).

In this formulation, the quantities (OT/ n) s, T,, Ji' Je, 0, Ec are functions of
positon over the surface region S3 . The cathode fall voltage is taken to be
independent of position over the emitting region, since it is the potential dif-
ference between two good electrical conductors, the cathode and the plasma.
According to equation (58), a is, then, also constant. The ratio Ji/Je is
constant, from (57), except in the region (if any) where ii = (ii)max. The
total current is given by the surface integral of the total current density,
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f j (Je+i)dS 
(60)

S3

One of the position independent parameters of the problem, such as the total

current, can be selected arbitrarily. For the following discussion, it is

convenient to let this arbitrary parameter be Vc instead of I. If Vc is given,

then a is known from (58). At each point of the surface S3, there are then

six unknowns Ts, (aT/an), , je i , E,, 0, which are related to one another by

the five algebraic relations (54) to (57). These relations -an be solved

for (aT/an ). as a function of Ts,

qs = K (aT/an)s = F (T,) (61)

A rapidly convergent numerical procedure for computing values of this function

is described in appendix A. Figure 4 illustrates the form of the function for

a cathode with the thermionic constants 0 = 3. 5 volts, A = 120 amp/cm2 aK 2

operating in argon at 1 atmosphere. (The ordinate in figure 4 is the net

electrical heat flux, K (aT/an )s + at Ts , rather than F (Ts) itself. ) Figures

5, 6, and 7 show the ion, electron, and total current densities based

upon the same calculations. Comparison of figures 4 and 5 shows that

the maximum electrical heat flux occurs at the temperature for which the ion

current density reaches its maximum value. Below this temperature, the ion

current is proportional to the electron current, and thus increases with in-

creasing temperature. The increase of ion current is responsible for the in-

crease of heat flux which occurs in this region. Above the temperature at

which ji reaches (ji )max the ion current is constant while the electron current

continues to increase with temperature. The resulting increase of the cooling

effect of electron emission without any compensating increase of ion bombard-

ment heating produces the decrease of heat flux shown in figure 4.

The reduction of equations (55) through (59) to the single relation (61)

makes it possible to summarize the cathode problem concisely as follows:

Find solutions of the partial differential equation,

V .(KVT) = 0 ,(62a)

satisfying the boundary conditions

T =T o  on s, (62b)

aT T4  o (6Zc)
a =3 2an K
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8T F (T;Vc) on (6 2d)
n K 3

where a/an denotes the outward directed normal derivative, and F (T; V,) is a
positive, nonlinear function of local surface temperature of the general form
illustrated in figure 4. F (T; Vc ) depends parametrically upon the cathode
fall VC . The cathode fall is regarded as an input parameter. Assuming that (62)
has been solved for series of Vc values, the total current I can be
computed from (60) for each case, giving I = I (V). Inversion of this
relation gives Vc = Vc (I), so that one can obtain the temperature distribution,
current density distribution, and other quantities of interest as parametric
functions of total current.

The system of equations (62) represents an unusual type of heat conduction
problem which does not appear to have been considered previously in the lite-
rature. In general, two or more solutions may exist for any given set of input
conditions, corresponding to different modes of cathode operation. The possible
nonuniqueness of solutions can be illustrated by considering a physically unreal
but mathematically acceptable case of (62), in which the cathode is a circular
cylinder of length L, S1 is the circular area of one end and S3 that of the other,
and S2 is the curved side surface. The emissivity c and end temperature To are
assumed to be zero. Depending upon the value of L, the problem thus defined
may have one, two, three, or more solutions. Some of these are one dimensional
solutions of the form T = Ts x/L, where Ts is obtained by solving the equation

KT S
- = F (Ts) (63)

L

This is the form to which (62d) reduces in the case of one dimensional heat
flow in a rod with zero temperature at one end. Figure 8 illustrates the
graphical solution of (63) for a particular value of VC. The F(Ts) curve in
this figure is identical with the curve for Vc = 10 volts in figure 4. Figure 8
shows that (63) always has at least one solution Ts = 0, corresponding
to T= 0 throughout the cathode. In this case, the cathode is not operating. If
L is not too small, the straight line q, = KTs/L intersects the curve q. = F(Ts,
in two points (see figure 8). The point lying at a lower value of Ts cor-
responds to a cathode mode in which the ion current is less than (jim,ax. The
higher point represents a mode with much higher current density for which the
ion current has essentially reached its limiting value. If L is too small, the
line qs = KTS/L passes above the peak of the curve for F(T s ), and there is no
nonzero one dimensional solution for the given cathode fall voltage. Solutions
can still be obtained, however, for higher Vc . In addition to these various one
dimensional solutions, the problem may possess non one dimensional solutions
in which the current flow is contracted into a spot on the end of the cathode.
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The mathematical techniques for treating problems of the type of (62) are

not well developed at the present time. The most important lack is that of a

practical numerical procedure, adaptable to machine computation, for obtaining

axisymmetric and three dimensional solutions. However, a number of ap-

proximate methods for solving the cathode heat conduction problem are considered

in subsequent sections.

D. APPROXIMATE METHODS OF SOLUTION

1. Numerical Methods for Two and Three dimensional Problems

A numerical method for high speed digital computation of solutions to the

cathode model (62) is needed for investigating the mathematical conse-
quences of the theory and testing its predictions against experimental data.

If the theory, or some modification of it, proves to be approximately valid,

such a computation technique will also be required for applications to cathode

design studies.

The standard methods for numerical solution of elliptical partial differential

equations do not appear to be directly applicable to (62), because of the

peculiar nature of the boundary condition (62). The function F (T) is

so strongly varying (see figure 4) that it tends to amplify greatly the

effects of any errors in the surface temperature distribution. This tendency

probably will lead to instability and convergence failure in any iterative

numerical process which does not contain a special stabilizing feature.

It appears that the most suitable method for stabilizing a numerical solution

of (62) may be to take the total current I as the input parameter in place

of the cathode fall voltage Vc . This, of course, entails some inconvenience

in the computation because the algebraic structure of equations (54)

through (59) practically requires that Vc be retained as an intermediate

parameter. However, holding I constant during a series of successive ap-

proximations at least ensures that the calculation will not skid off toward

some extreme cathode operating condition with zero or infinite current.

Use of I as the independent input parameter also practically rules out some

techniques of solution such as the relaxation method, in which the temperature

distribution throughout the body is adjusted piecemeal. The total current

is given by an integral (60) over the active region of the surface, and,

thus, refers to a single complete temperature distribution. What thus

appears to be suggested is a method of successive approximations to the

entire temperature distribution, starting with a rather arbitrary trial

function. Assuming that the procedure converges, one might, then, hope to
find solutions corresponding to various cathode "modes" by choosing dif-

ferent trial functions. Two approaches of this type are suggested here.

Neither has actually been tried. Testing and developing either of these
methods will require a major programming and computing effort.
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The first suggested method presumes the existence of a program for solving
equation (6 2a) with mixed Dirichlet-Neumann conditions. It proceeds
by iterating the following sequence of steps:

a. Choose a trial function* T(r,z).

b. Using the temperature given by this function at the surface in
region S3 , solve for the Vc value required to give total current I.

c. Using this VC9 calculate the surface heat flux distribution over
S3 using (62d). Also, calculate the heat flux over S2 using 162c).

d. Solve V " (KVT) = 0 with the boundary conditions that T is prescribed
on S1 and T/n is prescribed (from c above) over S2 and s3.

e. Go to (b) above.

A second plausible looking procedure for solving (62) is to obtain solu-
tions to this steady state problem by following the evolution of a corresponding
solution of the transient heat equation

V * (KVT) = 3c aT/act (64)

to late times. The boundary conditions in (64) are again (62a.b,c.d)
The total current is taken as an input parameter and held constant in time.
This requires that the cathode fall voltage Vc be adjusted at each time step
of integration of (64).

Both of these procedures will require relatively large amounts of machine
time per case. The approach through the transient problem is likely to be
exceptionally costly in this respect, so that alternatives such as the first
method suggested above should be explored thoroughly before a solution by
this technique is tried.

2. Approximate Relationships for the Cathode Heat-Conduction Problem

Although the cathode heat conduction problem (62) is quite difficult to
solve accurately, the general nature of the solutions can be seen rather
clearly from simple qualitative considerations. A general discussion of
this type of heat conduction problem is given in the present section, and
approximate conditions are derived relating the nature of the solutions to
the form of the assumed heat input function q(T). In the following section,
the results of this analysis are applied to the actual heat input function q(T)
defined by equations (54) through (59) to obtain an approximate
solution for the properties of the cathode burning spot for a particular
cathode geometry.

*The notation in this discussion assumes the case of an axisymmetric problem.
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The discussion can be carried out most simply by choosing a semi-infinite

cathode geometry with the boundary condition that the temperature goes to

a fixed value To at infinity. The parameter To then represents the

strength of the cooling applied to the cathode. The effects of a finite

geometry can be simulated qualitatively by choosing To in such a way as

to reproduce the actual boundary conditions on the cathode as well as pos-

sible. For example, if the actual cathode has typical dimension R and the

surface is held at temperature T1 , then To would be chosen so as to give

a temperature T1 at the distance R from the center of the spot. Thus, a

long, rod shaped cathode of the type to be discussed in section IV below

would be simulated by a large positive value of T0 , while a small, strongly

cooled cathode would correspond to a negative T0 .

For the semi-infinite cathode with T = To at infinity, the boundary conditions

(62b, c,d) on the cathode temperature distribution become

T = To  
at infinity

K aT/an = q (T) on the cathode surface, (65)

where q (T) is a specified function of surface temperature which depends

parametrically upon the cathode fall voltage Vc. The latter quantity may

be regarded as the independent variable for the problem, in place of total

current, as discussed above. The general nature of the solutions can be

studied by conceptually dividing the surface into a cathode spot region of

radius rs in which the heat input q is appreciable, and an external region

r > rs in which the heat input is negligible. The total heat input to the

cathode per unit time is, then, approximately

Q - irs 2 q(T.,) , 
(66)

where TaV is the average spot temperature. A second relation between

these parameters is furnished by the heat flow relation outside the spot

region. On the assumption of radial heat flow in the external region, the

differential equation (62a) for the temperature distribution becomes

simply

2 rr 2 K OT/dr -Q (67)

Integration of equation (67) gives, with the aid of the boundary condition

atr = ,

Q - 2nKrK (Ta v - T0) (68)

Relations analogous to (68) have been derived previously by a number

of authors 6 p 11, 26 for various cathode geometries, using arguments similar
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to those given here. Elimination of Qfrom equations (66) and (68)
gives a relation between the spot radius rs and spot temperature TavP which
must be satisfied approximately by any solution of the cathode heat conduction
problem (62).

Equations (66) and (68) do not, however, exhaust the conditions which
must be satisfied by the temperature distribution in the cathode. The initial
assumption that the heat flux is appreciable for r < rs and inappreciable
for r > rs remains to be formulated. This assumption requires that the
temperature gradient across the spot, in combination with the known
dependence of the heat flux q on temperature, must be just sufficient to cut
the heat flux essentially to zero at the edge of the spot, r = rs . This
condition can be represented symbolically by

T (r,) - Tc , (69)

where T(r s ) is the actual temperature at the edge of the spot, and Tc is the
cutoff temperature, defined as the temperature for which the heat flux
q(Tc ) becomes negligible in comparison with the average heat flux q (Tay)
over the spot. TC is, of course, in general a function of Tav. There is
evidently some arbitrariness in the choice of the cutoff temperature TC,
just as there is in the spot radius rs ; however, if q (T) is a sufficiently
strong function of T , this arbitrariness leads to only a small uncertainty
in the numerical value of To.

If the function q(T) can be approximated by a straight line over the range
of temperatures occurring in the spot, it is possible to give a more explicit
formulation of (69). This type of approximation is applicable, for
example, to the rising part of the heat flux curve defined by equations (54)
to (57) and illustrated for a special case in figure 4. The
linear approximation to q(T) is given by the first two terms of its
Taylor expansion, q (T) = q (Tav) + q' (Tav) (T - Tav) . A logical choice of
the cutoff temperature, based upon this approximation, is the temperature
for which this expression gives q = 0 . Then equation (69) becomes

AT 2 1 (70)

q (Tav)

where AT is the temperature difference across the cathode spot. A rough

estimate of AT may be obtained by taking AT = rs (dT/d)r s , where

(dT/drs is the surface temperature gradient at the edge of the spot, as

given by equation (67). Eliminating Q using (68), nne finds in this
way that

ATM Q/2yrKf s nTav -T O ; (71 a)
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i. e. , the temperature difference across the spot is of the same order of

magnitude as the temperature difference between the spot and the cooling

system. Since the surface temperature gradient dT/dr is actually not

constant across the spot, but increases from zero at the center to a maxi-

mum absolute value at the edge of the spot, the estimate (71a) is proba-

bly somewhat too large and should be replaced by a relation of the form

AT t -- y(Tav - TO) , 
(72)

where y is some constant of value less than unity. A uniform variation of

dT/dr across the spot, for example, would give y = 1/2.

Another estimate of AT can be obtained by assuming a uniform heat flux

over the spot area and no heat input outside the spot. An analytic solution

for the temperature distribution in this case 2 7 gives the relation

AT = (-) [ T(0) - To ] 3rI(Ta - TO) (71b)
Ir 3

where T(Q) is the temperature at r = 0. Since for the linear approximation

to q (T) considered here the heat flux actually increases toward the center

of the spot, equation (71b) probably represents a lower limit for AT.

It may, thus, be concluded from (71a,b) that the constant y in equation (72)

lies within the range

1
-< y< 1 , (73)

the most likely value being about 1/2. Substitution (72) into (70) gives the

approximate condition

q'(Tav) 1
(Tav - TO)  2 (74)

q (Tav) Y

which must be satisfied by the spot temperature Tav for cases in which the

heat flux function q(T) can be approximated reasonably well by the first
two terms of its Taylor expansion.

Equation (74) is a condition on the possible operating temperatures Tav

of the cathode spot. The quantity q' (Tav) (Tav - T0 )/ q (Ta) appearing in

the left hand side of the equation is termed the "steepness" of the heat flux

function. In general, of course, the steepness is a function of spot tempera-

ture. Solutions of the cathode heat conduction problem can exist only for

spot temperatures such that the steepness is exactly right (i. e. , equal to
l/y).
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The possibility of a relationship between the formation of cathode burning
spots and the steepness of the dependence of heat flux q upon surface
temperature was apparently first suggested by Bauer. 6 He pointed out that,
because of the very strong dependence of thermionic emission on the surface
temperature, any nonuniformity in temperature over the cathode surface
would lead to a concentration of the arc current, and hence also the heat
flux, at the hot spots. The increased heat input at these points would then
tend to raise their temperature even more, and this, in turn, would produce
a further concentration of current and heat flux. Thus, the arc would tend
to contract into a spot, with a spot temperature considerably higher than
that of the surrounding cathode.

Bauer did not indicate how steep a temperature dependence would be required
to cause spot formation, or what would determine the ultimate operating
temperature reached by the contracted spot. These questions can be
answered approximately, however, for a fairly smoothly varying heat flux
function q (T), by reference to equation (74) which gives the critical
steepness required for stable operation of the spot. If the steepness of
q (T) at the initial cathode temperature exceeds this critical value, then
the arc contracts and the spot temperature rises until a temperature is
reached for which the steepness of q (T) has fallen to the critical value
1/y given by (74). Once this critical steepness has been reached, the
concentration of heat flux produced by the temperature gradients across
the spot is no longer sufficient to cause a further rise in temperature, and
stable operation thus ensues.

