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THE HYDRODYNAinCS  OF AN EXPLOSIOI-I 

by 

Yu.   S.   Yakovlev 

INTRODUCTION 

The problems of applied theory of explosion attract the attention 

of a large circle of specialists. 

Explosions are used for large-scale mining and earth-moving work: 

construction of channels, dams, roads, mine shafts, etc. Explosion is 

finding ever-increasing application in the oil industry (oil drilling), 

in processing of metals, and in other fields of the national economy. 

Seismic-explosion methods have found extensive use in the study of the 

structure of the earth's crust and in prospecting for useful minerals. 

A study of the theory of explosion is also of great interest for 

shipbuilding engineers. One of the main requirements imposed upon a 

modern ship is a long life. This quality is attained by rational de- 

sign of the hull structures, which makes provision, among the other 

theoretical cases, also for the action of dynamic loads. The theory of 

explosions is the basis for the determination of such loads. 

The work by the Soviet school of hydrodynamics, and primarily by 

Kochin, Lavrent'yev, Sedov, Landau, Khristyanovich, Zel'dovich, Shiman- 

skiy, Sadovskiy, Novozhilov, Stanyukovich, Pokrovskiy, Vlasov, Olisov, 

Patrashev, and other scientists, has laid the groundwork for the 

theory of explosion as an independent field of knowledge. 

However, the original investigations by the foregoing authors are 

scattered among many publications. Even a cursory acquaintanceship 

with them calls for much time and labor. 

There are practically no books in which the problem is developed 

sufficiently fully from a single unified point of view. 
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Tnis gap was filled to a considerable degree by the recently pub- 

lished monograph of F.A. Baton, K.P. Stanyukovich, and B.I. Shekhter, 

"The Physics of Explosions." It considers in detail questions of 

thermal chemistry, combustion, and brisance of explosives, the theory 

of detonation, :;.n : t a theory of cumulation. Much attention is paid to 

problems in ncns.. .ionary gascynamics. However, the problem of external 

forces and problems involving the action of an explosion on a struc- 

ture are not investigated by the authors of "Physics of Explosions." 

Yet it is precisely these problems that are of great interest to 

engineers, designers, and scientific workers. 

This was precisely the motivation for writing the present book, 

which consists of four chapters. 

In Chapter 1 - "General Laws Governing the Propagation of Shock 

Waves" - principal attention is paid to a consistent and sufficiently 

rigorous development of the principles of nonstationary gasdynamics as 

applied to nonsteady motions, the characteristic feature of which is 

the presence of discontinuity surfaces. The main material of the chap- 

ter is preceded by a brief exposition of thermodynamics. 

Chapter 2 - "Explosion in an Unbounded Medium" - does not pretend 

to be complete in exposition, but allows judgment to be formed concern- 

ing methods of solving the problem. It also contains many formulas and 

relationships that are necessary for practical estimates. It was 

deemed appropriate to include in this chapter also the general laws of 

similarity theory, knowledge of which is essential to both the the- 

oretician and particularly to the experimenter. 

In Chapter 3 - "Simplest Boundary Problems of Explosion Theory" - 

are considered the reflection of an aerial shock wave from the earth's 

surface, of an underwater shock wave from the free surface and from 

the bottom of a water reservoir. An attempt was made to present,along 
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with the results of the linear theory, some idea of the nonlinear 

effects, which have appreciable significance in the analysis of sim- 

ilar problems. 

In the last section of the chapter are given semiempirical equa- 

tions which permit an approximate estimate of the parameters of seis- 

•mic-explosion waves near the earth's surface. 

Finally, Chapter 4 - "Principal Aspects of the Problem of External 

Forces in the Case of Aerial and Underwater Explosions" — is devoted 

principally to problems of interaction between shock waves and a par- 

tition — one of the main problems of the theory of explosion and struc- 

tural mechanics. 

In the writing of this chapter, it was a particularly difficult 

problem to choose material so that without repeating the fundamental 

works in the field of strength under dynamic loads would nevertheless 

give a complete idea of the main methods for solving the problem. 

The foregoing shows that the book does not, by far, treat all 

problems in the hydrodynamics of explosions. Thus, for example, we do 

not consider at all the theory of gas-bubble pulsation, surface phe- 

nomena in the case of underwater explosions, and other problems, the 

solution of which is usually presented under the assumption that the 

medium is -incompressible. 

This approach to the choice of material seemed to us justified, 

since it enables us to carry out the exposition by relying only on the 

main laws of gasdynamics. .In addition, the theory of gas-bubble pulsa- 

tion has been developed in great detail in the well-known book by R. 

Cowl "Underwater Explosions." For the same reason, little space has 

been allotted to problems of irregular and regular reflection of aerial 

shock waves from an absolutely rigid wall. Such problems are considered 

in detail in the monograph of R. Kurant and K. Fridrikh "Supersonic 
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Flow and Shock Waves." 

Tending to impart where possible an applied character to the ex- 

position., the author deemed it advantr.geouc to provide the main sec- 

tions of the boolc v."'th er.armle.,, which permit a deeper insight into the 

gist of the invest' z- . C  phenc.nena ai.:l to acquire skill in the solu- 

tion of practical problems. 

The manuscript was evaluated during the course of preparation for 

publication by many specialists, whose remarks and preferences were 

taken into consideration to a great degree. The author expresses deep 

gratitude to those who participated in the discussion of* the manuscript 

of the book. 

Comments and desires with respect to the books should be addressed 

to: Leningrad, D-65, ul. Dzerzhinskogo 10, Sudpromgiz. 
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Chapter 1 

GENERAL LAWS GOVERNING THE PROPAGATION OP SHOCK WAVES 

§1. EXPLOSION AS VIEWED FROM THE HYDRODYNAMIC POINT OF VIEW 

An explosion is defined as a chemical or nuclear reaction., as a 

result of which there is produced within a very short time interval 

within a definite volume,, a high energy density resulting in the forma- 

tion of a region of high pressures and temperatures. In the general 

case the distribution of the pressures and temperatures on the surface 

separating the explosion products from the surrounding medium is at 

the initial instant of time arbitrary, since the character of a reac- 

tion such as an explosion does not depend on the properties of the 

surrounding medium. 

When the explosion energy propagates into the surrounding medium, 

surfaces are formed., on which the hydrodynamic elements of the fluid 

(pressure, density, temperature, velocity of motion of the particles) 

or else their time and distance derivatives change abruptly. Such sur- 

faces will henceforth be called surfaces of strong and weak discon- 

tinuity, respectively. 

I., the pressure and normal component of the velocity --ector of 

the fluid flow change abruptly on the surface of strong discontinuity, 

such a surface is called a nonstationary strong-discontinuity surface 

or a shock wave front. 

If the pressure and normal component of the velocity on both sides 

of the discontinuity surface are the same, but the density and the tem- 

perature change abruptly, one speaks of a stationary strong-disccn- 
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tlnuity sxirface. A stationary strong-discontinuity surface separating 

the explosion products from the surrounding medium is frequently 

called the gas-bubhle surface. 

The main task of explosion theory is to study the unsteady motion 

of a fluid between two boundary surfaces — the front of the shock wave 

and the surface of the gas bubble. Tl.is motion of the fluidj as is 

well known, is determined by a system of partial differential equa- 

tions. The analysis of such a system entails, generally speaking, un- 

surmountable mathematical difficulties. Consequently, from the very 

outset, on the basis of physical notions concerning the ■character of 

the explosion process, it is concluded that this system must be simpli- 

fied by neglecting the volume forces and the viscosity forces. With 

such simplification explosion theory can be included as a specific sec- 

tion of nonstationary gasdynamics. 

As was already mentioned earlier, the boundary conditions for the 

integration of the fundamental system of equations of gasdynamics are 

the conditions on the two discontinuity surfaces — the front of the 

shock wave and the surface of the gas bubble. 

In view of the fact that the conditions on the surface of the gas 

bubble are assumed on the basis of the data of detonation theory, 

which is developed in sufficient detail in many fundamental papers, 

this problem is not treated here. 

As regards the second boundary condition of the problem, it will 

become obvious that for a correct formulation of such a problem it is 

necessary to consider carefully first the general laws governing the 

propagation of shock waves, to which we now proceed. 

Since the need for taking account of the compressibility of the 

medium calls for a thermodynamic treatment of the investigated phenom- 

ena, we shall first recall some of the thermodynamic concepts that are 
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necessary for what follows. 

§2. BRIEF INFORMATION FROM THERMODYNAMICS 

As is well known, there is a unique connection between the main 

parameters which determine the state of a substance„ namely the mass 

density p, the pressure £, and the absolute temperature T. 

An equation characterizing this relationship is called an equa- 

tion of state of the given substance 

F{p,  p. 7") =0. 

In place of the mass density one frequently uses the weight den- 

sity 7 = gp kg/m^ or its reciprocal, V nrvkg, called the specific vol- 

ume . 

In kinetic theory of liquids and gases it is proved, that the 

structure of the equation of state of any substance is determined by 

the relation 

P^-Yf{V)T + <s,{y), (1.1) 

Here the first term of (l.l) takes into account the motion and 

the second the interaction of the particles. 

The form of the functions f and $ is not established by the theory. 

For an ideal gas, i.e., a gas with no interaction forces between 

the particles, we have O(V) = 0 and f(V) = const. The constant which 

replaces the function f(v) in this case is called the gas constant and 

is designated R (m/deg). 

In this case Eq. (l.l) reduces to the relation pV = RT, known as 

the Mendeleyev-Clapeyron equation. 

In cases of practical importance, the air can be regarded as an 

ideal gas. Its equation of state is then the Mendeleyev-Clapeyron equa- 

tion. 

The equation of state of water has not yet been derived theoreti- 
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cally. Therefore, co colve practical problems one uses various empiri- 

cal and semiemplrlcal equations of state of water. We present two of 

them: 

1) the Talt equation 

yir,p)^viTlQ)[i—Li^i+^)-]' (1.2) 

where B is a function of the temperature only, usually specified in 

tabulated form; 

2) an equation that approximates the experimental data of Bridg- 

man for high pressures: 

■ p-(iC9-93,7'/)(7'~34S)-f 5üi0i/-i-M-4310,        (1.3) 

where p is the pressure in atmospheres, V the specific volume in omr/g, 

and T the absolute temperature. 

In thermodynamics one frequently uses the concept of internal en- 

ergy of a substance. This is defined as the energy of motion and inter- 

action of its structural particles (molecules and atoms). 

The internal energy is determined completely by the parameters of 

state and consequently can be represented in one of the following forms: 

u = u{p, T),   I 

u~u{Vtp), (1.4) 
u = u{,T,V).   1 

Being a function of the main parameters, the value of the internal 

energy depends only on the initial and final states of the substance 

and does not depend on the character of the dynamic processes that 

have led to the change in state. 

Mathematically this fact is characterized by the equation 

(jW = o. (1>5) 

The parameters of state are related in basically different fashion 

with the heat acquired or lost by the substance. The character of the 

process plays in this case an important role. 
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Accordingly,   the  value   of the  specific  heat  c = dQ/dT also changes. 

We  shall henceforth deal essentially with  the   specific heat  of  a 

process  occurring  at a  constant  volume,  usually denoted c   ,   and the 

specific  heat  of  a process  occurring at  constant pressure,   c   . 

The   study of  thermodynamic  phenomena   is  based  on two main laws. 

•The  first law of  thermodynamics   is  the  consequence  of the   law of energy 

conservation. 

It  is usually written  in the   form 

dQ^du + A^dW (1-6) 

and expresses  the   simple  fact  that  the  heat absorbed by a  substance   is 

consumed  in  changing  its  internal energy and performing work of vary- 

ing  type.   Since  the work is usually expressed in mechanical units,   the 

second term of   (1.6)   is  preceded by a  coefficient  called  the  thermal 

equivalent of  work 

A = 1/427 kcal/kg-m. 

In thermodynamics it is, for the most part, necessary to consider 

homogeneous systems,* in which the only form of work is work of expan- 

sion.   Equation  (1.6)   then assumes   the  form 

dQ^du + ApdV. (1.7) 

It is easy to see that in the case of an isochoric process, i.e., 

a process»occurring at constant volume, all the heat supplied goes to 

Increase the internal energy of the substance. 

V.'J shall consider the internal energy as a function of the tem- 

perature and specific volume, and write for it. an expression for the 

total differential 

'«~(v)/~+(*)r
rfT/- (1-8) 

Substituting   (1.8)   into   (1.7):,   we  obtain 

dQ~{^)v({T+[{%L)r+Ap-]dV. (1.9) 
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For an isochoric process dV — 0 and Eq. (1.9) assumes the form 

dQ = (öu/öT) dT, hence 
(dQ \ I d:, \ 

c*^ Kdr j ~ Vvf u (1.10) 

It can he shov.'n that for an ideal sas the Internal energy is a 

function of the temperature only., and the value of the specific heat 

c  is constant. Consequently,, 

du = cvdT, 
dQ**cvdT + ApdV', (l-H) 

u-cj. (1.12) 

Proceeding  to  consideration of an  isobaric  process.,' i. e..,   a proc- 

ess  occurring  at  constant  pressure,   we  obtain by differentiating the 

Mendeleyev-Clapeyron equation pV = RT with p — const 

pdV = RdT. (1.13) 

^rom   (1.11)  we have 

dQP**cvdT + ARdT. 

Since 

dQp (1.1^) 
,/;•' — CP> 

the  connection between  the   specific  heat  at  constant pressure  and at 

constant  volume  for  an  ideal gas  is  obtained   in  the  form 

cp = cv + AR. (1.15) 

Widely used in thermodynamics is the entropy function S 

(cal/kg-deg)., defined by the relation 

dS = dQ/T. (1.16) 

It is possible to separate from the total amount of heat that 

part which is the result of the work of friction forces (Qy^tr^' ^ 

is obvious that this part of the heat is always essentially positive. 

The remaining part of the heat (^^3^) can be either positive or neg- 

ative (the heat can be either delivered to or removed from the sub- 
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stance). In accordance with the foregoing we have 

A process In which there Is no heat transfer between the external 

and Internal media Is called adlabatlc. 

It follows from (1.17) that In the general case of an adlabatlc 

process dS ^ 0. A process In which the entropy does not change (dS = 0) 

Is possible in a nonvlscous medium and Is called Isentroplc, or an 

Ideal adlabatlc process. 

Since 

. ^Q.nyrp > 0. 

we have 

dS^^y™. (1.18) 

For an Isolated system dQv.nec5hri — 
0 and Expression (1.18) assumes 

the form dS > 0. 

Consequently^ the entropy of an Isolated system can only Increase, 

and only for an Ideal system can It remain constant. This Is the con- 

tent of the second law of thermodynamics. 

In statistical thermodynamics It Is proved that the growth of en- 

tropy of an Isolated system is connected with the transition of the 

system from a less probable state into a more probable one. 

Let us find an expression for the value of the entropy of an ideal 

gas in terms of the parameters of state. 

We previously had 

dQ=*cvdT + ApdV. (1.11) 

Consequently, 

aS = -f- = cv-r + Ap-r. 

Since for T = pV/R, we have 
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AR^c. — c- 

.<► 
K^ 

we   obtain 

dT dS~c^ + cv(k~l)A 

Integrating  this  equation we  obtain 

S — S.^c.lnT + c^k' 

/• 

\)\nV 

or 
s-s. 

TV* 

pV — c   v const, 
^'-5', 

cor.it. i 

(1.19) 

It  is  obvious  that  an  isentropic  process   (S —  SQ = 0)  will be 

characterized by  the  satisfaction of  one  of  the  following relations: 

TV*"1 = const. 
pV* = const, 

~ — const. 

(1.20) 

These relations  are  known as  the   Poisson adiabatic   curves. 

u 

w 

o 

i^ 

I   ^ siß !0 m mmf i£ wsttis' ^,.   ffl5 

/     Ijp      s 

Fig.   1.   Variation of  the adiabatic  expo- 
nent as  a  function of the  pressure. 

The value of the adiabatic exponent k depends on the number of 

atoms in the gas molecule. For diatomic gases, and particularly for 

air,  we  have  k = 1.4. 

Using the  equation of  state  of water   (1.3)  we   can,   after going 
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through derivations that are in principle analogous to those given 

above^ establish the following adiabatic condition for water: 

where C,   p*, and p* are constants with values 

C = 5^00 kg/cm2;  p* = 2.53 g/cm3;  p* = 912,000 kg/cm2. 

The coefficient K  depends on the entropy of the system and ranges 

from 5-55 to 4.60 in the range of variation of the initial values 1 < 

< p < 250-103 atm and T < 2000oK. 

It is characteristic that this coefficient varies slowly at the 

beginning (Fig. 1). 

Thus., K  = 5.55 for p = 1 atm and tc  = 5-^5 for p = 30,000 atm, 

i.e., the variation of the coefficient tc  over this interval of pres- 

sure is merely 2^. 

This fact indicates that in underwater-explosion conditions the 

propagation of shock waves with pressures up to 30,000 atm on the 

front can be considered in the assumption that the process is isentropic. 

The isentropic condition for p < 30-10^ atm can be obtained from 

the equation of state in Tait's form, and has the form 

P" ~ fno     ' (1.22) 

where B and n are constants with values B = 3045 Kg/cm and n = 7.15- 

It is easy to note that Eqs. (1.21) and (1.22) are identical in 

form ■   id are quite close to the Isentropic condition of an ideal gas. 

This circumstance makes it possible in many cases to extend the 

solutions obtained for an ideal gas to include the case of water. 

It must be borne in mind, however, that the exponents n and /c 

actually imply a different sense. 

§3- STRONG EXPLOSIONS IN GASDYNAMICS 

Upon propagation of the explosion energy, as indicated above, 
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Strong discontinuity surfaces are formed. It is established that the 

general relations which take place on such surfaces. It is obvious 

that for this purpose we cannot use differential equations that assume 

continuous variation of the functions. Consequently, a study of dis- 

continuity surfaces is best started with an analysis of the equations 

of gasdynamics in integral form. 

As is well known, the equations of gasdynamics are based on three 

general laws of physics: the lav; of conservation of matter the lav; of 

conservation of momentum, and the law of conservation of energy. 

Let us consider some elementary liquid volume T, bounded by a sur- 

face S, for two instants of time t1 and tg which are infinitesimally 

close to each other. On the basis of the law of mass conservation we 

can write 

where p stands for the mass density of the liquid. 

Equation (1.23) is usually called the continuity equation. 

According to the law of momentum conservation, the increment in 

the momentum is equal to the jjnpulse of the acting forces, and therel 

fore in the considered case of motion of a nonviscous liquid we have 

/(|JV^) -(IiJ'p^)_ —~j'(ljp*ds\dt, (1.24) 

where  v  is   the  velocity vector  of  liquid motion,  £  is  the pressure, 

and n is  a unit upward-normal  vector. 

The minus   sign in  the  right half of Eq.   (1.24)   is   the  consequence 

■of  the well-known property of an  ideal fluid,   whereby an  ideal fluid 

can experience  only normal  stresses,  which are   compressive  stresses. 

Equation   (1.24)   is  called the  equation of motion. 

Finally,   the   law of energy conservation,   according to which the 
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change In the kinetic energy of an Isolated liquid volume, added to 

the increment of its internal energy, is equal to the work of the ex- 

ternal forces applied to this volume, can "be written in the form 

{I,,fp^"L_(Iif'IH<-,
+ 

+i('fJi"4" -MM"?')" 
'1=1,     \ *      //=/, 

-Ullpvtdsyt. (i-25) 

Here u denotes in addition the internal energy, and A is the 

thermal equivalent of work, A = 1/427 kcal/kg-m. 

Relation (1.25) is customarily called the energy equation. 

All three equations (1,23), (1.24), and (1.25) can he written in 

the following general form 

iJ-^fJW'^-f^)''.        (1.26) 

where  in the  first  case 

in the  second 

and in the  third 

«-P. cff«0; (1.27) 

a**fV,    €„•=.—pn; (1.28) 

a~.?ljL + P£,   cn~-p7t. (1-29) 

Let us assume that there exists a single surface 2 passing through 

the points of the volume T and moving in space, passage through v/hich 

causes the functions a and c  to experience a discontinuity. Let the 

equation of this surface be 

F{*,y,*,t)m>o. (1.30) 

The surface 2 divides the space into two regions. On one side of 

the surface we have F(x, y, z, t) < 0, and on the other F(x, y, z, t) > 

> 0. 
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«t V 

We shall call the first region negative and 

agree to denote the values to which some function 

b(xJ Y»   z>   t) tends on approaching 2^ -remaining 

in the negative region by b ; the second ton 

Pig. 2. Illus- 
trating the 
definition of 
the rate of 
displacement of 
the discontinu- 
ity surface. 

will be called positive, and the values of b cor- 

responding to it will be called b . 

The difference b - b_ will be denoted by [b ] 

and will called the discontinuity or Jump of the 

function b on the surface 2. The surface 2 itself 

will then be called the discontinuity surface of 

the function b. 

We introduce the concept of the rate of displacement of the sur- 

face 2 at a given point, the value of which is defined by the relation 

(Fig. 2) 

iV = Iim 
An 

(1.31) 

Let us calculate the rate of displacement N. Since the equation 

of the surface 2 at the instant of time t + At is 

/=■(*+ Ax, y + Ly, z-\- U, t + M) = 0, 

we obtain, by expanding this function in a Taylor series 

/? (* + A*, ,v + A^, z + U,i+M)=*F {x, y.z,t) + ^7^x + 
(1.32) 

+ T7 A^ + -07 Az+ ^r A^+ 6-M-B- "• • 

but 

Ax >=• A« cos («, x) = A« • 

or- 

./TTF\*     ( 0F\*     I OF  ' 

OF 
"37 by mm A« cos {/i, y) •=» A// —j— , 

or- 
'07 Az = A/7 cos {n, z) = A« ——, 

(1.33) 
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where 

Substituting (1.33)lnto(1.32), we obtain 

(sry (ULY (dFy 

or 

Going  to  the   llir.it as   At —► 0,   we get 

'™w    ^T~-vwmrm-- {1-34) 

The quantity N is called the rate of displacement of the discon- 

tinuity surface. This rate determines the motion of the discontinuity 

surface relative to a stationary observer. 

It is of interest to consider also another quantity, the rate of 

displacement of the discontinuity surface relative to a liquid moving 

ahead or behind the discontinuity front. It is called the rate of 

propagation of the discontinuity surface and is denoted by 0,   where it 

is obvious that 

<s~*N~vn, (1.35) 

where -  is the value of the normal component of the particle velocity. 

Since 

and 

we  have 

v„ = vx cos (n, x) + vy cos {», y) + v, cos («, z), 

'      dt '    uy       dt •    v'      dt < 

dt    h        l)x 'dt   Z Oy   d'i  8 öz   dt    i 

or 
dt 

vm'+m'+w (1-36) 
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Us in S the concept of rate of propagation of the discontinuity sur- 

face, let us establish the relations that connect (via the hydrody- 

namlc equation) the jumps (discontinuity) of different hydrodynamic 

elements. 

i-ij 
i-i. 

ZZsiTT^ / ,<35 At, 

Pig. 3- Position of 
the discontinuity 
siurfaces at the in- 
stant of time t-,. 

Fig. 4. Position of 
discontinuity sur- 
faces at the instant 
of time t^. 

Let us consider the surface Z  at two infinitesimally close in- 

stants of time t-, and tp. 

We denote by St  the position of the discontinuity surface at the 

instant t1 and by 2^  the position at the instant t1 of those points 

of the liquid, which are at the instant t2 on the discontinuity sur- 

face (Pig. 3). 

On the surface 2.  we single out a point M and construct a small cl 
cylinder of radius r with axes coinciding with the normal to 2. , The 

t1 
height of the small cylinder will be the distance between the surfaces 

2t and 2^ . We assume that At/r is an infinite simally small quantity. 

The volume of the cylinder is taken to be the integration volume x up 

to the instant t-,. 

At the instant tg, owing to the motion of the liquid, the point M 

moves over to the point M'. The surface 2,  occupies, after displace- 
^1 

ment and deformation, a certain position 2'  ; finally, the points of 
^1 

the surface 2'   go over into the points of the discontinuity surface 

2t , corresponding to the instant tg (Fig. 4). The small cylinder be- 
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comes deformed, and whereas at the Instant t. It Is entirely In the 

positive region, by the Instant tp It Is located in the negative re- 

gion corresponding to this Instant of time. 

Turning first to the left half of (1.26), let us estimate the 

values of the Integration volumes (f).  and (T). ; for the first we 
^1 T'2 

•have* 

and for the   second 

K/*(L {t% — t,) + tf*- {t, — (,). 

In both cases we take 0 to mean here the values of the rate of 

propagation of the discontinuity surface at one and the same point M 

and at one and the same Instant of time t-., but calculated for an ap- 

proach to the surface 2.  from opposite sides. 
^1 

ad(\ ^a+r. ^r-V+itt-U + ^^-iJ; 

Thus, 

a dt\ = rt-ir^O. (/, — /,) + tj* (/, — ^) 
W'        h, 

and,   consequently, 

{]\\adt) —i\\\adt) ■=-"'-2(^-A)(M+-«-0-) + 

+ t5r
: (/, - *,) « ~*r- (J, - Q [an] + t^ (/, -1^). 

Let us proceed now to the right half of (1.26) (Pig. 5). On the 

basis of analogous reasoning we obtain 

i, 

\f\cndS\cit=.^ cndSM*=. | cndSUJr[cndSLt + 

+ ] cfl dSM = 0 (1) r {My — c^r-M + c„+^r,M+ e,icr>AA*# 

s. 

Gathering together the obtained estimates, we get 

- — {[rtO] + [cn]} Tr'A/ + 0(1) M/» + »,r'Ä/. 
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Going to  the  limit and letting first At = tp — t..   and  then also 

r -+ 0,  we  obtain ultimately 

[rtO] + lrn]=0 (1.37) 

or, after substituting in (1-37) the values of a and c  from (1.27)- 

(1.29): 

fpOJ-0, 

[pO-f+^-O«]«^«]. 
(1-38) 

Inasmuch as the product p0 is not discontinuous, it can be taken 

outside the discontinuity sign.* 

As a result we obtain / 

£_i^ m = 0; ^ (1.39) 
(1.40) 

(1.41) 

Fig. 5- Illustrating 
the evaluation of 
the integral over 
the lateral surface 
of the elementary 
cylinder. 

Relations (1.39)-(1.41) between the quan- 

tities 9,   p,   v,  2,   and u on the two sides of 

the discontinuity surface are called the con- 

ditions of dynamic compatibility. 

As follows from the foregoing exposition, 

the conditions of dynamic compatibility are a mathematical formulation 

of the general laws of conservation of mass, momentum, and energy on 

the discontinuity surfaces. 

If 0 = 0, then the discontinuity surface is stationary.* On such 

a surface [p] = 0 and [v ] = 0, but to the contrary [p] has an ar- 

bitrary value. Examples of a stationary discontinuity surface can-be: 

the wavy surface of a river, the surface of a hot or cold front (in 

meteorology) and, as already mentioned, the surface of the gas bubble 

in an underwater explosion. 

If 0 ^ 0, the discontinuity surface is called nonstationary. 
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On such a surface   [p] ^ 0}    [v ] ^ 0.* 

The Jump In the tangential component of velocity Is In this case, 

to the contrary, equal to zero, as can be readily verified by taking 

the scalar products of both halves of (1.40) with a unit vector per- 

pendicular to n. 

As was already mentioned earlier, an example of a nonstatlonary 

discontinuity surface may be the front of a shock wave. 

We have considered cases when the hydrodynamic elements themselves 

are discontinuous on the surface. 

Such surfaces are called strong-discontinuity surfaces. If a func- 

tion is continuous on going through the surface but its derivative of 

any order is discontinuous, such a surface is called a weak-discon- 

tinuity surface. 

In general texts on gasdynamlcs It is proved that the weak- 

discontinuity surface always propagates with the local velocity of 

sound. We recall that the local velocity of sound is determined by the 

equation a =,/dp/dp. 

§4. THE CONDITIONS OF DYNAMIC COMPATIBILITY. THE DYNAMIC ADIABATIC CURVE 

The conditions of dynamic compatibility, established in the pre- 

ceding section, enable us to draw several important conclusions con- 

cerning the propagation of shock waves in a liquid and to obtain some 

equations that are convenient for computations. 

We note first of all that the three equations (1-39)-(1-4l) con- 

tain seven variables: N, p+, p__, v^, y_, p+, p_.** Therefore if we 

know the hydrodynamic parameters of the unperturbed medium (p+,   v+, 

p ), it is sufficient to specify any one element on the discontinuity 

surface in order uniquely to determine all the remaining elements. Let 

us calculate the rate of propagation 0 of the surface of strong dis- 

continuity. 
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We take the scalar products of both halves of (1.40) with n. We 

obtain p0[vn] = [p], but since 0 = N - vn,   we have [vn] =-[©]. 

Consequently, -p0[0] = [p] or, what Is the same, -p0[p0/p] = [pi- 

Since the product p0 Is not discontinuous, we have -p 0 (l/p+ - 

- l/p_) = [p]. or 

j!2LraM 
p+p- " [pi' 

From the  last relation  it  follows  that 

p+ \p]. 
p- [pi 

u+    p+ (pi 

(1.^2) 

.    (1.^3) 

Return to the conditions of dynamic compatibility (1.39)-(l-^l)^ 

and transform the last of these equations: 

5-1+ -£["1 = [/^l- 

We  first  eliminate   the   quantity v from the  written relation.   For 

this purpose we  use   the   second of the  dynamic-compatibility conditions: 

pöP?J = (/>]«. (1.40) 

Taking the scalar product of both halves of (1.40) with (v+ +- v_), 

we obtain 

p0[^] = [^](^n+4-fn_). i  i 

Consequently, 

[P] iv„+ + v*-) + 2 ^J- [«] - 2 {p+vn+ -p-vn_) - 0; 

P+Vn+—P-Vn+ + P+Vn_ ~P~Vn_ — 2p+V„+ +\ 

+ 2p-vn_+^-[u]=0. 

SpO 
-P+V** + P+Vn--P-Vn+ + P-Vn. + -Jf ■"' ""^ 

ap'j 
P+ (f«_ - vn+) + p- {vn_ - vn+) + -f- 1«! = 0; 

2p0' 
■0'++^-)i^i + -A-i"i=0; 

but 

_   22 



■ Kl —i'i = -[-'f]—4T]- 

Thus 

, M__„+ = 4(^+ + p_)[-l]. (1.44) 

Equation (1.44) establishes the connection between the parameters 

■of the medium on the surface of a nonstatlonary strong discontinuity 

and Is called the equation  of the dynamic or shock adlabatlc curve. 

In the case when the Investigation concerns an Ideal gas, the 

value of the Internal energy Is determined by the product 

and 

We then obtain In lieu of (1.44) 

^+.-)[|] + T|T[f]-o. 

Writing out the discontinuities In full, we obtain 

p+{p_ (*-!)-P+(/£-!) +2p+)- 

.= p_{2p+-(Ä-l)p_ + (Ä-l)p+},   . 

or, ultimately, 

;'-(*-M)p--(*-np-t- (1.45) 

This Is the equation of the dynamic adlabatlc curve of an Ideal 

gas, frequently also called the Hugonlot adlabatlc curve. 

Let us compare the dynamic adlabatlc curve with the Poisson adla- 

batic curve: 

77-fe)*- (1.46) 

The curves Intersect at a point with coordinates (1; l) (Fig. 6), 
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Flg. 6. Comparison of the dy- 
namic adiabatic curve (solid) 
and Polsson adiabatic curve 
(dashed). 

In the vicinity of this point we can put p_ = 

We then obtain in accordance with (1.46) 

P,   + Ap. + 

is. ,(l + A)'_l+^ + ü-il(iLj+ 

+ k(k— !)(* —2) / A? H&+- 
For  the  shock adiabatic  curve  we have  at  this  point 

/)-        (*+ l)(p+ +Ap) —(/:-l)p+        2p+ + (^+ DAp^ 
p+ "" (ft+ l)p+-(/i-l)(p+ + Ap) ■=2p+-(ft-DA? 

(1.47) 

l+*£+ A:(A— 1) / A? \« ,   /■•(/.■ —1^ / Ap\' 
1-2      \p+ 

+ {Tff+- (1.^8) 

It  is  easy  to note  that the   foregoing expansions  differ  from each 

other  only  starting with the  terms   that   contain   (Ap/p+)   . 

It  follows   therefore  that the  dynamic  adiabatic  curve  and the- 

Polsson adiabatic  curve  are   not  only tangent  at  the  point P_/p+ = 1^ 

p_/p    = l)   but  have  also  the   same   curvature  at  this  point. 

Unlike   the   Polsson adiabatic   curve,   the  ratio p_/p+ in the  shock 

adiabatic  curve   (1.45)   vanishes not  for  p_/p+ = 0,   but  for  p_/p+ = l/6- 
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When k = 1.4 and p_/p+ = 6_, we get p_/p. = <». 

Thus, on a strong-discontinuity surface at large compression pres- 

sures, the density Increases relatively slowly, corresponding to a 

rapid growth of the ratio p/p, which determines the gas temperature. 

Of great importance is also the fact that the equation of dynamic 

-adiabatic curve (1.45) cannot he written in the form* f(p+, p+) = 

= f(P_' P_)- 

Yet for the Poisson adiabatic curve, as follows from (1.46), we 

have 

In order to cover all the Poisson-adiabatic curves, it is suffi- 

cient to run through a one-dimensional series of values of the entropy 

S, and in order to cover all the dynamic-adiabatic curves, it is nec- 

essary to construct an "infinity squared" set of curves corresponding 

to all possible values of p and p . In other words, unlike the Pois- 

son adiabatic curve, along which the entropy remains constant, each 

point of the dynamic adiabatic curve corresponds to one definite value 

of the entropy, pertinent to this point only. 

Consequently, if a region of variable pressure occurs behind the 

surface of a nonstationary strong discontinuity, then a region of 

variable entropy is simultaneously produced there. 

As is well known, for an ideal gas the change in entropy is deter- 

mined by the equation 

^--^"teKÖT, (1.49) 

Let p_ = P, + Ap. Then after substituting the expansions (1.4?) 

and (1.48)into(1.49) we obtain 

«--^^(^■[■-Ha- (1-50) 

From this expression it follows that for small values of Ap/p+ 
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the increment of entropy in the shock wave is proportional to the cube 

of the relative increase in density. 

stuo 

^ ̂  
._«._«._.._+.-._ __ -—- ^^ 

■—. 

i 

K 

Fig. 7. Graphic comparison of 
the propagation velocities of 
shock waves and the local veloc- 
ity of sound. 

In weak shock waves the increment of entropy is so small that 

without loss in general accuracy we can consider the propagation of 

such waves as an isentropic process. 

On the basis of a few other considerations we have arrived at a 

similar conclusion previously, considering the adiabatic conditions 

for water. 

With the aid of the dynamic adiabatic curve we can readily estab. 

lish the relation between the propagation velocities of shock waves 

and the local velocity of sound. To this end we plot the dynamic adia. 

batic curve in coordinates pressure (p) versus specific volume (T) 

(Fig. 7). 

We reduce the propagation velocity 9  to the same parameters. 

We previously had 

na «i±. W. (1.42) 
.  -  p- (pi ' 

oi-^^. (1^3) 

but 
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Consequently, after elementary transformations we obtain 

y mT» P-~P+. (1.51) 
t+ — t_ 

e»_„,2 Äsrift. (1.52) 

Let us consider first Eq. (1.52). 
2 

For a given Initial state of matter T+ and p+, the factor T+ IS a 

constant quantity and the propagation velocities of the shock waves e+, 

corresponding to different degrees of compression, depend on the ratio 

(p_ — p )/(T — 'OJ 1-e.,, on the slopes of the corresponding lines 

Joining the Initial point p+, T+ with the points p_, T_. 

The rate of propagation of the perturbation at the point A will 

be determined by the slope of the tangent AD: 

and obviously Is equal to the velocity of sound a+. 

Thus, 0. > a,. 

From perfectly analogous considerations (see Fig. 7) It also fol- 

lows that 6_  < a_. 

If we turn to stationary motions, for which N = 0 and 9 = —vn' 
we 

obtain from the foregoing relations an Important consequence: a strong 

discontinuity surface can occur only when the particle velocity vn on 

one side of this surface exceeds the local velocity of sound. To dis- 

tinguish It from shock waves, a strong-discontinuity surface that Is 

stationary in space Is called a compression shock. 

In most cases of practical Importance, the shock wave propagates 

In an unperturbed medium. Then 0 = N and v+ = 0. 

Thus, the displacement rate N of a shock wave always exceeds  the 

velocity of sound ahead of the front, but the difference between the • 

displacement rate of the shock wave and the particle velocity Is always 

smaller than the velocity of sound behind' the front, N < ■a_+vn_. 
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It follows therefore that weak perturbations which propagate in a 

liquid at the local velocity of sound, can catch up with the front of 

the shock wave but cannot overtake it. 

We shall henceforth be interested principally in one-dimensional 

unsteady motion of liquids. 

On the basis of the conditions for dynamic compatibility (1.39) 

and (1.40), we have in this case 

iV: Po- 

If v0 B o, then 

-    **-N!iir-+^ ■ (1.53) 

K-^)'-^-/^-^). (1.55) 

V^N-^-' . (1.56) 

(1.57) 

(1.58) 

The subscript !,f" denotes here hydrodynamic parameters on the frpnt 

of the wave, while the subscript "0" refers to the unperturbed liquid. 

In this form, the relations between the hydrodynamic elements on 

the front of the shock wave are frequently used for practical calcula- 

tions. 

Prom the analysis of the dynamic adiabatic curve and from the sec- 

ond law of thermodynamics there follows an important physical conse- 

quence, known as the Zemplen theorem. 

Zemplen's theorem states that the only strong discontinuities that 

are possible are those for which the pressure increases. No discontinu- 

ous rarefaction waves (rarefaction shocks) can exist. 

Example 1. Establish from the conditions of dynamic compatibility 

- 28 - 



the connection between the value of the local velocity of sound a and 

the particle velocity v on the surface of a nonstationary strong dis- 

continuity in an ideal gas. Assume that in the unperturbed medium v+ = 

= 0, P+ == P0^ P+ = PQ (N-Ye- Köchin^ I.A. Kibel'., N.V. Roze "Theoreti- 

cal Hydrodynamics"). 

Solution. We choose for the initial equations 

[POJ = 0; (1-39) 
po Kl = [p); (1. ^0) 

p_     (A+ i)|._-(ft-i)p+ • \-i-''+2} 

Leaving out the minus subscripts for the hydrodynamic elements on 

the discontinuity surface and taking into account the fact that v+ = 0, 

we rewrite the system (1.39), (1.40)., and (1.45) in the form 

p0A/t( - p — p». 

isi.   a±i)po-(^-i)p 
P (*+ l)p-(A-l)Po ' 

Let us  subtract unity  from each half  of the  last  equation.   We 

then obtain 
Po-P ,  W, ^   (k+ l)[pl + (/;-l)[p]   = 2A-[p) 

p p (* +l)p-(/:-l)p0 (*+ l)P-(*-l)Po" 

Consequently^ 
j/i up 
[PJ (A+ l)p-(ft-l)Po * 

But   in accordance with   (1.42),   we  have 

p   ipi         p  (*+ Up — (ft —l)Po 

= fl> ? . 
(A+ l)i-_(A.._I) 

Po 

Let us then write the equation of the dynamic adiabatic curve in 

the form 

(*-M)-f-(ft-l) 
P _        Po 

- 29 - 



< 

p—P) = :,?j L 
(*+l)-(A--l)-- 

Substituting in the result obtained the ratio p/p0 from (1.39) 

and the difference P ~ P0 i'-0111 the equation given above, we obtain 

>nNv 
2Ä /    H "0 

Pit (A- - 1 11  N   ' 

P..V - y 

Apn (* + 1) -(ft- n    ^    ' X) N-v 

or 

(Ar_t/)(Ä+ i)_(A_i)JV 

*±i//v-ßg = o. (1.59) 

Carrying out analogous substitutions and transformations with re- 

spect to Eq. (1.43), we get 

ft —3 Nv _ k — \ (1.60) 

Subtracting (1.60) from (1.59) we obtain 

^(±r±+±±i-) + flg-a.-i^lv'»o. 

hence 

Substituting  the  results   obtained  in  (1.59),   we  get 

■T + T=n_ + 7ft^l)"-   t/-       .4    v      2(ft-l)Vfl       ^      0     ' 

or,  ultimately, 

^ + 2-TJivS--T (ft^tF"0, (1.62) 

The  sought equation represents  in the   (a,   v)   plane  a  fourth-order 

curve   (called hyposcissoid),   which  is   symmetrical both about the  v axis 

and about  the  a  axis,  with asymptotes    a = ±\/^~-^-v   (Fig.   8). 

By virtue   of  Zemplen's  theorem,  we use   in practice  only that part 
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of the curve for which a > a 0" 

Fig. '8. Dependence of the lo- 
cal velocity of sound on the 
particle velocity. 

Example 2. Express the hydrodynamic elements p, p, and v in an 

ideal gas on the surface of a nonstationary strong discontinuity in 

terms of the displacement velocity N. 

Assume that the discontinuity surface propagates in an unper- 

a( 

Solution. Let us use the equations established in the preceding 

problem: 

(1-59) 

N 

turbed medium v    = 0,   p PQ^ P — PQ^ a -  ;-, 

N'-^lNv-al~C: 

po N — v' (1.40a) 

(1-57) 

On the basis of the first of the relations written out we have 

2 w - «o 
A+ i 

As a result 

N* 
Po  N — v 

N- 
2  N*~-al k-I 

(1.63) 
A + 1 A," "^ A + 1 A + 1   A' 

p-P^hNv = T±-Tf,{N'-al). (1.64) 

§5- DIFFERENTIAL EQUATIONS OF GASDYNAMICS. THE BERNOULLI EQUATION 

So far principal attention was paid to a clarification of the gen- 

eral laws governing the propagation of discontinuity surfaces. This, 

howeverj does not exhaust the description of the complicated character 
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or the unsteady motion ot a liquid during an explosion. 

The discontinuity of the hydrodynamic elements on the front of the 

shock wave is followed already by a continuous variation of these quan- 

tities ^ which is usually described by the system of differential equa- 

tions of gasdynamics. 

As is well known;, these equations are: the Euler equation of mo- 

tion; the continuity equationj the energy equation. 

The Euler equation is a mathematical form of writing c.-./n the 

Do'alembert principle, according to which there exists at each instant 

an equilibrium between the forces acting on a liquid particle, includ- 

ing the inertia forces. 

It has the form 

p-f + grad^O. (1-65) 

The  value   of  the  acceleration dv/dt  can be  represented as a   sum 

of the  local  derivative  of the  velocity with respect  to time   äv/ät and 

the  so-called  convective  derivative,   characterizing  the  variation of 

the velocity  in connection with the  transition of  the   liquid particle 

from one  point  of  space  to another: 
dv       di 
i7F = 7ir + W7M (1.66) 

where V is the del operator, also called the Hamiltonian'operator, 

v    Ox   ' J   ay    '       dz 

We thus have 

§ + (^v)^+'ygrad^ = 0. (1.6?) 

In a rectangular coordinate system, Eq. (1.67) is equivalent to 

the system 

32 - 



vt + v* dx  + vy   öy   vv*   öz ,          p   dx ' 

dt 
dvv              dvv              öfv              i    ;)„ 

+ v* 7!r + vy dy +v'  öZ-     p ^' 

at 
, v Ov, dvz öv, _ I dp 

+ V*   dx   +Vy   <)y    ]   V*   öz              f   dz • 

(1.68) 

Let us use  the  transformation known from vector analysis:* 

{v^)v = \~—vXro\v. (1.59) 

We  then obtain  the  equation of motion  In  the  Gromeko form 

-|L + v:j~^Xrot5-f|vp = 0. (1.70) 

:.We introduce the function 

vP^-yVP. (1.71) 

In the  case  of unsteady potential motion^,   in view of the  vanish- 

ing  of  the  velocity-curl  vector, curl v = 0,   we  have  v = grad cp.   Conse- 

quently,, 

vffi + 4 + ^ = o 

or 

lf + 4+^ = ^)- (1.72) 

Expression  (1.72)   is  known as  the   Lagrange-Cauchy integral. 

In the  case  of  stationary flow we  have  from the   Gromeko equation 

(1-73) 

Multiplying both halves  of   (1.47)   by dr = Tdx: + "jdy + kdz,   we  ob- 

v(4- + p) = vXrotf. 

tain 

^ + P) = 
dx dy dz, 
v.x   Vy    V,, 

Qx Qy Qtl 

(1.74) 

where Q   .   Q ,   and Q    are   the   components   of the   velocity-curl vector 

rot  v. 

The   right  half   of   (1.74)   vanishes   in  one  of  the   following  cases: 
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a) If we consider the motion along a stream 1 me 

^-"v;---;:• (1.75) 

b)   if we  consider  the motion along  a vortex  line 

dx i!v        itr 
rr'^;^;; (1.76) 

c)   if  the  stream lines  and  vortex lines   coincide 

d) if the motion is  poton\:lal 

Q^ — Q. ~Q ==0- 

e) if the  lic;aid  is  at rest 

z/, = ^ = ?/, = o. 

Then 

P-r Y = const. 

vr l'y V. , 

üV-tr-t- (1-77) 

(1.78) 

Equation (1.78) is knov;n as the Bernoulli integral. 

In view of the great variety of practically important applica- 

tions of the Bernoulli integral, we shall recast it in the most fre- 

quently encountered form. "J 

Recognizing that the isentropic motion of an ideal gas corresponds 

to the condition p/p = const, we obtain the function P in the form 

P = k    p 
T=T-j- (1-79) 

For water,   in accordance with Tait's  equation,   we  have   (p + B)/pn = 

= const,   and  consequently, 

p-.l^rT—j-~- (1.80) 

Thus, the Bernoulli integral can be represented as follows: 

for an ideal gas 

k       p    .   v* 
T=T —+ ~ = const, (1.81) 

- 34 - 



for water 

7r=T-7- + -r==co^- (2.82) 

Alternately, recognizing that the velocity of sound in an ideal 

gas is a = kp/p., we have 

~^T + —~ const (1.83) 

The value of the velocity of sound at a point where the particle 

velocity is equal to zero is usually designated by a*. Frequently, one 

uses also the concept of the critical velocity, which is the gas veloc- 

ity equal to the local velocity of sound (v,  == a, ). 

With the aid of the notation employed, we can write the Bernoulli 

integral in the form 

T^r + -T = Ä. . (1-84) 

a5  . v"  A + 1 ß 

T=T + ~^:k±f-f->   ■ (1.85) 

with 

^p=/-~-^. (1.86) 

Relations of similar character hold true also for water, except 

that the isentropic exponent k must be replaced by the coefficient n: 

•CT + -?-^-tt{4-- (1.87) 

Let us return to the fundamental differential equations of gasdy- 

namics. 

The mathematical form for writing down the law of mass conserva- 

tion is the continuity equation 

iL + div^^o, (1.88) 

or,   if we write  out  the  divergence  in full, 

df       dJP-jxX       dj^y)   .   a (pc,)      « (1.89) 
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We  shall henceforth have  to   consider most  frequently one-dimen- 

sional motion  of  liquids. 

This   is  defined as  liquid motion that depends  on   two  coordinates: 

the  space  coordinate  r and  the  ti^ne  t.   Particular  cases  of one-dimen- 

sional motion will be motions with plane,   cylindrical,   and spherical 

symmetry. 

Obviously,   the Euler  equation for  one-dimensional motion can be 

written in the  form 

ät    '  V är    '   TtF"0- (1.90) 

The continuity equation for such a motion can be written in the 

form 

öp ,   do    ,      dv        (\  t ■) 0,, 
ir + viF + ?iF + 1:L~7hiL=*o, (1.91) 

where v = 1, 2, or 3 for motion with plane, cylindrical, and spherical 

symmetry, respectively. 

Since we are considering the motion of a liquid that has no vis- 

cosity or heat conduction, the entropy of any particle of the liquid 

remains constant, i.e., 

dS/dt = 0 

or 

- + ^ = a (X.92) 

k 
Bearing in mind that p/pk = cp(s) for an ideal gas and (p + C)/p* = 

= ip/p*)K  s     for water, the adlabatic condition (I.92) can accordingly 

be written in the form 

ln(?-) + -lFIn(^) = 0; (1-93) 

^(^) + ^(^) = 0; (1.94) 
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Equations (1-93; 1.9^) or else (1,95),, together with the equation 

of motion (1.90) and the continuity equation (1.91) form a closed sys- 

tem. 

There exist no general methods for an exact solution of such a 

system. 

For an approximate analysis of such systems one usually employs 

the method of characteristics, the gist of which is explained in the 

next section. 

§6. EQUATIONS OF THE CHARACTERISTICS OF ONE-DIMENSIONAL UNSTEADY MOTION 
OF A LIQUID 

Let us consider the system of differential equations of one- 

dimensional motion of an ideal gas 

driu7r^ - ör'" y 4-In4 + ^ln^ = 0. (1.93) 

If we  assume  that 

J- = 0*. (1.96) 

In Eqs. (1.90), (1.91). and (1.93) >'re change over to new variables 

v,   a, and 9.   We note that 

hence 

Consequently^ 

In p= . 2 .■ In a —r—r In1)*— -r—r5nÄ; 
' fc — 1 A — 1 P. — \ 

In/> --^r In a - ^-y In 0 - ^ In £. 

dt    '  V Or p   itp   dr ="        k      Or 

c-     "k     dine    ,  _c^     k      d'^.i  _ 
5* A_ 1      dr     +   ft   ft — 1     Or 
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2r2 da    ,      a'     d In 0 

Thus,   in the new variables the equation of motion assumes the form 

Using the expression for In p, v;e rewrite the continuity equation 

In the  form 
a !n p    .din? dv   ,    (v — 1) " _ n. 

_^      (v-l)v _ 0 

But on the basis of the adiabaticity condition (1.93), the second 

bracket of the last equation vanishes, and consequently 

da ,  da   , fe—1 dv   , fe —1 (v —1) flf ^ n (I.98) 

Finally, the adiabaticity condition can be written in the form 

-ö.inO-t-^lnD = 0. (1-99) 

Let us assume now that a curve L is specified on the r, t plane, 

r = r(t), and that we know the functions vL, aL, 0L on this curve (Fig. 

9). 
The problem consists of determining the integrals of the system 

of equations (1.97)-(1-99), which would assume specified values on the 

curve L. In other words, it is necessary to determine an integral sur- 

face satisfying Eqs. (1.97)-(1.99) and passing through the curve L. 

The problem of determining the solution under such conditions is 

usually called the Cauchy problem. 

We assume the functions v, a, and 0 to be analytic in r and t. 

On the curve L, the following relations are satisfied: 
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"l. "l. ""1 

^t — dvt 
ot 

da 

Tt 

57 

dt 

Üt 3J    ~'   ~ 

dr 

dr 
(1.100) 

ölnO, 
IF 

L- — Z.'."'k 4. f> h d In 0, 
dr 

Fig. 9. Illustrating 
the Cauchy problem. 

At the same time^, the hydrodynamic equa- 

tions (1.97)-(1.99) must he satisfied on-the 

same curve. 

Let us ascertain what limitations are 

imposed on the fundamental system of equations by the fact that the 

solution of the system must correspond to specified values of the hy- 

drodynamic elements on the curve L. To this end we obtain from (1.100) 

the values of the partial derivatives 5vT/öt, öaT/öt, and (ö In 9T)/bt, 

and substitute them in Eqs. (1.97)-(l.99)• 

We obtain 

dv. dvr dv 

~irz=:~dr or 
da. 

dt    ' 

3 In Bj, 

IT      r    dr 
ölnO, 

dt r     dr 

(v _ r'-\ dv O.     2g     ^ "- 

A—1       dv    ,   . ,. da Oa 
-T~alF + (*-') — - W 

tflnO dv. 
■l     dt     ~       dt 

ft—1  (v —1) av; 

din 0 d In 0^ 

ät~ 

(1.101) 

(1.102) 

(1.103) 

(1.104) 

The system of equations (1.102)-(1.104) enables us, generally 

speaking, to determine the partial derivatives öv/ör, öa/ör, and 

(ö In 0)/or. 

At the same time 

dv A< da 4, OlnO A, 
dr ~ ■""S" dr "   A   ' £)/•     " A 

where A are the corresponding determinants of the system (1.102)-(1.104) 

During the course of estimating the values of the partial deriva- 

tives äv/ör, öa/ör, and (ö In d)/cir,   the following principal cases are 

- 39 



possible: 

1. A^O;   Aj^O;   A.,^0;   As^O 
^0 

1. AyiO; Aj ^ 0; A2^0; A3 
2. A = 0; Ax^O; A:^0; A, 
3. A = 0; A1 = 0; A: = 0; ^3 

In the first case we obtain perfectly defined values of the de- 

rivatives at the point M0 and its vicinity along the curve L. The 

Cauchy problem has a unique solution. 

In the second case the values of the derivatives are infinite. 

The curve L in the vicinity of the point M0 is called a "discontinuity 

line." In the third case there exists an infinite number of bodies of 

the derivatives öv/ör., 5a/ör, and (ä In 9)/br,   corresponding to the 

given problem. In other words, it is possible to draw through the curve 

L in the vicinity of the point M0 an infinite set of integral surfaces. 

Then the Cauchy problem has no unique solution. The direction of the 

tangent to the curve L at the point M0 is called the characteristic 

direction. 

The curve L, at each point of which the direction of the tangent 

corresponds to the characteristic equation, is called the characteris- 

tic. In the general theory of differential equations it is proved that: 

1) the solution of the equations of the characteristics is equiva- 

lent to the solution of the corresponding initial system of equations; 

2) for any change of variables, establishing a unique transition 

from the points of one space into the points of another space, the 

characteristics of the given equation go over into the characteristics 

of the transformed equations. 

As follows from the definition, the equations of the characteris- 

tics can be readily written out by equating to zero the determinants 

of the initial system. 

We then obtain ordinary differential equations, the analysis of 

which is much simpler than that of the initial system. 
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Let us carry out such transformations for Eqs. (1.102)-(1.104) 

As a result we obtain 

(1.105) 

v — r' 
2<i a* 

k— 1 ft— 1 

A = k— l 
2      a v — r1 

0 

0 0 W —^ 

dt 
2a a' 

A—1 ft—1 

A,- 
daL        (*_!)   (v 

dt               2 
— l)aw 

r 
f —A- 0 

d In Oj, 
0       v—r' 

v—V dt 
a- 

ft—1 

A2 = 
'2      C                rft 

ft—1 
2 

(v—l)<rü 
r 0 

0 dt 
t/—/ 

^-r' 2H 

k— 1 

A3 = —^—a  v — r   - 
daL- ft—1   (v- I) at» 
dt ') r 

0 .0 — 

(1.106) 

(1.107) 

(1.108) 

(1.109) 

In accordance with (1.105) 

A = O — r') [{v — /-'j- - «-■] = 0. 

The determinant A vanishes in one of the following three cases: 

a) v—r' =0 or 

IF=-; (i.iio) 

in this case the equation of the characteristics coincides with 

the differential equation of the trajectory of the liquid particles; 

b) v— r'— a=0: 

dr 
T z=V — (7. (1.111) 

Ut 

c)   v—r'   +a=0j 

|f = f + rt. (1.112) 

From Eqs.    (l-lll)   and   (1.112;   it  follows  that  the   characteristiOs 

propagate with the  velocity of  sound. 
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or 

Let us consider the determinant A1: 

+ (*-n{-^~n + T^r%+±^}-o.       (1.113) 

a) When v - r' =0^ we have A1 = 0. 

When v — r' = +a 

rfln8       a2 dvL 2a    doi. ,   (v-l)fl't>_A 
 ^     ife-l ± "rfT " + -k^TUt +        ? U' 

b)-^- + Fin-dr = ir=T-"d7 /•      ' ^J-.-LXH; 

CN^__2_if4. ^^0,     (v-Dav -      . . 
W-Jf      k—\dt k — \    dt     ^        r {X.±±0) 

Going through analogous derivations, we can easily show that from 

the vanishing of A2 it follows that 0 = const when v - r« =0. 

An analysis of the determinant A, does not impose any new condi- 

tions on the hydrodynamic elements. 

We shall call the characteristic of the first family* 

■ §=^ + a. (1.116) 

On this characteristic we have the condition 

dif    I      2     da a    rfliiQ      (v—D'af (l.ll?) 
dt  + k — \ dt       k—l"di r        ' 

We shall assume the characteristic of the second family to he 

..^ = v-a. (1.118) 

On this characteristic the relation to be satisfied is 

dv 2 da a     d In 0 , ('i — l)'at; / -i  n T Q N 
dl      k-\ dt —     k—i   dt   "*■   r - ■' \X.xxy) 

Finally, the characteristic of the third family will be called 

dr/dt = v. (1.120) 

On this characteristic 

0*=-^- = const. (1.121) 
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In the case of isentroplc motion of a gas it is obviously suffi- 

cient to consider only the characteristics of the first and second 

families^ and the conditions on these characteristics also simplify. 

Namely, for the first family we have 
•lr 

2 da (v — l)«/ (1.122)- 

For the second 

dv 2     da _   _ (v — 1) av    \ 
dt  '^ k — \  dt ~ r       ' ] 

dr 

dv 2      da  (v—l)flt; 
dt       k—XHT r        • (1.123) 

The systems of equations (1.122) and (1.123) cannot be solved in- 

dependently of each other, since each represents two equations with 

four unknowns. 

Nonetheless, the problem of integrating these equations is essen- 

tially simpler than the problem of integrating the initial partial dif- 

ferential equations. 

In this lies the main advantage of the method of characteristics. 

The system (1.122)-(l.123) does not in general have integrable 

combinations. However, at the present time there have been developed 

effective graphoanalytic methods for solving the equations of the char- 

acteristics, with specified degree of accuracy. In the particular case 

of isentropic motion with plane symmetry, the equations of the charac- 

teristics have first integrals. In this case it becomes possible to ob- 

tain exact solutions, a brief familiarization with which constitutes 

the scope of the next section. 

Example 1. In the plane r, _t we know the values of the hydro dy- 

namic elements of the liquid on a segment of the curve r = f(t). De- 

termine the nonsteady motion with variable entropy in the region 

bounded by the specified segment AB and two segments of the character- 

istics of different families, drawn from the points A and B to the 
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point of their intersection (N.Ye. Köchin, I.A. Kibel', and N.V. Roze 

"Theoretical Hydromechanics"). 

