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THE HYDRODYNAMICS OF AN EXPLOSION

by

Tu. S. Yakovlev

INTRODUCTION
The problems of applied theory of explosion attract the attention
_of a large circle of specialists.

Explosions are used for large-scale mining and earth-moving work:

construction of channels, dams, roads, mine shafts, etc. Explosion is
finding ever-increasing application in the oll industry (oil drilling),
in processing of metals, and in other fields of the national economy.
Seismic-explosion methods have found extensive use in the study of the
structure of the earth's crust and in prospecting for useful minerals.

A study of the theory of explosion is also of great Interest for
shipbullding engineers. One of the main requirements imposed upon a
modern ship 1s a long life. This quality 1s attained by rational de-
sign of the hull structures, which makes provision, among the other
theoretical cases, also for the action of dynamic loads. The theory of
explosions is the basis for the determination of such loads.

The work by the Soviet school of hydrodynamics, and primarily by
Kochin, Lavrent'yev, Sedo&, Landau, Khristyanovich, Zel'!'dovich, Shiman-
skiy, Sadovskiy, Novozhilov, Stanyukovich, Pokrovskiy, Vlasov, Olisov,
Patrashev, and other scientists, has laid the groundwork for the
theory of explosion as an Iindependent field of knowledge.

However, the original investigatlions by the foregoing suthors are
scattered among many publications. Even a cursory acquaintanceshilp
with them calls for much time and labor.

There are practically no books in which the problem is developed
sufficiently fully from a single unifiled point of view.

-1 -
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Thils gayn was Tilied to a o ASiderable degree by the recently pub-
lished monograph of F.A. Baum, K.P. Stanyukovich, and B.I. Shekhter,
"The Physics of Explosions." It conglders in detaill questions of
thermal chemistry, ~ombustion, and brisance of explosives, the theory
of detonation, .. Lt = theory &f cumulation. Much attention is paild to
problems in nias.. lonary gacdynamics. However, the provlem of external
fercez and rrciulerns involving the action of an explosion on a struc-
ture are not investigated by the authors of "Physics of Explosions."

Yet it is precisely these problems that are of great interest to
engineers, designers, and scientific workers. °

This was precisely the motivation for writing the present book,
which consists of four chapters.

In Chapter 1 — "General Laws Governing the Propagation of Shock
Waves'" — principal attention is pvald to a consistent and sufficilently
rigorous development of the principles of nonstationary gasdynamics as
applied to nonsteady motions, the characteristic feature of which is
the presence of discontinuity surfaces. The main material of the chap-
ter 1s preceded by a brief exposition of thermodynamics.

Chapter 2 — "Explosion in an Unbounded Medium' — does not pretend
to be complete in exposition, but allows judgment +to be formed cornicern~
ing methods of solving the problem. It also contains many formulas and
relationships that are necessary for practical estimates. It was
deemed appropriate to include in this chdpter also the general laws of
similarity theory, knowledge of which is essential to both the the-
Oreticlan and particularly to the experimentexr.
| In Chapter 3 — "Simplest Boundary Problems of Exﬁlosion Theory" —
are considered the reflection of an aerial shock wave from the earth's
surface, of an underwater shock wave from the free surface and from
the bottom of a water reservoir. An attempt was made to present,along

-2 -
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with the results of the linear theory, some idea of the nonlinear

effects, which have appreciable significance in the analysis of sim-
ilar problems.

In the last section of the chapter are gilven semiempirical equa-
tions which permit an approximate estimate of the parameters of seils-
mic-explosion waves near the earth's surface. |

Finally, Chapter 4 — "Principal Aspects of the Problem of External
Forces in the Case of Aerial and Underwater Explosions' — is devoted
principally to problems of Interactlon between shock waves and a rar-
tition — one of the main problems of the theory of explosicn and struc-
tural mechanics.

In the writing of this chapter, it was a particularly difficult
problem to choose material so that without repeating the fundamental
works in the field of strength under dynamic loads would nevertheless
give a complete idea of the main methods for solving the problem.

The foregoing shows that the book does not, by far, treat all
problems in the hydrodynamics of explosions. Thus, for example, we do
not consider at all the theory of gas-bubble pulsation, surface phe-
nomena in the case of underwater explosions, and other problems, the
solution of which is usually presented under the ossumption that the
medium i1s -incompressible.

This approach to the cholce of materlal seemed to us Justifiled,
since it enables us to carry out the exposition by relying only on the
main laws of gasdynamics. In addition, the theory of gas-bubble pulsa-
tion has been developed in great det2il In the well-known book by R.
Cowl "Underwater Explosions."” For the samc »eason, little space has
been allotted to problems of irregular and regular reflection of aerlal
shock waves from an absolutely rigid wall. Such problems are considered
in detail in the monograph of R. Kurant and X. Fridrikh "Supersonlc

- -3 -
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Flow and Shock Weves.
Tending to impart where sogsikble an applied character to the ex-

pocition, the author decricd 1t advantazeous to provide the main sec-

tions of the book " th eramrnic s, whica permit a deeper insight into the

glst of thz invest” & .0 shens.ena ..l to acquilre skill in the solu-

rroblen.

tion of pracctical
The manuscript was evaluated during the course of preparation for
publication by many specilalists, whoio remarks and preferences were
taken into consideration to a great degree. The author expresses deep
gratitude to those who participated 1n the discussion of* the manuscript
of the book.
Comments and desires with respect to the books should be addressed

to: Leningrad, D-65, ul. Dzerzhinskogo 10, Sudpromgiz.



Chapter 1
GENERAL LAWS GOVERNING THE PROPAGATION OF SHOCK WAVES
§1. EXPLOSION AS VIEWED FROM THE HYDRODYNAMIC POINT OF VIEW

An exploslion is defined as a chemical or nuclear reaction, as a
result of which there 1s produced within a very short time interval
within a definite volume, a high enecrgy density resulting in the forma-
tion of a region of high pressures and temperatures. In the general
case the distribution of the pressures and temperatures on the surface
separating the exploslon products from the surrounding medium is at
the initial instant of time arbitrary, since the character of a reac-
tion such as an explosion does not depend on the properties of the
surrounding medium.

When the explosion energy propagates into the surrounding medium,
surfaces are formed., on which the hydrodynamic elements of the fluid
(pressure, density, temperature, velocity of motion of the particles)
or else their time and distance derivatives change abruptly. Such sur-
faces will henceforth be called surfaces of strong and weak discon-
tinuity, respectively.

I the pressure and normal component of the velocilty -—2ctcr of
the fluld flow change abfuptly on the surface of strong discontinuity,
such a surface is called a nenstationar; streong-discontinuity surface
or a shock wave front.

If the pressurce and normal component of the veloclty on both sides
of the discontinuity surface are the same, but the density and the tem-
nerature change abruptly, one speaks of a stationary strong-discon-
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tinuilly suriace. A stationary stron,-ulscontinuity surface separating

the explosion products from the surrounding medium 1s frequently
called the gas-bubble surface.

The main task of explosion theory 1s to study the unsteady motion
of a fluid between two bouncary surlaces — the front of the shock wave
and the surface of the gas buible. T..is motion of the fluld, as is
well known, is determined Dy a system of partial differential equa-
tions. The analysis of such a system entails, generally speaking, un-
surmountable mathematical difficulties. Consequently, from the very
outset, on the basis of physical notions concerning the character of
the explosion process, 1t is concluded that this system must be simpli-
fied by neglecting the volume forces and the viscosity forces. With
such simplification explosion theory can be included as a specific sec-
tion of nonstationary gasdynamics.

As was already mentioned earlier, the boundary conditions for the
integration of the fundamental system of equations of gasdynamics are
the conditions on the two discontinuity surfaces — the front of the
shock wave and the surface of the gas bubble.

In view of the fact that the conditions on the surface of the gas
bubble are assumed on the bpasis of the data of detonation theory,
which is developed in sufficient detail in many fundamental papers,
this problem 1s not treated here.

As regards the second boundary condition of the problem, it will
become obvious that for a correct formulation of such a problem 1t is
necessary to consider carefully first the general laws governing the
ﬁropagation of shock waves, to which we now proceed.

Since the need for taking account of the compressibility of the
medivm calls for a thermodynamic treatment of the investigated phenom-

ena, we shall first recall some of the thermodynamic concepts that are

-6 -




necessary for what follows:
§2. BRIEF INFORMATION FROM THERMODYNAMICS

As is well known, there is a unique connection between the main
parameters'which determine the state of a substance, namely the mass
density p, the pressure p, and the absolute temperature T.

An equatilon characterizing this relationship 1s called an eqﬁa-
tion of state of the given substance

F(p, p. T) =0.

;n place of the mass density one frequently uses the welght den-
sity & = gp kg/m3 or its reciprocal, V‘m3/kg, called the specific vol-
ume.

In kinetic theory of liguids and gases it is proved that the
structure of the equation of state of any substance is determined by

the relation

p=-pf(V)T+o(V). (1.1)

Here the first term of (1.1) takes into account the motion and
the second the interaction of the particles.

The form of the functions f and ¢ 1s not established by the theory.

For an ideal gas, i.e., a gas with no interaction forces between
the particles, we have &(V) = O and £(V) = const. The constant which
replaces éhe function f£(V) in this case i1s called the gas constant and
1s designated R (m/deg).

In this case Eq. (1.1) reduces to the relation pV = RT, known as
the Mendeleyev-Clapeyron equation.

In cases of practical importance, the air can be regarded as an
ldeal gas. Its equation of state 1s then the Mendeleyev-Clapeyron equa-
tion.

The equation of state of water has not yet been derived theoretl-
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cally. Thereiore, to golve pracilical problems one uses various empiri-

cal and semiempirical equations of state of water. We present two of
them:
1) the Tait equation

’
)

V(np)=tqrA»[L-g4;\n+{§], (1.2)

where B 1s a function of the temperature only, usually specified in
tabulatz=d form;

2) an equation that apprcxinates the experimental data of bBridg-
man for high pressures:

Cp= (109 — 03,7V} (T — 348) + 5010V ~**— 4310, (1.3)
where p 1s the pressure in atmospheres, V the specific volume in cm3/g,
and T the absolute temperature.

In thermodynamics one frequently uses the concept of internal en-
ergy of a substance. This i1s defined as the energy of motion and inter-
action of its structural particles (molecules and atoms).

The Internal energy 1s determined completely by the parameters of

state and consequently can be represented in one of the following forms:

u=u(p, 7T), |
nw=u(V,p), (l.)-lr)
u=u(T,V).

Being a function of the main parameters, the value of the internal
energy depends only on the initlal and final states of the substance
and does not depend on the character of the dynamic processes that
have led to the change in state.

Mathematically this fact 1s characterized by the eguation

@du:& (1.5)

The parameters of state are related in basically different fashion
with the heat acquired or lost by the substance. The character of the
process plays in this case an important role.

- 8 -




Accordingly, the valué of the specific heat ¢ = d4Q/dT also changes.

We shall henceforth deal essentlally with the specific heat of a
process occurring at a constant volume, usually denoted Cys and the
specific heat of a process occurring at constant pressure, cp‘
The study of thermodynamic phenomena is based on two main laws.
+The first law of thermodynamics 1s the consequence of the law of énergy
conservation.

It is usuwally written Jn the form

dQ=dit + A dW (1.6)
and expresses the simple fact that the heat absorbed by a substance is
consumed in changing its internal energy and performing work of vary-
ing type. Since the work is usually expressed in mechanical units, the
second term of (1.6) is preceded by a coefficilent called the thermal
equivalent of work
A = 1/427 kcal/kg-m.

In thermodynamics it is, for the most part, necessary to consider
homogeneous systems,* in which the only form of work is work of expan-
sion. Equation (1.6) then assumes the form

dQ==du+ ApdV. (1.7)

It 1s easy to see that in the case of an isochoric process, i.e.,
a process-occurring at constant volume, all the heat supplied goes to
increase the internal energy of the substance.

shall consider the internal energy as a functlon ~7 the tem-
perature and specific volume, and write for it an expression for the

total differential
tnm (33),07 4 (36), 4% (1.8)
Substituting (1.8) into (1.7), we obtain
Q= (57) AT +[ ($5),+ Ap ] av. (1.9)

-9 -




For an isocrh

rilce process dv cnd Eq. (1.9) assumes the form

aqQ = (Bu/aT)VdT, hence
/40N _ (0a
== (GF )= (37 ) (1.10)

It can te showa that for an ideal gzas the internal energy 1is a

function of the temperature only, and the value of the specific heat

¢. is constant. Consequently,

v
din=cdT,
dQ =c,dT + ApdV, (1.11)
#e==c,T, (1.12)

Proceeding to consiceraticon of an isobaric process,  l.e., a proc-
ess occurrinz at constant pressure, we obtain by differentiating the
Mendeleyev-~Clapeyron ecuation pV = RT with p = const
pAV = RAT. (1.13)
From (1.11) we have

£Q, =¢,dT + ARAT.

Since

Q. (1.14)
dr e

the connection between the specific heat at constant pressure and at ’
constant volume for an ideal gas 1s obtained in the form
c,=¢, + AR (1.15)
Widely used in thermodynamics 1is the entropy function S
(cal/kg-deg), defined by the relation
ds = 4aQ/T. (1.16)
It is possible to separate from the total amount of heat that
part which is the result of the work of friction forces (Qvnutr)' It
is obvious that this part of the heat is always essentially positive.
The remaining part of the heat (Qvneshn) can be either positive or neg-

ative (the heat can be either delivered to or removed from the sub-

- 10 -
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stance). In accordance with the foregoing we have
' dQunoum + ‘!Onu YT

A brocess in which there is no heat transfer between the external
and internal media is called adlabatic.

It follows from (1.17) that in the general case of an adiabatic
~'process dS # 0. A process in which the entropy does not change (dS = 0)
is possible in a nonviscous medium and 1s called isentropic, or an
ideal adiabatic process.

Since

dQuuyrp 20,
we have

dS > Lo, (1.18)

For an isolated system dQ . .. ,. = O and Expression (1.18) assumes
the form dS > O.

Consequently, the entropy of an isolated system can only increase,
and only for an l1deal system can 1t remain constant. This 1s the con-
tent of the second law of thermodynamics.

In statistical thermodynamics it is proved that the growth of en-
tropy of an isolated system 1s connected with the transition of the
system from a less probable state into a more probable one.

Iet us find an expression for the value of the entropy of an ideal
gas 1n terms of the parameters of state.

We previously had

dQ=c,dT + ApdV. (1.11)

Consequently,

_dQ _ . 4T 4y
A4S =—f-=c, + Ap 5.

Since for T = pV/R, we have

- 11 -




we obtain

= dr , Cad
dieae, —= 4o, (2~ 1) =,

Integrating this equation we c¢biain

S—=Sy=c,InT+Hc,(k—1)IaV

or

$=5,

'rvk—l ¢ . !

Fi [e e
=8,
<

pVi=e ¥ const, . (1.19)
3-8, !
P.—¢ '“ const |

It is obvious that an isentropic process (S — Sg = 0) will be

characterized by the satisfaction of one of the followling relatlons:

TV*' = const,
pV* = const, (1.20)
-—:% = const.

These relations are known as the Poisson adiabatic curves.

X

LT

g0l b Edn 2 w0 2 iy |u' | A
‘a ] 7 J ' i yp 6

Fig. 1. Variation of the adilabatic expo-
nent as a function of the pressure.

The value of the adiabatilc exponent k depends on the number of
atoms in the gas molecule. For diatomic gases, and particularly for
air, we have k = 1.4.

Using the equation of state of water (1.3) we can, after going
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through derivations that are in principle analogous to those given

above, establlish the following adiabatic condition for water:

_L;'"_C_=(?P-_)‘(S), (1'2]-)

'where C, p¥, and p* are constants with values
¢ = 5400 kg/em®; p* = 2.53 g/emS; p* = 912,000 keg/cm-.

The coefficient k depends on the entropy of the system and ranges
from 5.55 to 4.60 in the range of varilation of the initial values 1 <
< p < 250-10° atm and T < 2000°K.

It is characteristic that this coefficient varies slowly at the
beginning (Fig. 1).

Thus, « = 5.55 for p = 1 atm and k = 5.45 for p = 30,000 atm,
i.e., the variation of the coefficient « over thls interval of pres-
sure 1s merely 2%.

This fact indicates that 1n underwater-explosion condltions the
propagation of shock waves with pressures up to 30,000 atm on the
front can be consldered 1n the assumptlon that the process 1s lsentropic.

The isentropic condition for p < 30-103 atm can be obtained from

the equation of state in Tailt's form, and has the form

LB petB
o o’ (1.22)

where B and n are constants with values B = 3045 kg/cm2 and n = 7.15.
It is easy to note that Egs. (1.21) and (1.22) are identical in
form : 1d are quite close to the ilsentropic condition cf 2n ideal gas.
This circumstance makes 1t possible in many cases to extend the
solutions obtalned for an ideal gas to include the case of water.
It must be borne in mind, howcver, that the exponents n and «
actually imply a different sense.
§3. STRONG EXPLOSIONS IN GASDYNAMICS
Upon propagation of the explosion energy, as Indicated above.
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stroag discontinuilty surfaces are formed. It 1s established that the

general relations which take place on such surfaces. It 1s obvious
that for this purpose we cannot use differential equations that assume
continuous variation of the functions. Consequently, a study of dis-
continulty surfaces isbtest starced with an analysis of the equations
of gasdynamics in integral form.

As is well known, the equations of gasdynamics are based on three
gencra. w&w's of physics: the law of conservation of matter the law of
conservation of momentum, and the law of conservation of energy.

Iet us consider some elementary ligquid volume T, bounded by a sur-
face S, for two instants of time tl and t2 which are infinitesimally
close to each other. On the basis of the law of mass conservation we

can write

I (1.23)

T

where p stands for the mass density of the liquid.
Equation (1.23) is usually called the continuity equation.
According to the law of momentum conservation, the increment in
the momentum 1s equal to the impulse of the acting forces, and there=-
fore in the considered case of motion of a nonviscous liquid we have

(1§1¢54)

% t=sly

~(1J] pzdt>‘=ﬁ=.--£"( [Joites) e (1.28)

s
where v is the velocity vector of liquid motion, p is the pressure,
and n 1s a unit upward-normal vector.

The minus sign in the right half of Eq. (1.24) 1s the consequence

‘of the well-known property of an ldeal fluid, whereby an ideal fluid

can experience only normal stresses, which are compressive stresses.
Equation (1.24) is called the equation of motion.

Finally, the law of energy conservation, according to which the
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change in the kinetic eneréy of an isolated liquid volume, added to
the increment of its internal energy, i1s equal to the work of the ex-

ternal forces applied to this volume, can be written in the form

(1132 ae) ~(1f5er)
([ fu) =([[feues) =

m_._f(”pa’ﬁds>dt. (1.25)

H\S

t=t,

Here u denotes in addltlon the internal energy, and A is the
thermal equilvalent of work, A = 1/427 kcal/kg-m.

»Relation (1.25) is customarily called the energy equation.

All three equations (1.23), (1.24), and (1.25) can be written in

the following general form

(1ff e

b

[

~(3J1 ) =f(1fects)es (1.26)

t=t, t=t, L \S

where in the first case

a==p, Cpe=0; (1.27)
in the second
Q= pD, €y —ph (1.28)
and In the third
] i s
. Qemp—g—d-pr, Cp=—puUn, (1.29)

Iet us assume that there exists a single surface I passing through
the points of the volume T and movling in space, passage through which
causes the functions a and ¢, to experlence a discontinuity. ILet the
egquation of this surface be

F(x, 3, 2 £6=0. (1.30)

The surface 3 divides the space into two regions. On one side of
the surface we have F(x, y, z, t) < O, and on the other F(x, y, 2, t) >
> O.
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Fig. 2. Illus-
trating tToe
definiticn of
the rate of
displacement of
the discontinu-~
ity surface.

We shall call the first reglon negative and

agree to denote the values to which some function
b(x, v, 2z, t) tends on approaching Z, remalning
in the negative reglon by b_; the second reglion,
will be called positive, and.the values of b cor-
responding to it will be called b+.
The difference b+
by— b= (0]

— b_ will be denoted by [b]

and will called tne discomcinulty or Jjump of the
function b on the surface Z. The surface I 1tself
will then be called the discontinulty surface of

the function D.

We introduce the concept of the rate of displacement of the sur-

face £ at a given point,

(Fig. 2)

the value of which is defined by the relation

N=lim —.
s> 0 &

(1.31)

Iet us calculate the rate of dilsplacement N. Since the equation

of the surface = at the instant of time t + AT 1s

Fix+Ax, y+ Ay, z+ bz, £t + &) =0,

we obtain, by expanding this function in a Taylor seriles

but

F(X+AX,y+Ay»z+A2,t+Ar)""‘F(x'y-z' t)+%§Ax+

(1.32)

oF
Ax == Ancos (n, X) = AR ——aeee Jy o =,
V() =+ () (o)

_ 2 (1.33)
by==Ancos(n, y)=4an—=—,

Az = Ancos(n, z) =An—5—,
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where

oF o/ OF i
5=1/‘ar +(g )+ (5)"
Substituting (1.33)into(1.32), we obtain

-DF : oF\? OF \?
omopsn i) o0&, ()

+ An -+ An

-+ -%—?At -4 6. M. B, 1,

or

oF - An
_7=—Fa+6. M. B, I,

Going to the limit as At — O, we get

oF

Hm A e N 28 L L

M_’?At ot ® —1/(-%-)‘—}-(%—;;-)‘-{—(-3—[2;)1'

(1.3%)

The quantlity N i1s called the rate of displacement of the discon-
tinuity surface. Thils rate determines the motion of the discontinuity’
surface relative to a stationary observer.

It 1s of interest to consider also another quantity, the rate of
displacement of the discontinuity surface relative to a liquid moving
ahead or behind ﬁhe discontinuity front. It is called the rate of
propagation of the discontinuity surface and 1s denoted by &, where it

is obvious that

== N—1, (1_35)
where n 1s the value of the normal component of the particle velocity.
Since
Up ==V, €08 (1, X) + v, cos (1, ¥) + v, cos (1, z),
= 45 day d
and VeS=Tr Y=Gr L=
o.-;.__P.C,L OF dx 1 oF dy 1 OF dz 1
Ox AT Ty At v T jr dE T
we have
oF
—_ ~ar
TOFNT, 0PN\t . [ OFyI 1.36
V(=) +(5) + (= (1.36)
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Using the concept of rate of pronagation of the discontinuity sur-
face, let us establish the relations that connect (via the hydrody-
namic equation) the Jjumps (discontinuity) of different hydrodynamic
elements.

t"tz

- -+
=z L
[ 1 -+ /
_|*_;_j7 :
Z;k"‘;:":’ il /—L&"EJ 2

Fig. 3. Position of Fig. 4. Position of
the discontinuity discontinuity sur-
surfaces at the in- faces at the instant
stant of time tl. of tinme t2.

Let us consider the surface £ at two infinitesimally close in-
stants of time tl and t2.

We denote by Ztl the position of the discontinuilty surface at the
instant tl and by Zéz the position at the instant tl of those points
of the liquid, which are at the instant t2 on the discontinulty sur-
face (Fig. 3).

On the surface Zt we single out a point M and constfuct a small

cylinder of radius r with axes coinciding with the normal to Ztl. The
height of the small cylinder will be the distance between the surfaces
Ztl and Z’t2 We assume that At/r is an infinitesimally small quantity.
The volume of the cylinder is taken to be the integration volume T up

to the instant tl.
At the instant t2, owing to the motion of the liquid, the point M

ﬁoves over to the point M'. The surface Ztl occupiles, after displace-

ment and deformation,a certain position Z'tl; finally, the points of

the surface Z't2 go over into the points of the discontinuity surface

Ztg’ corresponding to the instant t, (Fig. 4). The small cylinder be-
- 18 -~




comes deformed, and whereaé at the instant tl it is entirely in the
positive region, by the instant t2 it 1s located in the negative re-
gion corresponding to this instant of time.

Turning first to the left half of (1.26), let us estimate the

values of the integration volumes ('c)t and (T)t ; for the first we

-have¥*

R0 (= 1)) + &, (f — 4),
and for the second

mP0_(fy = 1)) + e (£, — 1),

In both cases we take 6 to mean here the values of the rate of
propagatlon of the discontinuity surface at one and the same point M
and at one and the same instant of time tl, but calculated for an ap-
proach to the surface Ztl from opposite sides.

Thus,

a a't) =y, (b — b)) + egr? (t,— 4);
t

1

— — l.—“

(Iffadf) =asmrion(—t) & o (=)
(2} !

and, consequently,

(J.j J‘.(z dt),‘ —-<” J‘ adt>’. == —nr? (£ — £,) (a0 — a0.) +

h

eyt (£ — 1)) = —mr? (= 1)) [aD] - 22 (8, —£).

ILet us proceed now to the right half of (1.26) (Fig. 5). On the

basis of analogous reasoning we obtaln

ts
J’([ cnds>dt=j cadSAt = [ c,dSAt + [c,dSat+
L \§ Sep Seou S,

o+ [ cadSAE=0(1) 7 (B — Cparir®AL ok Cpymr?hl e egmr?AL®?
Sy

Gathering together the obtained estimates, we get

( I ” a d‘) —<J'1H adf)@ﬂ— j(U e dS) df ==

{=t,

== ([@0] 4 [ca] ) =r?AL - 0 (1) FAL 4 e, r2AL
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Going to the 1limit and lettinz {irst At = t2 - tl and then also

r =+ 0, we Obtain ultimately

[a9] + [ea] =0 (1.37)
or, after substituting in (1.37) the values of a and ¢, from (1.27) -
(1.29):

[a8] =0,
[p76] = [p] 7, (1.38)
[o0 5+ &0 | = [pua]. ‘

Inasmuch as the product pf is not discontinuous, 1t can be taken

outside the discontinuity sign.

/
As a result we obtain
Z /@ S,/z

e 9] =0; ‘ (1.39)
fo e +@[W]=[M”: (1.40)
l i LD (1.41)

1
¢ ['—21 + g | =Ipv.].

e e
,//P klilj 8, /'t Relations (1.39)-(1.41) between the quan-
Pig. 5. Illustrating tities 6, p, v, p, and u on the two sides of
the evaluation of
the integral over the discontinuity surface are called the con-
the lateral surface
of the elementary ditions of dynamic compatibility. ,
cylinder.

As follows from the foregoing exposition,
the conditions of dynamic compatibility are a mathematical formulation
of the general laws of conservation of mass, momentum, and energy on
the discontinuity surfaces.

If & = O, then the discontinuity surface is stationary.* On such
a surface [p] = 0 and [Vn] = 0, but to the contrary [p] has an ar-
bitrary value. Examples of a stationary discontinuity surface can-be:
%he wavy surface of a river, the surface of a hot or éold front (in
meteorology) and, as already mentioned, the surface of the gas bubble
in an underwater explosion.

if 6 £ 0, the discontinuity surface is called nonstationary.

- 20 -



On such a surface [p].£ 0; [vn] £ O.*%

The Jjump 1n the tangentlal component of velocity is 1In this case,
to the contrary, equal to zero, as can be readlly verified by takilng
the scalar products of both halves of (1.40) with a unlt vector per-
pendicular to n.

As was already mentiloned earlier, an example of a nonstationéry
discontinuity surface may be the front of a shock wave.

We have consldered cases when the hydrodynamic elements themselves
are discontinuous on the surface.

Such surfaces are called strong-discontinulty surfaces. If a func-
tion 1s continuous on going through the surface but 1ts derilvative of
any order is discontinuous, such a surface 1s called a weak-discon-
tinuity surface.

In general texts on gasdynamics 1t 1s proved that the weak-
discontinuity surface always propagates with the local veloclty of
sound. We recall that the local velocity of sound 1s determined by the
equation a =./dp/dp.

§4. THE CONDITIONS OF DYNAMIC COMPATIBILITY. THE DYNAMIC ADIABATIC CURVE

The condltions of dynamic compatibility, established in the pre-
‘ceding sectlon, enable us to draw several important conclusions con-
cerning the propagation of shock waves in a lilquld and to obtaln some
equations that are convenlent for computatlons.

We note first of all that the three equations {1.39)-(1.41) con-
taln seven varilables: N, Pys P> 7;, VL, S p_.** Therefore if we
 know the hydrodynamic parameters of the unperturbed medium (p+, Vs
p+), it is sufficient to specilify any one element on the discontinuity
surface 1n order uniquely to determine all the remaining elements. Let
us calculate the rate of propagation 6 of the surface of strong dis-
continulity.

- 21 -




We take the scalar products of both halves of (1.40) with 1. We
obtain pe[vn] = [p], but since 6 = N — v, we have [vn] = —[6].

Consequently, —p6[0] = [p] or, what is the same, —polpo/pl = [pl.

gince the product pé is not discontinuous, we have —p292(l/p+ =
~ 1/p_) = [pl, or

(p)

p20?

p+p— (o] "

“rom the last relation it follows that
62 o £ 1PL. (1.42)

0= L= 0 (1.43)

Return to the conditions of dynamic compatibllity (1.39)-(1.41),

and transform the last of these equatlons:

0[5 + 22 (1 = (.

We first eliminate the quantity v from the written relation. For

this purpose we use the second of the dynamic-compatibility conditions:

00 [3] =1 7. (1.40)

Taking the scalar product of both halves of (1.40) with (_\?-r + ),

we obtailn

0 (V4 —0-) (04 + 0-) = [p] (75,,_{_ '*‘Zi'—) P
p0 [v?] = [p] ('vn++ 'tl,,_),

Consequently,
. :
LD] ('vn+ i 'Ur;..) +2 "%{' [u] —2 (p+1’n+ ‘—P—ffn_) =!’ 0;

PiVnp— P-Un, + PV P-Up_— 217-F1}n.h -+

o

+ 2p_v,_ -259- [] =0,
o %0
~P4Vap Tt PAVn_ — P=-Tn, + PV -t ",Pf' [u] =0
. 0]

P (Vo — Vny) -+ P= (Vs — Vny) + - 1] =0,

— @4+ p-) vl + '—"}{%_[‘ul =0

but



) == 01 = =[] = =0 [3].
Thus

no—nyp =g (pr ) [+, (1. 44)

Equation (1.44) establishes the connectlon between the parameters
.0f the medium on the surface of a nonstatlionary strong discontinuity
and 1s called the equation of the dynamlic or shock adlabatlc curve.
In the case when the lnvestigation concerns an 1deal gas, the

value of the internal energy 1ls determined by the product

n=c,T,
p=¢RT

and

F= (2] 4]
We then obtain in lieu of (1.44)
R P A

Writing out the discontlnultles in full, we obtailn

_1_._._1_) 2 P2 _Po (_1___’_)
P"'(H g ity > drvubnly Yy hrsatanl ol o

Palp—(h—1)—py(h—1)+ 24} =
=p- {24 —(k—1)p~ + (A —1)p4},

or, ultimately,

Po (D —(h—1)py : (1.45)
P+ (et Dpr—(k—1p"

This is the equation of the dynamlc adlabatic curve of an ldeal
gas, frequently also called the Hugonlot adlabatic curve.
Let us compare the dynamic adlabatlc curve with the Polsson adla-

batle curve:
{2=\"
=) (1.16)
The curves intersect at a poilnt with coordinates (1; 1) (TFig. ©).
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Fig. 6. Comparison of the dy-
namic adiabatic curve (solid)
and Poisson adiabatic curve

(dashed).
In the vicinity of this point we can put p = p, + Ap.
We then obtain in accordance with (1.46)
B AL Bp y k=1 (8
bt (I'F p+) =il & & P+ + =13 p+) +
K(k—1) (£ —2) [ 8o\
+—r_§_"3——""<'?—}>+-.. (147)

For the shock adilabatic curve we have at this point

P (k+ D) (pse+2)—(h—Nps _ Zpy 4+ (A4 Do

S

Pr Rt Dpe—(k—Dls+3p) Br—(k—14d

o | k(h—1) 7 s\ k(k—1)7[8p\?
=14kt =73 Wﬂ*“'4 ﬁﬁ+"' (1.48)

It i1s easy to note that the foregoing expansions differ from each
other only starting with the terms that contain (4p/p,)>.

It follows therefore that the dynamic adlabatic curve and the-
foisson adiabatic curve are not only tangent at the point p_/p+ = 1,
p__/p+ = 1, but have also the same curvature at this point.

Unlike the Poisson adiabatic curve, the ratio p_/p+ in the shock

adiabatic curve (1.45) vanishes not for p__/p+ = 0, but for p /p. = 1/6.
- 24 -



When k = 1.4 and Q_/p; = 6, we get p__/p+ = .

Thus, on a strong-dliscontinulty surface at large compresslon pres-
sures, the denslity increases relatlvely slowly, corresponding to a
rapld growth of the ratilo p/p, whilch determlines the gas temperature.

Of great importance 1s also the fact that the equatlon of dynamilc

-adlabatic curve (1.45) cannot be written in the form* f(p+, p+) -

= f(p_, p_)-

Yet for the Poilsson adiabatic curve, as follows from (1.46), we

have
F(ps p4)=F(p-, p-).

" In order to cover all the Polsson-adlabatic curves, 1t is suffl-
cient to run through a one-dimenslonal series of values of the entropy
S, and 1n order to cover all the dynamilc-adlabatic curves, 1t 1s nec-
essary to construct an "infinlty squared" set of curves corresponding
to all possible values of < and Pye In other words, unlike the Pols-
son adlabatic curve, along which the entropy remalns constant, each
point of the dynamilc adlabatlc curve corresponds to one definlte value
of the entropy, pertinent to this polnt only.

Consequently, 1f a reglon of varlable préssure occurs behind the
surface of a nonstatlonary strong discontinuity, then a region of
varilable entropy i1s slmultaneously produced there.

As 1s well known, for an ldeal gas the change in entropy 1s deter-

mined by the equation

(S ma S g { 2= (£
55 =G in{2= (22)'). (1.29)
Let p_ = p, + Op. Then after substituting the expansions (1.47)

and (1.48)into(1.49) we obtain

s5m i 22 () 1= 322 (250

From thils expression it follows that for small values of Ap/p+
- 25 =




the increment of entropy in the shock wave 1s proportional to the cube

of the relative increase in density.

G ———————

- a a m o Cn an e - -

P¢ ---------

A —— - —
Py S

Fig. 7. Graphic comparison of
the propagation velocilties of
shock waves and the local veloc-
ity of sound.