In the case of an irregularly shaped function q (T), for which the Taylor
series expansion is not a good approximation, equation (74) is naturally
not applicable. However, the more general relation (69), which states

that the temperature gradient across the spot must be just sufficient to cut
the heat flux off at the spot radius, remains valid. It is, thus, expected
that, in general, stable operation of the spot is possible only for certain
specific temperatures for which the dependence of the heat flux on tempera-
ture is just "steep" enough, in some sense, to produce the required cutoff.

The general nature of solutions to the cathode heat conduction problem (62)
can be seen from the approximate relations (66), (68), and (74) Or

(69) deduced above. For a given cathode fall voltage Vc and
boundary temperature To, q (T) is a known function of T, and the possible
operating temperatures Ta of the cathode spot are determined completely
by the solutions of equation (74) or its more general form (69).
Depending on the form of q (T), there may be zero, one, two or more
solutions for Tav. For each of these possible values of T., the spot radius
rs is uniquely determined by equations (66) and (68). Thus, the heat
conduction problem in the cathode has stable solutions only for certain
specific values of the spot radius rs and temperature TaVP and the arc is,
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therefore, forced to contract in front of the cathode so as to take on one of

these permitted values for the spot radius. Each solution of the heat

conduction problem corresponds to a possible mode of operation of the

cathode.

Once Tav and r. have been determined, approximate values for the other

significant cathode operating parameters can be calculated from the equations

given in section IIIC. In particular, the average electron and ion current

densities over the spot, (Je ) and (i)av, can be determined approximately

by evaluating the implicit equations (55) through (59) at the average

spot temperature Tav , and the total current can, then, be found from (60)

in the integrated form

I = frs2 lJe)av + (Jiav] (75)

3. Approximate Theory of Cathode Spots

An approximate theory for the burning spot on a semi-infinite cathode with

temperature To = 0 at infinity is developed in this section. The heat input

function q(T) for this problem is given by equations (54) through (59)

and has the form illustrated in figure 4.

It is convenient to consider separately the case in which the ion current

density ji is everywhere less than its limiting value (ji)max' and the case

in which ji = (i )max over part of the cathode surface. In the former case,

the function q (T) can be approximated fairly well by a straight line over

the entire range of temperatures occurring in the cathode spot (see figure 8),

so that equation (74) may be applied to determine the approximate

spot temperature Ta. An implicit differentiation of the equations (54)

through (59) defining q(T) gives for the steepness function (neglecting

the radiative heat loss from the spot)

q'(Tav) 2 + (116090 - 4.4 /c)/Tav (76)

q(Tav) 1 - 1.1 E Ecf/Tav

For reasonable values of the parameters, this quantity is always > 10, so

that equation (74) can be satisfied only if To has a fairly large positive

value. Thus, the burning spot on a thermionic cathode cannot operate with

an ion current density less than the limiting value (ji )max unless the cathode

is rather poorly cooled. It may be concluded, in particular, that this

mode of operation is not possible for the semi-infinite cathode with To = 0,

which is under consideration in the present section.
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If the ion current density ji is equal to the limiting value (ii )max over part
of the spot, then it is no longer possible to approximate q (T) even roughly
by a straight line, and equation (74) for the spot temperature is not
applicable. However, qualitative arguments similar to those used in the
preceding section can be employed to show that a stable spot should be
possible in this temperature regime. It was pointed out in the discussion
of equation (74) that, if the heat flux q is too steep a function of tempera-
ture, the spot must contract and its temperature must rise until a stable
situation is reached. As seen above, for ji < (Ji )max , the heat flux function
q (T) is always much too steep to permit the existence of stable solutions,
so that the spot must continue to contract and its temperature to rise at
least until ji = (Ji )mx at the center. On the other hand, the peak temperature
in the spot cannot rise above the temperature at which q (T) becomes
negative owing to the cooling effect of excessive electron emission, since
the heat flow in the cathode interior must always be away from the region
of peak temperature, and this heat flow must be supplied by the flux into
the surface. It therefore appears that a stable situation must be reached
with a spot temperature somewhere between that at which i = (ji )max and
that at which q (T) becomes negative. For the particular case illustrated
in figure 4, this argument indicates a spot temperature between about
2850* and 3150*K for a cathode fall of 10 volts, and between about 3000*
and 3100*K for a fall of 5 volts.

Although the qualitative considerations of the preceding paragraph serve
to determine the average spot temperature to within rather narrow limits,
it appears possible to obtain a somewhat more accurate solution by con-
sidering the average electron and ion current densities in the spot. It is
assumed, for this calculation, that all of the power brought into the ion
production zone by the electron current Yrrs 2 (Je ) av is consumed in pro-
ducing the ion current iirs 2 ii )av which flows to the cathode surface. This
assumption leads to the simple energy balance relation (13) for the
average current densities (e )av and (i )av although not for the current
densities at each individual point. Then,

a
(ji)-v - (Je)av ' (77)

where a is given by (58). A somewhat different assumption was made
in deriving equation (57) above; however, the present assumption ap-
pears equally well justified by the facts of the physical situation, and is
more convenient for the present analysis.

Since according to (76) the heat flux function q (T) for ji < (ji )max is
very much steeper than would be required to satisfy (74), it appears
likely that, in a stable spot, a large part of the spot area must operate
with ji = (ji)max It, therefore, seems reasonable to take
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() (Ji)max (78)

in equation (77). Since ie is a rather smoothly varying function of T over
the spot (see figure 6),(je )av = Je (Tav),and equation (77) becomes

1 -a
Je (Tav) = - (ji)max (79)

a

In combination with the defining equations (55) and (56) for ie, equa-
tion (79) gives a relation for determining the average spot tempera-
ture Tav. This relation takes the place of (74). Once the spot tempera-
ture Tav has been determined as a function of Vc from equation (79), an
approximate solution for the remaining spot properties can be obtained by
the methods outlined in paragraph 2 of section III D above, using equations
(54), (66), (68), and (75).

For the present case, a somewhat more accurate version of equation (68)
can be obtained from consideration of the temperature distribution in
the cathode spot. It is apparent from figure 4 that the heat flux q(T) to
the cathode surface is significant only for a rather narrow range of surface
temperatures whose width is of the order of 500*K or less. Thus, the
temperature difference across the spot is not very large, and the heat flow
should be about the same as it would be if the spot were at a constant
temperature. This latter problem, however, has been solved, 27 and the
total heat flow Q is

Q = 4 Krs (Tav - TO) (80)

where Tav is the spot temperature, and To the temperature at infinity.
This equation differs from the approximate relation (68) only in that the
factor 27f in (68) is replaced by the factor 4 in (80).

An estimate of the actual temperature difference across the spot can also
be obtained from a comparison with the solution for a constant temperature
spot. The heat flux per unit area at the center of the constant temperature
spot is 2 7

2 K (Tav - T0 )

Y rs (81)

On the assumption that this same heat flux exists at the center of the actual
spot, the temperature Tm at the center of the spot can be calculated from
the relation between q and T given by equations (54) through (59)%
The calculated maximum spot temperature Tm can, then, be compared with
the average spot temperature Tav to check how well the assumption of a
constant spot temperature is satisfied.
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Calculations of the cathode spot parameters have been carried out as a
function of arc current I for a thoriated tungsten cathode operating in
argon and helium at 1 atmosphere pressure, using the approximate spot
theory developed above. For convenience, the equations used in the cal-
culation are summarized below:

q - (Vc + Vi - 0)Ji - 'Je - a.Tav4  
(54)

Je = A Tav 2 e 0 /Tav (55a)

0 = 11609 0 - 4.40 VfE (55b)

Ec = 873 Vc1/4 [(1823W)1/2 Ji - Je ] 1/2 (56)

a = VC /(V C +VI) (58)

Oi)max = Pe/ 8 tMkTg (59)

Q =f rs2 q (66)

I= trrs 2 (Je +ji) (75)

Ji O"( (78)

Je= (1 -a) ji/a (79)

Q = 4 Krs Tav (80)

These equations are solved iteratively by the following procedure. For a
given value of the independent parameter I , a guess is made as to the
value of the cathode fall voltage Vc . Values of a, ji , and Je are then
calculated from equations (58), (59), (78), and (79). These values
are substituted into equations (55) and (56) to obtain a first
approximation to the average spot temperature Tav. An improved ap-
proximation to Vc is then obtained by substituting the known total current
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I and the first approximation to Tav into the relation

a £lETav 4 a

vc  + 4 K Tav a , (8Z),rj I J

which is obtained by combining equations (54), (58), (66). (75), (79), and
(80). The entire sequence of steps is then iterated until satisfactory con-
vergence is obtained.

The results of the numerical calculations are presented in Table 2.
These results are based upon the material property values,

S6 - 2.6 voks

A = 1 amp/cm
2 -K2

K - 0.94 w/cm OK

L, -0.4 , (83)

obtained by analysis of experimental data on rod shaped thoriated tungsten
cathodes (section V below).

Although the approximate nature of the theory and the uncertainties in the
material property values probably preclude any meaningful quantitative
comparison of the calculations with experimental data, the magnitudes of
the various spot properties given in Table 2 , and their general trend
with current and gas type, are in very satisfactory qualitative agreement
with experiment. Thus, for an increase in total arc current by a factor
of 100, the calculated current density increases by only a factor of 3 or 4,

in agreement with the general observation that an increased arc current is
carried mainly by an increase in spot size, but also to some extent by a
slight increase in the current density over the spot. The calculated results
also show a drop in cathode fall voltage 2 8 and a slight rise in spot tempera-
ture with increasing current, in agreement with experimental observations.
The generally lower values of spot temperature found experimentally* by
NeurathZ9 might be explained by a slight difference of the work function 4
or the Richardson constant A from the values assumed in these calculations.

Comparison of the results for the two gases shows that the spot tempera-
tures and current densities are distinctly higher in helium than in argon,
as was also found experimentally by Neurath. 29 * The primary reason for
this difference, according to the theory given here, is the lower molecular
weight of helium, which permits a higher limiting value (j )max for the ion
current density. Since, in this theory, the limit on the ion current density

Vol. 2, part I of this report.
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plays an essential role in stopping the contraction of the cathode spot, a
higher limiting value (ji)max permits the spot to contract further, and thus
to reach a higher operating temperature.

Another interesting feature of the present theory is the prediction of the
shape of the temperature distribution across the cathode spot, as shown in
the last column of Table 2. The results indicate that, as the total arc
current increases, the maximum temperature Tm in the spot remains about
the same while the average spot temperature increases somewhat. This
leads to a rather "flat topped" temperature distribution across the spot at
the higher currents, in agreement with qualitative observations by Neurath. 29
The slight increase in the maximum temperature Tm at low currents which is
indicated in Table 2 is believed to be spurious, and to be due to the break-
down of the assumption of a constant temperature spot used in deriving
equation (81).

Calculations of the cathode spot properties have been carried out for several
different values of the cathode work function 0 to investigate the dependence
of the solutions on this parameter. In general, it is found that a change in
the cathode work function produces a nearly proportional change in the spot
temperature TavI while the other spot properties are changed very little.
Again, this conclusion is in qualitative agreement with Neurath's 2 9 experi-
mental results on cathodes of different materials.*

Although no calculations have been carried out for pressures other than
atmospheric, it is readily seen that a higher pressure increases the limiting
value (59) of the ion current density, so that according to the theory the
spot should contract and the spot temperature and current density should
rise with increasing pressure. This behavior is again in good agreement
with the general trend of experimental observations. 6 The increase of
cathode spot temperature with pressure, predicted by this theory and
observed empirically, evidently places a very severe requirement on the
design of thermionic cathodes for operation at high pressures, unless its
effects can be counteracted in some way. One possible method for extend-
ing the pressure capabilities of thermionic cathodes is use of low work
function, high melting point materials. Another is development of cathodes
with sufficiently poor cooling (or even heating) to prevent the ion current
density from reaching its limiting value (ji )max . As discussed after
equation (76), such cathodes would operate in the spotless mode with a
substantially lovwer maximum surface temperature than that occurring in
spot mode operation. On the basis of the approximations underlying the
present theory, the surface temperature of a thermionic cathode running
in the spotless mode is pressure independent.

Vol. 2, part I of this report.
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V. QUASI ONE DIMENSIONAL MODEL

A. PRELIMINARY DISCUSSION

The solution of the cathode model (62) can be approximated rather simply
for a rod shaped cathode with the arc striking to one end, because in this case
the heat flow problem becomes approximately one dimensional. True one
dimensional heat flow can never actually be realized in a cathode, because of
occurrence of one or more of the following effects:

1. Radiative heat loss from the sides of the cathode.

2. "Overflow" of the arc current onto the side of the cathode near the tip.

3. Spot mode operation.

However, radiative losses can be allowed for by inserting a fictitious sink term
into the one dimensional steady heat flow equation. Arc overflow can also be
represented approximately by modifying one dimensional solutions, as shown
below in section V C. A rod shaped cathode with heat loss by side radiation,
arc overflow, and Joule heating can thus be described approximately by means
of a quasi one dimensional theory. Spot mode operation is more difficult to
treat in such a theory because it produces more extreme departures from one
dimensional heat flow in the tip region.

The quasi one dimensional theory of a thin, rod shaped thermionic cathode
operating in the spotless mode provides a case in which the consequences of the
cathode model (62) can be worked out in considerable detail. This theory is
of interest also because it is possible, under certain circumstances, to operate
rod shaped cathodes in the spotless mode, and, thus, to obtain a comparison
between theoretical predictions and experimental data.

Section B below presents the solution of the quasi one dimensional heat flow
problem for a rod with Joule heating and radiative loss of heat from the sides.
Section C develops an analytical approximation to the temperature distribution
in the tip region in the presence of arc overflow. The results of these two
sections are combined, i.n section D, with the relations describing processes
in the cathode fall zone and at the surface. A numerical procedure is developed
for solving the resulting cathode model. Numerical results are given in sec-
tion E.

B. QUASI ONE DIMENSIONAL HEAT FLOW IN A THIN ROD WITH JOULE
HEATING AND SIDE RADIATION

The quasi one dimensional flow of heat and electric current in a rod can be
analyzed without considering the mechanism by which the end of the rod is

-53-



heated. Such a procedure is advantageous because the results can then be used

in conjunction with various approximations to the theory of cathode fall zone

and surface processes. However, the temperature dependence of electrical

and thermal conductivities makes it convenient to specialize the theory with

respect to the type of cathode material. In the present section, the quasi one

dimensional theory is developed for the case of tungsten cathodes, possibly

containing small quantities of low work function additives. The theory could

also be worked out for carbon cathodes, but this has not been done because

operating lifetime and contamination considerations make carbon less interest-

ing than tungsten for most plasma generation applications.

The following analysis pertains to a cylindrical rod of length L and diameter

D << L . The diameter is assumed to be sufficiently small that radial tempera-

ture differences can be neglected in comparison with axial ones. Then the

temperature field in the rod's interior is approximately one dimensional,

T = T(x) , where x is a coordinate along the axis of the rod with its origin at the

cold end and with its positive direction toward the heated end.

It is assumed that the rod carries an electric current in the axial direction with

a uniform current density j0 . This current is assumed, for the present, to

enter and leave the rod only through the ends. Conservation of charge then

requires that jo (x) = constant. Joule dissipation produces a distributed heat

source with a power density p j02 , where p denotes the resistivity of the

material. Heat is lost from the sides of the rod at a rate ac T4 , where a is

the Stefan-Boltzmann constant (5. 67 x 10-12 w/cm2°K4 ), ( the total emissivity

of the material, and T the local temperature.