Solution. We make the approximate substitution 

dr 
dt ~ Ar _ 

dv At- 
dt — tu ' 

On the initial curve AB (Pig. 10) we 

mark a dense series of points M-,, Mp, ..., Mi. 

Since we know the values of the hydrody- 

namic elements v and a at these points, the 

equations of the characteristics, written out 

in the form of finite-difference equations, 

constitute a system which when solved enables 

us to determine the elements of motion at the points of intersection 

of the characteristics of the different families M'-j, M'g^ M'-, ..., 

Indeed., on the basis of (1.116)-(1.117) the equations of the char- 

acteristics of the first family will be 

i)'■-'•< = (f + aU'-'i); 
2 

Fig. 10. Graphic il- 
lustration of the me- 
thod of characterist- 
ics. I) First-family 
characteristics; II) 
second-rfamily chara- cteristics. 

2)._V;+_^(a_fl;)=_£f_ln^_(lil)(-_^. 

The equations of the characteristics of the second family will in 

accordance with (1.118) be 

'+i r/+i '}■ 
If the entropy is constant [ln(0/01 + 1) =0], then these four 

equations enable us to determine the points r, t, v, and a at the 

points Ml. 

In the case when we are studying motion with variable entropy, 

it is necessary to draw from the points M. the third-family character- 
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Flg. 11. Illus- 
trating the 
method of char- 
acteristics 
(conditions of 
the problem). 

Fig. 12. Illus- 
trating the 
method of char- 
acteristics 
(solution). 

istics:* 

5) r - r^ = v(t - t^); 

6) 0 = 0^; 

7) r'. = f{t'±). 

Again the number of equations is equal to the number of unknowns 

(r, t, v, a,   6,   v'±,   t'±). 

Solving for each point M'. an algebraic system of seven equations. 

we obtain the elements of motion at all points of the line A'B', which 

now can be regarded as the initial line for subsequent calculations. 

The interval between the points M must be chosen from considera- 

tions of the permissible computation error. 

Example 2. The values of v and a are given at two adjacent 

points M-, and Mp of the plane r., t. Find the values of v and a at the 

point P where the characteristics of different families, drawn from M-, 

and M2J intersect, for the case of isentropic motion with plane sym- 

metry (Fig. 11). 

lM 

Solution. Transform to the plane v, a. Knowing the values of v 

and vM ,   a.,,  }   we obtain the points M-, and KU in this plane and 
M-j^ 

draw the corresponding characteristics of different families. The coor- 

dinates of the point of intersection determine the sought-for values 
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of v and a at the point P (Pig. 12). 

The position of the point P in the t,   v  plane is obtained approx- 

imately by replacing the characteristic lines by segments of tangents 

drawn through M-, and Mp. 

We  have 

r — ri = (,v + a)Miit — tl); r — r, = (v ~ a) M, (t — t,), 

from which we obtain the values of r and t, 

§7. SOME EXACT SOLUTIONS FOR A ONE-DIMENSIONAL UNSTEADY ISENTROPIG 
MOTION OP A LIQUID WITH PLANE SYMMETRY 

In one-dimensional motion with plane symmetry (v = !)_, the equa- 

tions of the characteristics assume the following form in accordance 

with (1.122) and (1.123): 

.    "    dr , 1 

(1.124) 
di 

v + kzri a — const = 25; 

^=''~a,  ' (1.125:) 
v — ^~ a = const = 2n. 

We shall regard r and t as functions of the characteristic numbers 

I and r) 

t = t{^t).\ (1.126) 

Since 4 is constant on the characteristic of the first family, 

the values of r and t on this characteristic will be functions of r\ 

only 

dr=^dr,    dt-SLdn. 

It follows therefore that on the characteristic of the first fam- 

ily 

l?-^ + ^f (1.127) 

We obtain quite analogously on the characteristic of the second 

family 
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but 

dr        , s dt 
1r=(^-«)7Jr, (1.128) 

v + T=Ta = 2\;      v-T--Ta = 2-n. 

It follows therefore that 

ü«=5-f-TfJ,\l 

(1-129) 

Substituting (1.129) in (1.12?) and (1.128) we obtain ultimately 

f  I  2  ^  2  ^Jö, ' (1.130) 

The system (1.130) is called the canonical system of equations of 

gasdynamics for motion with constant entropy. 

Unlike the quasilinear system (1.97) and (I.98), the system (1.130) 

is linear. It can be rewritten in an even simpler form. For this pur- 

pose we differentiate the first equation of the system (1.130) with 

respect to £, and the second with respect to r\. 

As a result we obtain 

^^KS-^ + ^+^^ + ^A+J..     (1.132) 

Subtracting (1.132) from (1.131) we have 
tft.      1 ^ .      ru       i\   i   d7t    ,   b + l      dt        dt 

or 

dH ft + 1 
[-w—st)- (1.133) 

If [(k + l)/(k - l)]/2 = m, where m is an integer, Eq. (1.133) is 

called the Darboux equation and can be integrated in closed form. 

In particular, for k =1.4 we get 

ÖH 3      / dt        dt \ 
SWT^TW?      ^I- (1.134) 
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A general solutxon of (1.134) will be 

siw 5-1 • (1.135) 

The arbitrary functions f1(l) and f2(-Q) are obtained from the 

boundary conditions of the problem. 

If the adiabatic exponent k exceeds three„ the ratio 

[(k + l)/(k — l)]/2 can no longer be an integer. The question arises 

whether it is possible to construct exact solutions of a system of 

quasilinear equations of one-dimensional motion with plane symmetry, 

if one assumes a different form for the dependence of the density on 

the pressure, which has, however, a sufficient number of free param- 

eters which can be managed at one's discretion. In other words, do 

there exist any forms of an approximate representation p = f(pL per- 

mitting integration in closed form of the system: 

iir^'-^-^T^-0-] (1.136) 

Let us show that such forms of approximate representation actu- 

ally exist. 

Let the isentropic condition be given by the relation 

P - f(p), (1.137) 

and then the system (I.136) can be rewritten in the form 

--.7 +^+-7/^==°. (1.138) 

Assuming on the characteristics 
i)v 
"of = 

_   dV     <)t/    </.V 

- 'di          OX    dt 

ut 
_   do              Of    itX 

dt         Ox    dt 

(1.139) 

we obtain from (1.139) and (I.I38) after substituting öv/öt and öp/öt 

- 48 - 



(*-^)+i/(p)5-~-£-. dv 
ox 

iijp+[v--iir)~ox clt  • 

(1.140) 

From  the  condition that  the  main  determinant of   the   system  (1.140) 

vanish, we have 

Prom the  condition of  the  vanishing  of the  first  determinant of 

the   system  (1.140)   we  get 

or,   after   substituting   (1.l4l)   and  integrating, 

^± fyK/,(p)^ = const. (1.142) 

Thus, the equations of the characteristics of the first family 

will he 

dx~{v + VfTf))dt; 
p 

v+\~-l/'7r(r)äp*~2t; (1.143) 
o 

and those of the second family 

■ dx~{v~VfU))dt,    | 

^-\j-V7Ti)ä?-2n. 
(1.144) 

Bearing  in mind that  ?  is  constant  on the  characteristics  of the 

first   family and r]  is   constant  on  the  characteristics   of the   second 

family,  we   obtain by differentiation 

ax 
Öl •(v+ym)%i 

with 

■i-==(f-KÄF))f. 

•Z"= 5 + n; 

(1.145) 

(1.146) 

(1.147) 
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4t V 

i + Vrlpiäp-l—n. (1.148) 
ö   r 

We put 

K7TP) = <P(£-VJ), (1.149) 

and then 

4i- = ^ + vO + <?(«--i)]-|-;     ^-M + rt-vV-n)]*?. 

Differentiating  again,   we  have 

•^r»IH-<p'a-^)l-|-+l(e + r)-«?(5-r1)].sgi.. 

Eliminating  ö x/ö^örj from the  last  two equations,  we  obtain 

' J!L + JL! + f^-yt)r^L_iLI«o (1 • 150) 

Let  the   function v(^ —  T])   he  such that  the  equation 

g^(^)K--S>0 (1-151) J2' 
t). 

can he integrated in. closed form. 

Then, putting for simplicity 

5-1 = ^ (1.152) 

we obtain cp(p,) without difficulty from the linear equation 

•> ¥-(7r-
v^ . (1.153) 

J (1.154) 

Since, on the one hand, (1.148), 

0 

and on the other (1.149), — ,/f' (p) = 9(10.), the connection between |i. 

and p is established with the aid of the equation 

P "<? (P)- (1.155) 

From the last relation we can determine [j,(p) and consequently 
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also qp[[i,(p) ]. 

Recalling,   finally,   thatv/FrTpT= cp(ij.)  = qp[|i(p)],  we get 

P -/(p)= [ {<? [^ (P)] jXc + C3. ^ 1 _ 156 -j 

Thus, if we choose a certain function V(IJ,), then the connection 

between the pressure and the density is determined hy a suitable func- 

tional relationship that includes three arbitrary constants, without 

counting those possible arbitrary constants which can enter into the 

function v(|j-). 

Thus, we have established a rather broad class of functions which 

permit integration of the main system of quasilinear equations (I.136) 

in closed form. 

Let us consider some particular cases. 

Let v{\i)  = 0,   then 

JLi+J?» _ n 

hence 

Further 

consequently. 

<p Ui) = c, — (i, 

— !!i(C,--|jO = InC,p. 

(CI~i.)ap=l; 

v(!0 = -s:-;    'K/'(p) = -^ 

For  the pressure  we  obtain 

/'(p)-~7i   /,-/(p)-.c,-.4..i.; (1.157) 

This result, which is extensively used in stationary problems o: 

gasdynamics, was indicated in its time by S.A. Chaplygin. 
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The  main system of equations  can be   integrated  in closed form by 

P' 
replacing the real isentrope p = f(p) in the plane (p1 -) by a tangent 

drawn to it through some point. 

The general integral of (1.150) will in this case be 

With l + v^V; 

l-n-^ + C. 

We now put v([x) = n/\i. 

Then, as indicated above,, Eq. (I.I56) assumes the form of the so- 

called Darboux equation and is integrated in closed form if n = 0, 1, 

We have 

Integrating,  we  get 

-L1 + g.' M •_ ji 
2     9 M        [>■ (1.158) 

vM-W + ^p. (1.159) 

Pirst   let  C-*  = 0,   end then      ?00 = ^—"i^ 

f^) = J^-(2—0 = !nC2p. . 

(2« - 1) In fx = In C2p; ^ = (C,?)2^1; 

1  

f (?) - {? [p (P)]}2=(^n)2 c2 ^H^H 

Integrating the last equation, we obtain 

Putting (2n + l)/(2n - 1) = k. we arrive for this particular case 

likewise at a known result, which was indicated earlier: the system of 
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equations of a homogeneous -unsteady motion of a llq\iid with plane sym- 

metry can be integrated in closed form for an isentropic process if 

the dependence p = f(p) is expressed by the polytrope p = Ap + B, the 

exponent of which corresponds to the equation [(k + l)/(k — 1) ]/2 = n^, 

where n is an integer. 

Now let C1 ^ 0. 

We ha^e 

t^-C^ + ^—v (1.159) 

-^ =InC2p. (1.160) 
C ■v- 2n~l• 

'The quadrature in the left half of (1 l60) can be taken for the 

specified integer n. 

Since the solution of the Darboux equation has the simplest form 

when n = 1,  we give the necessary derivations for this case: 

i 

— in ——=inc2p;  ""-T*—; 

p~m~[^-^ + ^^]wz^w + ci. (1.161) 

The presence of three parameters makes it possible to approximate 

the actual isentrope by means of Relation (l.l6l) with accuracy suffi- 

cient for practical purposes- 

The general integral (l.lol) for V(IJL) = l/ii is determined by the 

relation 

^-7—1^(0 +«Ml. (1.162) 

Knowing t and using the general methods of analysis, we can read- 

ily obtain also an expression for x.* 
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Let us stop to discuss one moxie particular case o.f isentroplc mo- 

tion of a liquid with plane symmetry, for which the equations of gas- 

dynamics can be integrated in closed form. 

Let the motion be such that the particle valocltles v and the ve- 

locity of sound a remain constant along one of the characteristics of 

the first family in the r. t plane. 

We previously obtained 
dr 

v + 
at 

n = 25; 

dt ~v — a, 

(1.124) 

(1.125) 
A— 1 

a = 2n. 

According to (1.124) such a characteristic will be a straight 

line, since dr/dt = const on it. 

Let us consider now the characteristics of the second family (Pig. 

13), L.,, Lp, ...,   L.. Assume that they cross AB at the pcints M-, Mp, 

..-, Mi. 

The equations of these characteristics 

can be written in the form 
2 

'M, 

2  _ 

Pig. 13. Character- 
istics of second 
family in a straight 
wave in one direc- 
tion« 

'^a    £_1 "'Al, '2yja; 

«^„ = 2^. 

But at the points M-,, Mp, .*.,   R , in accordance with the condi- 

tions of the problem, the values of v and a are constant. Consequently, 

•the characteristic numbers T\.   will also be constant. 

Thus, the relation 

A—1 a = 2r0 (1.163)* 

will be satisfied not only along the specified characteristic, but 
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also in the entire plane. 

It is appropriate to note that in the case under consideration it 

is not only one characteristic of the first family that is a straight 

line in the TS   t  plane., as was assumed previously^ but in general all 

the first-family characteristics are straight lines. 

Indeed, along each such characteristic we have in accord with 

(1.124) v+T~-ja~2%    (each characteristic having its own £), but,, in ad- 

dition, Eq, (I.163) is satisfied in the entire region. 

Thus, the values of v and a on the first-family characteristics 

will be connected by two algebraic relations 

Thus the correctness of the statement formulated above follows 

from the first equation of (1.124). 

We have already written down the equation of motion in the vari- 

ables a. and v; 

_F + t/__- + _r_r(7,_ = o. (1.164) 

Subtracting  from  (I.163)   the   quantity «^--rF-"—(ß—1)TIO     and  sub- 

stituting  it  in   (1.164),   we  obtain 

-4f + [-f^-(*-Or„]^=o. (1-166) • 

This «linear  first-order  differential equation  is equivalent  to 

the   system  of  ordinary differential equations 

-r~-T+-i ;,   -    --0-. (1.167; 
—2—v —(A—1)^ 

hence 
-^ = const--= C,;       j 

pT1 f - (* - 1) rM\ dt ~ dr = 0, 

or 
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Finally, putting C0 = 9(0-^, we obtain ultimately 

r~[JL+±v_{k_l)xl( + 9iv)t (1.168) 

and, in addition, 

*—T=TrtM2*:o. (I.163) 

This result was first derived in i860 by Rlemann. 

Solution (1.168)-(1.163) is called Riemann flow, or direct wave 

of one direction. 

In perfectly analogous fashion, assuming that -ehe particle veloc- 

ities and the sound velocity remain constant on the characteristic of 

the second family, we will have 

r = [A+J. v„i/i_l)ig-jt + 9! (v); (1.169) 

'+*4T« = 250. (1.170) 

Solution (1.169)-(1.170) is called the inverse wave of one dir 

rectlon. 

As is well known, the general solutions of two first-order par- 

tial differential equationjs should depend on two arbitrary functions. 

It can be shown that the solutions obtained, which depend on only one 

arbitrary function, are not a particular case of a general gelation 

but represent singular solutions, describing certain perfectly defined 

physical processes.. The main property of these solutions is that the 

motions characterized by the direct and inverse waves of one direction 

can be contiguous with the region of rest, or, in the more general 

case, with the region of stationary motion cf the medium. 

We note that in the case when the function cp(v) or 9-1(v) vanishes 

identically, the motion of the liquid depends only on the ratio r/t. 

Then the distribution of the hydrodynamic elements at different in- 

stants of time will be similar to one another, differing only in the 
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scale along the r axis.; which increases in proportion to the time. A 

natural generalization of'such a motion is the case when the hydrody- 

naraic elements are determined by the ratio ra/t . Obviously, upon suit- 

able change of the scales along the r and _c axes (in particular, if 

logarithmic scales are used), it is possible to represent also in this 

■case the pattern of the motion as if it remains similar to itself all 

the time. Motion of this type is called self-similar. 

In self-similar motions it is always possible to reduce the prob- 

lem of Integrating the system of partial differential equations of gas- 

dynamics to the problem of integrating a system of ordinary differen- 

tial e qua t ions 

«i 
t 

b 

Fig, 14. Graphic illustration of the 
state of the gas in the case of a decel- 
erated motion of a piston. 

Example 1. A piston moves in an unbounded cylinder in accordance 

with a specified law r = f(t). At the initial instant of time the ve- 

locity of «the piston is equal to zero and the gas is at rest. 

Find the motion of the medium "to the rignt" of the piston, if 

r=/W=-41,   C«>0). 

(Kochin, Eibel', Roze, Theoretical Hydromechanics, Vol. II). 

Solution. The fact that the medium is at rest at the initial in- 

stant of time denotes that v = 0 and the velocity of sound is a0 = const. 

Consequently, in the (r, t) plane the characteristics of the first 

family will be straight lines (Fig. 14a). The characteristic that sep- 
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arates the unperturbed medium from  the region of motion Is 

djc 

In the (v, a) plane, on the basis of (1.125), the motion will be 

determined by the straight line (Fig. 14b) 

2 2 

The case under consideration corresponds to the singular solution 

r-[*+iv_(Ä_i)r(0-j/ + ?(v)i (1,168) 

where 

i»---FrTa- 

Consequently, Formula (I.I69) can be written in the form 

The velocity of motion of the gas particles on the piston is ob- 

viously equal to the velocity of the piston: 

But 

therefore 

We put 

/(0 = —^    f'~-m, 

~^w-;,~-i1 + -ifi«/-«o,)). 

nl*      k+l    i 
' ~  + —2—  — Go/ = ),. 

The time t is determined from the quadratic equation 

-^- <» — V — >• «• 0; 

and consequently, ' -i-(«. + K^TäSÄ). 
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Let us return to the previous variables, recognizing that on the 

piston we have ~nt /2 = r,  —nt = v. We obtain 

[ K c* r — t—-— t» 4- «o ) 'i 

Solving this equation with respect to v,, we obtain ultimately 

The velocity of sound at the point with coordinates r, t is deter- 

mined from the relation 
2 

If v < 0 and |vj > 2a0/(k — 1), then the velocity of sound be- 

comes negative and the solution loses its physical meaning. Vacuum is 

produced at the walls of the piston. If the law governing the motion 
p 

of the piston is assumed to be r = —nt /2}   this phenomenon sets in at 

the instant of time t > 2a0/(k: — l)n. 

Example 2. Determine the Instant of occurrence of a strong dis- 

continuity surface in accelerated motion of a piston in an infinite 

cylinder. 

The law of mo-Dion of the piston is x = f(t). At the instant t = 0 

the piston velocity is zero,, and the medium is at rest (Kochin, Kibel', 

Roze, Theoretical Hydromechanics, Vol. II)- 

Solutlon. Since the motion of the piston occurs in an unperturbed 

medium, the characteristics of -ehe first family will be straight lines 

(Fig. 15 )< 

As in the first problem, the equation of the characteristic that 

separates the unperturbed medium from the region of motion will be 

r - r0 ^ a0t. 

In view of the fact that f"(t) is positive (the motion of the pis- 
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ton is accelerated},, the velocities v of the ■ 

particles on the piston increase with increasing 

time. The local velocity of sound a on the pis- 

ton also increases; 

The straight-line characteristics of the 

first family, emerging from various  points L, 

gradually change their slope and begin to inter-■ 

sect sooner or later. 
m 

A strong discontinuity sets in (for more 

details see §7). Let us find the limit to which will tend the point of 

intersection of the characteristic drawn from the point A and the char- 

acteristic drawn from A1 when A1 tends to A. 

Pig. 15. Graphic 
illustration of 
the formation of 
a strong-discon- 
tinuity surface 
in the accel- 
erated motion of 
a piston. 

For the first of these characteristics we have 

-0 " x — xn — a p. t j 

for the second we have 

x — A-0 — Ax = [a (x0 + AA-0, if) + v{x0 + tx; M)] (t —At), 

where Ax0 is the difference between the abscissas of A1 and A^ and At' 

is the difference between the ordinates of these points. 

From this we obtain for the point of intersection of these lines 

a0t — Ax0 = [« + v] (t — Id), 

or 
t = — ^ + (a + v) U 

but 

hence 

Ax = /' (jifc) At, 

•2      ^ 2__ 
k—a^      k—l 

k-l 
o =—Ö- » + «0 
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Consequent-! j, 

k—\     ■ , Ä+1 
2 

Let us expand the function v in a Taylor series in the vicinity 

of the point x. 0' 

v (*„ + Ax, M) = o (x0l 0) + 
rft;(^"0) A/ + .. 

hut 
-C-cO)«^. (f)o^. 

A 4 i _.,. ft + i «ry A . 

The expression for t assumes the form 

/= ia+ v—fit)) hi 
k + I d*f 

1       dP 
M 

Thus., goiiig to the limit, we obtain the following expression for 

the Instant of occurrence of the strong discontinuity: 

lim^ = r^  2g°— 
w*o      (*+l)/0 

The position of the discontinuity surface relative to the origin 

will he 
X --= Xvi- aQT, 

2  «o 

Example 3. Approximate the isentropic equation of water in Tait's 

form 'by a relation of the type (l.l6l). 

Solution. We previously had 

n = /(p) = rp! P_ + _I l__£L_.-r     (l.l6l) P    /W  L^C;  (C.G,)^ SC^^FJ [l-CÄp]» +C3-      v      J 

According  to Tait's  equation 

, + 5-0,;+ 5) (■£.)". (1.22) 

We choose for the approximation conditions the equality of the 

pressures and the sound velocities in the unperturbed medium: 
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at fi=Pol<,=fla ■ (1.171) 

Prom a comparison of (l.l6l) and (1.22) with the condition (1.171) 

it follows immediately that the coefficient ü- = —B. 

Thus, the isentropic exponent n in Eq. (1.22) is replaced, as it 

were, by two coefficients C, and C^,  which are to be determined, 

To evaluate these coefficients we have 

p0 + i3 = 

and since 

PO                Po         .            i • d 
[€A    (de,)3 ' i(Ctc,)' ^ [l-CCtfJ 

r * 
a-Vf W-\\-C,C,tf ' 

(1.172) 

we nave 

a» = cr=iÄF (1.173) 

The coefficient CU can be readily eliminated from (1 16:0 with 

the aid of (1.173). We are then left with only the product C1C2 =•■ x  as 

the unknown quantity 

n 4. n - Pl}  Ea. J. J "oV -Po-v) 

?o 

or, what is the same. 

^-r^  ^  -^'d-P^ Wl        [hX      {fox}"   ' SlpoX)" j 

But in accordance with (1.22) we have* 

Po«o =» (Po + 5) "• 

Thus, to determine the product p0x = 2 we have the cubic equation 

g£lri^±l(lJ,)a3±. (1.174) 

the  solution of which yields   z = 0.642 

The  approximate  relation is  obtained in.  the  form 

/H^=nr/JLf±„m'_L + i..Ll    n-^ (1.175) 
1. f 
Po J 

6; 

f^ 



papi 

um - 

p */"•' 

Fig» l6. Comparison of the initial (continuous line) and 
approximating (dash) isentropes in coordinates p and p. 

or., after substituting the values of the coefficients 

f±4 = ri.55'7 (f )2-2,426 (-L.) + 1,260 1 ^I^—3.    (1-176) Po + ß       L    ^J ^°J J[l_0,6«(l-jJ3 

Figure 16 shows a comparison of the Isentropes (1.176) and (1.22) 
v/set 
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— 
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s-^- ̂ .s. -^ *~ " ̂ z~p,mt 
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"" 

ws 
iß iß iß US 

pt/CM3 m 

Fig. 17 Comparison of the initial (con- 
tinuous line) and approximating (dash) 
isentropes in the coordinates a and p. 

Satisfactory agreement is found in the region of pressures up to 

2000 atm. Asswning the deviation of the velocity of sound in the un- 

perturbed medium to be about 10^ and putting z = 0.600, we can obtain 

a better approximation in the mean over a wider range of pressures. 
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The results of the corresponding calculations are enown in Fig. 17. 

The approximating equation has the form 

p + B 
Po+B 

.667 {j;f-W i£) H  1.543]    p—^LJ- ( 1- IT?) 

§8.    PHYSICAL   IDEAS •CONCERNING  SHOCK WAVES 

So far we have examined the   shock wave  from the mathematical point 

of view,   defining  its  front as  a nonstatlonary strong-discontinuity 

surface. 
Before we continue the exposition, it xs important to make a few 

remarks concerning the physical aspect of the phenomenon. 

We note that shock waves can occur not only as a result of explo- 

sions, hut also in other physical processes 

b D»J 

41 ; a 

?■ 
- 

'If a,.. ^ 

0*« B 

HH 

Pig. 18. Scheme of formation of the 
discontinuity surface and its col^ 
lapse. 

Indeed, if for example a piston moves with acceleration in an in- 

finitely long tuhe, then the liquid dxrecrly In contact with its sur- 

face will all the time he compressed there to a greater degree than 

away from the piston, as a result of its inertial properties. The per- 
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turbatlons caused by the motion of the piston will thus propagate over 

a region that Is characterized toy a variable value of sound velocity. 

The local sound velocity will then monotonically decrease with in- 

creasing distance from the piston. 

Consequently^ the resultant perturbations will tend to catch up 

•with the perturbations that are located ahead of them« This process 

will continue until a discontinuous front is produced,, which we are 

accustomed to call the shock wave front (Fig. 18a). If the piston 

stops suddenly, then the region of compressed medium will continue to 

move to the right along the ox  axis. 

According to Zemplen's theorem., sudden stoppage of the piston 

cannot produce a negative pressure jump. Therefore a rarefaction wave 

is produced, which is an aggregate of elementary waves of pressure re- 

duction., propagating with local velocity of sound. Some of these waves, 

which have a propagation velocity close to the local velocity of sound 

behind the front, will catch up at some definite instant of time with 

the front; and reduce its amplitudes (a + v > N). Another part, to the 

contrary, with a propagation velocity less than or equal to aQ, will 

lag the front. The pressure pattern will start to stretch out (Fig. 

18b). 

Let us return now to the shock waves produced by an explosion. 

Regardless of the medium and the type of explosion, there is al- 

ways in a shock wave a region of strongly compressed gas or liquid, 

moving in space with supersonic velocity. 

When the shock wave approaches some point of space, the pressure, 

density, and other hydrodynamic elements at this point increase ab- 

ruptly. This Is followed by a gradual change of these quantities, and 

after some time interval the pressure and density at the given point 

of space will become smaller than the same parameters in the unper- 
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Fig. 19 Variation of pressure behind 
the front of a shock wave. 1) Rarefac- 
tion zone., 2) compression zone; 3) 
shock-wave front. 

fur bed medium. 

The velocity of motion of the particles decreases gradually, 

changing its direction subsequently. 

The qualitative character of ehe time and space variation of pres- 

sure in a shock wave can be represented by the patterns shown in Fig. 

19- 

As already mentioned earlier, the forward boundary of the sheck 

wave is called the front, 

The shock-wave pattern includes regions of positive and negative 

excess pressures (compression zone and rarefaction zone). The spatial 

extent of the compression zone is customarily called the length of the 

shock wave, X..   It is considerably shorter than the rarefaction zone. 

The time of action of the positive excess pressure is frequently 

denoted by T or t+ and is called the period of the wave. 

The area bounded by the pressure pattern and by the abscissa axis 

in the compression zone is called the total Impulse of the pressures 

at the given point. 

In a more general formulation, the impulse of the shock wave refers 

to the integral with a variable upper limit. 
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t 

J^^p(t)d(. (1.178) 

In many problems  it Is  also  of  Interest to estimate  the  energy 

flax density in  the shock wave.,   which along with  the  pressure  on the 

front  and vrlth  the   Impulse   can  serve  as  one  criterion for  its destructive 

■action.   This  is  defined as  the  energy carried through a unit area  in a 

specified interval,  of  shock-wave  action time. 

The  energy flux density is   defined by the expression 

> 
E~ j pt/A^ + -f + JLjdt, (1.179) 

where p(u/A + v /2) xs the total amount of energy per unit volume of 

the liquid. The expression pv characterizes the work performed by the 

pressure forces in the wave in a unit time. The symbol A Indicates 

that we are considering the energy increment compared vrlth the initial 

state of the liquid. 

Approximate relations for the energy flux density will be given 

later on. 

Returning to the description of the qualitative picture of shock- 

wave propagation, we note that as the distance from the center of the 

explosion increases^ the pressure on the wave front gradually decreases 

and the length of the wave increases somewhat. 

At the limit j, with extreme  distances, the shock wave goes over 

into a sound wave. 

It has been calculated that the thickness of the shock-wave front 

is a quantity on the order of the mean free path of the molecule (lO-^ 

to 10 cm).* Because of this, the concept.of the shock-wave front as a 

mathematical discontinuity surface is fully justified. 

■Tn spite of such a very small thickness of the shock-wave front, 

it is precisely in this layer that the main dissipative processes con- 
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nected with the change In the entropy of the system occur. 

Let us consider first the case of an explosion In an unbounded 

Ideal Incompressible medium. The velocity 3f propagation of the per- 

turbations in such a medium is infinitely large  The shock wave goes 

Instantaneously to infinity. The gas bubble begins tc expand. At a 

fixed instant, the pressure in the bubble becomes equal to the pressure 

in the surrounding medium. Owing to the inertia of the medium, the ex- 

pansion of the gas bubble will continue. Finally, an instant sets in 

when under the influence of the hydrostatic pressure forces the liquid 

begins to move in the opposite direction and the gas bubble begins to 

compress. These periodic pulsations, of perfectly Identical intensity, 

will be executed an infinite number of times. 

In a compressible unbounded medium, one observes pulsations of 

the gas bubble, the only difference being that the energy of each suc- 

ceeding pulsation will differ from the preceding one by the amount of 

the dissipated energy, corresponding to the change of entropy. One can 

present the following data, v-hich characterize the dissipation of en- 

ergy during the process of gas-babble pulsation in the case of an un-^ 

derwater explosion (Table 1). 

TiffilZ 1 

"Tiapa priKiepiiuo MOMeiiTu, aniiiKeinia 
rjsraorj aysupn " ,   . 

Hawmo 1-tl ny.iucamifi 
'.     2-« .  ;. 
.     3.(1        .   • 

. .     4-ß,.        . • 

c ■   Bücpri!-! j.jnoTepii sitepnii; 
•ß iipmieiiTast ,., 
'-6T ii;ma.ii,iiQll     I 'a ny^cnmiio, Vo 

1) Characteristic instants of motion of 
the gas bubble; 2) energy as percentage of 
the initial energy; 3) energy losses after 
the pulsation, ^; 4) start of first pulsa- 
tion 

These quantities characterize the energy of the shock wave formed 
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at the start of each pulsation. 

It must be borne in mind.., however, that the damaging action of 

the shock wave is determlnsd only indirectly from the foregoing data. 

The point is that when the wave acts on some structure or another, 

we deal as a rale with an irreversible process, as a result of which 

the decisive factor is not the total cycle of liquid motion, but only 

a definite par- of the compression zone. 

In conclusion it must be noted, that both from the mathematical 

and the physical points of view the shock' ■■■rave is a concept of very 

general character 

Therefore the main laws governing the propagation of shock waves 

and one interaction of the waves with the boundary surface can be in- 

vestigated regardless of the physical process that gave rise to these 

waves 

§9. CALCULATIOH OF HYDRODYNAMIC ELEMENTS ON THE FRONT OF AN AERIAL 
SHOCK WAVE 

The conditions of dynamic compatibility, established on the basis 

of 4'he general laws of physics, enable us to define uniquely all 

the hydrodynamic elements on the front of a shock wave, provided we 

know one of them. 

Earlier, in the assumption of propagation of strong-discontinuity 

surfaces in an unperturbed medium, we have derived the following rela- 

tions for an ideal gas: 

v^IirJLNt (1.56) 

N,a!±!!*-!!L. ^ 1.56a) 
Po    Pij. —PQ  ' 

I/?-.  ', ' f 

/V-/''ü = A%PO; (1-57) 

g» _   (<=+ UPit —(^— l)Po (1.45) 
Po aE>(*+l)Po—.(*—Dpij)' 
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The temperature on the front can be readily calculated from the 

equation of state of an ideal gas. 

Since Tf = pf/gpR and T0 = p^j/gpQR^ we have 

r+^p*^ (1.180) 

Using Relations   (1.45),   (1.56),   (1.58),  and  (1.57),   let us  calcu- 

late  the pressures.,   densities,,   temperatures,   and velocltlefe  on the 

shock-wave front  as  func- ions  of  Pf/pn and pf./p0. 

In the  first case we  obtain after  simple  transformations 
k + \   P* ' , . .: 

. (1.181) 

(3.182) 

For the velocity of sound we previously had a :-v/Icp7p or a =v/kgRT. 

Consequently, 

(1.184) 

(1.185) 

P0 ' A - 1   Po       * . 
Pa 

1T = 

* + 1         P*   ' 
■•"*—i         f, 

■   * + 1         Po 

. * —1 ' ' ?<!>   ; 
"  A + 1 ■      }$ '■ 

In the second case 

A'=a0 y 
2 P* 

A— j 

ft+ 1 
A—1 

Po 

.1* 
' fo 

1 

( \9o 

\ 
— 

2 Po 

/          Ä - 1 p* 
* + 1 p« 
k - 1 Po 

Po  B,a A 4- 1          />* 

A-l   +   Po 

J 

7-, ra 

k + \ 

k+ 1 
Po 

P*        , 

ft. 
t 

*—1 ft    ' 

(1.186) 

(1.187) 

^-0 
ft ,/    ■- /'* , A — 1 

Po " 2* 

Prom Formulas (1.186)-(1.189) it follows, in particu3.ar, that if 
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any of the hydrodynamlc elements on the front of the shock wave tends 

to its value in -ehe unperturbed liquid, then all the remaining ele- 

ments will also tend to their values in the unperturbed medium.* 

In many problems it is necessary to know besides the cited param • 

eters of the wave front, also the value of the velocity head pv /2. On 

-the basis of (1.186) and (I.I89) we obtain for it, after elementary 

trans forma tions 

■■ A^ea ^, + 6^ (1.192) 

For  rhe parameters  characterizing  the \inperturbed medium one usu- 

ally assumes  the  values  for  the   International standard atmosphere: 

P0 — I.0332  kg/cm"   , ToO mm Hg); 
2 / 4 P    = C.I25 kg-sec /m  j 

a, = j4c m/sec. 

After substituting these values, the formulas characterizing the 

propagation of an aerial shock wave at the earth's surface can be writ- 

ten in the form 

JV = 340 K1 -f 0,83 A^ m/se c, (1.193) 
235V« / 

^l/l+0,83Vm/5eO- (1-1^) 

P^.O.i.S-i^f kg-.Sec2/m4;        (1.195) 

T^2ss^±^^loK]     ■ (1.196) 

^ = 20,1 Kr; m/sec. (1.197) 

In Table 2 are given the values of the hydrodynamlc elements on 

the front of the wave as functions of the pressure, calculated from 

Formulas (1.186)~(1.192).** The plots of N, v, p,  T, a0, and Ap , as 

functions of the press-ore are shown in Figs. 20 and 21. 

They characterize the air shock wave with high accuracy in the 

range of front pressures co 50 atm. 

What is striking is the fact that starting with pressures Ap on 
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TABLE 2 

ty-p—Po, N. V, P. T.'K a. *Pc». As, 
-|       KZJCJU1 QJUJCCK JUJCCK O    KZceK'/M* ju/cerc KZlCM1 }^KaA\zzpad 

0,00 340 0 0,1250   . 288 340 0 
0,01 341 2,34 0,1258 289 34! 3.31-10-*   
0,10 354 22,5 0,1335 295 345 3.42-10-» 0.628-10-« 
0,20 357 43,6 0,142 SO?     . 349 1.34-10-» 0.320-lO-* 
0,30 3S0 63,2 0,150 310 353 2,99-10-» 0.106-1C"- 
0,10 392 82,0 0,158 316 356 5,16-IC-» 0,180-10-» 
0,00 404 99 2 0,165 ,323 360'' 7.58. !0-s 0.255-10-» 
0,00 416 113 0,173 -329 364 0.109 0.340-10- 
0,80 439 146 0,188 34i 371 0.196 0,523-10-- 
1,00 460 174 0,201 353 377 0.299 0.740-10-* 
1,20 - 480 200 0,214 364 3S3 0.4!7 1.00-10-» 
1 ,'!0 500 224 0,227 375 389 0.558 1,40-10-» 
1.G0 519 247 '    0,239 385 39-1 0.703 2,36-10-'- 
1.S0 537 2G8 0,250 ■   395 400 0.886 4,07-10-» 
2.00 555 287    '. 0.261 405 404 1,06 6.08-10-» 
2,25 570 3!3 0,274 418 411 1.3: 6.20-10-» 
2.50 505 536 0,286 431 417 1,59 9.00-10- 
2.75 616 358 0,299 442 423 1,86      . 0.0 !0O 
3,00 635 378 0,:i03 455 428 ' 2,19 0,0162 
3,50 672 417 0,329 480 439 2.85 0,0180 
4.00 707 453 0,3-19 503 450 3,59 0,0246 
4.50 740 486 0,366 527 451 4,27 0.0280 
5,00 772 518 0,381 552 471 5.07 0.0320 
5.50 802 548. 0,395 t7S 181 5,93 0,0370 

6,00 832 576 0,408 600 491 6,73 0.0431 
700 888 630 0,432 649 511 8,58 0,0510 
8,00 940 680 0,453 697 530 10.5 0,0602 
9,00 990 727 0.472 742- 546 12,5 0,0680 

10,0 1 040 772 0.489 787 ■   502 14,6 0,0769 
20,0 1430 1 120 0,585 1250 71C 36,6 0,149 
30,0 1 730 13S0 0,629 I 720 C3.C 60,4 0,192 
40,0 1 990 1610 0,655 2 180 936 34,6 0.230 
50,0 2 220 1800 0.672 2 650 1030 109.5 0,263 
70.0 2G20 2180 0,731 3 340 — — 0310 

100,0 3110 2 580 0,806 4 160 — — 0,370 
150,0 3810 3 230 0,937 5 000 — — 0,435 
200,0 4 420 3 740 1,088 5 680 — — 0,500 
250,0 4 900 4 2^0 1,230 6230   — 0.570 
300,0 5 350 4 760 1,315 6 740 — — 0,630 
350,0 5 840 5 160 1,300 7 2 JO — — 0.700 
-100,0 6 180 5 570 1,375 7 750 — — 0.755 
500,0 6 940   • 0330 — 8 700 ■ - — 0.RK5 
COO.O 7 580 6 9-10 — 9650 — — 1,000 
.«00,0 8 740 7900 — 11 250 ■ - 

— 1.200 
1000,0 9 780 8 8-10 — 13000 — — 1.400 

12CO,0 10 GOO 9600 — 15 8013 — _ 1.570 

KCD,0 11 400 10 350 „ 18 200 — _ 1,700 

IÜ00.0 12 200 10 950 — 21000 

" " 
1,845 

1)   kg/cm ;   2)  m/seci  3) 2/4 kg-sec /m  ; 4)   cal/g-deg. 

the  front exceeding 4 atm,   the  velocity of the   air particles becomes 

larger  than the   local velocity of sound. 

The propagation of a  strong aerial shock wave  causes  the  forma- 

tion of a  supersonic  stream.   The  increase  in the pressure  on the front 
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fl ßi ij IS 10 i^-p^i/cti' 

Fig. ciO.   Hydrodynamic elements or the 
front of an aerial shock wave as func- 
bions of the pressure (Ap,, < 2.0 kg/cm ). 

%■& -p^/™' 

Fig. 21, Hydrodynamic elements on the 
front of an aerial shock wave as func-- 
tlons of the pressure (Ap~ < 50 kg/cm ) 

is accompanied 'oy a rather appreciable increase in the temperature. 

Thus, for isg  — 4-0 atm the temperature reaches about 2000oC. 

In the region of very high pressures, the thermodynamic proper- 

ties of air already diffex greatly from the properties of an ideal ge 
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Such a difference is determined principally by the dissociation and 

ionizatlon of the medlvatij   processes that occur quite intensely at high 

pressures and temperatures. 

A theoretical scheme for taking into account the ionization and 

dissociation in the propagation of shook waves in air is given in the 

hook "Physics of Explosions" of F.A. Bavm. K.P. Stanyukovich^ and E.I. 

Shekhter. 

The same book presents an analysis of the corresponding calcula- 

tions made by Burkhardt. It is shown, in particular,, that the rate of 

displacement of the shod: wave differs insignificantly from the calcu- 

lated values obtained using the ideal-gas scheme. Appreciable differ- 

ences are observed, to the contrary, in the estimates of the densities 

and temperatures. Per example, when pf/F0 = 3000 the density calculated 

by the classical method is 2 or 3 times higher than the results of 

Burkhardt! s calculations. 

To allow an approximate estimate of the hydrodynamlc elements on 

the front of the wave in the near zon0 of the explosion. Table 2 ha;? 

been supplemented by Burkhardt's computational data (Ay > 50 atm). 

Example 1. Calculate the velocity of.  front propagation of an 

aerial shock wave, if it is known that the excess pressure on.the front 

amounts to /\pf = 1.20  atm. 

Solution- The propagation ■velocity of the shock wave £ is defined 

as the velocity with which the snook wave moves relative to the moving 

gas particles* 0 = N — v-,. 

Consequently, in order to calculate the propagation velocity-0, 

it is necessary to know the velocity of the shock wave and the veloc- 

ity v of the particles behind the front. In accordance with (1.193) 

we have N = 340.yT^r"ö7&3~ÄP^ = 340^1 + Ooü3-1.5 = 340-1.41 = 430 m/sec. 

On the basis of (1.193) and (1.194) we have 
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"*•- —TT^ " -^ScT" ^ 200 m/se c • 

Consequently,   @ = 480 - 200 = 280 m/sec. 

Example  2.   Calculate   the  pressure  Ap»,   the  air  density p^,   the 

particle  displacement  velocity  vf,   the  velocity of  soxmd af,   and  the 

temperature  on the  front   of  the wave,   if  it  is  established that  the 

shock-wave  displacement velocity at a  certain p.:int  amounts  to N = 555 

m/sec. 

Solution.   We  first determine  from Formula   (1.193)   the value  of 

the  excess pressure or  the  front  of the  shock wave: 

N = 310 vr+ömt;,: (1.193) 
; .555J = 3.10'(1+0,83.'/;,,,), 

Further calculations are hased on Formulas (1.19^)-(1.197): 

v« » —^ « —55^— - «7 m/sec, 
Ci/v,+ 7,2     • 6.204-72 , 2 /   U- 

f^o,m ^TJX = 0,125 ^^ = o>26ikg-3ec^/m4; 

r«'a 2S8 6^+7,2  " 288 0.2.0 + 7^ ° 405   ^ 
ü0 = 20,1 V7% = 20,1 j/495 = 40-i m/sec, 

§10. CALCULATION OF Tiiß HYDRODYNAMIC ELEMENTS ON THE FRONT OF AN UNDER- 
WATER SHOCK WAVE: 

In perfect analogy with the procedure \ised for the ideal gas., us- 

ing the equations of dynamic compatibility and the equation of state 

of water., we can establish a unique connection between the hydrodynamic 

elements on the front of an underwater shock wave. 

A simple equation of state of water is available at present for 

only part of the possible range of parameters.* The equation is writ- 

ten differently for the region of isentroplc flow and for motion with 

variable entropy. Naturally,, the conditions of dynamic compatibility 

that result from the equation of state are also different, depending 

on the range of variation of temperatures and pressures to be investi- 
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gated. 

Leaving  out  the  rather   cumberaome derivations,  we present only 

the  final results. 

For  the region  of high pressures  and   temperatures   (p > 2fj-icß 

atm)* we have 

P^-P^d(p« -pj) [ kg/cm2 ]; (1.198) 

A^Äziil    m2/sec2 (1.199) 

■ v = *(**-**) ii„Ii.\ (1 • 200) 

where  d = 4250j   k = 6,29. 

For  isentroplc motion p < 25»10^  we have 

P$+_£ Po + B   _ (-.       ppjT  ^ 

P* Pi) 

A/3 = £*___ 

"('-iW; (1.202) 

PO    \ f:p   I  ' \ .J, 

a^JilEJiil, (1.204) 

Figure 22 shows the dynamic adlabstic curves corresponding to Eqs. 

(1.198) and (1.201). 

The point of contiguity has coordii:.ates p = 27,580 kg/'cm2 and p = 

= 1364 g/cm3. 

Passing through the • same point is a Polsson adlabatlc ctirve 

[(P + C)/p*] = (p/p*)'c with exponent ,: - 5.5. 

In the study of the propagation of a shock wave with a pressure 

on the front not exceeding 1000 atm, the conditions of dynamic com- 

patibility can be linearized. 

Neglecting the value of p0 compared with B, the isentroplc condi- 

tion can be written in the  form 
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or 

p~B [©■-■]■ 

?he velocity of sound in the unperturbed liquid will therefore "be 
-. / "S 

Ifp pat/en' 

U' sum 

' -ism 

\ im 
sm 
kSJSU 

y 

is 

: im 

^0? 

m 

if"   tr""ti   tr'~ iT" f "0""a   a   '*)" y!'/'*' 

Pig. 22. Comparison of dynamic adiabatic 
curves for water as given by different 
formulas. Symbols: 

P+B     p. + fl 
■-?   '      f'i    ' 
p+c   f p Yi 

" ■    />•  - v f.;    . ; 
•   /; =.- 27 SRO /.v/r.«', ; 

" p — 1,36-i .'/M. 

1)   Dynamic  adiaoatic  curve. 

The  velocity of  sound on the wave  front  can obviously be  calcu- 

lated with the  aid of   the  relation 

«a ' -/^-/fiir-"/«^. 
but 

/ ÖE1     / !Lz! 

5n    3 
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Thus 

rt4,«=»fl«[l + '^Pt] 

Neglecting p0 compared with p,  we  can rewi-ite   (1,56a)  and  (1.57) 

in the  form 
N* p$ 

hence 

Since 

and 

we  have 

or 

A, 
P 

1 

{i+^y 
Vv 

('+^TJ 

Pi, *C fi«, 

v'~ai~A 

»"'Mis- 

carrying out similar derivations  for  the   quantity N,  we  obtain 

(■ + K' 
Pi 

25« + 2« V «       V ^ 

or 

Thus, the linearized conditions of dynamic compatibility for pres- 
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sures pf < 1000 a cm can be written In the form 

A* 

(1.205) 

(1.206) 

(1.207) 

■ 4, ca 7*0. 

In parallel with the theoretical Investigations, many researchers 

have made attempts to obtain the conditions of dynamic compatibility 

of water by experiment» 

The most complete and conclusive results were obtained by R. 

Schall. With 'one aid of high-speed photography he was able to estab- 

lish, the displacement velocity of the shock wave at different instants 

of tine. Pulsed x-raj photography has made it possible to determine 

the density on the front of the shock wave from the absorption coeffi- 

cients of the rays. 

Since 

and 

P* == PoVV. 

it is easy to obtain,, by establishing experimentally the connection be- 

tween N and p, empirical relations replacing the dynamic adlabatic 

curve for water. 

Figure 23 shews the .dependence N/a^ = f(vf./aQ) as given by the 

experimental data of R. Schall. 

It must be noted that with sufficiently good approximation, the 

experimental and the calculated data fall on a line passing through 

the origin for pressures up to approximately 20«10^ atm, corresponding 

to v/a0 —0,6. 
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The equation of  this  Jine  Is 

"     l + ff,JL. (1.208) 

where m — 2.0. 

Equation  (1.208)   can te  regarded as  a third  dynamia-compatihlllty 

condition,   established by experiment.   We previously had 

■?0rt~h(N-   7^), (1.56) 

Po^-P* —/»fr' (I.57) 

By elementary transformations we  can readily obtain from (1.55)., 

(1.57),  and (1.208)* 

»««„ 
is. 
Pi' 

-Mi) 
(1.209) 

A'=r„ L~T-T; (1.210) 

.      Po 

■     pi-PoflSr        / P\enr. (1.211) 

If it  is necessary to represent the  hydrodynamlc   quantities as 

functions  of the  displacement  velocity of the   shock wave  N,   a  simul- 

taneous solution of Eqs.   (1.208),,   (1,56),  and   (1=57)  yields  the  rela- 

tions 

^=•^-«0); (1.212) 

■ P* = ■ r7~-~-.Tr:    N (1 • 213) 
'- m V    If) 

P^ — ^iN-a,).. (1.214) 

By comparison of Fig.?., 22 and 23 we can readily verify that For- 

mulas (1.209).-(1.2.1'+) are equivalent to the conditions of dynamic com- 

patibility (1.201)-(1.203). 

The use of formulas of one type or another depends on the con- 

venience in the solution of one problem or another. 
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Flg. 23., Dependence N/a0 = f(v/a0) as 
given by experimental and theoretical 
data. 

Notation- 

";)   Schall' s experiment; 
+; calculation by Zel'dovich and Ley- 

punskly; 
x) calculations after R. Koul; 
 ) from the adlabatlc curve (p + B)/p"" 

- (p0+B)/pg; 
—-) from the adlabatlc curve p^. — PQ = 

= d(pf - p0)j 

o) N/a0 = 2.14; v/a0 = Ü.586; 
p =: 27,580 kg/cm2- 

For the sake of clarity the calculation of the hydrodynamic ele- 

ments on tne front of an -underwater shock wave is summarized in Table 

3 and graphically represented on Figs. 24 and 25. 

Unlike air, nc supersonic motion of the liquid occurs even at 

very high pressures on the wave front., and the temperature rise is 

relatively slow. 
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TABLE  3 

0 
200 
400 

■ceo 
800 

, 1000 ' 
1200 
1400 
1600 
1800 

' 2000 
, 2 200 

2 400"' 
2 600 
2 800 
3 000 
4 000 
5 000 
6 000 
7 000 
8 000 
9 000 
10 000 
15 000 
20 000 
25 000 
aoooo 
40 000 
50 000 
60 000 
70 000 
80 000 
90 000 
100 000 
200 000 
300 000 

2Mlceie 
v, 

M/ceK 

I  160 
! 49C 
1510 
IS40 
1560 
I 590 
.1 GI5 
1640 
I 670 
1685 
1 720 
1745 
1 775 
1300 
182? 
i c;50 
1040 
2 040 
2 100 
2 190 
2 240 
2 300 
2 400 
2 660 
2 840 
3 0(10 
3260 
3 600 
3 900 
4 140 
4 400 
4 600 
4 800 
5 000 
6460 
7 800 

0 
13 
26 
40 
58 
67 
80 
93 
106 
120 
133 
140 
100 
173 
183 
200 
240 
280 
320 
300 
400 
420 
450 
580 
6S0 
800 
930 

\ 10C 
1280 
1430 
1540 
1680 
1800 
1040 
3 000 
3 800 

P 
.-/CM' 

1,000 
l,Ci:i 
1,021 
1,032 
1,040 
1,041 
1.033 
1,033 
1,065 
1,070 
1,075 
1,080 
1,085 

'1.0'.)0 
1,093 
1.100 
1,120 
1,140 
I.IGO 
1,175 
1,200 
1,210 
1,220 
1,275 
1,323 
1,360 
1,400 
1,430 
1,500 
1,545 
1,580 
1,613 
1,0.10 
1,003 
1,830 
1,970 

a. 
Mjce/i 

1 460 
1500 
1 540 
1 580 
;Ü2C 
1060 
I 700 
1740 
1780 
1820 
1800 
1900 
1940 
1 980 
2 020 
2 030 
2 160 
2 240 
2 3G0 
2 420 
2 500 
2 600 
2 060 
2 960 
3 200 
3 470 
3 720 
4 010 
4 415 
4 740 
4 940 , 
3 162 
5 400 
5C0C 
7100 
8 160 

A. r°c A*. 

0 
''.O 
2,4 
2,0 
3,0 

' 3,4 
3,8 
4,0 
4,4 
4,8 
5,8 
6,0 
7,0 
8,0 
8,4 
8,8 

14,0 
18,0 
22,0 
21,0 
30.0 
32.0 
35.5 
51,0 
08,0 
85,0 

105.0 
13G 
ISi 
2li 
260 
300 
340 

. 400 
870 
139C 

0,348-10-' 
0.199-lO--' 
0,498-10-* 
0,038.10-» 
0,154-iO-» 
0,229-10-» 
0,293-10-» 
0,416 
0,522 
0,648 
0,790 
0,948 
0,00113 
0,00134 
0,00 i. 57 
0,00276 
0,0045 
0,0070 
0,0100 
0;0125 
0,0160 
9,0190 
0,0380 
0,0000 
0,0800 
0,102 
0,152 
0,206 
0.268 
0,320 
0,C78 
0,426 
0,188 
0.944 
1.288 

10-= 
10-' 
IO--» 
10-» 
10-» 

1) kg/cm ; 2) m/secj 3) g/oHp; 4) cal/g-deg. 

Example 1. Find bhe wave-displacement velocity N, the local veloc- 

ity of sound af, the velocity of the particles behind the front vf, 

and the density p„, if the pressure on the front of an underwater shock 

wave amounts to 1000 kg/cm . 

Solution. For the specified value of the pressure, the calculation 

can be carried out using the linearized dynamic-compatibility condi- 

tions (1.205)-(1.207). 

We have: 
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^ = M1 + W'*)'" M60 (' + ttSmr 1000) =1-r>9() m/sec ; 

^ - "»W"" 1-1C0 äüS^rs - 67'0 m/sec; 

/PO-N"     ^» + g       1000 + 30^5      , ,„. 
VPTJ   ^TTHTö"

0 3Ö7ü "1'328: 

'^-^f-^f-»^ 
P* = I.« S. /cup. 

w mi 
ftn/cm 

Fig. 24. Hydrodynaraic elements on the front 
of an underwater shock wave as a function of 
the pressure (pf < 3000 kg/cm ). 

Example 2. Calculate the velccir:/ of sound af behind the front of 

an underwater shock wave, if the pressure on the front amounts to 237 

thousand atm (the coefficient K    is in this case equal to 4.63). 

Solution. From the dynamic-compatibility condition (I.I98) we cal- 

culate the value of the density on the wave front: 

237 000 = -(2d0(p^::3 —l); 

,«,89 _ ej o. 

P$= i.sog/cmJ. 

Following the jump increase in the pressure and density as a re- 

sult of the passage of the wave through the given point, the water he- 
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Pig. 25. Hydrodynamic elements on the front of 
an underwater shock wave as a function of the 
pressure (pf < 300-10- kg/cm

2). 

gins to expand adlabatlcally. 

The adlabatlclty condition Is determined by the relation (1.21) 

Differentiating this equation., we obtain 

a» * -f-- —(p + c). 

Expressing the pressure in dynes per square centimeter (1 kg = 
5       2 = 9.ol'10 g-cm/sec ), we obtain 

«- ^ YTöö(237000 + 5400)9'81-10,:37ä1200 ■,'/':»'f ^'S12 m/sec.       [sic] 

§11. NORMAL REFLECTION OP A PLANE SHOCK WAVE PROM AN ABSOLUTELY RIGIDD 
WALL 

Assume that a plane shock wave Is normally Incident on an Infin- 

ite absolutely rigid wall (Pig. 26). The shock-wave displacement veloc- 

ity N will be assumed directed normal to the wall. The parameters of 

the unperturbed medium are denoted p0, p0, T0., and v0 = 0/ while the 

parameters of the medium behind the front of the direct wave are de- 
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p-l. 

w,. 
fsivp Pfh- 

Of 

noted by p-,   pf.j   T^,   and v«. 

At the Instant when the shock wave en- 

counters the wall, a reflected wave is pro- 

duced,, propagating In the opposite direc- 

tion with velocity N t • Its parameters are 

denoted by potr, potr, Totr, and votr. 

The normal component of the particle 

velocity on the wall is equal to zero in accordance with the condi- 

tions of the problem. 

According to Formula (1.55)* we have for the direct wave 

Fig. 26. Reflection of 
a plane shock wave 
-from an unbounded ab- 
solutely rigid wall. 

'In accordance with the same  general relationship we have 

^.TP + »« =- y (Pw—p^l 
p* Prrp/ (1.215) 

Recognizing that on the wall v ,  = 0, we obtain on the basis of 

(1.55) and (1,215):* 

or 

hence 

PoTp —T»              PO             P» 

P<f~Pl    =J; C 
P*   Porp 

Equation (1.216) can be rewritten in the form 

J i_     PoTp 
./>oTp-roi3al + _P; P^^Jo  

0,). —PO J l_    POTP   x 

(1.216) 

(1.217) 
P*    POT?     P* 

Let the medium in which the reflection is being considered be an 

ideal gas< Then, according to the equation of the shock adiabatic curve 
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(1.186),  we have 
k+ l P<f 

f± IS. 
+ 1 F=l 

It + 1 POT? 

tort «—1   ^4, 
+ 1 

f A + I   .   PoTji r=n p* 

(1.186) 

(1,218) 

Thus, we have obtained two additional equations, with the aid of 

which we can eliminate potr and p- from (1.217). Carrying out the cor- 

responding transformations, we obtain 

3*_+J£*_ 
Pot? _ * — 1 pQ 

P*  "   * + 1  /'» 
k-l+ fr 

SI 
(Pt'fm)"/1»' 

(1.219) 

Fig. 27. Plot of the function 
(p,otr " PQt-m)/(Pf - P atra' atm )  = f(pf)  for 
normal reflection of an aerial shock 
wave  from a partition. 

Formula  (1.219)   is called the  Izmaylov-Crussard formula.   It can 

be reduced to  the  form 

/      * + !, 

P*/P'   "     ift-pJ + J^P* 
(1.220)  ,. 

or, what is the same. 

6*4 
A^ip-2A^ + Z~ iPt 

A plot of the function (potr — Po)/(Pf 
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p0) = f(pf) is shown in 



Flg. 27.   It follows from Formula (1.221) that for a shock wave of low 

amplitude (Pf --* FQ) we have 

Porp •" Po _  _ 

'<        PQ—Po    "*~ " 

Thu6.9 the excess pressure on the partition doubles compared with 

the excess pressure behind the front of the shock wave., in agreement 

with the well-known result for the reflection of acoustic waves. 