In weak shock waves the increment of entropy is so small that
without loss in general accuracy we can consider the propagation of
such waves as an 1lsentropic process.

On the basis of a few other considerations we have arrived at a
similar conclusion previously, considering the adlabatic conditilons
for water. )

With the aid of the dynamic adiabatic curve we can readily estab-
1ish the relation between the propagation velocities of shock waves
and the local velocity of sound. To this end we plot the dynamic adia-
batic curve in coordinates pressure (p) versus specific volume (T)
(Fig. 7).

We reduce the propagation velocity 6 to the same parameters.

We previously had

@ o bt 18], | (1.42)
- p-= el
- 1p)
R (1.43)
1
but - ' -P—t_=1,
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Consequently, after eiementary transformations we obtaln |

02 e Lo he, (1.51)
6?'_=1'f"_€::f+ (1-52)

Iet us consider first Eq. (1.52).

For a gilven initlal state of matter 7, and P> the factor T2-is a

+ +
constant quantity and the propagation veloclties of the shock waves 6+,

corresponding to different degrees of compression, depend on the ratilo
(p_ — p+)/('r+ — 1), 1.e., on the slopes of the corresponding lines
Jolning the initial point Py, T, with the points p_, 7_.
‘The rate of propagation of the perturbation at the point A will
|
|

be determined by the slope of the tangent AD:

2 :2dp _ dp
: Bp=—g =g =a

and obviously 1s equal to the veloclty of sound a, .
Thus, 6+ > a,.
From perfectly analogous considerations (see Fig. 7) it also fol-
lows that 6_ < a_.

If we turn to stationary motilons, for which N = 0 and 6 = —v we

n’
obtain from the foregoing relations an Important consequence: a strong
ﬁiscontinuity surface can occur only when the particle velocilty v, on
one side of this surface exceeds the local velocity of sound. To dis-
tinguish it from shock waves, a strong-discontinuity surface that is
stationary in space 1s called a compresslon shock.

In most cases of practical importance, the shock wave propagates
in an unpertufbed medium. Then 6+ = N and v, = 0.

Thus, the dilsplacement rate N of a shock wave always exceeds the
veloclity of sound ahead of the front, but the difference between the -
dlsplacement rate of the shock wave and the particle veloclty 1s always
smaller than the velocity of sound behind the front, N <a vy -
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It follows therefore that weak perturbations which propagate in a
~ liquid at the local velocity of sound, can catch up with the front of
the shock wave but cannot overtake it. |
We shall henceforth be interested principally in one-dimensional
unsteady motilon of liquids.
On the basls of the conditions for dynamic compatibllity (1.39)
and (1.40), we have in this case
P (N — ) = py (N — 2,

v = NI b " (1.53)
Po—ro=p (N =) (%~ 0, (1.54)
(%= %) = (2 =) (5 = 75)- (1.55)
If Vo = 0, then
WENESE (1.56)
. ]/pr%:%N,% ~ (1.57)
,}¢=*. 0%-Pd(;;-;;. : (1.58)

The subscript "f" denotes here hydrodynamic parameters on the front

of the wave, while the subscript "0" refers to the unperturbed liguid.

A In this form, the relations between the hydrodynamic elements on
the front of the‘shock wave are frequently used for practical calcula-
tions.

From the analysis of the dynamic adiabatic curve and from the sec-
ond law of thermodynamics there follows an lmportant physical conse-
quence, known as the Zemplen theorem.
| Zemplen's theorem states that the only strong diséontinuities that
are possible are those for which the pressure increases..No discontinu-
ous rarefaction waves (rarefaction shocks) can exist.

Example 1. Establish from the conditions of dynamic compatibility
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the connection between the value of the local velocity of sound a and

the particle velocity v on the surface of a nonstationary strong dis-
continuity in an ideal gas. Assume that in the unperturbed medium v, =

.= 0, P, =Dy, P, = Py (N.Ye. Kochin, I.A. Kibel', N.V. Roze ''Theoreti-
cal Hydrodynamics").

Solution. We choose for the Initial equations

(p0] = O; (1.39)
p8 [va] = [P); (1.40)
p, _ (k+1)p, —(k=1)p_
P REDL_—G=Ds, (1.45)

Ieaving out the minus subscripts for the hydrodynamic elements on

the discontinuity surface and taking into account the fact that v, = O,

+
we rewrite the system (1.39), (1.40), and (1.45) in the form

pNv = p—py
poN =p(N—v)
(At Dp—(k—=1)p

P _ ,
p (A+Dp—(R—1)po

Iet us subtract unity from each half of the last equation. We

then obtain

po_g:jﬂ.: (R + D[]+ (E=1)]p] - % [p
P p (B+1l)p—(h—1)ps (& + l)P"‘(k—l)po'
Consequently,
_Iﬂ_: 2kp
] - G+ Dp—(—=Dp °

e

Bul in accordance with {1.42), we have

fat r PN

GFDp—(k—11p

Let us then write the equation of the dynamic adiabatic curve in

the form

L —e—1
Lo Po .

Po

(k==&
Po
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Substituting in the result obtained the ratio p/pO from (1.39)

and the difference p — Pg from the cquation glven above, we obtain

on ,_/‘;_1>
Ny TAN—v .
= ‘)\/ »
I e e (S by Vs
!
2 PN v ;
kpy Y e (e N
ke )=k —1) =3
T W= =G —DN
or .
k o+ 1 9
N2 — ZE= Nu—af=0. (1.59)

Carrying out analocgous substitutions and transformations with re-

spect to Eq. (1.43), we get

ka2 VAR Ak XY S PO} (1.60)

1
N+ —3 2

Subtracting (1.60) from (1.59) we obtain

/»'—— v n —
VN(-——S-—g—é—il—>+(15——a’——k2 ! v3=0'

hence

a?— a3 1
N =+ /e——lo—v-' (1-61)

Substituting the results obtained in (1.59), we get

o at—al  (a—al)’ 1 k41 P N 2
STt ey e S T EE—n @) T =0
or, ultimately,
a* + a} 4 (a’—-—{zg);’
Vo 2 O — =0. (1.62)

The sought equation represents in the (a, v) plane a fourth-order

curve (called hyposcissoid), which 1s symmetrical both about the ¥ axis

and about the a axis, with asymptotes a=i'/£Q€:ﬁw (Fig. 8).
By virtue of Zemplen's theorem, we use in practice only that part
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of the curve for which a S a

0°

Fig. 8. Dependence of the lo-
cal velocity of sound on the
particle velocity.

Example 2. Express the hydrodynamic elements p, p, and v in an
ideal gas on the surface of a nonstationary strong discontinuity in
terms of the displacement veloclty N.

Assume that the discontinulty surface propagates in an unper-
turbed medium v, = 0, p = Pos P = Pp3 & = aq.

Solution. Let us use the eguations established in the preceding

problem:
. A
Nt — -; Nv—al =0 (1_59)
PN
P N—v' (1.40a)
P~ pPo = poNv, (l 57)
On the basis of the first of the relations written out we have
2 N’—ag
. YSEFT TN
As a result
- S M - N : ]
P N—v 2 Ni—a? E=T1 . ) ot (—'63)
N o TNt tgTT e
E+1 N + kel
2 .
P—F0=P0N‘«'=mpo(N’—af,). (1.6)4-)

§5. DIFFERENTIAL EQUATIONS OF GASDYNAMICS. THE BERNOULLI EQUATION

So far principal attentlion was pald to a clarilication of the gen-
& i

eral laws governing the propagation of discontinuity surfaces. This,

however, does not exhaust the description of the complicated charac:cr
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of the unsteady motzoun of & liguid wurlng an explosion.

The discontinuity of the hydrodvnamic elements on the front of the
shock wave is followed already Dby a continuous variation of these quan-
tities, which is usually described by Tac system of differential equa-
tlons of gasdynamlcs.

As 1s well known, these equatlons are: the Euler equation of mo-
tion; the continuity equatlon; the energy equatlon.

The Duler equation 1g a mathematical form of writing down the
Do t'alembert principle, according to which there exists at each lnstant
an equilibrium between the forces acting on a liquld particle, includ-
ing the inertia forces.

It has the form

P%-%—gradp:O. (1-65)

The value of the acceleration dv/dt can be represented as a sum
of the local derivative of the velocity with respect to time 3v/dt and
the so-called convective derivative, characterizing the variation of
the velocity in connection with the transition of the ligquld particle

from one point of gpace to another:

22 =2+ ()7, (1.66)

where V 1is the del operator, also called the Hamliltonilan operator,
g il +T s+ F g
We thus have
%‘%%—(5\7)77 +'-;—gradp=0- (1.67)
In a rectangular coordinate system, Eq. (1.67) is equivalent to

the system

- 32 -

s




1
P .
()uy auy duy 1 op 1.68
T x—r“*‘ y oy T T T T Yy ( )
or 00, 00, Qv 1 0p

T i R e e N

Iet us use the transformation known from vector analysis:¥
(9) 0 = v -5 — Dot . (1.69)
We then obtain the equation of motion in the Gromeko form
-‘;—:’+v-',}2i—5><r015+lolvp=0. (1.70)
‘We introduce the function
1 .
VP=TW’- (1.71)
In the case of unsteady potential motion, in view of the vanish-
ing of the velocity-curl vector, curlv = O, we have v = grad ¢. Conse-

quently,
v(%+%+P)=0

or
{4 ? .
0_;’.+_‘:7.+P=F(t)_ (1.72)

Expression (1.72) is known as the Lagrange-Cauchy integral.
In the case of stationary flow we have from the Gromeko equation

»

V<-'T;—:+P)=§><rot5. (1.73)

Multiplying both halves of (1.47) by dr = Idx + Jdy + kdz, we ob-

talin

dx dy dz,

Ve ’Uy’U

Q, 2,9,

(5 +)-

(1.74)

where Qx’ Qy, and QZ are the o-mpeonents of the wvelozity-curl vector
rot V.

The right half of (1.74) vanishes in one of the following cases:
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a) 1f we consider the motion zlon- a stream line
Ty = (1.75)
b) if we consider the motion alon: a vortex line
el ity (1.76)
¢) 1f the stream lines and vortex lines coincide
==y (1.77)

d) if the motion is potential
e) if the 1lizuid is at rest

Then

p_;_-%—_—_const. (1.78)

Equation (1.78) is known as the Bernoulli integral.

In view of the great variety of practically important applica-~
tions of the Bernoulli integral, we shall recast it in the most fre-
quently encountered form. :

Recognizing that the isentropic motion of an ideal gas corresponds

to the condition p/pk = const, we obtain the function P in the form

p=;_,..k_1_§" (1-79)

For water, in accordance with Tait's equation, we have (p + B)/pn =

= const, and consequently,

+B
=7 2= (1.80) |

Thus, the Bernoulli integral can be represented as follows:

for an ideal gas

-%—-’P’—+—Yi,l=const, (1.81)
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for water

n p+B , v
n_l___P_..}.-T:const.- (1.82)

Alternately, recognizing that the velocity of sound in an ideal

gas is af = kp/p, we have

.k_“_l-}-%ir-—:const. (1.83)

The value of the veloclity of sound at a point where the particle
velocity 1s equal to zero 1s usually designated by a¥. Frequently, one

uses also the concept of the critical velocity, which is the gas veloc-

ity equal to the local velocity of sound (vkr = akr)'

With the aild of the notation employed, we can write the Bernoulli

integral in the form

kfl'+%;==;—l' (1.84)
kil"}”!g‘:?l:—i—if%?" " (1.85)

with
tp=V ot a (1.86)

Relations of similar character hold true also for water, except

that the isentropic exponent k must be replaced by the coefficient n:

Ao = i (2.87)
Let ;s return to the fundamental differential equations of gasdy-
namics.
The mathematical form for writing down the law of mass conserva-
tion i1s the continuity equation

) o
o+ div (7)) =0, (1.88)
or, if we write out the divergence in full,

.‘29_+__(Plx_+m.)_+9_(g"’_f).=o_ (189)

v
dx dy
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We shall henceforth nave to co der most frequently one-dimen-

sional motion of liguids.

This i1s defined as liquid motion that depends on two coordinates:
the space coordinate r and the time . Particular cases of one-dimen-
sional motion will be motions with plane, cylindrical, and spherical
symmetry.

Obviously, the Euler equation for one-dimensional motion can be

written in the form

-a—t--{-’U'()T‘r‘T'GT: . (1-90)

The continuity equation for such a motion can be written in the

form

I ) (v—1)
v b (1.91)

where v = 1, 2, or 3 for motion with plane, cylindrical, and spherical
symmetry, respectively.

Since we are considering the motion of a liquid that has no vis-
cosity or heat conduction, the entropy of any particle of the liquid
remains constant, i.e.,

ds/dt = 0
or

28 a8
o TP =0 (1.92)

Bearing in mind that p/pk = @(8) for an ideal gas and (p + C)/p¥* =
= (p/p*)x(s> for water, the adiabatic condition (1.92) can accordingly

be written in the form

(oo ()= (L53)
FRreEE-e (2.9
_lh. _—l—_.
FHEES o238 Plee o)
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Equations (1.93; 1.94) or else (1.95), together with the equation
of motion (1.90) and the continuity equation (1.91) form a closed sys-
tem.

There exist no general methods for an exact solution of such a
systemn. 4

For an approximate analysis of such systems one usually empléys
the method of characteristics, the gist of which is explained in the

next section.

§6. EQUATIONS OF THE CHARACTERISTICS OF ONE-DIMENSIONAL UNSTEADY MOTION
OF A LIQUID

Iet us consider the system of differential equatilions of one-

dimensional motion of an ideal gas

Xt =0 (1.90)
%%+v%%+m%§+~ﬁ;9iﬂ=0; (1.91)
%1nfg+v§;1n%=0. (1.93)
If we assume that
L - (1.96)

In Egs. (1.90), (1.91), and (1.93) we change over to new varilables

v, a, and 6. We note that

r=1

d £ . e
@ =f =k ==k "
hence
1 % ,
Inp=—2"<Ine— g In¥"— =7 ink
2!’: 0
Inp=—o—rnea—¢—7In T Ink
Consequently,
dv W pfv A L op__ & dlnp
a7 dr o kp Or E Tor T
_ c? 2% Jdine +.c" Ak dIn®
T TR R—1 " r B E—1 o
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A
wil [ ) 4
B e

kel or

alng
dr *

Thus, in the new variables the equation of motion assumes the form

Ju Ju 2a da a? 0dInd
TV =T =T TE=1 " (1.97)

Using the expressilon for In p, we rewrite the continulty equatlion

in the form

ding Ju (v—1v

gt T =0
2 1/da da 1 7 dmok d1n 6%
k—l?(??+057%—kel( - TV )+

du (v—Nv _
+ ot —F—=0

But on the basis of the adiabaticity condition (1.93), the second

bracket of the last equation vanishes, and conise quently
%%+g.§%+_’i€.ﬂa%‘;’.+f_‘?_(i_“';rllﬂ;0, (1.98)
Finally, the adiabaticlty condition can be written in the form
I nt4+v-Lin0=0
or In 0+ v g lal=0 (1.99)

Iet us assume now that a curve L 1s specified on the r, t plane,
r = r(t), and that we know the functions vy, a;, Oy on this curve (Fig.
9).

The problem consists of determining the integrals of the system
of equations (1.97)-(1.99), which would assume specified values on the
curve L. In other words, it is necessary to determine an integral sur-
face satisfying Egs. (1.97)-(1.99) and passing through the curve L.

The problem of determining the solution under such conditions is
usually called the Cauchy problem.

We assume the functions v, a, and 6 to be analytic in r and i,

On the curve L, the following relatilons are satisfied:
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du, Ov

r L —()T = +r’ i
da 30 ()a
0,0, N6, . (”L =_(Ttl;+,-/ (7/’ , (1. 100)
dng, 6In0 aln 0,
at +ﬂ—T

At the same time, the hydrodynamic equa-

¢ “tions (1.97)-(1.99) must be satisfied on-the

Fig. 9. Illustrating same curve.
the Cauchy problem.
Let us ascertain what limitations are

imposed on the fundamental system of equations by the fact that the

solution of the system must correspond to specified values of the hy-
drodynamic elements on the curve L. To this end we obtain from (1.100)
the values of the partial derilvatives BVL/at, aaL/at, and (o 1n GL)/at,
and substitute them in Egs. (1.97)-(1.99).

We obtain

du, OUL OvL |
St ="a 5 ]
| (3.200)
0]n0i=f_lrlﬁ_[‘_fdln01" '
Jt . [ or
, 2a da a* JInd 0” 1.102
(”“’kr+k_1w T o = ( )
k=1 ] da,  p—1 (ve—1
) +4d r) G =gt = 2= S ey, (1.103)
) In0
(v—r) Tt = — it (1.208)

The system of equations (1.102)-(1.104) enables us, generally
speaking, to determine the partial derivatives ov/dr, da/dr, and
(0 1n e)/or.

At the same time

 da
? dr.

_._.A-. .
A

4y
A

Q/IQ;
Sia

where A are the corresponding determinants of the system (1.102)~(1.104).
During the course of estimating the values of the partlal deriva-

tives ov/dr, da/dr, and (3 1n 6)/dr, the following principal cases are
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possible:

Loass0; 8,540, 4,940
2. A=0; A, 0; A._,,LO,
3. A=0; Ay =0 L, =0

In the first case we obtain perfectly defined values of the de-
rivatives at the polint MO and its vicinlity along the curve L. The
Cauchy problem has a unique solution.

In the second case the values of the derivatives are infinite.

The curve L in the vicinity of the point MO is called a "discontinuity
line.'" In the third case there exlsts an infinite number of bodies of
the derivatives Ov/dr, da/dr, and (d 1ln 8)/dr, corresponding to the
given problem. In other words, it is possible to draw through the curve
I, in the vicinlity of the point MO an infinite set of Integral surfaces.
Then the Cauchy problem has no unique solution. The direction of the
tangent to the curve L at the point MO is called the characteristic
direction.

The curve L, at each point of which the direction of éhe tangent
corresponds to the characteristic equation, is called the characteris-
tic. In the general theory of differential equations it is proved that:

1) the solution of the equations of the characteristics 1s equiva-
lent to the solution of the corresponding initial system of equations;

2) for any change of variables, establishing a unique transition
from the points of one space into the points of another space, the
characteristics of the given equation go over into the characteristics
of the transformed equations.

As follows from the definition, the equations of the characteris-
éios can be readily written out by equating to zero the determinants
of the initial system.

We then obtain ordinary differential equations, the analysis of
which is much simpler than that of the initilal system.
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Let us carry out such transformations for Egs. (1.102)-(1.104).

As a result we obtain

' 2a a?
v F—=1T T FEZT
A=l f5ra v—r 0 (1.105)
0 0 Y—r
_dv[‘ 2a' a?
at F—1 = F=1
da E—1) (v—1
A= —7’:.__(___“2_._)_.9'_._;.1.&. Y 0 (1.106)
din0
L
— 0 v—r
, dy
) L — a
v—r at E—1
. d 1 v—
s=|pte Smotgleue (2.207)
dnb
0 — ;L v—1r
, 2% (J’L"
V—r w7 — =
— da, " — — .10
P - _ ' Bt i (1.108)
dan,
0 0 ——
In accordance with (1.105)
A=(v—r)[(v-—r) —a] =0 (1.109)

The determinant A vanishes in one of the following three cases:
a) v—1r' =0 or

dar

7 = (1.110)
in this case the equation of the characteristlcs coincldes with
the differential equation of the trajectory of the liquld particles;
b) v—1r' —a = 0;
ar v a (1.111)
c) v—1r! +a =0;
-m-=v+a. (1-112)

From Egs. (1.111) and (1.132) 1t follows that the characterlstics
propagate with the velocity of sound.
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Iet us consider the determinant Al:

dv Ied = 2
o) { =Sy B T e o (1.113)
a) When v — r' = O, we have 4y = O.
When v — r' = +a
dlnb a? dv 2q¢ da,  (v—1)a%v
e r=T i et ittt =0
av ) dal_ a dhnd (v—1)av ,
b)'&?é'*'/e_—_x‘if"‘k—x dtL_ r (1‘114)
dv, o da, a dinf (v—1av .
R s R e kel s e A M S (1.115)

Going through analogous derivations, we can easily show that from

the vanishing of A2 it follows that 6 = const when v — r' = O.

An analysis of the determinant A3 does not limpose any new condi-

tions on the hydrodynamic elements.

We shall call the characteristic of the first famlly¥

d
CF=vte (1.116)

On this characteristic we have the condition

dv 2 da _ a dpl__ (v—1)av
7l v By dal vy B e (1.217)

We shall assume the characteristic of the second family to be
s =v—a (1.118)

On this characteristic the relation to be satisfied 1s

dv 2 da a_ dlnd | (v—1)av
RS s T ER=1 e T (1‘119)

Finally, the characteristic of the third family will be called
dr/dt = v. ' (1.120)

On this characteristic

-]

0% ==

[]

a

= const. (l. 121)
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In the case of I1sentropic motion of a gas it is obviously suffi-

cient to consider only the characteristics of the first and second
families, and the conditions on these characteristics also simplify.

Namely, for the first family we have

{%—='U+(I, l

W 2 e [0 J (1.122)

at TrR=17F = ramalt

Fer the second .

-
aF TV,

dv 2 d v — 1

T ==, (1.123)

The systems of equations (1.122) and (1.123) cannot be solved in-
dependently of each other, since each represents two eguations with
four unknowns.

Nonetheless, the problem of integrating these equations is essen-
tially simpler than the problem of Integrating the initial partial dif-
ferential equations.

In this lies the main advantage of the method of characteristics.

The system (1.122)-(1.123) does not in general have integrable
combinations. However, at the present time there have been developed
effective graphoanalytic methods for solving the ecuations of the char-
acteristics, with specified degree of accuracy. In the particular case
of isentropic motion with plane symmetry, the equatlions of the charac-
teristics have first integrals. In thils case 1t becomes possible to ob-
tain exact solutions. a brief famliliarizatlion with which constitutes
the scope of the next section.

Example 1. In the plane r, t we know the values of the hydrody-

namic elements of the liquid on a segment of the curve r == £(t). De-
termine the nonsteady motion with variable entropy in the region
bounded by the specified segment AB and two segments of the character-
istics of different families, drawn from the points A and B to the
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point of thelr intersection (N.Ye. Kochin, I.A. Kibel!, and N.V. Roze
"Theoretical Hydromechanics").

Solution. We make the approximate substitution

ar A,
! - af =i

dv _ by
dt — At ”

On the initial curve AB (Fig. 10) we

mark a dense series of points Ml’ M2, .oy Mi'

Since we know the values of the hydrody-

namic elements v and a at these points, the

Fig. 10. Graphic il- .

lustration of the me- equations of the characteristics, written out
thod of characterist-

ics. I) First-famlly in the form of finite-difference equations,
characteristics; II)

s%cogd—family chara- constitute a system which when solved enables
cteristics.

us to determine the elements of motion at the points of intersection
of the characteristics of the different families M'l, M’g, M'3, ey
t
M 1
Indeed, on the basis of (1.116)-(1.117) the equations of the char-

acteristics of the first family will be

Vr—r=(v+a)t—1) ' ‘

2 a 0 (v—1)/av a
2) y— —— (g — = 4 - — au __
Yv—v gy @—a) =gy g = (r -n)

The equations of the characteristics of the second family will in

accordance with (1.118) bve

) r—ry =(v—a)y, (t—t)

\

2 a —_
D=y —gg@—ay)=— bty O L —1) ”<€1’_a.___.‘+1"‘+1).

E=T70 072 Tirt

If the entropy is constant [1n(9/91-+1) = 0], then these four
equations enable us to determine the points r, t, v, and a at the
points Mi.

In the case when we are studying motion with variable entropy,

it is necessary to draw from the polnts Mi the third-family character-
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'H 1
/»f S
PSP ORI b

Fig. 11. Illus-~ Fig. 12. Illus-~

trating the trating the
method of char- method of char-
acterisgtics acteristics
(conditions of (solution).

the problem).

istics:*
5) r—xty = v(t = t'y);
— 1 .
6) 6 =6 13

! - !

7) r ;= (% j_).

Again the number of equations is equal to the number of unknowns
(v, t, v, a, 6, 'y, t’i).

Solving for each point M'i an algebraic system of seven equations,
we obtain the elements of motion at all points of the line A'B', which
now can be regarded as the initial line for subsequent calculations.

The Interval between the polints M must be chosen from considera-
tlons of the permlssible computation error.

Example 2. The values of v and a are given at two adjacent

polnts M, and M, of the plane r, t. Find the values of v and a at the
point P where the characteristics of different families, drawn from M1
and Mg, intersect, for the case of igentropic motion with plane sym-
metry (Fig. 11).

Solution. Transform to the plane v, a. Knowing the values of VMl,
aM1 and VMQ, aMQ, we obtain the points M1 and M2 in thls plane and
draw the corresponding characteristics of different families. The coor-
dinates of the point of intersection determine the sought-for values
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of v and a at the point P (Fig. 12).

The position of the point P in the t, r plane is obtained approx-
imately by replacing the characteristic lines by segments of tangents
drawn through Ml and Mg.

We have

E—n=(u+mﬁﬁ6_nx _ r¥@=(wfm4huﬂgx
from which we obtain the values of r and t.

§7. SOME EXACT SOLUTIONS FOR A ONE-DIMENSIONAL UNSTEADY ISENTROPIC
MOTION OF A LIQUID WITH PLANE SYMMETRY

In one-dimensional motlon with plane symmetry (v = 1), the equa-
tlons of the characteristics assume the following form in accordance

with (1.122) and (1.123):

ar

— =V -+a

i i (1.124)
Y+ g7 @ = const = 2¢;

dr .

A ‘ (1.125)
1'—-Ef§T(z==const==2n.l

We shall regard r and t as functions of the characteristic numbers

€ and 7

r=r,mn),

(), (1.126)

Since £ 1s constant on the characteristic of the first family,

the values of r and t on this characteristic will be functions of 7

only
ar ot
It follows therefore that on the characteristic of the first fam-
1ly
d
o= +a)gt. (1.127)
We obtain quite analogously on the characteristic of the second
family
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d ot
w=@—a)x, (1.128)
but
v+ 1a—-QE; Vg a=2

It follows therefore that

a==k_l(b-n) (1.129)

D=t N\ }

Substituting (1.129) in (1.127) and (1.128) we obtain ultimately

ar R+ k ot
LA T ol E+ ,
“ ‘ j 5 ]32 (1.130)
f—”Jﬁ?'

The system (1.130) is called the canonical system of equations of

gasdynamics for motion with constant entropy.

Unlike the quasilinear system (1.97) and (1.98), the system (1.130)

is linear. It can be rewritten in an even simpler form. For this pur-
pose we differentiate the first equation of the system (1.130) with
respect to £ and the second with respect to 7.

As a result we obtain

o

Pt (GRS LR CROR) PRI (1.131)
J? ‘ ‘ g
= B—R (b 1)) Be 4+ SLEEL (1.132)

Subtracting (1.132) from (1.131) we have

[(r—1)2—(k — )] g + 5 15— ) =0,

o U3
or
6”.____£il___<ﬂi_.m>
B T IE—DE—m N\ o/ (1.133)

Ir [(k + 1)/(k ~ 1)1/2 = m, where m is an Integer, Eq. (1.133) is

called the Darboux equatlon and can be integrated 1n closed form.

In particular, for k = 1.4 we get

oL 3 (o)
o =T=w (& — %) (1.134)
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A general solution of (1.134) will be

fos 00 LG —fa ()

Fow T k=g (1.135) ~

The arbitrary functions f1(§) and fg(n) are obtained from the
boundary conditions of the problem.

If the adiabatic exponent kK exceeds three, the ratio
[(k + 1)/(k — 1)]/2 can no longer be an integer. The question arises
whether 1t is possible to construct exact solutions of a system of
quasilinear equations of one-dimensional motion with plane symmetry,

if one assumes a different form for the dependence of the density on

the pressure, which has, however, a sufficient number of free param-
eters which can be managed at one's discretion. In other words, do
there exist any forms of an approximate representation p = f(p), per-

mitting integration in closed form of the system:

du o, du Loap

ot +‘)(),\‘ +—p—¢)—,\:—'o' (1.136)
Jp g du

w HVE tegy =0.

Let us show that such forms of approximate representation actu-

ally exist.
Let the isentropilc condition be given by the relation

p = f(p), (1.137)
and then the system (1.136) can be rewritten in the form

du du [, s . -
o T e e =0, (1.138)
Do R dv

I oo, SY
ut +vd.\' RNy

Assuming on the characteristics

du dv du dx

o = OxX Tl (1.139)

O o Do dx

of Tl T g ak

we obtain from (1.139) and (1.138) after substituting Ov/dt and 3p/dt

- 48 -



()U. ix ) 0, d
o (v =10 )4 s ) = — (1.140)

dv dx \ op
et (v—=F) e =—%

From the condition that the main determinant of the system (1.140)

vanlsh, we have

Gre=v L VTG (1.141)

From the condition of the vanishing of the first determinant of

the system (1.140) we get

or, after substituting (1l.141) and integrating,

[}

yij‘%.Vf_’——p-)dpr—.COﬂSt. (1.142)

[ ‘

Thus, the equations of the characteristics of the first family

will be
dxe=(v+VF(p)ds

P

v [ LV TG dp =2 (1.143)

0

and those of the second family
dx=(v—VF () de,

: (1.144)
v——f%—dep=2n.
0

Bearing in mind that £ is constant on the characteristics of the
first family and m is constant on the characteristics of the second

family, we obtain by differentiation

= VT (1.145)
F=o~VFmn &, (1.146)

with
D=t (1.147)
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P

[+ViGde=t—n (1.148)

[1]
We put
V7)) =¢GE—n), (1.149)

and then

e (G R T () R (R B et

Differentiating again, we have

0x L it . L 2
G =L+ G—n)l 5 -+ (G m) + ¢ —)] o_g

501 ! ‘e p 2

*

Eliminating ng/aian from the last two equations, we obtain

L+ G—m) o a7y 1.150
: [ 0 (1.150)

T I -
Teog T T TeE=—7) PH g

Let the function v(€ — 1) be such that the equation
ot ) ot
",‘57).—,1-}'“(5—71)[7)‘;‘“‘7)‘5‘":0 (1.151)

can be integrated in closed form.
Then, putting for simplicity
E—n =g, (1.152)

we obtain ¢(u) without difficulty from the linear equation

Lltetw)
Tem v (1.153)
fovin) dn Swde ¢ L P2 de '
=C — dp.
g()=Ce e Je " (1.155)
Since, on the one hand, (1.148),
A
|- V7 Ghdo=,
0
and on the other (1.149), —. /T (p) = o(u), the connection between p
and p is established with the aid of the equation
dp  dp '
W TR (1.155)

From the last relation we can determine u(p) and consequently
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also o[u(p)].
Recalling, finally, that../T'(p) = o(u) = olu(p)]l, we get

p=re)=[{e 12 (] e+, (1.156)

Thus, if we choose a certain function v(u), then the connection
between the pressure and the density 1s determined by a suitable -func-
"tional relationship that includes three arbitrary constants, without
counting those possible arbitrary constants which can enter into the
function v(u).

Thus, we have established a rather broad class of functions which
permlt integration of the main system of quasilirear equations (1.136)
in élcsed form.

Let us consider some particular cases.

Let v(pu) = O, then

Lt ()
T e O
hence
P =C—uy,
o .
.{E——u =11 Cpp;
—~In(C,—p)=1nCp,
Further
(Ci—p)Cp=1;
!
. RE — g Cu
consequently,

cW =g Vi@ =tr

For the Pressure we obtain
=c————-lv-' {7= == .—-.J-.—l—. l.l I

This result, which is extensively used in stationary problems of

gasdynamics, was indicated in 1ts time by S.A. Chaplygin.
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The main system of equations can be integrated in closed form by
replacing the real isentrope p = f(p) in the plane (p1 %) by a tangent
drawn to 1t through some point.

The general integral of (1.150) will in this case be

E= 9 (8) + X (),
with tbyp =

We now put v(u) = n/u.
Then, as indicated above, Eq. (1.1506) assumes the form of the so-

called Darboux equation and 1s integrated in closed form if n = 0, 1,

2) 31
We have
dl+e' (). n .
2 9([“") - " . (1- 158)
Integrating, we get
9 (W) = Cp?" + oy g (1.159)

First let C; = O, end then ¢(w) =g u

Cdp 14
J;_(%j:j%(z”—"l.):l”cz?»

1
(272 — l) In pr=1In CZP) o= (Czp)Qn—l;
¢ [ (0)] =g (Cop) 7%

-1 21—

FE)={els @y =(5z) ¢, "7,

Integrating the last equation, we obtain

. 27141
F)=Cp ™ 4 ¢,

Putting (2n + 1)/(2n — 1) = k., we arrive for this particular case

likewise at a known result, which was indicated earlier: the system of
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equations of a homogeneous.unsteady motion of a liquld with plane sym-
metry can be iIntegrated 1n closed form for an isentroplc procegs if
the dependence p = f(p) is expressed by the polytrope p = Apk + B, the
exponent of which corresponds to the equation [(k + 1)/(k-— 1)1/2 = n,
where n 1s an integer.

Now let C; # O.

We hasre
- q . )
Pl = + 5 iy (1.159)
— . (1.160)
Cp2? — 1 " .
2n—1

" The gquadiaturs in the left half of (1 160) can be taken for the

specifzed integer n.
Since the so>lution of The Darboux equation has the simplest form

when 0 = 1, we give the necessary derivations for this case:

dp .
| s =1n G

i Gt v C:P+1= 1
In T InCyp; ~—— rors
l G, Cap Faa
=2 CiCyp ! ? (}‘L) = T=1CCay = Vf (P)‘

Chp
7 @)= ey

1) = [ — ot ! G 1.161)
p 7 CiC, (C;Cg)" = 3(C;Cg)"]“ — CyCyp? + Cs' ( ¢

The presence of three parameters makes 1t possible to approximate

the actual isentrope by means of Relation (1.161) with accuracy suffi-

clent for practilcal purposes.