The steady state energy balance for the volume bounded by the side surface of

the rod and the two planes x and x + dx is

(q dq dx) D 2  q rD 2  2 D2 T 4  Ddxq-dx . - q . -- pj 0 2 dx -aeT
4 . Dd

+ dx 4 4 " 4

or

dq 2-24ac T4  (84)

dx = D

in which q represents the local axial heat flux in the rod,

q = - K dT/dx . (85)

The differential equation describing steady heat flow in the rod is, then,

d d TK ) + P j0 2 = 4 c T
d(K -2 = P (86)
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Integration of this equation requires specification of the temperature dependence
of the material properties K, p, c . Literature data on the values of these quan-
tities for pure tungsten are shown in figures 9, 10, and 11. Figure 9
indicates that the thermal conductivity 3 0 , 3 1 of tungsten does not change in
any systematic fashion with temperature. For fully dense pure tungsten, a
mean value of about 1. 1 or 1. 2 w/cmK represents the literature values with
reasonable accuracy over the temperature range from 3000 to 3000 0 K. In con-
trast, the electrical resistivity3 2 varies widely over the same temperature
range, as shown in figure 10. The values can be fitted by an empirical
formula,

p = B Ts  (87)

where, for pure tungsten,*

B = 5.0 x 10- 9 ohm-cm/OKs (88)

s =1.234

Figure 11 shows that the total emissivity3 3 of pure tungsten increases with
rising temperature, but does not vary greatly in the high temperature region,
where the radiative heat flux from a cathode surface is large. In view of other
approximations being used, it appears that e constant should be an acceptable
approximation.

When K and o are assumed to be constant and p is represerted by (87), the
differential equation (86) becomes

d2 T 4a B j0
2  (89)

dX2 KD K

which, with the substitution u dT/dx, d2T/dx2 = udu/dT , readily yields the
first integral

dT 0a2 (90)dT8= T 5 - Ts+l + (90

dx 5KD (s+l)K

Equation (87) could also be written in the form p = B' (T/Tu),s with Tu = 10K and B' = 5.0 x 10- 9 ohm-cm.
The form actually given in (87) is obtained by setting B = B T , which gives (88) with its somewhat strange-

looking unit, ohm-cm/°K s . Writing (87) in terms of B rather than B 'simplifies the appearance of the many subsequent
formulas based in part upon (87).
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The remaining integration necessary to obtain T as a function of X must be

performed numerically. To minimize the number of cases, it is advantageous
to introduce nondimensional variables, as follows: Let

I_8af 1/5

C ) T 
(91 a)

r KDC) 
(91b)

and define the parameter

2 d B j. 0 a s + 1 / 5 9 C
z ( )(s+1C/D (91c)

Then, the differential equation (90) reduces to

-= 1+t5-z/ s + I 
(92)

di

Define the function

G ('A,z) = c(93)

Then, the general solution of (92) can be expressed as

= G (,#,z) - G (0 0 ,z) , (94)

where 0 is the value of A corresponding to 17 = 0.

The function G (A,z) has been evaluated numerically for s = 1.234 using a pro-
gram for Simpson rule integration. The results are given in Table 3 and
illustrated in figure 12 for a few values of z. The shapes of the curves
become intelligible on physical grounds when it is noted that Ois proportional
to temperature and G to distance from the cold end of the cathode (apart from

the relatively small shift represented by G (0 0 ,z) in equation (94). For
z - O,there is no Joule heating since j02 = 0 from (91c). For small Vi (low

temperature), the curve representing G (0,z) for z= 0 is nearly linear, since
radiative losses are negligible in this region. As t increases, radiative losses
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Figure 12 ONE DIMENSIONAL CATHODE FUNCTION G(o,z)
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rise as v4 and the temperature gradient do/dG steepens, because the rod in this
region has to carry not only the heat flux reaching the cold end but also the heat
escaping through the sides above the end. For z > 0 , Joule heating contributes
to the energy balance for the rod. This heat addition tends to decrease the
temperature gradient do/dG at points distant from the cold end of the rod, since
some of the heat flux reaching the cold end is now supplied by Joule dissipation,
and, thus, need not be carried by conduction at the point in question. The curves
for z > 0 , thus, bend upward initially before reaching the high temperature
region where radiation dominates and do/dG becomes large.

For z values a little less than 2, the curves become quite sensitive to z for
1~> 0.9. The reason for this behavior is that the radicand 1 + z¢ s+ 1 in

(93) becomes small for 6-I in these cases. For z = zC, where

zc = 5 [(s+l)s+l (4 _s)4-s ] -0.2 , (95)

the radicand has a minimum of zero at Vi m = [(s+ 1)/(4 - s)] 0 "2 
, and

G (0,z) goes to infinity at tA = Om. For s - 1.234, z c is approximately 1. 9887.
Since t and G are essentially proportional to temperature and distance, respec-
tively, the solution for z = zc predicts a region of almost constant temperature
extending downward from the heated end of the cathode. In this region, Joule
heating is virtually in local equilibrium with side radiation.

In addition to G (tA,z) , certain other one dimensional cathode functions are
useful. The resistive voltage drop between the points x, and x2 along the
cathode is given by

AV = p j0 dx = jo B f Ts dx , (96)

using (87). Substitution of (91) gives

Av B 8o \-(s+1)/5 f12

GKD-) J
171
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Since dq = (di7/dv#) djA, the integral can be transformed, using (92), to

J0 B I 8aoE (sl/

A3_V oB-- l/ 5 IV 0( 2,z) - V 0 1,)I , (98a)
NW (5KDC)/

where

V s+A ' 
(98b)

V (¢; ofzr -1+
5 - z si'

and 01412 are the values of qf at the points Xl,X2 . The electrical resistance

of the cathode between x1 and x2 is equal to AV/I , where I denotes the total

current. The Joule heating power evolved in the cathode between x, and x2

is I- AV.

Similarly, the total power lost by side radiation between the points x1 and K2

along the cathode is

F2 2

APR I at T4 . irDdx = ae7D T4 dX . (99)

Xi Xi

Substitution of (91) gives

P aeD 5KDC / 4 dq (100)
APR - a 8

11

Transformation to an integral over qs gives

5 TD2 K' [K ~ 2 z-Qr,)

APR = 8 [R (' 2,z) - R (# 1,z)] (101a)
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where

R(',z) 04d (101b)R( t = vl+q,5 _ zq,+ 1

The functions V and R satisfy a simple algebraic relation.

Consider

J (+4 5- zqs+) 2 /+()5-z()S+ l - (102)

On the other hand,

0f d(l+q5-_zqs+l) f5 -A4 dip (s+1)z Vf 1  sdq,

(103)

Hence,

5R (,,z) -(s +1) z V(Vi,z) = XI 5 - z s l - (104)

This relation corresponds physically to the complete energy balance for the

cathode. The functions V (tk,z) and R (,z) are presented in Tables 4 and 5
respectively, for s = 1. 234.

Application of the nondimensional cathode functions requires that the constant
of integration C appearing in (90) and (91) be specified. This constant is

determined by the boundary conditions, which can be of several types. Two
cases are discussed here as follows:
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1. Case 1

A cathode experiment, such as the one discussed below in section V, may
provide data on the temperature and heat flux at the cold end of the cathode.
In this event, the boundary conditions on the problem are

T (0) = To  (105a)

(K dT/dx)x= 0 = (0 (105b)

Then, from equation (90),

C=(qO\2 Sac 2Bjo02 T0S+l
8 To5 + B 0  (06C 5KD (s+) (1o 6)

2. Case 2

The boundary conditions for the theoretical cathode model are a given
temperature at the cold end of the rod and a relation such as (62d)
between temperature and heat flux at the hot end. The heat flow problem
does not stand by itself in this case, but may conveniently be represented
as a problem in which the heat flux at the hot end is given. The boundary
conditions may, then, be taken to be

T (0) = To  (107a)

(K dT/dx), = L = qs (107b)

and from (90),

t2 a2B j02 1

5=D T s + (s++1)K TS (108)

where T. denotes the temperature at x = L.

The solutions of the quasi one dimensional heat flow problem are given by
equations (91) and (94), with c represented by (106) or (108) according as
the boundary conditions are (105) or (107).
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C. ARC OVERFLOW

When a thin, rod shaped thermionic cathode operates in the spotless mode, the
entire tip region is at an approximately uniform high temperature. Electron
emission, therefore, occurs from the entire end surface. In addition, the side

of the cathode just below the end is almost as hot as the end surface itself, so

that some emission occurs from this surface also; i. e. , arc "overflow" onto

the side of the cathode takes place. This phenomenon affects cathode operation

in a rather significant way, since it reduces the surface current density required

to yield a given total current, and, thus, reduces the tip operating temperature.

It is assumed that the current density is low enough that the ion current is less

than (ji)m (16) over the entire surface. Then, equation (Z9) for the net

heat flux to the cathode surface reduces, with Ji - aj, e ( - a) i , and

equation (13), to the simpler form

K(iT/3n) s = j (Vc - )-a T4  (109)

The current flow through the side of the cathode gives rise to an additional

fictitious heat source term in the quasi one dimensional heat flow equation

(89), and also affects the Joule heating term by making the current density

along the rod a function of position. Equation (89) is replaced by

d2 T = 4o T4 _ 4(VC-4) is Bj 2 Ts (110)

dx2 KD KD K

Here, is denotes the current density through the side of the cathode, a function
of temperature; and j is a function of x.

These overflow effects can be incorporated into the quasi one dimensional heat

flow theory most conveniently by means of a perturbation approach, which
assumes that the extent of the overflow region is small in comparison with the

cathode length. This assumption is usually satisfied, because the current density,

Ji A (V c + Vi) T2 eO/T , (111)
is 1-a V I  e

is a strong function of temperature, and because in most cases the temperature
gradient in the tip region is large on account of radiative heat losses from the

side. However, if Joule heating is comparable with radiative losses in the tip
region, the temperature gradient may be so low that the overflow region

becomes large. The perturbation theory of arc overflow effects is thus in-

applicable to cathodes operating at such high currents that Joule heating and
radiation nearly balance one another in the tip region.
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On the assumption that the extent of the overflow region is small in comparison
with the cathode length, the actual temperature distribution T(x) is indistinguish-
able from a solution Tn(x) of the heat flow equation (89) without overflow,
except in a small region near the tip. The actual temperature is then repre-
sented by

T(x) = Tn (x) + t(x) (112)

where the perturbation term t(x) is small in comparison with TW(x) and
approaches zero rapidly with increasing distance from the tip. Since the over-
flow region is assumed to be small, Tn does not vary greatly in the region
where t(x) differs significantly from zero. Reasonably simple results can then
be obtained from (110) by systematically neglecting all but the very strongest
temperature dependence in the terms appearing on the right hand side. In
addition, Joule heating is neglected in the tip region because the perturbation
approach is invalid in cases where it cannot be neglected in this region.

These approximations bring (110) into the form

d2Tn d2 t  4 4  4(V c - ) A (Vc + V I ) T 2 e-/(Tn +t )

- + - =f s - Tns ns
d;T dX2 KD KD VI

where Tns = Tn (L) is the temperature given by the unperturbed solution at the
tip of the cathode, and the weak variation of 6 with current density given by
(18) is neglected. Tn(x) satisifes (89), which becomes, with the same
approximations,

d 2 Tn 4e 4

x2 KD Tns

The differential equation satisfied by t(x) is, thus,

d2 t 4 AV Tns 2  -0/(T n + t)
= e (113)dx2 KD

'This restriction does not rule out cases in which Joule heating is important along a large fraction of the cathode's
length; so long as the cathode tip is significantly hotter than the midsection, the radiative loss decreases rapidly
(as T4 ) with distance from the tip, whereas the resistivity falls off more sl owly (only as T 1 -234).
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in which

V - (vc + (114)

Let y represent the distance of a given point from the hot end of the cathode,

y = L-x (115)

Then, in the overflow region,

Tn  Tns - T(s'y (116)

where

Ts= (dT,/dx)x = L (117)

and in the region under consideration, y is small enough that Tns'y<<Tns

Also

t-T'S'Y)(118)

Tn+t Tn  Tn TS Tns

Let

a =- t -Tns'y (119)

Substitution of (118) and (119) into (113) gives a differential equation

fo r a,

d2 a/dy2 = - a eba , ('120)

with

4 A Tns 2 Ve - O/TnS
a - (121)

KD

b =/Tn s 2 (122)
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The first integral of (120) is

/dw 2 2a be(
=- - e + const.

\dy/ b (123)

For large y, t approaches zero and, from (119), dw/dy approaches -Tns
Hence, the integration constant is equal to T, 2

dT Tns 2 _ 2a ebo (124)

dy as b

A final integration gives

by+ const. 2= tanh 1 e be) (125)
Tns' ba'Tn 2

Since, for large y, w- - Tns' y , the integration constant in this equation is equal

to [in (2b Tas' 2/a)] /Tns' Hence,

bTns 2  bTns'Y 1 2b Ts 2

b w sec 2  + In a (126)

Elimination of o , a , and b using (119), (121), and (122), then gives the

perturbation function t(y),

tT Tns 2 1- sech2 '  I In)l , (127)
____ I sech2  2 ~

t=Tns y + 0 2

where

2 A V Tns 4 e- /n

A - (128)

OKD Tns- 2
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is a nondimensional parameter characterizing the amount of arc overflow. The
value of t at the cathode tip (y = 0) is

h 2 Tns)2,(129)
to= 0

so that for X = 0 there is no change of the tip temperature.

The current vD 2 j/4 carried by the cathode at any given point along its length is
equal to the current rD 2 jE /4 entering through the hot end, plus the integral of
the "overflow" current density into the side between the hot end and the point in
question. Hence,

S=JE + - i dy (130)

Now from (111),

A(VC +VI) Tns2 e/(Tns + to)
eE =(131)

VI

Substitution of (118), (119), (121), (122), and (126) gives

A(V c + v I ) Tn2 e-0/Tns
JE e .(132)

(1 + A)2 VI

The second term of (130) can be evaluated using the same relations. The
integral is

Js dy = A (Vc+ VI) Tns 2 e-0/Tns ebc d (133)

The integrand on the right hand side is given by (126). Thus,
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KTns tanh L TnY I In Al (134)
J = JE + Vc_5 nh [2Tns2  2 1+ X

According to (134), one-half of the total overflow current (represented by the

second term on the right hand side) has entered the cathode at a distance

from the tip, where

Y05 =  , -------- In (2+ X ) (13 5)
0Tns

For large y, j approaches the current density j0 for the unperturbed solution.

Setting y = in (134) and substituting (132) for JE, one obtains

A(Vc+VI)Tn( + X) Ts 2 A36)

(1 + X) 2 V1  DOTns

This is the expression for the current density j0 at the cold end of the cathode

in terms of the actual values of 0 and Vc for the "perturbed" case with overflow

and the quantities Tns and Tns' for the fictitious "unperturbed" (no overflow)

case.

The heat flux qE into the end of the cathode is given by (112) and (119) in

the form

qE = K () = K [Tn, - K= - K (137)

Equation (124), together with the integrated expression for ca, gives

qE = KTns 1-X (138)

This equation shows that, for A> 1, the heat flux into the end of the cathode is

negative; i.e., the temperature near the cathode tip decreases with increasing

r. This situation cannot arise in actual cathodes, except perhaps in cases in

which the cathode is heated almost entirely by Joule dissipation. As indicated

previously, the perturbation theory of arc overflow effects is inapplicable to

such cases. Thus, for situations in which the theory is valid, A always

lies in the range between zero and one.
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D. SOLUTION OF THE QUASI ONE DIMENSIONAL CATHODE MODEL

The results of the preceding sections B and C provide the means of solving theheat conduction part of the quasi one dimensional cathode problem. The pres-ent section combines these results with the relations describing processes inthe cathode fall zone and at the surface, to obtain a complete system of equa-tions which can be solved to yield predictions of performance for rod shaped
cathodes.