In the other limiting case, when pf ~- p0 ■->■ «>, we have  for k = 1.4 

PoTp—PO    , 
———— am o. 
P* — Po 

Using the conditions of dynamic compatibility, it is easy to de- 

termine all the remaining hydrodynamic elements of the wave at the 

wall. As a result of aimple calculations we obtain 

PoTp 

Tfygp 

Po (1.222) 

Po 

PoTp     Ptj) 

Plt>     Pntp' 

(1.223) 

AU.«[(A--l)§-+l" 
/               2-£2, 

1/        "     . c». (1.224) 
V w+1,f+ (ft- -i) 

Comparison of the results of the calculation for an ideal gas us- 

ing the formulas obtained with the results of more complicated calcula- 

tions for air, with account of the dependence of its specific heat on 

the temperature, shows that the relationships presented can be used 

with accuracy sufficient for practical purposes when P^/PQ < ^O- 

In perfectly analogous fashion we can calculate the pressure on 

an absolutely rigid partition for reflection of an underwater shock 

wave. 

Here, obviously, the relation 

PiZ^r~T—• (1.217) P* Po PoTp . V '   / 
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established from the general conditions of dynamic compatibility, will 

hold true also for water. 

For a unique estimate cf the ratio p„ /p,. it is necessary to 

have one more equation relating the pressure with the density. 

Such an equation, generally speaking, should be xhe  equation of 

the dynamic adiabatic curve. 

However, as was already mentioned above, for the range of pres- 

sures up to 25* lO-1 atm, it can be replaced successfully by the Po.Isson 

adiabatic curve equation, since the change in entropy is negligibly 

small. 

In this case 

from which it  follows  that 

—r—A (1.201) 

for,        fp0r, + 0Y _ (1.225) 

i      i 

poTp_pw+jn~ (1.226) 
?'?       L Afr + o J    " 

Simultaneous solution of Scs. (1.217), (1,225), and (1.226) en- 

ables us to determine the parameters of the reflected underwater shock 

wave as a function of the pressure on the front of the direct wave. 

It can be shown that;, as in the case of aerial shock: waves, the 

ratio (pütr - P0)/(pf - P0) is always larger than two., and only for 

weak waves does it tend to this value. 

If it is necessary to calculate the reflection pressure for a 

wider range, it is necessary to assume in lieu of Eq. (1.201) a dy- 

namic-compatibility cenditlon ^n ^ne form (1.193) and to carry out 

variations of similar nature. 

Such calculations were carried out by several authors and yielded 

close results. Some of the calculation results are given in Table 4. 
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For some  values of the preEsur-es ön the front of ehe direct wave we 

give here the ratios of the pressures in the reflected wave to the 

pressures in the direct wave., Totr/Pf- 

TABi^E 4 

1 2    Be.nii'imiM Aor,.icmi(i na Qipome tipHMoM 
nOillllil,  K?/CM* 

500 1C0O 5000      iOOOO  1   25 000 
i 

50 000 

neuHK it flfiC rynra 
Cymiona n PIoTpaiucGa 
fio AitHaMifteCKoll   fi^i'ia- 

ön-re (LI98) 

2,088 
2,010 
2,053 

2.1V0 
2,15 
2,n 

| 
2,00       2:92 
2,55 |    2.88 
2,30 {    2,60 

3,-1.1 
3,35 
3,05 

3,93 
3,74 
3,50 

■ 

1) Data by; 2) values of the pressure on 
/ 2 ehe front of the direct wave, kg/cm ; 3} 

Penney and Das Gupta; 4) Suntsov and Patra- 
shevj 5) according to the dynamic adla~ 
h at ic ci xrve  (1.198). 

In ccnciuöion It must be emphasized that for an underwater explo- 

Qion, the nonlinear problem of direct incidence of the shock wave on 

an absolutely rigid partition is essentially of theoretical interest, 

since the coefficient of reflection deviates appreciably from two at 

pressures for which even such materials as steel must be regarded as 

elasticj and consequently the assumption that the wall is absolutely 

r ig id bee ome s an unrea1is11c one. 

Such calculations fere of practical significance only in the study 

of the interaction between shock waves of equal intensity. 

Exaingle 1. Determine the reflection pressure and the temperature 

on the front of the reflected aerial wave for a normally incident dl- 

rect wave with excess pressure Apf =5.0 kg/cm on a rigid wall. 

Solution, From Formula (1.18?) we obcain the temperatiire on the 

front of the direct wave; 
ft + l . A> 

r, ,., „. A: — 1   ' 

ft-l   f 
is.. ' 

:%~ 28R 
6 + 5,82 
0 + 0,172 :■■■ 552 •K, 

Re 



With the aid of   (1.220)  we  calculate  the reflection pressure: 

-i 2 + 
P*'      P<> In n\±        ^      n      ' (Aj) -Po) + fzriPo 

potp»8,ft.4.4e f '.03: - 23,o kg/crr^. 

We  determine  the  ratio  Prtr/p;r   On the basis of  (1.222)  we have 

if! 
PoTp 

(* 

■V 

p* 
P* -1) p* 

Po 
+ 1 

Porp 

ft 

1,4 
3,4-5 

■5,82 
82 -r T = 2,45. 

7 crp ."CTp Pt 

Finally we obtain 

Example 2. Determine the reflection pressure on the front of an 

underwater shock wave for a direct wave with pressure on the front 

pf = 600 kg/cm normally incident on an absolutely rigid wall. 

Solution. The problem reduces to solving the system, (1,217), 

(1.225), (1.226) 

PoTp *™ Pa po / n      OST' \ 
«*<J) Pä .'üTp ,   ' 

P« ""■■ 

P3TP   r^t^ + ^i7. (io225) 

i 

POTP   Tjgg+ig; 1'" ( 1,226) 

The corresponding calctilations are summarizev-;1 In Table 5 and are 

presented in Pig. 28. On the basis of the obvious graphic constructions 

we arrived at the conclusion that the reflection pressure in this case 

amounts to 1275 kg/cm . 

The coefficient (potr - P0)/(pf - P0) = 2.130 is merely'6.5^ dif- 

ferent from the acoustic coefficient. 
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Flg- 28, Illustrating Example 
1 of §11,, 

?ABIJS 

Petf 

r-———    J  ** 

AD-A) 
POTP-*: ß 

Port + B 
Po-rli PQ + B 

lg W 7,15 *\ 

1 ' 2 . . '3 4 5 6 7 

1200 

1250 
1300 
1350V 

2,0001 

2,0851 
2,1009 

2,2520 

4245 

4295 
4343 

4393 

1,3936 

1,4100 
1,426-! 

1,4428 

1,1040 
1,1783 
1.1917 
1,2057 

0,14420 
0,14922 

0,15412 

0,15927 

0.02O17S 

0,020869 

0,021555 
0,022275 

Continuation 

!g(S) 7k(8} 
^ 7.115 »TW 

(ie)-i 
(11)- -1 

P)      1 

Perf—Po 

5 9 10 11 12 13 

0,00633 
0,07115 
0.07628 

0,08117 

0,009277 

0,009951 
0,0I0ÜG8 

0.011304 

1,047 

1,049 
1,051 
1.053 

1,022 
1,023 

1,024 
1,025 

2.1363 
2,1304 
2.1250 

2,1200 

0,001779 
0,001704 

0,001634 
0,001570 

§12. REFLECTION OF ACOUSTIC WAVES 

Xn tha preosÄtng sections of the  'boolc we have emphasized several 

times that the laws governing tha propagation of weak shock waves can 

he Investigated "oy assuming that the entropy of the medium does not 

change. 
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In this connection, gieat interest is attached to the limiting 

case of incidence of a wave of Infinitesimally small amplitude on a 

wall. In such a formulation, tir? wavs reflection problem 1B usually 

called the acoustic approximation prohlem. 

We shall dwell later on in sufficient detail on the main premises 

of acoustics. For the time being we note that one such premise is the 

assumption that the propagation velocity of the perturbations is con- 

stant. 

Assume that at some Instant of time a plane acoustic wave is in- 

cident on an absolutely rigid 'vrface at the point G (Fig- 29), the 

front of the wave making an angle a with the boundary. 

The wa'.re imparts to the gas a velocity whose normal component is 

v cos a. By virtue of the absolute rigidity of the boundary AOB, the 

normal component of the velocity on the boundary should be equal to 

zero. 

This Is attained only In the case when one superimposes on the 

existing velocity distribution a second wave front, which has at the 

point 0 such an intensity end such a.  direction, that its passage 

through the liquid following the front causes the formation of a nor- 

mal velocity equal in magnitude and opposite in direction to the veloc- 

ity produced by the direct wave along the line AO. 

In other words, the following relation should be satisfied: 

wcosa —T/'cosa'saO (1„227) 

In the  case  of  sma, 1 perturbations.,  both the  direct  and the re- 

flected waves propagate with a velocity equal to the  velocity of  found 

a0.   Then the velocity of displacement of the point  0 should obvloxisly 

be  equal to  a0/(sin c)   on one  side and a,V(sln a')   on the  other.   Con- 

sequently, 
-isL^-f^ (1.228) 
slno      -Ina 
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c j, This  equation leads  to  the well-known 

./ 

law of acoustic reflection, according to 

which a = a'. But then also v' = v. Since 

the pressure on the front of the shock wave 

Pig. 29, Scheme of re-    is determined by the formula p = pnanv., by- 
flection of acoustic u u . 
-waves,                  virtue of the equality of v and v' the pres- 

sure on the rigid wall is always equal to 2p, regardless of the direc- 

tion of the direct shock wave. 

Only "men a = 90v" is there no reflection of the wave. The wave 

then glides along the wall and the pressure on the wall is equal to jo. 

■ The above-formulated consequences of the law of reflection of 

waves with infinitesimally small amplitude is known under the name 

acoustic paradox.* 

Of great interest is the case when the acoustic wave is reflected 

net from an absolutely rigid wall, but from the boundary separating 

two compressible media. Here it is necessary to consider in addition 

to the direct and reflected waves also the so-called refracted wave, 

which propagates in the medium from the boundary of which the reflec- 

tion takes place. 

Just as in the preceding case, we can state that the velocity of 

displacement of the point 0 over the separation surface will charac- 

terize to an equal degree the motions of the direct, reflected, and 

refracted waves, i.e., 

sin a '*" sin a't=s iln o"" (1»229; 

As  in the first case,  the reflection law 0=0'  holds here,  too. 

In addition,  we get  from (1.229)   the  so-called Snell's  law for 

the  determination of  the  direction of the refracted wave: 

!&="£. •        (1.230) 
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The continuity of motion and of the velocity of -notion of  the par- 

ticles on the separation surface calls for- satisfaction of the equation 

(1.231) V COS a — 1/ COS of ~ V" COS a' 

\ 
Obviously^ also, 

p "»(>,, a0v, 

(1.232) 

The product Poao-» which Is the coefficient of proportionality be- 

tween the pressure and particle velocity,, is frequently sailed the 

acoustic impadance of the medium. 

Prom Eqs. (1.231) and (1,232) it follows that 

Po fL-aJülL     ££15* 
Mo      Po^o      pa*      cos a 

or 

p-p'^p-'M*™.?: r    .   r f    y'a"    cos 0 

Recognizing that p" — p + p1,  ws obtain 

If'a" cos a 
p a   cos a  ;- p0J0 cot a   : 

p'       p'a" cos a — poa0 cos a*' 
p       p"a" cosa + p^, CEO*' 

(1=233) 

(1.234) 

(l.£:!5; 

p. r—1 .— 

p- 

Vn* cc 
p 

e" coi 

Po«, 

a + Poflo )/ I -{ -— K.r.'; 
\ "a / 

:o. a - y 1 • (—)  si«'« 
W^e /  

Using Snell's  Law,  Formulas   (lo234;  and  (1.235)  a^e readily re- 

duced to the form 

1       (1.236) 

(1.237^ 
t— COS,. : 1/ 1- {—) slu'n 
puja       } \ "a / 

The convenience of the last relations lien in the fact that they 

contain in addition to the acoustic impedanceö of the media only the 

angle of incidence of the direct wave. 

If a" < a0, then reflected and refracted waves are produced for 

all angles of Incidence of the direct wave. 
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The situation is different if a" > a . In this case the reflec- 

tion coefficients are real only in a definite range of angles of in- 
1 
lb i de nee 

0<a<a1 = arcsin-^-. (1.238) 

The angle ou = arc sin a,0/a" is called the angle of total internal 

reflection. 

For angles of incidence exceeding ou, the reflection coefficient 

p'/p becomes complex with a modulus equal to unity. This means that 

the energy flux through the boundary separating two media is zero. No 

refracted wave is formed. The wave perturbations occurring at the sep- 

aration boundary rapidly attenuate in amplitude with increasing depth 

of penetration into the second medium.* 

It follows from Formula (1.235) that no reflected wave is formed 

only when the acoustic properties of the media are Identically equal. 

Indeed, equating the numerator of(1.235) to zero,  we find that 

when the angle of incidence is 

a = arccos^|/   _^. (l#239) 

we have 

P'/p = 0. 

Such a case is possible if a0 > a" and p" > pQ}   or a0 < a" and 

p" < PQ. 

In the case of direct incidence of a wave along a normal to the 

surface a = a' = 0 and Formulas (I.236)-(1.237) assume a particularly 

simple form 

iL^tXizM!, (1.241) 

Relations (1.236)-(1.241) enable us to draw several important con 
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elusions of physical nature:* 

1. Upon reflection of a shock wave propagating in water from a 

medium with acoustic impedance that is lower than the acoustic imped- 

ance of water, a rarefaction wave is produced (p'/p < 0). The pressure 

on the front of the refracted wave is in this case lower than the.pres- 

sure on the front of the direct wave. Consequently, the resultant pres- 

sure on the separation boundary is also lower than the pressure on the 

front of the direct wave. 

2. Upon reflection of the same shock wave from a medium whose 

acoustic Impedance is larger than the acoustic impedance of water, the 

reflected wave is a compression wave and the pressure on the front of 

the refracted wave will be larger than the pressure on the front of 

the direct wave. 

Of great practical importance is the particular case of reflec- 

tion of an underwater shock wave from a free surface bordering on the 

atmosphere. Since the density of water is 775 times larger than the 

density of air, and the sound propagation velocity in water exceeds 

the sound propagation velocity in air by 4.4 times, the ratio of the 

acoustic impedances of water and air amounts to about 3400. Conse- 

quently, upon reflection of an underwater shock wave from a free sur-- 

face, a rarefaction wave should arise, capable not only of completely 

suppressing the pressure in the direct XArave, but also of causing ten- 

sile stresses in the liquid. The pressures on the front of the re- 

fracted aerial shock wave will then be negligibly small compared with 

the pressures on the front of a direct wave. 

To the contrary, when an aerial shock wave strikes a free liquid 

surface, an "underwater shock wave will arise, wi.th an amplitude which 
j 

is at least twice as large as the amplitude of the direct wave. Reflec- 

tion of the shock wave of an underwater explosion from the free sur- 
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face will be considered in detail subsequently. 

Example» Calculate the resultant pressure on the wall of a wooden 

berth when an underwater shock wave with pressure on the front pf = 80 

atm is normally incident. The density of wood is assumed to be p" — 5,0 

kg-sec /m ,   and the velocity of sound in wood is a" = l600 m/sec. 

Solution. The resultant pressure on the wall is equal to the pres- 

sure in the refracted wave. 

We carry out the calculation in accordance with Formula (1.240): 

p p"a" + po«;,  50- 1G00 + 102- MG0 :;'8 kg/cm" 

We obtain 

P" = o,G9S-8o = 55,8 atm. 

§13. LINEAR (REGULAR) REFLECTION OP SHOCK WAVES PROM A PLANE SEPARATION 
BOUNDARY BETWEEN TWO MEDIA 

Let us consider now the reflection of a plane shock wave from an 

infinite wall. We first study a case when the wall is absolutely rigid. 

Let the angle of incidence of the direct wave be a (Pig. 30). The van- 

ishing of the normal component of the particle velocity on the wall 

leads to the need for satisfying the relation 

^COSa — ^UTI,cOSa' = 0. (1.242) 

The velocity of displacement of the point 0 can be calculated 

with the aid of the dependence 

-l^-fe- (1.243) 

.The only difference from the previously considered case is that 

now we have N ^ N +.  and the shock-wave displacement velocities differ 

from the velocity of sound a0 in the unperturbed medium. 

The two aquations (1.242) and (1,243) contain six variables: vf, 

a,   N^j V-, . a', N .. However, in this case, by virtue of the dynamic 

compatibility conditions, the parameters v ,  and N *. , and also v^ 
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Fig. 30. Scheme of 
regular reflection of 
shock waves. 

and Nf, are uniquely related with one an- 

other. 

Thus., if we know the parameters of the 

direct wave, we nave at our disposal two 

equations for the determination of the two 

variables v .  for N . ) and a'. 

Numerical solution of these equations for a specified intensity 

of the direct wave and angle of incidence a yields two values of the 

angle a'., and consequently two values of the correspending quantities 

votr anä Notr- 

These last parameters determine two values of p , , i o or 
Observations show that usually one realizes reflection with a 

smaller angle a'., and in the general case a ^  a'. Only in the limiting 

case of infinitesimaliy weak waves are the angles of reflection and 

incidence equal This case was considered in detail in the preceding 

section. 

Figure 31 shows plot? of the calcu- 

lated reflectic-- angles for an idea... gas, 

where the parameter is ohcsa.a to be the 

70° 

St 
so" 

w° 

30° 

20° 

10° 

0° 
111*  20° 30°   iiO° 50" M0   70" t!0° 33° 

Pig. 31- Dependence of 
the angle of reflection 
on the angle of inci- 
dence for different 
pressures on the front 
of an aerial shock wave, 
1) Limiting. 

ratio  (i — p^/ö,-.. 

From  this   figure   -t  follows   :hat  the 

larger   the  angle  uf incidencej   the  closer, 

for a  specified c on slant-pre ssu2:e  curve,, 

are   the  points   that  characterize  two  val- 

ues  of  the   angle   3.f   reflection a'. 

At a  certain angle   a --- OL    e.  the^e 

points  coalesce.   Tw.nen a >   OL.„-^,   linear 

reflection,   a  characteristic  feature  of which  la  the  existence  of  one 

common point  for  the   direct and reflected waves  lying on the boundary 
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70       SO        30 
—»— a 

Fig. 32. Dependence of the angle 
of reflection on the angle of in- 
cidence for different pressures on 
the front of an underwater shock 
wave. 1) Limiting values of the 
angle a. 

surface, becomes impossible. 

The phenomenon of linear reflection was investigated in great de- 

tail by Neumann., Polyachek, Sieger, and A.N. Patrashev. 

At small incidence angles, when the inequality a  < a* obtains, 

where for an ideal gas a:'-=-^-arccos —^--^ 40°, the reflection angle is 

smaller than the angle of incidence (a1 < a) and the ratio p , /p^ is 

smaller than for normal reflection, i.e., smaller than calculated by 

the Izmaylov formula, 

Vv'.....n a > a'-, the angle of reflection is greater than the angle of 

incidence (a' > a) and p . /pf is larger than for normal incidence. 

However, linear reflection is possible for a > a* only if a* < 

< apred- 
Calculations of similar nature x-xere carried out also for water. 

Their results are presented on Figs. 32 and 33' Figure 32, plotted 

from the solution of A.N. Patrashev, gives the dependence of a' on a 
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for constant values of the pressures on the front. 

Unlike airs in water the angle of reflection is always larger 

than the angle of incidence a,   and consequently oblique reflection of 

a shock wave in water always yields a greater pressure than normal re- 

flection^ for identical pressures in the direct waves. 

The coefficient i, which characterizes the pressure ratio in the 

reflected and direct waves, I - ^potr + B^pf + B) ^ is sYiowr} in Pig. 

33 as a function of the angle of incidence for different v-assures on 

the front of trie direct wave. 

It is easy to note that at pressure amplitudes in the direct wave 

below 600 atm the coefficient | differs little from unity, so that the 

pressure on a rigid \\rall practically doubles at incidence angles 

smaller than o; c.. 

It is also of interest to investigate the more general case of 

reflection of shock waves from the separation boundary between two 

media, without assuming absolute rigidity of the wall. 

Such a problem was considered for both normal and inclined inci- 

dence by A.I. Gubanov.* 

In the case of normal incidence, using the notation of §12, the 

boundary conditions on the wall can be written in the form 

v - v' = v"; (1.244) 

p + p' = p". (1.245) 

The only difference from the acoustic approximation lies in the 

fact that the connection-between the pressures and velocities of the 

particles is expressed not by the linear relations (1.232), but in 

terms of the dynamic-compatibility conditions. 

If, for example, we assume both the firs- and the second medium 

to be an ideal gas, then we obtain on the basis of (1.189) 
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Fig. 33. Plot oi0 Fig. 34. Scheme of 
regular reflection of 
a shock wave from a 
surface separating 
two media. 

Po 

j/lL+iJL + ^i""' 
r        2k     p.,    ■     'Ik 

k\/ L+IJL. *-I 
2k     p 

'Hi. 

2k 

n/^l+iü:+.*"-i 

(1.246) 

(1.247) 

(1.248) 
r    2*" >*" 

Consequently,, assuming the parameters on the front of the direct 

wave known^ we can always calculate the parameters of both the re- 

flected and the refracted waves. 

In the case of inclined incidence, the formulation of the boundary 

conditions become somewhat more complicated, for unlike the acoustic 

approximation, it is necessary here to take into account the angle 

.on o^ ;he wall under the influence of that characterizes the deform? 

the shock wave (Fig. 34). 

The condition for a common point of the direct, reflected, and 

refracted waves on the surface separating the media will as before be 

-£!_. (1,249) 
sin a   sin a 

The equation for the pressures on the contact surface is written 

in the form 
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P+P'^p". (1.250) 

The equation for the normal components of the particle velocities 

will be 

V cos (a - Ö) ~ V cos (a' 4- ß) = v" cos (a" — 3). (1. 251) 

Finally^ obviously,, the point 0 is common not only for the wave 

frontsj but also for the branch of the contact surface OK.,. 

The displacement velocity of the latter is equal to 

V' CO.; (a 4- S). 

Its velocity of motion along the y axis will be 

i/ co: (a + 3) 
«la ? 

The last ratio is equal to any of the ratios (1.249), 

We thus have five equations for the determination of  the nine un- 

knowns: NotrJ a', v'j p', N", a", v", p"^ ß (the values of N, a,   p, 

and v on the front of the direct wave are assumed specified). 

In additionj from the dynamic compatibility conditions we can re- 

gard the following as known: 

V" «x V (/>"). 

Thus, we again arrive at a closed system of equations, which when 

solved enables us to calculate all the parameters of the reflected and 

refracted waves. 

Such calculations for the particular cases of strong and weak 

shock waves, and also for media that differ from each other greatly 

and little have been carried through by A.I. Gubanov to the stage of 

final approximate relations. 

As was already noted above, when the angle of incidence of the 

direct waves are larger than the limiting angle, linear reflection be- 
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comes impossible. There occurs the so-called nonlinear or irregular 

reflection,, which will he analyzed in the next section. 

§14. NONLINEAR (IRREGULAR) REFLECTION OF SHOCK WAVES FROM A RIGID WALL 

At angles of incidence larger than OL  ,, as was already men- 

tioned earlier,, linear reflection becomes impossible. The reflected 

-wave., propagating through the perturbed medium., overtakes the direct 

wave and, merging with the latter, forms a third wave frequently called 

the frontal shock wave or the Mach wave. A three-wave configuration 

results, a characteristic feature of which is the existence of a com- 

mon point of intersection of the waves (the so-called triple point). 

c c c ■ 

S OX «5 

Fig. 35. Stationary, direct, and 
inverted nonlinear reflections. 

Starting from the conditions of dynamic compatibility, we can 

show that the intersection of three strong discontinuity fronts is pos- 

sible only if an additional condition is satisfied, consisting in the 

fact that another surface of stationary strong discontinuity must pass 

through the point 0 (Pig. 35). It is usually called the contact sur- 

face . 

. spending on the location of the contact surface, a distinction 

is made between three types of nonlinear reflections (Fig. 35): sta- 

tionary, direct, and inverted. 

In stationary nonlinear reflection, the contact surface OD is 

parallel to the wall. In the case of direct nonlinear reflection, the 

contact surface is directed away from the wall; in the case of in- 

verted reflection it is directed toward the wall. 
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Fig. 36. Regions of 
regular and irregu- 
lar re .'/lection. 1) 
Region of irregular 
reflection; 2) re- 
gion of regular re- 
flection. 

Inverted nonlinear reflection is un- 

stable, collapses,, and can be disregarded. 

.Direct nonlinear reflection is realized 

most frequently and is of greatest practical 

interest. 

Figure 36 shows the curve for an ideal 

gas, representing the dependence of a  ^ on 
pred 

the ratio of the pressure in the ■-v.roerturbed 

medium p0 to the pressure in the direct wave 

Pf.. 
i. 

This curve divides the region of all possible values of the angle 

a and the ratio p0/pf into two parts: a region where linear reflection 

is possible, and a region of existence of nonlinear reflection. Start- 

ing with P0/pf - 0.5 and up to P0/pf = 0 the limiting angle amounts to 

about 40°. 

Problems in the theory of irregular reflection, following Mach, 

engaged many researchers. However, the complexity of the boundary con- 

ditions of the problem have made it necessary to Introduce definite 

simplifying assumptions, and consequently at the present time the re- 

sults of the theory are still far from complete and in many cases 

yield serious discrepancies from the experimental data. A. practical 

estimate of the parameters of the frontal wave is therefore carried 

out with the aid of empirical relationships. 

A more detailed exposition of irregular reflection of an aerial 

shock wave from the surface of the earth (or water) will be given-later 

on. As to irregular reflection of shock waves in the case of an under- 

water explosion, by virtue of the considerations presented in §11, 

such a reflection is rarely realized and therefore this problem is not 

considered in the book. 
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Manu- 
script [Footnotes] 
Page 
No. 

9      By homogeneous system we shall henceforth mean an aggregate 
of elementary particles which are identical in their chem- 
ical and physical properties. 

1,6      b^m^v^p^ — infinitesimals of higher order. 

19  *    Here and elsewhere in this section we denote "by s.   a quan- 
tity of first order of smallness. 

19 The minus sign in the term containing c  is the consequence 

of the fact that the direction of the outward normal to the 
surface S-, does not coincide with the direction of motion of 

the discontinuity surface. 

20 In the literature such a surface is frequently called a con- 
tact surfacej or a surface of tangential discontinuities. 

21 If [p] = 0, then from (1.40) [v] =0, and consequently, 
[9] = 0 and [p] = 0, i.e., there is no strong discontinuity 
whatever, 

21      The variables 0 and u are not independent, since by defini- 
tion 0 = N -- v. ,   and "the value of the internal energy is ex- 
pressed in terms of p and p with the aid of the equation of 
state. 

25      For further details see Ya.B. Zel'dovich "Shock-Wave Theory 
and Introduction to Gasdynamics, " Acad. Sei. USSR Press, 
1946, 

33      Formula (I.69) follows from the general expression 

gr"d (5, I) = (3v) a + (Äv) b + iXrota + aXroU, 

if we put " = 15 — v (see, for example. N.Ye. Köchin, Vector 
Analysis and Introduction to Tensor Analysis, GONTI, 1938). 

42      Having defined the characteristics in this manner, we shall 
leave out henceforth the index L. 

45      Unlike the previous coordinates r1 and t.^, here r'^ and t'., 
characterize the streamline  (the trajectory of motion of a 
liquid particle). 

53      Sec. for example, Koshlyakov, Fundamental Differential Equa- 
tions of Mathematical Physics, GTTI, 1933- 
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Manu- 
script [Footnotes (Continued)] 

No. 

54 Relationship (I.I63) can be derived, by considering directly 
the equations of one-dimensional isentropic motion of a liq- 
uid v.'ith plane syn'aaetry. 

Indeed, putting In $  « const and v = 1 in Formulas (1.97) 
and (1.9o), we obtain 

2 /da on \ ,  dv 
k—l (^^)^^ = 0- (1-l65) 

Subtracting and adding these equations, we can write thera 
in the form 

» 

4 (" + »=r») +'• +" >-I-(■■+ T=T ") -0' 

4("-^T')-"-^("-^n-)-0- 

Obviously, a possible solution of the first equation will 
be v + 2a/(k — 1) = const,, that of the second is v — 
— 2a/(k - 1) = const, in agreement withthe result (I.163). 

whence 

0 ''p I (■=?.       f« 

6?      See, for example, L.D. Landau and Ye.M. Lifshits, Mechanics 
of Continuous Media, GITL, 1953- 

71      At low pressures on the wave front. Formulas (1.l8l)-(l.189) 
can be linearized. In particular, if Apf/p0 < 1 we have with 

error not larger than 5^ 

"-'.(•^^> (1-190) 

71      As the initial data for the calculation we -have assumed the 
parameters of the international atmosphere: a0 = 3^0 m/sec, 

P0 = 1.033 kg/cm
2, p0 = 0.125 kg-sec

2/m4, T0 = 15
0C, and 

k = 1.40. 

75      See, for example, R. Koul, Underwater Explosions, IIL, 1950. 
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76 

80 

85 

93 

95 

96 

100 

[Footnotes (Continued)] 

Obviously., knowing the values of the pressures and densities 
on the front of the wave., it is also easy to calculate the 
temperature from the equations of state. However., such a 
formula is cumbersome,, and is therefore not presented here. 
For the same reason we have also left out the expression for 
the velocity of sound., which can be obtained from the adia- 
baticity conditions of water. 

Equations (1.208)-(1.211) were derived by N. N. Suntsov. The 
coefficient m was assumed by him to be equal to 2.1. 

If the direct wave is stationary, then the reflected wave 
will also be stationary, and the particle velocities will be 
equal to zero not only on the wall but everywhere behind the 
front of the reflected wave. 

Actually, for waves of finite amplitude, at a certain angle 
of incidence a < 90°, as will be discussed in detail later 
on, this type of reflection becomes impossible and is re- 
placed by the so-called nonlinear (Irregular) reflection. 

A detailed analysis of the case of total internal reflection 
of acoustic waves with an estimate of the depth of penetra- 
tion of the wave perturbations as a function of the length 
and frequency of the direct wave is given in the papers of 
L.M. Brekhovskikh. See, for example, L.M. Brekhovskikh, Waves 
in Layered Media, Acad. Sei. USSR Press, 1957. 

Strictly speaking, the first derivation is valid only for 
angles of incidence smaller than the angle of total internal 
reflection. Usually, however, if p'^" < pna0f then also '0"0; 

a" < a 0' 
A.I. Gubanov, Reflection and Refraction of Shock Waves on a 
Boundary Between Two Media. ZhTF, Vol. 28, 1958 and 29, 1959. 

Manu- 
script 
Page 
No. 

10 

10 

28 

35 

63 

63 

[List of Transliterated Symbols] 

BHyTp = vnutr = vnutrennyy = Internal 

BHeuiH = vneshn = vneshnyy = external 

$ = f = front = front 

Kp kr = krlticheskiy = critical 
?        2 

KT/KM
-
 = kg/cm 

T/KWP _ g/cm-3 
107 



63 M/CGK = m/sec 

71 CK = sk = skorostnoy napor = velocity head 

/  ?   i/2 

73 KT/KM" = kg/cm 

73 M/ceK = m/sec 

73 Kaji/r-ner = cal/g-deg 

Q5 DTP = otr = otrazhennaya volna »= reflected wave 

86 aTM = atm = atmosfernaya volna = atomospherlc wave 

98 npea = pred = predel'noye otrazhenlye = limit reflection 
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Chapter 2 

EXPLOSION IN AN UNBOUNDED MEDIUM 

§1. FORMULATION OP EXPLOSION PROBLEM 

As indicated above,, in the general case the distribution of pres- 

sures and temperatures on the boundary separating the explosion prod- 

ucts and the surrounding medium at the Initial Instant of time is ar- 

bitrary, since the character of a reaction such as an explosion does 

not depend on the properties of the surrounding medium. Using the pre- 

viously adopted terminology, this surface would have to be regarded as 

a nonstationary strong-discontinuity surface. However, the dynamic com- 

patibility conditions, which should be satisfied on a nonstationary 

strong-discontinuity surface, are not satisfied in this case, owing to 

the arbitrariness of the parameters of the explosion products. Conse- 

quently, it is impossible likewise for a single discontinuity surface 

to exist. 

N.Ye. Köchin has proved that for all possible cases the Initial 

surface breaks up into three surfaces. One of these surfaces, propa- 

gating in a medium surrounding the charge, is the nonstationary strong 

discontinuity surface (shock-wave front); the second, separating the 

explosion products from the medium, is a stationary strong-discontinu- 

ity surface (the gas-bubble surface); finally, the third, propagating 

with the explosion products, is a weak-discontinuity or characteristic 

surface. 

The main problem of the theory of explosion in an unbounded liq- 

uid is the study of unsteady motion of a liquid between boundary sur~ 
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faces,  namely the  front  of  the   shock wave  and  the  gas-bubble  surface. 

Such unsteady motion  is  determined by the  following  system of equa- 

tions : 

p4f + gradp = 0; (2.1) 

^_+div(p^)==0. (2.2) 

This system contains three variables: pressure, density,, and ve- 

locity;, so that it is not a closed system. 

In order to close this system, it is assumed in many investiga- 

tions that the solution of the problem can be obtained by assuming the 

'liquid to be incompressible: p = const. Tf the motion is in this case 

potential over the entire region of flow^ then the matter reduces to 

an analysis of the well-studied Laplace equation Acp = 0. This is in- 

deed the procedure used in his time by Lamb, to whom belongs the first 

theoretical solution of the problem of underwater explosions. 

However, the assumption that the medium in which the shock wave 

propagates is incompressible does not in fact correspond to reality. 

The point is that explosions are accompanied by considerable pressures, 

in which the water Is appreciably compressed (for example, more than 

20%  at pressures of 10 thousand atm). 

In addition, and this is the major point, the use of the hypo- 

thesis that liquid is incompressible does not make it possible to take 

into account the energy dissipation^ which is rather great in 

the case of explosions. 

For example, in an underwater explosion approximately 60^ of the 

initial energy is dissipated during the first pulsation, while in an 

aerial explosion the fraction is even larger, something which obvi- 

ously cannot be disregarded. 

Finally, the incompressibility hypothesis excludes from considera- 
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41*. 

tlon  shock waves and the local explosion phenomena as well as the 

finite perturbation propagation velocities which are connected with 

their existence. 

In view of this, the incompressible liquid hypothesis cannot be 

used to study the explosion process. This Indeed raises the need for 

setting up additional supplementary equations to close the system. 

Such equations are the equation of stare and the energy equation, 

which contain, in addition to the foregoing, two other variables, 

namely the absolute temperature T and the heat influx e. But in most 

cases the high speeds of the explosion processes practically exclude 

the possibility of heat exchange with the surrounding medium, so that 

the heat flux is assumed equal to zero (e = 0) and the system of equa- 

tions is closed. 

However, solution of such a system of equations for the general 

case entails great mathematical difficulties. In view of this, only a 

series of investigations for motion with plane, axial, and spherical 

symmetry have been carried out. At the same time it must be noted that 

it is precisely the analysis of one-dimensional motion which is of 

primary interest. 

Exact solution of the explosion problems has been obtained only 

for motions with plane symmetry. In all other remaining cases only ap- 

proximate methods have been developed. We present here only some of 

these methods, paying principal attention not to the derivations and 

transformations, but to the research methods. 

In calculations based on any of the existing schemes, it is nec- 

essary to know the hydrodynamic elements at the Initial instant of 

time. 

We now proceed to such an estimate. 

Assume that at some instant of time, which we shall regard as in- 
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itlal (t = 0), the values of the hydrodynamic elements v^,   p,   and 2 

are specified on both sides of the plane x = 0. We assume that for 

r < 0 we have at that instant everywhere 

vx —const ^Vi,   p != const — ps,   p = const = ?] 

and for r > 0 

Vj.<= consi = v2;   p = const =p.i;   p=:const = p2. 

t'S 

VnPi<e< h.Pnh 

r~0 

t-it 

5,,;,, Vt'.p.'.fl 

-3 

r-O 
?i "vPiJ, 

Fig. 37, Breakup of initial explosion 
surface, l) Weak-discontinuity surface; 
2) stationary strong-discontinuity 
surface; 3) nonstationary strong- 
discontinuity surface. 

These six quantities are in general perfectly arbitrary. On the 

plane r = 0 the dynamic compatibility conditions are not satisfied, so 

that the initial discontinuity surface breaks up into three surfaces 

(Fig. 37). In the medium with parameters p2,   v2, and p2 there will 

propagate a nonstationary strong-discontinuity surface (shock wave) 

with seme-velocity N to be determined (line OA).- Moving in the same 

direction will be a stationary strong-discontinuity surface, which 

separates one medium from the other (line OB). The velocity of its 

displacement, v, is also to be determined. Finally, to the left of the 

initial surface there will propagate a weak-discontinuity surface (or 

characteristic) with velocity equal to the velocity of sound in the 

medium p-,, p-, (line OC) . 

We shall assume the quantities v-^ v2, p1, p2, p1, p2 known, with 

v2 = 0, p2 = p0, and p2 = p0. 
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Then,, to estimate the hydrodynamlc elements v'^ p^t   P'Q*   
v'i- 

p'   p'-,,, N we shall have the following system of equations: 

1) on the nonstationary strong-discontinuity surface 

[pO] « 0, ( 2 • 3) 
pOM-H; (2.4) 

po[-j-+«]«(/'»]; (2.5) 

2) on the   stationary strong-discontinuity surface 

{z/]=o or v\ = v:, = v'; . (2'^) 
[/»]«»0 or/»J«»^«./?'. (2.7) 

Since the entropy does not change on going through the weak- 

discontinuity surface, we have 

4-4--.' (2.8) 

ond family (rarefaction wave). On this characteristic the values of v 

and a are constant, in accordance with the conditions of the problem, 

and consequently the following relation will he satisfied in the en- 

tire region 

z/-Jr~-lT-a'^—~al + 'vl. (2.9) 
'  X — 1     .  x — 1      .   . 

The system of equations (2.3)-(2.9) enables us to determine un- 

iquely the seven unknown quantities. 

For an ideal gas Eq. (2.5) is conveniently replaced by the Hugo- 

niot adiabatic curve 

and for water it is replaced by the dynamic adiabatic curve [see - 

(1.198)]: 

p'-Po-äUhf-ttl.- (2.11) 

Let us now carry out the necessary analysis for estimating the 

hydrodynamlc elements on the front of an underwater shock wave at the 
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initial instant of time. Neglecting p0 we  obtain from (2.11) 

(2.12) 

but 

pi _ ^L 
Pi    Pi ■ 

hence 

pi 

On the  basis   of   (2.12)  and   (2.13)  we have 

P't-jtC (2.13) 

i       i 

Pi^PiI^'-Po*')]"-^- (2.14) 

Finally^   from  (2,9) 

or 

v- 

•Substituting the values of p^ and p' in (2.15) and recognizing 

that* 

^]/d^-^{i—t> (2.16) 

we obtain finally 

]/ d (ft -rt) [~ - i-) + -7h-]/jr[ä[Pt-?*)f-+p± =- 

. ~~rr\/:f+^.. (2.17) 

Equation (2.1?) contains only one unknown quantity, p^. Solving 

this equation we can calculate the density on the front of the shock 

wave at the initial instant of time. Then, using the dynamic compati- 

bility conditions, we can readily obtain all the remaining hydrody- 

namic elements. 

Perfectly analogous arguments enable us to obtain a corresponding 

dependence for the case of an ideal gas. Such a dependence has the forrf 
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p, ^ ,_ / j. _ M 

^ £2 ,_ 

(A+ 1)-.(A-I)i2. 

(2.18) 

The unknown quantity is again the density on the front of the 

shock wave, P'p* 

In carrying out calculations by Formula (2.18), it must be borne 

in mind that usually the ratio P'O/PQ ln Problems of this type is 

close to the value of (k + l)/(k — 1). We can therefore put 

P2 
Po *— i 

(a + a'), 

where a is a small quantity of first order, 

Here 
A + 1 Pi 

MJ   Pa 

4* A+ 1 
(*—l)s   A—1 "(a+l) 

a(a+ 1) 

Calculation of the foregoing expression no longer entails an es- 

timate of a difference between nearly equal quantities, and is conse- 

quently more convenient for practical purposes. 

In Table 6 are given the values of the hydrodynamic elements on 

the front of a shock wave at the initial instant of an underwater and 

aerial explosion for four types of explosives. The data characterizing 

the detonation of the explosive are those of L.D. Landau and K.P. Stan- 

yukovich. * 

The results of calculations for an underwater explosion give an 

order of magnitude close to those obtained by experiment. Thus, in a 

study of explosions produced in water by a charge of PETN, Dering 
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TABLE 6 
Hydrodynamic Elements at the Initial In- 
stant of Explosion 

- 8 

9 
10 
ii 

12 

14 

15 
16 

17 

18 

20 

15 
16 

17 

21 

1 
•PopMynn nmi oöoaiia'ieiine 

BapbiDqaroe nemeciD 

3 % 
niiKpiMio- 

11.151 
KIIC.IUTa 

5 
TCTpiM 

190 000 ilü 000 275 000 

3,2 3,1 3,2 

163 173 173 
1680 1 730 2 000 

7000 7100 8-100 

7napnMeTpu  A e T o n a u H o » u o II   BO nm 

flan.ieiine   na   (jjpoiiTC Aeroiiaunoti- 
Moll no.'iiiu, K:/CM- (/;,) 

noKaaaie.n.   njina6aTbi   npo^yKios 
U3pl>tDa  (v.) 

IlflOTIIOCTI.   BB, KCCI-K'/M' (p,) 

CKopocTb MacTim npoAVKTOD napuua, 
M/ceK (t/j) 

CKopocTb AeToiiamut, ju/ce/e 

13   HapaMeipw   noÄDOAiioll   yAapiioll   BOmthl 

n.ioTiiocTb       no,au       11a     (jjpoiire,        177 179 178 
K! CCK'/M4   (pj) 

Ännaeiiitc na (jipoiiTc, KZ/CM' 133 500     143 500      MO 000 
CKopocTb     ncpcMemciinn    yAapnoll       5 550 5 730 5 700 

iio.mu, M/ceK (A') 

CuopocT!,   _ HaCTim     an     (jipoiiTOM,        'J370 2475 2450 
M/CCK (t'j) 

TeMneparypa 11a i]ipoiiTc, °C 590 040 C10 

19   n a p 11 M e T p u   a o 3 A y in n 0II   y A n p 11 0 II   a 0 ^ n u 

n^OTiiocTb     non.ayxa     11a    (IIJIOIITC, 
KC CeK^/M4   (pj) 

Jlaii.ieiiiio »a ijipoiiTe, KI/CM'
1 

CKopoCTl.     nepe.Meaieinin    yjapucll 
Bo.inu, Mjceit (N) 

CKupoCll.       inCTMU       33       (j)pOIITOM, 
M/CCK (f^) 

TewncpaTypa im (jipoiire, °K 

0,7428 0,7437 0,7401 

622 750 970 
7720 8530 . 9050 

5940 6590 7440 

28 900 32 800 44 200 

230 000 

3,1 

163 

1850 

7000 

182 

160 000 

eooo 

2050 

725 

0,7445 

838 

89Ü0 

C920 

38 100 

l) Formula or symbol; 2) explosive; 3) TNT; 
4) picric acid; 5) PETN; 6) tetryl; 7} 
parameters of detonation wave; 8} pressure 
on the front of the detonation wave, 

kg/cm  (p-i); 9) adiahatic exponent of ex- 
plosion products (/c); 10) density of ex- 

2  4 
plosive, kg-sec /ra  (Pn) J H) velocity of 
the explosion-product particles., m/sec 
(v-,); 12) velocity of detonation, m/sec; 
13) parameters of underwater shock wave; 
14) density of water on the front, kg-sec 

h   ,        . . 
per m  (p'o)j 15) pressure on the front, 
kg/cm~; l6) displacement velocity of the 
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TABLE 6 (Continued 

shock wave., m/sec (N)] 17) velocity of par- 
ticles behind the front., m/sec (v'p); 18) 

o. temperature on the front,  C.; 19) param- 
eters of aerial shock wave; 20) density of 

air on the front, kg-sec /m  (p'o); 21) 0K. 

obtained for the displacement velocity of the shock wave about 6800 

m/sec and for the pressure 140,000 atm. B.I. Shekhter obtained for TNT 

N = 6100 m/sec and p = 136,000 atm. The density jump registered upon 

the explosion of a charge of PETN in water was pf/p0 = 1.75.* 

It can be assumed that a somewhat greater discrepancy between 

theory and experiment will be obtained for an aerial explosion, in 

view of the considerable deviation of the equation of state of real 

gases' at high pressures and temperatures from the Mendeleyev-Glapeyron 

equation of state. 

If we assume k = 1.25, then we obtain for a TNT explosion: 

air  density on the front pf = 1.117 kg-sec /m; 

pressure on the wave front pf = 1370 kg/cm ; 

displacement velocity N = 11,900 m/sec. 

§2. LAWS OF SBGLARITY IN THE THEORY OF EXPLOSIONS 

The study of the complicated processes that accompany an explo- 

sion, both with theoretical methods and particularly with experimental 

methods, is impossible without extensive use of the general laws of 

similarity of physical phenomena. The theory of similarity and dimen- 

sionality makes it possible to point to the most rational analysis 

scheme and permits us to choose in most convenient form the minimum 

number of parameters reflecting the many aspects of the investigated 

process, and helps generalize the obtained experimental data. 

The theory of physical similarity is based on three principal 

theorems. 
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First theorem. If a group of phenomena defined by corresponding 

systems of equations and uniqueness conditions, is similar, then the 

quantities contained in the indicated systems should form complexes 

which retain one and the same numerical value for a specified group of 

phenomena. These complexes are called the similarity invariants. 

In other words, the first theorem of similarity theory indicates 

that a physical phenomenon does not depend on the measurement scale 

and can be characterized fully by some dimensionless combinations of 

defining parameters. 

The second theorem of similarity theory, sometimes called the TT 

theorem, states that in any phenomenon it is possible to find connec- 

tions not only between the real named quantities, but also their dimen- 

sionless combinations. 

In this case, if there exist n dimensional quantities, character- 

izing the phenomenon, and the problem is considered in k fundamental 

units, then the number of defining similarity criteria is equal to 

n — k, where one criterion arbitrarily chosen among them can be re- 

garded as a function of the remaining criteria. 

Third theorem.. The set of phenomena defined by specified differen- 

tial equations and uniqueness conditions constitutes a similar system, 

if the quantities contained in the uniqueness conditions also consti- 

tute a similar system, and the invariants of this system, defined by 

the specified equations and setup of the indicated quantities, have 

one and the same numerical value. 

In other words, the third theorem of similarity theory stipulates 

'In its most general formulation the fulfillment of similarity in the 

boundary conditions of the problem. 

In particular, it follows from the third theorem that systems 

that are similar prior to the start of some physical process, will re- 
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main  sirnilar also after the termination of this process., If the proc- 

ess Itself corresponds to the similarity conditions. 

In mechanics one makes a distinction between geometrically, klne- 

matlcally,, and dynamically similar systems. 

Two systems are called geometrically similar if the ratio of 

their comparable linear dimensions is the same. The ratio of the lin- 

ear dimensions l-, of one system to the comparable dimensions Zp of the 

other system is called the modulus or scale of geometrical similarity 

A = Z -, / Z p . 

Geometrically similar systems can execute geometrically similar 

displacements. If the ratio of the time Intervals during which the 

corresponding points of the systems describe comparable sections of 

trajectories is the same for all points of the system and is main- 

tained constant during the entire time of motion., such systems are 

called klnematlcally similar. 

Thus, kinematic similarity is defined by means of two scales the 

linear scale X and the time scale T = t-Vt,-,. 

Two systems are called dynamicaHly similar if in addition to hav- 

ing kinematic similarity they are also similar in their mass distribu- 

tions. 

Thus, in the case of dynamic similarity there is added another 

scale, the ratio of the masses at the comparable points: 

M = iiu/nip. 

On the basis of all the foregoing we can present the following 

definition of similarity. 

Similar systems are ones in which all the quantities characterizing 

the state and motion of one system can be obtained by simple multipli- 

cation of the corresponding quantities of a different system by con- 

stant factors. 
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From an analysis of the Navler-Stokes equations It follows that 

the motions of a compressible viscous liquid^ subject to the action of 

mass forces., are dynamically similar if the following four dimension- 

less criteria are identically equal to one another at comparable points 

of the flow: 

the homochrony or Struchal number 

H == vt/lj (2.19) 

the Froude number 

the Euler number 

the Reynolds number 

v2/g^ (2.20) 

E = p/pv2; (2.21) 

Re = vl/vj (2.22) 

where v is the particle velocity, t the time, g the acceleration due 

to gravity, I the characteristic linear dimension of the body, p the 

pressure, p the density, and v the kinematic viscosity coefficient. 

In most cases the similarity conditions can be satisfied only in 

part. It becomes necessary then to estimate the errors arising when 

the results of model investigations are recalculated for the natural 

phenomena (the so-called scale effect). 

Inasmuch as in gasdynamics one studies the motion of an ideal 

fluid which is not subject to the action of external forces, only two 

out of the four similarity criteria of hydrodynamics need to be taken 

into account, the Struchal number and the Euler number. 

Lack of similarity after Froude and Reynolds in such problems can 

obviously not give rise to a scale effect. 

Let us assume that the natural and model explosions are carried 

out in one and the same medium; we then have p0 = pQm- 

From the conditions of dynamic compatibility it follows that In- 
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dependently of the causes leading to the formation of the shock wave, 

there exists between the hydrodynamic elements on the front a one-to- 

one relationship. Consequently, If It Is ascertained that at ■.-definite 

distances from the explosion centers of two charges the pressures on 

the front are Identical, then the Euler numbers are likewise identi- 

cally equal 

Pa 4i      run 

The simplest case from the point of view of similarity is when 

the hydrodynamic fields are investigated under explosions of charges 

made of the same explosive. Since the detonation waves arrive in this 

case at the charge surfaces with Identical parameters, then complete 

similarity of the fields will obtain even in the immediate vicinity of 

the explosion center. 

Prom the Struchal conditions, assuming that the particle veloci- 

ties are equal to each other at the comparable points, it follows that 

This means that in the simulation of liquid motion due to an ex- 

plosion, the scale of the linear dimensions should be the same as the 

time scale. 

The characteristic linear dimensions that determine the scale of 

the phenomena in explosions are the dimensions of the charge. This 

leads to the following law of similarity in explosions of Identical 

explosives: the parameters of the medium do not change in the motion 

caused by the explosion if the scales of length and time with which 

these parameters are measured are Increased or decreased by the same 

factor as the dimensions of the charge. 

For example, the pressure in the shock wave, measured at a dis- 

tance r from a TNT charge of spherical form with radius RQO should be 
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equal to the pressure in the shock wave at a distance Ar from a charge 

of radius A.R0„. 

The pressure patterns at the corresponding distances will have 

the form shown in Fig. 38, which illustrates clearly the deformation 

of the pattern pressure at comparable distances upon change in the 

■'Charge dimensions. 

The formulation of the similarity laws becomes somewhat more com- 

plicated upon comparison of the hydrodynamic fields produced in a liq- 

uid in explosions of charges of different explosives. Experience has 

shown that the similarity can be based in this case on the energy prin- 

ciple. It is natural that in the direct vicinity of the charge,, there 

will be no similarity of the fields in such cases, in view of the dif- 

ferences in the boundary conditions. However, since the process of 

energy dissipation occurs at high speed in the case of strong shock 

waves, there unavoidably occurs an instant when at definite distances 

from the centers of two different charges the values of the pressures 

turn out to be identical, and consequently, by virtue of the condi- 

tions of dynamic compatibility, the pressures and the particle veloci- 

ties are also equal. 

v ■ 

% 

\ 

^^ 
^>*w-^ T^-«^, r~~ 

-» .1 

■ ■■■   ■ 

A 
. u \tx • !ft . u 

1 3       < $ t kk 
Fig. 38. Variation of the pat- 
tern pressure for a similarity 
modulus X. 

The comparable points will then be determined from the following 
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relations: 

-3—=-3—' (2.23) 

where E-, and Ep are the energies released in the explosion of the two 

different charges. 

The same ratio is obtained also for the comparable instants of 

time 
3 _ 

•A = J£L.. (2.24) 
VEi      : 

On the basis of the foregoing, the pressure field due to the ex- 

plosion can be represented as a function of two parameters 

V VE- .  YE) 

The explosion energy is proportional to the weight of the charge 

G. The latter, in turn, determines uniquely the radius of the equiva- 

lent spherical charge, since 

0 = 4n/^T. (2.26) 

where 7 is the density of the explosive. 

Putting Y = 1.6 g/cm3, we obtain for TNT 

/?w = 0,053 KÖ. (2.27) 

In Formula (2.2?) the radius of the charge is in meters and its 

weight in kilograms. 

We thus obtain in lieu of (2.25) 

p~>{-k. -k)- (2-28) . 
In order to deal with a function of dimensionless parameters, it 

is best to rewrite Fonuula (2.28) in the form 

Obviously, for the maximum pressure, which occurs on the front of 

- 122 - 



the shock wave, the following equality holds true: 

/?=^<p(ir)- (2.30) 

One of the most important characteristics of an explosion, which 

in many cases determines its force effect on a partition, is the im- 

pulse of the pressures, defined hy the integral 

t 

I*~]pdt, (2.31) 
0 

where the time is reckoned from the instant when the shock wave front 

arrives at the given point. 

In the last relation, substituting the value of the pressure by 

Formula (2.29) and going over to dlmensionless time, we will have 

„„m R„, (ft tat    JL.\d('"o\ (2.32) 

where T, = taQ/R0o is the dlmensionless time. 

Since the integrand is a function of dlmensionless parameters, it 

is obvious that at the same relative distance and for equal values of 

the relative time, the values of the impulses will be proportional to 

the radii of the charge or, what is the same, to the modulus of geo- 

metrical similarity X. 

Example. Establish the similarity parameters for an explosion, 

using the principles of dimensionality of the functions. The medium in 

which the explosion occurs has an initial density PQ and an initial 

pressure p0. 

Solution. The main parameter characterizing the charge is the ex- 

plosion energy EQ. The hydrodynamic fields, as shown above, are func- 

tions of the distance r and of the time t. Consequently, from the con- 

ditions of the problem, the process is determined by the following di- 
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menslonal  quantities: 

EQJ PQ}    PQ}    F*    t. 

We  shall  asstime  the number of principal units  to be  equal to 

three   (k = 3), —   [T],    [M],    [L].   Then,   on  the basis  of  the TT-theorem of 

similarity we  can reduce the number of variables from the five men- 

tioned above  to  two dimensionless   criteria.   To  this  end we write  out 

first  the   dimensionalities  of  the   Initial parameters: 

[P.] = MI-; 

[i] = T, 
[/•] = I, 

[£,1 = A/r-'r-3, 

(2.33) 

where v = 3, 2,   and 1,   respectively, for motions with spherical, cylin- 

drical, and plane symmetry» In writing down the dimension of energy we 

use the energy per unit length for motion with cylindrical symmetry 

and the energy per unit surface for motion with plane symmetry. 

The dimensionless similarity criteria 1^ and n2 will be sought in 

the form of fractions, the numerator of each is one of the n — k ar- 

bitrarily chosen quantities, and the denominator is made up of all the 

remaining mentioned quantities each raised to a power to be determined. 

Let, for example, the numerator of the first criterion be EQ and that 

of the second p0. Then 

n,= 

PoVW'. 

p« 

In order to find the values of the exponents x^ and yi, we equate 

the dimensionalities of the numerators and denominators of the expres- 

sions for IL and Hg: 

mi    MIS-'T-*      . rn 1 J  ML-'T-* 
1 lJ [ML-W'T**'      '"      IML-*?'V'T*' 

we then obtain 

xi = ^     ^i = 1' 
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*£ = v + 2,       y2 = 2^ 

^3 = -2,       y3 = -2. 

Thus, 
. <  i 

n_  ^ A_ü_. i (2.3^) 

' .n^^-g-.l (2.35) . 

The obtained similarity criteria fully determine the process un- 

der the initially assumed premises. 

However, generally speaking, the second theorem of similarity 

theory admits of a nonunique choice of the defining criteria. 

It is possible, for example, to stipulate In this case that the 

second of the similarity criteria depend only on one variable, for 

example t. 

Then, following the method already developed, we write 

I'o'to'ti' 

or, going over to'the dimensionality formula 

, In'l . r 
|/H/.-i/—■'1" [/W/.'-'r-'l'' l/M/.-'l''' 

hence 

^1 + i-s + ^ = 0, 
1        1 

—*! + (v — 1) z, — 3/, = 0, 1 

-2^-27, «1, 1 

Consequently, 

n =■ 
■i ~ v p v  'a" 

'JS. .. (2.36) 
Pv £0 Po '-u fo 

This form of the second similarity criterion was used by L.I. 

Sedov to study explosions with account Of coUnterpressure. 
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§3. ^3TE:A'i2 C? ::YD::
.ODYNAMIC FIELDS IN THE CASE OF STRONG EXPLOSIONS 

Assuming that th£ rr.ain parameter characterizing the charge Is the 

explosion energy ~^,   and that the proportiec of the medium are deter- 

mined sufficiently fully by the initial density pQ,   the initial pres- 

sure PQ., and the ali.abatic expansion coefficient k, L. I. Sedov indi- 

cated the follov/ing system of fundamental quantities for the estimate 

of the adiabatic perturbations of gas motion: E0, p0J pn, k, v,   t. 

In accordance with -the 77-theorem of similarity theory, we can set 

up from these quantities the following three dimensionless combina- 

tions: * 

k-X^-^-ßL.; (2.34) 

T + 4 
■- = x. (2.36) 1 

p V   2 
"-0  Po 

The effect of the initial pressure p0, and consequently also of 

the parameter T, is due only to the conditions of dynamic compatibility 

on the front of the shock wave. But if we study a strong explosion, 

then in the near zone the pressures on the front are two or three or- 

ders of magnitude higher than the initial pressure. Consequently, in 

such a problem one can neglect the initial pressure and the variable 

T. Then the motion will be determined only by the dimensionless param- 

eter X,   from the structure of which it follows that the process can be 

regarded as self-similar. 