The general integral (1.161) for v(u) = 1/p is determined by the
relaticn '

b s (K + ¥ (L (1.162)

Knowing t and using the general methods of analysils, we can read-

1ly obtain also an expression for x.¥
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Let us stop to discuss one more parc.cular case of isentropic mo-
tion of a liquld with plane symmetry, for whicn the equations of gas-
dynamics can be integrated in closed form.

Iet the motlon be such that the particle vzlocltles v and the ve-
locity of sound a remaln constant along one of the characteristics of
the first family in the r., t plane.

We previously cbtained

ar

=T (1.124)
v+ kil a = 2%

ar

CAR (1.125)
"U—-'-IE“ i a == 2.

According to (1.124) such a characteristic will be a straight
line, since dr/dt = const on it.

Iet us consider now the characteristics of the second family {(Fig.
13), Ll’ L2, oo Li' Assune that they cross AB at the pc;nts Ml’ M2,
: 2 cees My
The equations of these characterigtics

can be written in the form

M d
™ T .-‘..._.._2_._ a =‘7 M
,'f L sty TR DT Gar, TN
t, .

"

Fig. 13. Zharacter-
istics of seconc ...
family in a straight

2
wave in one direc-~ 1Wn““F:T“M;=2%~
tion. .
But at the points Ml’ Mg, . e s Mh, in accordance with the condi-

tions of the prohlem, the values of v and a are constant. Consequently,
the characteristic numbers Ny will also be constant.

Thusg, the relation

vl am, (1.163)%

will be satisfied not only along the specified characteristic, but
- 54 <
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also In the entire plane.

v

It is appropriate to note that in the case under consideration it
is nqt only one characteristic of the first family that is a straight
line in the r, t plane, as was assumed previously, but in general all
the filrgt-family characteristics are straight lines.

Indeed . along each such characteristic we have in accord with
(1.124) 0+~F%Tarﬂa (each characteristic having its ocwn £), but, in ad-
dation, Eq. (1.163) is satisfied in the entire region.

Thus, the vaiues of v and a on the first-Tfamilily characteristics
will be conrnected by two algebralc relations.

" Thus the correctness of the statement formulated above follows
from the first equation of (1.124).
We have already written down the equation of motion in the vari-

ables a and v:

— 1

%’_.}_y.?‘;_:’_.{_.ﬁ_?_, i".—O (1.164)

Subtracting from (1.163) the quantity w“L%lv—%k—J)m and sub-

stituting it in (1.164), we obtain

’)O k—1 2k — — ' .
+‘JT+[/1 Y= T | S =

(70 k+! l
= UL‘ + ~'U—(/e-—l)7’m

20 g (1.166)

“or

This .linear filrst-crder differential equation is equivalent to

the system of owvdinary differential equations

at dr dv N
T = % =T, (1.167)
A v— (1) 7

hence
Y= const == C,;
[.’i:"_l.'v_ (fe — 1)7,0_J1U——dr—0
or
~[£i— —{ﬁ—lﬁJ!+r - C,.
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Finally, putting C, = m(Cl), we obtain ultimately
r=[E o— =15, |1+ o (o), (1.168)
and, in addition,

'ZI*--Z;-_%Tn:Qy;O_ (1'163)

This result was first derived in 1860 by Riemann.

Solution (1.168)-(1.163) is called Riemann flow, or direct wave
of one direction. '

In perfectly analogcus fashion, assuming that the particle veloc..
ities and the sound velocity remain constant on the characteristic of

the second family, we will have

r=[Etv— e — 1) [t + o (o) (1.169)

v+-/-?—_;l_—.—-l-a=950. (l- 170)

Solution (1.169)-(1.170) is called the inverse wave of one di-
rection.

As is well known, the general solutions »f two first-order par-
tial differential equations should depend on two arbitrary functions.
It can be shown that the sclutions obtained, which depend on only one
arbitrary function, are nct a particular cazse of a general sclution
but represent singular sclutions, describing cewrtain perfeut;y defined
physical processes. The main prcperty of these solutions is that the
motions characterized tv the direct and inverse waves of one direction
can be contiguous with the region of rest, or, in the more general
case, with the region of stationary motion cf the medium.

We note that in the cage when the function o¢(v) or @l(v) vanishes
identically, the moticn of the liquid depends only on the ratilo r/t.
Then the distribution of the hydrocdynamic elements at differgnt in-

stants of time will be similar to cne another, differing only in the
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scale along the r axis, which increases in proportion to the time. A
natural generalization of such & motion is the case when the hydrody-
namic elements are determined by the ratio ra/tB. Obviously, upon suit-
able change of the gcales along the r and T axes (in particular, if
logaritrtmic scales ave used), 1t is possible to represent also in this
case the patterw of the motion as if 1t remalng similar to itself.all
the time. Motion of this type is called self-similar.

Trn self-ginilar mctions it is always possible to reduce the prob-
lem of integrating tire system of partial dif ferential equations of gas-
dynamics to the problem of integrating a system of ordinary differen-

tial equations.

Fig. 14. Graphic illustration of the
state of the gas in the cage of a decel-
erated motion of a piston.

Example .. A piston moves In an unbounded cylinder in accordance

with a specified law r = £(t). At the initial instant of time the ve-
locity of &he piston i1g egual to zero and the gas 1s at rest.

Find the motion of the medium "to the rignt" of the piston, if

ne?

r=ft=—22 (n>0).

(Kochin, Kivel', Roze, Theoretical Hydromechanics, Vol. II).
Solubtion The fact that the medium is at rest at the initial in-
stant of time denotes that v = 0 and the velocity of sound is an = const.

Consequently, in the (r, t) plane the characteristics of the first

family will be straight lines (Fig. 1l4a). The characteristic that sep-
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arates the unperturbed medium fror the regilon of motion is

dx . ,
—d-t—-"—::’lcl ,x‘—-;‘\(,ﬂaa.'

In the (v, a) plane, on the basis of (1.125), the motion will be

determined by the strailght line (Fig. 14p)

The case under consideration corregponds to the singular solution

r=[25v—t— 1]+ o, (1.168)

Yy w2 — = o

k—1

Consequently, Formula (1.169) can be written in the form

va[r-(k';'l v+a°>t].

The velocity of motion of the gas partils

les on the piston 1s ob-
viously equal to the velocity of the piston:

ro=Flr— (4L ia,) (.

But
f(!)x::—m-—'-’;—, /’=—-nt,
therefore
t'}
'—"‘“F(’“%r*'kjl'”‘“40°
We put

2
R S

The time t is determined from the quadratic equation

ﬁq”—tﬂuaoz—x=o,

1 T —
f=—(a+ )V i+ 2&n),
and consequently, kg

FO == (a0 + VT 0).
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et us return to the previous variables, recognizing that on the
plston we have mnt2/2 =r, —nt = v. We obtain

k41
Anrm(—-,z- y+ao) ¢,

.F(A) = ----—:? [aol+ i/ag -+ 2kn inr - (—k—:ztlv + ao) tJ}

Sodving Thig eguatlon with respect to v, we obtain ultimately

1 k4 T
v-:=—~-~—{n : t+ao+;,/[:n(ij—l’t+(:g]+2nk(r-—aot)}.

i

The velocity of sound at the polnt with coordinates r, t 1s deter-

mined from the relation

P
q == s —— - il

VT E I i

If v < 0 ard |v] > an/(k-— 2), ther the velcclty of sound be-
comes negative and the solution loses its physical wezning. Vacuum is
produceu av the walls of the piston. If thz law governing the motion
of the piston is assumed to be r = mnt2/2, tals pheanomenon sets in at
the instant orf time t > 2ao/(x-« 1)n.

Example 2. Determine the instant of occurrence of a strong dis-
continuity surface 1n accelerated motion of a piston in an infinite
cylinder.

The law of moticn of the piston is x = £(t). At the instant t = O
the plston velccity is zsro, and the medium is at rest (Kochin, Kibel!,
Roze, Theéretical Hydromechanics, Vol. II).

Solution. Since the motlon of the piston occurs in an unperturbed
madium, the characterigtics of the first family will be straight lines
(Fig. 15).

As ir the first provlem, the egquation of the characteristic that
geparates the uwnperturbaed medium from the regilon of motion will be
r—ry= aot;

In view of the fact that £"(t) 1s positive (the motion of the pis-
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; ///* ton 1s accelerated), the velocities v of the
y particles onthe piston increase with Increasing
time. The local velocity of sound a on the pis-
ton also increases: :
4 () 0= Ontea>0ta={5), .

[ &

The straight-line characteristics of the
Fig. 15. Graphic

illustration of first family, emerging from varicus points I,
the formation of

a strong-discon- gradually change their slope and begin to inter..
tinulty surface

in the accel- sect sooner or later.

erated motion of .

a piston. A strong discontinulty sets in (for more

details see §7). Let us find the limlt to whish will tend the point of
intersection of the characteristic drawn from the point A and the char-
acteristic drawn from A1 when Al tends to A.

For the first of these characteristics we have

X=Xy = aOt;
for the second we have
x-%—M:M&ﬁA%Aﬂ+M%fmwmamm,

where Axo 1s the difference between the abscissas of Al and A, and At
is the difference between the ordinates of thesge points.

From this we obtain for the point of intersection of these lines

agt — Axy = [a + V) (f — Az),

oxr
/= — Ax + {(a + V) Af
LE o fv—gy
but
) Ax =f (x;) &,
2 - g
TR T T =T %
hence
k-1
a=-—~9—u+a°.
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Conzequently,

k41
2

t=!-!~v-—ac=~k—2'1 4+ agt v—a = v.

Ict us expand the function v in a Taylor serles in the vicinity

off the polnt B

dv (xO.,

v (xo -+ Ax, Af) = v (x0, 0) + 7t 0~)At+...,

but

. b 2
AL o kAL S,

CHY—fF Ty R

The expression for t assumes the forn

N CE R ()
k1 dF :
2 dt? a

Thus, golng to the limit, we obtain the following expression for
the instanc of occurrence of the strong discontinuity:

limf =7 = 2%
0 =+ 107

The position of the discontinuity surface relative to the origin

will be
x:zx0+acrv
X 2 ag + X
AT T T 0
k41 fo '

Example 3. Approximate the ilsentropic equation of water in Talt's
form by a relation of the type (1.161).

Solution. We previously had

PP p 1 c )
p=10) = e~ eher * wioer ) T=C,CoF T C» (1.161)
According to Tait's equation

p+B=p+5) (L) (1.22)

We choose for the approximation conditions the equality of the
pressures and the sound velocities in the unperturbed medium:

- 61 -




avt r'-P.;]a-

2

(1.171)
From a comparison of (1.161) and (1.22) with the cecondition (1.171)
it follows immediately that the coefficient ¢

3 .: ‘“‘B-
Thus, the isentroplc exponent n in Eq. (1.
were, by two coefficients Cl

To evaluate these coefficients we have

22) 1s replaced,
and 02, which are to be determined.

Po

2
Po+3=[ i
and since

1 . C
TG TGy TICGT | [T=CChF

(1.172)
2= VI = roreaT
we have

T=CCar !

— (;‘2?0
G =0TTC

1Capo)*”

the unknown quantity

(1.173)
The coefficient C, can be reedily eliminated from (1 161) with
the aid of (1.173). We are ther left with only the product C,C, = x as

"

P+ B

I N R G )
XX + KRS

A .
“

or, what 1s the same,

PtB 1 ! SRR
oy Thoer (LR

o1
¥ Xl ]
But in accordance with (1.22) we have¥

pog = (P + B) .

32—3241,
327

Thus, to determine the product PoX = z we have the cublec equation
(=) = -,
the solution of which yields z = 0.642

. (1.174)
The approximate relaticn 1s obtained in the form
pAB _ ra e\l L] (2 o (1.17
PJ+H'_H[(;o) z (Po) 2R zj"] F::.?_'a': ( 5)
' . o

L4
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Fig. 16. Comparison of the initial (continuous line) and
aprroximating (dash) isentropes in coordinates p and p.

or, after sutstituti the values of the zoefficients
2

+ 1~ o
£ =L /KLJ ~2,426 ) m] L0t M (1.176)
,, [Tees (5]
Tigure 16 shows a comparison of the isentropes (1.176) and (1.22).
" wefoer - /( - 7
e J/. // ’//
500} P RIS =i
/V’ 4}'//0/
2=0682. 2
ord . ..4"
200 e ~
/// lr
LT - Tz-am ;
. 1507 bt L7
1000 |
) W5 110 415 ’ 2/CM‘3 1

Tig. 17 Comparison of the initial (con-
tinuous line) and approximating (dash)
isentropes in the coordinates a and p.
S=tisfactory agreement is found in the region of pressures up to
2000 atm. Assuming the deviatlon of the veloclty of sound in the un-
pertufbed medium to be about 10% and putting z = 0.600, we can obtaln
a better approximaticn in the mean over a wider range of pressures.
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The results of the corresponding calculations are £nown in Fig. 17.

- The approximating equation has tThe form

%%%%[mw(§>—2ﬂ7 Jﬁlmﬂ{. ?gzpj (1.177)

§8. PHYSICAL IDEAS ‘CONCERNING SHOCK WAVES

So far w2 have examined the shock wave from the mathemetical polnt
of view, defining its front as a nonstationary strong-discontinuity
surface.

Before we continue the expesition, 1t is important to make a few
remarks concerning the physical aspect of th= phensmenon.

We note that shock waves can occur not only as a result of explo-

sions, but also in other physical processed

b AL

p‘ a8

7
ol-. i % g o
e 138 —-—-—{ s

Fig. 18. Scheme of formation of the
discontinuity surface anc 1ts col..
lapse.
Indeed, i1f for example a piston moves with acceleration in an in-
finitely long tube, then the licuid directly in contact with 1ts sur-
face will all the time be compressed there to a greater degree than

away from the piston, as a result of its ilnertial properties. The per-
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curbations causced by the motion of the piston will thus propagate over

a region that is characterized by a variable value of sound velocity.
The local sound velocity will then monotonically decrease with in-
creasing distance from the piston.

Consequently. the resultant perturbatiocns will tend to catch up
with the perturbations that are located ahead of them. This proceés
will continue until a discontinucus front is produced, which we are
accustomed to call the shock wave front (Fig. 18a). If the piston
stops suddenly. then the regilon of compiressed medium will continue to
meve to the right along the ox axis

"Acconding to Zemplen's theorem, sudden stoppage of the piston

cannot produce a negative pressure Jump. Therefore a rarefaction wave
is produced, which is an aggregate or elementary waves of pressure re-
duction, propagating with local velocity of sound. Some of these waves,
which have a propagation velocity close to the local velocity of sound
b=hind the front, will catch up at some definite instant of time with
‘the front and reduce its ampiitudes (a + v > N). Another part, to the
contrary, with a propagation velocilty less than or equal to 2q, will
lag the front. The pressure pattern will start to stretch out (Fig.
18b).

Let us return now to the shock waves produced by an explosion.

Regardless of the medium and the type of explosion, there is al-
ways 1n a shock wave a region of strongly compressed gas or liquild,
moving 1n space with supersonic velocity.

When the shock wave approaches some point of space, the pressure,
denglty, and other hydrodynamic elements ét this point increase ab-
ruptly. This is followed by a gradual change of these quantities, and
after some time inter—val the pressure and density at the given point
of space will become smaller than the same parameters in the unper-
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Fig. 19 Variatién of pressure behind

the front of a shock wave. 1) Rarefac-

tion zone; 2) compression zone; 3)

shock-~wave front. .
turbed medium.

The velccity of motion of the particles dscreases gradually,
changing its direction subsequently.

The qualitative character of the ftime and srace variation of pres-
sure in a shock wave can be represented by the patterns shown in Fig.
19.

As already mentioned earlier, the forward boundary of the shcck
wave 1s called the front. )

The shock-wave vattern includes regions c¢f positivs and negative
excess oressures (compression zone and rarefaction zcae). The spatial
extent of the compression zone is cusgtomarlly 2alled the length of'the
shock wave, M. It 1s considerably shorter than the rarefacthlon zone.

The time of actinn of the positive excess pressure 1s frequently
denoted by T cr t+ and is called the period of the wave.

The area bounded by the pressure pattern and by the abscissa axis
in the compression zone is called the total impulsé of‘the pressures
at the given pocint.

In a more general formulation, the impulse of the shock wave refers

to the 1ntegral wilith a variable upper limit.
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B e ——— - - B r—— =

¢
J= [ p (). (1.178)
i
In many problems it 1s also of Interest to estimate the energy
flux density du the shock wave, which along with the pressure on the

front and with the impulse can ssrve &s one criterion for its destructive

cacticn. This is deflned as the energy carried through a unit area in a

specified interval of shock-wave actlion time.
The ernergy flux density is defined by the expression
t

E=[wh( g+ +5)d (1.179)

0

where p{u/& + v2/2) is the total amcunt of energy per unit volume of
the liguid. The expression ﬁv'characterizes the work performed by the
pressure {crceg in the wave 1n a unit time. The symbol A indicates
that we are consgidering tpe energy increment compared with the initial
state oi the liquid.

Aprroximate relations for the energy flux density will be given
later on.

Returning to the descripticn of the qualitative picture of shock-
wave propagation, we ncte that as the distance from the center of the
explosion increases, the pressure on the wave front gradually decreases
and the length of the wave increases somewhat.

At the limit, with extreme distances, the shock wave goes over
into a sound wave. '

It has been calculated that the thickrness of the shock-wave front
is a quantity on the order of the mean free path of the molecule (10“5

to th6

em). % Because of this, the concept.of the ghock-wave front as a
mathematical discontinulty surface is fully Jjustified.

:In spite of such a very small thickness of the shock-wave front,
it is precisely in this layer that the main dissipative processes COn-
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nected with the change ian the entropy the system occur.

Iet us consider first the case of an explosion In an unbounded
1deal incompressible medinm. The veloclity >f propagation of the per-
+urbations in such a medium is Infinitely large The shoctk wave goes
instantaneously tc infinity. The gas bubble bezing tc eapand. At a
fixed instant, the pressure ir the bubble becomes zqual to the pressure
in the surrounding medium. Owing to the Inertia of the medlum. the ex-
pansion of the gas bubble w1ll contirue. Finally, an instant sets in
when under the influence cf the hydrostatic pregsure forces the liquild
begins to move 1in the opposite direztion and the gas buhble begins to
compress. These periodic pulsations, of perfe~tly identical intensity,
will be executed zan infinite nuvmber of times.

In a compressible unbounded medium, cne opserves pulsations of
the gas bubble, the cnly difference heing that the enerzy of sach suc..
ceeding pulsation will differ from the preceding cne by the amount of
the dissipated energy, corresponding to the chong: of entropy. One cen
present the following data which ¢ aracﬁerize the disglpation of en-
ergy during the process of gasz-bubble pulsaticn in the case of an un-

derwater explosion (Tablas I1).

TABRIE 1
LOpAKTEDULIC MOMENTLY, RBItKeuns < -?”CPF”-“» SfloTepn sueprun
‘ 1 OB HpoenTax
reacsory myswpa©, . - | lor ,.ﬁ,,am,“ou ~a nyascawmno, %o
U4lHanono 140 nyascausy . S (1] |
. = ) ' n
» 2- “w , 41 T{I-
oy N -
B L & 21 ;
R N i .

1) Characteristic instants of motion of
the gas bubhle; 2) energy as percentage of
the initial snevgy; 3) energy losses after
the pulsation, %; 4) start of first pulsa-
tlon

.

These quantities characterize the energy of the shock wave fcrmed
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at the acart of each pulsétion.
16 must be borne in mind, however, that the damaging action of
the shock wave 1z determined only indirectly from the foregoing data.
The opoint 1s that when the wave acts on sume structure or another,

< -

we deal as a rule with ag lrreversicle prceczsgss. a3 a result of which
the decisive factor i1z nct the total cyecle of Liguid motion, but only
a definite pavt of the compresslon zone.

™n con-inzlon 1t nmust be noted that coth from the mathematical

and the thysical points of wview the shock wave 1lg & councept of very

{

general lharaster

Thereiore 1ne naln laws governing tho propagation of shock waves
and tihe drcoeracticn of the wavezs with the rourdary surlface can be in-
vestigaved regardlzss of the plhysical process that gave rise to these
waves

§9. CALCULATION OF HYDRCDYNAMIC ELEMENTS ON THE FRONT OF AN AERIAL
SHOCK. WAVE

T™he condltions of aAynamilc compatlbility, established on the basis
of the gensyval laws of physics, enable us te define uniquely all
the hydrodynamic glements on the frort of a shock wave, provided we
knew one of them.

Earliiler, in the assumption of propagation of strong-discontinulty

surfaces in an unperturbed medium, we have derived the following rela-

tions for an ideal gas:

P ==po ,:
%:__s'f_m;M (1.56)
IS Nl 2 (1.56a)
fo @-ﬂy’
vom VY Gomro) (£~ ): (L1.58)
Py o= Nty _ (1.57)
Pe (R4 Dpy—(A—1)p (1.45)

Po T kAN (E— 1) e
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The temperature on the front can be readily calculated from the
equation of state of an ideal gas.

Since T, = pf/ng and T, = po/ngR, we have

To _re oo 3
= (37.180)

Using Relations (1.45), (1.56), (L1.58), and (1.57), let us calcu-
late the pressures, densitles, temperatures, and velocities on the
shock-wave front as funct*ions »of pf/pO and pf/po.

In the first case we obtaln after simple transformestions

TRl e

. : e} ‘.-
Po  h=lpa "% (1.181)
P k4l pe L )

N P2

T X

T@' . b1 T o E

fe k=l e 1.182

N T ( )
E—1 7%

For the velocity of sound we previousiy had a =./kp/p or a =./kgRT.

Consequently,
Uy Ty (1.183)
o=k . a, "V 'TCI . /
)T
k— " Tpy /
A’=_ao‘§/ E_T“L;;_, 1. 181-1-)
E—T1 7% ,
' 2w
uma(ﬂ2m4) =T (1.185)
“Npe k4l Po
k=1 Pa )
In the second case
k41 Po
S == 4 1
[ S M
o K41, Po ! (1.186)
/ k-1 + Po
; ktl 7o
ok e T P0Gl 58
7y Bl Po o P : (l._.87)
k=1 "p ) -
‘Ne=a k+1 Po  k—1. :
AT TR (1.188)
af22-)
A N o {1.189)
R £l P k=1
2k py T ek

From Formulas (1.186)-(1.189) it fecllows, in particular, that if
- T0 -



any of the hydr~dynamic eléments on the iront of the shock wave tends
to its valus in ﬁhe unperturbed liquild, then &ll the remaining ele-
ments will aliso tend to their values in the unperturbed medium. ¥

In mahy proviemg 1t 1s necessary to kiow besides the cited param-
eters of the wave froat, alsc the value of the veloclity head pV2/2. On
“the basis of (1.186; and (1.189) we obtain for i1t, after elementafy
trarnsformations

215 (I’d,) h l’o)’

. Apcx"" Pt,+6170

(1.192)

For the parcmeters charscterilzing tie unpercurbed medium one usu-
ally assumez the values for the International standard atmosphere:
2 =
Py = 1.0332 ke/cm 760 mri Hg);
7y i
. fo = C.125 kgmﬁecc/m4;
a. = J40 m/sec.
Ailter svbestizuting these values,; tThe formulas characterizing the
propagation ¢f an aeria. shock wave at “he earth's surface can be writ-

ten in The form

N =340V TF0858p, m/sec, (1.193)

v¢=“§7%§%%ﬁf m/sez, (1.194)

p¢,=x0,125—%%&$¥ kg .secg/mu; (1- 195)

| o T .156)
2, =201V Ty m/s2z. | (1.197)

In Table 2 zre given the valuss of the hydrodynamic elements on
the front of the wave as Iunctions of the pressure, calculated from
Formulas (1.186)--(1.192).%* The plots of N, v, p, T, ay, and Ap, as
functions ol the pressure are shown 1in Figs. 20 and 21.

They characterize the air shock wave with hlgh accuracy in the
range'of front pressures to 50 atm.

What is striking is the fact that starting wfth pressures Ap on
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TABLE 2

Ap = p— N, o, X 3 a, Ap_..

1}1 A’Zﬁ'.ll: fiss Dujecx xlcer 3 chcfc’/u‘ oK x/cer ,;2;:-‘:,: 4 xa A?;'pad
0,00 340 0 0,1250 28% 340 0 —
0,01 ° 341 2,34 0,1258 259 341 3,31-10—* —_
0,10 354 256 0,1335 2956 34 3,42.107 0,628-10—
0,20 267 43,6 0,142 303 349 1,34.10—2 0,320-10—
0,30 350 63,2 0,156 310 353 2,99-10-2 0,306- 10
0,10 392 82,0 0,158 316 356 5,16.10~% 0,180-10-3
0,50 404 99,2 0,163 323 360’ 7,58-103 0,255-10—
0,60 116 115 0,173 329 364 0,109 0,310-10—
0,50 439 146 0,188 M 371 0.196 0,523-10—°
1,00 460 174 0,201 353 377 9,29 0,740-10—3
120 - 480 200 0,214 364 333 0,417 1,00-10-3
1,40 500 224 0,227 375 389 6,558 1,40-102
1,60 519 247 0,238 385 391 0,703 2,36-10~2
1,30 537 268 0,230 39 400 0,885 4,07-10—2
2,00 555 287 0,261 405 404 1,06 6,08-10—3
225 576 313 0,271 418 411 1,3: 6,20-10~9
2,50 560 336 0,286 423 417 1,59 9,60-10—"
2,75 616 358 0,299 442 423 186 0,0100
3,00 635 378 0,209 455 428 ' 2,19 0,0162
3,50 672 a7 0,329 480 439 2,85 “0,0150
4,00 707 453 0,349 503 450 3,59 0,0246
4,50 740 486 0,366 527 461 4,27 0,0250
5,00 772 518 0,381 552 471 5,07 0,020
550 802 548 0,395 275 181 593 0,0370

6,00 832 576 0,408 600 191 6,73 0,0431
700 888 620 0,432 649 511 8,58 0,0510
8,00 940 680 0,453 697 530 10,5 0,0602
9,00 990 727 0472 742- 546 12,5 0,0680
100 1040 772 0,489 787 - 562 © 14,6 0,0769
20,0 1430 1120 0,585 1250 71C 36,6 0,149
30,0 1730 1350 0,629 1720 534 604 0,192
40,0 1990 1610 0,655 258 936 °4,6 0230
500 2220 1800 0,672 2630 1030 109,5 0,263
70,0 2620 2180 0,731 3310 — —_ 0.310
100,0 3110 2380 0,506 4160 — —_ 0,370
150,0 3510 3230 0,937 5000 —_ = €435
200,0 4420 3710 1,088 5680 —_ — 0,500
. 2500 4900 4250 1,230 6230 - - 0,570
200,0 5350 4760 1215 6710 —_ —_ 0,630
350,0 5840 5160 1,360 7230 . - 9,700
400,0 6 180 5570 1,375 7750 —_ — 0,755
3000 6940 - G330 — 8700 - - 0,883
0,0 7550 6910 — 9650 — - 1,000
£60,0 8710 7960 - 11230 - - 1.2
1000,0 9780 88310 -— 13600 - — - 1,400
1200,0 10 600 9600 - 15 800 —_— - 1,570
14000 11 400 10350 - 18 200 — — 1,700
1669,0 12 200 10 956 - 21 600 e — 1,845

1) kg/cmgg 2) m/sec; 3) kg-secg/mA; 4) cal/g-deg.

‘éhe front exceeding 4 atm, the velocity of the air parficles becomes
larger than the local velccity ci sound.

The propagation of a stirong aerial shock wave causes the forma-
tion of a supersonic stream. The increase in the pressure on the front
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Fig. 20. Hydrodynamic elements or the
front of an aerial shock wave ag func-

tions of the pressure (Ap. < 2.0 kg/amg).
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Fig. 21. Hydrodynamic elements on the
front of an aerial shock wave as func-

tions 2f the pressure (Apf < 50 kg/cm2).

1s accompanizd by 2 rather appreciable increase in the temperature.
Thus, for ap = 40 atm the temperature reaches about 2000°¢.

In the region of very high pressures, the thermodynamic proper-
ties of ailr already duffer greatly from the properties of an ideal e~
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Such a difference is determined principally bs the dilissociation and
ionization of the mediwr, nrocegses that ovcour gulte intensely at high
pressures and tamperatures.

A theoretical scheme for taking inte account the lonlzaticon and
dissociation in the propagation of shozsk wavee in alr le¢ given in the
book "Physics of Expiosions' of F.A. Bavm. K.P. Stanyukovich, and B.I.
Shekhter.

The same book presents an analysis of the corresponding calcula-
tions made by Burkhardt. It is shown, in particular, that the rate of
displacement of the shock wave differs insignificantly from the calcu-
lated values obtained using the ideal-gas scheme. Appreclable differ-
ences are observed, to the contrarv, in the estimates of the densities
and tempersatures. For ezample, when pf/po = 3000 the dsnsity calculated
by the classical method 1s 2 or 3 times higher than the results of
Burkhardt's calculaticns.

To allow an approximate estimate of the hvdrcdynamic eléments on
the front of the wave in the near zon= of the exglosicn, Table 2 has
been supplenmentad by Burkhardt's computational date (ap > 50 atm).

Example 1. “aiculate the velocity of fronf. propagation of an
aerial sheock wave. if it is known that the excess pressure on the front
amounts to Apf = 1. 20 atm.

Solution. The propagation velccity of the ghock wave € 1s defined
as thz velocity with which the shock wave moves relative to the moving
gas particlegs: 6 = N — Ve

Consequently, in order to calcuvlate the progagation velocity -9,
it is necessary to know thie velccity of the shock wave and the veloc-

ity Ve of the particles behind the front. In accordance wita (1.193)

we have N = 340./17+ C.03 Opp = 340./T + 0.83172 = 340-1.41 = 480 m/sec.
On the basis of (1.193) and (1.194) we have
TR




"~ B:10%8py  H5.100.1,2

vy = e = B2 900 m/5EC.

Consequently, ¢ = 480 — 200 = 280 m/sec.
Exampie 2. Calculate the pressure £4p., the air density pps the

particle displacement velocity Vs the velocity of sound a and the

£
temperature on the front of the wave, if it 1s egtablished that the
“shock-wave digplacement velocity at a certeln point amounts to N = 555
m/sec.

Solution. We first Jdetermine from Formula (1.193) the value of

the excess pressure or the front of the shock wave:

N =340 VT ¥08py, (1.193)
5551 = 3407 (1 + 0,8347,),

i 353
“¢=?Er[ﬁr) —1]_2w kg/mn.

Further calculations are based on Formulas (1.194)-(1.197):
810t & 8:10':2,00
Uq,n NF‘P

=237 m/sec;

Cipy+ 72 620472 . an2
fo™ 012\) AI’ + 72 = 0,125 ——O~+~"7~',2" =] O.Jkag"DeC /m b
aoe (1o 825 (34, + 7,2) {1+ 2,00) {2,00 + 7,2
7¢==u:5= biﬂlb+72 = 288 020+/T*‘405°K‘

%_m1yw=m1W%Lm4m@ec

§10. CALCULATTION OF THE HYDRODYNAMIC ELEMENTS ON THE FRONT OF AN UNDER-
WATER SHOCK WAVE

In perfect analogy with the procedure used fcr the ideal gas, us-
Ing the equations of dynamic compativility and the equation of state
of wqter,‘we ~ran estavlish a2 unique connectior between the hydrodynamic
elements cn the front of an underwater shock wave.

A gimple ecquatior of state of water is available at present for
only part of the pcssible range of parameters.¥* The equation 1s writ-
ten differently for the reglon of isentroplec flow and for motion with
variable entropy. Naturelly, the conditiors of dynamic compatibility

that result frcm the equation of state are also different, depending

on the range of variati-n of temperatures and pressures to be investl-
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gated.

Leaving out the rather cumbersome derivatzions, we present only
the final results. K

For the region of high pressures and tamperatures (p > 25-103

atm)* we have

Po—Po=d (s5 —¢5) [ kg/cm? ]; (1.198)
. J\ﬁmiﬂ‘_-_'_"i)_ m‘?/SeCQ; - (1'199}
fa '—-'%) -
o 200 —08) 1y ) (1.200)
. Po . pel’
where d = 4250; k = €.29, .

For isentrogpgic motion p < 25«103 we have

Pot B p+B . (1.2021)

£6 £ )
N2 = Fo_ .
Po

Po(l ""‘P*L;‘); (1.202\.

Po __Po N, 2

vu=?:(p~?£), (1.203)

atem LEEE) (1.204)

;

Figure 22 shows the dynamic adiabet§3 curves corresponding to Egs.
(1.198) and (1.201).

The pecint of conftigultv has coordiiates v = 27.580 kg/cm2 ard n =
= 1.2364 g/cmg.

Passing through the'szme point is a Polsson adiavatic curve
[(p + C)/p*] = {p/p*)" with eyponent = = 5.5,

In the study cf the prcpagation of a shock wave with a pressure
cn the front not exceeding 1000 atn, th: 2onditions of dynamic com-
patikility can be linearized.
| Neglecting the value of Pg compared with B, the isentropic condi-
tlon can be written in the form

fp + 8 B
TR T =g
P Po
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‘"The velocity of sound in the unperturbed liquid will therefore be
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Fig. 22. Compariscn of dynamic adlabatic

curves fur water as given by different
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1) Dynemic adiavatic curve.
The velosclty of sound on the wave front can obviously be calcu-

lated with the aid of the relation

_— ._....,_;:_
¥ dp¢ Bn p A i/
= — 4]
G dry vo ,( roal A ( Po 4

but



N Bl °
. a«‘)mao[l"*" 28n p‘#']
Neglecting p, compared with p, we can rewrite (1.5%5a) and (1.57)
in the form
J N PO
")
, P
pQJmpON'v@)
hence
2 e (] _ﬂQ_
fa \7 m>°
Since
2
fo PRI AU SU Y -i.1 Py
P %’ v ,ro[l .%]"sanwn+pw
i
(t+F) (+%)
and
Py & Bn,
we have
2
p
vt = & s
or

4
v 4y g,

Carrying out similar derivations for tiae quantity N, we ohtaln

L

. Po ., Fo\" 1
R
! a2

1+ ) -

= Po 7y fﬁ’_) . ! M
b br “f_"'ilq._l.n L f_é
Ba ' 2a (u . )B"

=ﬂ%(1 + 1'2:_15-7;1174?):
or
o . ,
Thus, the linearized conditions of dynamic compatibility for pres-
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Sures Py < 10Q0 atm can be written in the form

Ne=a, (1 + T 0s) s (1.205)

Cay=ay (14 55 ) (1.206)

7/4’ =i, oy ]‘ (1' 207)
T‘p’.?_’?‘g.