It is assumed that the dimensions L, D and physical properties A, 0, K, C, B ofthe cathode are known, and that the electrical resistivity is given by equation(87) with s = 1. 234. This is the value of s for pure tungsten, and it shouldbe approximately the same for tungsten with additives, even though the value ofB might be a little different for such materials. The gas properties W, V1 andthe temperature To of the cold end are also assumed to be known.

The "unperturbed" solution, which correctly describes the temperature field inthe cathode everywhere except in the overflow region near the tip, is governedby equations (91) and (94). At the tip, these equations give the followingrelations involving the quantities Tns and Tns' which appear in the perturbation
theory of arc overflow:

Is = G (0s, z) - G (00 , z) 
(1 3 9a)

( 8 \1/5
Is =VrCF k,KC) L(139b)

/ 8De Tns 
1139c)

/8ac \1/5
- (139d)

2 B j o 2  / s/1
(s+I)KC 5 KDC) (139e)
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The constant C is given by (108),

2B j2
P2 8af 5 + j T s+1 (139f)C = Tns 5KD (s+n)K

Here, Tns and Tns are fictitious values for the temperature and temperature

gradient at the hot tip of the cathode, based upon an extrapolation of the unper-

turbed solution to the tip, neglecting overflow. The actual heat flux into the end

of the cathode is (138)

qE = KTns (1-X)/(I+X) (1 3 9g)

with (1 28),

2 A (Vc - ) )(Vc + VI ) Tn 4 e- / T n s

=OV (139h)

ITns

Here, Vc and 0 are the values for these quantities in the actual case with over-

flow. The current density at the hot end is (132)

A (Vc + Vi) TnS2 e - O/rns
E= (1' 1(139i)

(l+,k) 2 VI

while the current density at the cold end is (136).-s1
Jo = jE +j(+X) , (139j)D OTS

0 is given by (55b)

O = 11609 5 - 4.4 Vrc (l 39k)

with Ec given by (8) and (58)
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= 873 Vc1/ 4 jE1/2 [(1823 W)1/ 2  Vc V 11/2 (1391)Ec  Vc + vi Vc + VI 131

The energy balance (109) becomes

qE = jE (Vc -) - cTn , (139m)

in which the radiative energy loss is approximated in terms of the unperturbed
temperature Tns at the end of the cathode. Let

r = Tns/6 . (1 3 9n)

Then equations (139a to n) constitute a system of 14 equations for the 15
quantities 7s, Os, t0' z, C, Tns , Tns , j0 ,  JEjqEP 0) Ec, Vc, and r. Thevalueofoneof
these quantities can be selected arbitrarily (within, perhaps, certain limits),
since the cathode can operate over a range of total current values. After this
selection has been made, the 14 equations (139) can be solved numerically
for the 14 remaining unknown quantities. From the solution, various other
quantities such as the actual tip temperature,

Ts= Tns 1 In (1 +X) (140)

and the total current,

I = TD 2 j0 /4 , (141)

can be calculated. Equation (140) is based upon (112) and (129).

The solution of equations (139) can be accomplished by selecting r as the in-
dependent variable and noting that when values of 0 and Tns' are given, all of the
other unknowns can be calculated analytically in the following way. With r spec-
ified, assumption of a value for 0 gives Tns by (139n). Elimination of qEand

JE from (139g, i,m) gives

AV Tn2 e - 1/r

fS 4 1-
- acTns = KTns (142)
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Then, elimination of V using (139h) and (114) gives a quadratic equation for
A in terms of Tns'

A = 2 [(1 +X) 2 a ' T n s4 + (1-A 2 ) KTns] 1143)
0 KD T n s

the solution of which is

1 
4 O0 KD Tn s'2

2(KTns- aETn) 2Tn 2S( ns S
0(6 KD T n 

2
2

2T2 - 2acTn 4  + 4 (K2 T n s 2 a2f Tn8) (144)

Thus, with values assumed for 0 and Tns,X can be calculated. The quantity V

can then be obtained from (139h) and (114),

,2

A0KDTns
V = e1/t (145)

Equation (114) can then be solved to give Vc

1 1 )

V=-- (VI - 0) + - (V+ +4V IV (146)2 2

The current density j0 for the unperturbed solution is, then, from (139i and j),

J0 = A(Vc+VI)Tns2 e1/r [1+(I+) Tns, ] (147)

(1 + A)2 VI D0Tns

Now C can be calculated from (139f), and Os, tP , and z from (139b, c, d, e).

Substitution of these values into (139a) gives a measure A of the error
in the original choice of TnsP:

A = - [G(Vs, z)-G (/ 0 ,z)] (148)
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By trial and error and interpolation, the value of Tns' (if any) which makes
A = 0 can be found. * This is the "correct" value of Tns' based upon the originally
assumed value of 0. An improved value of 0 can now be obtained by solving
(139k and 1), using the values of Vc and A based upon the initial "correct"
value of Tns'. Elimination of Ec and JE from (139i, k, 1) gives

(0o )2 = 873 Vcl/4 A/ 2 Orel/ 2 r (1823 Vc -1/2 (149a)= 12 W1L 11(4a+ VI

where

00 =_11609

The solution of (149a) for 0 is

1 1,
0 -=- (2 00 + F) - I /F-2+419bo- -+F F2 40 0  , (149b)

where

16900 A1/2 VCl/ 4 r e- 1/2 r /

F = (1823w) 1/2 (V c

1 + AVI

Since F depends rather weakly upon Vc and X, and since F << 00, the errors in
Vc and X have little effect upon the value of 0 calculated from (1491.

The procedure for solving the system of equations (139) may now be summa-
rized briefly. The independent parameter is r. For a given value of r, the fol-
lowing iterative numerical calculation yields the values for all of the unknowns.

1. Approximate 0 initially by 0 0 = 11609 €.

2. Calculate Tas = Or.

3. Solve the equation A = 0, where A is given by (148), for Tns'. This can
be accomplished by trial and error and interpolation using equations
,(144), (145), (146), (147), (139f), and (139b, c, d, e). This proce-
dure gives values for Tnsot X , and Vc based upon the current approximation
to 0.

*if two such solutions exist, as happens in some cases, the larger of these is chosen. The other solution, which has
small Tns" and, consequently, large overflow, corresponds to a condition of cathode operation for which the perturbation

theory of overflow effects is invalid.
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4. Calculate an improved value for 0 using (149) and (150).

5. Go to step (2) with this new value of 0 and iterate until 0 has been deter-
mined with sufficient accuracy. Normally, the second or third pass through
steps (2), (3), and (4) will give an excellent approximation to the value of 0 .

As pointed out previously, the perturbation calculation of overflow effects is
physically meaningful only for X < 1. As r increases, X eventually begins to in-
crease rapidly. When r is further increased beyond this region, the procedure
described above gives either no solution or a physically unrealistic solution with
X> > 1. The range of r values giving physically significant solutions must be
determined by trial. A satisfactory starting value for r can be estimated from
r (10 + In A) - 1 .

A program for solving the quasi one dimensional cathode model (139) has
been developed. A FORTRAN listing and flow chart for this program are given
and discussed in appendix B.

E. NUMERICAL RESULTS

The mathematical model for quasi one dimensional cathodes operating in the
spotless mode involves the following material and gas properties, geometrical
factors, and physical parameters: total current (I), ion molecular weight (w),
ionization potential (VI ), diameter (D), length (L), cold end temperature (TO),
Richardson constant (A), thermionic work function (0), thermal conductivity (K),

electrical resistivity parameter (B), and total emissivity (e). Because these
quantities are so numerous, it is neither feasible nor desirable to undertake a
comprehensive parameter variation study involving all combinations. Instead,
several series of solutions have been obtained in which most of the parameters
are held constant, and the dependence of the operating conditions upon a single
variable is explored as a function of current. These results are discussed in
physical terms to illustrate the principal properties of the model.

1. Material and Gas Properties

To limit the number of cases which must be considered, it is desirable to
select a "standard" set of cathode and gas properties, which can be held
fixed while geometrical and other factors are varied. The effects of vary-
ing the material properties themselves probably can be studied most use-
fully by varying the "material" rather than its individual properties. Table
6 lists the values assumed for the three cathode materials considered in

this section. The "thoriated tungsten" values are based upon an analysis
of experimental data presented in section V.
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This 11thoriated tungsten" is chosen as the standard material for most of

the calculations. The properties given for "pure tungsten" are from the
literature. 30-33 In the case of "bariumi oxide impregnated tungsten,"
the thermionic properties are obtained from Nottingham's 3 4 tabulation,
while the other properties are assumed to be the same as for the "thoriated
tungsten." Similarly, Table 7 gives the gas property values used in the
calculations. Helium is taken as the standard gas. In the case of nitrogen,
the ions are assumed to be N+ (rather than N2 + ). The standard value for
To is chosen to be 300 0 K.

2. Dependence upon Cathode Length

The theoretical behavior of 1/8 inch diameter thoriated tungsten cathodes
of various lengths operating in the spotless mode in helium is shown in
figures (13 to 23). The primary effect of an increase in cathode length
is to decrease the cooling of the tip region. Most of the effects illustrated
in these figures can be explained qualitatively as consequences of this de-
pendence of tip cooling upon cathode length.

TABLE 6

ASSUMED CATHODE MATERIAL PROPERTIES

Material A K B s

amp/cm 2 ' K 2 volts w/cm*K ohm-cm/Kl

Pure Tungsten 60 4.51 1.1 5. 0xl0 - 9  1.234 0.32

Tungsten + ThOZ  1 2.6 0.94 5. 3xl0-9 1. Z34 0.40

Tungsten + BaO 15 2.0 0.94 5.3x10- 9  1.234 0.40

TABLE 7

GAS PROPERTIES

Gas W V1
gm/mole volts

Helium 4 24. 5

Argon 40 15.7

Nitrogen 14 14.5
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For example, the tip temperature (see figure 13) increases with decreas-
ing cathode length; i. e., at a given total current the tip becomes hotter, the
more strongly it is cooled. This result, paradoxical at first sight, is an
effect of the dependence of arc overflow upon tip cooling. As the cathode
length is decreased, the temperature gradient along the cathode increases.
This steepening of the temperature gradient causes the overflow current
density through the side of the cathode to cut off more rapidly with increas-
ing distance from the tip, so that a larger fraction of the fixed total current
flows through the end of the cathode rather than its sides. Since the current
flow is predominantly thermionic, an increased current density through the
end implies an increase of tip temperature, as shown in figure (13). For
very long cathodes, the cooling is mainly radiative rather than conductive,
so that increase of length beyond a certain point has no significant effect
upon tip temperature. This limit has been reached, for the cases shown in
figure 13, at a length of about 2 inches.

Further details of the mechanism just described are illustrated in figures
14 through 17. Figure 14 shows the "half height" (135) of the over-
flow region (defined as the distance from the tip at which one-half of the
overflow current has entered the cathode) as a function of cathode length
and total current. The decrease in overflow half height with decreasing
length causes a larger fraction of the total current to enter the cathode
through the end, as shown in figure 15. The turning upward of the curves
in figure 14 at high currents is a consequence of Joule heating, which tends
to decrease the temperature gradient in the tip region, and, thus, tends to
increase the amount of overflow. The same effect can be seen in figures
13 and 15, as well as in figure 16, which shows the variation of the
overflow parameter A . Figure 17 gives the current density through the
end surface of the cathode. The effects of Joule heating and overflow varia-
tion are apparent in these curves also.

The thermal power Q0 transferred from the cathode to its cooling system
is shown in figure 18. This quantity is seen to be rather insensitive to
current, except at high currents where Joule heating steepens the tempera-
ture gradient near the cold end of the cathode. However, Q0 is rather
strongly dependent upon cathode length, because changes in length have no
major effect upon tip temperature (see figure 13), while the heat flux at
the cooled end is roughly proportional to ( Ts - T0 )/ L. The quantity Q0/I is
a voltage denoted by Veff . This quantity is shown in figure 19. The
total power dissipated by the cathode is the sum of Q0 and the radiative
losses. The ratio of this total power loss to the total current is a voltage
VlOSS , the dependence of which upon length and current is shown in figure
20. This quantity is a measure of inefficiency; it is the voltage "wasted"
by the cathode at a given current. Figure 20 shows that for long cathodes,

VlOss becomes insensitive to length. The reason for this behavior is that
long cathodes are cooled predominantly by radiation from the region near the
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tip. VIoss decreases with increasing current, for a given cathode length up

to the point at which Joule heating becomes important; beyond this point,

VIoss increases with current. The onset of major Joule heating effects oc-

curs at different currents for cathodes of different lengths, so that the

curves cross one another in this region. At a given current, the optimum

cathode length for minimizing power loss is the length corresponding to the

lowest lying curve at that current.

The cathode fall voltage (see figure 21) decreases with increasing cur-

rent and with increasing cathode length. The dependence upon length is a

consequence of the assumption that the electrical heat flux to the cathode

surface is proportional to Vc - 0, equation (139m), As the cathode length

decreases at a given current, the heat flux required to maintain the surface

temperature rises, and Vc rises to meet this demand. This increasing de-

mand for heat input is also met partially by an increase in the ion current

fraction, as shown in figure 22. The corresponding increase of ion

density in the space charge layer produces an increase of surface electric

field with decreasing cathode length, as illustrated in figure 23.

3. Dependence upon Cold End Temperature

Just as figure 13 above shows that cooling the cathode more stronglv

causes its tip temperature to rise, figure 24 indicates that "heat-

ing" the cathode by raising the temperature of its "cold end" causes

the tip temperature to fall a little. The explanation of this phenom-

enon is, of course, that an increase of To implies a decrease of the tem-

perature gradient along the cathode, and, thus, leads to an increase in the

amount of arc overflow, as shown in figure 25. The heat transfer Q0

from the cathode to the cooling system (see figure 26) decreases, as

would be expected, when the cold end temperature rises.

4. Dependence upon Cathode Diameter

When the cathode diameter is varied at constant tip temperature, the total

current varies almost in proportion to the area of the tip (i. e. , as D2 ). For

this reason, it appears that the operating behavior of cathodes of various

diameters can best be compared using the current density j0 at the cold

end as the independent variable in place of total current. If the cathode

were operating in a truly one dimensional fashion (with no side radiation or

overflow), the tip temperature and effective power loss voltage would de-

pend upon current density only, not upon diameter.

Figure 27 shows the effect of non one dimensional effects upon the tip

temperature for I inch long thoriated tungsten cathodes of various diam-

eters operating in helium. The calculated tip temperature falls with de-

creasing cathode diameter because, as shown in figure 28, the fraction

of the current carried by overflow through the sides of the cathode increases
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as the diameter is decreased. This occurs because the heightof the over-
flow region is roughly independent of diameter for a given current density,
so that the overflow current varies about as D while the current through the
end goes as D2 .

The effective voltage for heat transfer to the cooling system (see figure
29)also decreases with the cathode diameter. In this case, the depar-
ture from one dimensional behavior is caused by side radiation. The radia-
tive heat loss is roughly proportional to D, while the heat conduction toward
the cold end varies as D2, so that a decrease in diameter favors the former
process at the expense of the latter. The same effect shows up also in the
curves of effective voltage for cathode power loss, figure 30. Here, the
fact that the smaller cathodes are more strongly cooled (by radiation) than
the larger ones implies that the smaller cathodes must lose more power to
operate at a given current density. In accord with this argument, the ion
current fraction (see figure 31) also rises with decreasing cathode di-
ameter. The surface electric field (see figure 32) decreases with cathode
diameter because the decrease of surface current density, shown in figure
28, more than offsets the rise of a (see figure 31) in Mackeown's
equation (8a).