Assuming that Pr/Pf « 1J we ohtain from (1.186) 

Consequently, 

P*-T^TPO- (2.37) 

k + I 

. + 1. »Tfr^       (2-38) 
*_r?o~po  2 

k—\ Po 
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P^T+TP"^
2

- (2.39) 

From, the constancy of the density on the front of the shock wave 

it follows simultaneously that the parameter X  on the front should 

also remain constant at A. = A*. The law of motion of the shock wave 

can in this case be readily established directly from the relation 

(2.34): 
i   a 

'■" r*~[l^J      f*  ' (2.40) 

Differentiating (2.40) with respect to time, we obtain 

^ = -^* =_l_('_^V'^r^:; = -^-^        (P hi) yv   dt 2 + vU*>.'/ 2 + N ^- [ti.M-l) 

Relations (2.40) and (2.4l) are in good agreement with the ex- 

perimental data on the propagation of an aerial shock wave near a 

charge. 

Using Condition (2.41)., we can write the equations of dynamic com- 

patibility in the form* 

P*~l?TW-th-{%r. (2.43) 

We now introduce dlmensionless functions of the velocity, d^ ~-'-'y, 

and pressure, defined by the relations 

^ = T'T0: (2.45) 
p = Fo^); (2.45) 

p^9*~p<y). (2.47) 

From a corr.parison of (2.42)-(2.44) and (2.-',5)-(2.47) it follows 

that the functions V, R, and P assume the follovring values at the 

front of the shock wave 

o=-i±l. (2.45) 
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total energy In a certain volume Q,   hounded  by a spherical (cylindri- 

cal, plane) s-urface X —  const. The displacement velocity of the points 

of such a surface will be, in accord with (2.41)., N = 2r/(2 + v)t. 

Since in accordance with the conditions of the problem we neglect 

the initial pressure p0J, we neglect simultaneously the initial energy 

•of the gas e = p/(k — l)p compared with the energy which the gas ac- 

quires as a result of the explosion. Therefore the total energy of the 

gas inside the volume Q, bounded by the surface X = const, should re- 

main constant. 

Let the coordinate characterizing the volume Q be equal to r. Ex- 

panding in accordance with the law (2.41), the surface X  = const yields 

after a time dt a volume increment 47Tr Ndt, which contains gas with 

energy 47Tr Ndt[(pv /2) + pe]. 
p p 

This energy should equal the energy 47rr vdt[(pv /2) + pe ] which 

is delivered by the gas flowing over a time db through a sphere of 
p 

radius r,   and the work of  the  pressure  forces  47Tr pvdt. 

We  thus  have 

4r.r-Ntit(^~ + pe) = 4itr}P(/^( ^- + p») + Ar.r-pvdt, 

or,  what  is  the  same. 

Finally,   replacing the   quantities  v,   p,   and p  in the   last  equa- 

tion by V,   P,   and R using Formulas   (2.45)-(2.4?),   we  obtain ultimately 

Relation  (2.52)   is   the   Integral of the   system  (2.51). 

Using  this  relation,   it is  possible   to  obtain  in closed form the 

solutions  for  V,   R,   and  P,   given  in L.I.   Sedov's  book  "Methods   of  Sim- 
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ilarlty and Dimensionality in Mechanics." 

As already mentioned., the initial pressure p0 can be neglected, 

considering only the near zone of the explosion. At large distances, 

the pressure behind the i'ront drops and the Influence of the pressure 

of the undisturbed air ahead of the front of the shock wave becomes 

more and more important. 

An account of the counterpressure greatly complicates the problem, 

for the motion is no longer self-similar. It becomes necessary then to 

Integrate a system of partial differential equations by using some 

numerical method. This was done in the work by D.Ye. Okhotsimskiy, 

I.L. Kondrasheva, Z.P. Vlasov, and R.K. Kazakov "Calculation of Point 

Explosion with Allowance for Counterpressure." These authors obtained 

not only the fields of pressures, densities, velocities of flow, and 

temperatures for an explosion in a homogeneous atmosphere, but also 

calculated such Important parameters as the impulses of the pressures 

in the positive and negative phases, together with the limiting dis- 

tribution of the hydrodynamic elements. 

The calculations are in good agreement with experiment. 

Thus, it can be regarded that at the present time the problem of 

an aerial explosion has been solved completely and exhaustively. 

The situation is much less satisfactory in the theory of under- 

water explosions, to the exposition of whose main problems we now pro- 

ceed. 

§4. L.I. SEDOV'S METHOD AS APPLIED TO THE STUDY OP UNDERWATER EXPLOSIONS 

Whereas in the study of strong explosions we can assume the veloc- 

ity of sound in the unperturbed medium to be small compared with the 

velocity of displacement of the shock wave over a sufficiently wide 

range of distances (a0/N < 0.1) and we can neglect the counterpressure 

P0, neither can be done in the study of underwater explosions, if it 
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is recognized that in the latter case the role of "counterpressure" is 

played by the constant c = 5400 atm, and the shock-wave velocities can 

be only 3-5 times greater than the velocity of sound. Consequently, the 

direct use of L.I. Sedov's solution for the analysis of the propaga- 

tion of underwater shock waves is impossible. 

Nonetheless, the self-similarity principle proposed by Sedov can 

be used as a basis in the present case, too. 

For simplicity we shall investigate isentropic motion, which is 

perfectly permissible for the case of an underwater explosion of or- 

dinary explosives. 

We write down the system of equations in terms of the variables v 

and a: 
2 da        r,    . dv    ,        dv    . 

dt    '        or    '   f. — 1       dr 

da   '.-  ■   da    , 1  -dv +^i(v_l)^ = 0. T^a-dr 
(2.53) 

We  put 
*, = JlV(X), 

(2.54) 

where   just as before 

X = 
E   r- 
Po   '■": 

(2.35) 

In the new variables, Eqs. (2.53) are rewritten in the form 

X j 2/1' — mVA — ^~- mAV'] = 
(2.55) 

A-AV LlliJlZLiliilliJ 

Eliminating the variable X from the system (2.55), we arrive at 

one equation, where A is the sought function of V: 

/ | Aivm* — mV» - A*  ~=r  +(2 4- m) V= — 2V] = 

nAt-AV'm^t  (v"I)
2
(*~1)] + ^[r(« + l) + 

+ (v_l)(x_I) + W;A=^'j_2A (2.56) 
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Assume that at sorae instant of tine t0 (for example, at the in- 

stant that the detonation wave emerges on the surface of the charge) 

we have r = r0J v = v*, a = a*, N = N*. Then on the basis of (2.54) we 

have at the same instant 

AiX*)~£. I (2-56a) 

Knowing the quantities V(X*) and A(^), the integral of the equa- 

tion (2.56) can be obtained by using numerical methods. 

Let us assume that as a result we have obtained a certain solu- 

tion A = A(V). Then, using the first equation of (2.55), we obtain 

so that the function A is determined by the quadrature 

— I  *-jdV      äV. (2.57) 

and,   consequently,   we  obtain the  functions 

V~V[ir)     and    A-A^), 

The position of the front of the shock wave is determined by the 

conditions of dynamic compatibility 

N*~ali+.±.v^a, + ±&.V{W (2.58) 

but 

We thus obtain the ordinary differential equation 

^-«o + 4"TV,(^.0. (2.59) 

which when solved yields rf = rf(t) and Xf = Xf(t), thus completely 

solving the problem under the assumptions made. 
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Let us dwell in somewhat greater detail on motion with spherical 

symmetry. In this case Eq: (2.56), after substituting the numerical 

values of the coefficients m = 5, v = 3. K = 5-53,   is rewritten as 

1      M3 — 27,65/} V* + 9,7G5A V — 2/1 , „    r^s 
A ^ IbA'V-SV'-l^AA' + 7 V'—2 V \d.'0\J) 

Let us investigate the character of the integral curves in the 

half plane V > 0. 

For this purpose it is necessary first of all to find the singu- 

lar points of the differential equation (2.60). 

They will be determined by the coefficients of an equation in the 

form 

dy ax -f fry 
dx      rx + i/y' 

The'course of the integral curves in the vicinity of the singular 

point depends in this case on the roots \  of the equation 

X- — (Z» -f c) X + £c — cd = 0. 

If the roots X-, and A.2 are real and have the same sign, the 

singular point is called a node. An infinite set of integral curves 

passes through a node (Fig. 39a). ., 

If X1 and X2 are real and of opposite sign, only two curves pass 

through the singular point. The remaining curves do not pass through 

this point-. A singular point of this type is called a saddle (Fig. 39b) 

If the roots A^ and X2 are complex conjugates, then the integral 

curves in the vicinity of the singular point are a family of logarith- 

mic spirals. The singular point is called a focus (Fig. 39c). If the 

roots A., and Xg are purely imaginary, then the family of integral 

curves Is a family of closed curves, surrounding the singular point. 

Such a point is called a center (Fig. 39d). 

It may turn out that the roots X1 and Xg are real and equal to 

each other. Then, if a = d and b = c = X, all the integral curves pass 
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through the singular point with  a definite direction of the tangents. 

Such a point is called a dicritlcal node (Fig. 39f).   There is in addi- 

tion a node with one common tangent to the Integral curves (Fig. 39a). 

I 

d 

Fig.   39.   Character  of singular points  of 
an ordinary differential  equation. 

Let us  return to Eq.   (2.60).   In this   case   the  singular points 

will be   0(0,   0);    3(0,   2/5);   Y(0,   1);   6(0.5,   0.129);   £(00,   00). 

At  the  points  of the  parabola  A2 = V2^ -   [(K +  13)v/l0] + 2/5  the 

integral  curves have horizontal  tangents;   at the  points  determined by 

the  equation 

/« = 
il'J —Tl'3 + 2V 

15K- 
(2.61) 

*— 1 

and the tangents to the integral curves are vertical.* 
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The possible course of the Integral curves is shown in Fig. 40. 

On the basis of the data of Table 7,   calculating the pressure 

fields for the explosion of a TNT charge, we can assume* Y{X*)  =  0.390, 

A(A*) = 1.104. 

The f\mctions V(x/X*) and k{\/X*),   calculated by numerical in- 

■tegration, are shown in Fig. hi. 

TABLE 7 
\ 

KoopaimnTW 
ocoöoll 

2    TOMKM 

<-    Bnj ypaniieiinti 
D  OKpeCTllOCTll  ocoöoli 

TO'lKll 

0                  1 
OXaprfKTcp  1 Vr-ionue i<o3(|i(lM!uifciiTi.i 

ccoGul!         Kncare.ii.iius K nine- 
TO'IKH       I, rpn-'ii-iiMM i;piini.iM 

/I =0 

K = 0 
i          A 5fliiKpnTli- 

MfCKIllI 
y.ie.i 

6    npoiiaiio.iMiiJ 

-4 = 0 

A = -2,3G3 
7 
CeA.Tomnia 4cpe:i ocoßyio TO'iKy 

npoxo-im npiiMMe 
2 

-4 = 0,  l' = —-"- 

-4 = 0 
V = 1 

-4 = 6.80 4 9   Vac.! *, = 0 
/;2 = po 

A = 0,50 

l/ = 0,129 

.       I,C6SV + 2,483-4 
■" 1,021/+ 0,011-4 

9 Vaw *, = 2,20 

k, = -0,-IS     . 

l) Coordinates of the singular point; 2) 
form of the equation in the vicinity of 
the singular point; 3) character of singu- 
lar point; 4) slopes of the tangents to 
the integral curves; 5) dicritical node; 
6) arbitrary; 7) saddle; 8) the lines A = 
= 0, V = —2/5 pass through the singular 
point; 9) node. 

To stay in the region where the solution is unique, it is neces- 

sary to confine oneself to the range of variation 0 < X < 6.IX*. 

What is striking is that the parameter A. vanishes at a value of V 

not equal to zero. But then it follows from the conditions of dynamic 

compatibility that the velocity of the shock wave at Infinity differs 

greatly from the velocity of sound in the unperturbed medium. Equally 

essential differences from the parameters of the unperturbed liquid 

will be exhibited also by the other hydrodynamic elements. 
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»    jy    v.   v    v    p    0    v    a   is-    ig V      V ,    V      O    -iS     <i» 

Pig.   40.   Possible  course  of  integral curves A = 
= A(V)   in the  half plane  A > 0.   o)   Singular point; 
+ )   initial point;   x)   point of maxjonurn of  the param- 
eter  X:   X — 6.1.   The   dashed  lines  show parabolas 
on which the  tangents  to  the   integral curves are 
either vertical or horizontal. 

Pig.   41.   The  functions  A = A(X/X*)  V = 
= v(Vx*). 

This result, which does not correspond to reality, indicates that 

the assumption that the energy E, being a defining parameter, can-be 

used to construct a solution only in a definite range of values, char- 

acteristic of the region of relatively small distances from the center 

of the explosion. 

As regards the remaining range, it is necessary to assume there a 
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different defining dimensional parameter." Such a parameter may be, for 

example, the characteristic velocity of sound a*. 

Putting 

l-a*1-^ (2.62) 

and assuming 

a-Jj-AW. (2.63) 

we obtain in perfect analogy with the preceding case a fundamental 

differential equation relating the functions A and V, in the form 

Ä_AL.-AVh..lAV(;.+ \)~A ,. . 
/1—   V.A'V  V* .]. 2V* — V        • l^'ö/+j 

The singular points of Eq. (2,64) will be A(0.0), B(0.1), C(1.0), 

D(0.50j 0.129). The points A, B, and C are nodes. Unlike the case pre- 

viously consideredj D will be a saddle in this case. 

This makes it possible to couple together the two solutions in 

such a way  that by continuously following the integral curve A(V) a 

transition is made from the strong perturbations in the liquid to 

acoustic perturbations [the singular point C(1.0) of Eq. (2.64) corres- 

ponds to a weak-discontinuity surface]. 

Starting from the conditions for the uniqueness of the solution, 

we can show that the coordinates that must be assumed for the contigu- 

ity point are V = 0.16; A = 0.78. 

The value of the parameter T} is determined, in analogy with the 

preceding, by the quadrature 
V 

In JL, 
rlz21zik^*v (2-65) 

v—v- 
dV. 

x— 1 

Since the integrand is negative in the considered range of varia- 

tion, it is obvious that the parameter x\  increases as V changes fron 
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V* to zero, and becomes Infinite at the singular point C(l, 0). 

By way of the characteristic velocity of sound it is convenient 

to choose the velocity of sound on the front of the shock wave. Here, 

however, in view of the fact that as the shock xvave moves the param- 

eter T] for the front of the wave decreases, one can no longer use a 

relation of the type (2.58) for an estimate of the shock-wave coor- 

dinates. It is necessary for this purpose to write down the dynamic 

compatibility conditions in a somewhat different form. It can be shown 

that for a wide range of variation of the parameters there exists a 

linear relation between the velocity of shock-wave front- displacement 

and the velocity of sound on the front 

^-.„^■(A' -<a (2.66) 

from which it follows that 

V-X (2.67) 

»; 
im r\ ' 

m - \ 
. 

■■ 

mi 
N 
\ 

im 

ist 

m 

m / s 
^ 

m 
f  L-J^ 

u ill r/H,, 

Pig. 42. Comparison of the values calcu- 
lated by the method of L.I. Sedov (contin- 
uous line) and by the empirical formula of 
R. Koul (dashed). 

or 
.-,■. 

4 — flo 

and, consequently. 
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:*= ?4._. (2.68) 
(   .  ... . 

Figure 42 shows a comparison of the pressure curves calculated by 

the method presented here using the empirical formula of R. Koul.* It 

can he readily noted that for distances larger than 20 radii of the 

-charge, the values of the pressure and the character of its variation 

in the compression zone are close to each-other (Fig. 42). 

§5. PRESSURE FIELDS AT LARGE DISTANCES FROM THE CENTER OF THE EXPI,0- 
SION. THE SOLUTION OF S.A. KHRISTIANOVICH 

It was mentioned in the preceding section that the energy can be 

assumed as one of the main defining parameters only in a study of the 

near zone of an underwater explosion. At considerable distances from 

the center of the explosion the self-similar solutions must be sought 

by assuming that the motion is determined by the ratio of the distance 

to the time. Such an approach to the problem was used by S.A. Khris- 

tianovich. The gist of the solution obtained by him consists in the 

following. 

The equations of one-dimensional unsteady isentropic motion of a 

liquid have the form** 

^+v^+ 2 c^=0 (2.69) 
ät Or   '  n — l     (Jr ' v     ' 

2 ^  ^  '2  ^ (v^n^^Q       (2.70) 

Considering small pressures, we assume that 

We then have 

—o[l + ^fJ. (I'206) 

In the main system of equations we change over to new variables, 

putting 
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ß.-=-£-; (2.71) 

t-In/. (2.72) 

Here,   obviously,   r =  ße 

dv       dv dr    ,    dv dt dv     ^   öv , 
"57 ^ 7)7 "37 + öF DT ^ ■57 ^ + "57 r' 

dv       dv     dr        dv   r 

hence 

dv ß dv 
dr r Sf» 

dv 1 (dv 
-}■ dt / u 

(2.73) 

•f). (2.74) 

In full analogy 

l^-ff-. (2.75) 

Substituting these relations   into   the   system  (2.69)-(2.70),  we 

have 

\  I dv      a dt/N   ,        3   dv   ,'    2 ß    dij      » 

T U-^j + ^-r^ + ri^T-S?""30' 
+ ^~?)-f + n-^r«i«o; (2.77) 

n4n[^ + (—?)f] + «t^(^^=o, (2.78) 

In the  case   of small pressures we   can put 

? —n«(i + S); (2.79) 
a-=ia0(l + a); (2.80) 

* —floAf. (2.8l) 

We  then obtain in place  of  the  system  (2.77)-(2.78) 

dM,...      ,       sydM  ,      2    ,,   ,    ^ da       n (2    Q2) 

+ {''~i)i\t') M~o. (2-83) 

We consider solutions that do not depend on the variable r. We 

then obtain from Eq. (2.82) 

•sr^-fir+S)^-1-^-^- (2.84) 
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Substituting  (2.84)   in  (2.83)  we have 

 rn—■55- + (I ■f^Tä- + —m—^rao, 

or 

— (/WJ + 1 + «2 — 2/W + 28 — mi) ^ + 

+ (1 +2« + a')-jy + ^q-^ Af = 0. 

Discarding terms of second and higher order of smallness, we ob- 

tain ultimately 

(jM_s + a)f+ ^^ = 0. (2.85) 

We shall consider first motions with spherical symmetry. The ini- 

tial equations will be 

(M + a-V^ + M-O. (2.87) 

For the initial data we assume that a = a0 and ö = 60 for M = 0, 

and in accordance with (1.206) 

„ —1—1 P' a<'~~~T"Bh- 

Integrating   (2.86),   we obtain 

a-^^M, (2.88) 

Substituting   (2.88)   in  (2.87)  we get 

(a0 + n-^i/W + yW-S)f+ /W = 0; 

Ot ^0. a. J (" + \X 
dM M ^ M 2      ' . 

or 

M      i „.     »0 , .^t1) (2  89) m    M M        'i    ' \       s 1 

Equation  (2.89)   is an ordinary first-order  differential equation. 

Its general  integral  is 
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o - «, = CM - ^-|ü M laM, (2.90) 

where  C  is  the   Integration constant. 

For  small pressures,   in accordance  with the  dynamic  compatibility 

conditions  the  velocity of displacement  of the   shock wave  front  is 

N~'a fl-l n+ iP — Pol floL1 + ^r-^7rJ' (2.91) 

and the velocity of motion of the particles is determined by the ex- 

pression 

*~^r-. (2.92) 

let us put p0 = 0, and then Eq. (2.90) is rewritten in the form 

a=.C/w —i±J^]n/^ (2.93) 

Since 

"t, la,       l> 

«Jo   Bn' 

we have 

The arbitrary constant C is conveniently replaced by another ar- 

bitrary constant, putting 

C = 'i±iini';. 2   lin 

Thus 

r = «0(l + ^^!n^), (2.94) 

Let us find the velocity of propagation N of the shock wave front. 

Differentiating (2.90) with respect to t,   we obtain 

+ V^(lnf~l)^.  , '(2.95) 
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But  on the  basis  of   (2.91)  we have 

dr**at[l + nT+lp]dt. (2.96) 

Substituting  (2.96)   In  (2.95)  we  obtain after grouping like   terms 

^.pdt = p\n£-d( + t[ln£--l]dp,' (2.97) 

•or 
at In £1-1 

P  

>(4- "f) 
-dp<= — 2 «-4) d]r\p. 

Integrating,  we get 

In/. ln^ rf Inp 

in ^1-4- 

• — Inp- 
rfln 

In- 

. In Q-Inp--i-In [in £1-4-], 

hence 

"V^-T 
(2.98) 

Taking (2.98) Into account. Expression (2.94) can be written In 

the form 

r 
'Ho 

A l + 4r{n+i).E.]nPL 

v^ •0,5 (2.99) 

where R0 Is the radius of the charge and A Is an arbitrary constant. 

Equation (2.99) enables us to estimate the value of the pressure 

on the front of the wave at a distance r from the center of the explo- 

sion. If we know the values of the constants A and p*. 

Let us now calculate the time of action of the shock wave. 

In accordance with (2,71) and (2.79) we obtain 

*     rm=l     f   (l       Ä1 (2.100) 

where 
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v„ 

5--^-^lnp: (2.101) 

^-"-T^^fr     • (2.102) 

/ =i4/?<1 ' (2.103) 
Pm 

or,   after  substituting  (2.10l)-(2.103)   in  (2.100), 

in(JLt.)_..L,n.Pl 
f ^ 'I +  l _4_ ^ V Pm/ p^,     _£_ 
^    2    Sn a, y    p. " (2.104) 

Usually the time variation of pressure in a shock wave is charac- 

terized by the exponential relation 

PBaPme    '■ (2.105) 

from which it follows that the time constant 0 corresponds to the time 

t during which the pressure drops by a factor e. 

Thus, on the basis of (2.105) we obtain from (2.104) 

oflo   „+i^-1M-£)-1 

'        Pm 

For  TNT we  have 
3 _ 

/?„ = 0,053 VG, 

where  G is the  weight of  the  charge   in kg and RQ  IS  the radius  in me- 

ters. 

If In Formulas (2.99) (2.106) we set p*- = 17,000 atm and A = 

= 16,200, then these formulas yield values of frontal pressure pra 

and time   constant  9  that  are  close  to experiment  for p < 250 atm.   _ 

We have 

■r^lll™     _    /L_. (o  107) 
|/i»—p--0,5 

2£a =. i.i i Jgi^.^^. (2.108) 

' Pm 
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200 kCO ooor 

Fig. 43. Comparison of the results of the 
theory (solid line) with the experimental 
data (dashed line) on the values of the 
pressure on the front of a shock wave. 

Comparison of the results of calculations by means of Formulas 

(2.107) and (2.108) with the empirical data is given in Table 8 and 

shown on Figs. 43 and 44. 

At large distances from the center of the explosion. Relation 

(2.107) gives the asymptotic law for the decrease of pressure with in- 

creasing distance, as obtained by L.D. Landau.* 

Motions with cylindrical symmetry can be investigated in perfect 

analogy with the foregoing. 

The initial equations will be 
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* *. 

Hl «;j m 

Fig. 44. Comparison of the results 
of the theory (solid line) and 
the experimental data (dashed line) 
on the values of the time constant. 

dM 
do ■1 do (y, 

(yW + a-of-j-f-0. 

(2.109) 

(2.110) 

TABLE   8 

r 

1    Pacier no sMimpii' 
2      p. 

lecKHM (JjopMy^aM 
Koy.ia 

3 - 3 
Pm,   KZJCM* Pm,  Kt/CM* V 

30 364 3,5 315 3,3 
40 250 3,6 228 3,5 

•     50 188 3.8 177 3,8 
60 150 3,0 144 3.9 
90 91,0 4.1 91,0 4.2 

120 65,0 4,2 65,7     i 4.6 
180 40,5 4,1 41,6 4.8 
240 29,2 4,6 30,0 5,1 

l)   Calculation;   2)   from  the  empirical 
formulas  of R.   Koulj   3)  P  ,   l<g/cm  . 

Taking  the   same   initial  data  as before,   we  arrive  in the   integra- 

tion of  the  system  (2.109)-(2.110),   after elementary transformations, 

at  the  ordinary differential equation 

(2.111) öS 28 2a,        ,      ,        ■ 
m~ iti — ~ IA — {■n +l)- 

Its general solution is 
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•8 —», = («+O/W + C.yW», (2.112) 

where C-,   Is the constant of integration- 

Assuming as before that p0 and consequently a0 vanish and recall- 

ing that 

a0 tii0 

we  obtain 

but 

-^ = a0[l + («+l)Af + CIA^], 

m        a.       Bn- 

Consequently, 

^ = ^[i + (- + i)^ + cI^r2]. 

or, introducing a new integration constant p*, 

^ = -o[l + (-+l)^(l-^)]. (2.113) 

Differentiating, we have 

^=ao[l + (/: + l)JL(l_JL)]^ + 

+ V^[l-2^]^. (2.114) 

But in accoi'dance with   (2.96) 

Thus,   after  substituting  (2.96)   in  (2.114)  we have for the  front, 

of  the  shock wave  the  equation 

±.pdt = p {l-j;) dt+ t{\ -2J;) dp, . 

or 

dt 1    2 ^ 
p* 

t 3       ,   P- 

Integrating it,  we  obtain 
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^> 

r^'r.^jS]'1'' (2.115) 
\p*j     L   3 p*j    - 

Substituting this result in (2.113), we obtain the connection be- 

tween the pressure on the front of the shock wave and the relative 

distance In the form 

l-H.-M^-JL) 
;^a>      ■ -xir- (2.116) ^y"c-+^}' 

The arbitrary constants D2 and p* can be determined from the value 

of the pressure on the front of the shock wave and the time of action 

at some one distance from the center of the explosion. 

§6. ESTIMATE OP HYDRODYNAMIC PIEIDS IN THE ACOUSTIC APPROXIMATION 

As is well known, the propagation of acoustic waves is character- 

ized by the following: constant propagation of sound at all points of 

the medium; small variation of density compared with the density of 

the unperturbed medium: p = p0 + p• with P'/PQ « ^ and also low par- 

ticle velocity compared with the velocity of sound (v/a0 « l). 

Satisfaction of these conditions Imposes entirely different re- 

quirements on the variation of the pressure fields in water and in air 

where the methods of acoustics can be employed. 

Actually, the velocity of sound In an ideal gas Is given by the 

relation 

' p 

Considering an adiabatic process and using the equation p/p "= 

= PQ/PQ, we obtain with difficulty 

«=,..)/(.+£;--».{.+£)*, 
from which it follows that if the tolerable error in the estimate of 
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the velocity of sound is 5$,   the value of p' must be assumed to be not 

more than 0.25 pQ,   and the value of p' must be less than 0.35 PQ- 

For water we have 

i+^ 
a _ i/g iP ± g) _ -B /     n{pa + B)x',~ p0 + B 

p r ?° 1 + 

Po 

Consequently., the error in the estimate of the velocity of sound 

will be 5%  if P'/PQ ~ O-01^. Corresponding to this value Is a pressure 

of 350 atm. 

In view of this^ the acoustic approximation can be successfully 

used for an underwater explosion. 

Let us present the hydrodynamic equations in the acoustic approx- 

imation, which are needed for what is to follow. 

We assume that 

p = Po -r P'I 
/* =■ A) + P'* 

and then we   obtain  for  one-dimensional motion 

1     v   .1.      i     . 
(2.117) 

Ot    '   "Or    '   !>„ + p' Or   .   "' ^ ' 

§ + v^,.(Po + n^ + t^m±ii^o. (2.118) 

Neglecting in Eqs. (2.117) and (2.118) quantities of second order 

of smallness and taking into consideration the fact that 

gg       rfp   fl£ _   1   dp 
ot ^ a/i oi s="^ m > 

we  have 
dv   ,l)jf _„ 

Po -^7 T TiT = Wi 

(2.119) 
Oil 
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Differentiating the first equation of (2.119) with respect to r, 

the second with respect to t,   and subtracting the first from the sec- 

ond, we obtain 

f ■■"' _ J- iV _ -'v - D p„ 4^ — 0.' (2.120) 

Finally, substituting POJ|=_^., in (2.120), we obtain 

?£ _ _L £V 4. (ii^l) i^ a 0 (2.121) 

Equation (2.121) is called the wave equation. It is easy to show 

that under the assumptions formulated above, equations of this type 

will be satisfied also by the functions p' and v. 

Let us consider some particular cases. 

Let the motion have plane symmetry, and then 

'or 

We introduce the variables 

_..4^L = 0. (2.122) 

(2.123) 

The derivatives of p' in the new variables will be 
öp'  dp' j}J_  ,   (V_ ^j , 
dr       "Sf Or "*"  0\  dr ' 

d'pT _ &£ ( <); y  ,   0 J-P'  K   Ojjy 
or* ~ t)6a  \5Fj   't"     d\0i[ Or   dr ~ 

Ö3/'' / l>1 V 4. ££ i^i 4- 1^ ^ 
■+■ CJVVUT; "*" 0; (Wa "^ 1^ of- 

From  (2.123)   it follows  that 

ör a   '     (Jr ==  a  ' 

0=5 0^3        «.    <5'   _. ^1 _-, 1. 
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Z? _ ^ _ n 

On the basis of the relations written out., Eq. (2.122) assumes the 

following form in the new variables 

c)5a ■*" z 3;Jo "*" civ " V a» "OF. 

_ 9 J_ i^i j. _L, ^ — n Z fl- d;c)r, ^ a'   Or;-J 

or, after grouping similar terms., 

i^^o (2.124) 

Let us integrate first with respect to £ and then with respect to 

r],   and obtain 

P'^/iW+AM. (2.125) 

or 

''-/'('-iKM' + i)- (2.126) 

The solution (2.126) is a sum of two traveling waves. 

If the wave propagates in the positive r direction, then fg = 0,■ 

and if it propagates in the negative direction then f-^ = 0. 

The physical meaning of (2.126) lies in the fact that in the case 

of motion with plane symmetry any perturbation arising at some point r 

moves with velocity a0 and remains unchanged in form. 

Let. us proceed to consider the wave equation for a motion with 

spherical symmetry. 

In this case (2.121) assumes the form 

Let us put 

„, r(r,o (2.128) 
p =-7- 1 

then 
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~dr 

Or* ^  r   or"       r'   dr ^ ^ r» > 

oi2 ^  r   öt% ' 

Sub stituting the result obtained in (2.127), we get 

1   ö-P        1    dP dP 
ra IF **"     r* ^ r' ~57 r 

1     1   ös. 

or 
t)-p    _i_ PP 

al   ^ (2.129) 

In accordance with (2.126), the solution of (2.129) will be 

'w.('-t)+M'+i)' 
Consequently, 

The first term of the right half of Eq. (2.130) is a wave propa- 

gating radially from the center, while the second term is a wave con- 

verging toward the center. 

Unlike the motion with plane symmetry, the amplitude of the spher- 

ical wave decreases in inverse proportion to the distance from the cen- 

ter. 

Li 

Pig.   45.   System 
of cylindrical 
coordinates. 

p-f(ti 

Fig. 46. Boundary 
condition of motion 
with spherical sym- 
metry. 
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In the  case  of motion with cylindrical  symmetry,  Eq.   (2.121)  as- 

sumes  the  form 

^ + ~17     72--377 = 0- (2,131) 

A solution of this equation is 

r ■   ^    yr'—R'       ^^   yr' -R> [2.132) 

The notation used in Formula (2.132) is indicated in Pig. 45. 

It is easy to apply the previously presented results to an anal- 

ysis of the motion of a liquid due to an underwater explosion. Let us 

consider motion with spherical symmetry. 

Assume that on some spherical surface there is specified the 

variation of the pressure as a function of the time, and let the esti- 

mate of the pressures in the entire space, starting from this surface, 

be possible in the acoustic approximation (Fig. 46). 

Then for a wave diverging from the center we obviously obtain 

P' (r, t) ~p* £/, {t - CzJlj . (2.133 ) 

It  is  of  interest also  to estimate  the  values  of the  velocities 

of  the motion of the   liquid behind  the  front.   Substituting  (2.133)   into 

the Euler  equation of motion,  we   obtain 

il--_ J-i^. — __L JL rn*''* ^/V    '■-r*\T ■ 
® p»   dr-        p0   dr[P   T-/i \r ST'/J" 

Integrating from  the   instant  of  arrival  of the wave  perturbation 

at  the point,   we  obtain 

t _   i   r 

4. -L I o* Ilf ft— r~r'\ dt ■ wlp r ti\t--tr)dt< 

or  on  the  basis   of   (2.133) 
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v~J-M-Pa) + ±\iP-P>)ät. (2.134) 
p0B0 ^   ""    '   W  ^ 

From the last formula we see that the velocity of the liquid at 

the given point is a function not only of the pressure at the con- 

sidered instant of time, but also of all the preceding changes in the 

pressure at the point, starting from the time when the perturbation 

reached it for the first time. 

§7  APPROXIMATE ESTIMATE OF THE PRESSURE PTEIDS IN THE CASE OF AN 
AERIAL EXPLOSION IN AN UNBOUNDED SPACE 

Experimental research carried out on a rather broad basis on the 

shock waves occurring in an aerial explosion have confirmed the cor- 

rectness of the laws of similarity theory, and have made it possible 

to obtain simple computation formulas that are convenient for prac- 

tical use. 

Using as the basis the general functional equation 

^fW). (2-135) 

where G is the weight of ,the charge and r is the distance, M.A. Sadov- 

skiy established on the basis of a thorough analysis of both the do- ' 

mestic and foreign experimental material that the value of the excess 

pressure on the front of the shock wave, in the case of an aerial ex- 

plosion of a TNT charge,is determined by the relation* 

3 3 

A^ = 0,76 iX +2,55-^- + 6,51-, (2.136) 

where Apf is the excess pressure on the front of the shock wave, in 

kg/cm2; G the weight of the charge, in kg; and r the distance, in 

meters. 
If it is recognized that the weight G can be expressed in terms 

of the radius of the equivalent spherical charge R^,** then Formula 
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(2.136) can be represented in the form 

A/^= 14,34-+907A+ 43600 4-, (2.137) 

where r = r/RQ,,« 

The time of action of the positive phase of the pressures is char- 

acterized by the relation 

'^KTTKMO- sec, (2>138) 

or, what is the same, 

'+=6,5.i0-*/?03KF. (2.139) 

From Formulas (2.138)-(2.139) it follows that as the Shockwave 

propagates the duration of the compression phase increases. 

This fact can he readily explained by physical considerations. 

Indeed, the wave front moves in space with velocity N > a0, whereas 

its "tail," in which the excess pressure is equal to zero (Fig. 47, 

region b-b'), moves with the velocity of sound a«. Therefore as the 

wave moves away from the center of the explosion it stretches out in 

time. But the spatial extent of the compression zone remains in this 

case practically constant, since the increase in the time of action t 

occurs simultaneously with a drop in the displacement velocity N.* 

Fig. 47. Pressure pattern in an 
aerial shock wave. 

Measurements of the Impulse of the compression zone, also made by 

M.A. Sadovskiy, indicate that over a rather wide range of distances 

the following relation is true 
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*% 

o3 

l^A^r-, (2.140) 

Fig. 48. Variation of 
the pressure with time 
for shock waves of 
varying Intensity 
(at various distances 
from the center of the 
explosion). 

where I+ is the impulse of the compression 

zone in kg-sec/m and A is a constant coef- 

ficient , which for TOT is approximately 

equal to 34-36. 

The impulse of the wave in the rarefac- 

tion wave is determined from the empirical 

formula 

i 
'- = ^1--^, (2.141) 

from which it is seen that as the shock 

wave propagates the value of the Impulse of 

the wave in the rarefaction phase approaches the value in the compres- 

sion phase. 

The character of the shock-wave pattern depends on the pressure 

on the front. An illustrative idea on this question can be gained from 

Pig. 48, which shows a series of curves for a wide range of Ap^ as a 

function of the dimensionless time t/t+. The approximation of these 

data is given by the following formulas:* 

for 1 atm < Apf < 3 atm, where 

««-f + VTl.l-(0,13+ 0,20^)4.1. 

(2.142) 

(2.143) 

li- 

the n 

A/^<1 atm. 

• + A/7, 

In the   latter  case we  can also use,  without great error,   the   lin- 
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ear relation 

^p(t) = ^p^l-J.y (2.144) 

• Proceeding to the estimate of the pressure fields In the case of 

an explosion on the surface of the earth. It must be borne in mind 

that the very large difference between the densities of the air and of 

the ground allow us to regard the earth's surface as an absolutely 

rigid partition. 

Thus., whereas it was previously assumed that the entire explosion 

energy Is distributed in definite fashion in an unbounded space, in 

the presently considered case the energy will be distributed only in a 

half space. From this point of view, an explosion at the earth's sur- 

face is equivalent to an explosion of a charge of double the weight in 

the free atmosphere. 

We then have for a surface explosion 
3 _ 3 __ 

A^ = 0,95 ^f-+ 3,9 ^:-+13,0-^-; (2.145) 

A/? =17,9 4-+13904-+ 87200 4-; (2.146) 

t+~l.7.l0-*V-ÖV7; (2.147) 

^=7.0.10-»/?03KT; (2.148) 

/+=. (52-f-56)^1. (2.149) 

We note that some information regarding more complicated boundary 

problemsjtogether with an approximate estimate of the values of the 

loads Imposed on buildings and structures in the case of aerial explo- 

sions , will be given later on. 

Example. Separate the main parameters of an aerial shock wave at 

a distance of 100 m from the center of a surface explosion of a charge 

of TNT weighing 200 kg. 

Solution. Calculation of the excess pressure on the front of the 

wave is carried out in accordance with Formula (2.146): 
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■ 

ioj, = 17 0 4- + 1390 ~ + 87 200 -i-. 
r r'1 r* 

The radius of the equivalent spherical charge will he 

3 _ 

/?„, = 0,053 J/200 = 0.053 ^.SÜS = 0,39 M, 

and therefore 

r        100      0« 

i^ = 17,9 -—- + 1390 -~ + 87 200 -^ - 

*=. 0.0098 + 0.0211 + 0.00514 = 0.0958   kg/citl    . 

The hydrodynamic parameters on the front of the shock wave will 

be calculated with the aid of the dynamic compatihility-conditions 

(1.193)-(1-197): 
N m 34oyi + o.saA;^ = 340 vTTö^a^oöj« = 351 m/sec; 

., = -   235^    - ^fo- = 21'7 m/se^ 
,. . o.m^^. - .,.«t|i^ - .«3 ^-secS/rn1* 

,       «o»  ^ + ^4') VP* + 7'2)      ocR (j +0.00"'^ (0^S + 7,2)      on70 .,. 
TQ - 288 CÄ^+ITJ = -b;> Ö • o;u95S + 7.2 " 

04, = 20,1/?$ = 20,1 1/297 = 345m/sec . 

The variation of the pressure as a function of the time is deter- 

mined from the formula 

W)» 4/74,(1-■£), 

with 

/+- Tfi-lQ-'RvVf *> 7.3.10-'.0,39^257 = 0,045 SeC. 

The  value   of  the  total  impulse will be 

G2/3 
/+ = M.   , 

/..sa55^m-» 18.8 kg-sec/m" 
100 

§8  APPROXIMATE ESTIMATE OP THE PRESSURE FIELDS IN THE CASE OF AN 
UNDERWATER EXPLOSION IN AN UNBOUNDED LIQUID 

It has been established as a result of many experiments that the 

pressure on the front of an underwater shock wave, in the absence of 
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any effect on the part of the bottom of the reservoir and of the free 

surface, is determined by the relation 

P^A^y.)       , (2.150) 

where A is a constant coefficient with a value of 533 for TNT.* 

For dimensionless distances this relationship has the form ■ 

^--PV (2.151)** 

The variation of pressure with time is characterized in the mid- 

dle range of distances (60 < r < 120) by the relation 

PVtr)~p * ^fä    ß kg/cm2,     (2.152) 

where a is a constant coefficient with value 0.27 for TNT and cr0 is 

the unit discontinuity function of zero order, indicating the fact 

that the pressure increases abruptly on approaching the given pointj 

""(/S-^,)- 
Oforp<:-£. 

'"■03    ^03 

lfor^>f 
'<0J    «03 

The value of the impulse of the positive pressure phase as a func- 

tion of the time is 

/(','■) = 

-^jl--^; —rr-Mlt-e  ^-sec/cm2,   (2.^3) 

The length of the u-nderwater shock wave is approximately equal to 

20 charge radii. 

To estimate the variation of the pressure on the shock wave one 

uses, in addition, the exponential relationship 

p-py^&i^t-JL). (2.154) 

The   quantity  0  is  called the   time  constant and  is  calculated with 

the  aid  of  the relation i 
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-0/J 

«(^f" O'MO-* sec, (2,155) 

or 

0 = 1,4^^ sec. (2.156) 

It Is easy to note that when the distance Increases the time con- 

stant 0 increases. Thus, unlike (2.152), Formula (2.154) takes into 

account the fact that the pressure pattern stretches out in time as 

the shcil: wave moves away from the center of the explosion 

In accordance with (2.154), the pressure impulse will be 

.' 
J^\pdt = pmQ l — e U'-i) "C-i (2.157) 

An account of the deformation of the pressure pattern can he made 

also when the pattern is approximated by a hyperbolic relationship. 

This is accomplished by using a relation of the form 

and accordingly 

ni.ö^p ''f        o0 (;-£).        (2.159) 

The change in pressure behind the front is determined most accu- 

rately by Formula (2.158). 

In many problems, however, it is more convenient to use the ex- 

ponential relation (2.154), and this is why the latter has gained the 

widest application. 

We have already mentioned earlier that the energy flux density is 

given by the expression 

£=jVAB-+-4-*2+f)^ (1.179) 
0 
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When the pressures on the front of the underwater shock wave are 

on the order of thousands of atmospheres, the internal and kinetic 

energies can be neglected compared with the term p/p. Inasmuch as the 

velocity of particle motion can in this case be calculated in the 

acoustic approximation 

v—^iP-P^ + ^liP-P^dt, (2.134) 

the expression for the energy flux density is obtained in the form 

£ = i[^-A.)2^ + -^.fO'-/'o) \{P-P,)de\dt (2.160) W,i . pyo       Lo 

Calculations show that the second term rapidly becomes negligibly 

small compared with the first as the distance r from the center of the 

explosion increases. For the indicated range of pressures (p < 1000 

atm) we then obtain with sufficient degree of accuracy 

£--L ((,-/>„)'**/. (2.161) 
0 

The formulas presented cover fully the question of estimating the 

pressure fields in the case of an explosion produced by a spherical 

charge in an unbounded liquid. 

A cylindrical wave attenuates much more slowly with distance than 

a spherical one. The exponent in this case is approximately equal to 

O.56 and 

1 
Pw == B ■ -0.56 

The amplitude of a plane wave decreases even more slowly with the 

distance. 

Comparison of the character of the variation of the pressure on 

the front of a plane, cylindrical, and spherical wave is shown in Fig. 

49. The difference between them, as can be readily seen, is quite ap- 
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Pig. 49. Comparison of the char- 
acter of the variation of the 
pressure on the front of a plane 
(I), cylindrical (II), and spher- 
ical (III) shock v;ave. 

preciable. The rather slow variation of the amplitude of the plane 

wave with distance is the reason why sound propagates over superhigh 

distances in the ocean* and is extensively used in the operating prac- 

tice of hydroacoustic stations. 

In conclusion we emphasize that the data presented pertain only 

to the first pulsation of the gas bubble. The second and succeeding 

pulsations also give rise to shock waves, but their intensities are 

much lower. For a general estimate one can note that the impulses of 

the pressures produced in the second pulsation are five to six times 

smaller than in the first pulsation; in the third pulsation they are, 

respectively, three times smaller than in the second. 

Example. Plot the pressure pattern of an underwater shock wave at 

a point located at a distance 100 m from the center of the explosion 

of a TNT charge weighing 1 ton. Carry out the calculation both with 

the hyperbolic and with the exponential dependences. 

Solution. We find the radius of the equivalent spherical charge 

and the relative distance 

^ = 0,053/1000 = 0,53   mj 
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r      Rt, ~ 0,53 "" I79- 

We  calculate  the  value  of p 

14 700  14 700  .., 1__/-TT.2 

Calculation of the variation of the pressure of the underwater 

shock wave is carried out by Formula (2.152) 

PV.r)~pmT i—-^,,^.^) kg/cm^. 

The  calculation is   summarized  in Table  9. 

We  determine  the  damping  time  constant   9 by Formula   (2.156) 

e » 1,4^i..?".« = ^l^-0 = o,ooi7isec. 

We 'calculate the maximum pressure using the exponential function 

(2.154) 

The calculation data are listed in Table 10. 

We calculate the values of the maximum pressure using the hyper- 

bolic dependence (2.158) 

[■+<('-£)/ 

This -calculation is summarized in Table 11. 

Figure 50 shows a comparison of the calculation results obtained 

from al„ three relations employed. Since the relative distance r = 179 

is beyond the range of possible application of Formula (2.152), the 

latter yields the largest error. The exponential curve is close to hy- 

perbolic for time intervals t < Q. 
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TABLE 9 

t, sec ta0     ■ 
i 

(2)//?M (3)—170 
1 

| ^ (5)4-1 
l 

(6)' 
(7) 

i                                i 

P = /V,(8) = 
= 42,5(8) 

i Q 3 !           5 6 1           7   ' 1            « i               9 

0,0033 95,0 179 0 0 1,00 1,00 1,000 42,50 0,OG-JO 96,0 181 2,0 0,540 1,54 2,37 0,422 17,00 
0,0G45 96,8 182 3,5 0,045 1,94 3,78 0,265 11,25 
0,0650 97,5 184 5,0 1,350 2,35 5,52 0,181 7,68 
0,0655 98,3 185 6,0 1,620 2,62 6,86 0,146 6,22 
0,0660 99,0 187 8,0 2,160 3,16 9,98 0,100 4,25 
0,0665 99,7 188 9,0 2,430 3,43 11,76 0,0852 3,02 
0,0670 100,0 189 10,0 2,700 3,70 13,69 0,0732 3,11 
0,0700 105,0 198 19,0 5,130 6,13 37,58 0,0267 1,13 
0,0720 103,0 204 25,0 6,750 7,75 60,06 0,0167 0.71 

TABLE 10 

t, sec t    ' r 

"a >) .-«. P = Pm (4) = 
= 42,5 (4) 

i 2 3 4 5 

0,0633 0 0 ■ 1,0000 42,5 
0,0040 0,0007 0,410 0,6636 28,1 
0,0645 0,0012 0,703 0,4951 21,0 
0,0650 0,0017 0,005 0,3697 15,6 
0,0655 0,0022 1,200 0,2752 11,7 
0,0660 0,0027 1,580 0,2059 8,73 
0,0565 0,0032 1,870 0,1541 6,55 
0,0670 0,0037 2,160 0,1153 4,90 
0,0700 0,0067 3,920 0,0198 0,84 
0,0720 0,0087 5,100 0,0061 0,25 

TABLE 11 

t, sec v('-i) 0,6 (2) 1 + (3) (4)2 p„Pm =42,5 
"       (5)        (5) 

i 

0,0633 

2 3 4 5 6 

0 0 1,000 !,000 42,5 
0,0640 0,410 0,246 1,246 1,550 27,4 
0,0645 0,703 0,422 1,422 2,016 ^  21,1    ■ 
0,0650 0,905 0,507 1,507 2,550 16,6 
0,0655 1,290 0,774 1,774 3,140 13,5 
0,0660 1,580     . 0,948 1,048 3,790 11,2 
0,0665 1,870 1,120 2,120 4,500 9,4 
0,0670 2,160 1,295 2,295 5,250 8,1 
0,0700 3,920 2,350 3,350 11,200 3,8 
0,0720 5,100 3,060 4,050 16,480 2,6 
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Fig. 50. Comparison of the values of 
the maximum pressure determined from 
Formula (2.152) (solid line), from the 
exponential formula (2.154) (dashed 
line), and from the hyperbolic depend- 
ence (2.158) (dash-dot). Time Is 
reckoned from the instant of explosion. 

§9. PROPAGATION OP LOAD WAVE IN AN UNDERGROUND EXPLOSION IN AN 
UNBOUNDED MEDIUM 

The Initial period of the development of the processes that accom- 

pany an underground explosion essentially does not differ much from 

the case of an underwater explosion. At the Instant when the detona- 

tion wave emerges on the surface of the charge, three discontinuity 

surfaces are produced: a shock wave,, a stationary strong-discontinuity 

surface, and a weak-discontinuity surface (characteristic). 

The pressure on the front of the shock wave is on the order of 

hundreds of thousands of atmospheres. At such high loads, the ground 

behaves like a gas, the only difference being that after the pressure 

is removed the gas returns to its initial state, whereas the ground 

either disintegrates or experiences large residual deformations. 

The disintegration and packing together of the ground consumes 

Irreversibly considerable part of the explosion energy. Therefore the 

pressure on the wave front decreases rapidly. At a distance of two or 

three large radii, the maximum pressure amounts to only several thou- 

sand atmospheres. 
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Also coincident with this time Is the beginning oT a qualitative 

change In the process of propagation of the wave disturbances. The 

point Is that at' stresses of this order, unlike In an Ideal liquid, 

the propagation velocity of a compression wave of large amplitude In 

ground Is lower than the velocity of sound. Consequently, the wave 

pattern becomes deformed In the compression phase. The wave front dis- 

integrates and Is replaced by a gradual Increase In pressure. The re- 

gion of 'cne greatest stresses lags the start of the arrlvr" of the 

load wave. 

As before, however. In this range of distances one-still uses the 

term "wave front," taking this to mean the envelope surface of the In- 

itial disturbances of the compression wave. The rate of propagation of 

such a front Is obviously equal to the rate of propagation of the 

longitudinal waves In the ground: 

^/H1. (2.162) 

where X  and p, are the Lame elastic constant and p Is the density. 

As the compression wave moves away from the center of the explo- 

sion, the maximum stresses In It decrease, and the disintegrations and 

plastic deformations of the ground are replaced by elastoplastlc de- 

formations and then simply by elastic deformations. 

In accordance with the qualitative picture developed above. It Is 

customary to distinguish between three zones of an underground explo- 

sion: the near zone, the middle zone, and the far zone.* 

Their dimensions are determined essentially by the weight of the 

charge and by the type of ground. 

In the near zone one separates two other regions, the compression 

region and the disintegration region. In the compression region there 

exists a shock wave with discontinuous front. Owing to the tremendous 
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loads the ground crumbles and becomes packed together. The boundary of 

this zone, in the case of explosion of TNT charges, is determined from 

the empirical formula 

Rs = 19ks, (2.163) 

where R is the relative radius of the compression region, R_ = R^/Rno^ 

■and k0 is an empirical coefficient which depends on the type of ground. s 
The region of disintegration Is characterized by the disintegra- 

tion of the continuity of the ground and by the appearance of cracks. 

For the disintegration region we have 

Rr = 19.01^ (2.164) 

where R = R /R0„ is the relative radius of the disintegration sphere 

and k is an empirical coefficient. 

The values of the coefficients k and k are listed in Table 12. 

The laws governing the propagation of the compression wave in the 

near zone have not yet been studied sufficiently to this day. Conse- 

quently, one cannot even indicate general formulas to characterize the 

stress and velocity fields for the ground particles in this zone. 

The middle zone of the underground explosion, where elastoplastlc 

ground deformations occur, extends approximately to distances of about 

100 R0_. 

For soft grounds of the loess and loam type, etc., the normal 

stresses a in the middle zone can be calculated from the formula* 
max 

^ [kg/cm2], ;2.l65) 

where the coefficient F for large depths of placement of the charge 

can be assumed equal to unity. The value of the coefficient k, to- 

gether with romo other characteristics of grounds, is listed In Table 

13. 

In soft water-saturated grounds one usually assumes the normal 
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TABLE   12 

I lair.Mciiüu.iniic rpyiiTa 

rpyiiT pux.iull, cBOKcnacumoiiiiull 
floCOK   II.IOTIIUJI 
r.iiiiia 

Cua.'iMiLia iiopöAu 

0,00 j 0,85 j 

0,,10 j 0,G3 

o,r>o I o.oo 
0,20 0,30 

1) Name of ground; 2) loose, 
freshly saturated ground; 3) 
dense sand; 4) clay; 5) rocks, 

TABLE 13 

1           BIIA rpyiua *min, 
KZkM"- 

"mux, "C?CAH. "mln, 
MlCitK 

n max, 
MICCK 

1 
'    P, 

Q 

2 ^iicc 30 , 120 GO M0 000 1 GO—180 
3 HjincTaa ramia 90 G30 3G0 130 900 170—190 
4 Cyr.iinioK 90 180 1-10 150 300 170—ISO 
b Heiiacumeuiiaa r^iuia 700 MOO 1050 SOO 1 700 J^o 

b Hacumeimaa r^HHa 3 500 10 coo 7 000 1700 2 500 200-230 

1) Type of ground; 2) loess; 3) silty clay; 
4) loam; 5) unsaturated clay; o) saturated 
clay; 7) kg/cm2; 8) m/sec; 9) kg-sec2/m2. 

and tangential stresses to be close in value, i.e., a /rr    — 1, 
max  max 

Consequently, Formula (2.165) determines approximately the entire 

field of stresses in soft grounds in the case of an underground explo- 

sion. 

For rocks such as granite, marble, limestone, etc., the largest 

normal stress can be calculated from the empirical formula obtained by 

Khanukayev 

w-r 
fa 

95,1       70,1-W      26,6-104 

Ti if?»     -* 
^] kg/cm2. (2.166) 

where P is a coefficient that depends on the depth of the explosion, 

which for large depths of placement of the charge is equal to unity, p 
2 4 is the density of the rock in kg~sec /m , and a is the velocity of 

sound in the rock, in m/sec. 
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The values of the velocity of propagation of longitudinal and 

transverse waves in rocks are listed in Table 14. 

TABLE 14 

l) Type of rock; 2) granite; 3) marble; 4) 
diabase; 5) velocity of longitudinal waves 
c}  m/sec; 5) velocity of transverse waves 

"— oh. 
Jo,   m/sec; 7) density p of rock, kg-sec /m . 

The ratio of the normal and tangential stresses at considerable 

distances from the center of the explosion (when l/R « I/R) is ap- 

proximately 

Bna nopoAH 
2 

TpaiuiT -"MpaMop 
4 

fliiaöus 

CKOpOCTb npOflO.lbllblX UO.IJI c, MJCCK 

CKopocTb nonepe'iiiux BO.III ft, Mjcex 

n^oTiiocn. nopo^bi p, KICCK^/M
1 

5200-5500 

3100—3200 

2G5 

4-100—1800 

3500—2800 
265 

5000 

3200 
273 

'^  1-24 (2.16?) 

The maximum values of the velocities of motion of the ground can 

be approximately determined from the relation 

'max    rmax 
vr     pa (2.168) 

so that in accordance with (2.165) and (2.166),  we have: 

for soft grounds 

v. 425 Fk 

fnH3 10° cm/sec; 

for rocks 

10".PrOS,!       70,1.10-'   ,   2«i,t' 
p-a' + Y;-IOM m/sec 

(2.169) 

(2.170) 

In individual problems   it may be   of  interest  to  determine  the   im- 

pulse  of the  load wave.   Accordlns to American data,   for  00ft grounds 

and an underground explosion of  a TNT  charge we  have 

3770 fk ip_ kg-sec/nß. (2.171) 
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TABLE 15 

<€». 1       liiu rpyiiT.i . 6 <p, 
/i^ CCK-JM- 

2 ^ücc 1   130 
Cyr.iiuiüK a 3()0 

* il,'ini."i'«in tMiimi U ^JO 

ü r.iinia •I GGO 

where kl
sr is an empirical coefficient, the 

values of which are listed in Table 15. 

In the case of an explosion in solid 

rock 

^ = ^ 
[^12,75  25,5-10» . G,3 

1) Type of ground; 2) 
loess; 3) loam; 4) 
silty clay; 5) clay; 

Ti' l^jlO kg-sec/m3.     (2.172) 

o 1 ; /ra 
Knowing the value of the normal stress 

UüVJ.  _._.., 

we can approximately estimate the time of action of the load. Assuming 

the pressure pattern to he triangular., we obtain 

hence 

/, = -rp 0   T, 
' I      'max 

0/ 

(2.173) 

The buildup time of the load,, for solid grounds, is approximately 

(1/5-1/3)T. For soft grounds this time fluctuates in the range 

(l/4-l/2)T. 

The far zone of an underground explosion is arbitrarily confined 

to the range of distances from 100 to 1000 R   The stresses and par- 

ticle velocities in this zone are characterized approximately by the 

same relationships as in the middle zone [Formulas (2.l65)-(2.170)]. 

The relations presented give the general pattern of propagation 

of seismic-explosion waves when the charge is placed at a sufficiently 

great depth. Explosions of this type, which display no visible action 

on the free surface, are frequently called camouflets. 

The presence of a free surface greatly influences the stress and 

velocity fields in the case of an underground explosion. Some data on 

this question will be given at the end of the next chapter. 
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Example. Calculate the values of the stresses and velocities of 

motion of the ground upon explosion of a TNT charge weighing 100 tons 

in a rock of the type of granite at a distance of 250 m from the cen- 

ter of the explosion. Determine the time of action of the load. 

Solution. We find the radius of the equivalent spherical charge 

-Rno and the relative distance of the point from the center of the ex- 

plosion: 

/?0, =0,033 J/1UU-10' = 0,053-10-1,61 = 2AC1m, 

*=*   ™  .0.. 
"0.1   A'tJ 

The investigated point is in the middle zone of the explosion. 

We determine a   from Formula (2.166). The values of p and a are max 
2/4 obtained from Table   14.   In our   case F ~ 1,   p = 255  kg-sec /m ,   and a = 

= 5350 m/sec: 

10 
IOM.I,2 

_   U^-F [" OS.l _ "CMC      26,n-10'] _ 
'""""■   ^   [ /<'   '   /<* w   \~ 

26ö.j3.:0 L"l02" WP     +      102;1    J - 

^-[0,032 — 0,07'! +0,251] = 70,4.0,509 = 33,8kg/cm^. 

rmax 
We find v_   from Formula (2.170) 

= o,232 m/sec. 