In rarallel with the theorzticali investigations, meny researchers
have made cttempts To obtaln the conditions of dvnamlc compatibility
of water by experiment.

The must complete and conclusive results were obtained by R.

* 3chall. With Thz aid or high-speed phetoegraphy he was able to estab-
1dshi the dlsplacement velocity of the shock wave at different instants
of time. Pulsed .i-ray photography has made 1t possible to determine
the density on the front of the shock wave from the absocrption coeffil .

clents of the rays.

Since
PN == py (N — Ty)
and
n”@ A= p()‘vdl}j ’
5., = o, NE (] - L2
o= pVe (1o 2]

it 1ls eagy to obtain, by establishing experimentally the connectlon be-
tween ﬁ'aﬁd ps empirical relations replacing the dynamil: adiabatic
curve for water.

Figure 23 shows the dependence N/ao == f(vf/ao) as gilven by the
experimental data ¢ R. Schall.

It mast be noted thet with sufficientliy good approximation, the
exrerimental and the calosulated data fall eon a line passing through

the origin for pressures up to appreximately 20-103 atm, corresponding

to v/aO ~ 0.6,



The equation of thils Jine is

where m = 2.0,

1.208)

Equation (1.208) can be regarded as a third dynami:-compatibllity

condition, established by experiment. We previocusly had

polV =0y (N = 2g):

P0iNUg == g = Dy

By elementary transformatlons we can readily

(1.57), and (1.208)*
3
@=a01_ N(jfzj
TR
..._Pea
Po = 900

=BT

(1.56)
(1.57

obtain from (1.55),

(1.209)

(1.210)

(1.211)

If it is necessary to represent the hydrodynamle gquantities as

functions of the displacement velocity of the ¢
taneous solution of Egs. (.1.208).

tions

1
Py = polN UV — 1,).

By comparison of PFigs.

hock wave N, a simul.

(1.56), and (1.57) ylelds the rela-

(1.212)

(1.213)

(1.214)

22 and 22 we can readily verify thal For-

mulas (1.209)~(1.21%) are equivalent to fthe conditions of dynamic com-

patibility (1.201)-(1.203).
The use of formulas of one

venilence in the soluticn of onre prcblem or another.
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relatively slow
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®ig. 23. Dependence N/any = £(v/a,) as

given by expersimental and theoretilcal
¢ata.
Notatlon:
%2 Schall's experiment;
+) calculation by Zel'dovich and ILey-
punskiy;

X) calculations after R. Koul;
~—-) from the adiabatic curve (p+B)/p" =
= (pg +B)/pg;
nem ) from ;he agiabatiﬁ curve po — Py =
= dlpgy — Pl
o) N/aO = 2.14; v/aO = 0.586;
p = 27,580 kg/cm?.

For the sake of clarity the calculatica of the hydrodynamic ele-
mencs on tne front of an underwater shock wave is summarilzed in Table
3 and grephically represented on Figs. 24 and 25.

Unlike air, nc supersonic motion of the liquld occurs even at

very high pressures on the wave front, and the temperature rise 1s
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TABLE 3
, M, v, | : ! 2 . :
E—xz/{w' N2umjeox Micew l 3 :/}v.m , wjeen | & T°C Y xan/,Afzpaé
0 150 0 1,000 1460 0 0
200 | 14oC 13 1o 1500 °0 | 051810
400 1510 26 1,024 {510 24 0,199+ 10~
600 1540 40 1,002 1580 2,6 0.498- 10~
§00 { 560 58 1,040 162¢ 3,0 0,043+ 10
L1000 T 1590 67 1,041 1660 © 34 0,154.10~3
1200 | 1¢6is 80 1,033 1 700 338 0,229. (0™
1 400 1640 93 1,038 1740 4,0 0,203.10-3
1 600 - 1670 106 ° 1,063 1780 44 0,416,109~
- 1800 1685 120 1,070 1820 48 0,522,100
© 2000 1720 133 1075 | 1860 | . 5.8 0,648 10
. 2200 1745 146 |- 1,080 1 900 6,0 0,790, 16—
-2 400 1775 160 1,085 1940 7,0 0,948.10 -
2600 1800 173 - | “1.000 1980 2,0 0,00113
2820 1825 185 1,003 2020 8,4 0,00134
3000 .| 1350 200 1,100 2000 8.8 0,00:57
4000 1910 240 1,120 2160 140 | - 000276
5000 2040 280 1,110 2240 180 0,0043
6 000 2100 320 1,160 2 300 22,0 0,0070
7 000 2190 360 1,175 2.420 21,0 0,0100
8000 2240 400 1,200 2 500 30,0 0,0125
9000 2300 420 1,210 600 320 | 00160
10 000 2400 450 1,220 2660 35,5 02,0190
15000 2 660 580 1.275 2960 510 0,0350 ;
20 000 2 840 680 5,325 3200 58,0 0,0600
25 000 2000 800 1,360 3470 85,0 0,0800
30 000 3260 930 1,400 3720 1050 0,102
46 000 3600 | 110C 1,450 4010 136 0,152
50 000 3900 | 1280 1,500 | 4113 184 0,206
60 000 4140 | 1430 1,515 47{C l.i 0,268
70 000 4400 | 1540 1,540 4940 | op0 0,320
80 000 4600 | 1680 1515 5162 200 2,018
90 000 4800 | 1600 1,650 5400 340 - 0,123
100 000 5000 © 1940 1,605 560C |, 400 0,488
200 000 6460 @ 3000 ' | 1,K30 7.100 870 0,944
300 000 7800 | 2800 1,970 8160 | j3u9 1,283 .
. ]
i

1) kg/cn12; 2) m/sec; 3) g/.cm3; LY cal/g-deg.

Example l. Find the wave-~dlisplacement velocity N, the local veloc.-

ity of sound 8ps the wvelocity of the particles behind the front V.
and the density Pes if the pressure on the front of an undsrwater shock
wave amounts to 1000 kg/cme. -
| Solution. For the specifizd value of the pressuré, the calculation
can be carried out using the linearized dynamicmcompatibility condi-
tions (1.205)-(1.207).

We have:
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rEd N 7i5+1 T .
Nessa (1+ LEs p¢> c2 1460 (1 + s 1000) =159 m/sec;

_ m=lp,) w0 (1 = B 100) i
ap = ap (1+ o5 Pe ) = 1460 (1 ) =100 m/sec;

e 1000
u“,:ao—[—;m_l-lodoqs,,l, =670 m/sec;

(_P_q_a) Pot B 1000 +3045 _\ ooe
o T B 3046 - )

o _In1328 0123 o179,

L3rs 715 715

b0 =104 2/ cm3. : \

=w£% potfos’® :
Zeck o ita T —
|m‘- e : = ""f,,:-" '
1 - - I .-""H:
155 = A '
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Fig. 24. Hydrodynamic elements on the front
of an underwater shock wave as a function of

the pressure (pf < 3000 kg/cmz).

Example 2. Calculate the velocity of sound ap behind the front of

an underwater shock wave, 1f the pressure on the front amounts to 237
thousand atm (the ccefficient k is in this case equal to 4.63).

Solution. From the dynamic.-compatibiiity condition (1.198) we cal-

culate the value of the density on the wave front:

Po—pPo=d (py—p5):
237 000 __-wo(p"23 =1):
ﬂ 2w 55,8

pq,= 1,80 g/cm3

Following the Jjump increase in the pressure and density as a re-

sult of the passage of the wave through the given point, the water be-
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Filg. 25. Hydrodynamic elements on the front ol
an underwater shock wave ag a function of the

pressure (pf < 300-10° kg/cmg).

gins to expand adiabatically.
The adiabaticity corditiom 1s determined by the relation (1.21)
£t (L)
” (p'> ’
Differentiating this equaticn. we obtain

a’=%%—=1:-(p+c)- ‘

Expressing the pressure in dynes per square centimeter (1 kg =
= 9.81-105 g—cm/secg), we obtain

am= }/1‘_‘22(237000 + 5400) 981108 =761 200 wfcex = 7612 m/seC . [sic]

§11. NORMAL REFLECTION OF A PLANE SHOCK WAVE FROM AN ABSOLUTELY RIGID
WALL

Assume that a plane shock wave is normally incident on an infin-
.ite absolutely rigid wall (Fig. 26). The shock-wave cdisplacement veloc-
ity N will be assumed directed normal to the wall. The parameters of
the unperturbed medium are denoted Pys Pgs TO, and Ve = 0,  while the
parameters of the medium behind the front of the direct wave are de-
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ncted by pf, Pps Tf, and Voo

At ¢he instant when the shock wave en-

PMM .
5. Pp. o, a Namp
bo h; Pyfer counters the wall, a reflected wave 1is pro-
Vg
. duced, propagating In the opposite direc-
Fig. 26. Reflection of tion wilth velocity thr' 1ts parameters are
a plane shock wave )
-from an unbounded ab- denoted by Potr? Potn? Totr’ and Votr®

solutely rigld wall.
The normal component of the partlcle

velocity on the wall 1s equal to zero in accordance with the condi-

tions of the probliem.

Aceording to Formula (1.55), we have for the dlrect wave

'U¢~.'= l/ (p¢ —po) (—l— __L .

fo Pd

Tn accordance wlth the came general relationship we have

Y

'”o'r'p”"""vam '/ (po'rv""p@)<?1;‘_;‘l:; . (1. 215)

‘Recognizing that on the wall Vorp = 0, we cbtain on the basis of

(1.55) and (1.215):%

V (Pom —Ps) (% — Fo—l-;:) = V (Po=P0) (_?30_ = _‘_)_t;_) ,

or )
71 1 1 1
(P’@"‘Po) (\';';—"‘;;') m(poﬂ,—pﬁ’) (P?—E:;;) »
hence .
S S
Porp— P& Po P
7o — Po =_1'____l_‘. (19216)

Pe Parp

Equation (1.216) can be rewritten in the form

- d_ 1 Porp
BT e T (1.217)

Pg == Po 1 H Porp 1

' P& Porp  Pa
Let the medium in which the reflecticn is belng considered be an
ideal gas. Then, according to the equation of the shock adlabatlc curve
- 85 -



(1.186), we have
£+ 170

fo  E=1p *1,

P k+l Py’ (1.186)
k“"1+ﬂo ’ .
k+lporp

oy =T

) i_-»_é_._fg_r_g (1.218)

Thus, we have obtained two additlonal equatlons, with the aid of

which we can eliminate p ... and p, from (1.217). Carrying out the cor-

responding transformations, we obtain

Povp k=1 py ~

I " (1.219)
Po k+1+l’ ’

A=—1"r,
fii /L_..-
¢ '/f" ——t— /
/ |
u S ammousne
u J
') . H F i T

i
(F,"Pmu) ”./ ow’

Pig. 27. Plot of the function

(pIOtI' - patm)/(pf atm) - f(pf)
normal reflection of an aerial shock
wave from a partition.

for

Formula (1.219) is called the Izmaylov-Crussard formula. It can

be reduced to the form

&+ 1
Por =P _ o . 71 (Po=Fo) .
PO/"'“Po W__po)_*_k? = ’ (1.220)
or, what is the same,
63 '
S (1.221)

Aporp o= 2Ap¢ + AP¢ + 7,,9

A plot of the function (p ~ )/ (ps — pr) = £(pe) 1s shown in
otr 0 by 0 by
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Fig. 27. It fodicws from Férmula (1.221) that for a shock wave of low
amplitude (pp ~>FD) we have

Potp = Po
———— 33T

Py = Do
Thug, the excess pressure on the partition doubles compared with
the excess presgure behind the front of the shock wave, in agreement
.@ith the well-known rasult for the reflection Of acoustlc waves.
In the cher limiting case, when Pp == Pg =+ ©, We have for k = 1.4

Potp=—Po
Po—pe 8

Using the conditions of dynamic compatlbillity, it 1s easy to de-
termine all the remalrning hydrodynamic eliements of the wave at the

wall. As a result of simple calculations we obtain

poo P (1.222)
H
Po penityg
Po
Tory Powp bo, (1.223)
Ty = Py Porp’
o, VY L
Now“’[(k"‘l\)"%'%' I]V ______p,‘;ﬁg__ (1'22 )
. (k+1)~;;;+(k-1)

Comparison of the results of the calculation for an ldeal gas us-
ing the foermulas obtalned with the results of more complicated calcula-
tions for air, with account of the dependence of 1ts specific heat on
the tempefature, shows that the relationships presented can be used
with accuracy sufficient for practical purposes when pf/pO < ho.

In perfectly analogous fashion we can calculate the pressure on

an absolutely rigid partition for reflection of an underwater shock

wave.
Here, obvicusliy, the relation

Porp —1
Porp— Po =P ,
Po— Po __Pi’f -1

Pe

(1.217)
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established from the general conditions of dynanic compatibllity, will
hold true also for water.

For a unique estimate cf the ratiu p /pf it 1s nec=ssary to |

otr
have one more equation relating the pressure with the deaslty. |
Such an equation, generally epeaking, shoulﬁ.be the esuation of 1
the dynamic adiabatic curve.
However, as was already mentioned above, for the range of pres-
sures up *o 25-l03 atm, 1t can be replaced successfully by the Poisson
adiabatic curve squation, since the change in entropy is regligibly

small. ' .

In this case

Po+ B .
from which it f»llows that
Porp Por, + B3 —’T, 1.225]
7§“=[pﬁkb} ' ( 25)
! )
Porp arp + B3 w 1. 226
P (B ( )

Simultaneous sclutiosn of Heos. [1.217), (1.225), and (1.226) en-
ables ﬁs tc determine the parzmeters oHf the weflected underwater sho-k ‘
wave as a functilon of the pressuare on the frout of the direct wave.
It can be shown thatl, asg in the cage of aerial shock waves, the
ratio (potr - po)/(pf - po) is alwsys larger than two, and only for
weak waves does 1t ternd tc vhis value.

If 1t is necessarv

&

©0 calevlatz the reflescticon pressurs fur a
wider range, 1t 1s necessary fc assume in lileu of Eq. (1.2015 a dy--
ﬁamicncampatibility cerciticor uin the form (1.198) and'to carry out
varlations of similer nature.

Such‘calculations were carried out by several authors and yilelded.

close results. Some of the calculation results are given in Table 4.
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For some values of the presgsures own the front of Che direct wave we
give here the wratlos c¢f the pressurcs in the reilected wave to the

pressures in the direct wave, rotr/pf‘

TABLE 4
1 2 Beanunuw nnnncxnm‘wl?a hponre npavoh
!
Mo naunmu HOJNLL, K2/CAT
' 500 | 1000 | 5000 | 10000 | 25000 | 50000
R . : y /
21 itennn u Oee Tyara 2,088 2,170 2460{ 2,02 3,44 3,93

i f Cynione w Motpawesa (2,040 2,15 | 2,55 | 2,86 3,35 3,74

5| fin asipamuzeckoll agna- 12,0851 2,18 ; 2,76 ) 2,00 3,03 3,50
Gase {1.198) !

1 i

1" Deta hy; 2) values of the pressure on

. , . . ) - 2 N
shne front of the directs wave, kg/em™; 3)
Penney and Das Gupta; 4) Suatsov and Patra-
srav; 5) according to the dynamic adia-
vatic cwve (1.158).

in conciusion 4t must be emphasized that for an underwater explo-

sioi, the nonlireair problcm of direct jucidence of the shock wave on
an absclutely rigid partition 1s essentially of thecretical interest,
gince the coeflficlent of reflection devlates appreciably from two at
presgures for which even such materials as steel must be regarded as
clastic, and consequently the assuagtion that the wall is absolutely
rigid becumss an unreallstic one. |
Such calculations are of practilcal significance only in the study

of the infteraction vetween shock waves of equal intenSity.

Framgle 1. Determine the reflection pressure and the temperature

on the front of the reflected aerial wave for a normally incident di-
rect wave wlth excess pressure Apf = 5.0 kg/cm2 on a rigid wall.
Solution. From Formula (L.187) we obtain the temperature on the

frent of the direct wave:

Re1, Po
' TV - ?‘c 2:::}—’-*. .I_;:_:.; ;
=1t |
T = 288 ug__'**_’ gfn 2552 °K." .
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ald ol (1.220) we c=lculate the refiectinn pressure:

With the

. . &t .
Porp = Po 2 . —" (P —Pa)
PR 75 :
Py Po (s -pa) + P
Porp = 1,083 o 5.8, )
R 5—--6-—‘-7—.—,-773—3 = 46,

~ 50
. <,
Porp ™= 50-44 1 030 = 23,0 kg/2m=.

We determine the ratio p .../ pp. On the basis of (1.222) we have

o P9
Potp b
fo 2o
Rt 1) == 4 ]
{ ) P
Porp 14.582
= 2,45

~1

Po 05,82 -

Finally we obtain
Ty Po Pory |

23,0

TQJP=55267()—33-:2'. =86(‘°K,

5 -

the reflesticn pressure on the fron%t of an

Example 2. Determine
the front

underwater shock wave for a direct wave with pressure on

P = 600 kg/cm2 normaily incident on an absclutely rigid wall.
Solution. The problem reducesz to solving the system (1.217J,

(1.225), (1.226)
. Po.j 7
Pt o L (2.237)
amhe Ty T S
o
. . 1
#a1p Porp + £ ~7, r.z225
o o [ B 2T ( )

. 1 )
££1={ﬁfu££]“ (1.226)
bo  LPg + B *
lations are summarized in Table T and are

The ccrresponding calcu
of the cbvicusg graphic congtruetions

.
L8

presented in Figz. 28. On the bas
we arrilved at the coneclusion tha® the rerlecticin pressvre in thils case

5,130 is merely ' 6.5% dif-

amounts to 1275 kg/cmg.
The coefficient (p_.. — pn)/(pf - Tg)

ferent from the acousgtic conefficiznt.
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Fig. 2&. Illustrating Exaniple

1 of §1l.
TABLE B
. : -i o R f !
. © i PorpFe =B Povp+ B | Porp+81 {
Fa et = e Yo s l 4 s
A B yemtr Pop, B+ B | TP+ 8 [ gl 7,15 (6).,
T 9 3 4 s | 6 7
1200 | 2,0001 4245 1,393 1,1646 Io,m«szo 0,020176
1250 | 2,0851 4295 1,4i00 1,1783 | 0,14922 | 0,020869
1300 | 2,1669 4345 1,426 1,1917 | 0,15412 | 0,021555
135 | 2,2520 4395 1,4428 1,2057 | 0,15927 | 0,022275
Coribinuatilion
l 60 | e ® | Mgk | 6 e | 9L | gy 1
' 715 ¥ 715 s (g )pmp—po
Tz 9 10 1 12 13
€,00635 | 0,000277 1,047 1,022 2,1363 0,001779
0,07115 | 0,009951 1,049 1,023 2,1304 0,001704
0,07628 | 0,010608 1,051 1,024 2,1250 0,001634
0,08117 | 0,011304 1,053 1,025 | 2,1200 0,001570
§12. REFILECTION OF ACOUSTIC WAVES

n the preceding sectlisns of the book we

nave emphasized several

times that the laws governing the propagation of weak shock waves can

be in%;estigated vy assuming that the entropy cf the medium does not

change.
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In this connection, gieat interest is attached to the limiting
case of incidence of a wav2 of infinitesimally small aanplituvd: on a
wall. In such a formulation, *“h» wav: reflectinn proklem i:= ustaily
called the acoustic approximation problem.

We shall dwell later on in suffi-ient detall on the main premlses
of acoustics. For the time being we note that one such premige Zs the
assumptlion that the propagation velocity of the perturbations is con-
stant. |

Assure that at some Iinstant of time a plzne acoustic wave is 1in-
cidant on an absolutely rigid -vrface at th2 point ¢ (Pig. 29), the
front of the wave making an anglc a with the bHourdary.

The wawve imparts to the gas a velocity whose u2rmal component is
v ¢cos a. By virtue of the absolute rigidity of the boundary A0B, the
normal compcnent of the velccity on the boundary shoull be equel to
zero.

This is attained only ia the cage when one superimposes ¢n the
existing velncity distribution a serond wave frent, which has at the
point O such an intensity ead swuch » directicn, the® its passage )
through tre liquid follewing the front causes the formation of a nor-
mal velocity equal in magnitude and oppnosit= ‘n direction to the v~loc-
ity prcduced by the direet wave along the line AD.

In other words, the following reliation should wue satisiled:

veosa—7' cosal =0 (1.227)

In the case of sma.l perturbaticns, both the direc:c and *he re-
flected waves propagate with = velczisy equal to the velocity of sound
éO' Then the velocitr ¢t dizplacement of the point O ghouid obwinugsly
be equal to ao/(sin ¢) on cne gide and eo/(sin a') on “he other. Con-

sequently,
Gy _ G (1.228)




¢ 2 . This equation leads to the well-known

\\\ v f;<:// ' law of acoustic reflection, according to
\¢ i ‘v'mcx
o U . which a = a'. But then also v! = v. Since
AL

£  — ! the pressurc on the front of the shock wave
‘Flg. 29. Scheme of re- is determlned by the formula p = Po2oV: by
flectlon of acoustilc .
~waves. : virtue of the equality of v and v' the pres-

sure on the rigld wall is always egqual to 2p, regardless of the dilrec-
tion of the dilrect shock wave.

Only vwhen o = 90O ls there no reflectlon of the wave. The wave
then glides along the wall and the pressure on the wall 1s equal to p.

" The above-fcrmuulated consequences of the law of reflectilon of
waves with Infinitesimally small amplitude 1s known under the name
acoustlc paradox.*

Of great Interest is the case when the acoustlc wave 1s reflected
nct from an absolntelﬁ rigld wall, but from the boundary separating
two compressible medla. Here 1t 1s necessary to consider in addition
to the direct and reflected waves also the so-called refracted wave,
whilcii propagates in the medlum from the boundary of which the reflec-
tlon takes place.

Just as 1 the preceding case, we can state that the velocity of
dlsplacement of the polnt O over the separation surface willl charac-
terize to an equal degree the motlons of the direct, reflected, and

refracted waves, l.e.,

ay [ a”

e e = ima | (1.229)

As 1n the flrst case, the reflectlon law o = a' holds here, too.
In =2ddition, we get from (1.229) the so-called Snelil's law for

the determination of the directlon of the refracted wave:

LI - (1.230)
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The contlnulity of motion and of the velocilty of raotion ~f the par--

ticles on the separation suriace calls for gatisfactlicin of the equation

Veos a2 cos o = v’ cOs 3”‘ (l. 231\
Py =pl } '
Obviously, also,
P =2p,0,7,
P == poae?’ (1.232)
p ==P'a”'0

The product Podo> which is the coeffilcient of propowvtionality be-

tween the pressure and particle velocity, 1s frecquentlyr zalled the
acoustic imp:dance of the unzdium.
From Egs. (1.231) and (1.232) it fcllows that

Po g “05a”

—— o e

=
Podq Po"o pa” cosa
onr
j.‘liall cos e *

p—p o= p 8 25T (1.233)

Receognizing that p" == p + p', we obtain

yal = 2p7a” cosa .. ( 1. 23“-')
] =7a” cosa - pg7g cos @’
__p___pa €OS a — pyd, (OS5 a” (1.235
p g"a” cosa + pya, Coza”’ .
Using Sneil's -aw, Forumlas (1.234 and [ 1,235) are r2alily rc-
duced to the form
o latecsy. &, I0] (1.236)
; ' : "3 )
pla” cosa + Polts ]./ o= (-5;—0) &N
| e V‘ "_‘T) ) (1237
P tp;:, €08 ¢ ]/ 1w ) sln’aw i

The ceavenience of the last relations lizs in the Tact that they

contain in addicion to the acoustlc inwedance: of the medis ~rnly The
angle of inclidence of the direct wave.
If a" < a,. then reflected and refraciz=d waves are produced for

all angles of incidence of the direct wave.
-~ 94 ..




A idence

0<a e, =arc sin 22, (1.238)
ﬁreflection.
For angles of incidence exceeding Q5 the reflection coefficlent
p'/p becomes complex with a modulus equal to unity. This means that
the energy flux through the boundary separating two medla is zero. No
refracted wave 1s formed. The wave perturbations occurring at the sep-
aration boundary rapidly attenuate in amplitude with Increasing depth
of penetration into the second medium. ¥
It follows from Formula (1.235) that no reflected wave is formed
only when the acoustic properties of the media are identically equal.
Indeed, equating the numerator of(1.235) to zero, we find that

when the angle of incidence is

’2. »?
- Po T4y
a==3ar¢ cos re Vm—; (l- 239)

we have
p'/p = 0.
Suchca case is possible if ay > a" and p" > py, or ag < a" and
p" < pye
In the case of direct incidence of a wave along a nzrmal to the
surface o = a' = 0 and Formulas (1.236)-(1.237) assume a particularly

simple form

LA 2. 240)
p pra” - pdy '
R e (1_241)
p P”a” + Poao.

Relations (1.236)-(1.241) enable us to draw several important corn-
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clusions of physical nature:*

1. Upon reflection of a shock wave bropagating in water from a
medium with acoustic impedance that is lower than the acoustic imped~ l
ance o water, a rarefaction wave is produced (nt/p < 0). The pressure 1
on the firont of the refracted wave 1s in this case lower than the .preg- }
sure on the front of the direct wave. Consequently, the resultént pres-
sure on the separation bcundary is also lower than the pressure on the
front ¢f the direct wave.

2. Upon reflection of the same shock wave from a medium whose
acoustic impedance is larger than the acoustic impedance of water, the
reflected wave is a compression wave and the bregsure on the front of
the refracted wave will be larger than the Pressure on the front of
the direct wave.

Of great practical importance is the particular case of reflec-
tion of an underwater shock wave from a free surface bordering on the
atmosphere. Since the density of water is 775 times larger than the
density of air, and the sound propagation veloclty In water exceeds
the sound propagation velocity in air by 4.4 times, the ratio of the
acoustic impedances of water and air amounts to about 3400. Conse-
quently, upon reflectionAof an underwater shock wave from a frees sur.
face, a rarefaction wave should arise, capable not cnly of completely
suppressing the pressure in the direct wave, but also of causing ten-
sile stresses in the liqulid. The pressures on the front of the re-
fracted aerial shock wave will then be negligibly small compared with
the pressures on the front of a direct wave.
| To the contrary, when an aerial shock wave strikés a free liquid
surface, an underwater shock wave will arise, with an amplitude which
1s at least twice as large as the amplitude of the direct wave. Reflec- '
tlon of the shock wave of an underwater explosion from the free sur-
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face will be considered iﬁ detail subsequently.

Example. Calculate the resultant pressure on the wall of a wooden
berth when an underwater shock wave with pressure on the front Pe = 80
atm is normally incident. The density of wood is assumed to be p" = 50
kg~se02/m2, and the velocity of sound in wood is a'' = 1600 m/sec.

Solution. The resultant pressure on the wall is equal to thé pres-
sure in the refracted wave.

We carry out the calculation in accordance with Formula (1.240):

pY_  %Ta” _ 2:50.1600 2
= T e = 50-T600 + 102 1400 = 698 kg/cm .

We obtain
P =0098.80 = 558 atm.

§13. LINEAR (REGULAR) REFLECTION OF SHOCK WAVES FROM A PLANE SEPARATION
BOUNDARY BETWEEN TWO MEDIA

Iet us consider now the reflection of a plane shock wave from an
infinite wall. We first study a case when the wall is absolutely rigid.
Let the angle of incidence of the direct wave be a (Fig. 30). The van-
ishing of the normal component of the particle velocity on the wall
leads to the need fox satisfying the relation

Uy COS & =~ Uy, COS a' = O, (1.242)

The velocility of displacement of the point 0 can be calculated

with the aid of the dependence

ol L (1.243)

sine slova
The only difference from the previously considered case is that

now we have N #£ Not and the shock-wave displacement velocities differ

r
from the velocity of sound aq in the unperturbed medium.

The twe eegusilone (1.242) and (1.243) contain zix vapiables: Vi,

o, Nf, v at, N However, in this case, by virtue of the dynamic

otr
compatibllity conditions, the parameters v

otr”’

oty and Notr’ and also Ve
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Filz. 30. Scheme of
regular reflection of
shock waves.

and N., =.2 unlguely related with one an-

'
e
other.

o

s, 1 we know the paramceters of the

r
oL

direct wave, we nave at our dispopai two

.

eguatiocns for the determinaticn of the two

7 1& {or !
variables v_. . {or thr> and a'.

Numerical solution of these equations for a specified intensity

o' the Clrect wave and angle of incidence a yields two vall..z ol the

angle o', and conseguently two valucs of the corregponding quantities

v and N .
otr otr

These last parameters determine two values of p

oor”

Obgervatlions show that usually one realiz:g reflection with a

smaller angle a'. and in the general case a £ a'. Only ir the limiting

case of Infinitesimally wealt waveg are the angles of reflectionn and

incidence equel Thilsg case wag cornsidered in detail in *the preceding

e —
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Fig. 31. Dependence of

the angle of reflectiorn

on the angle of inci-
dence for different
pressures on the Ifront

of an aerial shock wave.

1) Limiting.

./

o
IR W— | I— _
40° 59° §9° 70° §0° 3¢
a®

section.
Figure 31 showg plotgs of the calcu-
ted reflecticy ragles for an idea.. gas,
where %“he parvameter g ~hv.eza to he tha
ratio £ = pO/pf.

From this figuree * 5 “0l1~w3 chat the
larger the angle of 1ncidevnce, tle closer,
for a specified corstanth-prasgssuwe curve,
are the points that zrara. terize two val-
ues of the angle »>f rel'lection a'.

t 17 ole cx these
At a certain angle a e d

points coalesce. Wren o > linear

vred’?

reflection, a characteristic feature of which i3 thz existence of one

common point for the direct and reflected waves 1lying on the boundary
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Fig. 32. Dependence of the angle
of reflection on the angle of in-
cidence for different pressures on
the front of an underwater shock
wave. 1) Limiting values of the
angle o.

surface, becomes Impossible.

The phenomenon of linear reflection was investigated in great de-
tail by Neumann, Polyachek, Sieger, and A.N. Patrashev.

At small incidence angles, when the inequality a < o* obtains,

. 1 k—1__ s .
where for an ideal gas o"= j-arccos ——==40% the reflection angle 1is

smaller than the angle of incidence (a! < a) and the ratio potr/pf is

smaller than for normal reflection, i.e., smaller than calculated by

‘the Izmaylov formuvla.

v \

W o » a¥f, the angle of reflection is greater than the angle of

incidence (a' > a) and p /pf is larger than for normal Incidence.

otr
However, linear reflection is possible for o > a¥* only if o¥* <

<o ar

e
pa.

LS

0]

Calculations of gsimllar nalture were carried outs zlsc for water.

Their results are presented on Figs. 32 and 33. Figure 32, plotted

from the solution of A.N. Patrashev, gives the dependence of o' on g
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for congtant values ol Lo presousc. wn the rront.

Unlike air, in water the ar ol reflection is always larger
than the angle of incildence «, an onsequently obligue reflection of
a shock wave in wabter always yields a greater presgure than normal re-
flection, for identical pressures . tne direct waves.

The coefficient €, which characterizes the pressure ratio in the
reflected and direct waves, £ = <potr + B)/(pf + B), is shown in Fig.
33 as & sunction of the angle of incildence for different . <zsures on
the front of tTne direct wave.

Tt is casy to note that at pressure amplitudes in the direct wave
below 600 atm the coefficient € differs little from unity, so that the
pressure on a rigid wall practically doubles at incidence anglesg
smaller than apred'

Tt is also of interest to investigate the more general case of
reflection of shock waves from the separation boundary betwesn two
media, without assuming absolute rigidity of the wall.

Such a problem was considered icr both nornal and incliined inci-
dence by A.I. Gubanov.¥

Tn the case of normal incidernce, using th2 notatien of §12, “he
houndary conditions on the wall can be written in the form

v o— v = v"; (1.244)
p+ p!' =p'. (L1.245)

The only difference from the acoustic approximnafilon lies in the
taet that the connection between the pressuves and velcnities cff the
particles is expressed not by the linear relations (1.232), put in
ferms of the dynamic-compatibility conditions.

If, for example, we assume both the first and the second medium

to be an ideal gas, then we obtain on the basis of (1.189)
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Fig. 33. Plot of Fig. 34. Scheme of
Uppeg = (e, A). regular reflection of

a shock wave from a
surface separating
two media.

) .
N (1.246)
¢ % ok
V' e 5= e ] 1.2 7
Erip k=1
ke z/ _‘;_7:—7'7 + i
1717
Qg ("',"“ 1)
~ o I
T (1.248)
; _"';i'/—' -,"—)O_- BL,/T—'

Congequently, assuming the parameters on the front of the direct

1

wave known, we can always calculate the varameters of both the re-

flected and the refracted waves.
In the cage of inclined incidence, the formulation of the boundary
conditions become somewhat more complicated, for unlike the acoustic

-

approximation, i1t 1Is necessary he

H

e to take into account the angle

that characterizes the deformation of the wall under the influence of
the shock wave (Fig. 34)
The condition for a common point of the direct, reflected, and

refracted waves on the surface separating the media will as before be

A J\',) n N - 1‘.1.
sha - slna T shne <'L29)

The equation for the pressures on the contact surface is written

Iin the form
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P p==p (1.250)
The equation for the normal components of the particle velocitiles
will be
veas (& —8) — v cos (@’ 5 §) = 7" cos (o — B). (1.251)
Finally, obviously, the point O is common not only for the wave
fronts, but also for the branch of the contact surface OKl.
The displacement velocity of the latter 1s equal t~»
o' cos (a - B). .
Its velocity of motilon along the y axis will be

v’ ¢ccs {a 4 §) .
sia 3 :

The last ratio is equal to any of the ratios (1.249).
We thus have five equations for the determination o>f the nine un-

knowns: N a', vt, p', N", a", v", p", B (the values of N, a, D,

otr”’

and v on the front of the dlrect wave are assumed specified).
In addition, from the dynamic compatibility conditions we can re-

gard the following as known:

Norp=N @)
v=v(p),

N'=N ("),
V= v (p”).