5. Dependence upon Cathode Material

The theoretical effects of low work function additives upon tungsten cathode
performance are illustrated in figures 33 through 39, for 1 inch by
1/8 inch cathodes operating in helium. The primary effect of such additives
is a reduction of tip operating temperature, as shown in figure 33. Pure
tungsten, even if it could be made to operate in the spotless mode (which is
doubtful), would approach its melting point (3653*K) at a current of a few
hundred amperes. In contrast, tungsten impregnated with barium oxide
operates, according to these calculations, below 2000*K over the en-
tire current range considered. This large difference in operating tempera-
tures is primarily a consequence of the difference in work functions assumed
(Table 6), but is also exaggerated by the presence of a greater tendency
toward arc overflow in the impregnated cathodes as shown in figure 34.

The reduction in surface temperature resulting from use of low work func-
tion additives significantly reduces the cathode losses. The effective volt-
age Veff for heat transfer to the cooling system (see figure 35) is lower
by about a factor of 2 in barium oxide impregnated tungsten as com-
pared with pure tungsten. The differences in total power loss as represented
by Vloss are even larger (see figure 36), because the radiative loss in-
creases in a nonlinear fashion with increasing temperature. The reduction
in power requirements for the impregnated cathodes results in a lowering
of the cathode. fall voltage (see figure 32) and the ion current fraction
(see figure 38), in accordance with qualitative arguments given previously.
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The decrease in ion current fraction, in turn, entails a reduction in the

surface electric field, as shown in figure 39.

The predictions of cathode performance represented by figures 33

through 39 are based upon the hypothesis that the cathodes under con-

sideration are operating in the spotless mode in helium. It is very doubt-

ful that a pure tungsten cathode would obey this hypothesis. At the lower

currents (below about 20 amperes), even thoriated tungsten tends to operate

in the spot mode, as discussed in section V below.

6. Dependence upon Gas Properties

Figures 40 through 44 show the differences in theoretical character-

istics for a 1 inch by 1/8 inch thoriated tungsten cathode operating in the

spotless mode in three different gases, helium, argon, and nitrogen. The

tip temperature (see figure 40j is highest in helium and lowest in argon;

however, the differences are not large, covering a range of about 60*C.

These differences in tip temperature result mainly from the variation of

surface electric field, shown in figure 41, which in turn is a conse-

quence of the differences in ionic mass. The ion current fraction is notice-

ably lower in helium than in argon and nitrogen, primarily because the high

ionization potential of helium makes it possible for a smaller ion current

to deliver sufficient heat to maintain the cathode surface temperature.

Figures 43 and 44 show that the differences in overflow and heat

transfer to the cooling system are negligible under the assumptions upon

which the theoretical model is based.
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VI. EXPERIMENTAL STUDIES OF ROD SHAPED
THORIATED TUNGSTEN CATHODES

A series of experiments have been carried out to provide laboratory data for

comparison with the quasi one dimensional theory presented in the preceding

section. The objectives of this work were as follows:

1. To determine whether rod shaped, thoriated tungsten cathodes can ac-
tually be operated in the spotless mode, and, if so, under what conditions
spot mode and spotless mode operation occur;

2. To determine effective material property values for thoriated tungsten
operated as a cathode; and

3. To test the validity of the theory.

Since a major experimental program using sophisticated techniques would have
absorbed an excessively large fraction of the effort, these experiments were
intended to supply only those data which could be obtained using simple and
crude methods of measurement.

A. APPARATUS AND PROCEDURES

Figure 45 shows the special arc unit used in the experimental program. The

cathode is a cylindrical rod of Z percent thoriated tungsten, embedded in a
copper base. A threaded stud on the bottom of the base mates with a socket in

the top of a water cooled holder. A number of cathodes having various dimen-

sions with exposed lengths up to Z inches and diameters up to 1/8 inch have
been used. The cathode holder slides within a tubular support attached to the
bottom plate of the arc chamber, the bearing surfaces being two rubber 0 rings.
The holder is raised and lowered by means of a rack and pinion to adjust the

arc gap independently of cathode length. The anode is a 3/4 inch diameter

tungsten plate, brazed to a water cooled copper support. The top and bottom
of the arc chamber are water cooled metal; the side wall is a cylinder of clear

fused silica so that the arc and the electrodes can be observed visually and

pyrometrically during operation. Gas injection ports are provided in the bottom
of the chamber and exhaust ports in the top.

Power was supplied to the arc by a pair of Miller rectifiers, and regulated by

means of a large rheostat. The arc was initiated using a high frequency oscil-
lator.

In the experiments being reported, the following types of measurement were
made:

1. The steady state heat flow from the cathode to the cooling water was

determined by measuring the flow rate and temperature rise of the water.
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Water flow was regulated using a pump and measured with the aid of a
flowmeter. The calibration of the flowmeter was checked by measuring
the total effluent volume over a certain period of time, and was found to
be accurate. Inlet and outlet temperatures for the cathode cooling water
were determined using 00 to 50*C chemical thermometers. Steady values
of these temperatures, obtained after 3 to 5 minutes of arc operation at
fixed current, were measured.

2. Arc current was measured using a millivoltmeter connected across a
shunt. An 80 or a 200 ampere shunt was used, depending upon the
level of current being measured.

3. Cathode temperatures at various distances from the tip of the cathode
were measured using an optical pyrometer. The resulting brightness tem-
perature values were converted into "true" temperature assuming the cathode
to have the same spectral emissivity as pure tungsten. 33 Since the sur-
face was somewhat rough and not clean, the temperatures calculated by
this procedure might be a little too high. No allowance was made for re-
flective losses at the two silica glass/air interfaces traversed by the light
before reaching the pyrometer. The coefficient of reflection was esti-
mated 3 5 to be about 0. 035 at each interface, corresponding to a total loss
of about 7 percent. This error would tend to make the calculated tempera-
tures too low, and thus might be partially compensated by an error in the
emissivity assumption.

4. For points other than the cathode tip, the distance of the spot viewed
through the pyrometer from the cathode tip was determined before or after
the arc run using a scale placed behind the arc chamber. Observation of
the scale during the run was precluded by the brightness of the cathode.
The error due to thermal expansion of the cathode during the run was esti-
mated and found to be negligible. However, it was found that the position
of the cathode tip as seen through the pyrometer changed by 1/32 inch when
the pyrometer's red filter was moved into position. This effect was at-
tributed to optical imperfection of the filter and was allowed for in reduc-
tion of the data.

5. Gas flow rate was monitored using a flowmeter and a gauge to measure
injection pressure.

6. Arc voltage was measured using a voltmeter.

7. The cathode-anode gap was determined either using the vernier scale
attached to the cathode holder or by viewing a scale placed behind the arc
chamber through the pyrometer.

8. The amount of arc overflow onto the side of the cathode was estimated
visually in terms of the cathode diameter.
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B. RESULTS

1. Changes of Cathode Properties with Operating Time

The cathodes used in these experiments were Z percent thoriated tungsten.
A number of qualitative observations made during the early part of the
program suggested that the properties of the cathode material might be
changing gradually as the material was operated for prolonged periods at
high temperatures. To determine whether such changes were actually tak-
ing place, two special runs were made in which the tip temperatures of
new cathodes were measured pyrometrically as functions of time beginning
immediately after arc initiation.

Figure 46 shows the results of the first of these runs, which was carried
out at 16 amperes in helium using a cathode 1/16 inch in diameter and 5/8

inch in length. In this case, the tip temperature rises by nearly 400 0 K
during the one-half hour long run. Most of the rise occurs during the first
15 minutes of operation.

Figure 47 similarly shows tip temperature as a function of running time
for a 2 inch by 1/8 inch cathode operating at 52 amperes in a helium-argon
mixture. The temperature again rises substantially during the run. The
rise appears to be a little slower than for the 5/8 inch by 1/16 inch cathode,
probably because of the larger mass and greater thickness of the 2 inch
cathode. Figure 48 presents a series of photographs of this cathode dur-
ing the same run. The first picture, taken at 30 seconds after arc initia-
tion, shows the arc striking rather uniformly over the end of the cathode.
As the run progresses, the cathode attachment of the arc becomes more

and more asymmetrical until, at 12. 5 minutes, the cathode definitely ap-
pears to be operating in the spot mode.

The visual appearance of the cathode itself changes during prolonged opera-
tion, especially at high currents. A new cathode has a bright, machine
finished surface. Cathodes which have been run at high temperature for
several hours, or even for shorter periods at very high current, have a
roughened surface in the region near the tip, apparently because of recrystal-
lization. Other qualitative observations tending to confirm the change of
cathode properties with "hot time" are reported in the next section.

The rise of tip temperature with time presumably reflects an increase of
the effective work function of the cathode. Such a property change might
result from gradual loss of the low work function additive during high
temperature operation. It is clear that other properties of the material
might change to a certain extent at the same time, although the data pre-
sented thus far throw no light on this question.
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The time dependence of cathode work function poses a problem in quantita-
tive studies such as those reported below. During the 3 to 5 minutes re-
quired for a heat flux measurement by the method used in this work, the
change in tip temperature for a new cathode is substantial, as shown by
figures 47 and 48. To avoid this difficulty, the quantitative experiments
in the present investigation have been made using cathodes which have al-
ready been "run in" at moderate currents for periods of one-half hour or
more. Figures 47 and 48 suggest that the change in tip temperature be-
comes very slow after the first one-half hour, so that the use of cathodes
conditioned in this way should provide reasonable stability of material
properties. This supposition is confirmed by the fact that reruns of cer-
tain cases on the same cathode after extensive periods of operation have
shown good reproducibility.

2. Qualitative Observations

The rod shaped cathodes have been operated in three gases, helium, argon,
and nitrogen. The visual appearance of the arc in the cathode region is
different in each of these gases, and is also different for new and used
cathodes. Figure 49 shows a 2 inch long, 1/8 inch diameter cathode
operating at four current levels in helium and argon. The exposure is the
same (0. 5 second at f/32 through a 2. 0 neutral density filter on Polaroid
Type 55 P/N film, ASA 100) for all of the pictures in figures 48, 49,
and 50.

The cathode shown in figure 49 had been operated for several hours prior
to the time at which the photographs were taken, so that the pictures shown
in this figure are representative of the behavior of "used" thoriated tungsten.
As illustrated by the figure, the cathode operates in the spot mode in both
helium and argon at the lowest current. In argon, the spot mode persists
over the entire current range, but in helium a transition to spotless opera-
tion occurs with increasing current.

The behavior of a "new" thoriated tungsten cathode is shown in figure 50.
In this case, the cathode appears to operate without a spot even at 10 amperes
in helium, but again runs in the spot mode at all currents in argon, even
though the argon runs were made first in this case.

Comparison of the photographs for argon and helium at a given current shows
that the tip is usually less bright in argon, except in the spot region. This
illustrates the fact that spot mode operation leads to a generally lower tip
temperature. Such observations can be explained by noting that the elec-
tron emission current is a very strong function of temperature, so that
contraction of the cathode attachment of the arc into a spot permits a given
current to flow from a much smaller area without a very large increase in
the temperature of the emitting region. Quasi-radial heat flow within the
cathode, then, permits most of the cathode tip to be at a substantially lower
temperature than in the spotless case.
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The observations on cathode operation in helium, argon, and nitrogen

may be summarized as follows.

a. Helium

1) "New" cathodes

The arc operates invariably in the spotless mode (at least at the

current levels used in these experiments). The arc appears

symmetrical with respect to the cathode axis, and a considerable

amount of arc "overflow" onto the side of the cathode is noted at

some current levels. No contraction at the anode is apparent.

Z) "Used" cathodes

The arc operates in the spot mode at low currents, but reverts

to spotless operation at high currents. However, on cathodes

which have accumulated a large amount of "hot time, " the cathode

attachment of the arc is often asymmetrical, covering the end

surface of the cathode and overflowing to one side. In such

cases, a cathode jet sometimes appears.

b. Argon

1) "New" Cathodes

In a few instances, brand new I inch by 1/16 inch cathodes have

been observed to operate symmetrically, and apparently in the

spotless mode, in argon. After a few minutes, however, a spot

develops on the rim of the cathode end. In all cases, a sheath of

brilliant plasma covers the emitting region of the cathode. Dur-

ing symmetrical operation on new cathodes, little or no overflow

is visible. Slight contraction at the anode is generally noted in

argon.

2) "Used" cathodes

The arc operates invariably in the spot mode. The general tip

temperature away from the spot is lower than in helium operat-

ing without a cathode spot at the same current. At the higher

currents, a cathode jet appears o issue from the spot region.

c. Nitrogen

No "new" cathodes have been operated in nitrogen during these experi-

ments. "Used" cathodes appear to operate in the spot mode. A dis-

tinct, thin arc column is usually visible, and flits back and forth over
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the surfaces of the electrodes. The cathode surface shows signs of
local melting after operation in nitrogen, but no loss of material has
been detected. The general tip temperature of the cathode in nitrogen
is as high as, or higher than, that in helium. Figure 51 shows a 1
inch by 1/16 inch cathode operating in nitrogen at 20 amperes. The
anode attachment is strongly contracted and terminates in an incan-
descent spot on the tungsten surface. At higher currents, material
is lost from the anode at a noticeable rate.

3. Heat Fluxand Temperature Data

The principal series of experiments to study cathode performance was
carried out using three cathode geometries (1 inch by 1/16 inch, 2 inch
by 1/8 inch, and 1 inch by 1/8 inch) and three gases (helium, argon, and
nitrogen). The cathodes employed were all "used"; i.e., previously run
for extended periods of time. The data obtained are summarized in
Table 8. In this table I denotes total current, and Q0 total heat flow from the
cathode to its cooling water. j0 and q0 are the corresponding fluxes, based
upon the cathode cross sectional area i7D2/4. The effective voltage Veff
for heat transfer to the cooling system is defined as

Veff = Q0/I (151)

x represents the distance from the cold end of the cathode, and T the absol-
ute temperature of the cathode side surface. In Table 8, the runs are
categorized according to gas type and cathode geometry, and within each
set are arranged in order of increasing total current. For each run, the
measured surface temperatures are arranged in order of increasing dis-
tance from the tip, the first value being the tip temperature in each case.

The electrode gap and gas flow are not given in Table 8, but have the
following values:

(0. 25 inch for He and Ar
Electrode gap =

0. 125 inch for NZ

0.23 gm/sec for He

Gas mass flow 0.71 gm/sec for Ar

0.59 gm/sec for NZ

Based upon estimated errors in the measurement of water flow, water
temperature rise, and the potential drop across the shunt, the minimum
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uncertainties in Q0 and I are about 2 watts and 0. Z ampere, respectively.
Actual errors are probably larger than these values in some instances
because of fluctuations in water flow and arc current. The pyrometer
readings are probably accurate to within ± 50°C in brightness temperature,
but the "true" temperatures listed in Table 8 are more uncertain than
this because of a possible difference between the spectral emissivity of
the cathode and that of pure tungsten, and because of the presence of strong
temperature gradients in the surface region viewed through the pyrometer.

C. ANALYSIS OF DATA

The thermal and electrical conductivities and total emissivity for pure tungsten
have been reviewed in section IV. In summary, the literature values are

c ' 0.32

pure tungsten K& 1.1 w/cm°K

p = BTs

with

B = 5.0 x 10- 9 ohm-cm/oK s

pure tungsten

s = 1.234

The thermionic constants for pure tungsten are 3 4

A = 60 amp/cm2oK 2

pure tungsten
A = 4.51 volts

It is clear, however, that these thermionic properties cannot be applied to
thoriated tungsten. The A and -0 values must be determined for the particular
material being used, especially because there is good reason to believe that the
"used" cathodes, upon which the data of Table 8 are based, have different
thermionic properties from the original material.