We determine the time of action of the load T from Formula (2.173) 

_ 10"-/? r 03^ _ 70,1.10'  26,6-10' 

For this purpose we calculate the impulse of the wave in the compres- 

sion phase using Formula (2.172): 

/ =^i^_n3lio! + j^io1i!0.=  0     /m3 

and then 

. »/> 00,0 
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ggePt [Footnotes] 
No. 

113     Equation (2.16) is the consequence of Formula (I.58) in §4 
of Chapter 1. 

113 Analogous relations in the variables 0 = (p/plc)1'JlC
i v, and N 

were obtained by I. P. Ginzburg (see N.Ye. Kochin,, I.A. Kibel •, 
N.V. Roze, Theoretical Hydromechanics^ Vol. II, ,OGIZ, 1948). 

114 L.D. Landau and K.P. Stanyakovich, DAN, Vol. 47, 1945, Nos. 
3 and 4. 

Il6     P.S. Baum, K.P. Stanyul-covlch, 3.1. Shekhter, Physics of  Ex- 
plosions, Fizmatgiz, 1959« 

126 See the examples of the preceding section. 

127 It can be shown that the conditions of dynamic compatibility 
(2.42)-(2.44) are of accuracy sufficient for practice if 
a0/N < 0.1. 

134 See Eq. (2.56a). 

135 When t* = l/N* and r0 = 1. 

139     See §8 of the present chapter. 

139     See §5 of Chapter 1, Eqs. (1.97) and (I.98). 

145     L.D. Landau, Shock Waves at Long Distances from the Point of 
Their Occurrence. Applied Mathematics and Mechanics, Vol.. IX, 
No. 4, 1945. 

154     In accordance with the principle of energy similarity, for 
an approximate estimate of the pressure field due to an ex- 
plosion of another explosive, we can use Formula (2.136), 
the only difference being that the quantity G must be re- 
placed by GQ./Q, , where Q. is the specific energy of the 

given explosive in kcal/kg, Q, is the specific energy of TNT, 
with Q. = 1000 kcal/kg. 

154 R0  = 0.053^ (2.21). 

155 M. A. Sadovskiy notes that as the distance is increased a cer- 
tain increase is observed in the wavelength, characterized 
by the approximate relation X = XQ + a  In r. 

156 P.S. Baum, B.I. Shekhter, K.P. Stanyukovich, Physics of Ex- 
plosions, GIFML, 1959. 

- 172 - 



Manu- 
script 
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159 

159 

l62 

166 

167 

[Footnotes   (Continued)] 

According  to the  principle  of energy similarity,   the  value 
of the  coefficient A.   for  other explosives  can be  calculate 
with  the aid of  the  approximate relationship A.   = y.A 

1,13 

""(&)  -(%) 
0,370 

where Q. is the specific energy of the given substance in 

kcal/kg, and Q, is the specific energy of TNT, Q, = 1000 
kcal/kg. 

For TNT, obviously, y = 1. 

"Propagation of Sound in the Ocean," Collection of Articles, 
IIL, 1951. 

Such a classification is quite arbitrary in character. In 
many publications, a different terminology is used. For ex- 
ample, V.A. Assonov distinguishes between a compression 
sphere, a crumbling sphere, and a quake sphere. 

The Effects of Atomic Weapons, New York-Toronto-London, 1950. 

Manu- 
script 
Page 
No. 

116 

119 

119 

161 

167 

167 

168 

169 

[List of Transliterated Symbols] 

$ = f = front = front 

H = n = naturnyy = natural 

M = m = model'nyy = model 

UHJI = tsil = tsllindricheskaya volna = cylindrical wave 

c = s = szhatiye = compression 

p = r = razrusheniye = disintegration 

cpeBH = sredn = sredniy = average 

cp = sr = sredniy = average 
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Chapter 3 

SIMPLEST BOUNDARY PROBLEMS OP EXPLOSION THEORY 

§1. REFLECTION OF AN AERIAL SHOCK WAVE FROM THE SURFACE OF THE EARTH 

As was already noted, under suitable angles of incidence, the re- 

flected wave propagating in a perturbed medium catches up with the di- 

rect wave, merges with the latter, forming a frontal wave so that ir- 

regular reflection sets in. 

In spite of the principal clarity in the formulation of the cor- 

responding boundary problem, the presently obtained theoretical solu- 

tions, for both the region of regular and particularly the region of 

irregular reflection, are quite cumbersome in form and in many cases 

they diverge substantially from the experimental data. The most com- 

plete experimental research in this field, which we shall present be- 

low, has been made by K. Ye. Gubkin and A.I. Korotkov. 

In accordance with the Izmaylov formula, the pressure in the re- 

flected wave at normal incidence (a = 0) is equal to 

/'oTp-/>o = 2(A},-A)) + -^-i _ ,        (1.220) 
(Ptji — Po) + J—j Po 

or, if we assume that p0 = l atm and k = 1.4, then 

A/^^A^ + JpL. (1.221),, 

It has been found that in the region of irregular reflection, for 

amplitudes on the front not exceeding 3.0 kg/cm2, the pressure in the 

reflected wave is practically independent of the angle of incidence 

and can be determined from Formula (1.221). For the region of irregular 
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reflection (a ed < a < 90°) the experimental data are approximated by 

the approximate relationship 

AP.^APfcCl+COSa), (3.1) 
I 

where Ap'^ is the pressure on the front of the shock wave of an explo- 

sion on land, calculated by the formula of M.A. Sadovskiy (2.145). 

{ ■■ The experimentally obtained boundary of the reflection regions is 
I 

shown in Pig. 51« 

The laws governing the variation of the momentum in the compres- 

sion phase with varying angle of incidence have a somewhat different 

character. As was shown by M.A. Sadovskiy, in the range 0° < a < 45° 

we have 

/ = /0(l + CÜSa) (3.2) 

and in the range 45° < a < 90° 

/«/„(! +COS'a), (3,3) 

where IQ is the impulse for a land explosion, calculated by Formula 

(2.149). 

The height of the explosion influences the pressure at the earth's 

surface in two ways: it increases the distance between the center of 

the explosion and the point of observation, and it changes the angle 

of incidence of the wave and accordingly the regions of regular and 

irregular reflection. It follows therefore that for a given wave in- 

tensity Ap  it is possible to indicate a value of the height H such 

that the distance from the epicenter to the point with pressure Ap 

turns out to be maximum. This is called the optimum height. 

If the charge is located above or below the optimum height H  ., 

the dimensions of the radii of the zones of specified action (L  ) de- 
pz 

crease, and when the height H is reduced compared with H  . this in- 

fluences the value of L  much less than an increase in H compared 
pz 

wlth Hopf 
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The empirical formula relating the 

optimum height with the weight of the 

charge and with the specified pressure 

on the wave front has '^he form 

//ont==3.2j/g(        (3.4) 
;     t    (    f    li)   l!    r,    il   ti 

3      1,1   U   1.1   S.i   i,5   ii   SS   3JS   V   tfvj- 

Pig. 51. Regions of reg- 
ular (I) end _rregular 
(II) reflection as ob- 
tained from the experi- 
mental data. 

The horizontal distances 

■V' 

where G is the weight of the charge in 

leg,, Ap  the specified value of the pres- 

sure on the front, kg/cm-, and H  t is 

the optimum height,, in meters. 

it which the specified value of the 

pressure p  is observed in the case of an explosion at the optimum 

height are expressed by the approximate equation 

(3-5) 

M.A. Sadovskiy was the first to call attention to the fact that 

in the region of regular reflection, at equal true distances from the 

charge to the point of observation r = (L2+rr)  / , the values of the 

pressure are equal and do not depend on the angle of incidence a (i.e., 

the equation ApH = a = 
APH = -D 

holds true). 
L=b    L=a 

Consequently, in the region of regular reflection txhe connection 

between Ap   and L and H is described with sufficient accuracy by 
^otr 

Sadovskiy's three-term formula for an explosion in an unlimited at- 

mosphere 

^„,=0,76 

3 

V a 
3 

y L*-+7r- + 2'47 ^^ + ^vWTfn* (3-6) 

and by the Izmaylov formula (1.221) 
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§2. EFFECT OF THE FREE SURFACE OF THE LIQUID ON THE PRESSURE FIELDS IN 
AN UNDERWATER EXPLOSION. ACOUSTIC APPROXIMATION FORMULAS 

In underwater explosions at relatively shallow depths, the param- 

eters of the hydrodynamic field are greatly influenced by the free sur- 

face of the water., on which the pressure is equal to atmospheric pres- 

sure. As was already noted,, when a wave is incident on the free sur- 

face, a rarefaction wave is produced. 

The problem of estimating the hydrodynamic fields with allowance 

for the influence of the free surface can be solved in different ways. 

We shall develop here one of the solutions, with an aim at simul- 

taneously illustrating, by means of a very simple example, the so- 

called method of incomplete separation of variables, which is widely 

used in the analysis of various boundary-value problems in the theory 

of the wave potential. 

Assume that on some sphere of radius R = R* there is specified a 

pressure variation as a function of the time: 

P\w==Polk\R^.=~P*e    ", (3-7) 

and that the excess pressure on the free surface of the liquid is 

equal to zero 

At the instant of time t 

(3.8) 

0   the   liquid  is  at  rest 

?Uo = 0; (3-9) 

#.„ = o. (3.10) 

The unsteady motion of the liquid at t > 0 is characterized by 

the wave equation 

^i'Sir. (3.11) 

integration of which should be carried out under the above-formula tec. 

initial and boundary conditions. 
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Let us consider first the construction of the solution for the 

direct wave. 

Equation (3.11) for motions with spherical symmetry can be rewrit- 

ten in the form 

OH1    ' K   OR     ' al    üt- (3.12) 

We  assume  that 

and then 

<?i = /^ (3-13) 

OR'        „I    Of  ' .      I O • -L^j 
"0 

We apply to Eq. (3.1^) the one-sided Laplace transform. To this 

end we multiply both halves of the equation by e~  and integrate from 

zero to infinity. At first we choose for the parameter js some complex 

number with positive real parts (s = a + ix; a > 0). 

We ha ve 

iwh^'^^l^e-'ät. (3.15) 

We integrate the right half of (3.15) by parts 

J -^r e    dt= e    -.r | + r 1 -x- e    dt. 
0 DO 

The first term of the right half vanishes because of the initial 

condition (3-10) and because of the exponential character of the first 

factor. 

We continue the integration by parts: 

s | ^ e-*1 dt = S {eSd j + ^ j" <?,*-" dt. (3.16) 
0 0      0 

Again we conclude that the first term vanishes. 

We put ^ (*". /?) = |" ?,<?-" dt. ( 3.17) 
0 
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Then on the basis of (3-l^)-(3-17) we obtain 

fT-'l) i 

OR' ■5-0, 

or 

^-i5:0=a (3.18) 

Thus., in place of the wave equation (3.1^) we obtain with the aid 

of the Laplace transform an ordinary second-order differential equa- 

tion. Its general integral is 

'■sn 
0(/?, 5) = r, {s) c   "'     + f5 (s) e'"    . (3 • 19 ) 

It is obvious from physical considerations that as R -*■ «> the per- 

turbations determined by the function ^(R^ s) should be equal to zero, 

Consequently^ c2(s) = 0, and 

' sR 
0(R,s)~cl(s)c   '■'''. (3-20) 

We obtain the function c-,(s) from the boundary condition on the 

spherical surface: 

To this end we again use the one-sided Laplace transform. We ob- 

tain 

0 0 
P<i\$.e-"di~lp(i)e-"df. 

Wo d.© no t/© 

\p{i)e-s'dt=*p*{s). (3-21) 
o 

We integrate the left half of (3-21) by parts 

^0 .■ til        —°0    ■   ' °0" J '       '—'t'  ' /        ' 
Ö 0      0 0 

but 0 {s, /?„) = i vfi-"dt. Therefore 
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a 

or 

Ois.fl*)^^^. (3-22) 

Comparing   (3-20)  with  (3-22)  we  obtain 

c.(s)~^R*^R' 
9oS 

Consequently, 

(p(RiS) = R*Pjf.e  "' . (3-23) 

After determining the function ö(R, s), we obtain the function q^. 

This is done by solving the integral equation 

(p(Z,s)=\oie-stdt. (3-24) 
o 

Such a solution is known as the Me Hin integral and is written in 

the form 

?i W) = ^7 f 'HR, s) est ds. (3.25) 2r.i 

In this case 

as, (3.26) 

where the contour I   can be any straight line parallel to the imaginary 

axis when a > 0. 

But p(t) - p*e"t//0 in accordance with (3-7). Consequently, 

L-^_J   TI  „-(T^)' p (5) =/>* [ e "e"" dt=p* ] — yi— e 

(3.27) 

?i(^^) = ^-if^ "'     ^-^-—^   (3.28) 
Thus 
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sxnce 

/' = Po-äf = Po^--^L,    . (3-29) 

so  that  according  to   (3.28)   and   (3-29)  we have 

\ T + s . ■ 

In the  case  when  t <  (R — R*)/a0  the  integrand tends  to  zero  in 

the  region to the  right  of I   as   s —>• 00. 

At  the   same   time.,   the  function p(R,   t)   has no  singularities   in 

the  right  half plane.   Consequently,,  when t  <   (R — R*)/a0,   we  have 

To  the  contrary,   if  t  >   (R — R*)/a0,   then  the   integrand tends  to 

zero as  s —»■—00  (s = a + 2.1,   a > 0).   Then  the   function p(RJ   t)   has   in 

the  left half plane  a  pole  at  the  point  s = —1/0.   On the  basis  of  the 

residue  theorem,   we  have 

p{Kt)~p*2LAjiTJe 
- \ 0- tzBL) 

Thuj : 

p (R, t) = 

for ^< R-R* 
"0 

P*^-   ox     a' )   for t>£z*l 

or,   introducing  a unit  discontinuity function of  zero  order. 

piRJl^p'KLe-^'-^Kjt-'tzßl), (3.31) 
'^ \ tin       / 

The solution (3-31) determines the direct wave. 

On the free surface of the liquid there should be satisfied the 

boundary condition 

Po$U = ^U==0- (3-32) 
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correspond to calculations by Formula (3-3^)- As can be readily seen, 

there Is complete agreement between the theoretical and experimental 

data up to the Instant of arrival of the rarefaction wave. Beyond this 

the calculation curves indicate a possible existence of a region of 

negative stresses, which were not recorded experimentally. 

The time of action of the positive 

pressure phase is obviously determined by 

the difference between the times of arrival 

of the direct wave and the xvave reflected 

from the free surface at the given point. 

Since the distance covered by the di- 

rect wave is equal to Vl- + (/Y — .'/y   ,   and that 

• j,: covered by the reflected wave Is — Vl'r+'(H-+-h)- 

Fig. 52. Diagram of       we have 
mirror reflection of a 
source and a sink. 1) 
Free surface. 

1  n 
^ - i^- (Ä - W-VF + [H-hy-]. (3.35) 

If the   distance  L is  large  compared with the  depth of  the  charge 

H and of  the  measurement  point h,   then we  can  assume 

L l-r{-r-)-y i + [—iri /^ 

Ä A|i + i/«_i 1 fH + h\- 
■\ 

t 

i ,H-hy\ 
■I-^i 

■   "-   La, 

(3.36) 

(3-37) 

It follows therefore that the time of action of the positive pres- 

sure phase, with allowance for the influence of the free surface, is 

determined in the acoustic approximation by the purely geometrical 

characteristics and does not depend on the weight of the charge. 

Using as a basis an exponential dependence of the pressure on the 

time, vxe obtain for the pressure impulse 
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4f) ^•=5^2; l-m-, H-2S; li-i,i 

p xz/c 

US tMKSP 

iw>^fi 

Fig- 53- Characteristic pressiere oscil- 
lograms with allowance for the influence 
of the free surface. 

'•«     _ _'. /       _ '«K \ 

AK = j pme   '' =-pm'> \l—e    ' ). (3-38) 

Usually the ratio t T/ö is small, so that with accuracy up to 2% 

we can assume: 

for tak/e < 0.35 

(3.39) 
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for tak/e < 0.04 

LK=pmt„. (3-40) 

The pressure on the front of a shock wave can be calculated hy 

the empirical formula of R. Koul: 

^-1^- (2.151). 

The scheme proposed for taking into account the influence of the 

free surface of the liquid in the acoustic approximation,, while simple 

and clear, has nevertheless a limited region of practical application. 

If the pressure fields are considered near the free surface., it be- 

comes necessary to take into account the nonlinearity of the reflec- 

tion process. Then the pressure on the front of the wave turns out to 

be smaller than in an unbounded liquid, and the time of action of the 

positive pressure phase is smaller than calculated in the acoustic ap- 

proximation. The shape of the pressure vs. time curve also changes. 

These facts can be explained as follows: 

1. Part of the explosion energy goes over into the air if the 

depth of the charge is low. In the region of the front of an under- 

water, shock wave, the energy becomes redistributed and this results in 

a reduction of the pressure. Such a process exerts an appreciable in- 

fluence on the pressure field if the depth of the charge does not ex- 

ceed one radius. 

2. When a shock wave strikes a free surface, a rarefaction wave 

is produced. According to Zemplen's theorem, the rarefaction wave can- 

not have a discontinuous front. It is an aggregate of characteristics 

(elementary pressure-reduction waves), propagating with the local ve- 

locity of sound. 

Since the local velocity of sound behind the front of the shock 

wave, added to the velocity of motion of the liquid behind it, is al- 
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ways larger than the velocity of front displacement, some of the char- 

acteristics catch up with the shock v/ave and attenuate It. To the-con- 

trary, one group of characteristics with appreciable negative ampli- 

tude has a velocity close to the velocity of sound In the unperturbed 

medium, and consequently reaches the point of observation later than 

the shock wave arrival at the same point (N > a0). Thus, on the one 

hand, the rarefaction v/ave decreases the pressure on the front of the 

direct shock v/ave and distorts the pressure-time pattern, and on the 

other hand the time of action of the positive phase of the pressure 

becomes longer. 

It is important to ascertain the range in which the influence of 

the described nonlinear effects becomes manifest, and to provide a 

quantitative estimate for it. 

We begin the exposition of the nonlinear theory of shock-wave re- 

flection with a determination of the limits of possible application of 

the acoustic-approximation formulas. 

Example 1. Construct the pattern of the pressures at a point lo- 

cated at a distance L = 100 m from the center of explosion of a TNT 

charge weighing 300 kg. The depth of the charge is assumed to be H = 

= 10 m, and the depth of the measurement point is h = 2.0 m. 

Also calculate the value of the Impulse of the pressures in the 

specified point. 

Solution. The radius of the equivalent spherical charge is 

3 _        3 _ 

/?03 = 0,053 )/G = 0,053 J/100 = 0.355   m. 

The relative distances are 

/• = JOO. _ OS",     TT   .     10 0„0     7-        2,0 
'•"W-28-    ^ - 0:355 ^ 28'2:   A = 0355-= 5,64. 

The pressure on the front of the shock wave is determined from 

the formula 
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Pm = ' 
14 700 _   14700 
yj.13    ~~2S2M;i = 23,2 kg/cm2. 

The  exponential  damping  constant  is  in accordance with Fornrula 

(2.156) 

0 = 1,4-i^?0'24 = 1,4 ^-.3,877 = 0,00132   SBC. 

The time interval between the arrivals of the direct and reflected 

waves at the point is 

'.x = -^- {V L* + (H + ii)i - y L* + {H - ny) ~ MÜL = 

The resultant pressure is determined from Formula (3-3^) 

P = Pme~~i'-^<:a{t-Jk)-Pme--{'-^^t-J±y 

ov,   measuring the time from the instant of arrival of the direct wave 

at the point., we obtain 

P^Pm* «aW—Pm* 
-C-'.x) 

«oC—/.K); 

0,00132 07.« - -i-((-0.000273) 
3,2-2,72     '     ■ uoC —0,0 /; = 25,2.2,72   L''U'J'"  <T0(0-25,2-2,72     '     ' »oC-0,000273). 

The  pressure-time pattern  is  shown in Fig.   5^-   The  time   is 

reckoned from the   instant  of arrival of  the   direct  shock wave   at  the 

point. 

p nt/c* ' 

20 

5 

0 

S 

ID 

F±' 

ISt" Imv.n 

^-'-.   Illustrating Example 1. Pres- 
■ without allowance (cashed) 

and with allowance (solid line) for 
the influence of the free surface. 

The value of the pressure impulse is determined from Formula (3-3- 
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Fig. 55. Illustrating Example S.^Pres- 
sure -oatterns without allowance (dashed) 
and with allowance (solid line) for 
the influence of the free surface. 

/« = ^8V1—e-"6 7 = 25,2-0,00132 \l—e    0,0'J!J'j = 0,00622   kg-sec/cm    . 

Example 2. Solve the same problem assuming the depth of the charge 

to he H = 3 m. 

Solution. The only difference is that the time interval between 

the arrivals of the direct and reflected waves at the specified point 

is different and amounts to in this case 

1-H-h 

^-»o.SMO-^sec, 

The  pattern-time  pressure  assumies  the  form shown  in Fig.   55^ 

The  pressure   impulse   turns   out   to  he  equal  to 

f 
h* = Pn 

0.0000S2\ 

= 25,2-o,ooi32u—c" "•001'1-y^0,00200 kg-sec/cm . 

^  LIMITS OF POSSIBIE APPLICATION OF THE ACOUSTIC APPROXIMATION FOR- 
MULAS. ACCOUNT OF THE INFLUENCE OF THE FREE SURFACE IN THE NON- 
LINEAR FORMULATION OF THE PROBLEM 

A study of these effects has attracted the interest of many re- 

searchers. The main results in this field belong to A.A. Grib, A.G. 

Ryabin, S.A. Khristianovich, B.V. Zamyshlyayev, and Ya.F. Sharov, who 

have developeA^a„nonlineaJC^theory__of interaction between an underwater 

shock wave and the free surface of a liquid, and who have proposed ap- 
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proximate  formulas  for   the  estimate  of  the  shock-wave parameters. 

Me  shall adhere below essentially to the exposition of Grib/ 

Khristianovich., and Ryabinin.* 

We consider first the simplest case of a plane shock wave of unit 

amplitude normally incident on the free surface. 

The elementary pressure-reduction waves resulting from the reflec- 

tion will propagate in this case in a medium with constant parameters 

(pf, vf, af). 

As is well known, such a motion is described by the Rlemann singu- 

lar solution (see §7, Chapter l). Using the coordinate system of Fig. 

56 for the "inverse wave of one direction," we have 

v +-^Y a = const. (3.4l) 

It is easy to determine the constant in (3.4-1) by recognizing 

that on the forward boundary of the rarefaction wave (zero-amplitude 

characteristic) we have 

Consequently, 

hence 

2    , , ■ 2 

o the linearized conditions of dynamic compatibility. J- /-\      +- 

we  have 

^-«oO + w^); (1.205) 

■ '•--'' ~ v (1.206) 

(1.207) 

a^^a^l + -mrp^; 

v* = a P$ 
« — "sTTZT 

and, as can be readily verified, an expression of the type (1.206) i£ 
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valid not only for- the wave front., but also for an arbitrary region be- 

hind the front. 

Indeed^ on the basis of the equation of state of water 

, -i Sfiui 

P + B  _   Pa + B 
a" ,n 

f>0 

V   df        V    fo   UoJ flo [foJ       ' 

or,   since 

we have 
-A 

Pig. 36.   Reflection of 
a shock wave from a 
free surface in the 
acoustic approximation 
and in accordance with 
the Rlemann solution. 
I) Characteristic of 
zero amplitude; II) 
characteristic of max- 
imum amplitude; III) 
acoustic approximation. 
1) Time for the pres- 
sure to drop from p„ 

■^f 
to 0. 

"-^(^-i^p)- (1.206a: 

Substituting (1.206), (1.206a), and 

(1.207) in (3-42), we obtain 

(3•43) ==aoTB+ao —ß- nü 

On the free surface of the liquid we 

can assume the pressure equal to zero. Then 

v — a, -Vo. 
'ü /iß  • 

In other words, in exactly the same way as in acoustics, the ve- 

locity of the liquid particles on the free surface is twice the veloc- 

ity of the particles behind the wavefront in an unbounded liquid. The 

direction of motion of the particles in the rarefaction wave is op- 

posed to the direction of wave travel. Because of this, we obtain for. 

the velocity of propagation of an arbitrary wave characteristic 

AW = ^7 = ^ — «, 

or, according to (1.206a) and (3-^3) 
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— «o(l + ^-^). (3-44) 

The pressure 2 is made up of the pressure p^ in the direct com- 

pression wave and the pressure pv  in the elementary rarefaction wave 

P = Pf - Pv.r- 

With this, the pressure in the aggregate of the characteristics 

forming the rarefaction wave varies continuously from zero (zero- 

amplitude characteristic, pv>r = 0, p = pf) to pv>r = pf (p = 0). In 

accordance with (3.44), the zero-amplitude characteristic moves with 

velocity 

= —r70 (l + ^ß-P* 

For the maximum-amplitude characteristic we have 

We note also that according to (3-44) the velocity of displace- 

ment of the characteristics of the rarefaction x^ave depends linearly 

on their amplitude. 

If we assume as the time origin the instant of arrival of the 

front of the direct wave at the point z = -h, then the pattern of 

propagation of wave disturbances in the liquid can be represented in 

the following fashion (see Fig. 50). 

After a time interval, equal to 

^ - 7^ - "^T :  I + n  ~—a\}\        '■on ^ I' 

the direct shock wave reaches the free surface. 

The rarefaction wave comprises a pencil of rays emerging from the 

point A(t = h/Nf, z = 0), with different velocities. 

The zero-amplitude characteristic arrives at the point z = —h at 
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the instant of time 

^r v J i    _ /i 

+  1 /1 _ i±« 

while the maximum-amplitude characteristic (p 
v.r 

(3-45) 

== —Pf») arrives at 
time 

^^4 N 
»»P '^u. p=-^ 

+ 
nü 

1 + iÄr^*> 
^* 

(3.46) 

In the acoustic approximation the compression and rarefaction 

waves propagate with identical velocities. The time intervals between 

the arrivals of the direct and reflected waves at the point z = -h is 

and coincides practically with the time calculated by Formula (3.46).* 

Unlike this flow., the Riemann flow 

is characterized by gradual change in 

the press-ore during a time interval (Fig. 

57) 

Pig. 57. Character of 
time variation of pres- 
sure in the acoustic ap- 
proximation and in ac- 
cordance with the Riemann 
solution. 

a, P* i  8/3/1   ^     Sün   J " 77 TuTTP^ 

The ratio 

7,, 4iin P* 

amounts to less than 1^ for pressures 

pf = 100 atm. 

It follows from the foregoing that when a shock wave is normally 

incident on a free surface, the exact and acoustic solutions are close 

to each other. 

- 192 - 



'Stna paipixctnn sfa 

Fig. 58. Diagram show- 
ing reflection of shock 
wave from the free sur- 
face of a liquid. I) 
Maximum-amplitude char- 
acteristic; II) zero- 
amplitude characteris- 
tic. 1) Rarefaction 
wave. 

The situation is somewhat different 

in the case of incidence of a shock wave 

on a free surface at an arbitrary angle. 

It is necessary to distinguish here be- 

tween the regular and irregular reflec- 

tions. 

Let us consider consider first regu- 

lar reflection (Fig. 58). 

The rarefaction wave moves in the re- 

gion of a liquid perturbed by the passage 

of the direct wave. Its displacement veloc- 

ity is made up of the local velocity of sound a,   the projection of the 

velocity of particle motion behind the front of the direct wave on the 

direction of displacement of the characteristics 

^4. COS (Pnp-f P»,?) 

and the velocity increment due to the motion of the characteristic it- 

self 

At* — /' 
A^ = — f7n nli 

Thus 

^x.p^fl+^COSCPnp -!- ?„„) Pi>—P 
nli 

or, recognizing that ß^ and ß^- c^ are close to each other, and dis- 

caraj-r: second order of  smallness. 

^it.p = (i -r ^ cos 23Mp — a PQ—P 

Substituting into this expression the values of the velocity of 

sound and the particle velocity, in accordance with (1.206a) and 

(1.20?), we have 
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^ -r -ö/j^- /' - (1 - cos 23n!>) -^j. (3-^7) 

On the free surface^ the direct v/ave and the characteristics of 

the rarefaction wave have a common point A (Pig, 58). Consequently^ 

;VX.       NA 

CO^xao^ cÜTf^- (3« ^8) 

In accordance with (3.^7) and (S-^Q) 

COS 3      = COS ßnp -rrf = COS %?  
l- —— ~L = 

= coSßnp[l + ^p-(4I'-cos2ßflp)^]. (3.49) 

This  formula v/as  first obtained in  the work of Grib,   Ryabinin, 

and Khristianovich. 

At  small angles  of  incidence 

ro<5 9  --«1 ^- &2 tüo pnp -^ i    2 rnp' 

cos2?„!)-l-2Sf,p) 

and the last equation assumes the form 

cos ^.p= (1-4-^, 
,  , /J + 1     055^* 

1 + 1^7 ^^ 

or^   discarding  small  terras   of  third order,, 

i + £±! p 
cos^- *na'   l       . (3.50) 

If the pressures are not too high, then in first approximation 

hence 

■5   a 
rjap — I'np- 

Because of this, the time of action of the shock wave in the case 

of regular reflection differs insignificantly from the time of the 

acoustic approximation. 

The pattern pressure at an arbitrary point of the liquid can be 
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constructed by starting from the following considerations. Assume that 

we are considering^ as before., some point located at a depth h away 

from the free surface. At the instant when the front of the direct 

wave arrives at this point (t = 0) the pressure jumps abruptly to a 

value p., and remains constant until the zero-amplitude characteristic 

•arrives. From simple geometric constructions (see Fig. 58) it follows 

that this time interval is 

h cos 3„p 
t, = -77J- (tg P„p + lg ?,np lpn> p=o). 

the time of arrival of a characteristic of arbitrary amplitude at the 

point under consideration is 

1 ^ 7?i (ig' "P + tg ^-P)' 

or 

^^^^(H-u^j. (3.51) 

On the basis of (3-^9)^ neglecting small quantities of second or- 

der^ we can easily reduce the ratio tan ß, ,  /tan ß  to the form 

(2 ßi.p  j +  1 " + S   —no \ ^   " + I — cos2!5np] 

Substituting this result togetherwith the expression for N in 

Formula (3-51)^ "ws obtain ultimately 
i<=Ü„;„^ 1, ■« + ! sir' !i_l±Jrj L.T/'''4-5 

(3.52) 

Therefore the time of arrival of the zero-amplitude characteris- 

tic (p   =0,, p = p ) at the point will be v.r 
: —3 to - ,1o sir. pnn l I _ , _- + ___-^ ^__ J, 

-L cos 23 )]£*' 

For  the maximum-amplitude  characteristic we  obtain 
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■2h    .    r     I ,       I" + 1     '   /" + 5 
•sin l'np\ l'       " 2*ln'f„? \    -1 

■<»■ 

--cos 2; 

These laws enable us to make more precise the previously formu- 

lated Goduction that is possitle to estimate the time of action of a 

shock wave in the regular-reflection region with the aid of the acous- 

tic equations. Indeed, for example, let  the conditions of the problem 

be sue.:-, that an error of about lOfb  is permissible in the determination 

of the time of action of the wave, i.e.. 

After substituting the corresponding values of ^ and tQ,   we ob- 

tain 

:L±J _/'*_ ^ o.i 

and 

pnp>arcsin )/lO'lij-/?^. 

The considerations presented above are valid not for the entire 

possible range of variation of the angles of incidence of the direct 

wave. Starting with an angle which we shall henceforth call critical 

(ß*),* the rarefaction wave will catch up with the front of the direct 

wave, distort its form, and change the amplitude. Irregular reflection 

sets in. 

Let us find the value of the critical angle ß*. To this end, we 

compare the velocity of displacement of the front of pressure- 

reduction wave (zero-amplitude characteristic) in the direction of the 

free surface with the velocity of the front of the direct wave. 

The zero-amplitude characteristic moves in the direction of the 

free surface with velocity 
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The  velocity of displacement  of  the  direct wave  front  in  the   same 

direction  is 

-■■" '»v •■ 

The  value   of  the   critical angle  is  determined by the  equation 

a + v^cosr^-^rp. 

Assuming ß* to he small^ and consequently putting cos ß* = 1 — 

- ß*2/2,   and using Relations (1.205),   (1.206a), and (1.207), we obtain 

ao[l + mrP*,+aoT,ßs
l--TV )^—;—r—r- 

Alternately, discarding small quantities of order higher than the 

second, 

1 +-sTiTT^ = 1 ^ TßT^ + TP ' 

hence 

/'•S^- (3.53) 

If the angle of incidence is ß  > ß*, the pressure-reduction 
JJi. 

waves do not catch up with the front of the shock wave. Regular reflec- 

tion occurs, similar to that considered above. 

When ß  < ß* the reflection becomes irregular. Then the common 

point of the rarefaction-wave and shock-wave fronts moves downward 

from the free surface. The section of the shock-wave front adjacent to 

the f; e surface becomes curved. The pressures on this section become 

smaller than in an unbounded liquid. The boundary of the irregular- 

reflection region is shown in Fig. 39,   and a diagram for such a reflec- 

tion is shown in Pig. 60. 

Let us find the point of intersection B of the front of the shock 

wave and the front of the pressure-reduction wave. Below this point, 

the front of the shock wave does not bend, and the pressure on it is 
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Fig. 59« Regions of regular (I) 
and irregulär (II) reflection. 

Fig. 60. Diagram showing the 
bending of the shock-wave 
front by the rarefaction-wave 
characteristics. 

the same as in an unbounded liquid. We assume a coordinate system such 

j.   'i'ne eoua oion 01 Co  tsilUv — —-0 • he front of the pressure- 

reduction wave., assuming approximately that the velocity behind the 

front of the shock wave is directed parallel to the free surface, will 

be* 

or, according to (1.206) and (1.207), 

•«-"(/•BJ +*; = rt^a 1 + n —1 gj; 
2 Bn 

We put 

and then Eq. (3-5^) assumes the form 

(3-54) 

(3-55) 
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[1 + *_^]'+z'-[1 + iiJ — 1^* 
Bn 

Near the free surface the coordinate x is close to a0t,, and con- 

sequently X is small. Discarding quantities of second order of small- 

nesSj we obtain from the last equation 

^^S^'- (3.56) 

The equation of the front of the direct wave,, assuming that 

tan ßpr - ßpr, will be 

x + K*^   "* ' "P*  cos ,S„p ' 

or 

x + 3„pZ = (i0t 
7 

•1 JSn "^ 2 
1 + '1+1 ;jl , 1^ 1 ~ .i a,, ~ 

Changing over to the variables X and Z and recognizing that 

l)pfABn = ß*
2/2, we obtain 

X + ?B?z=*i-ir'' + fiP). (3-57) 

The coordinates of the point B where the front of the shock wave 

Intersects the front of the pressure-reduction wave is determined from 

a simultaneous solution of Eqs. (3-56) and (3-57). 

After elementary calculations we obtain* 

Za = -(P*-pnp)) 

The point B moves along a straight line passing through the point 

0 and inclined at a small angle ß* — ß  to the free surface. 

We determine in the same way the position of the front of the 

pressure-reduction wave with amplitude equal to £. The velocity of mo- 

tion of such a front will differ from the velocity of sound by an 

amount —a0(pf. — p)/nB. Consequently, 
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+^-»K.+l^--S]!. 

Making  a  change  of variables  and retaining  only first-order   quan- 

tities ,  we  obtain 

* + lr-n-¥-k- (3.56a) 

Let us find the equation of the curved wavefront. Assume that it 

is characterized by the relation 

X = X(Z), 

Previously we had 

or 

The velocity of the points of the front parallel to the free sur- 

face will be 

On the other hand,, this velocity is equal to 

Comparing the expressions obtained and taking into consideration 

the fact that ß = —äX/äZ,   we obtain 

*       ^-dZ-    4 Bn^~\äz)   ' (3.5o) 

Eliminating the pressure from (3.56a) and (3-58) we obtain the 

differential equation of the wavefront 

This equation can be integrated in closed form.* We have 

(a2+2zg+z==A+^. 
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or 

12 +z=*yx+§- 

Putting X = Z v,  we  arrive at  an equation with  separable  variables 

dv dZ 
T'' 

J/ v + 1 1 ~1v 

Its  integral^   retvirning to the  variables  X and 7>,  will be 

7 C 

P     Z» +   2 2 

or 

.Y=C+CZ- zr- 

The constant C can be determined from the condition that the in- 

tegral curve must pass through the point B: 

After simple calculations we obtain 

C: 
?« + 

Consequently,, 

or 

x^-±piy^z-SL, 

^ + -T = |_—2 2" 

But,   according  to   (3-56a), 

v ,  zr-     n + \  p 

Thus 

By definition 

2 I»      n+l   p 
2 2 .   "       2     ii^ (3-59) 
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ri~ I Pi, . . 
-r-iFn- (3.53) 

Comparing   (3-59)   and  (3-53)  we  arrive  at  the equation 

_-^_r^i^y__.Fj . (3.60) 

At the point B we have zB » ~(ß* - ßpr) and the pressure turns 

out to he the same as in an unbounded liquid, p = p . 

On the free surface (Z = 0) we have 

2_\    _ £1 _, J 
Pb  U=0       'pq 4 

1 I '"P 

(3.61) ■ 

Relation (3-60) can be reduced after simple transformations to 

the form 

ß"-ßnp z 
P=p'\l-r 

r + ?»P ^J (3.62) 

Inasmuch as z/zB = h/hB, it follows from (3.62) that the pressure 

on the curved portion of the front changes from a value p' = pf/4(l + 

+ ßpr/ß*) to p = pf parabo'lically. 

Let us find now the time of action of the shock wave. 

To this end we consider the propagation of wavefronts with pres- 

sure p < p', produced near the points of the free surface of the liq- 

uid, such waves move along the free surface more slowly than the point 

A; their envelope AE is shown in Pig. 60. 

The angle ^  between the line AE and the perpendicular to the 

free surface is determined by the equation 

o   a + a 
cos p, =  , ; ■ ,. 

or,   according  to   (1.206a)   and   (1.207) 

2   '     i , " — i,, .   i   . • l + -2tFp +imp 

hence 
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The point E on the end of the line segment AE is located on the 

front of a wave with pressure p_, pertaining to the pros sure-re duct ion 

wave originating at the point 0. 

Its coordinates will be 

and according to (3.56a) 

72 
y           F-     \    "  ± ! P 
^E—      "2 t- -7- 177, ■ 

The geometric locus of the points E corresponding to different 

pressures £ is the parabola 

x+z*=n-^p'=^r+Ky- (3.63) 

This parabola terminates at the point D,   which corresponds to the 

boundary of the wave with pressure p = 0. 

The coordinates of the point D are determined by the equations 

Xn = - 4 

From the point A there emerge at different slopes the rarefaction- 

wave characteristics. Their equation is 

^-^ = T^ + P«p)'. (3-64) 

In particular., there passes through the point D a characteristic 

*-zi^t|-= 4 (?* + ?„,)', (3.65) 

on which the pressure is equal to zero. 

The relations established enable us to determine the time of ac- 

tion of the shock wave. Assume that the measurement point is located 

at a depth h from the free surface. The maximum pressure at this point 

occurs on the surface of the wave and in accordance with (3-62) its 

value is (Fig. 60) 
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"-W' + FSfirJ 

at 

?* + Pup H' + ?.,o  Z_      ^ 

The point M lies  on the  parabola   (3.63). 

Consequently,, 

/[^ =  _ £. 

The value of the pressure at this point is calculated with the aid 

of Relation (3.56a) 

Y    1  jft /I + 1  p 

4    ^ ~p AT' 

Finally, the pressure becomes equal to zero on the line AD. 

According to (3.65) 

If the depth of the measurement point h is such that |z| < |ZR| 

and |z| < Iz^l, the time of action of the wave will obviously be 

"0 "a 

, , ,  '/- I 'IM  _ V(^.-^|) 

= ^7 [(" + ITT J ('V!t + ''"^ ~ "i/f ] • 

where R = a0t. 

The maximum value of h/R does not exceed ß* — ß   (see Fig. 60). 

Consequently, discarding the term h/4R, we can approximately put ■■ 

*=1,2-£(P* + ^). (3.66) 

At large depths of the measurement point, the time of action of 

the wave differs little from the value obtained in the acoustic approx- 
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imatlon. 

All the considerations advanced above are valid only for the case 

of propagation of a plane wave. 

The situation becomes much more complicated in the case of an ex- 

plosion of a spherical charge near the free surface. Here the pressure 

on the wavefront does not remain constant^ and the angle of encounter 

between the wave and the surface also changes. The formulas obtained 

can then serve only for qualitative estimates. Nonetheless^ their use 

yields a result that is closer to reality than the acoustic formulas. 

In view of this., let us make a few remarks concerning the esti- 

mate of the influence of the free surface in the case of the explosion 

of a spherical charge. 

The pressure on the front of the wave in an unbounded liquid is 

estimated in this case by the formula 

At^-pnr-- (2.151) 

At a large distance from the center of the explosion we have 

3 ~JL rnp   r   > 

where H is the depth of the charge. 

The critical angle of encounter between the shock wave and the 

free surface is., in accordance with (3-53) 

^i^.^1,66^, (3.67) 

sxnce 

'     r r 

W~\&r*M. (3-68) 

At relative depths of the charge E > H*, the reflection is regu- 

lar. The pressure on the front of the shock wave is the same as in an 

unbounded liquid. 
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When H < H* it Is necessary to take into account the nonlinear 

effects due to the influence of the free surface of the liquid on the 

pressure fields In an underwater explosion. As a result of the propaga- 

tion of the rarefaction wave, tensile stresses and cavitatlon zones 

can then arise in the liquid, as will be discussed in greater detail 

in the next section. 

ExampIe^ Plot a Pressure-time pattern at a specified point with 

allowance for the nonlinear influence of the free surfaces, taking as 

the initial data those of the first and second problems of the preced- 

ing section: 

a) G = 300 kg, L = 100 m, 

h = 2.0 m, H = 10 mj 

b) G = 300 l<g, L = 100 m, 

h = 2.0 m, H = 3 m. 

Compare these results. 

Solution: a) First we consider the first case. The angle of en- 

counter ßpr between the direct wave and the free surface is 

,  ^ II        10 
''",, ~ T " Too" = 0'1- 

The critical angle Is determined from the formula (3.53): 

a» _ ,/" -t- 1 

where 

^ - -für = -—,:,,, = 25,2 kg/cm^.. 

Thus 

? ^K 1730-15.7,15-Ü'0';sa 

Since ßpr > ß*, the reflection is regular. 

Up to the instant of arrival of the zero-amplitude characteristic 

at the point, the pressure pattern remains the same as in an unbounded 
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-liquid. 

According  to   (3*52),   the  time when a  rarefaction wave  of given 

amplitude  arrives  at  the  point   is 

.     2/1 ,,   f,     n + i 

+ -^K,: I ( "l" - C0S -*'"•: 'i'lin - TlilT '''I'J f • 

The time of arrival of the zero-amplitude characteristic (p 

=0; p = p„) at the point will be 

'* = -0 
iin^\[ - L-4- •'• Yüö:- (-4- + cüi-^p)J -„a I • 

or after substituting the corresponding values 

pm = 25,2 KCICM-:    sin 3np = 0,0998;    cos 3np = 0,995;    cos 2?np = 0,980.    , 

'0-  1400 "'"-^l1      L       4       + 2(0,0995)4       4       + 0'9b0yJ 7,15 • 30-45/ " 
= 241-IO-O sec. 

At the instant t0 the pressure in the direct wave will be 

; 0,000241 

p\M, = /'m.r T = 25,2-r 0'00)32 = 21,0 kg/cm2. 

The rarefaction wave with amplitude p|.  . v- v0 

{v     ^ = -21.0  l<g/cm2;     p = 25.2 -  21. 0 = 4. 2  kg/cm2), 
V • X 

will arrive  at  the   specified point at  the   instant  of  time 

2-20     i     715 + 1 
t = ■=— 0,099S ; 1 — „ 7' 1g on;- 

25,2 + 

4 I   fr7'15^5 _ n o^   25.2        8,15     "I] _ 
^ (0,0998)-Lv  4     '  y 2-7,15-3045   4-7,15:3045 •J) 

= 29G-10-c sec. 

We can assume approximately that at this instant of time the pres- 

sure in the shock wave is zero. 

Comparison of the results of the calculation with the data of the 

first example of the preceding section is made in Fig. 6l. 

It is easy to see that in the region of irregular reflection it 

is perfectly permissible to use the acoustic-approximation formulas. 

b) Now let H = 3 m. 
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Pig. 6l. Comparison of the acoustic solu- 
tion (solid line) and the solution in 
which the nonlinear effect of the free 
surface is taken into account (regular re- 
flection,, dashed). 

The angle of encounter between the direct wave and the free sur- 

face turns out to be 

The critical angle is as before ß* = 0.0686. 

Since ß  < ß*,, irregular reflection occurs. 
px 

The pressure on the front of the shock wave is determined from 

Formula (3.62) 

p = p 
H    — Pup      ^     \* 

'"    Q-H    j    h        ~~y      1   1 

where 

P =P™-4-[l+-pi-J 

z B      "a 
'V1T1+ " 

" n       *- \r    — Pnp/- 

Thus 

P=Pn 
1 rnp 

1  + 
^ V."*      •   .^np/ J -- 

Substituting the  corresponding values  of the   quantities,   we  obtain 

" = 25,2 4- fi + o,437]= [1 + o^fcioo]3 = ^ kg/cm2." 

The   time   of  action of  the   positive  phase   of  the  shock wave  will 
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Fig. 62. Comparison of the acoustic solu- 
tion (solid line) with the solution 
in v/hich the nonlinear influence of the 
free surface is taken into accoimt (irreg- 
ular reflection, dashed). 

be in accordance with (3.66) 

t = 1,2 A a;* + ?np) = 1,2 ~^- = 162.10-« sec. 

The pressure pattern is closely approximated by a linear relation- 

ship. Figure 62 shows a comparison of the results of the present cal- 

culations with the calculations in the acoustic approximation (Example 

2 of §3). 

An essential difference is clearly seen in the final estimates. 

It must he borne in mind, however, that for spherical waves the 

computation scheme presented is crudely approximate, since the rela- 

tions employed are strictly speaking valid only for plane waves. 

§4. OCCURRENCE AND DEVELOPMENT OF CAVITATION IN THE REFLECTION OF AN 
UNDERWATER SHOCK WAVE FROM A FREE SURFACE 

As is well known, cavltation is a process wherein the gas dis- 

solved in a liquid is released and a vapor-gas mixture is produced. An 

analysis of these phenomena is closely related with a study of the 

strength characteristics of a liquid on occurrence of tensile stresses. 

It is stated in the papers of Ya.I. Frenkel' and Ya.B. Zel'dovich 

that the upper limit of the bulk strength of water is a quantity on 

be order of 2O0C-3OO0 al -.pi lv 
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stand a tensile stress of approximately 280 atm, and its strength de- 

pends essentially on the temperature (Pig. 63). It was also clarified 

that the presence of solid particles, bubbles of dissolved gas, and 

other similar inclusions in the liquid greatly reduces the ability of 

the liquid to withstand tensile forces. One can assume, finally, that 

the very process of loading the liquid is of no little importance in 

the estimate of its strength. 

However, the material available at the present time does not pro- 

vide an unambiguous answer to the question concerning the values of 

the tensile stresses that water can withstand upon propagation of a 

rarefaction wave. 

In order  for  cavitatlon to  set  in, 

the  tensile  forces must  overcome   the  hy- 

drostatic-pressure  forces  and  cause  a 

rarefaction equal  to  the  value  p^.   Conse- 

quently, 

^3 = — (1^1+A).      (3.69) 

where p   is the resultant pressure caus- 

ing cavitatlon of the liquid, and PQ is 

the hydrostatic pressure at the specified 

depth h 

Po^Pw + tk (3.70) 

Let us consider normal incidence of a 

0        10      to      SI      U      fl  t'c 

Fig. 63, Cavitatlon 
pressure according to 
Bridge's experimental 
data. 

plane wave of exponential form on the free surface: 

P=Pme~^. (3.71) 

We use the scheme of mirror reflection of the source and sink, 

and obtain without difficulties that the resultant pressure at the 
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Fig. 64. Formation of cavitatlonal dis- 
continuities, l) Free surface. 

depth h amounts to 

2A I'; 

■Pm+Pme   "'" =pm{e ■■Pm\e   ""--i/. (3.72) 

If the quantity is equated to the pressure causing cavitation in 

the liquidj we obtain a relation from which we can readily find the 

thickness hn of the cavitatlonal layer (Fig. 64): ll 

(3.73) 

hence 

The liquid will move in the cavitatlonal layer in the direction 

of the free surface. The pressure in it will have a value close to the 

pressure of saturated water vapor, i.e., close to zero. 

For the tail part of the direct wave, the first cavitatlonal 

the rol __■=■= 01 ;e 0; r* 11 * n I,   the only d;' 

ference "being that on the free surface the pressure is equal to atmos- 

close to zero. Consequently, the tail part of the wave will be re- 

flected from the surface of the first cavitatlonal layer. A rarefac- 
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tion vrave will arise., the propagation of which can give rise to a new 

cavitational discontinuity. 

The depth hp of the surface of the second cavitational discontinu- 

ity can obviously be determined from the equation (Fig. 64): 

Pm{e' ü-e' '-''O — I/'KI, (3-75) 

hence 

but 

I'm 

2/1, 

e 
Pm 

Consequentlyj 

I, ^rj_,.. fi    l\P*\+Po) f^    rjrs fl, ,, mjl      pm        }' \^- (o) 

The process of formation of cavitational layers will continue un- 

til negative stresses in excess of |p. | will arise in the water. 

The depth of the i-th cavitational layer will in this case be 

■, ... (i ,  .l*iln(l_llE!d±Io.Y (3.77) 

Its thickness is 

l\P.\ + Po 
«0« 

AA^-^-lPi^ (/-Di^ifp;-      (3-78) 
Pm 

Perfectly analogous reasoning enables us to find the depth and 

thickness of the i-th cavitational layer in the case of oblique inci- 

dence of a plane wave on the free surface. The only difference is that 

the initial equation contains as the coefficient of the exponent the 

sine of the angle between the normal to the front of the wave and the 

surface of the liquid: 

^[e""^",",?-i] = -(l^l + /'o). (3-79) 

As a result 
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^-TäW1--^]- (3-80) 

The distance from the i-th cavitational discontinuity to the sur- 

face of  the water and the thickness of the i-th cavitational layer 

will he 

*. —^'"{'-^^1 (3.81) 
j I_IPJ_±P^ 

I'm 

The formed cavitational layers,, moving with different velocities 

at definite instants of time, will collide with one another. As a re- 

sult of the collisionj new systems of shock waves will arise, the 

propagation of which in the liquid leads to repeated increases in the 

pressure. 

Let us consider this process using as an example the motion of 

the first cavitational layer. Quite approximately, one can regard this 

layer as a mass of liquid moving with a certain average velocity under 

the influence of the forces of gravity and atmospheric counterpressure. 

Under this assumption, the differential equation of layer motion can be 

written in the following form: 

PoM = —/7.TM — gPo^h, (3 • 83 ) 

where g is the acceleration due to the earth's gravity. 

If  z -  z10 and z = z10  when t = t1,   then the solution of (3-83) 

will be 

? (0 = zl0 + z!Q (t - ij - -!,^J^h (i - O2;     (3 • 84) 

^(O-^-^v/^^-/.). ■     (3.85) 
Po''i 

The first cavitational layer extends from a depth h1 to the free 

surface. Therefore the quantities z10 and z1Q  can be determined from 

an analysis of the motion of the points of the free surface. It is ob- 
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vious that 

^-sinß; (3.86) 
f.'-'j 

^^(^M'-^sinß»^/^      (3.87) 
U 0 

where l(t1) is the impulse of the pressure of the direct wave. 

The maximum displacement of the cavitational layer can be readily 

calculated by equating its velocity of motion to zero. 

According to (3.85), we obtain 

'«-^'»idiwr- (3.88) 

from which we obtain in accordance with (3-84) 

-^ + 4-z?o f0....^- ,, ■ (3.89) _ 12 _ 

Starting with the instant of time t^,   the layer begins to move 

downward, and at a certain instant it will collide with the main mass 

of liquid. 

Let us examine this process. To this end, we first find the dis- 

placement of the liquid at a depth h1 at the instant of formation of 

the cavitational discontinuity: 

iu=2h.tm 

-Zs_,sin ße~ " ^ =-^-sin ? f 1 — e" 
J Poflo Polo \ 

0.6        r\ 

= .MSinp LgdjLPs ==Qii!Ai±.p^sinpi (3.90) 

From then on the vertical component of the velocity of the par- 

ticles on the boundary will be* 

L Po^o      Po"o   J 

-l_sinßU0 + 2^me"  "«  L (/ — )',)■ (3.91) 
PoOj    •[■-•■" ] 

Thus, the displacement of the water particles on the boundary of 

the cavitational discontinuity turns out to be 
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Zt (0 = z^ + f 'z.Jt = 2r:o + -'— sin ? | A (7- A) 

/.+ -J-sIn ,1 
/"  _i^^ 

+ 2/;ffl0£;"■  "  \\~e     " ;joo(' —^i). 
(3-92) 

or. Inasmuch as t-, = (h-j/a^) sin ß, and 

e--|r"
n3 = i      L£*l±£5 

we have 

^m-^ = 2fi sin j{JT (/_,,) + 

+ {'-^r^y^-c-Ln^-a (3.93) 
The  instant  of  collision between the  upper  cavitational  layer  and 

the main mass   of  the  liquid  can be   determined  from the  equation 

Z('='coyA) ~ Z" = ^'C^oy») ~ ^ (3-9^) 

where the quantities contained in (3-9^) are determined by Eqs. (3-84), 

(3.87), (3.90), and (3.93). 

Upon encounter between the cavitational layer and the main mass 

of the liquid, secondary compression waves are produced and propagate 

in opposite directions from the collision surface. The amplitude of 

these waves can be readily determined from the condition that the nor- 

mal velocity components must be equal: 

Peoyn    •    0       -^ Pcoyx 
-'^(W)-^^- (3.95) 

hence 

It is possible to consider in similar fashion the process of col- 

lision between the remaining cavitational layers. 

An approximate estimate of the character of motion of the cavita- 

tional layers can be obtained by applying the laws of momentum and en- 

ergy conservation. Indeed, estimating, for example, the initial momen- 
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turn of the two upper layers^ we can state that it is equal to the im- 

pulse of the pressure forces in the direct wave prior to the instant 

of formation of the second cavitatlonal discontinuity: 

*M = /(2/2). (3.97) 

Prom then on the system of the two layers Is acted upon only by 

the forces of atmospheric counterpressure and gravity, with the latter 

being negligible. 

Thus, the momentum acquired by the layers will decrease in the 

course of time by an amount equal to the impulse of the atmospheric 

forces patm(t - t2): 

kv-ktW^p^V-Q. (3.98) 

After collision between the first and second cavitatlonal layers, 

their average velocity of motion will be 

l(-; h'h fJh • 13.99; 

The kinetic energy of motion is expressed by the well-known rela- 

tionship 

n(0 = #-zi(0 = ^~r.[/(2^)-p.TU(^-«]'.     (3-100) 

It is obvious that this quantity should be equal to the energy of 

the shock wave from which the work done by the counterpressure forces 

is subtracted. 

Since the waves propagate at an angle a to the free surface, the 

initial value of the energy will be E(2tp) sin ß. 

The work done by the counterpressure forces is approximately 

equal to 

^=^«1^(0-^(^)1, (3.101) 

where 

iK •'     ■    Wo ' 
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Thus, 

E (2/2) - p.TM fo (0 - 72 (/,)] - r2 (/). (3 • 102) 

On the basis of (3.102) and (3.100) we establish the following 

connection between the resultant displacement of the layers, on the 

one hand, and the momentum and energy of the shock wave on the other: 

Par« Po"» 

+ M!A sin [5 _       '—- [/ (2/2) -p^ {t~t2)]\ (3 • 103 ) 
PatH ^PO":;'8TM 

or,   inasmuch as 

we  have 

;, fl|/a 
"3 bin j   ' (3-104) 

.lW»sinß{i^ + ^-^^^^Ms}. (3.105) 

After a definite time interval, the two upper layers are over- 

taken by the third cavitational layer, and at the instant of time t^, 

k upper layers catch up with the k + 1-st layer. 

Arguing in identical fashion as before, we can readily obtain the 

following general expressions characterizing the motion of the k join- 

ing layers: 

rW«slnp|   ^     ,     patM ^o/'.rJ« (• (3. ion 

¥e recall that  the  values  of the   impulse   of  the  pressures  and of 

the  energy  in the   shock wave  are  determined  in terms  of  the   shock wave 

parameters  as  follows: 

/(2^)=;>,„o(l-<r~~), (3-108) 

or 

/ (2/*) - /)mo -ii^J^?- - o (/, i ^ 14 ro); (3.109) 
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-w. i1   L'     '>;~Jr (3.110) 

Formulas (3.106)-(3.110) enable us to calculate the maximum dis- 

placement of the point of the free surface of the liquid. 

Assuming that by the instant of time corresüonding to z   there max 
have joined together N upper layers^ we obtain on the basis of (3.IO6) 

^~'.v + -^. (3.111) 

Consequently, 

■■ sin ß (3.112) 

If the value of the maximum displacement of the points of the 

free surface is estimated without account of the cavitational phenomena,, 

it is obvious that 

^B1ax=f^(0^==sinßf-^^ = Sinß-^-V     ■(3.113) 
0 0 

On comparison of (3.112) and (3,113) we see how large the changes 

introduced by the account of the cavitation processes in the final re- 

lations are. 