Thus, we again arrive at a closed system of eguatlons, which when
solved enables us to calculate all the parameters of the reflected and
refracted waves.

Such calculations for the particular cases cof strong and weak
shock waves, and also for medla that differ from eacl. cther greatly
and little have bveen carried through by A.I. Gubanov to the stage of
final approximate relations.

As was already noted above, when the angle of incldence gf the .

direct waves are larger than the limlting angle, linear reflectilion be-
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comes impossible. There occurs the so-called nonlinear or Iirregular
reflection, which will be analyzed in the next section.
§14. NONLINEAR (IRREGULAR) REFLECTION OF SHOCK WAVES FROM A RIGLD WALL

At angles of incidence larger than o

pred? as was already men-

tioned earlier, linecar reflectlon becomes impossible. The reflected
wave, propagating through the perturbed mediuvm, overtakes the diréct
wave and, merging with the latter, forms a third wave frequently called
the frontal shock wave or the Mach wave. A three-wave configuration
results, a characterilstic feature of which 1s the existence of a com-

mon point of intersection of the waves (the so-called triple point).

3 4
LLLe l/[ L LLLLLLLLL L

l? ar
- | H

LY fx “‘"

/O

Fig. 35. Staticnary, direct, and
inverted nonllnear reflections.

Starting from the conditilons of dynemic compatlibllity, we can
show that the intersection of fthree strong discontinuity fronts is pos-~
sible only if an additlonal condlitilon is satisfied, consisting in the
fact that another surface of statilonary strong discontinuity must pass
through the point ¢ (Fig. 35). It is usually called the contact sur-~
face.

zpending on the Jlocation of the contact surface, a 4istinction
is made between three types of nonlinear reflections (Fig. 35): sta-
tlonary, direct, and inverted.

In stationary nonlinear refllectilon, the contact surface 0D is
parallel to the wall. In the case of direct ﬁonlinear reflectlion, the
contact surface is directed away from the wall; in the case of in-

verted reflection it is directed toward the wall.

- 103 -



inverted nonlinear reflection 1s un-

il 7 stable, collapses, and can be disregarded.

Diagems wzyesgsepnozy |
f LT 1
|

.Direct nonlinear reflection is realized

s s e e ——————

most frequently and iz of greatest practical

|
|
|
i

P B interest.

Y09 08 47 0F 05 04 03 07 41 2

<l Figure 36 shows the curve for an ideal

Fig. 36. Regions of
regular and irregu- gas, representing the dependence of o on
lar re/lection. 1) - pred
Region of irregular the ratioc of the pressure in the w.serturbed
reflection; 2) re-
gilon of regular re- medium Py To the pressure in the direct wave

flection.
Pp- °

This curve divides the region of all possible values of the angle
a and the ratio po/pf into two parts: a region where linear reflection
is possible, and a region of existence of nonlinear reflection. Start-
ing with po/pf = 0.5 and up to po/pf = 0 the limiting angle amounts to
about 40°.

Problems in the theory of irregular reflection, following Mach,
engaged many researchers. However, the complexity of the boundary ccn-~
ditions of the problem have made i1t necessarv to introdice definite
simplifying assﬁmptions, and consequently at the present time the rse-
sults of the theory are still far from complete and in many cages
yield serious discrepancies from the experimental daca. A opractical
estimate of the parameters of the frontal wave is therefore carried
out with the aid of empirical relationships.

A more detailled exposition of irregular reflection of an aerial
shock wave from the surface of the earth (or water) will be given-later
gn. As to irregular reflection of shock waves in the éase of an under-
water explosion, by virtue of the consideraticns presented in §11,
such a reflectlon i1s rarely realized and therefore *this rroblem is not

considered in the book.
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[Footnotes ]

By homogeneous system we shall henceforth mean an aggregate
of elementary particles which are identical in their chem-
ical and physical properties.

b,m,v,p, — infinitesimals of higher order.

Here and elsewhere in thls section we denote by €; a quan-
tity of first order of smallness.

The minus sign in the term contalining cn is the consequence

of the fact that the direction of the outward normal to the
surface S1 does not coincide with the direction of motion of

the discontinulity surface.

In the literature such a surface is frequently called a con-
tact surface, or a surface of tangential discontinuities.

If [p] = 0, then from (1.40) [v] = 0, and consequently,
[6] = 0 and [p] = 0, i.e., there is no strong discontinuity
whatever.

The variables 6 and u are not independent, since by defini-
tion 6 = N -- Vi and the value of the internal energy 1s ex-

pressed in terms of p and p with the aid of the equation of
state.

For further detalls see Ya.B. Zel'dovich "Shock-Wave Theory
and Introduction to Gasdynamics, " Acad. Sci. USSR Press,

1946.
Formula (1.69) follows from the general expression

grad (z, ) = (By) a + (ay) & + FXrota + axrot §,
if we put 2 = © = v {

{see, for example. N.Ye. Kochin, Vector
Analysis and Introduc

see,

tion to Tensor Analysis, GONTI, 1938).
Having defined the characteristics in this manner, we ghall
leave out henceforth the index L.

Unlike the previous coordinates Ty and ti, here r’i and T!',
characterize the streamline (the trajectory of motion of a
liquid particle).

o AV ey “ g ™ %, Y. 3, . R VAR By A e ot i
San, for axemTa, Koshlyalkov, Fundamental Dlflersrtlal Equa-

tions of IMathematical Physics, GTTI, 1933.

- 105 -~

i st et Mo et



Manu-

script

Page
No.

[Footnotes (Continued) ]

54 Relationship (1.163) can be derived, by considering directly
the ciuations of one-dimensional Lsentropic motion of a lig-
wid wieh plane symmnetry.

Indeed, putting in 6 = const and v = 1 In Formulas (1.97)
and (1.98), we obtain

e (1.164)

ur

-k—%-—l-<—%a7'+(/'%{}:)+n—g¥-=0. (1-165)
Subtracting and adding these equations, we can write them
in the form

t k—1

a) +(u+a)70r-(u+ —k—E_—-l—a>=0.

|
e
1

a 2
yr— a) +(u—a)—‘-)7(u-—k¢—__—1-a) =0,

be v + 2a/(k — 1) = const., that of the second is v —

Obviously, a possible solution of the first equation will
— 2a/(k — 1) = const, in agreement with the result (1.163).

«g2_4p — a1
62 | o =gb| o, =D (PL.) o
whence

2 dp

1.
ay == =n e B)
07Uy | pup, TP B

Y See, for example, L.D. Landau and Ye.M. Lifshits, Mechanilcs
of Continuous Media, GITL, 1953.

71 At low pressures on the wave front, Formulas (1.181)-(1.189)
can be linearized. In particular, if Apf/pO < 1 we have with

error not larger than 5%

N=a°<l+k:,;l$>; (1.190)

ap=a,1 4 £ %4’) (1.191)

71 As the initial data for the calculation we have assumed the
parameters of the international atmosphere: ag = 340 m/sec,
Py = 1.033 kg/cmg, pg = 0.125 kg—secg/mu, T, = 15°¢, and
k = 1.40. .

5 See, for example, R. Koul, Underwater Explosions, IIL, 1950,
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[Footnotes (Continued)]

Obviously, knowing the values of the pressures and densities
on the front of the wave, i1t is also easy to calculate the
temperature from the equations of state. However, such a
formula is cumbersome, and is therefore not presented here.
For the same reason we have also left out the expression for
the velocity of sound, which can be obtained from the adia-
baticity conditions of water.

Equations (1.208)-(1.211) were derived by N.N. Suntsov. The
coefficient m was assumed by him to be equal to 2.1.

If the direct wave 1s statlonary, then the reflected wave
will also be stationary, and the particle velocities will be
equal to zero not only on the wall but everywhere behind the
front of the reflected wave.

Actually, for waves of finite amplitude, at a certain angle
of incidence a < 90°, as will be discussed in detail later
on, this type of reflection becomes Impossible and 1is re-
placed by the so-called nonlinear (irregular) reflection.

A detailed analysis of the case of total internal reflection
of acoustic waves with an estimate of the depth of penetra-
tion of the wave perturbations as a function of the length
and frequency of the direct wave 1s given in the papers of
I..M. Brekhovskikh. See, for example, L.M. Brekhovskikh, Waves
in Layered Media, Acad. Sci. USSR Press, 1957.

Strictly speaking, the first derivation is valid only for
angles of incidence smaller than the angle of total Internal
reflection. Usually, however, 1if p"a" < pyay, then also

13
a' < ane

A.T. Gubanov, Reflection and Refraction of Shock Waves on a

_Boundary Between Two Media. ZhTF, Vol. 28, 1958 and 29, 1959.

[List of Transliterated Symbols]

BHYTp = vhutr = vhutrennyy = internal

BHellH = vneshn = vheshnyy = external

Il

d =° front = front
Kp = kr = kriticheskly = critical
KT/HM2 = kg/cm2

r/xmd g/cm3
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M/cer = m/SE

cx = sk = skorostnoy napor = veloclty head

KF/KM2 = kg/cm2

M/cex = m/sec

kan/r-ger =
aTM = atm =

npen = pred

cal/g-deg
otrazhennaya volna = reflected wave
atmosfernaya volna = atomospheric wave

— predel'noye otrazhenlye = limit reflection
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Chapter 2
. EXPLOSION IN AN UNBOUNDED MEDIUM
§1. FORMULATION OF EXPLOSION PROBLEM

As indicated above, 1n the general case the distribution of pres-
sures and temperatures on the boundary separating the explosion prod-
ucts and the surrounding medium at the Initlal instant of time is ar-
pitrary, since the character of a reaction such as an exploslon does
not depend on the properties of the surrounding medium. Usling the pre-
viously adopted terminology, this surface would have to be regarded as
a nonstationary strong-discontinuilty surface. However, the dynamlc com-
patibility conditions, which should be satisfied on a nonstatlonary
strong-discontinuity surface, are not satisfiled in this case, owing to
the arbitrariness of the parameters of the explosion products. Conse-
quently, 1t is impossible likewise for a single discontinulty surfacg
to exist.

N.Ye. Kochin has proved that for all possible cases the initial
surface breaks up into three surfaces. One of these surfaces, propa-
gating in a medium surrounding the charge, 1s the nonstationary strong
discontinuity surface (shock-wave front); the second, separating the
explosion products from the medium, is a stationary strong-discontinu-
ity surface (the gas-bubble surface); finally, the third, propagating
'with the explosion products, is a weak-dlscontinuity or characteristic
surface.

The main problem of the theory of explosion in an unbounded lig-
uid is the study of unsteady motion of a liquid between boundary sur-
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faces, namely the front of.the shock wave and the gas-bubble surface.
Such unsteady motion is determined by the following system of equa-
tions:

p-oF -+ grad p =0; (2.1)

B 4 div (o) =0. (2.2)

This system contalns three variables: pressure, denslity, and ve-
locity, so that it is not a closed system.

In order to close this system, 1t 1s assumed in many investiga-
tlons that the sclution of the problem can be obtained by assuming the
1iguid to be idncompressible: p = const. If the motion is in this case
potential over the entire region of flow, then the matter reduces to
an analysis of the well~studied Laplace equation A9 = 0. This is in-
deed the procedure used in his time by Iamb, to whom belongs the first
theoretical solution of the problem of underwater explosions.

However, the assumption that the medium in which the shock wave
propagates ds i1ncompressible dcoces not in fact correspond to reality.
The point 1s that explosions are accompanied by considerable pressures,
in which the water is appreciably compressed (for example, more than
20% at pressures of 10 thousand atm).

In addition, and this is the major point, the use of the hypo-
thesis tha% liquld 1s incompressible does not make it possible to take
Into account the energy dissipation, which is rather great in
the case of explosgions.

For example, in an underwater explosion approximately 60% of the
initial energy is dissipated during the first pulsation, while in an
aerial exploslon the fractilon 1s even larger, something which obvi-

ously cannot be dilsregarded.

Finally, the incompressibility hypothesis excludes from considera-
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tion shock waves and the local expiosion phenomena as well as the
finite perturbation propagation velocities which are connected with
their existence.

In view of this, the incompressible liquid hypothesis cannot be
used to study the explosion process. This indeed raises the need for
setting up additional supplementary equations to close the system.
Such equations are the equation of state and the energy eqguation,
which contain, in addition to the foregoing, two other variables,
namely the absolute temperature T and the heat influx e. But in most
cases the high speeds of the explosion processes Practlcally exclude
the possibility of heat exchange with the surrounding medium, so that
the heat flux is assumed equal to zero (e = 0) and the system of equa-
tions 1s closed.

However, solution of such a system of equations for the general
case entails great mathematical difficulties. In view of this, only a
series of investigations for motion with plane, axial, and spherical
symmetry have been carried out. At the same time 1t must be noted that
1t 1s precisely the analysis of one-dimensional motion which is of
primary interest.

Exact solution of the explosion problems has been obtained only
for motions with plane symmetry. In all other remaining cases only ap-
pProximate methods have been developed. We present here only some of
these methods, paying princilpal attention not to the derivations and
transformations, but to the research methods.

In calculations based on any of the existing schemes, it is nec-
éssary to know the hydrodynamic elements at the initiél instant of
time.

We now proceed to such an estimate.

Assume that at some instant of time, which we shall regard as in-
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itial (t = 0), the values of the hydrodynamic elements Ve, p, and p
are specified on both sides of the plane x = O. We assume that for

r < O we have at that instant everywhere
v = const="7,; p==const=p; p=const=p

and for » > O

VU, = Const = vy; p==const==p, p=const=p,

gm0 .- '

Vi Pys fo | ) Vol by -

r=J

Cpest
A
g bbb

By Prs
Pf/‘

1 raf 2

1 ? [
Yapiohs

Fig. 37. Breakup of initial explosion
surface. 1) Weak-discontinuity surface;
2) stationary strong-discontinuity
surface; 3) nonstationary strong-
discontinulity surface.

These six quantities are in general perfectly arbiltrary. On the
plane r = O the dynamic compatibility condilitions are not satisfied, so
that the initial discontinuity surface breaks up into three surfaces
(Fig. 37). In the medium with parameters p,, V,, and p, there will
propagate a nonstationary strong-discontinulty surface (shock wave )
with some .velocity N to be determined (line OA). Moving in the same
direction will be a stationary strong-discontinuity surface, which
separates one medium from the other (line OB). The veloclty of its
displacement, v, is also to be determined. Finally, to the left of the
initial svrface there will propagate a weak-discontinuity surface (or
characteristic) with velocity equal to the veloclty of sound in the
medium py, Py (line 0C).

We shall assume the quantitiles v4, Vy, Py, Pps P3s Pp known, with
Vo = 0, Py = Pg, aRNd pp = po
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Then, to estimate the hydrodynamic elements v'g, p'g, p’g, v’l,
p'l, p'l, N we shall have the following system of equations:

1) on the nonstationary strong-discontinuity surface

(0] =0, (2.3)
p0 [v] == [p]; ' (2.4)
o [4 +u]= (oo (2.5)
” 2) on the stationary strong-discontinuilty surface
[v] =0 or ’U;:—*»’C’;::";'; . 52.63
[P} =0 or pi=p,=p. 2.7

Since the entropy does not change on going through the weak-

discontinuity surface, we have

L, (2.8)
P fr - .

W2 note further that the line O iz 2 chersataristisc of tha ss
ond family (rarefaction wave). On this characteristic the values of ¥
and a are constant, in accordance with the conditions of the problem,
and consequently the following relation will be satisfied in the en-

tire region

7"+x-2-1“","‘x11 a,+ v, (2.9)
The system of equations (2.3)-(2.9) enables us to determine un-

lquely the seven unknown quantiltiles.

For an ideal gas Eq. (2.5) i1s conveniently replaced by the Hugo-

niot adiabatic curve

po kA Dp— (k=D

Pkt Dpg—(k—Dps * (2.10)

and for water i1t 1s replaced by the dynamic adiabatic curve [see
(1.198)1: '
p—py=d [(e)" —eb|. - (2.11)
Iet us now carry out the necessary analysis for estimating the
hydrodynamic elements on the front of an underwater shock wave at the
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initilal instant of time. Néglecting py we obtain from (2.11)

, (2.12)
p=d o —gb],
but
I
e
hence
;=_&‘ "
P=ryhe (2.13)
On the basis of (2.12) and (2.13) we have
k. 1 "L ""L |
p=p[d(p;' —e)] P *. (2.14)
 Finally, from (2.9)
v x-2-l (l'>=.=1’l/l+-x—_-2_’—_—l—a“
or
2 . P __ 2 P
v+ g/";'j“”n““r:ﬂ/*#' (2.15)
:Substituting the values of p'; and p' in (2.15) and recognizing
that*

. 1 1
”’=]/d(?a"—95)(3:—;;—), (2.16)
we obtain finally

BT S R o LT
V/d“? Po) é)' **lfvfﬁﬁd@:“ﬁbl ot
2 “p .
o= ;/x—;’—:%—vx... (2_17)

®—1

Equation (2.17) contains only one unknown quantity, p'g. Solving
this equation we can calculate the density on the front of the shock
wave at the inltial instant of time. Then, using the dynamlc compatil-
bility conditions, we can readlily obtain all the remaining hydrody -~
namic elements.

Perfectly analogous arguments enable us to obtain a corresponding
dependence for the case of an 1ldeal gas. Such a dependence has the form™”
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1/ » 1

/(L

Lﬁ ke h—m gy L2\ )
Pe

. y=
L2 ]//? ey | Y4
TI=T Y WA - — >

ot ) (= 1) 2L
Po

=2y« 4o, (2.18)
The unknown quantlity is again the density on the front of the
shock wave, p'2.
In carrying out calculations by Formula (2.18), it must be borne
in mind that usually the ratio p'2/pO in problems of th¥s type is

close to the value of (k + 1)/(k — 1). We can therefore put

2 k]

Po k=1

- (a -+ aﬁ)'

where a is a small quantity of first order.

Here
B4 1 #2 4k k1
F=1 % ' T—iF —m=relttV
k41 afa+ 1)

-1 Po

Calculation of the foregoing expression no longer entalls an es-
timate of a difference between nearly equal quantities, and 1s conse-
quently more convenient for practical purpcses.

In Table 6 are given the values of the hydrodynamic =lements on
the front of a shock wave at the initial instant of an underwater and
aerial explosion for four types of explosives. The data characterizing
the detonation of the explosive are those of L.D. Landau and K.P. Stan-
yukovich. ¥

The results of calculations for an underwater exploslon gilve an
order of magnitude close to those obtained by experiment. Thus, in a

study of explosions produced in water by a charge of PETN, Dering
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TABLE 6

Hydrodynamic Elements at the Initial In-
stant of Explosion

1 2 Bapuisyatoe newecTso
' i
TopMmyna nan oGosnaucie 3 K pitio- 5 6
ToN nist 911 TeTpun
Kircora

7nnpnme1pu aetTonauonnoll Boanu

8 Hanaenne na ponre getouaummon- | 190000 | 210000 | 275000 230 000
noll pomnint, Ke/ea? (py)

9 Noxasaress  apnabarwr  npopyxros 3,2 3,1 3,2 3,1

B3pLIDA (%) i

10 Macriectn BB, xecewt/at (py) 163 173 173 163

11 | Cropotry wacriu nponykron sapupa, | 1680 1730 2000 |- 1850
Atfcer (vy)

12 Cxopocers ReTonauin, a/cex 7000 7100 8400 7600

13 Mapamerpu nosnonnoll ypapuoli soauw

14 Mrotnoets BoaLt  ma  (potiTe, 177 179 178 182
N2 coRat (pz) . :

15 Hannemte na potite, az/ca? 133500 | 143300 | {40000 { 160000

16 Ckopoett  mepeseutenus  yaapuolt 5550 5730 5700 6 000
noanwl, fcer (N)

17 | Cropoers ,uacti 3a dponron, 2370 2475 2450 2650
sjcer (vy)
18 Tesneparypa ua Qponve, °C 590 640 610 725

19 mapamerpu pezaymnoll yaapnoll soanu
20 Mnrotuocrs  mosayxa mua  dpoure, 0,7428 0,7437 0,7461 0;7445
ne cextfat (pé)
15 Hanaenne na gponre, xe/cu? 622 756 970 838

16 Cropocrt nepesewenus  yaapuoll 7720 8530 . 9650 8960
Boane, afcen (N)

17. Crupouct,  uactmt sa  dponrom, 5940 6390 7410 6920

. Mjcen (vz)

21 Temneparypa na dponre, °K 28 900 32 800 14200 38 100
o

1) Formula or symbol; 2) explosive; 3; TNT;
L) picric acid; 5) PETN; 6) tetryl; 7
parameters of detonation wave; 8 pressure
on the front of the detonation wave,

kg/cm2 (pl); 9) adiabatic exponent of ex-
plosion products (x); 10) density of ex-
plosive, kg—secz/m (py)5 11) velocity of

the explosion-product particles, m/sec
(vl); 12) velocity of detonation, m/sec;

13) parameters of underwater shock wave; ,
14) density of water on the front, kg-sec”
per m (p’g); 15) pressure on the front,
kg/cmgg 16) displacement velocity of the

- 115 -




TABLE © tinued)

shock wave, m/sec (N); 17) velccity of par-
ticles behind the front, m/sec (v'g); 18)

temperature on the front, °C; 19) param-
eters of aerial shock wave; 20) density of

l
air on the front, kg—secg/mL (p‘g); 21) °k.

obtained ror the displacement velocity of the shock wave about 6800
m/sec and for the pressure 140,000 atm. B.I. Shekhter obtained for TNT
N = 6100 m/sec and p = 136,000 atm. The density Jump registered upon
the explosion of a charge of PETN in water was pf/po = 1.75.%

It can be assumed that a somewhat greater discrepancy between
theory and experiment will be obtained for an aerial explosion, in
view of the consilderable deviation of the equation of state of real
gases at high pressures and temperatures from the Mendeleyev-Clapeyron
equation of state.

If we assume k = 1.25, then we obtain for a TNT explosion:

air density on the front p, = 1.117 kg~se02/m4;

pressure on the wave front p. = 1370 kg/cmgg

displacement velocity N = 11,900 m/sec.

§2. LAWS OE SIMILARITY IN THE THECRY OF EXPLOSIONS

The study of the complicated processes that accompany an explo-
sion, both with theoretical methods and particularly with eXperimental
methods, 1s impossible without extensive use of the general laws of
similarity of physical phenomena. The theory of similarity and dimen-
sionality makes it possible to point to the most rational analysis
scheme and permits us to choose in most convenient form the minimum
‘number of parémeters reflecting the many aspects of the investigated
process, and helps generalize the obtained experimental data.

The theory of physical similarity is based on three princilpal

theorems.
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Firset theorem. If a group of phenomena defined by corresponding

systems of equations and uniqueness conditions, 1s similar, then the
quantities contained in the indicated systems should form complexes
which retain one and the same numerical value for a specified group of
phenomena. These complexes are called the similarity Invariants.

In other words, the first theorem of similarity theory indicétes
that a physical phenomenon does ndt depend on the measurement scale
and can be characterized fully by some dimensionless combinationg of
defining parameters.

The second theorem of similarity theory, sometimes called the

theorem, states that in any phenomenon it 1s possible to find connec-
tions not only between the real named quantities, but also theilr dimen-
sionless combinations.

In this case, 1f there exist n dimensional quantities, character-
1zing the phenomenon, and the problem 1s consldered in k fundamental
units, then the number of defining similarity criteria is equal to
n — k, where one criterilon arbitrarily chosen among them can be re-
garded as a function of the remaining criteria.

Third theorem. The set of phenomena defined by specified differen-

tlal equations and uniguenegs conditions constitutes a similar system,
if the quantities contalned in the uniqueness conditlons also consti-
tute a similar system, and the invariants of this system, defined by
the specified equations and setup of the indicated quantities, have
one and the same numerical value.
In other werds, the third theorem of similarity theory stipulates
‘in its most general formulation the fulfillment of similarity in the
boundary conditions of the problem.
In particular, it follows from the third theorem that systems
that are similar prior to the start of some physical process, will re-
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main similar also after the termination of this process, if the proc-
ess 1tself corresponds to the similarity conditions.

In mechanics one makes a distinction between geometrically, kine-
matically, and dynamically similar systems.

Two gystems are called geometrically similar if the ratilio of
thelr comparable linear dimensions 1s the same. The ratio of the 1lin-

ear dimensions 1., of one system to the comparable dimensions 12 of the

1
other system is called the modulus or scale of geometrical similarity

ne 11/12.
Geometrically similar systems can execute geometriecally similar

displacements. If the ratio of the time intervals during which the

corresponding points of fhe systems describe comparable sections of

trajectories is the same for all points of the system and is main-

tailned constant during the entlire time of motion, such systems are
. called kinematically similar.

Thus, kinematic similarity is defined by means of two scales the
linear scale X and the time scale T = tl/tg.

Two systems are called dynamically sgimilar if in addition to hay—
ing kinematic similarity they are also similar in their mass distribu-
tions.

Thus, in the case of dynamic similarity there is added anothér
scale, the ratio of the masses at the comparable points:

M = ml/me.

On the basis of all the foregoing we can present the following
definition of similarity.
| Similar systems are ones in which all the quantities characterizing
the state and motion of one system can be obtained by simple multipli-
cation of the corresponding quantities of a different system by con-

stant factors.
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From an analysls of the Navier-Stokes equatlions 1t follows that

the motions of a compressible viscous liquid, subJect to the action of

mass forces, are dynamlically similar if the following four dimension-

less critefia are ildentically equal to one another at comparable points

of the flow: |

the homochrony or Struchal number

H= vt/1; (2.19)
the Froude number

F = vo/gl; (2.20)
the Euler number

E = p/pv-; (2.21)
the Reynolds number

Re = vi/v; (2.22)

where v is the particle velocity, £ the time, g the acceleration due
to gravity, 1 the characteristic linear dimension of the body, p the
pressure, p the density, and v the kinematic viscosity coefficient.

In most cases the similarity conditions can be satlsfiled only in
part. It becomes necessary then to estimate the errors arising when
the results of model iInvestigations are recalculated for the natural
phenomena (the so-called scale effect).

Inasmuch as in gasdyﬁamics one studies the motion of an ideal
£luid which is not subject to the action of external forces, only two
out of the four similarity criteria of hydrodynamics need to be taken
into éccount, the Struchal number and the Euler number.

Tack cof similarity after Froude and Reynolds in such problems can
obvipusly rnot give rige to a pcale effect.

Iet us assume that the natural and model explosions are carriled
out in one and the same medium; we then have Pon = Pom"

From the conditions~of dynamic compatibility 1t follows that in-
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dependently of the causes leading to the formation of the shock wave,
there exists between the hydrodynamic elements on the front a one-to-
one relationship. Consequently, if it 1s ascertained that at:definite
distances from the explosion centers of two charges the pressures on
the front are ildentical, then the Euler numbers are likewise lidentl-
cally equal

o Pe Py

L P) 2
PIIUI‘[ Puvu

The simplest case from the point of view of similarity 1s when
the hydrodynamic fields are investigated under exploslons of charges
made of the same expiosive. Since the detonation waves errive in thisg
case at the charge surfaces with ldentical parameters, then complete
similarity of the fields will obtain even in the Ilmmediate vicinity of
the exploeion center.

From the Struchal conditions, assuming that the particle veloci-

ties are equal to each other at the comparable points, it follows that

by oty

Iu ‘.'[u :

This means that in the simulation of liguid motion due to an eX-
plosion, the scale of the linear dimensions should be the same as the
time scale.

The characteristic linear dimensions that determine the scale of
the phenomena in explosions are the dimensions of the charge. This
leads to the following law of similarity in explosions of identical
explosives: the parameters of the medium do not change in the motion
caused by the explosion if the scales of length and time with which
these parameters are measured are increased or decreased by the same
factor as the dimensions of the charge.

For example, the pressure in the shock wave, measured at a dis-
tance r from a TNT charge of spherical form with radius RO3 should be
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equal to the pressure in the shock wave at a distance Ar from a charge
of radius KROB.

The pressure patterns at the corresponding distances will have
the form éhown in Fig. 28, which 1llustrates clearly the deformation
of the pattern pressure at comparable distances upon change in the

~charge dimensions. -

The formulation of the similarity laws becomes somewhat more com-
plicated upon comparison of the hydrodynamic fields produced in a lig-
uld in explosions of charges of different explosives. Experience has

shown that the similarity can be based in thls case on the energy prin-

ciple. It is natural that in the direct vicinity of the charge, there
will be no similarity of the flelds in such cases, in view of the dif-
ferences in the boundary conditions. However, since the process of
energy dissipation occurs at high speed in the case of strong shock
waves, there unavoldably occurs an instant when at definite distances
from the centers of two different charges the values of the pressures
turn out to be identical, and conSequently, by virtue of the condi-
tions of dynamic compatiblility, the pressures and the particle veloci-
tiesiare.also equal.

'..'ﬂ.‘;:. _.:.. .“_ - ' . o
% |

LT s L SRS,

¢ ! -2

Filg. 38. Variation of the pat-
tern pressure for a similarity
modulus A.
The comparable polints wilill then be determined from the following
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relations:

- ,l‘x '-—_ r)
3 FETETT
VE VE (2.23)

where El and E2 are the energies released in the explosion of the two
different charges.
The same ratio 1s obtained also for the comparable instants of
time
.l;__ .
.t E
L= (2.24)
VE;
On the basis of the foregoing, the pressure fileld due to the ex~
plosion can be represented as a function of two parameters
p=f(——3—‘——, u ) (2.25)
. \VE- . VE
The exploslon energy is proportional to the weight of the charge

G. The latter, in turn, determines uniquely the radius of the equlva-

lent spherical charge, since
G =5 =Ry, (2.26)
where ¢ 1s the density of the explosive.
Putting v = 1.6 g/cm3, we obtain for TNT
&m=op&n}5. (2.27)

In Formula (2.27) the radius of the charge is in meters and 1its
welight in kilograms.

We thus obtain in lieu of (2.25)

= ! r 2.28
p=f(w7 ®=)- ( )
In order to deal with a function of dimensionless parameters, 1t
is best to rewrite Formula (2.28) in the form
% 1{10 ]
p=p f('ﬂ:’ '[’gz)'- (2'29) .

Obviously, for the maximum pressure, which occurs on the front of
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the shock wave, the following equality holds true:

p=r*s(4)- (2.30)

One of the most Important characteristics of an explosion, which
in many cases determines 1ts force effect on a partition, is the im-

pulse of the pressures, defined by the integral
’ 4
= | pat, (2.31)
4]

where the time is reckoned from the instant when the shock wave front
arrives at the given point.

In the last relation, substituting the value of the pressure by

Formula (2.29) and going over to dimenslonless time, we will have

{5 ‘ AR ) B ()

IJ

Ros ! /\oa Roa !

- M1ff(’% ) (!w) _ (2.32)

where T, = tao/Ro3 is the dimensionless time.

Since the integrand is a functlon of dimenslonless parameters, it
1s obvious that at the same relative distance and for‘equal values of
the relative time, the values of the impulses will be proportional to
the radii of the charge or, what is the same, to the modulus of geo-
metrical sdimilarity X.

Example. Establish the similarity parameters for an explosion,
using the principles of dimensionality of the functions. The medium 1n
which the explosion occurs has an initial density p, and an initial
pressure ps.

Solution. The main parameter characterizing the charge 1s the ex-
plosion energy EO. The hydrodynamic fields, as shown above, are func-
tions of the distance r and of the time t. Consequently, from the con-
ditlons of the problem, the process is determined by the following di-
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mensional quantities:
Eys Pgs Pgs Ts te
We shall assume the number of principal units to be equal to
three (k = 3), — [T], [M], [L]. Then, on the basis of the m-theorem of
similarity we can reduce the number of varlables from the flve men-
tioned above to two dimensionless criteria. To thls end we write out

first the dimensionalities of the initial parameters:

(po} = ML T3,

[po) = ML,

=T, (2.33)
[r}= L,

[Eo) = ML™IT=3,

where v = 3, 2, and 1, respectively, for motlons with spherical, cylin-
drical, and plane symmetry. In writing down the dimension of energy we
use the energy per unit length for motion with cylindrical symmetry
and the energy per unit surface for motion with plane symmetry.

The dimensionless similarity criterla Hl and H2 will be sought in
the form of fractions, the numerator of each is one of the n — k ar-
bitrarily chosen quantities, and the denominator is made up of all the
remaining mentiloned quantities each raised to a power to be determinqd.
Iet, for example, the numerator of the first criterion be Eo and that
of the second Pgy- Then

— L
ng.l‘,t.l‘, i

M=

- Po
n’ - P&'l,}'l[}'l )

In order to find the values of the ex:ponents'xi and yy, we equate
the dimensionalities of the numerators and denominators of the expres-

sions for Hl and H2:

MOETE C ML

0 = Gz = Gmm
we then obtailn
Xl = 1, yl = 1,




x2‘= v + 2, Yo = 2,
x3 = —2, y3 = -2,
Thus,
n, = Po,yfé’,_z ____{E_ ,f;z: | (2.34)
-n’=iﬁ%?=%%;” { (2.35) |

The obtained similarity criteria fully determine the process un-
der the initially assumed premises.
However, generally speaking, the second theorem of similarity

theory admits of a nonunique choice of the defining criteria. |

e g e e e pin @ A

A It is possible, for example, to stipulate in this case that the
second of the similarity criteria depend only on one varlable, for
example £t.

Then, following the method already developed, we write

. !
n2 bl >y rar il
l’s’bs’ﬂ?

or, going over to the dimenslonalilty formuia

[ A p— L .
(ML= = (ML= e (M) =3
hence
2y 23+ 23 =0, Z|=—"-..1!——-";3‘,
~2i+ (v—1)2,—323= 0, z,::-—l—,
¢ .—221-“223 =1, Ty = -—,;-.
Consequently,
| e+
n;= ¢ ; = pU 1 (2.36)

___l_l i1
O v, T

|-

Po Eg" oy Iy oy

This form of the mpecond similarity criterion was used by L.TI.