The other properties listed above may also differ to some extent from their
values for pure tungsten.

1. Total Emissivity

It is probable that the effective total emissivity for the "used" cathode
material is somewhat higher than that for pure tungsten, since the cathode
surface is "dirty" and also rather rough in the region which reaches high
temperatures during operation. With allowance for the effects of these
conditions, it is estimated that

0.4 . (152)
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2. Thermionic Constants

The values of the thermionic constants A and 0 can be estimated from the

measurements of tip temperature and current density presented in Table 8.

The argon and nitrogen data are not useful for this purpose, of

course, since the cathode always operates in the spot mode in these gases,

and the spot area has not been measured. The helium data must also be

rejected for those runs in which spot-mode operation or a large amount

of overflow occurred. The high current runs 7 to 10 also omitted,

because a considerable amount of overflow probably occurred in

these runs but was not visible owing to the extreme brightness of the

Joule heated cathode. The remaining data, which ought to be suitable

for estimating thermionic constants, are run numbers 3, 4, 6, 11,

13, 14, 15, 16, 18, 19 and 20.

The accuracy of the data is not good enough to permit determination of

both A and 0. For this reason, the data are analyzed by assuming a value

for A and calculating a corresponding "effective" value for 4. Experimental

values of A for tungsten with low work function additives are usually very

low, 34 of the order of unity. The present analysis assumes

A = lamp/cm2o2 (153)

The current density is given theoretically by equation (111),

j =A + C T2 e-O/T (154a)
(I VI

where

0 11609 -4.4 N/E (154 b)

and the surface field strength is given by Mackeown's formula (1391)

which can be approximated by

Ec -- 873 Vc 1 / 4 iE1/2 (18 2 3 W)l A -- '-VI (I 54c)
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Elimination of Ec and 0 from these equations gives

Inj = InA + In 1+- + 21nT

1 11609 € -130 V 1 / 8  v 1/4 (1823W) 1 / 8 i1/4-T C V +VI/ (12 )/ (155)

This is now regarded as an equation for 0 in terms of experimental values
of j and T and an assumed value (153) of the Richardson constant A. The
value of - obtained is rather insensitive to the unknown value of vc; a
typical value Vc  5 volts is assumed for all cases. Then, with v, = 24. 5
and W = 4,

5 = 8.61 x 10- 5  T in - + 0.2) + 311il/4 (156)

TABLE 9

ANALYSIS OF CATHODE DATA FOR EFFECTIVE WORK FUNCTION

Run Diamete r Length J0 Ts
Number inch inche s amp/cm2  0 K volts

3 1/16 1 1021 3010 2.56

4 1/16 1 2062 3060 2.45

6 1/16 1 3719 3330 2.56

11 1/8 2 302 2800 2.61

13 1/8 2 313 2740 2.53

14 1/8 2 450 2920 2.64

15 1/8 2 664 3110 2.75

16 1/8 2 1243 3120 2.62

18 1/8 1 325 2820 2.58

19 1/8 1 639 2930 2.54

20 1/8 1 1213 3130 2.64
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Table 9 shows the results of applying this formula to the data on tip

temperature and current for the runs listed above. In this table, the sur-

face current density at the tip is approximated by j0 , since there was little

visual indication of overflow in any of these runs and the computed value of

- is not very sensitive to j. The mean of the values shown in the last column,

together with its root mean square deviation, is 2. 59 ± 0. 07 volts. In the

subsequent analysis, it is assumed that, for the "used" thoriated tungsten

cathodes,

= 2.6 volts , (157)

based upon A = 1 amp/cm 2 *K 2 . The current density-temperature relation

calculated from (156) using these values is compared with the data of Table 8

in figure 52. It is interesting, but probably not significant, that (157)

agrees fairly well with the value (0 = 2. 63, A = 3) listed by Nottingham 3 4

for W + Th.

3. Thermal Conductivity

The data of Table 8 albo permit analysis for thermal conductivity. This

property can best be determined using temperatures measured at points

below the tip, where the effects of strong temperature gradients in the tip

region have largely died out and the heat flow is nearly one dimensional.

Data from all three gases can be used. However, it is best to restrict con-

sideration at this stage to data taken at low current densities where Joule

heating does not affect the heat flow to a major extent. This analysis for

thermal conductivity does not involve any of the "arc" relations pertaining

to the cathode fall zone or the surface, but only the heat conduction prob-

lem with radiative loss from the sides.

If the temperature distribution in the cathode were linear, the thermal con-

ductivity could be calculated using the simple relation K = q x / (T-T 0 ). In

fact, this formula gives fairly good values when applied to the lowest

temperature data of Table 8. However, radiative loss of heat from the

side of the cathode is always significant in regions of the cathode surface

which are bright enough to yield a good pyrometer reading. For this reason,

it is desirable to use the quasi one dimensional heat flow theory of section

V B in carrying out the analysis. It is convenient to define

2 8aK 52BKj 0 2
H = K2 C = qO2 - T0 + - T0s+1 (158)

51) T + 1 0
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where C is the integration constant (106), determined from the tempera-

ture and heat flux at the cold end of the cathode. Then, equations (91)
become

BacK 1 / 5
= \ ) T (159a)

5DH I

, t8,4KN\/5
K7  = '- 5--DH-) x 159b)

2BKjo 2_OCK__+_ / (159c)

z = (s +1) H 5DH

The term q02 on the right-hand side of (158) is much larger than the other

two terms, so that the experimental value of q0 gives a good determination
of H without knowledge of the exact value of K. Because of the exponent 1/5,
the quantity (8acK/5DH) 1 /5 appearing in (159a and b) is insensitive to errors

in an assumed K value. Equation (159c) is somewhat more sensitive to
variations in K, but this has little effect upon the calculations since z is
small in the runs selected for thermal conductivity determination. Thus,
knowing only that K should be of the order of 1 w/cm*K, one can determine
0 and the quantity K-q with reasonable accuracy from experimental values
of q0 , T , and x. The quantity

= (8ucK 1/ 5 T0  
(160)

is not known accurately, since the temperature To at the cold end of the

cathode was not measured in these experiments. However, the cathode is
embedded in a 1/2 inch diameter copper base which is screwed tightly into
a water cooled holder, so that To should not be much above room tempera-
ture. It is assumed that

To = 300 0 K (161)

This assumption is most likely to be in error in runs with the 1 inch by 1/8
inch cathode. The unusually high heat flows obtained with this geometry
might force To to rise appreciably above the value (161).

Withe given by (159a), 0 by (160), and z by (159c), one can calculate -q
from equation (94), using rable 3 to evaluate G(i,z )and G(tA, z).
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Then, since Kq is known from (91b), K can be obtained. The results of
applying this procedure to data from Table 8 are shown in Table 10.
The runs used have been selected to avoid excessively large values of z,
and tip temperature data have not been employed (with one exception). The
value B = 5. 3 x 10-9 has been assumed in the calculations, on the basis of
a discussion presented below.

The thermal conductivity values shown in the last column of Table 10 are
of the correct order of magnitude, but vary considerably. It is noted that

a. The thermal conductivity values obtained from the argon and nitrogen
data are all essentially in agreement, independently of cathode geometry.

b. In the case of helium, the calculated K depends markedly upon the
cathode geometry. For the 1 inch by 1/16 inch cathode, the K values
are in the vicinity of 0. 9, which happens to be roughly the value obtained
from the argon and nitrogen data. For the 2 inch by 1/8 inch cathode
in helium, K is calculated to be about 0. 65. For the 1 inch by 1/8 inch
cathode, the value is intermediate, near 0. 75.

These differences can be accounted for, at least qualitatively, by consider-
ing the effects of convective cooling of the cathode, convective heating of
the cathode base and holder, and variation of To with the total heat flow from
the cathode to the cooling water.

The gas flow field in the arc chamber is not known in detail, but presumably
contains large scale circulatory motions fed by the jets emerging from the two
injection ports in the bottom plate. Gas heated by the arc column must mix,
to some extent, with the surrounding cooler gas, and the gas flowing over
the surfaces of the cathode and its copper holder is likely to be at some
temperature above 300*K but far below the temperature of the arc.

The construction of the arc unit is such that the top of the copper holder for
a 2 inch cathode is about flush with the surface of the bottom plate. Thus,
a 2 inch by 1/8 inch cathode is immersed in the gas flow field in the chamber,
but its holder is not. Such a cathode operating in helium can lose a consider-
able amount of heat from its side by convective heat transfer to the gas.
The same type of cathode operating in argon or nitrogen will lose much less
heat by convection, because the thermal conductivities of these gases are
only one eighth that of helium.

A 1 inch long cathode operating in this arc unit has 1 inch of its base and
holder, with an area of about 4 cm 2 , immersed in the heated gas. It is
reasonable to assume that some heat transfer takes place from the gas to
this cold copper surface. This could account for the fact that the 1 inch by
1/16 inch cathode gives higher calculated thermal conductivity values than
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the 2 inch by 1/8 inch cathode in helium. The same effect must occur also

with the 1 inch by 1/8 inch cathode, but, in this latter case, an additional

phenomenon may affect the results.

The temperature difference between the bottom end of the cathode and the

cooling water stream is proportional to the total heat flow from the cathode.

The proportionality constant involves the thermal resistances of the copper

base, the holder, and the interface between these two pieces. A lower limit

to the temperature difference for the case of a I inch by 1/8 inch cathode

discharging 40 watts of heat into its base can be estimated by considering

the base and holder as a single 1/2 inch diameter cylinder of copper 1. 25

inches long, carrying a uniform heat flux. This gives AT = QL/KA ,' 25 *C.

Allowance for thermal resistance of the interface between the base and

holder, radial spreading of the heat as it goes from the tungsten into the

copper, and the reduction in cross section by the empty part of the socket

in the holder could increase this estimate substantially. The average of

the K values from argon data, excluding the run made with the I inch by

1/8 inch cathode, is 0.94 w/cm°K. The change AT in To required to bring

the values from this excluded run into agreement with the mean of the other

values would be about 100*C. It is certainly believable that AT could be this

large.

On the basis of the preceding discussion, it is suggested that the thermal

conductivity values obtained by analysis of the data from I inch by 1/16

inch and 2 inch by 1/8 inch cathodes operating in argon are approximately

correct. The mean of these values is 0.94 ± 0.05 w/cm*K. In the subse-

quent analysis, the value,

K = 0.94 w/cm°K , (162)

will be assumed.

If experiments of this type are again undertaken in the future, it should be

possible to eliminate these sources of uncertainty by installing a suitable

anti-convection shield surrounding the cathode and a temperature sensor

at the bottom end of the cathode for measurement of To o

4. Electrical Resistivity

The runs at high current provide data from which the electrical resistivity

temperature function for the cathode material can be estimated. As in the

preceding section, the analysis does not involve Iarc" relations but only heat

conduction with Joule heating and radiative losses. The data are too few and

of too poor aquality to permit determination of more than one parameter in

the resistivity formula (87). In the present study, it is assumed that s in
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that formula has the value for pure tungsten (about 1. 234), but that B might
differ somewhat from the value 5.0 x 10-9 ohm-cm/ Ks obtained from
figure 10.

Since the quantity H defined by equation (158) is nearly equal to q0 , equa-
tions ( 159a, b) and (160) can be written approximately

V = (1.6ac K)0. 2  T (6a
DO.2 qo.4

T
0= (1.6orK)0 .2  (163b)

D02q0.4

0

V' = (1.6atK)0 .2  
0 (163)

KD0.2

Since V0 is small enough that G(0 0 ,z)Zo 0,equation (162) becomes

q + .0 G(0,z, (164)

Since , 0 , and 7 can be calculated from the experimental data, (164)
can be solved for z. Then, equation ( 159c) gives an estimate for B,

(s+l)zq2 8 s+1)/5

B- 2Kj-2 \jDq0 2) (165)

Table 11 and figure 53 illustrate the application of this procedure to
high current data selected from Table 8. No helium data are used be-
cause the measured q0 values for runs in this gas are probably affected
significantly by convective heat transfer, as discussed in the preceding
section. Tip temperature data are also excluded because of spot mode
operation in argon and nitrogen, and data from the 1 inch by 1/8 inch
cathode are omitted because of unreliability of the To estimate (161).
Table 11 shows that, in spite of this screening of the data, the scatter in
the computed B values is large. The reason for this scatter can be seen
from figure 53 , in which the 0,G values computed from the data are plot-
ted on top of the family of curves representing the function G(O, z). The
horizontal and vertical bars on the points represent the estimated uncer-
tainties inG and V, respectively, arising from estimated uncertainties of
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± 0. 05 centimeter in x and ± 50 *K in T. The diagonal bars passing through
the points indicate the uncertainties resulting from a possible error of 2
watts in the measurement of the total heat flow Q0 from the cathode to its
cooling water. An error in Q0 gives rise to one in the heat flux q0 P and
thus affects the position of the experimental point in figure 53 in accordance
with equations (163). It is seen that the uncertainties arising from pos-
sible errors in the heat flow measurements are generally a good deal larger
than those originating in uncertainties in x and T, so that the latter can be
neglected. The two ends of each diagonal bar in figure 53 thus define
upper and lower limiting values of z which would be consistent with the
experimental data in view of their limited accuracy. Substitution of these
limiting values into equation (165) gives corresponding upper and lower
limits to B , provided that the q0 in (165) is also assigned its corresponding
upper and lower limits. The results of applying this error analysis pro-
cedure to the data of Table 11 are shown in figure 54. The B values of
Table 11 are represented by circles, and the vertical bars connect the
upper and lower limits of accuracy. It is apparent that most of the runs
provide only an order of magnitude for B. However, the data from run 27
set the reasonably narrow limits B = (6.4 + 1.1) x 10- 9 ohm-cm/Ks

TABLE 11

ANALYSIS OF CATHODE DATA FOR ELECTRICAL RESISTIVITY

Gas Run Diameter Length x T z B
Number inch inch cm K 0- 9 ohm-cm/°Ks

Argon 25 1/16 1 2.14 2070 0.40 7.9
1.87 1780 0.44 8.7

Argon 26 1/16 1 2.14 2250 0.88 6.3
1.79 1820 1.12 8.2

Argon 27 1/16 1 2.14 2520 1.65 6.4
Argon 31 1/8 2 3.73 1700 0.39 2.6
Nitrogen 44 1/8 2 3.89 1720 0.53 3.7

The literature value of B for pure tungsten, 5.0 x 10-9, is below these
limits. However, the electrical resistivity of two specimens of the
thoriated tungsten cathode material has been measured by Peterson 3 6 at
23 *C. The resulting values (6.04 x 10 - 6 and 5.74 x 10 - 6 ohm-cm) give an
average B of 5. 3 x 10-9, which is just at the bottom of the range of values
consistent with the data from run 27. This agreement between electrical
resistivity as determined from high temperature and room temperature
data provides at least a rough confirmation of the correctness of the value
s = 1. 234 for the temperature exponent in (87). Peterson's room temper-
ature value is selected as the "standard" value of B for subsequent calculations:
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B = 5.3 x 10- 9 ohm-cm/oKs (166)

D. COMPARISON OF THEORY AND EXPERIMENT

The experiments under discussion are significantly affected, as shown in the
preceding section, by two phenomena which are not represented in the theoretical
model. The rod shaped thoriated tungsten cathodes operate in the spot mode in
argon and nitrogen, and even in helium at low currents, while the model assumes
spotless mode operation. Furthermore, the performance of the cathode in
helium is influenced very considerably by convective heat losses. The fact that
the cold end temperature To was not measured introduces a further uncertainty
which becomes fairly large in the case of the 1 inch by 1/8 inch cathode, as
shown by figure 26. As a result of these factors, the experiments have pro-
duced no data which provide an unambiguous quantitative test of the theory.
Nevertheless, a comparison of the experimental results with theoretical predic-tions is worthwhile, because it shows just what the discrepancies are and tests
the usefulness of the model as a basis for rough estimates of cathode performance.