The calculations performed show that the maximum amplitudes of 

the compression waves arising upon collision between the cavitational 

layers and the main mass of the liquid reach two-thirds of the pres- 

sure on the front of the direct wave: 

P<oyA~^-Pm. (3.114) 

The duration of the positive phase of these waves amounts to 

W^l.80. (3.115) 

The instant of collision is approximately equal to 

""""TP^T- (3.11o) 
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Fig. 65. Pressure osclllograms in the 
cavitatlon zone: solid line — experimen- 
tal data; dash-dot — calculation with 
account of the cavitatlon; dashed — cal- 
culation without account of cavitatlon. 
1) Vacuum. 

The foregoing theory^ developed hy B.V. Zamyshlyayev, greatly 

schematizes the actual process. It is necessary to determine more ac- 

curately the value of the negative stress p,, at which the region of 

cavitatlon begins to form. One can hardly justify fully the assumption 

of surface cavitational discontinuities and of the displacement of the 

cavltational layers with certain average velocities. 

Calculations performed with the aid of the foregoing formulas are, 

however,, in satisfactory agreement with many experiments, as evidenced 

by the osclllograms shown in Pig. 65. A more rigorous solution of this 
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problem was obtained by A.N. Patrashev. 

We note also that an account of the cavitational phenomena In the 

propagation of shock waves in the liquid is essential not so much in 

the study of reflection from the free surface, but also in the analysis 

of the interaction between a shock wave and a structure. Some remarks 

on this question will be made in the last chapter of the book. 

§5- QUALITATIVE PATTERN OF REFLECTION OF AN UNDERWATER SHOCK WAVE PROM 
THE BOTTOM OF A RESERVOIR 

A study of the influence of the bottom of a reservoir on the pres- 

sure fields produced in an underwater explosion entails difficulties 

of principal character. It is necessary first of all to know the 

mechanical properties of the grounds. Yet, the available limited data 

offer evidence of a rather wide range of acoustic impedance of grounds 

(from 0.1 to 4.8 of the acoustic impedance of water), thus predetermin- 

ing a varied character of reflection.* In many cases it is necessary 

to take into account the inhomogeneity of the grounds and their lay- 

ered structure. Of great significance in the study of wave propagation 

is, in addition, the relief of the bottom, the character of which is 

not amenable as a rule to a mathematical estimate. 

In view of the foregoing, it is possible at present to consider 

the qualitative rather than quantitative aspect of the phenomenon. 

For an approximate analysis, we start out with the following as- 

sumptions. We consider the surface of the bottom to be a plane inter- 

face between two media. The ground will be regarded as an Isotropie 

elastic half space. 

As is well known, two types of elastic waves can-propagate through 

unbounded Isotropie solids: longitudinal waves, which result from 

bulk deformation of the material, and transverse waves, due to shear 

deformation. Sometimes these waves are called dilatation and distortion 
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waves, respectively. The velocity of propagation of longitudinal (c) 

and transverse (b) waves Is given by the relations 

X +ÜU 

* = /?. 
(3.117) 

(3.118) 

-where X  and |i. are elastic constants., frequently called the Lame con- 

stants, and which determine completely the elastic properties of an 

Isotropie body.* 

In addition to the indicated two systems of waves, in the pres- 

ence of an interface between two media another type of wave can also 

arise, the so-called Rayleigh surface waves. The amplitude of the Ray- 

leigh waves decreases with depth exponentially. Consequently, they 

propagate as it were in two dimensions. They attenuate with distance 

more slox^ly than the longitudinal and transverse xvaves. The rate of 

propagation of the surface waves amounts to 0.87-0.96 of the velocity 

of propagation of the transverse waves. 

f 

Fig. 66. Diagram showing reflection of a 
shock wave from the bottom of a reser- 
voir. 1) Frontal; 2) lateral; 3) ■?£- 
Elected from bottom; 4) direct; 5) trans- 
erse waves; 6) longitudinal waves. 

The buildup of compression pressure in seismic waves, unlike 

shock waves, is not Jumpwise but gradual. This is due to the fact that 

in elastoplastic media the compressibility of the medium increases 

with increasing pressure over a considerable range of pressures. Since 
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the velocity of the compression wave is Inversely proportional to the 

compressibility of the medium,, the regions of the wave with large pres- 

sure will move with lower velocity,, and the formation of a steep pres- 

sure front is impossible. 

One can present the following qualitative description of the wave 

picture in a liquid upon single reflection from the bottom of a water 

reservoir. Assume that at some point z = —HQ., in the coordinate system 

indicated in Fig. 66,   an explosion occurred and at some Instant of 

time the direct wave comes to the bottom of the water reservoir. Its 

angle of incidence will be 

[^arccosp-L^. (3-119) 

The rate of displacement of the wave along the surface of the 

bottom amounts to 

^-■■^J- (3.120) 

At first, at large angles ß, the velocity Nd will exceed the ve- 

locity of propagation of the longitudinal and transverse waves in the 

grounds _c and b. The perturbations in the liquid will be characterized 

by the direct and reflected waves. The reflection will be regular. 

At some value of the angle ß = ß0, the velocities Nd and £ be- 

come equal,, i.e., the following relation becomes true: 

■^ = c- (3.121) 

The angle ß0 is called the angle of total internal reflection of 

the longitudinal waves. When ß < ß0 there occurs the so-called first 

Irregular reflection. The longitudinal perturbations in the ground 

overtake the direct shock wave and produce an additional wave disturb- 

ance in the liquid. This disturbance is customarily called the frontal 

wave. 
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With further propagation of the shock wave. Its velocity N^ de- 

creases and becomes at a certain ß = ß1 equal to the velocity of the 

transverse waves In the ground: 

•^7 = ^ (3.122) 

ßi = arc cos-f-. (3.123) 

The angle ß. Is called the angle of total Internal reflection of 

the transverse waves. 

When ß < ß-, the transverse waves In the ground overtake the di- 

rect shock wave and cause still another wave system in the liquid 

(lateral wave). The so-called second Irregular reflection takes place. 

In order to construct the fronts of the lateral and frontal waves, 

one can use the mirror-reflection scheme. It is easy to verify that 

the tangents to the circle at the points where   it crosses the rays 

drawn from the center 0-, at angles ß0 and ß-^ to the surface of the 

bottom will be the envelopes of the spherical surfaces of elementary 

disturbances, which determine the frontal and lateral waves, respec- 

tively (Fig. 66). 

As was already mentioned earlier, along the surface separating 

the ground from the water there propagates a Rayleigh wave. The dis- 

turbance which it produces in the liquid is customarily called the 

bottom wave. 

Thus, when a shock wave is Incident on the bottom of a reservoir 

there arise in addition to the reflected wave three additional systems 

of wave disturbances: frontal, lateral, and bottom waves. Each is re- 

flected from the free surface of the water. 

The process of successive reflection of waves from the two bound- 

ary surfaces continues, generally speaking, without limit. In the major- 

ity of cases, however, only the first system of waves is of practical 

significance. 
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Thls is the general outline of the qualitative pattern of reflec- 

tion of an underwater shock wave from the bottom of a reservoir. ¥e 

develop below some results of the linear theory, which at the present 

time is rather fully developed. 

§6- ^-SS1^ RESULTS OP THE LINEAR THEORY OP REELECTION OP AN UNDER- 
WATER SHOCK WAVE PROM THE BOTTOM OP A RESERVOIR 

In the linear formulation, the problem of the reflection of a 

shock wave from the bottom of a reservoir can be expressed as follows. 

The specified pressure variation in the upper half space (ideal 

liquid) on a spherical surface of radius R = Rn is 

P^P'»6    • (3-124) 

The connection between the pressure and the velocity of the par- 

ticles in this half space is expressed with the aid of a function of 

the potential cp_, with 

P^ftlk' (3.125) 

^ = grad?. (3.126) 

The strain and stress field in the lower half space (elastic 

medium) is determined by the system of equations of elasticity theory: 

« = grad<f+ rof<>; (3.127) 

^[-T-J^ (3.128) 

^ = TA^. (3.129) 

where u  is the vector of the strain velocity of the elastic mediumj X 

and p, are the elastic constants of the medium (Lame constants)*; 9 is 

the scalar displacement potential; t is the vector displacement poten- 

tial. 

On the plane interface between the ideal liquid and the elastic 

medium there is satisfied the rigid-contact condition (the normal com- 

ponents of the particle velocities and of the pressures are equal). 
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An analysis of this system of equations under the above-formulated 

boundary conditions was made., using the method of incomplete separa- 

tion of the variables, by Ye.I. Shemyakin.* 

Without stopping to discuss the complicated mathematical appa- 

ratus employed by Ye.I. Shemyakin, we present the final results of his 

-inve s t iga t ions. 

The pressure in the direct wave is** 

n 

[yit + iHi-htfY-™6■  8 .' (3.130) 

where p. is the value of the pressure on the initial spherical surface 

R0„; H-, is the distance from the center of the charge to the bottom; 

h1 is the distance from the point of observation to the bottom; L is 

the distance in the horizontal direction; t  is the time of arrival of 

the direct wave at the point (L, h-, ). 

Relation (3.130) can be written, in accordance with (2.151), in 

the form 

P-^^. (3.131) 

where 

Fl==-7fcJ/Z2 + (^-7^ (3.132) 

t^-^VD + iHt-htf. (3.133) 

So long as the velocity of propagation of the shock wave along 

the bottom of the reservoir exceeds the velocity of propagation of the 

longitudinal waves in the ground, a0/cos ß > c, the reflection will be 

regular. 

The pressure in the reflected wave is 

(3-13^) 
Poxp = A 

f- 

14 700'   -- 
71.13 * 
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in this x OPIUU-LS 

^^-^-K^ + C^ + AJ2; 

4TP = -r K^ + C^i + A,)2; 

(3.135) 

(3.136) 

A0 is the reflection coefficient. 

When ß = 90°, i.e., when the wave is normally incident on the 

surface, the coefficient A0 is calculated from the formula 

A = ^S- (3.137) 

For an analysis of the angles 90o> i3>arccos ^ , this coefficient 

differs little from the quantity calculated by Formula (3-137), and 

only near ß1 = arccos— does it change radically and attain a value of 

unity. 

The first irregular reflection occurs at angles of incidence 

? < ^ = arc cos -^ . 

The pressure in the reflected wave in the region of the first ir- 

regular reflection is characterized by the dependence 

14 700 
Pent -rU3 

'2 

t-t 

■Bßi\ Q-^-joo^ —A)j* 

OTp 

(3.138) 

where 
i—iix 

^ = - 

(2 — A")1 + 16 (* — 1) (l — t\x) — a'A-4    „ •  l 

(2 - xy + AYx—lVl — Srr+cv2 

X—1 

(3.139) 

Sex3 (2 — AT)5 
Kr • Brx 

5» 
Ks2x —1 

(2 - xy + 4 j/.v — iKl — »i^ + ax* 
Vl-hlx 
Vilx-l 

2, 
(3.140) 

x — ~ 
6?, cos5 S 

•: o =-- Po R -    -L-     S == — 

t    is the time of arrival of the reflected wave at the point, calcu- 
otr 
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lated by Formula (3.136); t-, is the time of arrival of the frontal 

wave at the point, 

^ = -i.(z + ^KsF^); (3.141) 

and E/^—^
11

)—Is  the Euler function.* 

The first term of Eq. (3-138) describes a process similar to the 

reflection in the regular zone. The second term characterizes the dis- 

tortion of the reflected-wave pattern as a result of interaction with 

the ground, which has gone into motion. Its influence begins at the 

instant when the frontal wave arrives at the point (t > t-^). 

The section of the pattern of the compression zone in the inter- 

val t-, < t < t ,  is customarily called the "foreshock. " 

If the velocity of propagation of the transverse waves in the 

ground, b, exceeds the velocity of sound in the water, a0, then when 

2<s, = arc cos—there sets in the zone of second irregular reflection. 

The pressure field in the reflected wave in the zone of second 

irregular reflection is characterized by a relation analogous to 

(3.138): 

_ 14700 r. ^ ,. v 
"orp -1,13     \_/H2C0 K1 l■o^pJ 

'-'OTP 

_^(.i_^)o0(;_O>'7~. '       (3.142) 

However, the coefficients A? and B2 have a somewhat different form: 

L(2_.r)'_4Kl-^K I- 7/: 

A2 = - ■  ^Z;  ■ (3.143) 
p  7 /■ —-1 2 1 — OiX 

[(2 — .r)- — 4]/l—x!/\ — tfxj ' + c'x* - 
Jij. 

hjei..„.^jt [(2 — x)' — 41/1 — x Kl — sfx] 
1      Vqx-i (3>144) 

[(2 — x)5 — 4 ]/l — x Kl — o^.v ]2 + c'-x* 
1 — cjx 

LTTi 

Here the coefficient Bp already determines the joint influence oJ 
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the disturbances due to the longitudinal and transverse ground oscllla. 

tions. 

Let us note now the qualitative laws that result from the formu- 

las given above. 

It is obvious,, first of all,, that the coefficients A. and B. are 

functions of the acoustic properties of the grounds and of the angle 

of incidence ß only. This enables us to construct for the most typical 

grounds, once and for all, diagrams of A.(ß) and B1(ß) which are con-r 

venient for practical calculations. 

Table 16 lists the characteristics of some types of grounds. Fig- 

ures 67-69 show the angular diagrams for rocky, clay, and sandy bot- 

toms. Frequently the last two types of grounds form only a thin near- 

bottom layer that lies on a rocky base. 

TABLE   16 

1 
Tnnb! 

rpy:iTOB 

Ana 

F- .5CK0p0CTb 
pacnpo- 

t—   (-1   Ü 

cTpaneiiHH 
npOAQUh- 
HblX no.iH 
C,   MJCBK 

"•CKOpOCTb 
pacnpo- 

cTpaneimsi 
nonepe'i- 
HblX   B0.1H 
b, MJceK 

BespasMepHbie napa.v lexpu rpynxa 

Po 

Pr 

nccnano- 

rjIIIHIICTwH 

necMaiiiiK 

HsBeCTIIJIK 

rpamiT 

160—190 

220—230 
250—240 
240—250 
260—270 

1400—1700 

2000—2200 

2500—3000 

3000—3500 

5000—5500 

600— 900 '0,540—0,540 

1000—1100 0,465—0,445 
1200—1700 0,410—0,425 
1700—18000,425—0,410 
3000—3100 0,395—0,380 

S3==. 

0,350—0,640 

0,445—0,550 
0,400—0,680 
0,485—0,600 
0,570—0,620 

0,40—0.60 

0,66—0,74 

0,80—1,10 
1,10—1,20 
2,00—2,05 

l) Types of bottom ground; 2) density of 
ground p , kg-sec /m ; 3) velocity of prop- 

agation of longitudinal xvaves, _c, m/sec; 
4) velocity of propagation of transverse 
waves, b, m/sec; 5) dimensionless param- 
eters of the ground; 6) sand-silt; 7) clay; 
8) sandstone; 9) limestone; 10) granite. 

If the thickness of such a layer is much smaller than the wave- 

length, the reflection of the underwater shock wave occurs in exactly 

the same way as from a solid bottom having the characteristics of the 
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- ^ -f/ -0,S -0,1/   -0,2     0     0,2    0,i4    0,S    C,S     1,0 

Flg. 67. Angle diagram for a rocky ground. 
1) Regular reflection zone; 2) first Ir- 
regular reflection zone; 3) second Ir- 
regular reflection zone. 

Una  !,.,„ k     ,  .   . 

._        y - i,S -BJS   -rj  -C,i -a     0     BJ    l,h    0,5    B,S     i,S 

Fig. 68. Angle diagram for clay ground, l) Re- 
gular reflection zone; 2) first Irregular re- 
flection zone. 
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layer. 

For grounds with velocities c > a0 > b, the wave pattern becomes 

simpler; there is neither the lateral wave nor the zone of second ir- 

regular reflection. 

In the case of low-velocity grounds (c < a0) a rarefaction wave 

is reflected from the bottom of the reservoir for all angles of inci- 

dence and attenuates the direct wave in a manner similar to what oc- 

curs upon reflection of shock waves from the free surface. 

As follows from the angle diagrams, such a phenomenon is observed 

for all types of grounds, starting with a definite value of the angle 

of incidence ß, . According to the linear theory, the angle ß,  is 

calculated from the equation 

[V-xy-iVT^xVT^Y-M-j^^O.    (3.145) 
:r 

where 

S^ccs'S 
(3.146) 

Pup 

In the case when ß < ß, , the coefficient A-, becomes negative and 

the waves reflected from the bottom of the reservoir become rarefac- 

tion waves. This is explained by the fact that in this range of angles 

of incidence (0 < ß < ß^J the front of the direct wave begins to be 

overtaken by the disturbances caused by the motion of the ground down- 

ward from the interface, with velocities greater than the normal com- 

ponents of the ground velocities behind the front of the direct wave. 

The deductions of the linear theory of reflection of shock waves 

from the bottom of a reservoir are qualitatively well confirmed by the 

experimental data, and can therefore serve as a basis for correspond- 

ing approximate estimates. 

However, just.as in the problem of the influence of the free sur- 

face, the waves propagating in either the liquid or in the ground will 
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Fig. 69. Angle diagram for sandy ground. 
1) Regular reflection zone; 2) first 
Irregular reflection zone. 

have displacement velocities which differ somewhat from their values 

in the unperturbed medium. 

Actually,, as indicated above, a nonlinear superposition of wave 

systems takes place. The solution becomes much more complicated. The 

exposition of the nonlinear theory is beyond the scope of the present 

book. We present below only some general remarks,, based on materials 

of experimental investigations. 

Example. At a distance of 5 m from a rocky bottom (granite, c = 
2 h —  5000 m/sec, b = 3000 m/sec. p = 265 kg-sec /m ) there occurred an 

explosion of a TNT charge weighing 1200 kg. Determine the parameters 

of the shock wave at the following points of observation: 

L =  5 m,  h-, = 5. 0 m, 

L = 10 m,  h1 =3-0 m, 

L = 100 m,,  h-, = 3.0 m. 

Plot  the  pressirre   pattern  for   specified  distances  and  depths. 

Neglect  the   influence   of  the   free   surface. 
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Solution. To determine ß-^ ß2,   ß^,, A1>   and B1 we use the avail- 

able angle diagram for a rocky bottom (granite). 

Me  determine the critical angles with the aid of the angle dia- 

gram (Fig. 67): ß1  = 72o30i>   ß2 = 60°, ß^ = 7°. 

We calculate the reflected wave for the first conditions: L = 5-0 

m, H-L = 5-0 m, h-j^ = 5.0 m. 

The angle of reflection will in this case be 

.? B arc tg H\+ h'   ~ urc tg ~— « 63»30' < ?,. 

Consequently, the point of observation is in the first zone of 

irregular reflection. Usiag the diagram of Pig. 67 (for a rocky bot- 

tom), we obtain A1 - 79. B1 - 0.045- 

The times of arrival t .  and t1  are calculated from the formulas 

(3.136) and (3.141) (we take for ö1 and ö2 average values from Table 

16): 

t„f „ L i/Z» + (W, + iTJ = -^00"-- ■= 7/'(3'!0'3 se G ; 
1 w __________ _ l/'if) + ioö_ 

5 4--?^l/'i
a-0,5'JJ' 

= 7,40-io-3 sec 
5000 

The radius  of  the   charge  is /?», = 0,053 y/o = 0,55-t  m,   hence 

7i 0 _l_yi3 + (/;1 + /Jl)S- . iq^LH1 =. 19,3. 

Finally, we obtain S = 935 rg0-2^-lO"6 = 935( 19-S)0'24-0.564 x 

x 10~6 = 1.O8-10"3 sec, Sumniing the results in accordance with Formula 

(3.142), we obtain 

;,0Tp » 506 [ 0,7900 (t) - 0,045 E, {-■) °* V - '')] c    "' 

v/here T = t - 7.46-10"3 sec, Q =  1.08-10~3 sec. 

We calculate p^ for L = 10 m, H1 = 5-0 m, hn = 3.0 m. We deter- 

mine the angle of reflection 

- 232 - 



ja « arc tg Ü+A » arc (g ^. « 3SM0-. 

From a comparison of this angle with the critical angles It fol- 

lows that the point of observation is located in the zone of second 

irregular reflection. Therefore the calculation of P t should be car- 

ried out by means of Formulas (3.l42)-(3.144). 

From the angle diagram (Fig. 67) we determine Ap ~ 0-905^ Bp » 

~ O.09. , , , 

For the times t ,  and t^, we obtain 

'OTp 

'o 

yw + v 
1500 

= 8,53.10-» sec 

10-» 

> 

10 + 
595   K ■0,5955 

....   ...71«! sec 

~1 

5000 

yw + 
A zr. 1 -^ = 22,8, We have 

hence 0 «935[22,'8]«.'<01564_-ID-«- 1.12-io-s sec. 

Ultimately we obtain at the given point of observation 

p0Tp o 434 [O,S05C0(T) - 0,090S; ^') <T0 (i — ^)"j *" 9 , 

where 

t«/-.8,53-io-» sec; 
0 a 1,12.IO-« sec . 

The third case is calculated also by means of Formulas (3.142). 

(3-144). • 

After calculations analogous to those given above, we obtain 

ß o 4o30,,   Ax « —0,500,   B, a 0,015; 

l/lOO2 + S3 

W"  '1500      "66.7.10-' sec; 

o » i,83.io-ssec . 

Ultimately we obtain for this case 
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Fig. 70. Pattern of 
reflected wave (L = 
.= 5 m; h1 = 5 m). 

A»"/»' 

;:-:, 

Fig. 71. Pattern of 
reflected wave (L = 
= 10 m; h-, = 3 m). 

tincai 

30        W    M M 

Fig. 72. Pattern of reflected 
wave (L = 100 m; h-, = 3 m) • 

Poip - 42,1 f-O.SOOjo (t) - 0,0152?; ;-^V- (' ~ '.)1 * V"^ 
;J' 

where 
»»/ —co,7-io-« sec; 
ü« 1,83-10-' sec. 

The press-ure vs. time patterns are presented in Figs. 70-72. 

§7. QUALITATIVE INFLUENCE OF NONLINEAR EFFECTS UPON KEFIECTION OF A 
SHOCK WAVE FROM THE BOTTOM OF A RESERVOIR 

As was mentioned earlier, the linear theory, while correctly de- 

scribing the mechanism of formation of various wave systems in a liq- 

uid, cannot disclose completely the complicated pattern of interaction 

between the shock wave and the bottom of the reservoir. Two basio 

causes explain the quantitative discrepancy between the results of the 

linear theory and the observed phenomena. 

1. The assumption that the velocity of propagation of the disturb- 

ances in either the liquid or in the ground is constant does not cor- 
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respond fully to reality. This velocity depends on the amplitude of 

the compression wave and of the characteristics of the medium, and 

whereas in water it Increases with Increasing pressure on the front, 

in the overwhelming majority of the grounds, to the contrary, waves 

with larger amplitudes propagate with lower velocities. 

2. The grounds can he regarded as linear ideally elastic media 

only rather approximately. As a rule, the residual deformations of the 

ground are quite important. As regards such material as silt and sand, 

it is closer in properties to liquid many-phase media. 

In view of this it is necessary to describe the influence of non- 

linear effects at least qualitatively. 

Figures 73 and 7h  show typical osclllograms of waves of seismic 

origin. One can see clearly on them the frontal and lateral waves, the 

foreshock, and the direct wave. Depending on the distance to the epi- 

center of the explosion, the frontal and lateral waves are either sep- 

arated from each other by a definite time interval or, to the con- 

trary, arrive at the point under consideration In the form of some re- 

sultant wave disturbance. 

ifipeSfteimm 
^jcfCpnoHimi yhprnm 

ll  Sa/im 

tMKCIK 

b 3 
pm/CM1 -1        OetSlfcmHUH    cptimn j/lapttiii 

II        tfi       2,1]      3,1!       ill        SJtHKttll 

Fig. 73- Osclllograms of waves 
of seismic origin produced by 
explosion of charges weighing: 
a)"" 20 kg: b) 100 leg. 1) Frontal 
wave; 2\   lateral wave; 3) fore- 
shock; 4) cut-off shock wave. 
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711 

pro acne: 

In the case of explosions at consid- 

erable distances from the charge to the 

bottom of the reservoir, the pressure In 

waves of seismic origin is approximately 

one order of magnitude lower than the pros- 
■ct> 

sure on the front of the shock waves (the 

amplitude of the direct wave has gone be- 

yond the perforations of the film on the 

oscillograms presented). As the charge ap- 

he bottom, the pressure in the frontal and lateral waves in- 

[ fso        so        o m       ■-■ ■ 

Fig. 74. Character of 
the pattern of a wave 
of static origin. The 
foreshock is clearly 
seen, l) Foreshock. 

v c u c; 

owing to the reflected pressure-reduction waves. 

The intensity of the lateral wave is approximately twice the in- 

tensity of the frontal wave. 

The maximum amplitude of these waves decreases somewhat more rap- 

idly than l/l?'2.   Thus, under all conditions, their action at large 

distances is many times smaller than the action of the direct wave. 

The duration of the compression phase of the lateral and frontal 

waves is usually tens of times larger than the duration of the direct 

wave. This circumstance makes it possible in many cases to regard the 

action of the seismic waves on a structure as a static load. 

As a rule, at large distances the effect of the lateral and fron- 

tal waves can be neglected in practical calculations. 

As follows from the oscillograms presented, one observes ahead of 

the front of the wave a region of smooth growth of pressure - the ■ so- 

called foreshock. Its mechanism of formation can be represented in 

simplified form as follows: the direct wave, propagating along the 

separation boundary, produces wave disturbances in the ground, some of 

which overtake the front and generate in the liquid an increased- 
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pressure field. At certain distances there is superimposed on this 

field the field of the frontal and lateral waves. The maximum pressure 

in the foreshock amounts to approximately 10-30^ of the pressure on 

the front of the direct shock wave. The lower limit corresponds to ex- 

plosions at the free surface while the upper limit corresponds to ex- 

plosions near the bottom of the reservoir. The buildup time of the 

pressure in the foreshock is comparable with the duration of the posi- 

tive phase of the pressures in the shock wave. 

As was already mentioned earlier, at small angles of incidence of 

the shock wave, close to the slip angles (ß < ß^) ^ "the reflected 

waves are realized by pressure-reduction waves. Propagating with the 

local velocity of sound, these waves can, under definite conditions, 

catch up with the front of the direct wave and reduce its amplitude. 

Such a process is analogous, in its general features, to the process 

previously considered In the study of the influence of the free sur- 

face. The difference consists here in the fact that the rarefaction 

waves traveling from the free surface are formed at all angles of in- 

cidence of the shock waves,, and have an intensity equal to the inten- 

sity in the direct shock wave, whereas the pressure-reduction waves, 

propagating from the bottom of the reservoir, are formed at angles of 

incidence -lower than the critical value (ß < ß^J, and have a lower 

intensity. Therefore they are unable to attenuate fully the direct 

wave. 

Approximate quantitative estimates of the nonlinear effect of the 

attenuation of a direct shock wave by rarefaction waves traveling from 

the bottom of the reservoir can be presented on the basis of the solu- 

tion of A.A. Grib, A.G. Ryabinin, and S.A. Khristianovich, developed 

in §3 of the present chapter. 
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§8. PARAMETERS OP SEISMIC-EXPLOSION WAVES NEAR THE SURFACE OF THE GROUND 

The investigations performed show that the development of the 

physical processes accompanying an underground explosion is greatly 

influenced by the presence of the free surface of the ground. When the 

compression wave reaches the ground surface, the ground begins to move 

with increased velocity. And for the same reason as in an underwater 

explosion, a rarefaction wave is produced with amplitudes of the same 

order of magnitude as the amplitude of the direct wave. 

As is well known, rocks and the majority of ground soils can 

withstand very large compression stresses, but fail readily even under 

insignificant tension stresses. Consequently, the region of the ground 

located in the direct vicinity of the free surface of the ground, be- 

comes a region of main damage. A funnel of conical form is produced, 

the dimensions of which are usually determined by its radius Rv and 

depth Hv. 

The radius of the funnel can be determined from Boreskov's empir- 

ical formula 

tf„-/«//* (0,4 + 0,6^}, (3.147) 

where n is the so-called Horn exponent, frequently also called the ex- 

plosive action exponent; H is the depth of the charge; and m is a co- 

efficient characterizing the type of the ground. 

n = VH- (3.148) 
According to G.I. Pokrovskiy 

in = 0,80 + 0,085;V, (3 _ 149 ) 

where N is the strength category of the rock (N varies from 1 to 16 on 

the 1944 scale of unified norms for production and wages). 

For TNT the Boreskov formula can be written in dlmensionless co- 

ordinates in the form 
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^E3.i,27?[5g5!-o.4j
/'. (3.150) 

Formula (3.150) gives good accuracy for the range 

l<« = 7^ <2. 

The depth of the funnel is estimated with the aid of the empirical 

relation 

"»=-%£. (3.151) 

On the basis of theoretical considerations and of an analysis of 

modern experimental data, G.I. Pokrovskiy proposed for the calculation 

of the funnel radius an equation that admits of wider extrapolation 

than Boreskov's formula. This equation has the form 

/v=ünb//,',(l + ,'3);' (3.152) 

where 7 is the specific gravity of the ground in kg/m . 

The volume of ground expelled under optimum depth of the charges 

in the ground reaches one or one and a half cubic meters of rock per 

kilogram of explosive. 

As was already mentioned earlier, the values of the normal 

stresses in soft grounds, for the middle zone of underground explosion, 

is calculated from the formula 

°,m„~~^*s/™2. (2.165) 

The coefficient F depends on the depth of the charge. Its values 

are listed in Table 17. 

In the case when the depth of the charge and the depth of the 

measurement point do not exceed 10 radii of the charge we have 

: W--3^- ' (3.153) 

In Formulas (2.165) and (3.153) the coefficient k is taken in ac- 

cordance with the data of Table 13. 
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TABLE 17 

<- 
1                                    1 

HiyCHHa aa.ioiKeinin sapaaa H        \    0          3 
|                                                                 1 

G 0          12 15 

fiia-iemie Z7                                            0,20 |   O.-Ui 0,67 0,86     0,96 1.0 

1) Depth of charge Hj 2) value of P, 

For solid rock of the type of granite, limestone,, and marhle, the 

value of the maximum stress is determined by the empirical relation 

(2.166) 

kg/cm . IC'/7-'.!.',,!  70.1 ■10» , 26,0-10' 

In the same way as in an unbounded medi'um, the stress and the 

particle velocity are linearly related: 

v     _ .!^fx. 10" cm/sec. (S-IS1^) 
mmx     tu 

According to American data* the acceleration of the ground par- 

ticles at the free surface can be calculated from the formula 

(3.155) 

where A is the acceleration as a fraction of the acceleration due to 

S f/<03 

38,4-10' . OjTT; W'   , 0^ 

gravity; R0o is the radius of the charge in meters; p is the density 

2/4 of the ground, kg-sec /m . 

In the far zone of underground explosions (100 < R < 1000) the 

main interest attaches to the velocity of the ground at the surface. 

The maximum values of the velocity are calculated from the formula of 

M.A. Sadovskiy 

■IPS        v    '■', 
\  Ik'1' 

V/W 
*/ cm/sec, (3.156) 

where   f(n)   is Horn's exponential function;   y  is  the  specific  gravity 

of  the  explosive   in kg/crri ;   R  is  the  relative  distance. 

Horn's  exponent  is approximated by the  following approximate  rela- 
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tlons: 
<       1,7       for      //>'2 

y-fC/r) =   0,4 + Ofin» for" 2 > « > 1 
S        i        for      «<1 

(3.157) 

For TNT (7 = l600 kg/rar)  Formula (3.156) assumes the form 
10 300 can /sec. (3.158) 

As a result of the propagation of the wave disturbances, the ground in 

the far zone executes a series of complicated vibrations. Usually one 

separates, from this series, the principal phase characterized by the 

largest ground displacements. In the principal phase of the vibrations, 

these displacements along the surface can be determined approximately 

by the relationship 

//(/■) = V~" sin w/1 mm, (3-159) 

where An is the maximum amplitude of the ground-particle displacement; 

co = 27T/T is the circular frequency of the vibrations; a is the damping 

coefficient. 

The value of a depends on the period of the vibrations and is de- 

termined from the data of Table 18. 

TABLE   18 
1 

r, CCK. .   0,111 0,083 •     0,067 

2 
O, CCK.-1 0,020-0,025 0,036-0,040 0,055-0,060 

1) T, sec; 2) a, sec" . 

The period of the vibrations in the principal phase is calculated 

from the formula of M.A. Sadovskiy 

r~*)lgV? sec, (3.160) 

where cu is a coefficient that depends on the physical and mechanical 

properties of the ground and R is the distance from the center of the 

explosion in meters. 
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The values of the coefficient a2 for some types of ground are 

listed in Table 19. 

TABLE  19 

4 

1 Uiu rpyuta 

rpyiiTu uoaoiiacumcmiwt' 
CKa.iiiiiue nopoau 

5 | P.imi.'i, nlicc 

KojiIjdinmicHT 

0,13--0,lj 
0,03—0,01 
0,00-0,003 

1) Type of ground; 2) coeffi- 
cient; 3)  water-saturated 
groundj 4) solid rockj 5) clay,, 
loess. 

The maximum amplitude of ground particle displacement is deter- 

mined from the formula 

A,« 205 ^-r'''/?-'xnm., (3.l6i) 

For TNT 

4 = 240-^--!-mm. (3.162) 

Example. Calculate the velocities of the ground at the free sur- 

face at a distance of 500 m from the center of explosion of a TNT 

charge weighing 50 tons in firm ground (saturated clay, N = 12). Find 

the value of the overload at the same distance. 

The depth of the charge is assumed to be 5 m. 

Solution. We determine the radius of the equivalent spherical 

charge RQO, the relative distance of the investigated point from the 

center of the explosion, and the relative depth of location of the 

charge: 

«OJ = 0,053 \/W.lW = 0,053-10-3,08 = 1,95 Hlj 

5 ^-S- = 25C;    H W=2'56- 

To estimate the maximum velocity we use the formula of M.A. Sadov- 
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skly 
16 300 

''max ~~     ,1  •cm/ sec. (3.156) 

For this purpose it is first necessary to calculate Horn's ex- 

ponent n = R.VH. According to Boreskov's formula 

« = -£-=1,2 m'H-' " 
0,-J 

i/n 

Substituting  in it 

m = 0,80 + 0,085/V = 0.80 + 0,085.12 = 1,82 

and the indicated value of R., we obtain 

" = ^ L 1,82.2,5ÜJ 

(3.150) 

(3.1^9) 

6.75'10i-_04T',1~72 

For n > 2 we have 

and therefore 
16 300 

V/(/0 = 1.' 

16 300 
",°x        3    -      _   1,7-U00 = 2,34 cm/sec. 

We determine the value of the overload by means of Formula (3*155) 

The values of F, k, and p are found from Tables 13 and 17: F = 0.393; 

k = 7000 kg/cm2.; p = 215 kg-sec2/m • 

Substituting the initial data in (3-155)^ we obtain 

A. = 6,3 
fk   f 38,4.10' , 0,17-10'  0,31 

P^ K* 
+ ■ 

0,3-0,393.7000 [  38,4.10'   0.17.10_2_  O^"] _ 
■ "   215.1,95   L  256'      2S(T-'    256 J 

i 41,2 [0,893.10-«+ 0.026.10-2 + 0,121 • 10--1 = 41,2.0,156.10-' = 0,0643. 
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l82     See, for example, L.I. Briggs, J. Appl. Phys., 21,   721,   1950. 

189     A.A. Grlb, A.G. Ryablnin, S.A. Khrlstianovich, On the Reflec- 
tion of a Plane Shock Wave in Water from the Free Surface, 
Applied Mechanics and Mathematics, Vol. XX, No. 4, AN SSSR, 
1956. 

192 When n = 7.15, the discrepancy amounts to less than 0.1% for 
pressures near 1000 atm. 

196 Here and throughout the exposition of the present section we 
follow the terminology of 3.... Khrlstianovlch. 

198 In the x,z plane the front of the pressure-reduction wave is 
a circle of radius at with centerline on the free surface of 
the liquid. 

199 The second root of the equation Z'  = ß* + ß  , which lies 
in the region of positive Z (in the upper half plane) is dis- 
carded. 

200 See, for example, E. Kamke, Handbook of Ordinary Differen- 
tial Equations, IIL, 1950. 

209     See, for example, Ya.I. Frenkel', Kinetic Theory of Liquids, 
AN SSSR, 1945J Ya.B. Zel'dovich, J. Exptl. Theoret. Phys., 
12, 525, 1942. 

214     The first term in the brackets is a consequence of the as- 
sumption that the pressure is zero in the region of the cavi- 
tational discontinuity. 

220 This range of acoustic ground impedances corresponds to a 
value of the reflection coefficient ranging from —0.8 to 
+0.7 for direct incidence. 

221 The Lame constant \\.  is equal to the shear modulus G. The con- 
nection between the constant X,   the modulus of longitudinal 
elasticity E, and the Poisson coefficient v is expressed by 
the relation 

x = (1 +v)(l-2v)- 

224     As already mentioned earlier, the connection between the Lame 
constants and the velocity of propagation of the longitudinal 
and transverse waves in a medium is expressed by the rela- 
tionships 

*=!/-£- 
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1957. 

., 225   **Here and throughout, foregoing a rigorous exposition, we as- 
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l/r, as would follow from the equations of acoustics, but as 

l/r  3, as would follow from the empirical formula (2.150). 
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tions with Formulas and Curves, OGIZ, GITL, 1948. 

240     "The Effects of Atomic Weapons," New York-Toronto-London, 
1950. 
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174 oTp = otr = otrazhennaya volna = reflected wave 

174 $ = f = front = front 

175 npeH = pred = predel'noye otrazhenlye = limit reflection 

175 3 = z = zadannyy = given 

175      OHT = opt = optlmal'nyy = optimum 

183 an = ak = akusticheskoye prlblizhenlye = acoustic approxi- 

mation 

184 MKceK = i,|j,sec 

190 xap = khar = kharakterlstiki = characteristics 

191 B.p = v.r = volna razrezhenlya = rarefection wave 

193      np = pr = pryamaya volna = direct wave 
2        2 

207      KT/CM  = kg/cm 

210 ■    K = k = kavitatsiya = cavltatlon 

210      pes = rez = rezul'tlruyushcheye davlenlye = resultant pressure 
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213 aTM = atm = atmosfernoye protlvodavlenlye = atmospheric 

counterpressure 

215 coya  —  soud = soudarenlye = collision 

222 fl = d = dno = bottom 

226 r = g = grunt = ground 

' 230 Kp = kr = kriticheskiy = critical 

234 wiceK = msek = millisekunda = millisecond 

235 MKceK = |asec 

238 B = v = voronka = funnel 
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Chapter 4 

PRINCIPAL ASPECTS OF THE PROBLEM OF EXTERNAL FORCES 
IN THE CASE OF AERIAL AND UNDERWATER EXPLOSIONS 

§1. CONCEPTION OF DIFFRACTION PROBLEMS 

The very simple boundary-value problems of explosion theory con- 

sidered in the preceding chapter presupposed that the surfaces of sep- 

aration between the two media were unbounded. Such an assumption, nat- 

urally, cannot be regarded as justified when a shock wave encounters a 

partition of finite dimensions. In this case there occurs along with 

reflection and refraction of the waves also a process wherein the 

shock wave bends around the partition, usually called diffraction. 

The study of diffraction phenomena is of very great practical 

significance, for without it it is impossible to present an estimate 

of the external forces in an explosion. 

Very useful for a qualitative under- 

standing of the diffraction process is 

the Huygens principle, which consists, 

as is well known, in the fact that each 

point of the wave or of the surface with 

which the wave interacts can be regarded 

as an elementary source of wave disturb- 

ances. Using this concept, it is easy to 

construct the front of a propagating 

wave (Fig. 75) and to indicate the main qualitative features of dif- 

fraction phenomena. Thus, for example, if a plane wave encounters a 
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screen provided with a small aperture, then this aperture will serve 

as the source of an outgoing wave on the other side of the screen. 

A mathematical analysis of the diffraction problem was first pre- 

sented In a finished form by Kirchhoff. For a homogeneous wave equa- 

tion In three-dimensional space, he obtained a rather general relation- 

ship, which determines the potential at any point of space In terms of 

the values of this potential and Its derivatives on an arbitrary 

closed surface, enclosing the region in which the chosen point is sit- 

uated. 

Kirchhoff's formula has the form 

where cp(|, r], ^, t) is the potential at the point A(|, r], ^), enclosed 

by the arbitrary surface _s; n is the outward normal to the surface; r 

is the distance from the element _ds to the point A(^, r],   ^). 

In spite of the completeness of the mathematical solution, anal- 

ysis of diffraction problems with the aid of the Kirchhoff formula en- 

counters difficulties of principal character. 

The point is that although the surface on which the values of the 

potential and its normal derivative must be known can be chosen ar- 

bitrarily, in most physical problems there are no reliable data con- 

cerning these quantities on the chosen surface until the problem is 

solved. It therefore becomes necessary to make additional assumptions 

concerning the distribution of the potential and its derivatives on 

the boundary surface, which in the best case leads to a method of suc- 

cessive approximations. 

It must be added to it that the surface Integrals contained in 

- 24? - 



(4.1) cannot be evaluated In close form even for the simplest cases. 

Consequently, one uses frequently for an approximate analysis of dif- 

fraction problems not the Kirchhoff formula, but the so-called radia- 

tion integral, which represents a mathematical form for writing down 

the Huygens principle. This integral has the form 

> fj^hil^, (4.2) 
2n   } r ' 

where v is the normal component of the velocity of the surface ele- 

ment ds and r is the distance from ds_ to the point A. 

Its use is possible only when the point at which the potential is 

estimated is on the "line of sight" with respect to the arbitrary sur- 

face element. 

■ Let us indicate the sequence of operations connected with the ap- 

plication of the radiation integral in diffraction problems. Assume, 

for example, that it is necessary to find the pressure field in a liq- 

uid, with allowance for the influence of an absolutely rigid plane par- 

tition of specified configuration. In this case one first calculates 

the normal components of the particle velocities at those points of 

the liquid, which are in direct contact with the surface of the parti- 

tion, under the assumption that the partition itself is missing. The 

obtained quantities with their signs reversed are substituted in the 

radiation integral. 

The sum of the potential of the direct wave and the potential ob- 

tained by this method determines the sought pressure field. It is ob- 

vious here that the following boundary condition is satisfied on -the 

surface of the partition: 

On = 0. 

The foregoing methods, which follow from the general theory of 
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-the wave potential, are valid only for an analysis of linear equations. 

The propagation of aerial shock waves cannot as a rule be de- 

scribed by linear equations. Consequently, there is likewise no rigor- 

ous theory of the diffraction of such waves. For practical estimates 

one uses the approximate representations formulated in the papers of 

•Yu.B. Khariton, M.A. Sadovskiy, and many other authors. 

Diffraction problems pertaining to an underwater explosion can 

likewise not be sol/ed in many cases with sufficient accuracy on the 

basis of the linear equations indicated here. 

§2. DIFFRACTION OF AN AERIAL SHOCK WAVE AROUND A PARTITION 

The problem of the diffraction of an aerial shock wave around a 

partition will be considered under the following assumptions: 

1) a plane wave of constant amplitude is investigated; 

2) the wavelength is infinite. 

When such a wave is normally incident on an absolutely rigid wall, 

a reflection pressure is produced, which can be determined from the 

Crussard-Izmaylov formula 

A^0TP = 2A^ + 1^-. (1.221) 

The reflection pressure remains at the specified point of the par- 

tition until the instant when the rarefaction wave, moving from the 

edges to the center, arrives at this point. 

The pressure will then be determined approximately by the param- 

eters of the stagnant liquid stream. The values of such parameters can 

be readily obtained from the Bernoulli integral, according to which 

A —! ^ 2    A — 1 • { J..OH J 

where a* denotes the value of the velocity of sound at the point where 

the gas velocity is equal to zero (in this case, on the wall). 

Recognizing that a*2/a2 = p-^p/pp*, we can represent Eq.(1.84) 
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In the following fashion; 

-*■> -fl^+±i:1-S- (^-3) p  p" 

Here p* and p* denote the pressure and density In the retarded 

stream. 

Using the adlahatlc condition p/p = const. It Is easy to elim- 

inate the parameter p from Relation (4.3). As a result we obtain 

or 

^^{i+^lJ^. (4.4) 

The quantities v and a for an Infinitely long wave can be assumed 

on the basis of the equations of dynamic compatibility: 

* + i , P 

(--0 
v~a*—Jir?rTT^' (i-i89) 

After elementary transformations we obtain ultimately 

^°W1 + 77fe^ A^- (^.5) 

The last relation was established in a somewhat different manner 

by Yu.B. Khariton. 

After the complete termination of the diffraction processes and 

the onset of the steady-state flow mode,, the force acting on the par- 

tition will be determined by the relation 

F~cFSlf. (4.6) 

where "c^ is the coefficient of aerodynamic force and S is the charac- 

terlstic area of the surface of the partition. 
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2  "^ ep0 + p-- (1.192) 

Resolving this total aerodynamic force P along the axes of the 

velocity system of coordinates^ we obtain 

Z = c, i- Sv=. 

(4.7) 

Here c^. is the coefficient of the resistance force, c is the co- 
ä y 

efficient of the lifting force; and c  is the coefficient of the lat- 

eral force. 

The values of these coefficients are generally found experiment- 

ally in wind-tunnel tests. 

Figure 76 shows a comparison of the reflection pressure Ap . , 

the pressure in the stagnant flow Ap*, and the pressure in the sta- 

tionary flow Aprez = cxpv /2 for a rectangular plate located along the 

normal to the flow direction. We see that when Ap < 3.5 atm* the ratio 

AP*/Apotr is approximately equal to one half. 

This fact enables us to outline the following approximate scheme 

for estimating the external forces produced on the partition in the ' 

case of an aerial explosion. 

1. The reflection pressure is approximated by a triangular pat- 

tern (Fig. 77). The abscissas represent the time of arrival of the 

rarefaction wave from the edge of the partition at the specified point, 

t0 = l/a. 

2. The ordinate corresponding to the abscissa t0 is bisected. The 

resultant point is connected with the point on the abscissa axis cor- 

responding to the time of the positive pressure phase. 

If the problem consists of constructing the function Ap = f(t) 

not for one point but for the entire partition as a whole, then the 
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Fig. 76. Reflection pressure and 
velocity head as compared with the 
pressure in the stagnant flow. 

Pig. 77. Pressure 
pattern at a speci- 
fied point of a par- 
tition with finite 
dimensions. 

Pig. 79. Resultant 
load on the shadow 
side of the parti- 
tion. 

Pig. 78. Resultant 
load on the face 
side of a partition 
of finite dimensions. 

Fig. 80. Resultant 
load on a partition 
of finite dimensions. 

average pressure is determined by integrating the pressures at points 

with various distances from the edges. In this case, owing to the fact 

that the pressure decreases rather rapidly at the points that are 
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dosest to the edges,, the curve assumes the form shown in Fig. 78. 

On the first section 0 < t < t . , ,, the pressure pattern Is approx- 

imated by the linear relationship 

A/^A/^l-if-), (4.8) 

where t-, = 2t,,,, t ■,, Is the travel time of a sound wave (a — 3Ö0-400 

m/sec) along the smaller of the dimensions of the structure. 

On the second section It Is likewise perfectly permissible to use 

the linear approximation 

A/> = A/,« (!_%-), (^-9) 

where t2 = T+ - t^. 

The pressure on the surface facing the side opposite the explo- 

sion center can be approximately regarded as equal to the maximum pres- 

sure on the wave front for a load buildup time t  , — ^/a.Q and for a 

linear decrease In the amplitude (Fig. 79). 

Thus,, the resultant load on the partition Is characterized by the 

pattern shown In Fig. 80. 

In spite of the rather approximate character of the developed 

scheme., It is presently accepted as the main scheme for the estimate 

of external forces acting on a structure during an aerial explosion. 

§3. PROPAGATION OF AN AERIAL SHOCK WAVE IN CHANNELS 

Among the important problems Involved In the estimate of external 

forces occurring In aerial explosions Is the study of the Influx and 

propagation of shock waves In channels of various types. 

Rigorous solution of this problem entails great difficulties. At 

the present time one can only Indicate,, making use of the theory of a 

point.explosion^ a limiting law for the attenuation of the amplitude 

of the plane wave. 

In accordance with the solution of L.I. Sedov we have 
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/v - 2 + v ^ • ^. ^i; 

with 

v^Is.* (2.35) 

Putting v = 1, we obtain 

"H-/?^, (4.10) 

and since 

^-TTTPo^. (2.39) 

we have ^~77-- (4.11) 

The experimental stiidy of the propagation of aerial shock waves 

in channels of constant and variable cross section has engaged many- 

workers. The latest and fullest results belong to M.A. Sadovskiy, Yu.N. 

Ryabinin, V.N. Rodionov, and Yu.S. Vakhromeyev. 

We present below the final relations necessary for practical cal- 

culations. 

It has been established that the variation of the pressure on the 

wave front as the wave propagates in a channel of constant cross sec- 

tion is characterized, in full agreement with (4.11), by the relation- 

ship 

where Ap-, is the excess pressure in the wave, measured at a certain 

section of the tube and chosen as the initial value; ^n is ■fche dis- 

tance from the center of the charge corresponding to Ap-^ and x is the 

variable distance from the section l-^. 

Frequently one assumes for the initial values of Ap^ and I^ the 

excess pressure Ap0 of the wave at the inlet and the distance r0 from 

the center of the charge to the inlet to the channel. 
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In view of the fact that the formation of a plane shock wave oc- 

curs In the channel after the entrance into the channel of a wave of 

spherical form and that such a process depends essentially on the 

value of the pressure on the front, a correction to Formula (4.12) is 

introduced. One chooses for I-.   not the distance from the center of the 

charge to the inlet to the channel, but some smaller quantity !„_, 

equal to 

/o = ^.- (^-13) 

The values of the experimentally obtained coefficient a are shown 

in Fig. 8l. 
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Fig. 81, Dependence of the coefficient 
a on the pressure on the front of a 
shock wave at the inlet section of the 
channel, l) for log Ap0<0, a=l. 

The value of Ap0 is calculated by the formula (2.145) of M.A. 

Sadovskiy with r = r^. Usually the inlet to the channel has a reflect- 

ing surface. The presence of such a surface increases the pressure in 

the inflowing wave. 

Yu.N. Ryablnln and V.N. Rodionov presented an approximate esti- 

mate of the coefficient Q,   taking into account the influence of the 

reflecting surface, with 

Q = Ap0/Ap1, (4.14) 
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where Ap0 is the pressure before the entrance Into the channel and Ap1 

is the pressure at the beginning of the channel which has a reflecting 

surface. 

They based their calculations on the following assumptions: 

the wavelength, and consequently also the thickness of the com- 

pressed-air layer, is much larger than the diameter of the inlet chan- 

nel; 

the reflecting surface has infinite dimensions. 

It is then possible to indicate four zones corresponding to def- 

inite states of the gas at the initial period of the Inflow of the 

wave (Pig. 82): 

1) zone "a II„ it undisturbed air; 

fid 11 
Piri 

■-' \\v-\\\\\\\,\\\\\v 

hh 

:.^.:v.'A. 

Pah 

'^.\:-v- -x-w: 

2) zone "b" - air in the channel 

through which a shock wave has passed; 

3) zone "c" - air flowing into the 

channel; 

4) zone "d" - air compressed by the 

reflected wave. 

The transition of the gas from state 

"a" into state "b," is through a nonsta- 

tionary strong discontinuity surface (shock 

wave front). Zone "b" is separated from 

zone "c" by a contact discontinuity. In 

zones "a" and "d" the pressure £, the density p, and the velocity of 

the particles v are known. 

The problem reduces to determining the six quantities p^ p..  v 
■^b-' ^b'  b' 

pc, pc, and vc. 

To estimate these quantities we can use the following equations: 

Pig. 82. Pattern of 
inflow of a shock wave 
into a channel of con- 
stant cross section. 
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Fig. 83. Dependence of the coefficient O. 
on the pressure on the shock-wave front 
at the inlet section, l) for log Ap0<0,, 
0=0.5- 

v* = vn 

from the condition on the contact surface; 

' pa' .pa(*--i)+ /'*(* +')' 
—1 r 
V Pn ■  P6 ^^-^(i—FT) 

from the dynamic compatibility conditions on the front of the shock 

wave; 

^-r T=T 77-77- 

on the basis of the Bernoulli Integral; 

Jls--= (Is-Y 
Pn   "  V Pc / 

from the adiabaticity of the process. 

From the solution of this system we can obtain the value of Ap^,, 

and consequently also the coefficient Q = APQ/äP^. 

The results of the corresponding calculations are shown in Fig. 83. 

In addition to the foregoing factors, the attenuation of the 

shock wave in the channel is influenced also by losses to friction 

connected with the roughness of the walls. 

Generalization of the experimental data enables us to arrive at 

the following conclusions: 
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1) the influence of the wall roughness is determined approximately 

by the relation 

i£^. = c-
4-iri (4.15) 

where k Is a coefficient that depends on the relative roughness; d Is 

the channel diameter; and _x Is the path covered by the wave along the 

channel; 

2) the ratio of the coefficient k to the hydraulic coefficient of 

friction ^ Is approximately constant and equal to O.4.* 

The character of the dependence of the hydraulic coefficient of 

friction on the relative roughness of the channel wall and on the 

Reynolds number Is shown In Fig. 84. In the self-similar region one 

can recommend the following approximating formula: 

^    ^ ^ (4.17) 
(2.2 4-4-1,74) 

where d/2k Is a quantity Inverse to the relative roughness; d is the 

diameter of the channel; k is the height of the roughness projection. 

Gathering together the estimates obtained,, we arrive at the following 

final relationship for the pressure in the propagation of a shock wave 

in a channel of constant cross section: 

A  y.(/, + /.) g-°.«-f (4.18) 
^       U + U + x * x     / 

or^ In the particular case when l1 = 0 (the Inlet section of the chan- 

nel Is regarded as the starting point) 

^^f^'0'4^- (^19) 

The value of Ap0 Is calculated by Formula (2.145) for a distance 

equal to rn. The coefficients a and Q are picked off the curves on 

Figs. 81 and 83. 

For an appreciable attenuation of the shock wave in a channel of 

- 258 - 



v 

0,$ 

m 

0,3 ■ 

CJ 

\ 
A \ 
s 

V 
\ 

N / 
! 

\7 \ u. 3 

\ 

■^  

N, (• 
-»r—« 5 

\ 
\ 

^L \ 
2,it    IS    U    3,1     W     4,4 W ■•? ^" l//?» 

Pig. 84. Dependence of the co- 
efficient | on the Reynolds 
number and on the relative 
roughness 

s~—. — co.o 

'-rA = 12G 

S-~= 252 

short length, various types of protective 

devices are used. One of the most widely 

used protective devices is an expansion 

chamber. 

The x^ave-suppress ion ability of the 

chamber is estimated by means of the ex- 

tinction coefficient y,   which is equal to 

the ratio of the pressure of the shock wave 

in a channel of constant cross section to the pressure behind the ex- 

pander, taken in both cases at an equal distance from the charge and 

for identical cross sections of the linear supply portions of the chan- 

nel. 

It has been experimentally established that the extinction coef- 

ficient is not connected directly with the volume, but depends strongly 

on the diameter' of the chamber, increasing with the latter, and varies 

Fig. 85- Scheme of in- 
flow of a shock wave 
into an expansion 
chamber. 
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as a function of the intensity of the shock wave entering into the ex- 

pander. 

An approximate method of calculating the coefficient of extinc- 

tion of an expansion chamber was developed by Yu.N. Ryabinin and V.N. 

Rodlonov. The gist of the method is as follows. 

Consider a wave of infinite length and of high intensity. As be- 

fore., we investigate four regions of the.state of the gas (Fig. 85). 

On the basis of the mass conservation law we have 

P^Ä = Pa^. (4.20) 

On the contact-discontinuity line we have 

(4.21) 
v* = f. 

The escape of gas from the narrow channel into a wide one occurs 

adiabatically, and consequently 

ff-r (^22) 

Thus 

Equation (4.23) is a solution of the problem formulated. It yields 

the connection between the quantity Ap, and the section S/S0 for a 

specified pressure at the inlet to the expander Apd, and also the de- 

pendence of Ap. on Apd for a specified ratio of the expander cross sec- 

tion to the inlet channel SQ. 

Inasmuch as the values of the velocities v are uniquely deter- 

mined by the pressure on the front £, we can plot the function vp   = 

= f(p) (Fig- 86). 

With the aid of the plot (Fig. 86) the coefficient of extinction 

of the expansion chamber is calculated in the following sequence: 

1) the specified pressure pd at the inlet to the expander is used 
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Fig. 86. Auxiliary 
plot for the calcula- 
tion of the extinc- 
tion coefficient of 
an expansion chamber. 

Fig. 87. Extinction 
coefficient of ex- 
pansion chambers. 

to determine v. pn d d 
l/k f(pa); 

2) the obtained value is divided by the ratio of the cross sec- 

tion areas S/S0 and v, p, / v.p iA Sn/S determined; from this value 

b (also with the aid of Fig. 86) one calculates ph and the excess pres- 

sure Ap^ ^ p^ - pa; 

3) in order to change over to the pressure in the channel behind 

the expanderj &P\>   i1: is necessary to take into account the transi- 

tion of the wave from the broad tube into the narrow one,, which is 

characterized by the coefficient Q = Ap^/Ap'^. This coefficient is 

picked off the plot of Fig. 83; 

4) the extinction coefficient of the expansion chamber is calcu- 

lated as the ratio of the initial pressure to the pressure behind the 

expansion chamber y  — Ap,/Ap' . 

For approximate estimates one can use an even simpler relation. 

Calculations show that approximately 

The dependence of the extinction coefficient on the ratio of the 

cross section areas of the channel and expander is shown in Fig. 87. 
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Using this plot, it is possible to determine immediately the 

sought coefficient 7 , without resorting to intermediate derivations. 

It must he borne in mind, however, that although Yr is practi- 

cally independent of Ap^  , . the extinction coefficient y  is connected 

v/ith this quantity via the coefficient Q. 

The length of the expansion chamber should be approximately three 

times larger than the diameter. A further increase of the length is 

ineffective. 