Sedov to study explosions with account o6f counterpressure.
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SRTIATED OF ITUDRODYNAMIC FIZLDS IN THE CASE OF STRONG EXPLOSIONS
Assuming that tho nailn parcmetcr choaractorizing the charge is the

explosion ener:; :O’ and thz o the ororoertizc of the medium are deter-

mined sufficlently fully by tie initial deacity Po> the Initial pres-

sure Dgq., and tae o .iabatle eipansion coellclent k, L.I. Sedov indi-

cated thc following system of fundamental quantities for the cstimate
of the adicbatic perturbations of gos motion: EO, Po» Pgs k, =, ©.
In accordance wilith .the w-theorenm of similarity theory, we can set

v from these quantities the follow.n3z three dimensionless combinz-

w

tions: ¥
e (2.34)
Fd,
D= e (2.36)

The effect of the initial pressure Py and consequently also of
the parameter 7, is due only to the conditions of dynamic compatibility
on the front of the shock wave. But if we study a strong explosion,
then in the near zone the pressures on the front are two or three'orf
ders of magnitude higher than the initial pressure. Consequently, in
such a problem one can neglect the initial pressure and the variable
7. Then the motion willl be determined only by the dimensilonless param-
eter A, from the structure of which i1t follows that the process can be
regarded as self-similar.

Assuming that pO/pf << 1, we obtain from (1.186)

kg1 : -
Po = Po (2.37)
Consequently,
21 i
. F—1 0T 2 .
Vo= Te =%z (2.38)
E—1 fo
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po= T PV (2.39)

From the constancy of the density on the front of the shock wave
it follows simultaneously that the parameter A on the front should
also remain constant at A = A¥. The law of motion of the shock wave

can in this case be readlly established directly from the relation

(2.34): o
. E, V5, D
ro= (g )Tt (2.10)

Differentiating (2.40) with respect to time, we obtain

1 ’ »
_dry 2 Ey o TS 2 o
N= =g () Tt T (2.41)

Relations (2.40) and (2.41) are in good agreement with the ex-
perimental data on the propagation of an aerial shock wave near a

charge.

Using Condition (2.41), we can write the equations of dynamic com-

patibility in the form*

£+
P¢== ":ilpo; (2.42)
—_ Po fre 7,
Po =ty Tt 7 ) (2.43)
- 1 /=
Yo =TI nETT \T¢.‘>~ (2.44)

We now iantroduce dimencionless “uvnctions of the velocity, dr =. 'y,

anc¢ pressure, deflned by the relations

v=F "0 (2.145)
p==pol* (1 (2.45)
P=pe 5z P(N), (2.47)

From = comparison of (2.42)-(2.42) and (2..9)={2.47) it follows
that the functions V, R, and P assutne tihe lollowing values at the
ITront of the shock wave

Ry=—2+L.; (2.48)
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N—mmT (2.49)

Vo= rrneE (2.50)
We have previcucly rnzald a systen ¢ fundamentcl differential equa-
tions of one-dir.ciicioncl uaasteady adiabatic motion of an lideal gas in

the following form:

T"‘”T'*' 7&—0- | (1-:90)
-g-?--(»p—a?-*-"v-&-'l‘(""l)!;'-oi (1092)
P )
Recognizing that )
SO0 g Fy t d ),
FEww = AW =T A
) a E, 0 (d A d
- .z.a;._—(2 ','"';IF_?»T)-—(Q'!-')?';;-.

we obtain after substituting the new variables in (1.90), (1.92), and
(1.94)
).[(mV—?) Vi+m -Z—]- Viev+2l,
A[mV+(mV—2) K mw, ' - (2.51)
AmV—2)[ 5 =2 F]=2(v—1),
where m = 2 + v.

Integration of the system of ordinary differential equations
(2.51) with the conditions on the front of the shock wave chosen as
the initial conditions makes it possible to determine the functions V,
P, and R, after which an estimate of the fields of the hydrodynamic
elements entails no difficulty whatever.

It i1s necessary, hoﬁever, in this case to use numerical methods,
since the system (2.51) cannot be integrated in closed form. L.I.'Sedov
proposed a very simple method which makes 1t possible to obtain the
algebraic integral of the system (2.51) with the aid of considerations
of similarity theory. To this end, one considers the variation of the

- 128 -



total energy in a certain Qolume Q, bounded by a spherical (cylindri-
cal, plane) surface A = const. The displacement veloclty of the points
of such a surface will be, in accord with (2.41), N = 2r/(2 + v)t.

Since in accordance with the conditions of the problem we neglect
the 1nitial pressure Pg, We neglect simultaneously the initlal energy
of the gas € = p/(k — 1)p compared with the energy which the gas éc—
quires as a result of the explosilon. Therefore the total energy of the
gas inside the volume Q, bounded by the surface A = const, should re-
main constant.

Iet the coordinate characterizing the volume Q be equal to r. Ex-
panding in accordance with the law (2.41), the surface X = const ylelds
after a time dt a volume increment MWrEth, which contains gas with
energy MWrEth[(pvg/E) + pel.

This energy should equal the energy 4wr2vdt[(pv2/2) + pe] which
is delivered by the gas flowing over a time dt through a sphere of
radius r, and the work of the pressure forces Mﬂrgpvdt.

We thus have

Amr N (£ + pe) = anrtode (5= 4+ 3e) + dmrtpuds,

or, what is the same,

Finally, replacing the quantities v, p, and p 1n the last equa-

tion by V, P, and R using Formulas (2.45)-(2.47), we obtain ultimately

RYH(V =)+ i P (1 =) =0 (2.52)

Relation (2.52) is the integral of the system (2.51).
Using this relatlon, it is possible to obtaln in closed form fthe

solutions for V, R, and P, given in L.I. Sedov's book "Methods of S5im-
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ilarity and Dimenslonaliity in Mechanics.

As already mentioned, the initicl pressure Py can be neglected,
considering only the nea. zone of thc explosion. At la.re distances,
the pressure behind the ront drops and the influence of the sressure
of the undisturbcd air ahcead ol the front of the shock wave beconus
more and more I1mportant.

An account of the counterpressure greatly complicates the problem,
for the motion is no longer self-similar. It becomes necessary then to
integrate a system of partial differential equations by using some
numerical method. This was done i1n the work by D.Ye. Okhotsimskiy,

I.L. Kondrasheva, Z.P. Vlasov, and R.K. Kzzakov "Calculation of Point
Explosion with Allowance for Counterpressure." These authors obtained
not only the fields of pressures, densities, velocities of flow, and
temperatures for an explosion in a homogeneous atmosphere, but also
calculated such important parameters as the Impulses of the pressures
in the positive and negative phases, together with the limiting dis-
tribution of the hydrodynamic elements.

The calculations are in good agreement with experiment.

Thus, 1t can be regarded that at the present time the problem of
an aerial explosgion has been solved compietely and exhaustively.

The situation is much less satisfactory in the theory of under-
water explosions, to the exposition of whose main problems we now pro-
ceed.

§4. L.I. SEDOV'S METHOD AS APPLIED TO THE STUDY OF UNDERWATER EXPLOSIONS

Whereas in the study of strong explosions we can assume the veloc-
ity of sound in the unperturbed medium to be small compared with the
velocity of displacement of the shock wave over a sufficlently wide
range of distances (aO/N < 0.1) and we can neglect the counterpressure
Pgs neither can be done 1n the study of underwater explosions, if it
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is recognized that in the latter case the role of "counterpressure" is
played by the constant c¢ = 5400 atm, and the shock-wave velocities can
be only 3-5 times greater than the velocity of sound. Consequently, the
direct use of L.I. Sedov'!s solution for the analysis of the propaga-
tion of underwater shock waves 1s Impossible.

Nonetheless, the self-similarity principle proposed by Sedov.can
te used as a baslis in the present case, too.

For simplicity we shall investigate isentropic motion, which 1is
perfectly permissible for the case of an underwater explosion of or-
dinary explosives.

We write down the system of equations in terms of the varlables v

and a: _
dv dv 2 da . '
@t tror e =0 }
R P n—1 9 w1 2.
St tUg T ag o =) =0 (2.53)
We put
'I)=—C-V()L),
2 (2.54)
a=TA().),|
where Jjust as before
\ = s (2.35)

o 1

In the new varilables, Egs. (2.53) are rewritten in the form

% — 1

k{QV’—mVV’— an A’A}=—'V"’+ V—Ti—lAzy
' (2.55)

x{QA' —mVA -2 mAv'} =

— D=1
o) .

—A— Ay 2ELIED
Eliminating the variable A from the system (2.55), we arrive at
one equation, where A i1s the sought function of V:
A {A’va—-mV’S—-Az-%i_—__:-lﬁ— 4 (2 m) V3—2V}=
= mA— AV [+ LEBEER T AV I D 4+

S—=7

L =)=+ mg— | —24 (2.56)
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Assume that at some instan: or Cime ty (for example, at the in-
stant that the detonation wave emerzges on the surface of the charge)
we have r = Pos V= V¥, a = a¥*, N = N¥., Then on the basis of (2.54) we
have at the same instant

V(M):;‘_ng, ]
= [ (2.56a)

APy =

Knowing the quantities V{A*¥) and A(A¥), the integral of the equa-
tion (2.58) can be obtained by using numerical methods.
Let us assume that as a result we have obtained a certain solu-

tion A = A(V). Then, using the first equation of (2.55), we obtain

2
%=1

1%}’{2—1711/—,‘—:2‘1%/1(1/)}_-_1/— Vi~ 2 Ay,

so that the function A is determined by the gquadrature

14

[ 2—mV——ﬂ- {-i—A;A(V)
]ﬂ-)‘):—‘-z "—Jdv av, (2.57)
’ V— V’—r_‘?TA’(V)

e
and, consequently, we obtain the functions

/A A
V=V\F) and A=A(F%
The position of the front of the shock wave is determined by the

conditions of dynamic compatibility

Vp =050 (N—a);
=gt —a Lo yn (2.58)
N—ao+ ) '04; ao+ b ¢ ($)I .
but
dl"p-

N=7/T' k¢)=l(r¢,t).

We thus obtain the ordinary differential equation
d
T=ay+ =2V, 8, (2.59)

which when solved yields re =ra.(t) and Ap = Ap(t), thus completely .

solving the problem under the assumptions made.
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Iet us dwell in somewﬁat greater detall on motlon with spherical
symmetry. In this case Eaq: (2.56), after substituting the numerical

values of the coefficients m =5, v =3, k£ = 5.53, 1s rewritten as

5A% — 27,65AV? + 92054V - 24
A=15A“V—5V‘—-I,3‘J4A“+ V22V (2' 60)

Tet us investigate the character of the integral curves 1in the
half plane V > O.

For this purpose it i1s necessary first of all to find the singu-
lar points of the differential equation (2.60).

They will be determined by the coefficlents of an equation in the

form

dy __ax+ by
dx ~ cx +dy’

The course of the integral curves 1in the vicinilty of the singular

point depends in this case on the roots A of the equatilon
W— (bt c)\+bc—ad=0,

if the roots Xl and kg are real and have the same sign, the
singular point 1s called a node. An Infinlte set of integral curves
passes through a node (Fig. 39a).

Ir Xl and Xz are real and of opposite sign, only two curves pass
through the singular point. The remalning curves do not pass through
this point. A singular point of this type 1is called a saddle (Fig. 39b).

If the roots Xl and Xg are complex conjugates, then the integral
curves in the vicinity of the singular point are a famlly of logarith-
mic spirals. The singular point 1s called a focus (Fig. 39c). If the
roots Xl and Xz are purely imaginary, then the family of integral
curves 1s a family of cloged curves, surrounding the singulay polint.
Such a point i1s called a center (Fig. 39d).

It may turn out that the roots Xl and Xg are real and equal to
each other. Then, 1f a = d and b = ¢ = A, all the integral curves »ass
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through the singular point with a delinite

direction of the tangents.
Such a point is called a dicritical node (Fig. 39f). There is in addl-

tion a node with one common tangent to the iategral curves (Fig. 39¢).

2) D '

Wy _/,, \“E-—

AN | N\

b

Fig. 39. Character of singular polnts of
an crdinary differential equation.

Let us return to Eq. (2.60). In this case the singular points
will e a(0, 0); B(0, 2/5); v(0, 1); 6(0.5, 0.129); e(w, w).

At the points of the parabola A% = Vx — [(k + 13)V/10] + 2/5 the
integral curves have horizontal fangents; at the points determined by

the equation

S5V3 = 7 L)
Az___w 41"(:;..1/' (2.61)
15V — .

P

and the tangents to the integral curves are vertical. *
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The possible course of the integral curves is shown in Fig. 40.

On the basis of the data of Table 7, calculating the pressure
fields for the explosion of a TNT charge, we can assume¥* V(A¥) = 0.390,
A(A*) = 1.10L4.

The functions V(A/A*) and A(M/A*), calculated by numerical in-

~tegration, are shown in Fig. 41.

TABLE 7
\ 2 | . ]
Koopamuarm Bia ypanuenus SXapdure | Yravsue koaddranrenta
Y p p
ocobolt B oxkpecTiocT!t ocololl ocoGull | Kacareanuus K nuie-
7 Touxm TOUK TOUK ]L!_ TPAALIT KPIHTLIM
A=0 A= A SInkpuTine 6 Opouanoani
V=0 =77 wec kil
- yaea
2 = —2,565 7(.‘.0,1.1on||nn 8'-!epc3 ocofyto TOUKY
V= E NPUXOIT IpsMLIC
. o
A=0 ) A=0 V=
A=0 A:GBO—A 9 Yaea k=0
V=1 ‘ TV by = co
A =050 A = LC6SY + 2,4854 9 ¥yaea by =220
V= 0,129 L21V 4 06114 by = —0,48

1) Coordinates of the singular point; 2)
form of the equation in the vicinlty of
the singular point; 3) character of singu-
lar point; 4) slopes of the tangents to
the integral curves; 5) dicritical node;
6) arbitrary; 7) saddle; 8) the lines A =
= 0, V = —2/5 pass through the singular
point; 9) node.

To stay in the region where the solution 1s unique, it 1s neces-
sary to confine oneself to the range of variation 0 < A < 6.1)*.

What 1s striking is that the parameter A vanishes at a value of V
not equal to zero. But then i1t follows from the condltions of dymamic
compatibility that the velocity of the shock wave at infinity differs
greatly from the veloclty of sound In the unperturbed medium. Equally
essential differences from the parameters of the unperturbed liquild
will be exhibited also by the other hydrodynamic elements.
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Fig. 40. Possible course of integral curves A —

= A(V) in the half plane A > 0. o) Singular point;
+) initial point; x? point of maximum of the param-
eter A: X = 6.1. The dashed lines show parabolas

on which the tangents to the integral curves are
elther vertical or horizontal.

; =
i

g3

& )
ar [ -5,

R T —
Fig. 41. The functions A = A(A/A¥) V =
= V(\/\*).

This result, which does not correspond to reallty, 1lndicates that
the assumption that the energy E, beilng a defining parameter, can-be
ﬁsed to construct a solution only in a definite range‘of values, char-
acteristic of the reglon of relatively small distances from the center
of the explosion.

As regards the remaining range, 1t is necessary to assume there a
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different defining dimensional parameter. Such a parameter may be, for

example, the characteristic velocity of sound a%*.

Putting
nza“{} (2.62)
and assuming
V=2V,
@=L Aln), (2.63)

we obtailn in perfect analogy with the preceding case a fundamental

differential equation relating the functions A and V, in the form

g A= AVE AV 1) = A
A_“~WAW~-WJJVﬁ;V_ . (2-64)

The singular points of Eq. (2.64) will be A(0.0), B(0.1l), c(1.0),
D(0.50; 0.129). The points A, B, and C are nodes. Unlike the case pre-
viously considered, D will be a saddle in this case.

This makes 1t possible to couple together the two solutions in
such a way that by continuously following the integral curve A(V) a
transition i1s made from the strong perturbations in the liquid to
acoustic perturbations [the singular point C(1.0) of Eq. (2.64) corres-
ponds to a weak-discontinuity surface].

Starting from the conditions for the uniqueness of the solution,

we can show that the coordinates that must be assumed for the contigu-
ity point are V = 0.16; A = 0.78.
The value of the parameter m 1s determined, in analogy with the

preceding, by the quadrature

|4

4
2 2V e — s
In -ﬂ; e [.—...........—"‘ ':_,1.‘4_/1_ av. (2.65)
Y

I
Vl

Since the integrand is negative in the consildered range of varia-
tion, it is obvious that the parameter n increases as V changes fron
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V¥ to zero, and becomes infinite at the singular point C(1, O0).

By way of the characteristic veloclty of sound it is convenlent
to choose the veloclty of sound on the front of the shock wave. Here,
however, 1n view of the fact that as the shock wave moves the param-
eter n for the front of the wave decreases, one can no longer use a
relation of the type (2.58) for an estimate of the shock-wave coor-
dinates. It 1s necessary for this purpose to wrilite down the dynamic
compatibility conditions I1n a somewhat different form. It can be shown
that for a wide range of varlation of the parameters there exlists a
linear relation between the veloclity of shock-wave front dlsplacement
and the velocity of sound on the front

@y, ==y =20 (N =), ( 2. 66)
from which it follows that

fe= ' (2.67)

(g

Fig. U42. Comparison of the values calcu-
lated by the method of L.I. Sedov (contin-
uous line) and by the empirical formula of
R. Koul (dashed). '

or

and, consequently,



_’;1=.‘._.f’_ﬂ_.__ (2.68)

Figure 42 shows a comparlson of the pressure curves calculated by
the method presented here using the emplrical formula of R. Koul.* It
can be readlly noted that for distances larger than 20 radll of the
.charge, the values of the pressure and the character of 1ts variaéion
in the compresslon zone are close to each other (Fig. 42).

§5. PRESSURE FIELDS AT LARGE DISTANCES FROM THE CENTER OF THE EXPIO-
SION. THE SOLUTION OF S.A. KHRISTIANOVICH

It was mentioned in the preceding sectlon that the energy can be
assumed as one of the maln defining parameters only in a study of the
near zone of an underwater exploslon. At conslderable distances from
the center of the explosion the self-simllar solutions must be sought
by assuming that the motion ls determined by the ratlo of the dlstance
to the time. Such an approach to the problem was used by S.A. Khrls-
tlanovich. The gist of the solutilon obtained by him consists in the
following.

The equations of one-dlmensional unsteady isentroplc motlon of a

ligquld have the form*¥*

Jv Jv 2 da
w+tUE iz g =0 (2.69)
2 Oq du 2 da (v — D av
. i TertamvE =0 (2.70)

Considering small pressures, we assume that
=B[(2Y —
p_Bl:(Po/ 1]’
We then have

“o"’i/’;jf'.

.ama°[1+";*7§3]_ (1.206)

In the mailn system of ecquations we change over to new varilables.
putting
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T

r = pe

Jdu Jdv or du ot v ov
E=ww toaw —uw tah

ov dv  Or v r
-‘a—‘g—z—a}—. 33-@.5;-5_.

obviously,

Here,

hence

In full analogy

Substituting these relations into the system

have

—

(90 g0 L8 0 3 8 da_ o
\w b tv gt i=eT i =0

—_—
13
'

dv o OV 2 da
3—;'*‘('”"‘:’)'53“*‘,,“_'_1“7)3:0:

2 [ 7] \ 4} Y -
,,—_—1['5%-%-(7"—?)-5% +a 5—;-!-(-—;—)—aﬁ==0._

In the case of small pressures we can put

B=a,(l+ 8
a=a,(l +«a)

v=a,M.

We then obtain in place of the system (2.77)-(2.78)

oM oM 2 da
st M—1=8]+ =1 +a) 7 =0

2 0=, 2 da M
i T M= gt (e

(v—=1(1 +a)
+ e M =0,

(2.71)
(2.72)

(2.73)
(2.74)

(2.75)
(2.76)

(2.69)-(2.70),

(2.77)
(2.78)

%2.793
2.80
2,81

(2.82)

(2.83)

We consider solutions that do not depend on the varilable T.

then obtain from Eq. (2.82)

da n—1 oM
FETIOF M—1—23) 5.
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Substituting (2.84) in (2.83) we have
U s BB g
or
— (M2 1+ 88— M+ 25 — 2M8) I .

+(1+2“+a3)%%_"+(V—!)(ll.:-fd-*-u’)/ﬂ__:c;.

Discarding terms of second and higher order of smallness, we oOb-

talin ultimately

M—s+a) P 0=DHU_g (2.85)

We shall consider first motlions with spherical symmetry. The inl-

tlal equations will be

TN (2.86)
M+a—8) 4 y—o, (2.87)

For the initlal data we assume that o = oy and 6 = 60 for M = O,

and in accordance with (1.206)

Integrating (2.86), we obtaln
a-—-—a°=n_';_l.M_ (2.88)

Substiltuting (2.88) in (2.87) we get

a+ Tt M+ M=)t M=0;

(ao—a+”j‘M)%’-§1+M=o;

B @ 3 (st
W= T m T
or
o7 3 a no 1
o = — = (2.89)

Equation (2.89) is an ordinary first-order differentlal equatlon.

Its general Iintegral is
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b= CM— N a1 1 (2.90)

where C is the integration constant.

For small bressures, in accordance with the dynamic compatibllity

conditions the velocity of displacement of the shock wave front is
: +1p—p
N=a,[14+ 23 22n]), (2.91)
and the velocity of motion of the particles 1s determined by the ex-

bression

v=q bl (2.92)

Let us put Po = O, and then Eq. (2.90) is rewritten in the form

b= CM—"F pinm, (2.93)
Since
8 r
bm ==
v P
Aﬁ=7:=7%,
we have

L Lo ntlp
r=a(1+CZ = T ln 45).

The arbitrary constant C is convenlently replaced by another ar-

bltrary constant, putting

_n+1 p*
. C——Q——IH’E‘,‘Z.

Thus
n+lp I"')t. (2.94)

r==aq, (l+—2—->57‘1n7
Iet us find the veloclty of propagation N of the shock wave front.

Differentiating (2.90) with respect to t, we obtain

n+1p p* ,
df=ﬂ°<1+——2—-ﬁ7:1n'—p->dt-r .

+aot52-g7}<ln€——-l)dp. (2.95)
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But on the basis of (é.91) we have

dr=ay [ 1+ 21 p] s (2.96)
Substituting (2.96) in (2.95) we obtain after grouping like terms
-;-pdt=p1n~';,ldt+t[1n-%'--—1]dp,' (2.97)
-or .
dt !n-%-—l )
= (_l_ln!_’: dp=—[l———————m (ln-p—“ —T dlnp.
P\ p) P 2)
Integrating, we get
lnt=—1np+._;-j‘ ﬂ:‘lnp1 =
me L
P 2
l dlnfp—
AT e np——-— -—————1—-“ =s
2 ln'pp——T
InCI—lnp——;-ln[lnfpl—-%],
hence
fem ¢ , (2.98)
p;; In!},;—-;—
Taking (2.98) into account, Expressilon (2.94) can be written in
the form
1 »
PR RL bl i ,
Ro p Vln p* —05 ( . 99)

.

where RO 1s the radius of the charge and A 1s an arbiltrary constant.
Equation (2.99) enables us to estimate the value of the pressure
on the front of the wave at a distance r from the center of the explo-
sion, 1f we know the values of the constants A and p*.
Let us now calculate the time of action of the shock wave.

In accordance with (2.71) and (2.79) we obtain

t==rﬂ;:r=tm(5m'—-5), (2. loo)
where
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—— Sz a5 (2.101)
+ 1 o
b= Lol 2 | (2.102)
AR
w="a Ve (2.103)

or, after substituting (2.101)-(2.103) 4in (2.100),

* *
In £ —J—’—!n/g—
n+1 A R, (p) D o
R Y (2.104)
v !n—i)——-—-O.a
wm

Usually the time variation of pressure i1n a shock wave 1is charac-

terized by the exponential relation

p=p,e ’

ol

(2.105)
from which it follows that the time constant 8 corresponds to the time

t during which the pressure drops by a factor e.

Thus, on the basis of (2.105) we obtain from (2.104)

p
U_Q_J_o__="+1,é_(e l)ln(pI)-—-l
Ro 2 B uVan’:-—-O.S ' (2.106)
¥

For TNT we have

3
R, =0,053VC,
where G is the weight of the charge in kg and Ro is the radius in me-
ters.

If in Formulas (2.99) (2.106) we set p¥* = 17,000 atm and A =
= 16,200, then these formulas yleld values of frontal pressure p
and time constant @ that are close to experiment for p < 250 atm.
We have

L 17 000
; 1',.,,.20014-187 10-4pin ——

» Vxx”“”;os ; (2.107)

17 000
by gy o (2.108)
o ! l/;__llﬁ)@i’:j):;" ' |
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Fig. 43. Comparison of the results of the
theory (solid line) with the experimental
data (dashed line) on the values of the
pressure on the front of a shock wave.

Comparison of the results of calculations by means of Formulas
(2.107) and (2.108) with the empirical data 1s given in Table 8 and
shown on Figs. 43 and 44.

At large distances from the center of the explosion, Relatilon
(2.107) gives the asymptotic law for the decrease of pressure with in-
ereasing distance, as obtained by L.D. Landau.¥

Motions with cylindrical symmetry can be investigated in perfect
analogy wilth the foregoing.

The initial equations will be
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Pig. L44. Comparison of the results
of the theory (solid line) and

the experimental data (dashed line)
on the wvalues of the time constant.

M 2 % o
EE TS W ' (2.109)
' oM, M
TABLE 8
1 Pacver Mo %\mnpxx){-q(;{cg}x’{‘:‘;; dopMyaaM
r ; -
, Kejem? Ao, 2 a
P K2/ T ] Pon K2[cH 7 )
30 364 .35 315 3,3
40 250 3,6 228 35
50 188 3,8 177 3,8
60 150 3,9 144 3,9
90 91,0 4,1 91,0 4,2
120 - 65,0 4,2 65,7 4,6
180 40,5 4,1 41,6 4,8
240 29,2 4,5 300 . 5,1

1) Calculation; 2) from the empirical
formulas of R. Koul; 3) Py kg/cme.

Taking the same 1nitial data as before, we arrive in the integra-
tion of the system (2.109)-(2.110), after elementary transformations,

at the ordinary differential equation

B_B__ (2.111) ,
Its general solution is
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S—a= (A DM+ G (2.112)

where Cl is the constant of integration.

Assuming as before that Py and consequently g vanish and recall-

ing that
— B =t
b= — 1= —1,
we obtain
L=, [l + (2 4+ 1) M+ CM2),
but
Aﬁ:{;=ﬁ§
" Consequently,
2
-Lt—z [1 + ()Z + 1) Bn prn’.]

or, Introducling a new Integration constant p¥,

fmafit e gs(1-2)) (2.113)

Differentlatling, we have

dr=a°’:1+(fz+1)73p71( )]dt-{—

+a0”+‘[1—2 p:]dp (2.114)
But in accoidance with (2.96)
. dr=a,[ 1+ 5F] p]'[zt.

Thus, after substituting (2.96) in (2.114) we have for the front

of the shock wave the equation

pat=p (1— L) ar+¢(1—22) dp,

or
dt 1—21;
__.=.___.__£__q_ dp_
£ _38 .0
T’ ¥

Integrating 1t, we obtain
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t= D;Ro
@&Y“Dm.Ll_'
o* 3 p*

Substituting this result in (2.113), we obtain the connection be-

(2.115)

tween the pressure on the front of the shock wave and the relative
distance in the form

P p
1+(n+l)»§77(l——1)7)
L‘/. ——4_ P _‘/. :
<p'> [1 3 p*

The arbltrary constants D2 and p¥ can be determined from the value

r=D, (2.116)

of the pressure on the front of the shock wave and the ?ime of action
at some one distance from the center of the explosion.
§6. ESTIMATE OF HYDRODYNAMIC FIELDS IN THE ACOUSTIC APPROXIMATION

As is well known, the propagation of acoustic waves is character-
1zed by the following: constant propagation of sound at all points of
the medium; small variation of density compared with the density of
the unperturbed medium: p = py + p' with p'/py << 1, and also low par-
ticle velocity compared with the velocity of sound (v/ao K 1).

Satisfactlon of these conditions imposes entirely different re-
quirements on the variation of the pressure fields in water and in air
where the methods of acoustics can be employed.

Actually, the veloclity of sound in an ideal gas is given by the

relation

— 14 B T e
a=} 2 - iy Po g e
‘ 4 Fo 1_l_F_ 1+-L

Po = Pa

Considering an adlabatic process and using the equation p/Pk"=

= po/pg, we obtain with difficulty

R—1
P L T2
v PR £
'a_ao.a (1+ Po) = (1+ Po) '
from which it follows that i1f the toleravble error in the estimate of
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the velocity of sound 1s 5%, the value of p' must be assumed to be not

more than 0.25 Po> and the value of p'!' must be less than 0.35 Po-

n@+m E/rnm+3) m+B

e ]/ _eﬁ__%y‘(:—)‘;‘

1+-—
Po

For water we have

n=1
=% (1+5)

Consequently, the error in the estimate of the veloclty of sound

will be 5% if p'/po ~ 0.016. Corresponding to this value 1s a pressure
of 350 atm.

In view of this, the acoustic approximation can be successfully
used for an underwater explosion.

Iet us present the hydrodynamic equatlons in the acoustic approx-
imation, which are needed for what is to follow.

We assume that

p=1po ¢,

P=p, +p’v

and then we obtain for one-dimensional motion

dv , 1 9
dt ¢+ (u: TP ‘o’r) O (2.117)

0’ +ay J‘(Po"" )g;’+ug9_iﬂ.g=o_ (2.118)

Neglecting in Egs. (2.117) and (2.118) quantities of second order

of smallness and taking into consideration the fact that

dp dp Op 1 op
7”’75?’”7%77'

we have
o I + B =0, : )
2.119
1 oy (v—l)pu
'a_'l'ot+ °dr+ = =10

U
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Differentiating the Iirst equation of (2.119) with respect to &,

the second wilth respect to t, and subtracting the first from the sec-

ond, we obtain

L R L2 R Y I (2.120)
Finally, substituting Pogg__-_ép_‘.‘ in (2.120), we obtain

Pp_ Lo =10 g, (2.121)

Eguation (2.121) is called the wave equation. It 1ls easy to show
that under the assumptilons formulated above, equations of this type
will be satisfied also by the functions p' and V.

Iet us conslder some partlcular cases.

Let the motlon have plane symmetry, and then

1 o'
ot — =0, (2.122)

Uf2 ad
We introduce the varilables

=t (2.123)

::.]\ a“

ne=1{4

The derilvatives of p! 1in the new variables wlll be
gﬁ" ap' o% ap 0

0§ or ()r

S i Ppag on
0T T 7)7) +22/()71 or o

o{.,

ap £ 9n\* . apta% a0,
+B?F(or) +Eon T U oa
08 \3 @p 0% O

p  orp
ueE = -bif (Tjt—) +2; {)‘()r U ok

' f iy ap 0% o 0%y
+—'<u ) + 3 ozi'*‘ﬁi ES

or a ' or
PE P4 03 dq
== uw=u=h
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o2 o .
On the basis of the relations written out, Eq. (2.122) assumes the

following form in the new variables

S

' Py ey L1y
S+ 2t g (G —

4 d.:.)

2

1 4
—2F G

i<

+ o 78) =0

=

or, after grouping similar terms,

arp 2.124
=0, (2.124)

Iet us integrate first with respect to £ and then wilth respect to

n, and obtaln

Pr=fE)+ L (), (2.125)

or
) (t_.l.a’;.)_(.f,(t-%--;%)'. (2.126)

The solution (2.126) i1s a sum of two traveling waves.

If the wave propagates in the positive r direction, then f2 =0,
and if it propagates in the negative directlion then fl = 0.

The physical meaning of (2.126) lies in the fact that in the case
of motion with plane symmetry any perturbation arising at some point r
moves with velocity ag and remains unchanged in form.

Iet,u% proceed to consider the wave equatilion for a motion with
spherical symmetry.

In this case (2.121) assumes the form

Pp 20 1oy
o—f)a—+77’,’——-g7}'}=0- (2.127)
Iet us put
P __Pirt) (2.128)
p =_—F—’

then
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- Ay — R T e il ettt bt ;e e Yt R A b
- — = =

@p 1 P2 op P
=T aA T o T2
Gy L P
ot r oo’

Substituting the result obtained in (2.127), we get

1 o*P__ 2 0P P 2 0p P
o LB D Ry |2 S Nk JUGU AU
T w i EtE s
11 &P
w7 w0
or

ep__ L er_ g
ort a2 o6 TV (2.129)

In accordance with (2.126), the solution of (2.129) will be
pmn(e=5) ¢+ )

Consequently,

p= : Lol (2.130)

The first term of the right half of Eq. (2.1230) 1s a wave propa-
gating radially from the center, while the second term 1s a wave con-

verging toward the center.

Unlike the motlon with plane symmetry, the amplitude of the spher-

ical wave decreases in inverse proportion to the distance from the cen-

ter.

[

1 A
’//)7 ' ()
¥

Fig. 45. System Filg. 46. Boundary

of cylindrical condition of motion

coordinates. wlth spherical sym-
metry.
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In the case of motioﬁ with cylindrical symmetry, Eq. (2.121) as-

sumes the form
?p’ 1 Jp 1 0

A solution of this equation is

fi(t—-L falt+ - :
p'éj\:}/(ruﬁ——%Zdr—*-J%::_%)'dn (2_132)

The notation used in Formula (2.132) is indicated in Fig. 45.

It is easy to apply the previously presented results to an anal-
ysils of the motion of a liquid due to an underwater explosion. Iet us
consider motion with spherical symmetry.

Assume that on some spherical surface there is specified the
variation of the pressure as a functlon of the time, and let the esti-
mate of the pressures in the entire space, starting from this surface,

be possible in the acoustic approximation (Fig. 46).

Then for a wave diverging from the center we obviously obtain

P =pr 2 f (=20, (2.133)

[}
It is of interest also to estimate the values of the velocities
of the motlon of the liquild behind the front. Substituting (2.133) into

the Euler equatilon of motion, we obtain

. dv _ 1 dp 1 9 . re—r*\T
TR E =T ww A T) )=
*,-ﬂ'

::—L.p_ <__r"""” TR SR f—’”)
e %)Twmrﬁv— a /*

Integrating from the instant of arrival of the wave perturbation

at the point, we obtain

?