Figures 55, 56 and 57 are plots of the heat transfer to the cathode
cooling system versus total current. The curves in these figures are based
upon theoretical values calculated from the quasi-one-dimensional model, while
the points represent the experimental data for the three cathode geometries.
Figure 55 shows the results for helium. The fact that the curve for the 2inch by 1/8 inch cathode lies above the corresponding experimental points is
attributed mainly tc the neglect of convective heat losses in the theoretical model.The similar discrepancy for the 1 inch by 1/8 inch cathode is believed to result
from the same deficiency in the model, and from the assumption of a value (300 *K)
for the cold end temperature which is unrealistically low in the case of thiscathode geometry. The approximate agreement between theory and experiment
for the 1 inch by 1/16 inch cathode is considered fortuitous; it probably occurs
because the convective heat loss from the side of the cathode is roughly balanced
by convective heating of the cathode base and holder, which are partially im-
mersed in the heated gas of the arc chamber in this case. The theoretical curvefor this geometry is not extended beyond 95 amperes, because, at this current,
A is already slightly larger than unity. For higher currents, the perturbation
calculation of overflow effects used in the model becomes completely unrealistic.

In the cases of argon and nitrogen, the applicability of the model is questionable
because of the occurrence of spot mode operation in these gases. Nevertheless,
figures 56 and 57 show that, as in helium, the model reproduces the general
trend of the experimental heat transfer data reasonably well.

Figures 58 through 63 present a comparison of experimental and theroetical
axial temperature distributions for cathodes of the three geometries operating
in helium. In each figure, the curve i; based upon calculations using the
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theoretical model, while the points represent pyrometric measurements of
temperature at various positions along the side of the cathode. The short broken
line beginning at x = 0 in figures 58 and 59 indicates the actual tempera-
ture gradient at the cold end, calculated from the experimental heat flux meas-
urement assuming K = 0.94 w/cm *K. This broken line and the experimental
points near the hot end, taken together, sketch out an approximation to the actual
temperature distribution in the cathode. (Cold end temperature gradients are
not indicated in figures 60 to 63, because the heat transfer data for the
1 inch cathodes are believed to be affected significantly by convective heating of
the cathode base and by an unknown increase in the cold end temperature in the
case of the 1 inch x 1/8 inch cathode.)

It is apparent from the figures that the actual temDerature distribution is, in all
cases, more concave upward than the theoreticaldistribution. In addition, the
experimental tip temperatures are generally higher than the values predicted
by theory. These differences can be accounted for, at least qualitatively, in
terms of the hypothesis that substantial convective heat losses occur from the
side of the cathode in helium. Such heat losses reduce the temperature in the
midsection of the cathode, but cannot lower the tip temperature because the
total current is "given." Thus, such losses tend to reduce the temperature
gradient at the cold end of the cathode and to increase the gradient at the hot
end, as shown in figures 58 to 63. Moreover, the substantial increase of
the temperature gradient in the tip region drastically reduces the amount of
arc overflow, and, thus (since the total current is given), increases the current
density through the end of the cathode. The rise in current density entails an
increase in tip temperature, in agreement with the data shown in the figures.
This phenomenon is an instance of the general rule, pointed out in section IV E,
that stronger cooling of the cathode tip region tends to raise the tip operating
temperature.

In summary, the quasi-one-dimensional theory for spotless mode operation of
rod shaped cathodes correctly predicts general trends in the variation of cathode
temperature and heat transfer with cathode geometry and current, but a number
of quantitative discrepancies occur. Some of these discrepancies, such as the
dependence of calculated thermal conductivity upon cathode geometry in helium,
are unrelated to the operation of the rod as a cathode, and simply betray the
occurrence of heat transfer processes not included in the theory. Others,
particularly those in the tip temperature and temperature gradient, can be
accounted for at least partially by the effects of convective losses, but may also
reflect errors in assumed material property values, in the approximations of
the quasi-one-dimensional theory, or in the relations upon which the basic
cathode model is based.
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VII. DISCUSSION

The operation of a thermionic cathode is a complex system of coupled physical

processes occurring in the plasma of the cathode fall zone, at the plasma

cathode interface, and in the cathode interior. The present report has set

forth a theoretical model for this system. Although many of the important

processes are represented by crude approximations, this model is physically

complete in that it permits ab initio calculation of cathode performance solely

from geometrical considerations and the physical properties of the cathode and

the gas.

The essential physics of thermionic cathode operation, as viewed from the

present perspective, may be summarized briefly as follows. Flow of electric

current between the cathode and the plasma occurs predominantly by ther-

mionic emission of electrons from the surface. Since each electron emerging

from the surface carries away an energy equal to the thermionic work func-

tion, such a steady flow of emission current is possible only if energy is

simultaneously supplied to the surface in sufficient quantity to balance this

and other losses. In most cases, the bulk of this energy is provided by ion

bombardment. Thus, although electron emission is the main charge transfer

process, it can only occur if a substantial fraction (about 10 percent or more)

of the current is carried by positive ions drawn from the plasma. Because of

their greater mass, the ions move much more slowly than do the electrons in

the electric field adjacent to the surface, and this region, therefore, contains

a net positive space charge. This space charge layer is directly responsible

for the cathode fall of potential and for the very high electric field intensity at

the cathode surface. The thermionically emitted electrons are accelerated by

this field to an energy equal to the cathode fall, and deposit most of this energy

in the plasma near the cathode. The plasma absorbs this energy, in the steady

state, by production of ion electron pairs. Thus, at least up to a point, an

increase in electron emission current density leads to an increase in electron

"beam" energy deposited in the gas, an increase in ion production, an increase

in ion current to the surface, and an increase in surface heating due to ion

bombardment. However, there is an upper limit to the ion current density

which can be drawn from the plasma at a given pressure; it is given by the

flux of ions across an arbitrary plane surface in a fully ionized gas. Once

this limit for the ion current density has been reached, further increases of

electron emission current density withdraw additional work function energy

from the surface without leading to a compensatory increase in ion bombard-

ment heating.

The net heat entering the cathode surface, after allowance for work function

and radiative losses, flows by conduction into the cathode interior. The tem-

perature and heat flow distributions inside the cathode are governed by the

steady state heat conduction equation. A given distribution of heat flux over
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the surface defines a solution of the cathode heat conduction problem which, in
turn, gives a temperature distribution over the surface. This temperature
distribution determines a distribution of electron emission current which, by
the ion production and bombardment mechanisms discussed in the preceding
paragraph, leads to a certain distribution of net heat flux into the surface.
This heat flux distribution determined by the temperature field inside the
cathode must be identical with the original distribution determining the tem-
perature field as a solution of the heat conduction problem for the cathode in-
terior.

No general methods are available at present for obtaining accurate analytical
or numerical solutions of this rather intricate problem, but the main features
of the system have been studied using approximate means. For a strongly
cooled cathode, it turns out that the problem has no solution unless the ion
current density is equal to its kinetic theory limiting value over a major part
of the emitting region. Thus, the operating region of a strongly cooled cathode
contracts to form a spot in which the current density is limited essentially by
the density of particles in the plasma of the cathode fall zone. An increase of
pressure raises this particle density, and hence increases the current density
and the temperature of the surface in the spot region.

In a cathode which is sufficiently poorly cooled, the heat conduction equation
requires a relatively large region of the cathode to be hot. Electron emission
from the surface, then, leads to a relatively low current density spread over
a large area. The resulting widely distributed moderate heat flux matches the
requirements of the heat conduction problem for this case. Normally, the ion
current density is below its limiting value over the entire surface. This type
of cathode operation, in which the current density is limited only by the re-
quirements of the cathode heat conduction problem, is tentatively identified
with the spotless mode. The theory, in its present somewhat schematic form,
predicts that the current density distribution over a cathode operating in the
spotless mode should be pressure independent.

It is not yet altogether clear how the arc "chooses" between these two modes
and, generally, between different possible solutions of either type. It is likely
that, for some geometries and situations, the problem admits only a single
nontrivial solution. However, circumstances clearly exist in which two or
more solutions are possible mathematically. One instance is the case of a
well cooled cylindrical cathode. It appears that this problem should admit an
axisymmetric solution with the spot at the center of the end surface of the
cathode. Experimentally, however, another solution is "chosen" with the spot
on the rim of the end surface. Perhaps, problems such as this can be re-
solved by performing a stability analysis based upon the transient version of
the problem.
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VIII. RECOMMENDATIONS FOR FURTHER WORK

The theory provides, in its present form, a conceptual framework for discuss-
ing and analyzing thermionic arc cathode behavior. Qualitative comparison
with experimental data indicates that this framework is approximately correct.
However, a considerable amount of additional work is needed to develop this
model into a quantitative theory which can be used confidently in the design of
cathodes for high pressure, high enthalpy plasma generators. The lines of
effort which appear most likely to be fruitful are listed below.

1. Numerical Procedures for Solving Cathode Model

A method for computing accurate solutions of the model for particular
cathode geometries is needed both for testing the model's validity and for
engineering applications. Possible approaches to the development of such
a numerical procedure have been discussed in paragraph 1 of section
IV D.

2. Processes in Cathode Fall Zone and at Surface

The relations presented in section IlI for describing processes in the
plasma and at the surface are all rather crude approximations. A num-
ber of these relations can clearly be improved. For example, the
Mackeown formula (6) for the electric field at the surface should be
modified, as shown by Ecker,1 2 to take account of back diffusion of elec-
trons from the plasma and thermal velocities of the ions. A somewhat
detailed theory of charge and energy transport in the ion production zone
should be developed, including some of the effects neglected in section InI,
such as Joule heating of the gas, heat conduction from the gas to the sur-
face, radiative losses, and energy deposition in the gas by Auger ejected
electrons from the surface and rebounding neutralized ions. Similarly,
the cathode surface energy balance should be refined to include heat con-
duction from the gas and accommodation coefficient effects. Once these
effects have been properly formulated, they should be incorporated into
the cathode model.

3. Quasi-one-dimensional Cathode in Spot Mode Operation

It should be p:ssible to obtain, from the theory, a criterion for spot mode
operation on a rod shaped cathode. In addition, an approximate theory for
a rod shaped cathode operating in the spot mode can probably be assembled
by combining the existing quasi-one-dimensional theory (without overflow)
with the approximate spot theory of paragraph 3 of section IV D. Such an
approximate theoretical model would be useful for analysis of experimental
data for rod shaped cathodes running in nitrogen and argon.
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4. Experiments

A further attempt should be made to obtain experimental data for quantita-
tive comparison with the theory. It appears that this should be possible
with some modifications of the apparatus described in section VI. A ther-
mocouple or other sensor should be added to permit direct measurement
of the temperature at the cold end of the cathode. An attempt should also
be made to obtain interpretable data from operation in helium by reducing
the convective heat transfer effects with the aid of a shield surrounding the
cathode or a suitable change in the geometry of the arc chamber. Further
experiments with other cathode geometries should also be valuable.

5. Theory for Cold Cathodes

There is considerable interest, for plasma generator applications, in cold
cathodes such as water cooled copper with a magnetic field applied to move
the spot over the surface. Several experimental investigations have shown
that the current enters a cold cathode through a number of "microspots, "
each of which carries a current density of 107 or 108 amp/cm 2 . The prob-
lem of explaining the mechanism of charge transport in these microspots
has received much attention. 6-9, 16-17, 37 Various authors have invoked
field emission, T-F emission, electron ejection by impact of excited atoms,

and other processes. The most plausible assumption appears to be that
the current is transported predominantly by the general mechanisms of ion
neutralization and thermal field emission of electrons rather than by
"special" mechanisms involving excited atoms. It would be a valuable
exercise to attempt construction of a "complete" model for cold cathodes
on the basis of this assumption. Other phenomena whose effects should be
included in the model are Joule heating and heat conduction in the cathode,
ion bombardment heating, space charge, kinetic theory limitations on ion
current density, ion production in the gas, magnetic pinch pressure, electric
pressure on the surface, and vaporization of cathode material.
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APPENDIX A

NUMERICAL PROCEDURE FOR COMPUTATION
OF SURFACE HEAT FLUX AS A FUNCTION OF

SURFACE TEMPERATURE

The net heat flux into the surface, qs , is determined as a function of surface
temperature Ts for a given cathode fall voltage VC by the relations (54)through '59),

q, = ji (Vc + V, - q0) - Je - acTs4  (54)

Je = ATS 2 e 0 /Ts (55a)

0 = 116095 - 4.40 V (55b)

Ec = 873 Vc 1/4 [(1823W)1/2 Ji- je] 1/2 (56)

ji= min[a je/(1-a), Oi)max] (57)

a = VC/(VC + VI) (58)

P fe
(JAnax = T (59)

Among the quantities appearing in these equations, M, VI, and W are gas proper-
ties, and q, A, and c material properties of the cathode. The gas temperature
T in the ion production zone under conditions of full ionization is about 0. 15
Vi/k . The cathode fall is taken as an input parameter (in place of the total
current). Thus, a is known from (58). The problem is to calculate values of
q, corresponding to known values of Ts . This can be accomplished most read-
ily by introducing the nondimensional temperature,

r = Ts/0 , (167)

in place of Ts as the independent variable of the computation. Then, (55a)
becomes
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Je =  A (Or)2 e-1/r (168)

With given r, (168) is rather insensitive to uncertainty in 0. Hence, one can
proceed as follows:

1. Assume the initial approximation 0 = 11609 .

2. Calculate je from (168)

3. Calculate ji from (57)

4. Calculate Ec from (56)

5. Calculate an improved value of 0 from (55b)

6. Repeat calculation of Je, Ji with new 0. Also calculate Ts from (167)

7. Calculate qs from (54) using Je,' j T. values from step (5).

The procedure converges so rapidly that no further iterations are usually
required.
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APPENDIX B

PROGRAM FOR SOLUTION OF QUASI-ONE-DIMENSIONAL

CATHODE MODEL

Figures 64 to 69 present a FORTRAN listing of the program for solving the
quasi-one-dimensional cathode model (139). The correspondence between
FORTRAN symbols used in this program and the mathematical notation em-
ployed in this report is as follows:

FORTRAN Symbol Mathematical Symbol FORTRAN Symbol Mathematical Symbol

D D VQ V

XL L VC VC

TO To  XJO j0

TAU r C C

W W PSIS 's

VI V1  PSIO o

A A Z z

PHI 0 E TAS 77,

XK K DELTA A

B B F F

S s EC

EPS XI I

ZC z VR AV

THE TAO 00 QO q0 nD2 /4

THETA 0 ALPHA a

TNP Tns TS Ts

TN Tns QE qE"nD2 /4.