§4. PRINCIPLES OF THE DESIGN OF STRUCTURES TO WITHSTAND THE ACTION OP 
AN AERIAL SHOCK WAVE 

In choosing the scheme for designing a structure to withstand the 

action of a shock wave, great importance is attached to the ratio of 

the period of the natural oscillations of the structure T0 to the 

length of the compression phase T+. 

If the ratio is ^^/TQ « 1. the design is based on impulse; if 

T /Tn » 1 it is based on maximum pressure. When the quantities T+ and 

Tn are of the same order of magnitude, it is necessary to take into 

account the character of the time variation of the pressure. 

B.A. Olisov has shown that when the load is approximated by the 

linear relation P = P (1 - t/x), its replacement by the instantaneous 

impulse S = j>(*)^ leads to an exaggeration of the calculated values of 
u 

the strains and stresses; this exaggeration is the larger, the greater 

the ratio T+/T0. Thus, when T+/T0 = 0.33 the error in estimating the 

strains amounts to +12^, when T+/T0 - 0.25 it is approximately +lfo, 

and when ^/TQ = 0.l6 it is less than +3fo. 

It follows therefore that the assumption that the action of the 

shock wave in an aerial explosion has an impulse character can be as- 

sumed as practically acceptable if T+ < 0.25 TQ. 

The "static" character of the action of the shock wave should be 
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observed according to the theory when T exceeds T0 by a factor of ap- 

proximately 10. 

In Table 20 are listed the values of the natural periods and de- 

structive loads of typical structural elements. 

TABLE 20 

i               ; 

KoiICTpyKUIIH 

^KtipmiMiiwe CTeiiKii 
>Ke.nE30- 
öeToiiiiaH 

creiia 
0,25 M 

Onepe- 
KpUTIIH 

no „it'pe- 
DRIIIIUM 
Oa.TKaM 

7 
JlerKiie 
nepero- 
po.lKIl 

Ö 
SacrcK- 

.icinfc 
3 

Ann 
Kiipnima 

no.TTopa 
Kiipmma 

9 riepnoA coflcTnen- 
Hbix Ko.ieöaimil, 
T0   CL'K 

0,01 0,015 0,015 0,3 0,07 0,02-0,04 

10 CraTiiMecKan na- 0/15 0,25 3,0 0,10-0,10 0,05 0,03-0,10 

11 HMny.ibciiaa   na- 
rpyaKa, 
5 KZCI'KJM'' 

220 190 

l) Structure; 2) brick wallsj 3) two 
bricks; 4) one and a half bricks; 5) rein- 
forced-concrete walls 0.25 m; 6) decks 
supported by wooden beams; 7) light par- 
titions; 8) glazed structure; 9) period 
of natural oscillationsj T0J sec; 10.) 
static load., F., kg/cm ; 11) impulse load, 

S, kg-sec/m . 

Comparing the natural period of the structure with the time of ac- 

tion of the positive phase of the shock wave, it is easy to establish 

whether any of the indicated computation schemes can be employed. In 

the case of explosion of charges of ordinary explosive substances, 

cases of purely impulsive or purely static action of the load are ex- 

ceptions. It then becomes necessary to take into account the time 

variation of the pressure. The approximate construction of the pres- 

sure pattern for partitions of finite dimensions is then carried out 

by the method indicated in §2. 

As regards the structure, it is reduced as a rule, with the aid 

of the Lagrange method, to a dynamic system with one or several degree:; 

of freedom.* 
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>or simplicity let us consider the computation scheme for an elas- 

tic system with one degree of freedom. 

The differential equation of motion of such a system in the time 

interval 0 < t < t ^ will in accordance with (4.88) be 

^ + /^AM1~17~-)' (4.25)  - 

where M is the reduced mass; z is the displacement of the reduction 

point; k is the reduced stiffness coefficient; and tobt is the time of 

flow-around (the travel time of the sound wave along the smaller of 

the dimensions of the structure). 

Its general solution is 

z = c, sin vt + c2 cos u>i + -jj^r (1 —SV") - (4. 2o j 

or, after determining the arbitrary constants from the initial condi- 

tions (2 = 0 and z = 0 when t = 0)., 

"^1'—'-^r['-^]}- (".27) 

The velocity of motion of the reduction point is 

i = -^L/uJSincoz'---i-(l-cos^)). (4.28) 

In Formulas (4.26)-(4.28) co denotes the natural frequency of the 

system 

c/ = k/M. (4.29) 

Starting with the instant of time t = tobt, the value of the load 

varies as (4.28). 

The motion is determined by the differential equation 

M'!! + kz*=Ap*, (4.30) 

which is integrated under the following initial conditions: at the in- 

stant t = tobt we have 

2r = Z, M (4.31) 
2 = 2,.   i 
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The  solution of Eq.   (4.30)  will be 
0 = 2-, COS a. (t—t^r) + -f- Sin u, (t—tott) + 

' 'UTO j 

+ 
t — t„ 

(4.32) 

2r = ~?1iusinu)(^ —/0(,T) + 2;1cos(u(^—/U(,T) — 

--^IH-wsinw^-U)- 

~i~7^-U-«sw^-^)]}- (4.33) 

Putting 2=0 and calculating from (4.33) the corresponding val- 

ues of t*. we can readily obtain the maximum displacement z „v from max 
Relation (4.32) where we substitute t = t*. 

The displacement z„_„ of the reduction point uniquely determines max 

the maximum strains and stresses of the system. 

In principally the same manner one solves more complicated prob- 

lems in the dynamic design of systems that are deformed in the elasto- 

plastic zone. 

Example. Establish the limiting TNT charge that can be exploded 

without danger of breaking the glass windows in a house located 1000 m 

from the planned center of explosion. 

Solution. On the basis of the data of Table 20,   the static load 

that the windows can withstand is approximately 0.05 l<g/cm . 

Since this pressure is equal to the reflection pressure, we as- 

sume for the direct wave^, with some margin., Ap- = 0.02 leg/cm . 

In accordance with Sadovskiy's formula for an explosion on the 

earth's surface 
3_        3_ 

i/, = o,05 J^L + 3,0 i^l -i- 13,0 4 • 
r r1 '   r' • 

Putting Ap = 0.02 and solving this equation with respect to^/G/r, 

we obtain 

BL=:0,018. 
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From  this we obtain for the specified value r = 1000 m the sought 

weight of the charge 

G - 5800 kg. 

The time of action of the shock wave will he 

C, m 1,7.10-= y'a y~r m 1,7- lO""3 KSÖÜÜ K'Iööö = 

= 1,7-IQ-3-4,2-31,6 = 0,226 sec. 

This time is approximately 10 times greater than the natural 

period of the glass windows. 

Consequently, the estimating scheme employed is perfectly accept- 

able. 

§5. SIMPLEST DIFFRACTION PROBLEMS IN TKE THEORY OF UNDERWATER EXPLOSIONS 

Let us consider first the simplest case of the diffraction of a 

shock wave around an absolutely rigid disk. 

We shall solve the problem in the linear formulation. To est^nate 

the hydrodynamic fields, we use the radiation integral. 

The potential characterizing the propagation of the direct wave, 

in the case of motion with spherical symmetry, can be represented, as 

is well known, in the form 

^....y^o^x-./?). (4.34) 

where for the sake of convenience R denotes the dlmensionless distance 

R = r/Rpp;, while T stands for the dlmensionless time 

(4.35) R 

The value of the normal component of the velocity in the parti- 

tion plane will be (Fig. 88) 

il'j   _  ()tf OR 
v" "~ Tin ~ Tfi  On 

^-/.w.-*)  ^i^-«)^-«,) \ (4.36) 

The boundary condition will be satisfied if one places at the 
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Fig. 88. Comparison of the character 
of variation of the pressirre in the 
case of an explosion., with allowance 
for the presence of a rigid disk, 
using the incompressible liquid 
fdash) and compressible liquid 
(solid) schemes. B) Point of explo- 
sion of a TNT charge weighing 75 kg; 
C) measurement point. 1) Using the 
compressible liquid scheme; 2) using 
the incompressible liquid scheme. 

points of the disk hydrodynamic sources such that the flow velocities 

due to these sources turn out to be equal and opposite to the velocity 

determined by Relation (4.36). 

As already mentioned, such a result is attained with the aid of 

the radiation integral, which in this case is conveniently written in 

the form 

in  r. 

1A 
 Li" I" t'/i^-^1') rdrrif, (4.37) 

where R* is the distance from the point of the disk to the point C 

(see Fig. 77). 

Considering the case of axial symmetry, we obtain on the basis of 

(4.36) : 

VA =•- *.. [ -t(T~//j7 ^ V(* - H ■ ■ K*)r\ir   ■ 

— zn 

rr-pVT K- (t - K - «*) "o {•■ - K - «-)! 
 rdr. d {R + R¥) 

R'R' 

(4.38) 
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We introduce the substitution 

where 

then 
r r   \  , rxdr 

ntr \ 
RR'   ~ "x dx; 

RR* 

A- ~ R + R* 
R — R' 

*n — -" 

rdr = RR" -4—^ dx; 

fllZil =*R-R*;     2'a  ~ + x--= 2^; 

zl-~z*'- -\~X'=-2Rx, 

tft-z'*' -t x--y = AR-x?, 

/?' ■l-V3 

/0 = J '^-Rf-
nt) 3ü (t - R - /?») /-Jr = 

*.+»• 
^ (x — j?) i£ —   i   i. ^ - x) o r-t — K\ — ■ ^r—   I      W'     o(-    X) x ■ 

/<■,+«• 

'«+« 
(4.39) 

In perfect analogy 

/, 
a (R» + R) [•i,(t-R-R*)<tAt-R-R*)\ 

R'R rdr- 

H.+R» 

=■■ 2 d.<c 
[^(■c-.v)Oo(---.V)li/.V 

rt-f + x* 
t.+f 

Thus, the potential at the point C will be 

(4.40) 

/?.+«• 

<?c = 4 
^ (T — X) Jo (i — X)   . 

[4-z'" + x*}- 
—-xdx— 

«,+«• 
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J 4-*" + ^       x- 

Integrating by parts,  we get 

r — 9 ^ C-' — -y) go (t — .^)   I 

or, returning to the previous notation, 

O  — 0-r  I  » (T — /Q — g*) J0 (t — j'o — 2») 

(4.41) 

-K^+^;)!. (4.42) 

If we add to the potential (4.42) the potential of the direct 

wave and use the well-known relation p = p0( öcp/öi:), then we obtain the 

values of the pressures at the point lying on the symmetry axis: 

P (0, z*) = ?o -j~r 4r [<? (^ - ^ + «*) 'o (^ - ^o + ^w)] + 

+ Po TTT^- JT t* (T ~ ^o — «*) 'o (t - «o — «*)] — 

- Vrl + *'■'! ■ oo (x - Vrl + ^ - Vrl + F5)]. (4. 43 ) 

We see that the first two terms of (4.43) are the same as if the 

partition were to he infinite. They determine the direct and reflected 

waves. 

The third term determines the rarefaction waves traveling toward 

the point from the edges of the disk and due to the increased velocity 

of the flow of liquid through the edge of the partition. The wave pat- 

tern in the case of diffraction around a disk is shown for the sake of 

clarity in Fig. 88. 

Vie can obtain analogously the pressure at the points of the sym- 

metry axis, located behind the disk. It will be determined by the equa- 
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tion 

-K^T^"') ao 1^ - Krl+Tg - Kr^hi51).    (4.44)     (4.44) 

It is of interest to solve the same problem under the assumption 

of incompressibility of the medium. 

The final formulas can in this case he obtained both as a result 

of going to the limit to infinite velocity of sound in (4.43) and 

(4.44)., and by direct examination of the potential 

<?..= —^'. (4.45) 

Under the foregoing assumptions the radiation integral (4.37) is 

rewritten in the form 

I' o 

'■'Ararat (4.46) 

This integral can be obtained in closed form if the point A lies 

on the axis z = 0. 

After simple transformations we obtain 

9 (0, z*) = 'i- (t) —■ r-r,/-; -^ • (4. 47} 

Recognizing that p = p0( Scp/chr), we arrive at the conclusion that 

the presence of a partition of finite dimensions in the liquid leads 

to a proportional change in the values of the pressure at the speci- 

fied point. The proportionality coefficient depends only on the geo- 

metrical characteristics of the problem. 

Figure 88 shows a comparison of the character of variation of the 

pressure in the case of an explosion, with allowance for the presence 

of a rigid disk, using the incompressible and compressible liquid 

schemes. We see that the resultant impulse is the same in both cases. 

The assumption that the medium is incompressible, in full accordance 
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with the physical picture of the phenomenon, gives only a certain re- 

distribution of the pressures. This circumstance makes it possible in 

individual.cases to employ, when the resultant Impulse is of decisive 

significance, the söjnpler incompressible-liquid scheme for the approx- 

imate calculations. 

An estimate of the values of the pressures at an arbitrary point 

of space entails much more serious difficulties. Such a problem has 

been solved so far only for a plane wave. 

Without dwelling on the derivations and transformations, which are 

essentially close to those presented above, we shall formulate only 

the final conclusions: 

1) in the case of the flow of a shock wave around a disk, a rare- 

faction wave is produced, propagates from its edges, and distorts the 

pattern of the direct wave; 

2) at points situated in front of the disk and having projections 

on it, the portion of the pressure pattern, containing the fronts of 

the direct and reflected waves, remains the same as in the case of an 

infinite partition. The diffraction distorts only the remaining part 

of the pattern, reducing the pressure; 

3) when a direct shock wave flows in behind a disk, its front 

collapses and the maximum pressure at the points behind the disk 

greatly decreases, with the exception of the points lying on the sym- 

metry axis of the disk. 

When the diffraction wave arrives at these points, the curvature 

of its front greatly increases and a pressure jump again appears on 

the symmetry axis, of a size close to the maximum amplitude of the di- 

rect wave; 

4) the pressures at points that had no projections on the disk 

are distorted by the positive and negative waves emerging from the 
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surface  of  the disk and from its edge; 

5) analogous phenomena should occur also in the case of the dif- 

fraction of a direct shock wave around flat partitions of other forms, 

„I        1^ 

IUSKKCIK 

Pig, 89, Pressure patterns at 
points located ahead of the disk. 

ISOinKcm 

Pig. 90, Pressure patterns at points lo- 
cated behind the disk. 

The experimental data confirm the possibility of estimating the 

diffraction fields with the aid of the radiation integral. 

By way of illustration. Pig. 89 shows the pressure patterns at 

points located ahead of the disk, while Pig. 90 shows the patterns be- 

hind the disk. In both cases good agreement is observed between the 

theory (dashed lines) and experiment (solid lines). 

However, the method developed here is not always the most effec- 
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tlve for the study of diffraction fields. It Is possible to use for 

this purpose other methods,, which we now proceed to develop. 

Let us consider the following problem. *. Assume that an absolutely- 

rigid stationary plate of Infinite length and zero thickness Is Im- 

mersed In water to a depth T. The lower edge of the plate is parallel . 

to the free surface of the water. 

A plane shock wave of rectangular form with unit amplitude and 

with time of action i  is incident on the plane of the partition at an 

angle 6.   When the direct wave reaches the lower edge of the partition., 

a diffraction field is produced^ and at each point of space around the 

partition there is produced a pressure whose duration of action de- 

pends both on the value of T and on the time when the wave reflected 

from the free surface arrives there. 

It is required to determine the distribution and the time varia- 

tion of the pressures on the partition. 

We shall first consider a wave of unit amplitude and of infinite 

time of action. We assume that the front of the direct wave is paral- 

lel to the edge of the partition and arrives at the latter at the in- 

stant of time t = 0. Then for the instant of time t > 0 the pattern 

shown in Fig. 91 will be valid,, where OE stands for the partition, NE 

and AB for<the fronts of the direct wave at different instants of time, 

CD for the front of the transmitted wave, EF for the front of the re- 

flect :. wave, and KDC-FK for the diffraction region. 

By definition, a unit wave is one with unity pressure behind its 

front and zero pressure ahead of its front. Therefore the pressure is 

equal to zero ahead of the fronts CD and NE and outside the arc DK, 

and is equal to unity behind the front CD and outside the line DGFEN. 

In the region EKF the pressure is doubled, since the wave re- 

flected from the partition is superimposed here on the direct wave. 

- 273 - 



.**■ 

Flg. 91. Pattern of 
diffraction of a shock 
wave around the edge 
of a serai-infinite 
partition- 

By virtue of the assumed absolute 

stiffness of the partition, the ■boundary- 

condition on it should be 

Vn» *1«. 0. 

We shall find it convenient to use 

this condition in a different notation. 

Since öcp/Sn = 0 on the screen and 

since in accordance with the Lagrange equa- 

tion 

from which 

we should have on the screen 

Thus, the problem reduces to the solution of the wave equation 

(4.49) W''r   r ~är ^  /•> W      a^   ''"' 

in a circle of radius a0t under the boundary conditions 

o<a<e 
0<a<2- —e 
2^ — 6 < a ^ 2TC 

P («0. *, «) = 1 

'2 
(4.50) 

öp/ön = 0 on both edges of the cut OK. 

We present directly the solution of (4.49) with boundary condi- 

tions (4.50) r.* 

2 j/SUn 4 cos-:-/?"-■ 
p (r, a) «. 1 ± — arc tg —  

'i°i _ 1 + COS 0 — COS a 
(4.51) 

The minus sign corresponds to the points behind the plane of the 

partition, and the plus sign to the points ahead of it. 
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We put 

/(^...O^orctg-l^ '}     r       ;        (4.52) 

then  the pressure at the point behind the partition, in accordance 

with Fig. 91,   will be 

^H0''L'-^rcos(a'-6)]-0» (^-■i7)|0o(«'-0) + 
4Mi-/('.^OH ('--£) K(«')-°o(*'-*)].        (4-53) 

where the first and second terms determine the pressure at the point 

before and after the arrival of the diffraction wave, respectively. 

We furthermore denote by a1 the angle of the investigated point, 

measured clockwise from the partition. 

For points behind the plane of the partition a' = a, while for 

points ahead of it a' = 27r — a. 

The pressure pJT at the point ahead of the plane of the partition 

will be 

•+I Oo[^--^cos («'- 2n + 0)] -c0 (^-^-)} o0 («'- 2--;-G)-;. 

+ [H-/(o,«.r,OK('--y=o (*'--)■ (4-54) 

The first term of this formula determines the action of the di- 

rect wave, while the second determines the action of the reflected 

•wave and the third determines the pressure at the point after the dif- 

fraction wave arrives at it. 

Combining the expressions for Pj  and p-^ we obtain a formula for 

the determination of the pressure at any point near the screen, for 

the propagation of a wave of unit amplitude and of infinite tlm© of 

action: 

r\ T r~ 2 (5 



+ [I + /(9. a. r. /)] <;0 (V - -J-) o0 (a' - «) + 

+ [°>{t-~cos(a'-0))-o0(t-±)]o9(a'-()) + 

+ [«u (^ - -£- COS (a' - 2^ + 0)) - 

-0o(^-i)]ao(-'~2- + o). (4.55) 

To abbreviate the notation we put 

A 0 = ^(0. *,/-,;). (4.56) 

It is obvious that to solve the problem of the diffraction of a 

rectangular wave of duration T around the edge of a semi-infinite 

screen it is necessary to add to Solution (4.56) also the solution of 

the problem of the diffraction of the unit rarefaction wave (Fig. 92). 

Such a solution can be written in the form 

Thus, if we disregard the influence of the free surface near the 

partition, the sought field will be 

pV)=*F{ü,a,r,t)~F^,a,r,i--x). (4-58) 

Going over to an account of the influence of the free surface, we 

shall assume the diffraction v/aves to originate at the point 0. Then, 

using the method of mirror images of the sources and sinks, we obtain 

without difficulty (see Fig. 92): 

^(O = -/r(ö,a1(rI1/) + /=-(0.a11r1I/-t). (4.59) 

The sought solution will assume the form 

p(/) =/=•((), a, r, 0-^(0, a,/-./-t)- 

-F^,aurut)+F^,aurut--:).     . (4.60) 

A generalization of the obtained solution to include a wave of 

arbitrary form can be effected with the aid of the Duhamel integral. 

An analysis of the foregoing relations enables us to draw the 

following conclusions: 

1) the diffraction field reduces the pressure at the points be- 

hind the partition as compared with the pressure in the direct wave. 
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The smaller the angle a', the more considerable this reduction; 

2) at the points determined by the angles a1   <  9,   the pressure 

Jump vanishes and Is replaced by a gradual Increase In pressure. 

As the angle a' Increases from zero to 9,   the  Increase In pres- 

sure becomes steeper and steeper^ and when a' = 0 a pressure jump ap- 

pears,, which Is retained with further Increase In the angle a'; 

3) the time of action of the pressure 

at the points behind the partition can be 

larger than In the direct wave. This Is 

explained by the fact that the partition 

excludes the direct Influence of the free 

surface. 

In spite of the highly schematic rep- 

resentation of the phenomena, the formulas 

presented can be used for tentative prac- 

tical estimates. 

We note further that A.N, Patrashev developed an energy method 

for solving diffraction problems In the nonlinear formulation. Its 

practical utilization, however, presents considerable difficulties. 

§6. HYDRODYNAMIC FIELD DUE TO TRANSLATIONAL DISPLACEMENT OF A PLATE. 
GENERALIZATION OF THE CONCEPT OF APPARENT MASS 

In addition to the diffraction problems considered above in most 

general outlines, serious difficulties in the estimates of the external 

forces arise In connection with the need for taking into account the 

variation of the pressure resulting from the displacement of the struc- 

ture itself, 

A study of the forces acting on a solid that moves In unsteady 

motion is carried out in hydromechanics, as is well known, with the 

aid of the apparent masses. The liquid is then regarded as incompress- 

Fig. 92. Diagram of dif- 
fraction of underwater 
wave at edge of plate 
suspended in water, l) 
Free surface. 
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* ». 

Ible. In the problems under consideration, such an assumption, however, 

cannot be regarded as fully acceptable: it is necessary to take into 

account here the compressibility of the medium and the finite propaga- 

tion velocities of the disturbances. 

Let us consider such a problem using as the simplest example the 

translational motion of a round disk with velocity z(t). 

In accordance with Eq. (4.37), the potential at an arbitrary 

point of the disk is determined by the relation 
2" "JLT (t —\   (t—~Y\ 

9. (/?. t) = I- [ [ ^ 4C0V  — r^dR' (^ • 61) 

where R is the distance from the point A to the disk and a is the ■ 

radius of the disk. 

The value of the pressure at this same point will be 

P(/?.0 = Po^. (^-62) 

The  resultant hydrodynamic  force   is  determined from the  relation 

F^2T>\prdr. (4.63) 
ö 

After rather cumbersome derivations and transformations, we obtain 

F = 2a2a0p0 { -f- *(0 »o (0 - -T * W 4 (0 + 

2* ] 
+ ^.f^^_^lsin^ao(/_2-^sin4')sin^ (4.64) 

o ) 

Taking the transition to the limit, we can show that when the 

velocity of sound is infinite we have 

lin^  s P^'CO. (4.65) 

which coincides with the well-known result characterizing the value of 

the apparent mass in the translational displacement of a disk in the 

direction normal to its surface. 

The relation (4.64) can be represented in a different form by ex- 
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pandlng the function z(t—2~sin^   In a Taylor series about t. 

Since 

rf<" 

we have 

/=■ = 2a'aoPo (-f z(0 o0 (0 - ^ ^ CO "o (0 + 
»t - • I 

+ -T}Z-rt'^sinV -äF2sm^ + 

'(-l)" /2a V-,/^(0nnL   Li—i=LB /'il — inAi 
+2Kp0^i

i-7ir U) -rfF22     r(n + 2)    V--^)- (4.66) 

where 

r(n) is the gamma function. 

As is well known., if n is an Integer we have 

r (A).» «! 

Consequently, the last term of (4.66) can be readily calculated. 

It can be shown that as soon as the product ta0 exceeds 2B.,   the 

generalized force becomes approximately equal to 

It follows therefore that the unsteady process, in the study of 

which it is necessary to take into account the finite velocities of 

propagation of the disturbances, has in the present case a duration 

equal to twice the travel time of the sound wave from the center to 

the edge of the disk. After the lapse of this time interval, an ac- 

count of the influence of the displacement of the partition on the hy- 

drodynamic fields should be carried out in the same way as for the 

case of an incompressible liquid, i.e., by introducing the apparent- 
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mass coefficient. 

Calculations show that during the first period of motion (t < 

< 2a/a )  one can confine oneself with good approximation to an ac- 

count of only three terms of the series (t < 2a/a0), so that the prob- 

lem of the displacement of a body under the influence of a shock wave 

changes from a problem involving Integration of integral-differential 

equations into a problem of integration of ordinary differential equa- 

tions. 

The resultant hydrodynamic force is determined, accurate to third- 

order derivatives, on the basis of Formulas (4.66)-(4.6?), by the rela. 

tion 

/=• = ™2 (^ ~ wl + kj0a,z + k\az + 

where 
"i    'i >"*i ~'t 

On 

0.1 s,i «J 4» W V V ¥ m V W 

Fig. 93- Plot of the 
coefficients. 

(4.69) 

(4.70) 

(4.71) 

(4.72) 

A plot of the coefficients \cz,   k
1^ k"z. 

and k'"  is shown in Fig. 93- 

The qualitative deductions obtained on the basis of an analysis 

of the hydrodynamic fields due to the translatlonal displacement of a 

round disk can be extended to Include also the case of motion of plates 

of other configurations in the liquid. 

§7. ENTRY OF UNDERWATER SHOCK WAVE INTO A CHANNEL OF CONICAL CROSS 
SECTION 

Closely related with diffraction problems is the question of the 
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entry of an underwater shock wave Into a pipe or a channel. Let us con- 

sider by way of an example the wave pattern occurring during the prop- 

agation of a shock wave In a channel of conical cross section. The 

walls of the channel will be assumed absolutely rigid. The solution 

will be developed in the acoustic approximation.* 

As is well known, the potential of the direct wave, in the case 

of motion with spherical symmetry,, can be written in the form 

f~~^^-R). (4.73) 

where T = tan/R0o is the dimensionless time and R = V/RQ-,   is the dl- 

mensionless distance. 

In order to make use of the boundary condition of the problem, 

according to which the value of the normal component of the liquid 

flow velocity should be equal to zero on the wall, let us calculate 

the value of this component on the surface of the cone. To this end we 

make use of a geometrical interpretation of the reflection process, 

the gist of which can be readily explained with the aid of Fig. 94. 

Actually, if we construct a family of cones with vertex angles 

(21 + l)an and consider a straight ray crossing the surfaces of these 

cones, then the lengths of the ranges of the reflected waves will be 

characterized by the quantities R. and the zones of double and multiple 

reflections by the quantities L.. 

The values of R. and L. can be readily obtained from a direct ex- 

amination of the reflection pattern. If i < (TT - 2ßn - 2an)/2an (the o  '-"•o// "0 

ray R0. crosses the generatrices of the cone), then 

i'*s" sin (Po+ (2'+ IKl1 (4.74) 

R0I = VL- + 25 — 2z0Ll cos (2J -f- 1) a0 = 

sin l?o + ^'+"'l)aol' 

where 
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La sin a0 

Po=arctg-ei7^ (4.76) 

o 

Fig. 94. Pattern showing the entry of a shock wave in an 
absolutely rigid cone. 

When 

^> 
«-2?0. 

Vi-a 

we have 

Li = L0i (4.77) 

(4.78) /?w = K^G + zi- 2Vocos (/•; 4- 1) % 

(the ray R0i emerges from the cone). 

Returning to the potential (4.73). we obtain for the value of the 

normal velocity component on the surface of the cone 

^n'       ön ~ dRi On 

dR, 1 ^ (t - Rj) 
dn 

jt 
dR 

Ri 
,(t-^)~ 

. [»j/ (x — Ri) so (t — fy)l 

«i 

(4.79) 

But the expression ÖR^Ön is the cosine of the angle between the 

direction of motion of the wave and the surface of the cone. For R0, 

■this angle is equal to 9C - ß0 - a0 and changes by 2a0 in each suc- 

ceeding reflection. 

Thus 
^ = cos{90-ß0-(2i+l)a0} = sin((2^+l)a0+Po}. 
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but according to (4.75) 

consequently^ 

^^g^Sin(2/+l)a0^;l^^-'=o(^-/?)-, 

.^[4,(t-./</)go(x-^)]| (4>8o) 

K, I' 

Comparing (4.80) with (4.36) we note that the expression for the 

normal component of the velocity on the surface of the cone differs 

from that for the disk only in the presence of the factor sin(2i+ l)a0. 

To estimate the potential at the vertex of the cone,, we use the 

radiation integral, which in this case is written in the form 

"PA-^ J sin (21 + 1)a0-g !-t(T   JW     L a0 i-t-R,-1,) + 

+ UIiL±IiL^    ____ -jdf,,       (4.8: (4.81) 

where  R,   and  I.   are  continuously varying distances,   determined by ex- 

pressions analogous  to   (4.75)-(4.74): 

*■'      sin [f0 + a]' 

n *o sin "   . 
"'~ sin [?„ + <.]' 

(2{+\)aa<a{2i + 3)a0. 

Calculation of this integral is carried out in, the same way as in 

the cases previously considered. We therefore write here the final ex- 

pression for the pressure at the vertex of the cone, with allowance 

for both the reflected and the direct waves: 

PA = — Po IT -jr 'K" — zo) Oo 0 — ^o) — 
fsrff 
X"'1 f sin(2/+ I)«. d   , , .     . . 

" 2,[*Ai-<**{■»+I) *,] ?» liT ^ (^ - zo) =o (^ - ^o) - 

Po/^lß0/ +i;-zocos(2/+ l)ao] ÖT V^      «o/ (4.82) 
- L,) c0 (, _ Rol - /.,)}. 

In perfect analogy we can consider the problem of estimating the 
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potential at the top of a truncated cone. A geometric Illustration of 

this process of reflection of the waves Is shown In Fig. 95. Unlike 

the preceding case., some of the waves will emerge in this case from 

the truncated cone without participating in further reflection. For- 

mally this fact can be taken into account in simplest fashion hy char- 

acterizing the zones of multiple reflections not by the quantities L 

but by the differences 1^ - IQ.. 

As before we have 

if 

;       »in l?» + (2/+ l)a0]' 

,       ^ - 2ß0 - 2a 

(4.74) 

and L.  = Lnj,  when i>
1izz2h. 

2aa 

Pig-   95-   Pattern of  entry of  shock wave'""in an absolutely 
rigid truncated cone. 

As regards  the   segments  I01,   we  have  I». IQ  so  long as 

cos (2/+ l)a0>A 
JTo 

or,  what  is  the  same. 
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arc cos —2 oe 

As  soon as 

2"o 

arc cos -s a0 

t>—s— 

we get 

171- (^-83) <" r TTn • 
cos    (2/ -f 1) oj — arc cos -2- 

Making use of the preceding scheme of solution, we can obtain the 

final result in the form 

^ = — Po-^-Jr'K^ — ^o) Oo (^ — «•o)— 
;=n 

'  __ V I A, sin (2/+ 1) a,, 
1, ^-J ' ''0/ [''0/ + lol — «Ö cos (2/ + 1) *(,) A 

(=0 

X Po 4-1 (' ~ ^o; — 'o/) "o (" — '•0; — hl) — 

r0 slit (2/+ Ijap X ft0/[/?<,/ + i/-/o COS (2/+ l)a0] 

XPO-C^(^-/?0;-^)=O(--/?,-^)}. (4.84) 

where 

'•o; «■ VTJTiF2Vc/ cos (2? + 1) ao. (4=85) 

Example. Calculate the pressure at the top of a truncated cone 

under the following initial data: 

z0 = 77.5 m,  L0 = 19-5 m,  i0 = 6.3 m, 

a0 = 0.301,    ß0 = 0.1,     G = 5000 kg. 

The explosive is TNT. Construct the pressure pattern. 

Solution. To determine the coefficients of the functions charac- 

terizing the variation in pressure, we must calculate the following; 

Ro, = Vlf+tf-lZo'-i cos(2/ + l)a0; (4.78) 

cos ["(2/+l)a0 —arccos J-j 
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r= 
-r> 

r>, ~Vili + 4-~ VoiZo cos (2/ + u »o; 

■    Zoslr.(2l+i)a0 K rot Uoi + kt — Za cos (2/ + 1) a0]' 

.      . Zpsln (2/+ !)=.„      
' «W [«0/ +^-^0 COS (2; f 1) SJ * 

TABLE 21 

n/n. •^   06o3iiaHemifl Be.iiiiiinu / = 0 /= 1 / = 2 
1 

/ = 3 

1 (2/+l)a0 IS^O' 55°30' 92^30 l2öo30' 

2 cos (2/ + 1) aj 0,948 0,566 —0,044 -0.03G 

3 Po+(2/+l)«« 24o30• eiw 9So30- 135o20' 

4 sln[?0 + (2/4- l)ao) 0,415 0,879 0,989 0,700 

5 ,                    Z« sin ß0 

' -   sin (?„ + (2/ + 1) a0J 19,0   . 9,20 8,15 11.5 

6 ZZoi; cos (2/+ I) a« 2780 806 -57 -1135 

7 A?+ 2? C3G0 G0S5 6066 0132 

8 (6) - (7) 35S0 5279 6123 7267 

9 Ko. = KW . 59,7 72,5 78,4' 85,2 

10 cos    arc cos-7 (2/+ 1)00 
•^0                     J 

0,383 0,870 0,992 0,717 

11 ,          '0 
/o' - "(TO)" 

6,3 0,3 0,35 3,8 

12 220/0/cos (2/+ l)a0 926 552 —43 —SOG 

13 hi + ^o C040 0040 C010 6073 

14 (13)-(14) 5114 5188 0083 C914 

15 rM -1/(14) 71,5 74,0 77,9 €3,3 

16 sin (2/ + 1) o0 0,317 0,824 0,999 0,772 

17 Z0sin(2/+ l)a0 24,6 63,8 77,5 59,8 

18 Z0cos(2/ + 1)00 73,5 43,8 -3,4 —49,4 

19 /"()/ + 'o; 77,8 80,3 84,2 92,1 

20 (19)-(18) 4,3 30,5 87,6 141,5 

21 r«/ (20) 307 2800 6810 ll 770 

22 ■       *' = (21) 0,080 0,023 0,0114 0,0051 

23 /?o/ + '•/ 78,7 81,7 86,6' 93,7 

24 (23)-(18) 5,2 37,9 90,0 140,1 

25 /?./ (24) 310 240 7050 12480 

20 '     k        (17) 
a~ (25) 

0,079 0,023 0,0110 0,0048 

l) Designation of quantity. 

Calculation of the Indicated quantities is summarized in Table 21. 

We obtain the relative distances characterizing the different re- 

flection regions. 
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The radius  of the  equivalent  spherical charge   Is  equal  to R0_  = 

= 0.053^5ÖÜÖ = 90.6  cm. 

The quantities r-, + ^QI and R01 + L01 are 'talcen F?0™-  Table 22. 

TABLE 22 

OöoniiaHeiiiiH 
2 

AÖCOJHOTIIbie 
3 
-   OTHOCIITejIliHbIC 

^■HHTepBa^u BpeneHH 
MejKfly noAxoAoM no^- 

aenmiin paccTO!iii;iii paccToniniH HOBblX   CIlCTe.M 
B Bepiuiiny Koiryca 

Zo 77,5 85,5 0 

foo "f ^00 77,8 85,9 0,4 

^00 + i'O    ,,, 78,7 86,8 1,3 

'"oi + hi 80,3 88,5 3,1 

J?01 + I, 81,7 90,1 4,6 

''OJ + '05  • 8-1,2 92,9 7,4 

Ko, + I, 86,6 95,5 10,0 

^03  4*  /oj 92,1 103,5 18,0 

«OS + *-> 96,7 11-1,0 28,5 

1) Designations of the quantities; 2) ab- 
solute distances; 3) relative distances; 
4) time intervals between arrival of wave 
systems at the top of the cone. 

We measure time from the instant of arrival of the direct wave at 

the top of the cone. 

We change over to dimenslonless time and distances (r = r/Rg-; 

T = ta0/R03). 

The pressure on the front of the direct wave at the top of the 

cone will be,, in accord with (2.151), 

^ = 1:,700h5i;ß = fjC.-1 kg/cm2. 

The change in pressure at this point/ calculated by Formula 

(2,105), is summarized in Table 23. 

Further calculations are elementary and are combined for simplic- 

ity with the graphical construction. 

First to arrive at the top of the cone is the direct wave. The 

pressure in it varies in accordance with the data of Tables 22 and 23. 

After a time interval equal to 0.4 (see Table 22), a compression 
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TABLE 23 

X 0 0,5 1.0 1       1.5 
1 

2,0 . 3,0 

1     p,   KljCM* 96,^ GO, I 55.-) 41,8 30,1 20,7 

T 6,0 7,0 10,0 l.l.O 20,0 •;n,o 

1     p,  KlICM* IH.il 12.0 0,9 2,7 0,80 0,30 

1) -o,   kg/cm . 

wave from the zone of the first reflection arrives at the point (it is 

characterized by coordinates r00 + l0Q  and by a coefficient k10). The 

pressure at the point is made up of the pressures in the direct and 

reflected waves, the amplitude of the latter also varying in accord- 

ance with the law given by Table 23,   with a coefficient ^/1/ZQ = 

= 0.080-77.5 = 6-2. 

-*,-/#« 

u-ir' UK I CM 

ü   ft a   is    i? IS   a    2i    ZI  r 

/ n.n^Jtcenu» 

Pig. 96. Calculated press-ure pattern at the top of a trun- 
cated cone. Solid line — pressure at the point with allow- 
ance for the entry of the shock wave into the cone; dashed - 

. pressure at a point of the free liquid. 1) First reflection 
zone; 2) second reflection zone; 3) third reflection zone; 
4) fourth reflection zone. 

After a lapse T = 1.3 from the initial instant, a rarefaction 

wave (second term of Formula (4.84), characterized by the coordinates 

R00 and L0 and by the coefficient kg) arrives at the top of the cone. 

The pressure will be determined by the superposition of the three 

wave systems. 
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Further development of the process Is perfectly similar to that 

described above. The results of the calculations are presented In Fig. 

96. 

It is easy to see that as a result of the multiple reflections^ 

the pressure produced when a shock wave enters Into a cone may turn: 

out to he much higher than in the free liquid. 

§8. GENERAL CONSITERATIONS IN THE DYNAMIC DESIGN OF STRUCTURES TO 
WITHSTAND THE ACTION OF AN UNDERWATER SHOCK WAVE (, 

The strength of any particular structure, designed to withstand 

the action of an explosion,, is determined in final analysis by the 

propagation of the elastoplastic waves arising in the structure as i 

result of reflection and refraction of the shock wave. This process;* 

therefore depends on the structure itself. We shall consider here triie 

simplest structure, made up of plates. [i 

According to the general theory, when a shock wave is incident on 

a plate, there arise in addition to the direct and reflected waves 

also three other types of waves: longitudinal, transverse, and surface. 

Owing to multiple reflection and interaction, the over-all wave pat-f; 

tern becomes so complicated, even in the study of the simplest cases;» 

that the known methods of mathematical analysis ai-e incapable of ans- 

wering the question of strength estimate when so formulated. It is 

therefore necessary to introduce many simplifying assumptions In the 

solution of practical problems. 

As a rule, the structures are regarded as mechanical systems with 

one or several degrees of freedom. The wave character of the process 

is disregarded. The external load is replaced by a generalized force 

acting in accordance with some definite law. 

We shall show in what follows that in many cases such an approach 

to the solution of the problem is permissible. 
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At the same time, the following factors must be taken into ac- 

count. 

1. The magnitude and character of the external load, perceived 

by the structure, depends not only on the pressure fields produced by 

the explosion in the free liquid, but also to a considerable degree on 

the elastoplastic characteristics of the structure itself. The de- 

formation of the structure due to the action of the shock wave leads 

in turn to a change in the pressure fields. The considerable acoustic 

impedance of water makes this mutual Influence most essential. 

2. Under certain conditions the interaction between the shock 

wave and the deforming partition in the liquid can give rise to cavi- 

tatlon regions, the influence of which calls for appreciable, correc- 

tion of the estimate of the external forces. 

3. The pressure fields are influenced in a complicated manner by 

the free surface of the liquid. As was mentioned in §§2 and 3 of Chap- 

ter 3, the presence of the free surface leads to a change in all the 

parameters of the underwater shock wave: pressure on the front, dura- 

tion of the positive phase, and form of the pressure-time pattern. 

4. Even more complicated, as is obvious from the materials of the 

preceding chapter, is the estimate of the pressure fields when the 

bottom of the reservoir exerts a noticeable influence. In addition to 

everything else, it is necessary to take into consideration the dif- 

ference in the times that the individual wave systems arrive at the 

structure. 

5. In most cases the final judgment regarding the strength of one 

structure or another under the influence' of an explosion can be made 

by considering not only the elastic but also the plastic deformations. 

It is frequently necessary to take into consideration the strengthen- 

ing of the material under large strain rates. At the present time, even 
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static calculations in the plasticity zone entail serious difficulties 

and cannot be regarded as a question that has been given due study. 

The difficulties presented by the problem under consideration are 

therefore clear. 

There is an extensive literature devoted to the action of noncon- 

tact underwater explosions on structures. Even a brief exposition of 

the available material would call for a separate book. We therefore 

develop below only some particular problems in this field, without any 

pretense whatever to completeness, aimed merely at giving a general . 

idea of the subject considered. 

§9- METHOD OF GENERALIZED COORDINATES AS APPLIED TO THE PROBLEM OF 
DYNAMIC CALCULATION OF STRENGTHS OF STRUCTURES UNDER NONCONTACT 
UNDERWATER EXPLOSIONS 

To solve the dynamic problems under consideration, it is advan- 

tageous to use the Lagrange equations of the second kind, usually writ- 

ten in the form 

. </ or     or 
dt O'q,        all ' 

Qr (4.86) 

where T is the kinetic energy of the system, q. is the generalized co- 

ordinate, and Q. the generalized force corresponding to the coordinate 

qJ' 
To determine the value of the generalized force Q. one usually 

employs one of the two following methods: 

1) the generalized force is determined from the coefficient of 

the generalized displacement 6q. in the expression for the elementary 

work performed by the specified forces in the aggregate of the pos- 

sible displacements of the system, or 

2) the value of Q. is determined from the partial derivative of 

the  potential energy of the system with respect to the generalized co^ 

ordinate: •   ()11 (4_87) 
WJ ~       Oil, • 
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The Lagrange method as applied to dynamic design of ship struc- 

tures was developed by Yu.A. Shlmanskly. 

Considering systems consisting of elastic bodies, and noting that 

In this case the number of degrees of freedom Is generally Infinite„ 

Shlmanskly shows that If the form of the oscillations Is known the 

problem reduces to a study of a system with a finite number of degrees 

of freedom, since an oscillation of specified form Is determined com- 

pletely by some single generalized coordinate, for example the dis- 

placement of a chosen point of the body. Such a point Is called the 

reduction point by Shlmanskly. 

The displacement of the reduction point can be determined by 

choosing the form of the oscillations (the form of the deflection) and 

determining the so-called reduced mass, the reduced stiffness coeffi- 

cient, and the reduced force. 

Let us Illustrate this by means of an example. 

Let f(x, y, z) be a function of the coordinates of the points of 

the body, determining the form of the oscillation of the body under 

consideration. For the reduction point we shall assume that f = 1; let 

m(x, y, z) be a function of the distribution of the mass of the body; 

P(x, y, z) a function of the distribution and of the Intensity of the 

external load; and cp = 9(t) the equation of motion of the reduction 

point. 

The equation of motion of an arbitrary point of the body will ob- 

viously be cp = cp(t)f(x, y, z). f, 

Let us calculate the reduced mass. 

The kinetic energy of motion of the body is determined by the 

equation 
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In order for the reduction point to have the same kinetic energy- 

it must obviously have a reduced mass 

Mn?~\l\nipdxdydz. (4.89) 

Consequently, the reduced mass is equal to the sum of the products 

of the masses of all the points of the hody hy the squares of their 

displacements, assuming the displacement of the reduction point equal 

to unity. 

As is well known, the stiffness coefficient k is called the coef- 

ficient of proportionality "between the strain (the displacement cp) and 

the value of the force p: 

p - kcp. (4.90) 

Since the potential energy of the elastic couplings is 

l/=^ = M, (4.91) 

we have 

k = 2V/cp2. (4.92) 

Thus, the reduced stiffness coefficient is equal to twice the 

value of the potential energy of the body subjected to a displacement 

corresponding to unity displacement of the reduction point. 

Let us determine nox\r the reduced force. 

It is obvious that when the reduction point is displaced by an 

amount Acp, the other points of the system are displaced by amounts Acpf 

and the external forces applied to them perform work 

(j ( A? (0 / (*. y. z) P (*- y. z) dxdydz = 

a» A? j f J" fF dxdydz. (4.93) 

Equating this work to the work of the reduced force applied to 

the reduction point and equal to ^V)V^,   we obtain 

%^^Ff dxdydz. (4.94) 

Consequently, the reduced force is equal to the products of the 
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displacements of the point of the body corresponding to unity displace- 

ment of the reduction point by the forces applied to these points. 

The calculation of the potential and kinetic energy of different 

elastic systems does not entail any serious difficulties. This ques- 

tion was considered in sufficient detail for various dynamic problems 

in the already mentioned work by Yu.A. Shimanskiy "Dynamic Design of 

Ship Structures." 

In the analysis of the action of an underwater explosion on a 

structure, it is only the generalized forces that are estimated dif- 

ferently. In addition to the forces of resistance to the deformation, 

characterized by the reduced stiffness coefficient, it is necessary to 

determine the hydrodynamic forces in this case also. These can be rep- 

resented by the following: 

1) the forces acting in an underwater explosion on the structure 

regarded as an absolutely rigid partition of finite dimensions; 

2) the forces resulting from the deformation and displacement of  •.- 

the partition itself. 

Previously we have already become acquainted, by means of simple 

examples, with methods of estünatäng the hydrodynamic forces of both 

the first and second category. 

It should be pointed out that the need to account for the Influence 

exerted on the hydrodynamic fields by the deformations and the displace- 

ment of the partition Itself leads to a solution of the mtegral-dlf- 

ferential equations. 

indeed, let us calculate the reduced mass, the reduced stiffness 

'coefficient, and the generalized hydrodynamic force of the first cate- 

gory, Q. ,   for the incidence of a plane, wave on a round plate. Then, in 

accord with (4.64), the equation characterizing the deformation of the 

plate at the initial period of motion under the influence of an under- 
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water  shock wave   Is written In the  form 

Mz (0 + F (z, «) = <?. + 2a\cr0! -f « (/) Oo (0 - -£-«(/) + 

+ -T-I2(/--|sin^0o(/--|sin^s!n^t! (^-95) 
0 / 

The so-ught fimctlon Is -under the integral sign In the right half 

of the equation. 

Serious mathematical difficulties arise, connected with the solu- 

tion of the integral-differential equation (4.95), as a result one 

usually makes from the very outset supplementary simplifying assump- 

tions, with the aid of which it is possible to get rid of difficulties 

of this type. We shall dwell on this problem briefly later on. At 

present we proceed to an estimate of the hydrodynamic forces of the 

first category in the simplest cases of horizontal and vertical parti- 

tions . 

§10. GENERALIZED HYDRODYNAMIC FORCES ON AN ABSOLUTELY RIGID VERTICAL 
OR HORIZONTAL PARTITION IN AN UNDERWATER EXPLOSION 

In -underwater explosions near the free surface, the main elements 

of the shock wave, apart from the relative distance depend on the 

depth of the charge H and on the depth of the measurement point h: 

The form of the pressure vs. time curve also changes appreciably. 

Considering a region that is remote from the center of the explo- 

sion and regarding the distance r and the depth H of" the charge as 

specified, we can expand the functions pin and t+ in a Taylor series 

about h = C. We then obtain 

pm{rtH,h)~pAr.H,0)+h^\hj±^h>!^\hm+... (^-97) 

;+ (r, H, h) - (+ (r, H, 0) + k^ \h= + ^W ^ 1^+...     ( 4. 98) 

With good approximation we can assume in the majority of cases of 
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practical interest that if the range of variation of the depths of the 

measurement points is gj-vcn uj   cne ^aoexvax u ^ n <, n-^^ t-nen une av- 

erage value of the pressure in this range of depths amounts to prn 

= Pm(r, H, h/2). 

As regards the duration of the compression phase, since t+ = 0 on 

the free surface we obtain on the basis of (4.98), discarding terms of 

higher order of smallness, 
Clolctxci I 

/+ = /iA, (4.99) 

where 

1 

A = 
Pig. 97. Diagram 
showing location of 
plate for an esti- 
mate of ,.- . result- 
ant loac :.-i the case 
of norm .1 -ncidence 
of the \;ave. l) Free 
surface 

dh (4.100) 

The simplest and most convenient form of 

analytic approximation of the pressure vs. 

time curve near the free surface is 

p=-p*[}-{-h)n^' (4.101) 

where p  :  the pressure on the front, t+ is the time of action of the 

positive . :iase of the pressure, and t is the running time, reckoned 

from the instant of arrival of the shock wave at the specified point 

(t < t+). 

The exponent n is in the general case a function of r, H, and h. 

However, for specified r and H we can approximately assume for the co- 

efficient n a constant value calculated for the center point of the 

plate. 

In accordance with the foregoing, we find that 

^=^[i-(-ir)"]K(0-0o^-^)].        (4.102) 

Let   s  find the resultant  force  acting  in normal  incidence  of a 

wave  on   v.-. absolutely rigid vertical plate   immersed in a  liquid as 

shown ir- Jig.   97,  under  the  assumption that the pressure field is  spec- 
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Ifled by means of Eq. (4.102).* 

We assume' that the coefficient of reflection from the partition 

Is equal to K.   We then get 

J 
ft 

-/^(i+'<)|[i-(^r)'
,]K(0-<'o(^-^)]^.       (4.103) • 

a 

After simple transformations we have 

+ -x'1^rTl°oit-M)-o0{t-Aa)\}. (4.104) 

Formula (4.104) is valid for all n, including n = 1. 

In this latter case 

-[a~±ln^][°0{t)-Oo{t~Aa)] + 

+ -^hii-Ab)-a0{t-Aa)]]. (4.105) 

An estimate of the load on the horizontal plate differs somewhat 

from the case considered here.** This difference is due, first of all, 

to the lack of a reflected wave and, second, to the fact that as a re- 

sult of the gliding of the wave along the partition the load first in- 

creases gradually and then, if the partition is longer than the wave- 

length, it becomes constant and then decreases (Fig. 98). 

It is Important to note that in the second case, as can be seen 

from Fig. 98, the value of the constant load does not depend on the 

dimensions of the partition, and is determined only by the length X of 

the shock wave. 

The value of the pressure at an arbitrary point of the plate with 

coordinate I   is determined by the relation 

- 297 - 



[>A^Jhi'-ü~''{'-'+~i)i' (4.106) 

Integrating (4.106) over the area we obtain after simple trans- 

formations the component of the general force, dependent on the length 

of the plate Z-, 

+ i- nj [<*-%)-<*-*■*-$]• (^-107) 

It is necessary to add to this component, which takes into ac- 

count the nonstationary nature of the wave advancing on the plate, a 

constant component which can be readily obtained by integrating the 

load with respect to the wavelength 

where 

5-^I[i-(^)1"'-^»l'-^r} 

,/+<;<;+ + £ 

(4.108) 

tft-Ht 

Pig. 98. Diagram showing the gliding 
of a shock wave along a horizontal 
plate. 

Thus, we obtain ultimately 

Q«^{[x--(HTT)7l(ir] K')-°o('-'+)l + ' 

+-n-TTit(;-4)-0o(/-/+~i)]4-[i-^- 

-T^^ric^-iW'-^)]}-   (4-io9) 

Calculation performed with the aid of Formulas (4.102)-(4.109) 
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enable us to draw the following conclusions. 

1. The generalized force on a vertical rigid partition can be 

calculated approximately on the basis of the plane-wave hypothesis. 

The pressure pattern must in this case be assumed for the center point 

of the plate. 

2. When estimating the generalized force on a horizontal parti- 

tion^ it is necessary to take into account the gradual advance of the 

wave on the partition. 

The character of ehe time variation of the generalized force dif- 

fers essentially from the press'ice pattern in a free liqui?. 

Bxampla 1. Calculate the generalized force produced on tl-. ver- 

tical  absolutely rigiö partition upon incidence of /aves with triangu- 

lar ard parabolic profiles (n = 1 and n = 2[   for the following initial 

data: 

submerged depth of upper edge of plate a = 2.1 m, 

submerged depth of lower edge of plate b = 6.3 m- 

coefficient of proportionality between the time of action of the 

positive pressure phase., t_, and the depth of the measurement point, h, 

is assumed to be A = 0.2= 10"° sec/iru 

Compare the generalized force witn the change in load at the cen- 

ter point of the plate. 

Solution. The calculation of the generalized force for exponents 

n = 2 and n = 1 is carried out with the aid of the formulas 

„ 0 [^ 1 + „L-f-L.)''J K (o - «To ('-/i«)I + 

+ -~~r!:{<',{t-Ab)~,0{t~Aa)]y, (4.104) 

Q. = (1 -f v.) lpm {[ft - ± In 41] l'o (0 -«.('- Ab)] - 

_ Pa _ 2. in-^i]M0 - »0 ('- ^)]+- 

+ -L[<So{t-Ab)-c0{t-Aa)]Y (4.105) 
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TABT.F 24 
 —-( 

MO-». 1     1 Ah . ' ■           (-1)» !   1 4- f5) b-(ö)            Aa 
sec 1    b-a    j Ab            V ' 1           •'   1         ■       1                    II 

1       1       2       1        3 4 5 6 7 8 

0,1 0,2.1«      1,2(M0-J 0.070.1 0,0(X)32 1,000 0,338 0,42-10-» 

0,2 0,3.)« i.srt.io-» 0,1,10 0,02-53 1,025 6,15 0,42. !C-» 

0,3 0,238 1,20. ID-3 0,238 0,0500 1,057 6,(58 0,42 •■O-* 

O.-l 0.238 , 1,20.10-' 0,317 0,100 1,100 0,93 0,42. iO-» 

0,5 0,238 1,20.10-» 0,307 0,158 1.158 7,29 0,42-10-« 

0,5 0,238 1,2G-10-' 0,.|7(> 0,227 1.227 7,73 0,42.10-» 

0.7 0,238 I^G-IO-3 0.550 0,300 1,300 8,24 0,42.10-» 

0,8 0,238 1,20-10-» 0,t)3,r) 0,.|03 1,403 8,82 0,42-10-» 

0,9 0,238 1,26.10-» 0,71-1 0.110 1,510 9,51 0,42.10"» 

1,0 0,238 1,20.10-1 0,701 0,:'.3() ) ,030 10,28 0,42.10-a 

1,1 0,238 1,20.10-» 0,873 0.7;: 2 :,702 11.10 0,42.10-» 

1,2 0,238 1.20.10-» 0,05! 0.1112 1,012 12,10 0,42.10-» 

I 3 0,238 1,20.10-» 1,03 i.OHl 2,00 13,00 0,42-10-» 

TABLE OK. 

M0-», 
sec i 

1 t 
A 

Ab 
t 

,    Ab 
-> 4-(6) 

b-a 

1          1        2      .1 3 .( 6 7 

0.1- 0.238 C;5 12.0 2,531 

i 

1,265 5,035 

0,2 i      0.25S 1.0 0,0 1,8.11 1,841 4.459 

'    0,3 0,238 1,3 -1,2 1,'I35 2,150 4,15 

0,4 0,238 2,0 3,15 1,147 2,290 4,00 

0,5 0,238 2,5                2.52 0,924 2,310 3,99 

0.6 0,238 3,0                2,10 0,742 2,220 4,08 

0,7 0,238 S.r.       '         1,80 0,£88    !    2,060 4,24 

0.8 0,238 •',0 1,58 0,454 1.816 4,48 

■)€> 0,238 4,5 1,40 OÖ37 1.510 4,70 

1,0 0,i3B o,0 1.20 0,23' 1,155 5,15 

1,1 0,238 5.5 1,15 0,133         0,744 5.50 

..? 0,238 G,C 1,05 0,0-10         2,294 G.O! 

1,3 0,238 0.5       '         0,^7 
1 

-C:0305 -0,198        6,50 

Choosing aa the time incerval At = 0.1 10"^ sec, we carry cut  the 

calculations in tabular form (Tables 24 and 25). 

The result- of the calculations are presented In Figs. 99 and 100, 

The same figures show ^dashed) the change in pressure at the center of 

the plate (h = (a + b)/2 =4.2 m), obtained with the aid of Relation 

(4.102) (Table 26). 

Example 2. Calculate the general force arising when a shock wave 

glides against a horizontal plate under the following initial condi- 
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i 
An 

(9)' H-(IO) 0(11) (7)-(12) -K (7)-(14) |=.(2)-(1S = (2).(13) 

~ 9 10 11 12 13 14 15 1     ir. 1   '   I" 

0,238 0,0306 1,056 2,217 4,121 —-.   
[ 

o,y."'0 

0,470 0,226 1,220' 2,580 3,87 — — — 0,920 

0,714 0,510 1,510 3,170 3,49, —  • — — 0,830 

0,954 0,908 1,908 4,000 2,93 — — — 0,693 

—   — — — 5,0 2 29 0,546 — 
.~. ,_■ — — — 6,0 1,73 0,412 — 
«   — — — 7,0 1,24 0,295 — • 
—   — — — 8,0 2,82 0,195 — 
_** __ — — — .    9,0 0,51 0,122. 

-.-, — — — — 10,0 0,28 0,007 — 
mmm   — — — 11,0 0,10 0,024 — 
_   — — ... 12,0 0,05 0,012 — 

— . — — ... — ' 13,0 0,00 0,000   

tions 

An 
t 

.    Aa 
,n   t >' ■'S—(10) (7)-(lI) 

i 
= (2).(!2) (7)-(3) = (2).(!.') 