1t . —
v T S (=T e+

(7‘
Pooo«

. _
b orpae® L r—r*y
R Gty L
or on the basis of (2.133)
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¢

v=-t(p—po) + o [ 0 —p) . (2.134)
0

Polio

From the last formula we see that the velocity of the liquid at
the given point 1s a function not only of the pressure at the con-
sidered i1nstant of tiﬁe, put also of all the preceding changes in the
pressure at the point, starting from the time when the perturbation
reached it for the first time.

§7. APPROXIMATE ESTIMATE OF THE PRESSURE FIELDS IN THE CASE OF AN
AERTAL EXPLOSION IN AN UNBOUNDED SPACE

Experimental research carried out on a rather broad basis on the
shock waves occurring in an aerial explosion have confirhed the cor-
rectness of the laws of similarity theory, and have made it possible
to obtain simple computation formulas that are convenlent for prac-

tical use.

Using as the basis the general functional equation

Ap _—_f(la/?), (2.135)

r

where G is the weight of the charge and r is the distance, M.A. Sadov-
skiy established on the basis of a thorough analysis of both the do-
mestic and foreilgn experimental material that the value of the excess
pressure on the front of the shock wave, in the case of an aerial ex-

plosion of a TNT charge, is determined by the relation¥*

3 3
apy =076 LE + 255 L& + 65, (2.136)

where Apf is the excesgs pressure on the front of the shock wave, in
kg/cm2; G the weight of the charge, in kg; and r the distance, 1in

meters.
If it is recognized that the weight G can be expressed 1n terms

of the radius of the equivalent spherical charge RO3,** then Formula
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(2.136) can be represented in the form

qu,——=14,3-;—+907—r17.+43600 -r‘— (2.137)

where T = r/ROB.

The time of actlon of the positlve phase of the pressures is char-

acterized by the relation

6
b, =15V GV 710 sec, (2.138)

or, what 1s the same,
b =65-103 R, V7. (2.139)

From Formulas (2.138)~(2.139) it follows that as the shock wave
propagates the duration of the compresslon phase increases.

This fact can be readlly explalned by physical considerations.
Indeed, the wave front moves in space with velocity N > 2y whereas
its "taill," in which the excess pressure is equal to zero (Fig. 47,
region b-b'), moves with the velocity of sound ay. Therefore as the
wave moves away from the center of the explosion 1t stretches out in
time. But the spatlal extent of the compression zone remains in this
case practically constant, since the increase In the time of action t

occurs simultaneously with a drop in the displacement velocity N.*

2z

Fig. LT7. Pressure pattern in an
aerial phock wave.

Measurements of the Impulse of the compression zone, also made by

M.A. Sadovskily, indicate that over a rather wide range of distances

the following relation is true
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Fig. 48. Variation of
the pressure with time
for shock waves of
varying intensity

(at various distances
Irom the center of the
explosion).

2

I, =49, (2.140)
where I+ 1s the impulse of the compression
zone in kg—sec/m2 and A is a constant coef-
ficlent, which for TNT is approximately
equal to 34-36.
The Impulse of the wave in the rarefac-
tion wave 1s determined from the empirical

formula
Lﬁ=1+h-§;) . (2.141)

from which 1t 1s seen that as the shock

wave propagates the value of the impulse of

the wave in the rarefaction phase approaches the value in the compres-

sion phase.

The character of the shock-wave pattern depends on the pressure

on the front. An 1llustrative i1dea on this question can be galned from

Fig. 48, which shows a seriles of curves for a wlde range of Apf as a

function of the dimensionless time t/t+. The approximation of these

data is given by the following formulas:*

p(B)=apy(1—)e (2.142)

for 1 atm < Ap1n < 3 atm, where

then

1 .

@ =g+ 3, [ L1 — (018 +02039) 1, (2.143)
App,<<1 atm,
a = -—21-- + Ap‘p.

In the latter case we can also use, without great error, the lin-
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ear relation

ap (&) = bpy (1 — ). (2.144)

-+ Proceeding to the estimate of the pressure flelds in the case of
an explosion on the surface of the earth, it must be borne in mind
that the very large difference between the densitiles of the alr and of

“the ground allow us to regard the earth's surface as an absolutely
rigid partition.

Thus, whereas 1t was previously assumed that the entire explosion
energy ils distributed in definite fashion in an unbounded space, in
the presehtly consldered case the energy will be distributed only in a
half space. From this point of view, an explosion at the earth's sur-
face is equlvalent to an explosion of a charge of double the welght in
the free atmosphere.

We then have for a surface explosion

3 3 .
ap =005 +39%9 41309, (2.145)
Ap=17,9.§-+ 1390—;1;+57200;L,; (2.146)
6
t=1710-V TV, (2.147)
4, =70:10" R, V'F; (2.148)
L = (52 +56) 2", (2.149)

We note that some information regarding more complice*ed boundary
problems ,together with an approximate estimate of the values of the
loads imposed on buildings and structures in the case of aerial explo-
slons, will be given later on.

Ixample. Separate the main parameters of an aerial shock wave at
a distance of 100 m from the center of a surface explosilon of a charge
of TNT welghing 200 kg.

Solution. Calculation of the excess pressure on the front of tThe
wave 1s carried out in accordance with Formula (2.1&6):
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1 1
Apg = 17D e 4 1520 i— <+ 87 ZW—:—;-
I'd r r

The radius of the equivalent spherical charge will be

3
Rey = 0,053 /300 = 0,053-7,368 = 0,39 &,

and therefore

Fe ot —1—@-=257;

Ry = 0,39

! ! ‘
bpg = 11,9 e + 1390 - + 87 200 o
‘ 2

= 0,0608 + 0,0211 - 0,00514 = 0,0958 kg/cm=.
The hydrodynamic parameters on the front of the shock wave will

be calculated with the aid of the dynamic compatibility -conditions

(1.193)-(1.297):
N = 340y TF 08357 = 340 Y TH 083700038 = 351 m/sec;
235-1p¢ 235.0,0058

Y =———___'—__.—‘_.—==——---——='21,7m.sec N
¢ YT+ 08330, 1,039 / 2

6+ pg + 7,2 . 2
po == 0,125 22 <0125 00958+ 72 _ o153 ke -sec?/m

Apy + 102 00038 + 12~
(1 + 4pg) (Ape + 72 (1 +00038) (0,0058 +7.2) _ og70 v
Tom 88—y = Ges w1

4y = 20,1Y/Tg =215 =3sm/sec.
The variation of the pressure as a function of the time is deter-

mined from the formula

8 ()= 395 (1 =),

with

by e 73.1070R, V7 w 7,3.10-2.0,30 ¥ 257 = 0045 S€C.

The value of the total impulse will be

G?/3
—~ g T
le=ss Lo
8 ——
5602
1_=5&K%%=1w kg-sec/me.

§8. APPROXIMATE ESTIMATE OF THE PRESSURE FIELDS IN THE CASE OF AN
UNDERWATER EXPLOSION IN AN UNBOUNDED LIQUID

T+ has been established as a result of many experilments that the

pressure on the front of an underwater shock wave, in the absence of
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any ef'fect on the part of the bottom of the reservoir and of the free

surface, 1s determined by the relation

Pm=A(ZE)", (2.150)

r

where A 1s a constant coefficilent with a value of 533 for TNT.*

For dimensionless distances this relationship has the form
P = =135~ 11 (2.151)%=*
The variation of pressure with time i1s characterized in the mid-

dle range of distances (60 < T < 120) by the relation

. p(t:r)=pm[a((ao ,)+l]aco<%_7€;) kg/cm2: (2.152)

where o s a constant coefficient with value 0.27 for TNT and GO is
the unit discontinuity function of zero order, indlcating the fact

that the pressure increases abruptly on approaching the gilven point;

fa r
0for=" < 5
f{!o r f Roa < ROJ

% (—R—MR_> = la r
03 03 fas§ T
lforR“>Ros

The value of the Impulse of the positive pressure phase as a func-

tlon of the time is
14, r)=
”me—;"{l—"-—*—"mo‘r }“——rr? kg-sec/en®,  (2.153)
(= )+ | '
The length of the underwater shock wave 1s approximately equal to
20 charge radii.

To estimate the varlation of the pressure on the shock wave one

uses, I1n addltlon, the exponential relationship

pmpme"ﬂi("‘ﬂ%(b——’-’-). (2.154)

y
The quantlty 0 1s called the time constant and i1s calculated with

the ald of the relation
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= {%-) G107 seC, (2.155)

or

0==1,4-§-Z—’;'0'“ 3ec. (2.156)

It 1s easy to note that vhen the dilstance increases the tilme con-
stant 6 increases. Thus, unlike (2.152), Formula (2.154) takes into
account the fact that the pressure pattern stretches out in time as
the sro..c wave moves away from the center of the explosion

In accordance with (2.154), the pressure impulse will be

1==]‘pdt=p,,.o[1—e“5'<"7'~}o(t_.L). (2.157)

o L0
An account of the deformation of the pressure pattern can be made

also when the pattern 1s approximated by a hyperbolic relatlonship.

This is accomplished by using a relation of the form

p(t‘r)=[1+0,6—é-l(t——7;—)]2% (t""aﬁo‘) (2.158)

and accordingly

1(4,7) = pp—t 7" r>°°(t~—£:)- (2.159)

The change in pressure behind the front 1s determined most accu-

rately by Formula (2.158).

In many problems, however, it 1s more convenlent to use the ex-
ponential relation (2.154), and thils is why the latter has gained the

wldest application.

We have already mentioned earliler that the energy flux densilty is

given by the expression

E={pva (-’L-;-—%—fu?-t—-”—)dt. (1.179)



When the pressures on-the front of the underwater shock wave are
on the order of thousands of atmospheres, the internal and kinetic
energies can be neglected compared with the term p/p. Inasmuch as the
velocity of particle motion can in this case be calculated in the

acoustic approximation

t

Ve (p—po) + o [ (P —po) (2.134)
4]

Poflo

the expression for the energy flux density is obtailned in the form

! ¢

E=P—;,,-°°[<p—po>=dt+7‘o-,6[<p—po>[ [<p~po)df]dt. (2.160)

0

Calculations show that the second term rapldly becomes negligibly
small compared with the first as the distance r from the center of the
explosion lncreases. For the indicated range of pressures (p < 1000

atm) we then obtain with sufficient degree of accuracy

¢
Ez-gol”;j(p——po)zvdt. (2.161)

The formulas presented cover fully the question of estimating the
pressure fields in the case of an explosion produced by a spherical
charge in an unbounded liquid.

A cylindrical wave attenuates much more slowly with distance than
a spherical one. The expanent in this case 1s approximately equal to

0.56 and

1
Puun=3°:rzrse—-

The amplitude of a plane wave decreases even more slowly with the

distance.

Comparison of the character of the varlatlon of the pressure on
the front of a plane, cylindrical, and spherical wave is shown in Fig.

4L9. The difference between them, as can be readily seen, 1s quite ap-
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Fig. 49. Comparison of the char-~

acter of the variation of the

pressure on the front of a plane .

(I), cylindrical (II), and spher-

ical (III) shock wave.
preciable. The rather slow varlation of the amplitude of the plane
wave with distance i1s the reason why sound propagates over superhigh
distances in the ocean¥* and is extensively used in the operating prac-
tice of hydroacoustilic stations.

In conclusion we emphasize that the data presented pertain only
to the first pulsation of the gas bubble. The second and succeeding
pulsations also give rise to shock waves, but their intensitles are
much lower. For a general estimate one can note that the impﬁlses of
the pressures produced in the second pulsation are five to six times
smaller than in the first pulsation; in the third pulsatlon they are,
respectively, three times smaller than 1n the second.

Example. Plot the pressure pattern of an underwater shock wave at
a point located at a distance 100 m from the center of the explosion
of a TNT charge weilghing 1 ton. Carry out the calculation both with
éhe hyperbolic and with the exponential dependences.

Solution. We find the radius of the equivalent spherical charge
and the relative distance

Ry; = 0,053 13/ 000 = 0,53 m
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We calculate the value of P

Calculation of the variation of the pressure of the underwater
shock wave is carried out by Formula (2.152)
]

[(m-7z)+Y] oo (o= ) k&/em®.

ROS ROS /

plt,r)=pm

The calculation is summarilzed 1n Table 9.
We determine the damping time constant 6 by Formula (2.156)

Boe 14 Bon o2e o 1403340600 1015ec,
ay 1500

We '‘calculate the maximum pressure uslng the exponentlial functlon
(2.154)

’ 1 r
P = pye 'b '—'a—,)c(t__f'__).

aq
The calculation data are listed 1n Table 10.

We calculate the values of the maximum pressure using the hyper-

bolic dependence (2.158)

= 2 : ._J;)
p(,f) [n_i_o'e_:’__,(n!__aio_) ’aco(! [24)

This -calculation is summarized in Table 11.

Figure 50 shows 2 comnparison of the calculation results obtalned
from a.. three relations employed. Since the relative dir“once T = 179
is beyond the range of posSible application of Formula (2.152), the
latter yilelds the largest error. The exponential curve 1s close to hy-

perbolic for time intervals © < 6.
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e . VAV { _— 170 SN 4 : S g p'—'/)rr(s)"'
i sec ! ta, ’ {2)/Res ’ 8)— 179 ! (4;-0,27 (3)+1 (S Xt} £ »‘st(s)
1 | 2 | 3 | -4 ] 5 | f ] 7 | | 9
0,0633 95,0 179 0 0 1,00 1,00 1,000 42,50
0,060 96,0 181 2,0 0,540 1,54 2,37 0,422 17,90
0,0645 96,8 182 3,5 0,945 1,94 3,78 0,265 11,25
0,0650 97,5 184 5,0 1,350 2,35 5,52 0,181 7,68
0,0655 98,3 185 6,0 1,620 2,62 6,86 0,146 6,22
0,0660 99,0 187 8,0 2,160 3,16 9,93 0,100 4,25
0,0665 99,7 188 9,0 2,430 343 11,76 0,0852 3,62
0,0670 100,0 189 10,0 2,700 3,70 13,69 0,0732 3,11
0,0700 105,0 198 19,0 5,130 | 6,13 37,58 0,0267 113
0,0720 108,0 204 25,0 6,750 | 7,75 60,06 0,0167 0,71
TABLE 10 TABLE 11
‘ | | e P=pp(d) = | 4, sec_l_( — LN 06214+ (3)] @R |p=bfm 325
sec| ¢ > T f e =135 (1) e ) 1( YT+ (3)] )P |p @) )
1] 2} 3 | 4 5 1] 2 3 4 5 6
0,0633 0 0 -1,0000 42,5 0,0633 ! 0 0 1,000 | 1,000 42,5
0,0610 | 0,0007 0,410 0,6636 28,1 0,0640 0,410 0,246 | 1,246 | 1,550 27,4
0,06453 0,0012 0,703 0,4951 21,0 0,06645 0,703 0,422 | 1,422 2,016 vzl
0,0650 0,0017 0,995 0,3697 15,6 0,0050 0,995 0,597 w097 2,550 16,6
0,0655 | 0,0022 1,290 0,2752 11,7 0,0635 1,290 0,774 | 1,774 | 3,140 13,5
0,0660 | 0,0027 1,580 0,2059 8,73 0,0660 | 1,580 0,048 | 1,948 | 3,790 11,2
0,0665 | 0,0032 1,870 0,1541 6,55 0,0665 | 1,870 1,120 | 2,120 | 4,500 9,4
0,0670 | 0,0037 2,160 0,1153 4,90 0,0670 | 2,160 1,205 | 2,295 | 5,250 8,1
0,0700 | 0,0067 3,920 0,0198 0,84 0,0700 | 3,920 2,350 | 3,350 | 11,200 3,8
0,0720 | 0,0087 5,100 | 0,0061 0,26 00720 | 5,100 3,060 | 4,080 | 16,480 2,6
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Fig. 50. Comparison of the values of
the maximum pressure determined from
Formula (2.152) (solid line), from the
exponential formula (2.154) (dashed
line), and from the hyperbolic depend-
ence (2.158) (dash-dot). Time is
reckoned from the instant of explosion.

§9. PROPAGATION OF LOAD WAVE IN AN UNDERGROUND EXPLOSION IN AN
UNBOUNDED MEDIUM

The iniltial period of the development of the processes that accom-
pany an underground explosilon essentially does not differ much from
the case of an underwater explosion. At the instant when the detona-
tion wave emerges on the surface of the charge, three discontinuity
surfaces are produced: a shock wave, a stationary strong-discontinuilty
surfaée, and a weak-discontinuity surface (characteristic).

The pressure on the front of the shock wave is on the order of
hundreds of thousands of atmospheres. At such high loads, the ground
behaves like a gas, the only difference being that after the pressure
is removed the gas returns to its initial state, whereas the ground
either disintegrates or experiences large residual deformations.

The disintegration and packing together of the ground consumes
lrreversibly conslderable part of the exploslon energy. Therefore the
pressure on the wave front decreases rapldly. At a distance of two or
three large radiil, the maximum pressure amounts to only several thou-

sand atmospheres.
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Also coincident with this time is the beginning ol a qualitative
change in the process of propagation of the wave disturbances. The
point is that at stresses of this order, unlike in an ideal liquid,
the propagation velocity of a compression wave of large amplitude in
ground is lower than the veloclty of scund. Consequently, the wave
pattern becomes deformed in the compressilon phase. The wave front dis-
integrates and 1s replaced by a gradual increase in pressure. The re-
gion ¢l <T..¢ greatest stresses lags the start of the arrive”™ of the
load wave.

As before, however, in this range of distances one-still uses the
term "wave front," taking this to mean the envelope surface of the in-
itial disturbances of the compressilon wave. The rate of propagation of
such a front is.obviously equal to the rate of propagation of the

longitudinal waves in the ground:
K+ 2
o=y R, (2.162)

where A and p are the Lame elastic constant and p is the density.

As the compression wave moves away from the center of the explo-
sion, the maximum stresses in it decrease, and the disintegrations and
plastic deformations of the ground are replaced by elastoplastic de-
formations and then simply by elastic deformations.

- In accordance with the qualitative picture developed above, it is
customary to distinguish between three zones of an underground explo-
sion: the near zone, the middle zone, and the far zone.¥

Theilr dimensions are determined essentially by the weight of the
charge and by the type of ground.

In the near zone one separétes two other regions, the compression
region and the disintegration region. In the compression region there

exists a shock wave with discontinuous front. Owing to the tremendous
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loads the ground crumbles énd becomes packed together. The boundary of
this zone, 1in the case of explosion of TNT charges, is determined from
the empirical formula

| R, = 19k_, (2.163)
where ﬁs is'the relative radius of the compression region, FS = RS/ROS’
-and ks is an emplrical coefficient which depends on the type of gfound.

The region of disintegration is characterized by the disintegra-
tion of the continulty of the ground and by the appearance of cracks.

For the disintegration region we have

R, = 19.0k,, (2.164)
where ﬁr = Rr/RO3 is the relative radius of the disintegration sphere
and Kr is an empirical coefficient.

The values of the coefficients ks and kf are listed in Table 12.

The laws governling the propagation of the compression wave in the
near zone have not yet been studied sufficiently to this day. Conse-
gquently, one cannot even indicate general formulas to characterize the
stress and veloclty fields for the ground particles in this zone.

The middle zone of the underground explosion, where elastoplastic
ground deformations occur, extends approximately to distances of about
100 ROS'
For soft grounds of the loess and loam type, etc., the normal

stresses o, in the middle zone can be calculated from the formula¥* -
max

=B [kg/em? ], '2.165)

"max

where the coefficient F for large depths of placement of the charge
can be assumed equal to unity. The value of the coeffilcient k, to-
gether with r~~mo other characteristics of grounds, is liz%ed In Table
13.

In soft water-saturated grounds one usually assumes the normal
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TABLE 12

i Haumcuonaune rpyura ’ ke rp 3

|
| i ‘
2 Upyut puxauli, epemenacituieiial ! 0,60 | 085 !
2 Mecor naotuwll 0,50 | 0,63 i
Fana 0,50 | 050 |

51 Cramunwe wopaau 0,20 | 0,50

1) Name of ground; 2) loose
freshly saturated ground; 35
dense sand; 4) clay; 5) rocks.

TABLE 13
|
il Bita rpynta Batn, | Rax, Fesenm T, | Fmax, Py “|,
A'z%rm’ R2[eAB K2 lom? Jg(‘t‘h' afeex | wecorE [
Q

2] nuce 30| 1200 GO | 140 60O | 160—140
3| Maucras rauna 90| 630| 360 | 130 900 | 170—105
4} Cyramnox 90 180 140 | 150 | 200 | 170—150

5| Henacuwennas raiua 700 | 1400f 1050 | 800 | 1700 it
6| Hacuwennan rauna 3500 {10600 7000 {1700 [2500 | 200—022

1) Type of ground; 2) loess; 3) silty clay;
4) loam; 5) unsaturated clay; 6) saturated

clay; 7) kg/cmg; 8) m/sec; 9) kg—secg/mg.

and tangential stresses to be close in value, i.e., O /Jm = 1.
max  oax
Consequently, Formula (2.165) determines approximately the entire
field of stresses 1n soft grounds in the case of an underground expin
sion.

For rocks such as granite, marble, limestone, etc., the 1argeét

normal stress can be calculated from the empirical formula obtained by

Khanukayev

10%F {951  70,1.10% | 26,6.10% 2
=G [ T+ R ke en, (2.166)

o= @ R R
where F 1s a coefficient that depends on the depth of the explosi&h,
which for large depths of placement of the charge is equal to unity, p
is the density of the rock in kg—secg/mu, and a 1s the velocity of .

sound in the rock, in m/sec.
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The wvalues of the velbcity of propagation of longitudinal and

transverse waves in rocks are listed in Table 1.

TABLE 14
1

Bna nopoaunt 2I‘pumn' 3‘“.})8310[‘) }4 Dnabaa

5 | Cxopocts npojoaLnLiX nomt ¢, wfeex | 5200—=5500 | 4-100—1800 5600
6 CropocTb nonepeynwnx soan b, atfcex | 31003200 | 3500-—2600 3200
(| Maotuocrs noponut p, xzcen?fus 265 265 273

1) Type of rock; 2) granite; 3) marble; 4)
diabase; 5) velocity of longitudinal waves
¢, m/sec; 6) veloclty of transverse waves

b, m/sec; T) density p of rock, kg- sece/m .
The ratio of the normal and tangential stresses at considerable
distances from the center of the explosion (when l/E2 <L 1/§) is ap-

proximately
It g}
R

v 1 (2.167)

Thé maximum values of the velocities of motion of the ground can
be approximately determined from the relation
“roax = Urigax PP (2.168)
so that in accordance with (2.165) and (2.166), we have:

for soft grounds

423 Fk

. v, == T 10¢ cm/sec, (2.169)

for rocks

v 1005 Vil 7&\ 4.3210q m/sec. (2.170)

pPa* | R
In individual problems i1t may be of interest to determine the Im-
pulse of the load wave. According to American data, for soft grounds

and an underground explosion of a TNT charge we have

1 30Fky yo_sec/m3, (2.171)
Ros 73l
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TABLE 15 where klsr is an empirical coefflcient, the

R i

h Buz rpyuta | {6 ﬂw/" values of which are listed in Table 15.
RICCN [AL°

4 _ In the case of an explosion 1n solid
Nce 1130

3’ Cyranor 3360 rock

q! aneran fdnia 4 alo
Uanua - 660 4275 55. g

q .L==F[@7%_Qm§‘m4-ﬁ%¥qlm kg-sec/m3. (2.172)

1) Type of ground; 2)
loess; 3) loam; 4)
silty clay; 5) clay;
6) ki w"‘-'--.ae'c/rng.

s e . -
e

Knowing the value of the normal stress

o A R e 2 P P 2 - o
Coald Vaaw i vA 0@ ddl v R it D SRR

we can approximately estimate the time of action of the load. Assumilng
the pressure pattern to be triangular, we obtain

1
I’ =7 c”max T'

hence

_T:;HL sec. (2.173)

Tmux

The buildup time of the load, for solid grounds, is approximately
(1/5-1/3)T. For soft grounds this time fluctuates in the range
(1/4-1/2)T.

The far zone of an underground explosion is arbiltrarilly confined
to the range of distances from 100 to 1000 RO3' The stresses and par-
ticle velocities in this zone are characterized approximately by the
same relationshlps as in the middle zone [Formulas (2.165)-(2.170)].

The relatlons presented give the general pattern of propagation
of seismic-explosion waves when the charge 1s placed at a sufficiently
great depth. Explosions of this type, which display no visible action
on the free surface, are frequently called camouflets. )

The presence of a free surface greatly influences the stress and
velocity fields in the case of an underground explosion. Some data on ,

thls questlon will be given at the end of the next chapter.
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Example. Calculate thé values of the stresses and velocities of
motlon of the ground upon explosion of a TNT charge welghing 100 tons
in a rock of the type of granite at a distance of 250 m from the cen-
.ter of the explosion. Determine the time of action of the load.

Solution. We find the radius of the equilvalent spherilcal charge

'RO3 and the relative distance of the point from the center of the ex-

plosion:

3 .
Ry = 0,033 V100101 = 0,033.10-1,61 = 246 1M1,
R 250

K= oo = 015

ey = 102,

The investigated point is in the middle zone of the explosion.

We determine o . from Formula (2.166). The values of p and a are

obtained from Table 14. In our case F = 1, p = 265 kg-secg/ma, and a =

= 5350 m/sec:
mnﬁ[mJ 70,1.10t | 26,6.10¢
Zrmax T T T - + =
| R K R ]
_ 101 rO30 70,0.100 | 26610877
= 555350 102 T 0@ - T TTIo0 ]"
o ' o
=Tﬁjzgwm.—a&4+qmn=,quw9=%3kg/cm .
We find v, from Formula (2.170)
max '
10 F 1051 701.10° . 266.100 :
fmax ‘—.W[ R - R? + R ]=0’252 m/SeC-

We determine the time of action of the load T from Formula (2.173).
For this purpose we calculate the impulse of the wave 1n the compres-

sion phase using Formula (2.172):

J _ [428  255.10' | 63.10¢ 3
-E;_F[R - Rz]lW:gMJWkg-sec/m ,
and then

2/, e 2.2,34,10%.2,46.10—¢
35,8

= 00321 secC.
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Manu-

script

Page
No.

113

113

114
116
126

127

134
135
139
139
145

154

154
155

156

[Footnotes ]

Equation (2.16) is the consequence of Formula (1.58) in §4
cf Chapter 1.

Analogous relations Iin the variables 6 = (p/pk)l/k, v, and N
were obtained by I.P. Ginzburg (see N.Ye. Kochin, I.E&. Kibel!,
N.V. Roze, Theoretical Hydromechanics, Vol. II, OGIZ, 1948).

I.D. Lindau and K.P. Stanyukovich, DAN, Vol. 47, 1945, Nos.
3 and 4.

F.S. Baum, K.P. Stanyu.covica, B.I. Shekhter, Physics of Ex-
plosions, Fizmatgiz, 1959.

See the examples of the preceding section.

It can be shown that the conditions of dynamic compatibility
(2.42)-(2.44) are of accuracy sufficient for practice if
aO/N < 0.1.

See Eg. (2.506a).

When t* = 1/N* and rq = L.

See §8 of the present chapter.

See §5 of Chapter 1, Egs. (1.97) and (1.98).

L.D. Landau, Shock Waves at Long Distances from the Point of
Theilr Occurrence. Applied Mathematlcs and Mechanics, Vol. IX,
No. 4, 1945,

In accordance with the principle of energy similarity, for
an approximate estimate of the pressure field due to an ex-
plosion of another explosive, we can use Formula (2.136),
the only difference belng that the gquantity G must be re-
placed by GQi/Qt’ where Qi is the specifilc energy of the

given explosive in kcal/kg, Qt ls the specific energy of TNT,
with Q. = 1000 kcal/kg.

Rog = 0.053 JG (2.21).

M. A. Sadovskiy notes that as the distance 1s increased a cer-
tain increase 1s observed 1n the wavelength, characterlzed
by the approximate relation A = xo + a 1ln r.

F.S. Baum, B.I. Shekhter, K.P. Stanyukovich, Physics of Ex-
plosions, GIFML, 1959.




Manu.-

script

Page
No.

159

159
162

166

167

Manu-

script

Page
No.
116
119
119
161
167
167
168

169

[Footnotes (Continued)]

According to the principle of energy simillarity, the value
of the coefficient Ai for other explosives can be calculated

with the aid of the approximate relationship Ai = viA

113

- (90_1;)'5" - (%&)o.m.

where Qi 1s the specific energy of the glven substance in
kecal/kg, and Q. 1s the specific energy of TNT, Q = 1000
keal/kg.

For TNT, obviously, v = 1.

"Propagation of Sound i1n the Ocean," Collection of Articles,
IIL, 1951.

Such a classification 1s qulte arbitrary Iin character. In
many publicatlions, a different terminology i1s used. For ex-
ample, V.A. Assonov dlstinguishes between a compresslon
sphere; a crumbling sphere, and a quake sphere.

The Effects of Atomlc Weapons, New York-Toronto-London, 1950.
[IList of Transliterated Symbols]

b = f = front = front

naturnyy = natural

i
3
i

M = m = model 'nyy = model

nun = tsil = tsllindricheskaya volna = cylindrical wave

e}
-
0
i

szhatlye = compression
Y ; r = razrusheniye = disintegration
CpelH = sredn = sSredniy ; average
cp ; sr ; srednly = average
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Chapter 3
SIMPLEST BOUNDARY PROBLEMS OF EXPLOSION THEORY
§1. REFLECTION OF AN AERIAL SHOCK WAVE FROM THE SURFACE OF THE EARTH

As was already noted, under suitable angles of incidence, the re-
flected wave propagating in a perturbed medium catches up with the d4i-
rect wave, merges with the latter, forming a frontal wave so that ir-
regular reflection sets in.

In spite of the principal clarity in the formulation of the cor-
responding boundary problem, the presently obtained theoretical solu-
tions, for both the region of regular and particularly the region of
irregular reflection, are quite cumbersome in form and in many cases
they diverge substantially from the experimental data. The most com-
plete experimental research in this field, which we shall present be-
low, has been made by K.Ye. Gubkin and A.I. Korotkov.

In accordance with the Izmaylov formula, the pressure in the re-

flected wave at normal incidence (a = 0) is equal to

k41 .
: k——_l(p¢_—po)
Porp — Py =2 (g — po) + o (1.220)
(P — po) + L)
or, if we assume that Po =1 atm and k = 1.4, then
. GAp?
APorp =28y + 7ty (1.221)

It has been found that in the region of irregular reflection, for
amplitudes on the front not exceeding 3.0 kg/cm2, the pressure in the
reflected wave is practically independent of the angle of incidence
and can be determined from Formula (1.221). For the region of irregular
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reflection (apred-s a < 90°> the eXperlmental data are approximated by
the approximate relationship

Ap, = Apj (1 + cos a), (3.1)
where Ap’f‘is the pressure on the front of the shock wave of an explo-
sion on land, calculated by the formula of M.A. Sadovskiy (2.145).

The experimentally obtained boundary of the reflection regioné is
shown in Flg. 51. '

The laws governing the variation of the momentum in the compres-
slon phase with varying angle of incidence have a somewhat different
character. As was shown by M.A. Sadovskily, 1n the range 0° < a< 450
we have

I=1,(1 4 cosa) (3.2)
and 1n the range 45° < o < 90°

I=1,(1 + cos®a), (3.3)
where IO 1s the Impulse for a land explosion, calculated by Formula
(2.149).

The helght of the explosion influences the pressure at the earth's
gsurface 1in two ways: 1t increases the dlstance between the center of
the explosion and the point of observation, and it changes the angle
of incldence of the wave and accordingly the regions of regular and
irregular reflection. It follows therefore that for a given wave in-
tensity Apz it 1s possible to indicate a value of the helght H such
that th2 dlstance from the epicenter to the point with pressure Apz
turns'out to be maximum. This 1s called the optimum height.

If the charge 1s located above or below the optimum height Hopt’
the dimensions of the radii of the zones of specified action (Lpz) de -~
crease, and when the helght H is reduced compared with HODt this 1in-

fluences the value of L much less than an increase in H compared
z

with Hopt'
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Ty The empirical formula relating the

39
: m§\\ ootimum height with the weight of the
73 1 R .
st \\\\\ . charge and with the specifled pressure
ry TN
N oo o mae on the wave front ha. L2 Torm
nr -
! E/(;

nt Honr=3n2 j},:’ (3'4)
1 . )

VL N RO
9 QA2 91 v &5 GF 47 48 6 L0VE where ¢ i1s the weilght of the charge in
Fig. 51. 7=gions of reg- kg, Apz the specified value of the pres-
ular (Z; «né Zrregular 5
(IIL) refiecction as ob- sure oo the front, kg/em®, and Hope 18
tained from the experi- P
mental data. the optimum height, in meters.

The horizontal distances L_O at which the specified value of the
“z
pressure p, is observed in the case of an explosion at the optlimun

height are expressed by the approximate equation

l!unT
Lﬂj=1,3w4. (3.5)

M.A. Sadovskly was the first to call attention to the fact that
in the region of regular reflection, at equal true distances from the
charge to the point of observation r = (L2+H2) 1/2, the values of the
pressure are equal and do not depend on the angle of incidence a (i.e.
the equation Apy _ . = &Py _ 4 holds true).

L=D L=a

Consequently, in the region of regular reflection the connection

between Apotr and L and H is described with sufficient accuracy by

Sadovskiy's three-term formula for an explosion in an unlimited at-

mosphere

3
247 L 65 (3.6)

3_...
. VoG
TVUE R

V Li+ HE

Ap, =076

and by the Izmaylov formula (1.221).

- 176 -



e e e

§2. EFFECT OF THE FREE SURFACE OF THE LIQUID ON THE PRESSURE FIELDS IN
AN UNDERWATER EXPLOSION. ACOUSTIC APPROXIMATION FORMULAS

In underwater explosions at relatively shallow depths, the param-
eters of the hydrodynamic field are greatly influenced by the free sur-
face of the water, on which the pressure 1is equal to atmospheric pres-
sure. As was already noted, when a wave 1s incident on the free sur-
Eace, a rarefaction wave 1s produced.

The problem of estimating the hydrodynamic flelds with allowance
for the influence of the free surface can be solved in different ways.

We shall develop here one of the solutions, with an aim at simul-
taneously illustrating, by means of a very simple example, the so-
called method of incomplete separation of variables, which is widely
used in the analysis of varilous boundary-value problems in the theory

of the wave potential.