XLAMBD
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C QUASI ONE DIMENSIONAL CATHODE MODEL WITH OVERFLOW
ARGF(XtZ)-I.0+X**5-Z*X**(+1.)
CMMN StCG*CVPEPSoXK*b#A*PHI#DTNPOPFF
DIMENSION D(10)*XL(10),TO(5)#TAU(25)tW(5)PVI(5),PSI(20)ETA(20)
DO 600 I-I9NG
DO 500 JuloND
DO 400 K-l#NL
DO 300 Ll*NTO
DO 200 M19NTAU
WRITE OUTPUT TAPE 5o5vW(I)*VI(I)9D(J)vXL(K)*TO(L)

5 FORMATISHI WnF7*395H VlaF6.394H DuF5@394H LaFS2*5H T0nFSo0)

NTH-1
NDEL-1
NTRY=O
THETAO=11609.*PHI
THETA-THETAO
RADC-907E-12*EPS/XK/D(J)
DHMC=2.*B/XK/(S+lo)
CALL START (TAU(M)#D(J)#VI(I)oTNP*DTNP)
GO TO 11

10 TMP*TNP+DTNP
11 MBS-O

INTP-1
TN-THETA*TAU(M)
RF=A*TN**2*EXPF(-I*O/TAU(M))

12 RADP=S67E-12*EPS*TN**4
CONP-XK*TNP
TKD=THETA*XK*D(J)*TNP**2*05/TN**2
XLAMBD(2.*RADP-TKD+SQRTF((TKD-2s*RADP)**2+4.*(CONP**2-RADP**2)))

X *0*5/(CONP-RADP)
VO=XLAMBD*TKD/RF
VC--0.5*(VI(l)-PHI)+O.5*SQRTF((VI(I)+PHI)**2+4.*VI(I)*Vg)
XJO=RF*(l*+VC/VI(I))/(l+XLAMBD) **2*(I+(1.+XLAMBO)*4,*TN**2

X /D(Ji/THETA/TNP)
CnTP**2-RADC*TN**5+OHMC*XJO**2*TN**S(+1 )
NTRY-NTRY+l
IF(NTRY-MMAX)66966967

67 WRITE OUTPUT TAPE 5,68,TAU(M).VC,TNPoCoDELTA,ZTHETA
68 FORMAT(21H ITERATION STOP TAU=F6*3,SH VC=F8*396H TNP=lPEIO.3t

X 4H CuE1O*3#SH DELTAaE10*394H Z=OPF8*498H THETA=IPE10.3)
GO TO 200

66 IF(C)18918914
14 PSIS-(RADC/C)**0*2*TN

PSIO=(RADC/C)**0*2*TO(L)
Z-OHMC*XJO**2*(RADC/C)**(-0*2*(S+1))/C
ETA$-SQRTF(C)*(RAD/C)**O.2*XL(K)
6O TO (19990)*MM

Figure 64a FORTRAN LISTING OF MAIN PROGRAM FOR SOLUTION OF
QUASI-ONE-DIMENSIONAL CATHODE MODEL
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19 IF(Z-ZC)16#15#15
15 QARG=ARGF(PSIS*Z)

IF(QARG-CARG)18918917
17 DARGz=.*PSIS**4-(S+1*0)*PSIS**S*Z

IF(DARG)16.18.18
18 NTH-1

GO TO 10

16 DELTA=ETAS-G(PS109PSISoZ)
IF(DELTA)20921921

20 DELTAN=DELTA
TNPN-TNP

GO Tb (22,25),INTP
22 NDELw2

NTH=1
GO TB 10

21 GB TO (23.26)*NTH
23 GO TO (27.24)*NDEL
27 MBS=MBS+l

IF(MBS-MBSTBP)28928#29
28 TNP=TNP-0.5**MBS*DTNP

GB TO 12

29 WRITE OUTPUT TAPE 5,30,TAU(M),VC,DELTA.Z.PSIS.TNP
30 FORMAT(22H BACKSPACE STOP TAU=F6.395H VCaF8*3#8H DELTA-

X 1PE1O.3,4H ZzOPF8.4v7H PSIS-F8e4,6H TNP=IPE10.3)
GB TB 200

26 TNP=TNP-DTNP
GO TB 12

24 TNPP=TNP
DELTAPwDELTA

25 ATNP=DELTAP*(TNPP-TNPN)
/ (DELTAP-DELTAN)

TNP1=TNPP-ATNP
IF(ABSF(TNP1-TNP)-CTNP*TNP)40.40O35

35 TNPmTNP1
INTP=2
GB TB 12

40 TNP=TNP1
F=1 6900.*SQRTF(A)*VC**025*SQRTF(VC/Vl(l)*SQRTF(1823*W(I))-l.)
X *TAU(M)*EXPF(-O.5/TAU(M))/(11+XLAMBD)
THETAlO.5*(2e*THETAO+F)-Oo5*SQRTF(F**2+4*F*THETAO)
IF(ABSF(THETA-THETAl)-CTHETA)41.41942

41 MN2
42 THETA=THETA1

NTH-2
NDEL-1
GO TB 11

90 CALL OUTPUT (THETA.XJO.CtTO(L).D(J)vVC#P$ISPPSIOZ#XLANSDoTN#
X TNP*ETAS*VI(I),TAU(M)#XL(K).RADCoOHNC*RF)

200 CONTINUE
300 CONTINUE
400 CBNTINUE
500 CONTINUE
600 CBNTINUE

Figure 64b Concluded
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SUBROUTINE START (TAUM9DJ*VII9TNP9DTNP)
COMMON StCG,CV,EPS,XK,BtAtPHI,DTNPOeFF
RADC=9*07E-12*EPS/XK/DJ
SHMC=.*B/XK/(S I*)
THETA=11609**PHI
TN=THETA*TAUN
RFuA*TN*2O*EXPF(-*O/TAUM)
RNDalo-0.3885E+24*XK*B*A*TN.(S-J )*EXPF(-2*/TAUM)/EPS** 2

X /(S+lo)/THETA**2
IF(RND)70197019702

702 TNPI-SQRTF((4*538E-12*EPS*TN**5/XK/DJ)*(Io+SQRTF(RND)))
RADP=5.67E-12*EPS*TN**4
CONP-XK*TNPI
TKD-THETA*XK*DJ*TNPI**2*0*5/TN**2
XLAMBD-(2.*RADP-TKD+SQRTFf(TKD-29*RADP)**2+4o*(C@IP**2-RADP**2)))

X *0*5/(CONP-RADP)
VO=XLAMBD*TKD/RF
VCz-Oo5*(VII-PHI)+O.S*SQRTF(IVII+PHII**2+4**VII*Vf)
XJO.RF*(1o+VC/VJll/(lo+XLAMBD)**2*(l*+(1o+XLANBDI*49*TN**2

X /DJ/THETA/TNPI)
RND2-RADC*TN**5-OHMC*XJO**2*TN**(S+19)
IF(RN02)70197019703

703 TNPxSQRTF(RND2)
IF(TNP-DTNPO/FF)70ol711711

701 TNP=DTNP0
DTNPaDTNPO
GO TO 750

711 DTNPuFF*TNP
TNP=TNP-DTNP

750 RETURN

Figure 65 FORTRAN LISTING OF SUBROUTINE START
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FUNCTION G(XO*XltZ)
ARGF(X*Y) -1O+X**5-Y*X**(S+ oo)
INDFIX*Y)al.0/SQRTFIARGF(XoY))
CI4N S,CG9CV*EPSXK9BA9PHI *DTNPO9FF

DX=O.l*(X-XO)
301 G=0.O

302 DGaDX*(INDF(X*Z)+4.INDFIX+DX*Z)+INDFIX+Z*DX9Z)1/3eO
XnX+2.*DX
G=G+DG
IF(X-Xl+l*OE-6) 30293039303

303 IF(ABSF(G-Q)-CG)305,305v304
304 DX=O*5*DX

QwG
GO TO 301

305 RETURN

Figure 66 FORTRAN LISTING OF FUNCTION G
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SUBROUTINE DISTAN IX0eXo&*PSI*ETA)
ARGF(X*Ylnlo0+X**S-Y*eXo*SIe03
INDFfXvY)1*O/SQRTF(ARGF(X*Y)§
CINON StCG*CV*EPSOXKoB*A*PHI*DTNP0oFF
DIMENSION PSI(20)*ETA(20)
o0.0
DXaOeOSe X-xo
DXPRNT=DX

601 60o0

XPRNT-XODXPRNT
IPUI

602 DG -DX*IINDF(XsZ)*4**INDFIX+DXZ)+INDWFX+2&*DX*Zl)/3oO

XUX+20*DX
C3=6+06
IF(X-XPRNT+1*OE-618109810*811

611 PSI(IP)wX
ETA(IP)-G
IpoIp+l
XPRNTeXPRNT+DXPRNT

510 IFCX-Xl+l.QE-6)80Z.8039803
603 IF(A8SF(G-Q)-CG805O059604
604 DXaO*S*DX

Q-6
60 TO 801

805 RETURN

Figure 68 FORTRAN LISTING OF SUBROUTINE DISTAN
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As originally written, the program employs a special input routine (ENTERVAL)
which is used on the Philco 2000 computer at Avco RAD. Since this routine is
not generally available at other computing centers, the input statements have
been omitted from the FORTRAN listing shown in figure 64. To prepare the
program for operation on any machine with a FORTRAN compiler, it is neces-
sary to add suitable input statements compatible with the particular machine.
There are 27 input variables:

Suggested
Variable Value Significance

D cathode diameter (centimeters)

XL cathode length (centimeters)

TO temperature of cold end (*K)

TAU Tns/0

W molecular weight of ions (gm/mole)

VI ionization potential (volts)

ND number of D values

NL number of XL value s

NTO number of TO values

NTAU number of TAU values

NG number of gases

A Richardson constant (amp/cm2 °KZ)

PHI work function (volts)

XK thermal conductivity (w/cm*K)

B resistivity constant in (87) (ohm-cm/ *K s )

S temperature exponent in (87)
EPS total emissivity

DTNPO input value of DTNP (*K/cm)

ZC zc (95)
MBSTOP 10 number of permissible iterations through statement 28
CTHETA 1. convergence criterion for THETA (*K)
CG 0. 001 convergence criterion for numerical integration to

obtain G(XO, Xl, Z)

CARG 0. 01 criterion for minimum value of ARGF (X, Z)

CTNP 0.0001 convergence criterion for TNP

CV 0.001 convergence criterion for numerical integration to
obtain V(XO, Xl, Z)

FF 0.2 factor for calculating DTNP (statement 711)

NMAX 50 number of permissible iterations through statement 12
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The variables which are dimensionalized are indicated in the DIMENSION
statement of the main program. D, XL, TO, and TAU are all indexed independ-
ently, but Wand VI have the same index I . The suggested values for the
control variables are intended as rough guides for getting the program into
operation, and can be modified on the basis of experience to give better ac-
curacy or shorter running time.

The flow chart for the main program between statements 5 and Z00 is shown in
figure 70. This is the section of the program which solves equations (139)
for the principal unknowns. The following remarks are intended to aid in a
study of the program.

1. Subroutine START selects initial values for TNP and DTNP which will
enable the main program to find the correct TNP without an excessive
number of passages through the incrementing statement, 10. The idea
underlying this calculation is that the correct value of TNP is of the same
order of magnitude as the larger of the two values which make C (1390
equal to zero,

2 8ae 2B Tnss+l
0 ns - 5KD T n s 5 + (2 169)

Now, j0 is given by (139i and j), This variable is important in (169)
only if it is large, and then it can be approximated roughly by

2A Tns 4 e- 1/ r

D OTns' (170)

Substitution of (170) converts (169) into a quadratic equation for Tns' 2

The desired solution for Tns- is

4 . n'eT,. [ 25 KAB s Ts-1 -2/rll,
5KD 2 a2e2( + 1) 02 1(7)

To improve on this rather crude value, START performs one loop of an
iteration using equations (144), (145), (146), (147), and (169)
and thus arrives at an improved estimate of the upper value of TNP for
which C= 0. If FF* TNP is greater than or equal to DTNPO, DTNP is taken
equal to FFtimes the calculated TNP, and these values are returned to the
main program. If FF* TNP is less than DTNPO, TNPandDTNP are both
taken equal to DJ7NPO.
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Z. The loop (10, 66, 18) increases TNP until C becomes positive.

3. The loop (10, 19, 15 or 17) increases TNP until the values of Z, QARG,

and DARG indicate that the function G (PSIS, PSI,0 Z) can be evaluated. If
Z< ZC, the integration to obtainG can always be performed. If Z> ZC, the

integration encounters the square root of a negative number unless

ARGF (PSIS, Z) is positive and to the left of its minimum (refer to discussion

surrounding (95)) in which case the derivative DARG of ARGF is negative.

In all other cases, the integration to obtain G is impossible.

4. The loop (10, 16, ZZ) increases TNP until DELTA, initially negative,
becomes positive. Then, the interpolation routine beginning with state-

ment 25 takes control until the change in TNP becomes less than CTNP' TNP.
Once this criterion has been satisfied, the routine beginning at statement

40 calculates a new approximation to 0 and the program returns to state-

ment 11 to begin calculating the corresponding new value of TNP. However,
if the criterion on 0 (preceding statement 41) has been satisfied, MM is

equal to 2, and the computed Go To preceding 19 transfers control to the
subroutine OUTPUT, which computes additional quantities and writes the

results onto the output tape.

5. The loop (12, 28) deals with cases in which the first value of DELTA

computed is already positive. It decreases TNP by successively smaller

increments until DELTA becomes negative, control returns to statement
10 via 18, or the number of successive passages through 27 becomes

equal to the input value MBSTOP. In this last case, the program prints a

line of output and goes on to the next case according to the DO loop sequenc-

ing.

6. The loop (12, 21, 26) deals with cases in which control has reached

statement 11 via 42 (i.e., cases in which an improved approximation to
THETA has already been computed), and DELTA comes out positive on the

first new passage through 16. In such cases, the new TNP might be less
than the current value by more than the amount DTNP, and would thus

escape the search carried out by the loop (12, 28). Statement 26 decreases

TNP by DTNP until negative DELTA is obtained or one of the statements
66, 19 returns control to 10. Statement 18 or 22 then resets NTH to 1.

7. FUNCTION G (XO, Xl, Z) is equal to the quantity G(XI, Z) minus G(XO, Z)

as defined by (IV- 10). Similarly, V(XaI Xl, Z) is V(Xl, Z) -V(XO, Z) as de-
fined by (IV- 13b). These functions are evaluated simply by Simpson-rule
integration, with accuracy criteria CG and CV, respectively.

8. Subroutine OUTPUT writes the output tape with instructions to print
values of 25 quantities, plus a table giving the distribution of temperature
and certain other quantities along the cathode. The 25 individual quantities

are as follows:
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Symbol Quantity

XI total current (amperes)

TS tip temperature (*K)

XJO current density at cold end (amp/cm 2 )

QO heat flow at cold end (watts)

z (91c)

VC cathode fall (volts)

TN "unperturbed" tip temperature (*K)

XJE current density at hot end (amp/cm2 )
QE heat flow into hot end (watts)

PSIS (139c)

VR resistive voltage drop along cathode(volts)

ALPHA (58)

EC field at surface (v/cm)

PJ Joule dissipation (watts)

PSIO (139d)

VEFF QO/XI

XLAMBD x

TNP "unperturbed" temperature gradient at
surface (*K/cm)

PRAD power radiated from cathode (watts)

E TAS (13 9b)

VLOSS total power loss from cathode by conduction
and radiation, divided by I (volts)

TAU r
OVERF yO. 5 (135)

THETA 0 ( 0 K)
C (13 9f)

9. Subroutine DISTAN calculates the values of -q at Os and at 19 equally
spaced values of 4 between 0 and V/,.OUTPUT then calculates the distance
from the cold end in centimeters; the temperature (allowing for overflow
effects in *K; and the overflow side heating per unit length (SHPUL), the
radiated heat per unit length (RHPUL), and the Joule heating per unit
length (OHPUL), all in w/cm. These quantities are printed out as a table.
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