8 9 10 11 !      12 13 14 !       15 

4,2 1,435 0,717 i ,383 3,052 0,868 

1 i 

2,1 0,742 0.742 1,338 3,100 0,736 ■ — — 
1,4 0,337 0,514 1,586 2,564 0.608 — _ 
1,05 0,0-19 0,098 2,002 - 2,00 0476 — 
— — ._ — — ._ 1,450 o,:v.5 
— — — — __ — ■ 1,0*0 0,257 
— — — — — — 0,740 0,176 
— - — — — — 0,480 0,114 
— — — - — — 0,290 0,0688 
— — - — — — 0,145 0,0345 
— — ,    - — — — 0,056 9,0133 
— — — - — — 0,005 0,00119 
— — — — — 0,0.1 (1,00 

time of action of the compression phase t + I^T-IO"-3 sec. 

wave length \ =  1.9 m, 

length of plate I, = 4.2 m. 

The exponent n is assumed equal to zero. 

Solution. Calculation of the generalized force is "by means of 

Formula (4.109): 
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iß iß m w-if 

Fig. 99-   Plot of generalized hydrodynamic 
force on a rigid vertical partition for 
n = 1. 

'Hli'-aiJ'„, r*~a-:r^"T]'••<''-'■•"•• ^1- 

-[rh- Tuhr*>'" ^f] ''•« - ••" - ^'1+ 

A (* — o) 
1«, (/ - M>\ - Oj (/ - Aflfli 

'fc'li&ih. 

tern 

MO.   SM  Iß   IM   Sß   0.711  OM   sß-  w   uo   <ß   'JW' 

Fig.   100.   Same  as  Fig.   99  for n ~ 2. 

+ rar--", T^-! "•" - A*> ~ ••" -'ln>'1 

Ab)\~ 
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<7rrrTL''('-'+)-'°('--''---i)] + 

+ ' "dt 
t _ A \n+1 

I,       {n+TjJ,   \     t. 

x[-.('-i)-..('-'.-i)]i 

x 

TABLE 26 

/ 1 
/. 10 "• Ah t 

Ah (i)" P « 
sec n ■-1 rt » 1 

0,1 0,84 0,1 IG 0,0t !;! n,OR0 0,881 

0,2 0,81 n.'jiis o,o,"i;.. r-,j44 0,702 

o,: 0,84 o.rjT 0,127 Ü,S"3 0,G43 

0,4   ■ 0,84 C, 170 O,::JI5 0,7/4 0.524 

0,5 0,84 0,5ü() o,r,5 o.ws 0,104 

0,(5 .,84 0,713 0,51! 0,480 0,285 

0-7 0,84 0,8.14 0,305     ■ 0,305 0,166 

0,8 0,84 0,95^ ■     0,006 0,004 0,048 

m 
084 1,000 1,000 0,000 0.000 

Choosing r time interval! At = 0.2* 10 -' sec, we carry out the cal- 

culatlons ii"1 tabalar form (Table 27), 

The results of the calculations are presented on Pig. 101. 

'inJ 

m ■ 

ys 

.     _ 

tCH 

Hi UßJM lUß H?0.S W ij u u... is ism n u u w v isvu u m-ir' 
Fig. 101. Plot of generalized hydrodynamic 
force on a rigid horizontal partition for 
n = 2 

0    f "J \        ,■   l   •«+1-1 . 

aj _ \  

~ l,' ~   in + li ', ['•('-^7)-'.('-^^)] + 
+iffl-i.i|_..w-t)-..^t_.yj 
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TABLE  27 

/•io-3. 
 sec 

/ (2)' 

- 

0,151-(3) <? = (5)-(4) 

6 7 8 
1,27-10-8 

i 

0,2 
0,-1 
o.r. 
<i,h 

1.^ 

2 

0,1 T)« 
o,:ii5 
0,473 
t),KW 

. 0,7'.17 
0,045 

3 

o,on;m7 COOorvM 0.0714 0,0708 — 
0.0313 
o.i or. 
0,'iM) 

0,8-14 

0,00173 
0,01 (VI 
0,0:17« 
0,0701 
0,127 

0,143 
0.214 
O.'JHli 
o.;i'.7 
0.428 

0,133 
0,1 os 
0.21'.» 
0.2« 1 

.o,:wi 
0.0P2SS 0,00020 

3,0 —, — __ 0,Oi'2.<S O.OOOIO 
3,2 — x —   0.iH>2SS 0,tXV152 
:J,4 — — 0.l!02S,S 0.00080 
.:*,(; —   — — — o.Kn-'NS 0.11012 

Continuation 

(12)-(U) 

13 

1 — 03)   (?=0.:w.' -t- ;H) 

14 1^ 

l.OlV.) —0,0i'.'.) 
I,i.e. -O.l.T) 

1,1'JO —u.no 
1.2-12 —0.212 
1.302 —0,302 

0,2:53 
0.11,7 
0,103 
0 0.'>0 
0,000 

§11. THE DIRECTIGN BETWEEN k  SHOCK WAVE AKD A PARTITION OP FINITE 
THICKNESS 

As already mentioned eariier, an-est^ate of the'displacements 

and the strain, a-ising i" a structvre in the case of an underwater 

e.xplo2ion .an be performec en the Irasis .f analysis of the propagation 

of alastoplastic waves. 

Anotner approach to the solution of this problen is also possible, 

wherein the structure is regarded as a mechanical system with a def- 

inite number of degrees of freedom and the motion is studied in gen- 

eralized Lagrange coordinates. This approach presupposes that the ve- 

locity of propagation of the elastoplastic waves is infinitely large, 

so that these are excluded from consideration. 

The motion of the system is determined by its mechanical param- 

eters (mass, stiffness) and by the external loa<3 produced by the shock 
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wave. It Is essential to olarlfy the difference In the final results 

obtained by using the indicated two methods, and to establish what er- 

ror arises in the case when the structure is regarded as a mechanical 

system, 

¥e shall investigate,this problem using as a simple example nor- 

mal incidence of a plane shod:, wave on an unbounded plate of finite 

thickness. 

As is well known, a reflected and a refracted wave are formed at 

the instant when a wave encounters a boundary separating two media. 

The amplitudes of these waves are determined by the relations 

£?lL=hlL.sM±. (1.241) 
P Hl'i  t- Pl«! 

P    ' Fs« - pi-'7i' 

where pp and a2 a3:-e the density and velocity of sound in the second 

medium^ p- and a^ are the density and velocity of sound in the first 

medium. 

¥e introduce the notation: k--, fcr the coefficient of reflection 

of the wave in the first, medium from the second medium and k-jo ^ov  the 

coefficient of refraction from the first medium into the second medium. 

We then obtain 

The refracted wave propagating in the second medium causes on 

reaching the separation boundary between the second and third media 

the formation of two additional waves, one reflected and the other re- 

fracted (Fig. 102). 

In this case, obviously# 

' «J-3«.Ä..j,M3L=i5£t«.V'«P. (4.111) 

where k22 is the coefficient of reflection of the wave in the second 
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medium from the third medium; 

^*- (4.112) 

/ 
■ A "/ 

HanpaSntHüi 
facnpocfnpaHCMun 
ippjHmu npnuoi 
jjSBpMÜ to«/ 

1 

where k^ is the coefficient of refraction of the wave from the second 

medium into the third medium. 

The wave reflected from the boundary- 

separating the second and third media 

produces in turn, on reaching the bound- 

ary between the second and first media, 

a refracted wave which propagates in the 

first medium, as well as a wave reflected 

in the second medium. 

Let us determine the parameters of 

these waves. 

The pressure in the refracted wave, 

propagating in the first medium, will be 

[4.113) 

Pig. 102. Diagram showing 
the reflection and re- 
fraction of a shock wave 
in the case of normal in- 
cidence on a partition of 
finite thickness, l) Di- 
rection of propagation of 
the front of the direct 
shock wave. 

KT^!- 
2pirti = A, Jfj^i/?, 

Oil)     p,^. -t- fjrtj 

where k.-, is the coefficient of refraction frorr the second medium into 

the f irs t. 

The; ore?;sure in the reflected wave is 

^oip  ' oil) piai + p.n,   " '■ •" 
(4.114) 

where ^  is the coefficient of reflection of the wave in the second 

medium from the first medium. 

The subsequent development of the wave process will be analogous 

to that already considered. 

The pressure on the surfaces of the plate will change abruptly at 

time intervals equal to the duration during which the wave travels 

through double the thickness of the plate. 

- 306 - 



Using the forogolng considerations^, let us calculate the pressure 

on the surface of the plate. The law governing the variation of the 

pressure in the direct wave will be assumed exponential: 

■o(0. (4,115) 

Denoting fey t1 = 5/aC; the travel time of the wave through the 

thickness of tne partition, we obtain 

f    _ J- _ i\ r _ t=S! : 
Pi =■ \Pme   * + kuPnfi    ") \ (0 + A/AAAi Le    "  o, (^ 2/,) + 

/-«■ r-w, 

+ (A2XJ)"','?   '   Oo^~2^i)+..J (4,116) 

We  intrc-duce the  additional notation! 

-1 = 

Ü 

(4.117) 

We rewrite   (4.116)   in the  form 

or,   auraming the  series, 

A:-Pffl(l +AI1)^c0(T)+A„ae-
h-s"'"L^2T^ao(T_2TI),    (4.119) 

where n is an integer determined in accordance with the time interval 

under consideration from the inequality 

2rttj < x < {'2n + 2) t,. 

A formula of this type was obtained by B.V. Zamyshlyayev and K.V. 

Lopukhov for the resultant load induced by an underwater shock wave on 

a partition of finite thickness. 

The first term of Formula (4.119) represents the summary pressure 

of the direct and reflected waves. In the case when the acoustic im- 

pedance of the plate exceeds the acoustic impedance of the first and 
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third media, the remaining parts of Eq. (4.119) characterize the pres- 

sures of the rarefaction waves that emerge in succession from the sec- 

ond medium into the first.* 

Arguing in similar fashion, we can readily obtain the pressure 

behind the plate: 

P. «/VAAa l^'^o (- - M) + T^"^ Oo (- - 3t,) + 
+ T»-'^-tf"-'nJ0o[t._(2«._.l ),,]+...} = 

-PJ^^: f-
le'^in-lMc0 [, _ (2/: - 1) t,]. (4.120) V 

or,   putting lc-|21<:2^ == a and suinminS  the  series   (4.120) 

PiS=Pma(!-»-™  J7g.JT>_1 80 (X _ .,), ( 4 . 121 ) 

with 

(2«-l)xJ<T<(2« + l)t1. 

Of great practical Interest is the determination of the param- 

eters of the wave behind the partition, when both the first and the 

third medium is water. The solution of this problem is equivalent to 

estimating the shielding properties of solid partitions of specified 

thickness. 

In this case 
p,rt, = p.,«, = p0a0; 

— hh    —       -W"- 2pc,a0 4pon0p,<7-|    _ ■,rm\ a — ÄjS«ja — — - ~ Mu + Ha- — (!V,o + fiai),, ^ 4 # j_22 j 

'   : HSTS)' (4.123) 

Prom a comparison of (4.122) and (4.123) we arrive at the conclu- 

sion that aH-7 = l. 

In accordance with (4.121) and (4.178), the value of the impulse 

of the n.-th portion of the pressure pattern is equal to 

/»■»/V.0» IA. .  J e^-^ai, (4.124') 

or, inasmuch as 
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(2/H-Ih, 

we have . 

The total Impulse can be obtained by summing the expressions 

(4,123) from n = 1 to n = 00: 

K^. 

I 
la^^-D—^-^—^r (■,-,- 126; 2'"_. 1 v    (i—7 (i—« '") 

or^ canceling out ant. recognizing that a = 1 — 7., we obtain ultimately 
r~Pj. (4.127) 

Ihus;, independently of the acoustic properties and the thickness 

of the elastic partition, the impulse of the pressures behind the par- 

tition is equal to the total Impulse cf the direct shock wave. The 

role of the partition reduces, as it were, to an increase in the time 

of action of the positive phase of the pressure while decreasing the 

value of the maximum pressure, which depends linearly on the coeffi- 

cient a. Therefore, in order to reduce appreciably the maximum pres- 

sure it is necessary to construct partitions with acoustic impedances 

that are much smaller than the acoustic impedance of the surrounding 

medium. 

Let us return to the estimate of the resultant pressure on the 

front surface of the plate. 

We have shown, earlier that this pressure is determined by the 

expression 
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A=^(l +*U)^C0(X)+^-<'-^^^-«O(-2M).     (4. 119) 

We obtain an analogous relation by considering the plate as a 

mechanical system with one degree of freedom. Assuming the plate to be 

absolutely rigid (a2 = «., k11 = 1), we shall take into acccvnt only 

its inertial properties. 

As soon as the front of the plane shock wave touches the surface 

of the plate, the latter begins to move like a solid, with velocity 

dz/dt. This displacement-causes the formation of a pressure field be- 

hind the partition, which in the acoustic approximation is character- 

ized by the quantity 

/»a - ivia I? • (4.128) 

The equation of motion of the plate is written in the form 

rn^r-pW+P^W-Mt), (4.129) 

where m is the mass of the plate per unit surface, p(t) the pressure 

in the direct wave, Potr(tJ the ores-ore in the reflected wave, and 

p (t) the pressure in the wave behind the plate. 

The oressure in the direct and reflected waves are related by the 

condition that the velocities of the particles of the first medimn 

must on the surface of the partition oe equal to the velocity of the 

partition itself. As a result of this 

Thus 

m + (?lal + ?iaty~i**2p{t). (4.131) ■^77 -r vri"»   1   ra~a/ dt 

For a wave with exponential profile we have 

^ + ^1 + ^5)^ = 2/v"6. (4.132) 

A general solution of (4.132) is 
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z = Cj + c^e /n(3 —l)e   ' (4.133) 

where 

(4.134) 

The integration constants c, and Cp are determined from the con- 

ditions : 

when t — 0 and z = 0 we have 

dz/dt = 0. 

After elementary transformations,, we obtain 

1+e   8 — pe -]. 
hence 

dt      m(fi--l) xie   ■ —« 

(4.135) 

(4 136) 

The resultant pressure en the front surface of the plate is equal 

to 

Pt~P V) '+ Port (0 « 2^ (/) - p,«. — - 

^-{(p-I) r;r m 

ors  putting. 

Pi«, „r = Pi) 

Pa«3-^- = Pa. 

we obtain 

P,~j*?r[?ie~'*~V~V*)e'"* 

The pressure behind the plate is 

m fl —1 ^-P^^-P.«,-^^ 

(4„137) 

(4.138) 

(4.139) 

(4.140) 

(4.141) 

"], 

■^h-s^^ '-r^]. (4.142) 
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In the case when the acoustic impedance of the third medium is 

much smaller than that of the first (p^a^^/p^-.   « 1^ and when., conse- 

quently., ß, — ßj we have in lieu of (4.141) 

It can be shown that the approximate solution (4.137), which does 

not take into account the wave character of the propagation of the dis- 

turbances, gives lor-   the overwhelming majority cf practical problems a 

result which is close to the accurate one., and has a much simpler form. 

For the reason indicated, one customarily uses Relations (4.137)- 

(4.142), in spite of the fact that Formulas (4.119) and (4.120) take a 

fuller account of the wave processes that occur in the finite-thickness 

partition itself. 

Example. 1 Calculate the pressure en the front surface of a steel 

plate for the incidence jf a plane shock wave of exponential form The 

plate separates air from wa;er. The shock wave is produced underground. 

Solve the problem with the aid of the approximate and exact rela- 

tions. 

For t.ha initial data assume the following. 
2-4 / p. = '102 kg sec /i a1 =  1500 m/sec, 

P2 = 800 kg-sec"~/m , a2 = 5500 m/sec,~ 

p =: 0.125 tig-sec2/m ,       a^  = 340 m/sec. 

The exponential-attemation constant is 0 = 1.82•10~•;, sec. The pres- 

sure on the front is pm = 100 kg/cm . The thickness of the plate is 

5 = 0.5 cm• 

Solution. We calculate the values of the coefficients contained 

in Formula (^.118) 
jV^- j^n, 800 5500— 102 1500 _ , n„3, 

Ä11" p-'.v, + (H«; "'■ »oo.'ssoo + iöiTTsöo     •   ■ 

k fa"» — Pi"« 0, i 25.3-10 —SQO. 5500  _ _. „ 
' ?j'U + Maö O.iaS.S'lO + BOO.5500 '       '   ' 
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AJJ = 

A» = 

Aj! = 

Fi"! — Pi^s 
Piöi + ha* 

2p2n5 

p,<ls + p^, 

2p1fl1 

102-1500 — 800-5500 
- ~Tü^ 1500 + 800 • 5500 

T = /ta-ka = 0,033; 

_2._8CC.5500  
_   800 • 5500 + 101! • 5500. 

= —0,933; 

1,935; 

2-102''505 =0,0673; 
Pifli + Psfla        102-1500 + 800-5500 

S = ka-kn-kn = 1,935-1,00-0,0073 = -0,130; 

0,5 
' ~   0  ~ a,0  _  5500-10--1,82-10" 

, = 0,05. 

After substituting these values in (4.118) we obtain 

pt**pm-l,933e-'co (x) + pm (-0,130) f" <,-2,'' e0 (f - 2T,) + 

i +/>„,(—0,130) 0,9336-(,t-4,''(j0(T —4T,) + 

+ ^(-0,130) 0,87 l^-<t-0■,'l Oo (t — 6T,)+ ... 

Calculations by means of this formula are conveniently carried 

out in tabular form, choosing as the time interval the quantity T = 

= 2T, j as is done in Table 28. After such a time interval, rarefaction 

waves will arrive at the front surface of the plate, and the pressures 

will vary abruptly (Fig. 103). 

Fig. 103. Pressure on the surface of a 
plate. I) Pressure on an absolutely rigid 
plate; II) pressure on a plate of infin- 
ite thickness; III) pressure on a plate 
of finite thickness in accordance with 
the exact equatlonj IV) pressure on a 
plate of finite thickness in accordance 
with the approximate equation. 

We now solve the same problem using the approximate method, re- 

garding the plate as a mechanical system with one degree of freedom. 
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Let us calculate the parameters entering into Formula (4.143) 

.• ^ ic:-]?^- O.:ü5.?40 ^J-.. .-,_»_ 0&S5. 

9,a'. ■ I0a 

o  = _J:i*L. (A-
1
 —0.683«-0-

M5T
) = 635 («-, —0,585»- 

0,M5T (4.143) 

The results of the calculations are given in Table 28. 

TABIxE  28 

: = 2m:1    <• M.93 (-r')- ?'- (3) —(8)  P, = 635-(9) 

10 

-ST -"Pt P = 370-{13) 

11 12 13 M 

0 0 

I 0,10 

2 0,20 

3 o;tfi 

•1 0.10 

5 0.50 

G 0,liO 

7 0,70 

8 0,.':0 

9 O/.IO 

Id 1,00 

11 1.10 

12 ! ,20 

13 1,30 

!■; l.'.O 

13 

1 

1.50 

1,00 

0,00-1 

0,^20 

0,740 

0,071 

0,(.OG 

0,550 

0,490 

0,450 

0.40G 

C.'iGS 

0,:i3-l 

0,205 

0.273 

0,2-iS 

0.223 

1,93 

1,74 

1,58 

1,43 

1,27 

1.17 

S.06 

0,957 

0,S&S 

0,7S-1 

0,7'. r 

0.64-1 

0,572 

0,525 

0,473 

1,000 

0,933 

0,871 

0,812 

0,758 

0,708 

0,602 

0,017 

0,575 

0,537 

0,501 

0,4GS 

0,436 

0,407 

o,c:o 

-0,130 

-0,126 

-0,113 

-0,1055 

-0,0085 

-0,0920 

-0,0800 

-0,0803 

—0 0716 
I 

-O.OO'JK 

—0,0050 

-0,0333 | 

—0,0335 | 

—0,0500 

-o.e.3: 

o 
0,0085 

0,137 

0,205 

0,274 

0,342 

0,4! 2 

0,478 

0,548 

0,01 C 

0.0S5 

0,754 

0.823 

0.GS5 

0,040 

0,590 

0.557 

0,521 

0,480 

0,154 

0,125 

0,390 

0.370 

0.315 

0,204 

0,224 

0,183 

0,150 

0,120 

0,096 

0,071 

0,054 

0.030 

0,316 0,022 

0 3° 2 0.012 

0,301 —0,005 

0.231 —O.COS 

0,202 —o.c: 4 

0.245 —0,022 

2,00 

1,68 

1,43 

0,956 

0,705 

0,612 

0,454 

0,341 

0.229 

0.140 

0.0705 

—0,0320 

—0,0510 

0,274 

0,548 

0,822 

1,095 

1,37 

1,6-1 

1.92 

1 

0,760 

0,578 

0,439 

0,334 

0,254 

0,191 

0,I4G 

0.060 

0.003 

0.111 

0.11& 

0.114 

0.102 

0.101 

22,2 

34.4 

41,2 

42,8 

42.2 

36,8 

37,3 

A comparison of the data obtained hy   these two methods is shown 

in Fig. 103. 

Example 2. Determine the pressure behind a steel plate of thick- 

ness ö = 0.5 cm, immersed in water, acted upon by an underwater shock 

wave with maximum pressu 5 pm = 100 kg/cm
2 and an attenuation time con- 

stant 0 = 1.82-10"5 sec. 

Compare the results -of the calculations obtained with the exact 

and with the approximate formulas. 

Solution. We calculate the coefficients 7 and k12k23 contained in 

Formula (4.128): 
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Al5*5J  = 
Pa": + pi")  Pi"! + p-^j       (Pi^i + Palj)3 

4.102-l.')O0.800-rK'iOO 
'(102.1500 -)- «00■5500) 

•, = 0,130; 

Pa"»    ■ P:"» Pi«! — Pa"»        fpifli — faff,)' iy tun  b    h      ...    ' 7        sa  aa - -pa(7s + ^^^  pirti + -^ -  ^|ai + p^jj - 

(102.1500 —TOO..'i.'JOO)3 ^ 
S={102.15UO + SOÜ-ÖSOO)»"0' 70, 

Since the time interval T = 2nTi remains the same as before, we 

can use the results of the calculations given in Table 28 for the cal- 

culation of the pressure pattern. The pressure behind the plate occurs 

after the shock wave covers a distance equal to the thickness of the 

plate, and will then change abruptly every 2nT;L. 

(tj        11,1 !].! t-IS''eiii' 
1,1      t 

Fig. 104. Pressure behind a plate: solid 
line — using the exact formula; dashed — 
using the approximate formula. 

An approximate estimate of the character of pressure variation 

can be made using Eq. (4.142), and in our case 

102.1500 1,82.10-» = 0,685; 
«.0,5 

IViMO5" 
ß = ßi + ?> = 2?, = 1,37. 

therefore 

P* =   1,37 — 1,00       m l J L 

Calculation by means of this formula is made in Table 28, 

The results of the comparison of the data obtained by the two 

methods are shown in Fig. 104. 

§12. DYNAMIC DESIGN OF A SYSTEM WITH ONE DEGREE OP FREEDOM FOR THE 
ACTION OF AN UNDERWATER SHOCK WAVE 

The solution of the problem of dynamic design of a system to with- 

stand the action of an underwater shock wave is, as already mentioned, 
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r 
very difficult in the general formulation. We therefore consider here 

the following two limiting cases: 

1) the dimensions of the structure are so large that the time of 

arrival of the diffraction wave from the edges of the partition exceeds 

the duration of the compression phase of the direct shock wave; 

2) the dimensions of the structure are so small that the time of 

arrival of the diffraction wave from the edges of the partition is ap- 

preciably shorter than the duration of the compression phase of the 

direct wave. 

In the former case we can neglect the diffraction phenomena. Us- 

ing the reduction method, we obtain the differential equation of motion 

of the system In  the form 

^g- + (?1al + ?zas)§ + kz = 2pme-^ (4.144) 

Equation (4.144) differs from (4.13?) only in the term that takes 

into account the stiffness of the structure. 

Of basic principal interest is the case when air is located be- 

hind the cover or behind a plate. In this case pQa^ « p-La1 and with- 

out loss  of  practical accuracy we have in lieu of (4.144) 

PcS 4F + P.«' § 4-kz = 2^e~ ^ (4 •l45) 

The problem in this formulation was considered in detail by V. V. 

Novozhilovj D.A. Aleksandrin, and M.N. Lefonova. 

We put 

u^*; (4,146) 

P-MM. (4.147) 
1    Pcf> 

and then we obtain 
< 

z+.L* + w^c=2£gLe-». (4.148) 

The general solution of Eq. (4.148) is 
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where 

ai = 4.(1+Kr=F); (4.150) 

„^(i-Kra5); (4.151) 

^ = i^. (4.152) 

Subjecting Eq. (4.149) to the initial conditions z = dz/dt =0 

when t = 0, we obtain 

JA«?! JL- [-(l - «,) e~"~+ 

.4.     -4-1 
+ (1-«,)^ •• + («1-«1)e J. (4.153) 

in .nost practical cases i2  « 1. We can therefore assume 

„.^(i-i-l»)«?; (4.154) 

„^^^(i + Jp^-i-P^ (4.155) 

Substituting these values of ^ and a2 in (4.153), and taking 

into consideration the fact that 

'«■ = —i 

we obtain 

1 — 3 + 
,(/v-.^-  L    u-Lri-i-^y^ 

'0-T^KH -HU-P)* 4 • + P(i-T6,je I-        (4.156) 

Differentiating this expression, we have 

L   • N -»4 

pc8 ^1 - ? + -j-J i — j 

±E.4 

■2 

I 

^l-Ve-^-il-^y-*].   •      (4.15T) 

- 317 - 



Equating z(t)  = 0 and determining from the resultant transcenden- 

tal equation the time t, we can obtain the following approximate ex- 

pression for the maximum value of the displacement, valid for ß > 5: 

a. 2pm0 f-W^-T8')--1 '"^^ m"~ Mi ' i_±v        I   •        (4.158) 

Let. us now consider a second case, when the dimensions of the 

structure are small compared with the length of the shock wave. In 

this case the diffraction waves from the edges of the partition will 

rapidly eliminate the pressure in the reflected wave. The displace- 

ments of the structure itself lead to a change of the hydrodynamic 

fields„ which can he taken into account with good approximating by in- 

troducing the apparent mass coefficient. Therefore the differential equa- 

tion of motion of the system will in this case have the form 

mZ + kz=p{t). (4.159) 

where m is the sum of the mass of the plate and its apparent mass, per 

"unit surface. 

Since equations of the type (4.159) with an exponential function ■ 

in the right half have been investigated in great detail, further cal- 

-.ulations will be car-led out under the assumption that the form of 

the shock wave is specified by the hyperbolic relation 

P^-P,.^-    \        W^--^).       (4.160) 

As was already mentioned earlier, such a specification of the 

function p{tt   r) is no less accurate than the exponential form, and in 

individual oases it is more convenient. 

Taking as the initial instant of time the time of arrival of the 

shock wave at the structure, we obtain 
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,.»,=.£' ^^«^ (4.161) 
L ^OJ  J 

where 

ÜJ 

A solution of this equation (4.l6l) will be 

0  L   ^03       J 

We introduce a change of variable 

We have 

«/+;~•-• 

(4.163) 

(4.164) 

For convenience we write for the dimensionless combination 

^ + !S-5=^ (4.165) 

We then obtain in lieu of (4.164) 

i = & i^. f >'"(e-x) dXi (4.166) 

Differentiating with respect to t,  we obtain 

^ = ^^.0. rco.(e-x)^ (4.167) 
"'?.. 

The integrals in the right halves of (4.166) and (4.167) are de- 

termined, as is well known, with the aid of special functions, the in- 

tegral sine and cosine. 

After simple transformations we have 

- 319 - 



~cos^~)-(I'2(OjJ' (4.168) 

+ Sina[cl>2(^)-<I.O)J}> (4.169) 

where 

^(^-S); (4.i7o) 

^(0==^ +si;; (4.171) 

<i>2(5)=^-dt (4.172) 

To determine the argument |., which corresponds to the instant of 

the extremum of z  in Eq. (4.168)^ it is sufficient to set z  equal to 

zero. ¥e then arrive at the transcendental equation 

cos M^ (C) +sin e(I'2(C) =-£03^(5) +sin ?(!>,(;),      (4.173) 

where ^ denotes 

c=^f- (4.174) 

An arbitrarily assigned parameter C,  corresponds to an infinite 

set of values of £_, which turn Eq. (4.173) into an identity. In the 

physical sense of the problemj we are interested in the value of | 

that- is closesT; to ^ and satisfies Eq. (4.173). In addition, we should 

obviously have i  > £. Equation (4.173) is solved by a grapho-analytic 

method. If we substitute the function |(^) obtained in this manner 

into Eq. (4.163), we obtain the extremal value of z: 

z"' = Tf -?T isin' (c) lfI,i (c) - CI>< [UQ11 - 

-cosUC)[cl)2(C)-<I>3lS(C)ll}, 

or^   since 

we have 

^ = -?. (4.174) 

—ftir«). (4.175) 
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where 

/=-(C) = C» { sin 5 (C) [O, (C) - '!>, [? (C)]] - 
- cos $ (C) [«>2 (c) - ©, [S (C)]]}, (4.176) 

The calculation and succeeding analytic approximation of the func- 

tion P(C) lead., with good approximation, to the relation 

^W^fÄv- (4.177) 

¥e therefore can write 

^^^f^rr^- (4.178; 

If we recall that co = k/m and p /k ~ z . is the deflection that .m     s "y 
this plate would receive were p  to he applied statically, then we ob- 

tain easily after elementary transformations 

«m = tT^«cT. (4.179) 

Thus, the coefficient 2^/{r +  2.4) is the dynamicity coefficient. 

At large charge radii or at high frequencies w we have 

t -1-2,4 - *> 

i.e., the effect of a suddenly applied constant load Is obtained. 

To the contrary, at small w and RQV 'th8 dynamicity coefficient 

can be as small as desired. 

Example 1. Calculate the maximum deflection of a steel plate in 

the outer hull of a ship with the following initial data: 
2/4 / p1 = 102  kg-sec /m ', a-,  = 1500 m/sec; 
?    4 

Pp = 800 kg-sec""/m  , a.^ — 5500 m/sec. 

The pressure  on the  front of  the  underwater  shock wave  is  p_ = ■^ m 

r= 120  kg/cm2. 

The  thickness  of  the  plate   is   6 = 0.8  cm. 

The  stiffness  coefficient  is  k = l40 kg/crrH,   and the  exponential 
_i4. 

damping  constant   is   0 = 2.5-10       sec. 
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Solution. We find the frequency of oscllla,tion of the plate: 
NO-10' = 2I,<MO« l/sec , 

""■pa5   B00-0,K 

u = .j.bG-io4 l/sec. 

We  calculate  the   coefficients   ß and  ? 

3 m ii^- 0 m      ™}.'M%. 2,51 • 10"' » 0,0; 

cs _ iui^L _  4--.^-10~8--<.GG;'-i'>i  _ 0 15 

The maximum deflection of  the plate  is  determined  from the  formula 

•mix 
Mi ..-4.- 

2.120-2,S'10-<      I   4 
i. 0,15 [6,0(1 J-0,15)-l] 

^-c.o.o,;5 
•i  

1_ J-C,0.Ü,!5 

102-1500 I" I—i-0.15 ; 

I 0,0375-4,77 l0'20  „ 0|39o.o,i94°'S3 = 0,244 cm. 
■ u, •»-)       QCJ25       / 

Example 2. A copper membrane 50 mm in diameter and 3 mm thick is 

located at a distance of 100 m from the center of the charge, and was 

subjected to a deflection of 6.5 mm. 

Find the weight of the charge if the following are specified: the 

stiffness coefficient of the membrane k - 250 kg/cm3; mass of the mem- 

brane per uni'r- 'surface, with allowance for the apparent mass of the 

liquid, 1% = 4.2-10" kg-sec /cm0. 

Solution. We obtain the frequency of the natural oscillations of 

the membrane: 

-/--/SS-^'^/sec. 

According to   (4.175)   we have 
0 M^oa 

J„i ■" _   tm. 
k    C + 2,4       *   ■ u,«0i 

aö3  

+ 2,4 

with Pm" 
14 700 

{■kl 

-   322    - 



Thus 

14 700  I 
im = 

Since the distance v,   the stiffness coefficient k, the deflection 

of the membrane 7,  ,   and the oscillation frequency w are specified, the 

last equation enables us to determine the radius of the equivalent 

spherical charge RQV 

After substituting the numerical values^ we obtain 

g7,7.iov<ai 
1-1700      I 1500-0,27 

0,b5 m -j-Qjri^r Vjjg-    fjfWK /100V 
W^oJ 1500.0,77 

+ 2,4 

1!« 19goa 
/lOOiMli    19«03 + 2,4   ' 

Solving this equation, we get RQ^ = 1.1 m. 

The weight of the TNT charge will be 

G = R03/(0.053)
3 = (1.1-106)/150 = 735-103 kg = 7.35 m. 

§13. APPROXIMATE ACCOUNT OF CAVITATIONAL PHENOMENA IN THE INTERACTION 
BETWEEN AN UNDERWATER SHOCK WAVE AND A PLATE 

The very simple schemes of interaction between a shock wave and a 

partition, considered in the two preceding sections, did not take into 

account the cavitational phenomena in the liquid. Yet such phenomena 

can occur in many cases of practical interest. 

Let us illustrate this by using as an example the motion of a 

free plate. We shall assume that on the one side of the plate there is 

water, and on the other there is air. The acoustic impedance of air 

can be neglected compared with the acoustic Impedance of water. 

Under such conditions, the differential equation of motion of the 

plate will be 

m^ + w^-^e^. (4.180) 

Its solution is (see §11) 
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fe-. 3   ipmv 1 -fe ■ So 

where 

(4.135) 

(4.136) 

(4.181) 

The maxinium displacement  of  the  plate   does not  depend on its   In- 

ertial properties and  is  determined by the  equation 
2/'„0 

Z™ = l^f ^  Po«. (4.182) 

The resultsnt pressure on the pla'te consists of the pressure in 

the direct and reflected waves: 

/V.=/'np+/W (4.183) 

with 
dz 

'Pme 

Pcnp ~-Pnt>~?Oua  rfj 

■Po^o 

0-PJ 
in ip-l) 

+ Po« 
si. 

""o ml?— 1) 

3-1 
■34 

(4.184) 

If we take into account the wave character of propagation of the 

disturbances and consider for the sake of simplicity a plane wave, 

then the pressure at an arbitrary point of the liquid ahead of the 

plate will be the result of the superposition of two wave systems, the 

direct and reflected waves. 

Reckoning- the time from the instant of arrival of the wave at the 

plate^ we have 

P p., (- X, t) = pn, (- X, t) o0 U  i- -i) + p^ (- X, t) c0 (/ 
JL\: 

0^) 
(^i)-l^ 

0-4.) 

(-■- 

23   -? f 
+ F^ie .(^i),• (4.185) 
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The structure of the obtained equation enables us to plot the ra- 

tio p„0_/pTr. in space-time coordinates for a fixed value of the param- X C" 2   ill 

eter ß. In the limiting case as ß —»■ 0 we have an absolutely rigid wall, 

and when ß -*■ oo we have the free surface cf the liquid. Figure 105 

shows the lines of equal pressures as functions of the coordinates and 

the time for ß = 4.0 and ß = 83. 

It is easy to note that at some definite Instant of time, even 

for plates of relatively large inertia (ß = 4.0), the resultant values 

of the pressures in the liquid become negative. 

j/fljS .»A* 

Fig. 105. Resultant pressure ahead of the 
plate in coordinates x  and t.   l) Front of 
re fie c te d wave. 

If the absolute values of the pressures turn out to be larger 

than the sum of the cavltation and hydrostatic pressures, then tensile 

stresses can arise in the liquid, capable of producing a cavltational 

discontinuity. 

The formation and development of the cavltation under interactions 

between and underwater shock wave and a plate, were first considered 

by Schauer and Klrkwood. Schauer's theory is based on the assumption 

that starting with the instant when the resultant pressure (p.^^) is 

equal to the cavltation pressure 
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/"p" ^ Pav  + Ärp < ( IA I + A). 

the plate breaks away from the liquid and moves by inertia in the air 

medium. 

This instant of time can be readily determined with the aid of 

the previously established relations. 

Indeed, if we assume approximately., for example, that the cavita- 

tion sets in when the resultant pressure on the plate is equal to zero, 

then we get according to (4.183) and (4.185) 

ß-i~  ' jj-i 

hence 

^«fiprr- (4.186) 

where t, is the instant of occurrence of cavitation. 

The velocity of motion of the plate at the instant t = t, will. 

in accord with (4.136), be 

eU= >V.L-?-_g^~i (4.136a) dt "^ - mtt-\) \! 

The kinetic energy of the free plate is absorbed by the work of 

the atmospheric counterpressure forces. 

Schauer's theory as applied to problems involving the interaction 

between an underwater shock wave and ship structures was developed in 

the -works of D.A. Aleksandrin. 

Kirkwood, unlike Schauer, supposed that the maximum displacement 

of the plate is determined not only by the value of the kinetic energy 

which is imparted to it by the shock wave by the instant of formation 

of the cavitation region, but also by the energy of the cavitated 

layer of liquid. 

Kirkwood1s researches were continued by B.V. Zamyshlyayev. The 

scheme of development of the cavitational processes as the plate moves 
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under the  action of the shock wave turns out to be quite close to that 

described previously in §4 of Chapter 3- The only difference is that 

in the study of the reflection of the wave from the free surface one 

could assume that the formation of the cavitatlon discontinuity coin-, 

cides in time with the Instant of arrival of the front of the reflected 

wave. 

For an approximate estimate of the characteristics of the motion 

of the cavitational layer and of the plate^ we make use, as before, of 

the laws of conservation of energy and momentum. Let us consider a 

system consisting of a plate and several cavitational layers of thick- 

ness h.. 

By the Instant t. when the i-th layer has separated, such a sys- 

tem acquires a momentum equal to the impulse of the pressure forces 

acting from the Instant of arrival of the front of the shock wave at 

the plane —h. (t = —h./a0): 

K = ( A,P in at + f p„v (0 dt = /„„ (0 + /„„ (0,'      (4.187) 
_Üi      1 
~ Ot a, 

where Ir)r(i) and I0f.r(i) are the impulses of the pressures in the di- 

rect and reflected waves, reckoned from the instant of arrival of 

these waves at the point h. to the instant of formation of the cavita- x 

tional discontinuity. 

After the i-th layer is separated, the system under consideration 

is acted upon only by the forces of atmospheric pressure from the 

plate (the saturated-vapor plate from the i-th layer can be neglected). 

For this reason, the momentum of the system at some instant of 

time t > t. will be 

MO^MM-^T-C/-^). (4.188) 

Assuming that the cavitational layers and the plate move with 
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some average velocity z^t), we obtain 

^W^^r+T^0 ^+7^ •       (4.189) 

The kinetic energy of motion of the system will be 

7-, W-2^ *?('). (4.190) 

It Is obvious that this quantity should be equal to the energy of 

the direct and reflected waves, transferred to the system, after sub- 

tracting the work done by the forces of atmospheric pressure.* 

The energy of the direct wave Is determined by the equation 

The energy of the reflected wave Is 

^PW-[%>. (4.192) 

1 

The work done by the forces of atmospheric pressure Is approxi- 

mately equal to 

^«/»»«[«.(O-^Wl. (4.193) 

Gathering together the obtained estimates, we arrive at the rela- 

tion 

Tt(t)^Eap(i) — Eor!lii)~A, (4.194) 

which Is equivalent to 

^H^ *K0 "= Baf(i)~E„?(i) ~.p,1u [z, (t)-Zi it,)]. (4.195) 

The value of z±[t±)   can be readily expressed in terms of the 

parameters of the direct and reflected waves. 

Since A.tp^/'np—'Po^o^fi 

dz        Pnp *~" ^oTp 
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we have 

J  Po^o      1 Po^o 

_ /np(0-/oTp(0 

Poa<j 
(4.196) 

ThuSj to determine the displacement of the plate z-.{t)  we have 

,„       MO-WO   ,   £np(0-goTp(0 
PO^O /'«TM 

-^-^'4(0. (4.197) 

Let us   calculate   the maximum  displacement  of  the   plate   2^   • max 
To this end it is necessary to determine the number of cavita- 

tional layers N which have had time to attach themselves to the plate 

by that time, and equate the velocity z-j(t) to zero. 

According to (4.189);, the Instant of time at which the maximum 

displacement is reached., is equal to 

tn~tff + —7- . (4.198) 

with the N-th layer becoming attached to the system when its displace- 

ment turns out to be equal to the displacement of the plate (with the 

N — 1 layers adjacent to it). 

The displacement of the plate is determined by Eq. (4,197) in 

which the index i is replaced by the index N. 

The displacement of the N-th layer can be calculated from the re- 

lation 

__/np(Af)-^Tp(Ar)  [  2pl,p(jv) + ip/i|+ro « (4,199) 
Po^o Porto 

Equating  the  velocities,  we  arrive  at  a   quadratic  equation  in the 

unknown  instant  of  time.   Solving  this  equation,  we  obtain 

fN = tN^bN + Vir-c-N> (4.200) 
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where 

, /np (-V) + .'0Tp (N) 

Ptru 

HI + pn/i ., 

-rj~ ^"P W + I^ 1 + PJ-> (4.201) 

2 ///i -i- PaA.,'! 
~[£,np(A')~^Tp(A')] 

/; 
aiM 

IA.PW + WAQ] 

Par- 
(4.202) 

An estimate of the cavltational layers can be carried out by com- 

paring t*>T and t . 

Equating these instants of time^ v;e obtain the following transcen- 

dental equation 

' EB? (N) -£0TP (AO = ^ [2/v (N) + \pM\+ pQ] x 

X[/BV(N) + /„fiN)]. (4.203) 

In addition,, we previously had 

ZV" =/% W+PorP W == — (b* I + A))- (4.204) 

These two equations include two unknown quantities hN and tN, and 

once these are determined it is easy to calculate the momenta and the 

energies in the direct and reflected waves, determining by the same . 

token all the elements of motion. 

According to (4.197), the maximum displacement of the plate will 

be 

z™* ^ + J^u • (4.205) 

The results obtained can be extended to the case of a plate which 

is part of the whole structure. In this case it is necessary to esti- 

mate in addition the value of the potential deformation energy, which 

is determined with the aid of the known methods of structural mechanics. 

Without dwelling on the details of this problem, we note in con- 

clusion that an account of cavltational phenomena leads to an increase 
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in the maximum deflection of the plate as compared with design In 

which cavltatlon Is not taken Into account. 

Manu- 
script [Footnotes] 
Page 
No. 

251      In the case of great excess pressures at the front of the air 
shock wave,, supersonic gas flow occurs and a compression wa- 
ve Is formed about the partition. The concept of stagnant 
flow parameters takes on new significance. 

258      As Is well known;, the hydraulic friction factor can be used 
to express the resistance of the tube In terms of the Impact 
pressure: .  , ' p^2 (4.16) 

263      For further details on the application of the lagrange method 
to problems of dynamic structural strength., see §9. 

273 The result discussed below Is taken from K. V. Lopukhov. 

274 We will leave out the structure of the solution, since It Is 
completely analogous to the solution presented In the book by 
A.A. Kharkevich, "Nonsteady-state Wave Phenomena," 

281      This problem was examined by us jointly with 0.G. Fayans. 

297      Here we  neglect the defractlon of the shock wave from the 
plate edges. 

297      The terminology "vertical" and "horizontal" partitions that 
we employed Is somewhat conditional. In more rigorous form- 
ulations, we speak of the case In which the shock wave drops 
along the normal to the surface or slides along the surface. 

308      The coefficient 5 has the same sign as k22; 

a > 0, If Po^-D   >  P2a2; 

a < 0, if po^o < p2^2'' 

the  coefficient Y.has  the  sign of  the product   (p-^ -  P2a2^   X 

X   CpjB-i ~  P2a2^ " 

327     It is appropriate to emphasize that the time of formation of 
the 1-th cavitational layer does not coincide, generally 
speaking, with the instant of arrival of the reflected wave 
at the plane h^. 
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328     It must be borne in mind that whereas the direct wave brings 
some energy into the system, the reflected wave, to the con- 
trary, carries energy away. Consequently, the system will 
have an energy Epr(i) - Eotr(i). 

329        ,/'p"=-(I^I+^) = 2^np-pofl()|£.. 

Manu - 
script [List of Transliterated Symbols] 
Page 
No. 

249 QTp = otr = otrazhenlye = reflection 

2^9 ^ ^ f = front = front 

251 pea = rez = rezul'tiruyushcheye davleniye = resultant pres- 

sure 

252 KT/KM     —  kg/cm 

253 COT = obt = obtekaniye = travel 

253 saT = zat = zatukhaniye = attenuation 

256 a^Kfl = abed 

257 aöKfl = abed 

258 Kan = kan = kanal = channel 

26l nay = nach = nachal 'nyy = initial 

26l KOH = kon = konechnyy == final 

26l p = r = rasshlrltel'naya kamera = expansion chamber 

293 np = pr = privedennaya massa = reduced [apparent] mass 

305 np = pr = pryamaya volna = direct wave 

3l6 c = s = szhatiye = compression 

- 331a- 



REFERENCES 

G.I, Abramovich, Prikladnaya gazovaya dinamika [Applied Gas- 

dynamlcs], Gostekhlzdat [State Publishing House for Technical Litera- 

ture], 1953. 

V.A. Assonov, Vzryvnyye raboty [Blasting], Ugletekhizdat [State 

Scientific and Technical Publishing House of Literature on the Coal 

Industry], I958. 

L.I. Baron, G.A. Vasil'yev, M.M. Dokuchayev and A.A. Krasnoperov, 

Vzryvnyye raboty, Moscow, Promstroyizdat [State Publishing House of 

Literature on Building Materials], 1953. 

P.S. Baum, K.P. Stanyukovich and B.I. Shekhter, Pizika vzryva 

[The Physics of Explosions], Fizmatgiz [State Publishing House for 

Literature on Physics and Mathematics], 1959. 

A.M. Brekhovskikh, Volny v slolstykh sredakh [Waves in Stratified 

Media], Izd-vo AN SSSR [Publishing House of the Academy of Sciences 

of the USSR], 1957. 

Bridzhmen, Pizika vysokikh davlenly [Physics of High Pressures], 

ONTI [United Scientific and Technical Publishing Houses], NKTP 

[Peoples Commissariat of Heavy Industry], 1935, 

Vzryvnyye raboty, Sbornik statey pod red. Pokrovskogo [Collec- 

tion of Articles edited by Pokrovskly, Gos. izd-vo po stroitel'nym 

materlalam [State Publishing House of Literature on Building Materials], 

Moscow, 1950. 

I.I. Glnzburg, Prikladnaya gidrogazodlnamlka [Applied Hydrogas- 

dynamics], Izd-vo LGU [Publishing House of the Leningrad State Uni- 

- 332 - 



versityj;, 1958. 

A.A. C-rib,, 0 rasprostranenii ploskoy udarnoy. volny pri obyknov- 

ennom vzryve u ploskoy stenkl [The Propagation of a Plane Shock Wave 

in an Ordinary Explosion at a Flat Wall], PMM [Applied Math. MechJ,, 

Vol. 8, page 169, 19^4. 

A.A. Grib, Vliyaniye mesta initsiirovaniya na parametry vozdushnoy 

udarnoy volny pri detonatsii vzryvnykh gazovykh smesey [Effect of 

Initiation Point on the Parameters of an Air Shock on Detonation of 

Explosive Gas Mistures], PMM, Vol. 8, Page 273, 19^4. 

A.I. Guhanov, Otrazheniye i prelomlenlye udarnykh voln na gran- 

tise dvukh sred [Reflection and Refraction of Shock Waves at Boundary 

Between Two Media], Tekhnicheskaya fizika [Tech. Phys.1 Vol. 28, page 

2035, 1958 and Vol. 29, page 615, 1959. 

K.Ye. Gubkin, Issledovaniye otrazheniya udarnykh voln s pomoshch'yu 

polutenevykh fotografiy [Investigation of Reflection of Shock Waves 

with Schlieren Photographs], Sbornik "Fizika vzryva" [Collection en- 

titled Physics of Explosions], No. 3, Izd-vo AN SSSR, 1955- 

R. Zauer, Vvedeniye v gazovuyu dinamiku [Introduction to Gasdy- 

namics], Gostekhizdat [State Publishing House for Literature on Tech- 

nology], 1947. 

T.V. Zakharova and Yu.B. Kharlton, Obtekaniye prepyatstviya 

udarnoy volnoy [Flow Past Shock-Wave Obstacle], Sbornik "Fizika 

vzryva". No. 1, Izd-vo AN SSSR, 1952. 

Ya.B. Zel'dovich, Teoriya udarnykh voln i vvedeniye v gazodina- 

miku [Theory of Shock Waves and Introduction to Gasdynamics], Izd-vo 

AN SSSR, 1946. 

F.A, Klrlllov, Seysmicheskly effekt vzryvov [Seismic Effect of 

Explosions], Trudy seysmologicheskogo instituta [Trans, of the Seis- 

mological Inst.], SIAN [Institute of Seismology of the Acad. Sei. USSR], 

- 333 - 



«v 

No. 116, 1946. 

M.V. Klrplchev and P.K. Konakov, Matematicheskiye osnovy teoril 

podoblya [Mathematical Fundamentals of Similitude Theory], lzd-vo AN 

SSSR, 1949. 

G, Kol'skiy, Volny napryazhenlya v tverdykh telakh [Stress Waves 

in Solids], .TIL [Foreign Literature Publishing House], 1955. 

M, Kornfel'd, Uprugost ' 1 prochnost ' zhidkostey [Elasticity and 

Strength of Fluids], GITTL [State Publishing House of Theoretical and 

Technical Literature], 1951. 

A.I. Korotkov, Opytnoye izuchenlye otrazhenlya udarnykh voln 

vzryva v vozdukha [Test Study of Reflection of Explosion Shock Waves 

in Air], Sbornik fizika vzryva. No. 4, lzd-vo AN SSSR, 1955. 

A.I. Korotkov, Vliyanlye pregrad na effekty otrazhenlya 1 vzal- 

modeystviya udarnykh voln vzryva v vozdukhe [Effect of Obstacles on 

the Effects of Reflection and the Interaction of Explosion Shock Wayes 

in the Air], Sbornik Fizika vzryva. No. 5, lzd-vo AN SSSR, 1956. 

R. Koul, Podvodnyye vzryvy [Underwater Explosions], IIL, 1950. 

N.Ye. Köchin, I.A. Kibel' and N.V. Roze, Teoreticheskaya gldro- 

mekhanika [Theoretical Hydromechanics], Part 2, OGIZ [State United 

Publishing Houses], 1946. 

N.Ye. Köchin, K teoril tazryvov v zhidkosti [Toward a Theory of 

Discontinuities in Fluids], Vol. 2, lzd-vo AN SSSR. 

G. Kurant and K. Fridrlkhs, Sverkhzvukovyye techenlya 1 udarnyye 

volny [Supersonic Flows and Shock Waves], IIL, 1950. 

L.D. Landau and Ye.M, Lifshits, Mekhanika sploshnykh sred [Me- 

chanics of Continuous Media], Gostekhizdat, 1954. 

L.D. Landau, Ob udarnykh volnakh na dalekikh rasstoyaniyakh ot 

mesta ikh vozniknoveniya [Shock Waves at Great Distances from their 

Place of Origin], PMM, Vol. 9,   No. 4, 1945. 

- 334 - 



L.D. Landau ar.d K.P. 'Stanyukovich, DAN [ Proc. of the Acad. SciJ, 

47, No. 3,   19^5. 

L.D. Landau and K.P. Stanyukovlch, DAN 47, No. 4, 1945. 

D. Ye. Okhotsimskiy, I.L. Kondrasheva, Z.P. Vlasova, and R.K. 

Kazakova, Raschet tochechnogo vzryva s uohetom protivodavlenlya [Cal- 

culation of Point Explosion with Consideration of Counterpressure], 

Trudy materaaticheskogo instltuta AN SSSR [Trans, of the Mathematical 

Institute of the Academy of Sciences of the USSR], No. 50, 1957. 

A.N. Patrashev, Gidromekhanika [Hydromechanics]y Voyenmorizdat 

[Naval Publishing House], 1953. 

G.I. Petrashen', G.I. Marchuk and K.I. Ogurtsov, 0 zadache Lemba 

v sluchaye poluprostranstva [Lamb's Problem for the Case of the Half- 

Space], Mekhanika [Mechanics], No. 21, Uchenyye zaplski LGU [Scien- 

tific Notes of the Leningrad State University], No. 135, 1950. 

G.I. Pokrovskiy and I.S. Fedorov, Deystviye udara i vzryva v 

deformiruyemykh sredakh [The Effect of Shock and Explosion in Deform- 

able Media], Gosstroyizdat, 1957. 

Rasprostranenlye zvuka v okeane [Propagation of Sound in the 

Ocean], Sbornik statey [Collection of Articles], IIL, 1951. 

Yu.N. Ryablnin, V.N. Rodionov and Yu.S. Vakhromeyev, Zatukhaniye 

udarnykh voln v kanalakh postoyannogo secheniya [Damping of Shock 

Waves in Channels having Constant Cross Section], Sbornik fizika 

vzryva, No. 5, Izd-vo AN SSSR, 1955. 

M.A. Sadovskly, Mekhanlcheskoye deystviye vozdushnykh udarnykh 

voln po dannym eksperlmental'nykh issledovaniy [Mechanical Effect of 

Atmospheric Shock Waves According to the Data of Experimental Inves- 

tigations], Sbornik Fizika vzryva. No. 1, Izd-vo AN SSSR, 1952. 

M.A. Sadovskiy, Seysmlcheskiy effekt vzryvov, Doklad na konferen- 

tsil spetsvzryvproma [Seismic Effect of Explosions, Report at Confer- 

- 335 - 

FTD-TT-6^-^8l/l+2 



r 
* ^ 

•% • 

ence   of  Special Explosives Industry]. SIAN, Gostekhlzdat., 1939- 

M.A. Sadovskly, Yu,N. Rabinln and V.N. Rodlonov, Issledovaniye 

rasprostraneniya udarnykh voln v kanalakh postoyannogo secheniya, 

Sbornik fizlka fzryva. No. 2,   l"zd-vo AN SSSR, 1953- 

L.I. Sedov, Metody podobiya i razmernoati v mekhanika [Methods of 

Similitude and Dimensional Analysis in Mechanics], 3^d Ed., GITL, 

1954. 

S.L. Sobolev, 0 novom metode resheniya ploskoy zadachl uprugikh 

kolebaniy [New Method for Solution of Plane Problem of Elastic Oscil- 

lations], Trudy seysmologicheskogo instituta [Trans, of the Seismolo- 

gical Institute], No. 16, 1931. 

K.P. Stanyukovich, Neustanovivsheyesya dvizheniya sploshnoy 

sredy [Steady-State Motion of Continuous medium], GITL, 1955. 

Ya.I. Frenkel', Kineticheskaya teoriya zhidkostey [Kinetic Theory 

of Fluids], Izd-vo AN SSSR, 19^5. 

A.A. Kharkevich, Neustanovivshiyesya volnovyye protsessy [Non- 

steady Wave Processes], Gostekhlzdat, 1950. 

S.A, Khristianovich, Udarnaya volna na znachltel'nom rasstoyanli 

ot mesta vzryva [Shock Wave at a Considerable Distance From the Point 

of Explosion], PMM,. Vol. 20, No. 5, 1956. 

S.A. Khristianovich, A.A. Grib and A.G. Ryabinin, Ob otrazhenii 

ploskoy udarnoy volny v vode ot svobodnoy poverkhnosti [The Reflec- 

tion of Plane Wave in Water from a Free Surface], PMM, Vol. 20, No. 4, 

1956. 

S.A. Khristianovich, S.G. Mikhlin and B.B. Devisen, Nekotoryye 

novyye voprosy mekaniki sploshnoy sredy [Certain New Problems in the 

Mechanics of Continuous Media], Izd-vo AN SSSR, 1938. 

R. Shal', Uravneniye sostoyaniya vody pri vysokikh davleniyakh 

po dannym mgnovennykh rentgenovskikh snimkov intensivnykh vzryvnykh 

- 336 - 

FTD-TT-63-381/1+2 



voln [Equation of State of Water at High Pressures on the Basis of 

Data of Instantaneous X-Ray Photographs of Powerful Explosion Waves], 

Zhurn. Mekhanika [Journal "Mechanics"], No. 3>   1952. 

V.M. Shamln,.Issledovanlye yavleniya otkola v zhelezobetonnykh 

plltakh pri vzryve [Investigation of Splitting in Reinforced-Concrete 

Slabs in Explosions], Sbornik Fizika vzryva. No. 1, Izd-vo AN SSSR, 

1952. 

Ye.I. Shemyakln and K.I. Markova, Rasprostraneniya nestatsionarnykh 

vozmushcheniy v zhidkosti, nakhodyashcheysya v kontakte s upruglm 

poluprostranstvom [Propagation of Nonsteady Perturbations in Fluid 

in Contact with Elastic Half Space], PMM, Vol. 21, No. 1, 1957. 

Yu.A. Shlmanskiy, Dinamicheskiy raschet sudovykh konstruktsly 

[Dynamic Design of Ship Structures], 1948. 

L.I. Briggs, I. Appl. Phys., 21, 721, 1950. 

Lamb,. The Early Stages of Submarine Explosion, Phil. Mag., XLV, 

257. 1923. 

The Effects of Atomic Weapons, New York-Toronto-London, 1950. 

- 337 - 

FTD-TT-63-381/I+2 



DISTRIBUTION LIST 

DEPARTMENT OF DEFENSE Nr. Copies 

HEADQUARTERS USAF 

"•IN-3D2 
(ARB) 

■ AGENCIES 

CIA 
NSA 
DIA 
AID 
OTS 
AEC 
PWS 
NASA 
ARMY (FSTC) 
NAVY 
NAFEC 
PGE 
RAND 
AFGEL (CRZLR) 
SPECTRUM 

1 
1 

1 
6 
6 
2 
2 
2 
1 
1 
3 
3 
1 
12 
1 
1 
1 

UOR AIR COMMANDS Nr. Copies 

'SO 
SCFDD 1 
DDC 25 
TDBTL 5 
TDBDP 2 
AEDC (AEY) 
AFMTC (MTW) 
AFWL (WLF) 
APGC (PGF) 
ASD (ASFA) 
ESD (ESY) 
RADC (RAY) 
SSD (SSF) 

1 
1 
1 
1 
2 
1 
1 
2 

TDEWA (Capt. Bullard) 3 

FTD-TT- 63-3Sl/l-t. 33; 