Assume that on some sphere of radius R = R¥* there 1s specified a

pressure varlation as a function of the time:
!
—, 9% il
p!/?:R'—PO-(}—t—!R:R-:/)“g 1’ <3.7)

and that the excess pressure on the free surface of the llquid 1s

equal to zero

%{§=:OL2, (3.8)
At thé instant of time t = O the liguid is at rest
o =0; (3.9)
2l ,=0 (3.10)

The unsteady motion of the liquid at t > O is characterized by
the wave equation

1 [)‘.‘..
A?=;§jﬁw (3.11)

integration of which should be carried out under the above-formulated

initial and boundary conditions.
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Let us consider rCirst the construction of the solution for the

direct wave.

Equation (3.11) for motions with spherical symmetry can be rewrilt-

ten in the form

o 2 0v 1 0%
JRY T ROR T T (3.12)
We assume that
t‘r"l i R’.;D ( 3 . 13)
and then
Doy 1 ey lj-l-)
R =TT o . (3.

We apply to Eg. (3.14) the one-sided Laplace transform. To this

st and integrate from

end we multiply both halves of the equation by e~
zero to infinity. AT first we choose for the parameter s some complex
number with positive real parts (s =0 + it; o > O).

We have

o z - ! p 5% _ )

o | et = o [ G0 e, (3.15)
U

We integrate the right half of (3.15) by parts

o

D¢y st -5t 0%, T -
6[776 di=¢ —0:—1-1—.;
]

[ st
0

The Tirst term of the right half vanishes because of the initial
condition (3.10) and because of the exponential character of the first

faétor.
We continue the integration by parts:
su\.—of‘—e’“dt=s(e"’@)°la+ 53“: ;e
ot ?1 j‘ne dat. (316)
. 0 4]

(]

Again we conclude that the first term vanishes.
We put P(5,R) = | ge"dt. (3.17)
0
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Then on the basis of (3.14)=(3.17) we obtain

iy 1 .
T TSP

or

J:h 1 2
_I_J.R.‘.._.-?-s-(/)—_-o_ (3.18)

0
Thus, in place of the wave equation (3.14) we obtain with the aid
of the Laplace transform an ordinary second-order differential equa-

tion. Its general iIntegral is

!

_ll R rTl.sR
D(R,s)=c,(s)e © Hep(s)e” . (3.19)
It is obvious from physicel considerations that as R — «~ the per-
turbations determined by the function ®(R, s) should be equal to zero.

Consequently, 02(S> = 0, and

-l
D(Rysy=c(s)e ™

(3.20)
We obtain the function cl(s) from the boundary condition on the

spherical surface:
Y

.

L l ;
{1 0FfR=/\" g1 (t> ‘R=R’ =p*€

. (3.7)

To this end we agaln use the one-sided Laplace transform. We ob-

tain

pol%;e'”dtzsz(ﬂe'“dt
s} 1)

We dencte

[ p (&) e~ dt=p* (s). (3.21)
0

We integrate the left half of (3.21) by parts

- - " ~
- Frse ]
T st g, -t ; (i -t T =t

o - =~ i =pT o] S ee fa=10,& “H-¢ :
o é ol L Po ,o: ™ fo (“) 2 C dat w ¢ U

o~

bub ® (s, R) = [oe "dt. Therefore

0
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b | et at =5 0 (5, R =" (5)

or

{5

@ (s, ) -«2%?5‘-.‘?“:. (3'92)
comparing (3.20) with (3.22) we obtain

% 'X—SR‘
q(s)::l%é?-R*e“

Consequently,

1 -
= S R=RY

(b(R,.s)=~R":'£%o£i)-e : : (3.23)

After determining the function ®(R, s), we obtain the function P -

This is done by solving the integral equation
P (R,s) = | oe™"dt. (3.24)
0

Such a solution is known as the Mellin integral and is written in

the form

L ]

2 (R &) =5 | D(R,5) e ds, (3.25)

In this case

l=

1
R+ 1 Cpr(s) T a S (R—R*)+st
Po _2:“_-1\ s e dS, (3.26)
where the contour 1 can be any straight line parallel to the Imaginary

axis when o > O.

But p(t) = p*e't/e in accordance with (3.7). Consequently,

3
=3

- £
8

N e
p(S) :=-..P,< \Ye e"Sl dtsp,, — 1 z (9 +S)ll _
. '0 : -g'-rs Jo (3'27)
=
’E‘ S

Thus




since

J 1 9
p=907§"=907{"%; . (3-29)

so that according to (3.28) and (3.29) we have

o R—R"

xR 19 ‘(‘"T) 1
P(R B)=p "R %l OF g‘e ———ds=
, ’ ) .(—ﬂ—-ins/:s_
‘ , R-R* -
- s R* 1 ::(t— D) 1 o
=r 7r§;§e R (3-30)
: - +s

7 5
In the case when t < (R — R*)/ao the integrand tends to zero in
the region to the right of 7T as s — «.
At the same time, the function p(R, t) has no singularities in
the right half plane. Consequently, when t < (R — R*)/ao, we have

PR, =0,

To the contrary, if t > (R — R*)/ao, then the integrand tends to
zero as 8 —+—wo (8 = 0 + it, 0 > 0). Then the function p(R, t) has in
the left half plane a pole at the point s = —1/6. On the basis of the

residue theorem, we have |

‘ R L R=r ‘
P (R &) =p* BR-. % 9=je ( A ').

Thus,
R—R*

0

R—R*

()

0 for t<
PR, &)= (. RoRYY
K

NQR"—F\ a,

E =

Tor ¢t>

or, introducing a unit discontinulty function of zero order,

_L(R=R
p(Rt%=p*§;e 7l ”°)o/m—R‘Rv. (3.31)

0\ s

The solution (3.31) determines the direct wave.

On the free surface of the liquid there should be satisfied the
boundary condition

de }
903(;'1:ﬂ=p! =0 (3'32)



This condltlion can be readily satisfied if, using the principle

of linear superposition, we add to the solution (3.31) the term

-l

’ s R* e R0
—p=—p e . °°<"’R_.:..R—)' (3.33)
where, unlilkie Rw VIS (733 , we have R wl Tiq (H+a).
Thus, the resultant pressure will be
Je ‘l(f-g:'k-.) 3 e
N L

g = il B2
—pr BT T h__N—RT

% \3.34)

The result obtained admits of a simple and illustrative geomet-
rical interpretation, known as the scheme of mirror refl;ction of the
source and of the sink (Fig. 52).

In this case the direct wave can be regarded as a perturbation
due to a source 1n the lower half plane, while the reflected wave is
due to an imaginary sink in the upper half plane. In elther case the
change in pressure on the fronts of the wave systems 1s discontinuous.

A formal consequence of Relation (3.34) 1s the possibility of oc-
currence of negatlve stresses in the liquid. The question thus arises
whether water can withstand such stresses. Individual experiments have
shown that under certain conditions water free of mechanical admix-
tures can withstand negative pressures up tc 280 atm.* However, in
practice, one observes most frequently a rapid development of cavita-
tion phenomena and the pressure drops to the vacuummetric value.

The reflection of shock waves from the free surface can be well
recorded by experimental methods. The instant of arrival of the re-
~flected wave at a point corresponds to a cut in the pressure curvé on
the oscillogram of the explosion. By way of illustration, several such
oscillograms are shown in Fig. 53. The solid lines here show the .

pressure osclllograms obtained by experiment, while the dashed curves
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correspond to calculations Ey Formula (3.34). As can be readily seen,
there is complete agreement between the theoretical and experimental
data up to the instant of arrival of the rarefaction wave. Beyond this
the calculation curvegs indicate a possible existence of a region of
negative stresses, which were not recorded experimentally.

The time of action of the positivé
pressure phase 1s obviously determined by
the difference between the times of arrival

of the direct wave and the wave reflected

from the free surface at the given point.
Since the dlsftance covered by the di-

rect wave is equal to VIT¥ (7 —=1) , and that

covered by the reflected wave is—V 1 =(H + A

Fig. 52. Diagram of we have
mirror reflection of a

source and a sink. 1)

Free surface.

t“.—_:‘—llo—{V/_?—j—(H-rh)?—VL'-’+(H—/1)3}‘. (3.35)

If the distance I, is large compared with the depth of the charge

H and of the measurement polnt h, then we can assume

; J
y4 ! + Nyt H—n\?
= A i L) 1 32, (3-36)

B o= (3.37)

It follows therefore that the time of action of the positive pres-
sure phase, with allowance for the influence of the free surface, 1s
determined in the acoustic approximation by the purely geometrical
characteristics and does not depend on the welght of the charge.

Using as a basis an expcnential dependence of the pressure on the

time, we obtain for the pressure 1lmpulse
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Fig. 53. Characteristic pressure oscill-
lograms with allowance for the 1nfluence
of the free surrace.

‘gx _ L ) _.{.Ri
!n(=j PmC ["-—‘-an"(l_‘e ’ )- (3'38)
0

Usually the ratio tak/e is small, so that with accuracy up to 2%

we can assume:

for tak/e < 0.35

!ax=17r::tax(1_ "_)10“): (3-39)
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for tak/e < 0.04
lax =pmtak- (3 . 40)
The pressure on the front of a shock wave can be calculated by

the empirical formula of R. Koul:
P ="ri (2.151)

The scheme proposed for taking into account the influence of the
free surface of the liquid in the acoustic approximation, while simple
and clear, has nevertheless a limited region of practical applicatioh.
If the pressure fields are considered near the free surface, it be-
comes necessary to take into account the nonlinearity of the reflec-
tion process. Then the pressure on the front of the wave turns out to
be smaller than in an unbounded liquid, and the time of action of the
positive pressure phase is smaller than calculated in the acoustic ap-
proximation. The shape of the pressure vs. time curve also changes.

These facts can be explalned as follows:

1. Part of the explosion energy goes over into the air if the
depth of the charge is low. In the region of the front of an under-
water shock wave, the energy becomes redistributed and this results in
a reduction of the pressure. Such a process exerts an appreciable in-
fluence on the pressure field if the depth of the charge does not ex-
ceed one fadius.

2. When a shock wave strikes a free surface, a rarefaction wave
1s produced. According to Zemplen's theorem, the rarefaction wave can-
not have a discontinuous front. It is an aggregate of characteristics
(elementary pressure-reduction waves), propagating with the local ve-
locity of sound.

Since the local velocity of sound behind the front of the shock

wave, added to the velocity of motion of the liquid behind 1T,
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ways larger than the velocity ol front displacement, some of the char-
acteristics catch up with the shock wave and attenuate 1t. To the -con-
trary, one group of characteristics with appreciable negative ampli-
tude has a velocity close to the velocity of sound in the unperturbed
medlum, and consequently reaches the point of observation later than
the shock wave arrival at the same point (N > ao). Thus, on the one
hand, the rarefactlon wave decreases the pressure on the front of the
direct shock wave and distorts the pressure-time pattern, and on the
Other hand the time of action of the positive phase of the pressure
becomes longer.

It is important to ascertain the range in which the influence of
the described nonlinear effects becomes manifest, and to provide a
quantitative estimate for it.

We begin the exposition of the nonlinear theory of shock-wave re-
flection with a determination of the limits of possible application of
the acoustic-approximation formulas.

Example 1. Construct the pattern of the pressures at a point lo-

cated at a distance L = 100 m from the center of explosion of a TNT
charge weighing 300 kg. The depth of the charge is assumed to be H =
= 10 m, and the depth of the measurement point is h = 2.0 m.

Also calculate the value of the impulse of the pressures in the
specified point.
Solution. The radius of the equivalent spherical charge is

3 3
Ry = 0,053 1V'G = 0,053 1100 = 0,355 m.

The relative distances are

10/
0,355

T = =282 77 = -2
The pressure on the front of the shock wave is determined from

the formula
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The exponential damping constant 1s in accordance with Formula
(2.156)

0=1,4 R0 7020 14035 540 000132 sec.
2o 1460 :

The time interval between the arrivals of the direct and reflected

waves at the point 1s

-
fu='E;—(VLQ+(H+h)’—VL’+(H-—h)?):—2LiZ£=
La, )
_ 2.10.2 _ -G
= oTmg = 2710 °sec.

The resultant pressure is determined from Formula (3.34)

R Ly, R

1
P = pme "(f G co(f—%> ——pme—T =5 c°<t—-.§i)'

5]
or, measuring the time from the instant of arrival of the direct wave

at the point, we obtain

-t
p=pne *

1 1
— — — (£=0,000273)
p=252.272 00T oy 050,070 T a0 {t — 0,000273),

1
— (-t
oo () —pme £ 0 W bty

The pressure-time pattern is shown in Fig. 54. The time is
reckoned from the instant of arrival of the direct shock wave at the

point.

prefen

—

_—
™ —
~——
——
—

5m 1000 1505 tosonr

Tl lustrating Trample L. Drana
~asherns without allowance (dashed)
and with alloweance (solid line) for

the influence of the free surface.

The value of the pressure impulse 1s determined from Formula (=.
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Fig. 55. Illustrating Example 2. Pres-
sure patterns without allowance (dashed)

and with allowance (solid line) for
the influence of the free surface.

1,y 0,000273

Ax=g¢(1—e~—f>=2&mawmza~—e OO ) 0022 kg-sec/crc.

Example 2. Solve the same problem assuming the depth of the charge

to be H = 3 m.
Solution. The only difference 1s that the time interval between

the arrivals of the direct and reflected waves at the specified point

ig different and amocunts to in this case

| WH.
Loy = 'E'o‘(VL°+(H+/Z)’—VL"+(H—/1)‘)2—27-%—,1- =
o ! 0

w282 og210-¢ seC
Toor 400 = 082 .

The pattern-time pressgure assumes the form shown in Fig. 55.

The pressure impulse turns out to be equal to

(- i-L) _ 0.000052
\—Aax = prl L —e ¢ =2amawm2ﬁ-e 000152 ) =~ 0,00200 kg_sec/cmg.
§3. LIMITS OF POSSIBLE APPLICATION OF THE ACOUSTIC APPROXIMATION FOR-
UENCE OF THE FREE SURFACE IN THE NON-

MULAS. ACCOUNT OF THE INFL
LINEAR FORMULATION OF THE PROBLEM

A study of these effects has attracted the interest of many re-
searchers. The main results in this field belong to A.A. Grib, A.G.
Ryabin, S.A. Khristianovich, B.V. zamyshlyayev, and Ya.F. Sharov, who

have developed_a nonlineaxr theory of interaction between an underwater

shock wave and the free surface of a liquid, and who have proposed ap-
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proximate formulas for the.estimate of the shock-wave parameters.

We shall adhere below essentlally to the exposition of Grib;
Khristianovich, and Ryabinin.¥*

We consider first the simplest case of a plane shock wave of unit
amplitude normally incident on the free surface.

The elementary pressure-reductlon waves resulting from the réflec—

tion will propagate in this case in a medium with constant parameters

(pf: Ves af)‘
As 1s well known, such a motion is described by the Riemann singu-
lar solution (see §7, Chapter 1). Using the coordinate system of Fig.

!

56 for the "inverse wave of one direction," we have

v-—{————n_z_la::const. (3.41)
It is easy to determine the constant in (3.41) by recognizing

that on the forward boundary of the rarefaction wave (zero-amplitude

characteristic) we have

P == gy p == Pu,
Q== Qy, V= Uy,
Consequently,
U - Q=7 +_2__a
n—1 " @ =T Yo
hence
2 1
V="Ty+ = (ap—0). (31.;.2)
~wroding to the linearized conditilons of dynamic compotibility,
we have
— n-1
Np=ao(1+ZEL p,); (1.205)
[ n—1 . -
a¢-.-(fvn<x+~:23~,7;p¢>, , (_._.206)
ro
W¢=”%73, (l.207>

and, as can be readily verified, an expression of the type (1.200) is
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valid not only for the wavefront, but also for an arbitrary reglon be-
hind the front.

Indeed, on the bvasis of the equaticn of state of water

0 “"\: i P+B=po+f3~ B
~ o W e’
/15’,?7#" N rr3 ST s o n-1
Qi Aewad [® B = 7 Poonh N A —_— - “
LR a_Vd? ?' Pa (Po/ aO(Po) ’
or, since
P 2
’E"——l’*'nBo
| 2 we have
K a==0 <1—'~"'—1
NETTmE ) (1.206a)
Fig. 56. Reflection of
a shock wave from a . .
fres SUPface in Ehe Substituting (1.206), (1.206a), and
acoustic approximation .
and in accordance with (1.207) in (3.42), we obtain
the Riemann solution. V=, 4 —2 g (0] n—1 \
I) Characterigtic of e AT °(2&zp¢_'ﬂm p)—
zero amplitude; II)
characteristic of max- ==ﬂo§%+w%‘bﬁp-& 2py —p (3.43)
n nk o Tt g .

imum amplitude; III)
acoustic approximation.
1) Time for the pres-
sure to drop from Pa

to O.

On the free surface of the ligquid we
can assume the pregsure equal to zero. Then

9
& [)4,
=Ty

In other words, in exactly the same way as in acoustics, the ve-
locity of the liquid particles on the free surface is twice the veloc-
ity of the particles behind the wavefront in an unbounded liquid. The
direction of motion of the particles in the rarefaction wave is op-
posed to the direction of wave travel. Because of this, we obtain for.
the veloelty of propagation of an arbitrary wave oharacterisﬁic

dz

Nx”,:'zt-:'u——a,

or, according to (1.206a) and (3.43)

2py—p n—1
Ny =ay—5— —a, (1+'§‘53—1’)=
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+ 1 2
=—ao<1+n2"3 p——n_B-p¢)' (3.1-11")—.")

The pressure p 1s made up of the pressure o in the direct com-

pression wave and the pressure Py in the elementary rarefaction wave

r
P =DPr = Py p
With this, the pressure in the aggregate of the characteristics
Aforming the rarefaction wave varies continuously from zero (zero-
amplitude characteristic, p, ., =0, p = pf) to p, .. = Ps (p =0). In
accordance with (3.44), the zero-amplitude characteristic moves with

velocity

41 2
Nx!P!Pa.p=°=~—a°(1+ 2nB3 ,174,-—7;.}'[7[;;)3

-~

—3
=—20a0, (1+—-—“—n2”13 pm).
For the maximum-amplitude characteristic we have
2
Nxap ’pﬂ-P.=-”¢ =‘--—0°(1——’{B—p¢,>.

We note also that according to (3.44) the velocity of displace-
ment of the characteristics of the rarefaction wave depends linearly
on their amplitude.

If we assume as the time origin the instant of arrival of the
front of the direct wave at the point z = —h, then the pattern of
propagation of wave disturbances in the liquid can be represented in
the follofing fashion (see Fig. 56).

After a time interval, equal to

e R (R,
the direct shock wave reaches the free surface. '

The rarefaction wave comprises a penclil of rays emerging from the

point A(t = h/Nf, z = 0), with different veloclties.

The zero-amplitude characteristic arrives at the point z = - a
P
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the instant of time

— a _ L= n )
¢ i t‘p + ‘anp .. p=0 = '(‘Io ( 1 — -—r),” ‘)')(:)) -
A 1 hof 1 n ,
YR TESE TS w T e et
ik 4
"3 24 3n—35
“‘?szﬁ‘=7:(h—*mm—ﬁﬁ» (3-45)
while the maximum-amplitude characteristic (pv p = —pf) arrives at a
time
I vk 1 —n
t=t : —~ymand :——-/ —_--:f...__v‘\..'_
¢ Niap A &g \'1 dln f)‘r’/ !
h 1 24 ., 7—n
T T Q’E(IT'smzPO' . (3.46)
ey

In the acoustic approximation the compression and rarefaction
waves propagate with identical velocities. The time intervals between

the arrivals of the direct and reflected waves at the point z = —h is

and coincides practically with the time calculated by Formula (3.46).%

Unlike this flow, the Riemann flow
| . a8 ign

- ]

is characterized by gradual change in

57)
i b e ) ;
L= __2h —n —387_ 28 n+1
At“ao Py 88n + 85 J—-G—O—TBTPQ"
Fig. 57. Character of
time variation of pres- The ratio
sure 1n the acoustic ap-
proximation and in ac- $1=£%Jp¢
cordance with the Rliemann ak - aon
solution.

amounts to less than 1% for pressures
Pp = 100 atm.
It follows from the foregoing that when a shock wave is normally

incident on a free surface, the exact and acoustic solutions are close

to each other.
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The situation is somewhat different

in the case of incidence of a shock wave

on a free surface at an arbitrary angle.

It is necessary to distinguish here be-

tween the regular and irregular reflec-

N

Besng pospecemn : /‘< tions.
Fig. 58. Diagram show- Iet us consider consider first regu-
ing reflection of shock
wave from the free sur- lar reflection (Fig. 58).
face of a ligquid. I)
Maximum-amplitude char- The rarefaction wave moves in the re-
acteristic; II) zero-
amplitude characteris- gion of a liquld perturbed by the passage
tic. 1) Rarefaction
wave. of the direct wave. Its displacement veloc-

ity is made up of the local velocity of sound a, the proJjection of the
veloéity of particle motion behind the front of the direct wave on the
direction of displacement of the characteristics

Vs €OS (Bap == Besp)
and the velocity increment due to the motion of the characteristic it-

self

Po—p

Av = —aq, —

Thus

trdd : . pw—-p
Nxap=(l'{—ud,cos(l?no -t pxap) —Q ni3 !

or, recognizing that Bow and Bkhar are close to each other, and dis-

cardins Lzrmg of second order oI smalilness,

Do —p
ni3

Nup =a - Uy COS 2;‘3,1‘, —a,
Substiltuting into this expression the values of the veloclty of
sound and the particle wvelocity, in accordance with (1.206a) and

(1.207), we have

n—1 P Pa—
N, = IS ik S— e e [T - =
xmp = Qo (1 C2Bn ﬁ) = Ay 3 €OS 2240 L yr
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3 r| A a p!h.I
_.170[.1'1"_Q‘EFII—(I"‘COSA?DP)’,TL}J. (3}_;,7)

On the free surface, the direct wave and the characteristics of

the rarefaction wave have a common point A (Flg. 58). Consequently,

Nap _ Ng

ot v Eny” (3.48)

In accordance with (3.47) and (3.48)

Nxap & [1 + nojl.bl p— /1 — CO5 2.3.;,;, {:—‘fi ].!
€08 ?x.p=COS @“P_N;:Coszgnp 2nl — Pl 'L=
ool 1+ T o |
— no+ 1 -0 Po
= COs ?np[l-%-’zny p-- (‘T'—FOS QSHP) ?[J (3.149)

This formula was first obtained in the work of Grib, Ryabinin,

and Xnristianovich.

At small angles of Incidence

2

. 1
o8 oy ™ 1 — - B2,

cos 28, =1 — QQﬁm

and the last equation assumes the form

n+1 . P
8, = (1 R 62 0B n2
€08 Zsup = 3" Plp R '

+ qnB Po

or, discarding small terms of third order,

n+ 1
Vs ?

P T
Lt Sp Po + o g

cos pxap ==

(3.50)

If the pressures are not too high, then in first approximation

42
Fap

I
cos l’axnp == 1 Tyt

hence

B, o

xop == Pape

Because of this, the time of action of the shock wave in the case
of regular reflection differs insignificantly from the time of the
acoustic approximation.

The pattern pressure at an arbitrary point of the liquid can be
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constructed by starting frém the following considerations. Assume that
we are considering, as beflore, some point located at a depth h away
from the free surface. At the instant when the front of the direct
wave arrives at this point (t = 0) the pressure jumps abruptly to a
value Pr and remains constant until the zero-amplilitude characteristic
-arrives. From simple geometric constructions (see Fig. 58) it foliows

that this time interval is

ft cos By

to = N¢ (tg lgnp"*‘ {g k?xnp ‘f’n. p-_-o);

the time of arrival of a characteristic of arbitrary amplitude at the

point under consideration is

hcos P
= "—mlp (fg ﬁnp ~+-1g 3;.;:):

or

(3.51)

ho, tg Brep
—_——— i el
¢ N sin By (1 15E,)

On the basis of (3.49), neglecting small quantities of second or-
der, we can easlly reduce the ratio tan Bkhar tan Bpr to the form

{8 Brap 1 [n+5 . P e
tg ﬁnp == ] +5{n'1r‘jnp ( +— — €08 2@np> m—mj)].

Substituting this result toge“therwlth the expression for N in

Formula (3.51), we obtain ultimately

2k L1 1 "
f= Lgina 12l . n3
ay SN Pap g Pe .xln'-'pnp[ i
— LI LA P)
cosZ’inp) B E P (3.52)

Therefore the time of arrival of the zero-amplitude ~haracteris-
tic (pv =0, p= pf) at the point will be
{

ty= 2t sin fu, 1 1
=l 1 3 _—
0 N Inpl

n1 1 n ._..'3
.
[ g ' '.-Ehin'*,",”p( 4 -
) \'] 1'({‘
- cos 28, ) 251,

For the maximum-amplitude characteristic we obtain
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= €08 Ly ]

These laws enable us to make more preclse the reviously formu-

'S

lated deduction bthat iz possablc to egtimate the time of action of a

shock wave in the regular-reflection region with the aid of the acous-
tic eguations. Indeed, for example, let the conditions of the problem
be st - that an error of about 10% is permissible in the determination

of the time of action of the wave, 1.e.,

After substituting the corresponding values of tl and to, we ob-

tain

n+1 Pe
dnl et Ey, Y Gt

and

. » /1+1
Bap > arcsin ‘,/ 10 55 Po

The considerations presented above are valid not for the entire
possible range of variation of the angles of incldence of the direct
wave. Starting with an angle which we shall henceforth call critical
(p*),* the rarefactlon wave will catch up with #he front of the direct
wave, distort its form, and change the amplitude. Irregular reflection
gsets in.

Tet us find the value of the critical angle p¥. To thls end, we
compare the wvelocity of displacement of the front of pressure-
reduction wave (zero-amplitude characteristic) in the direction of the
<free surface with the veloclty of the front of the direct wave.

The zero-amplitude characterlsgtic moves in the dilrection of the

free surface with veloclty

N

|
-




The velocity of displacement of the direct wave front in the same
direction is

N

S By

The value of the critical angle 1s determined by the equation

Ny
cus g’

a - Uy cos 3* =
Assuming B¥* to be small, and consequently putting cos p¥ = 1 —

— p*°/2, and using Relations (1.205), (1.2062), and (1.207), we obtain

1 7 ﬂo(1+1—'+—"l!’zb)
n— \ Po / 1 pyt 48n
“0(1+'2Bnp¢/'+“°iﬁ\1“ﬁfﬁ')=='““‘“1'_‘”“

Do e !

Alternately, discarding small guantities of order higher than the
second,

l4n
1

n+4+1l 1 '
e s

Pq, s“'Q“' ’
hence
= Fi
o= V2 o (3.53)

If the angle of incidence is Bpr > B¥*, the pressure-reduction
waves do not catch up with the front of the shock wave. Regular reflec-
tion occurs, similar to that considered above.

When Bpr < p¥ the reflection becomes irregular. Then the common
point of the rarefaction—ﬁave and shock-wave fronts moves downward
from the free surface. The section of the shock-wave front adjacent to
the v = curface becomesg curved. Zhe pregsures on this section become
smaller than in an unbounded liquid. The boundary of the irregular-
rcflection region is shown in Fig. 59, and a diagram for such a reflec-
tion ls shown 1n Fig. 60.

Iet us find the point of intersection B of the froant of the shock
wave and the front of the pressure-reduction wave. Below this point,
the front of the shock wave does not bend, and the pressure on 1t 1z
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Fig. 59. Regions of regular (I)
and irregulir (II) rcflectlon
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Fig. 60. Diagram showing the
bending of the shock-wave
front by the rarefaction-wave
characteristics.

the same as in an unbounded liguld. We assume a coordinate system such

c0. The eguation oF the Ifront Of the pressure-

&3 shcwn in
reduction wave, assuming approximately that the velocity behind the

front of the shock wave is directed parallel to the free surface, will

be*
(x—v,8)? - 22 = a2,

or, according to (1.206) and (1.207),

(x—ao B:) A+ 2® —-a”t"[l—}-—ll—zt—l%%]g. (3.54)

We put
x=at[l + X], z=a,Z, (3.55)

and then Eq. (3.54) assumes the form
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[1+X—m] +z~=[1+——”=2 m] .
Near the free surface the coordilnate x is close to aot, and con-
sequently X is small. Dilscarding quantities of second order of small-

ness, we obtain from the last equation
22 nA 1Py s :
Xob iy =g =t (3.56)

The eguation of the frent of the direct wave, assuming that

tan Bpr = B, will be

rr

N,

=
x—#ﬁMZ——c“ﬁw,

or

- 7, Il+1plb gzp
.\+p,,pz=a°t 1—4}—"—4—'--17,-1-—*—',—2' .

Changing over to the variables X and Z and reccgnlzing that
(n + l)pf/th = 6*2/2, we obtain

X A B = - (37" + B3 (3.57)

The cocrdlnates cof the point B where the front of the shock wave
intersects the front of the pressure-reducticn wave 1s determined from
a simultaneous solution of Egs. (3.56} and (3.57).

After elementary calculaticns we obtain®

Zp=— (*— ﬁnp)»
gt gl

Xp= 3 -+ ?’np (kr)v, - ?np)-

T2 point B moves along a straight line passing through the point
0 and inclined at a small angle pB¥ — Bpr to the free surface.

We determine in the same way the positicn of the front of the
pressufe-reduction wave with amplitude equal to p. The velocity of mo-
tion of such a2 frort will differ from the velocity of pound by an

amount —aq(pp — p)/nB. Consequently,

{

'
\

i Pe Y o ey, n—1 Po—p:
x—at ) + 2 =aw 1455 p 20T
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Making a change of variables and retaining only first-order quan-
tities, we obtain

X+

m]ku:

=2 E (3.56a)

Iet us find the equation of the curved wavefront. Assume that it
is characterized by the relation
X =X(2).
Previously we had
x==aq,t{l + X],

or
x=atl - X (2)].

The velocity of the points of the front parallel to the free sur-

face will be

dx
dat

] X N
=a [l + X +apG e =a[1+ X225

On the other hand, this velocity is equal to
e[+ f+ 5],
Comparing the expressions obtained and taking into conslderation
the fact that B = —dX/dZ, we obtain
X—Z2G ="+ (%) (3.58)
Eliminating the pressure from (3.56a) and (3.58) we obtain the

differential equation of the wavefront

dX 3 1 X VA
(7z) +2257+%5 —X=0.

This equation can be integrated in closed form.* We have

() ez mx+
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or

ax 7
ﬁ+z%VX+T-

?utting X = sz, we arrive at an equation with separable variables

dv

y v+—fl_,—~-l—-

4z
Z

3

v

Its integral, returning to the variables X and Z, will be

or
X=Cc+cz—Z,

The constant C can be determined from the condition that the in-
tegral curve must pass through the point B:
i
XB = ? 3 £ S l’np (3‘6 - .ﬁnp)»
Zg=— (3" —lup)-

After simple calculations we obtailn

B* + Prp

c=—-"3

Consequently,

or

But, according to (3.56a),

Thus

By definition
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) Bu z7?
Z=tlivip 2T (3.60)
At the point B we have Zy = —(p* — 5pr) and the pressure turns
out to be the same as in an unbounded ligquid, p = p_-

On the free surface (Z = 0) we have

ﬁnp

IPARYINE 362

Py

Relation (3.60) can be reduced after simple transformations to

the form
1 S”_Sll VA B
P—"P[l'%ﬁ.ﬁ_;_-‘g“-zz;]. (362)

Inasmuch as z/zB - h/hB, it follows from (3.62) that the pressure
on the curved portion of the front changes from a value p' = pf/4(1 +
+ 6pr/6*) to p = p, parabolically.

Iet us find now the time of action of the shock wave.

To this end we congider the propagation of wavefronts with presg-
sure p < p', produced near the points of the free surface of the lig-
ulid, such waves move along the free surface more slowly than the poilnt
A; their envelope AE is shown in Fig. 60.

The angle 61 between the line AE and the perpendicular to the

free surface is determined by the equation

a-+u

COSpl=m,

or, according to (1.206a) and (1.207)

n--1 1
1+—‘2nb‘ p+TBp

1
cospy o | — - f — — 2 .

L, 1,
Yt gmE Pt Eh
hence

= ‘;/-T @'—p).
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The point E on the end of the line segment AE is located on the
front of a wave with pressure p, pertaining to the pressure-reduction
wave originating at the point O.

Its coordinates will be
l+1 '
z__Van (P'—P)

and according to (3.56a)

The geometric locus of the points E corresponding to different

pressures p 1ls the parabola

1

Kok 22 o (B0 B . (3.63)

This parabola terminates at the point D, which corresponds to the
boundary of the wave with pressure p = O.

The coordinates of the point D are determined by the equations
3* + Bap
v2

(8% + Bno)?
——

ZD=—

XD=_
From the point A there emerge at different slopes the rarefaction-

wave characteristics. Their equatlon is
X = Zy= o (B + Bop). (3.64)

In particular, there passes through the point D a characteristic

A% = 3, ’
X—Z—l—/?f—=fll—(3'"+ﬁup)’y (3‘65)

on which the pressure 1s equal to zero.

The relations established enable us to determine the time of ac-
tion of the shock wave. Assume that the measurement point is located
at a depth h from the free surface. The maximum pressure at this point
ocecurs on the surface of the wave and in accordance with (3.62) its
value is (Fig. 60)
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2 2 Z""TT'

}&’L = [ ri“ + rup :]2_ 5‘ -+ Sn') Z'=
The point M lles on the parabola (3.63).

Consequently,

(3% + Byp)?

X},("—‘ n —ZE..

The value of the pressure at this point is calculated with the aid

of Relation (3.56a)

Y4 n-+1 p
X'F'>"”T"BF'
(3% + BupP _/_a et P
4 4 _KJ l’«p
1 (3% ) YA
Pu=py “‘1""—————""—2—}.

Finally, the pressure becomes equal to zero on the line AD.

According to (3.65)
e

If the depth of the measurement point h is such that |Z| < IZBI

and |z| < ]ZDI, the time of action of the wave will obviously be

N = Ny ol (X=X a)

ay 4o
==____f__{'(r.m an)i ) + —— V’ /+'Z—}==
= L(—'i— -+ -17-3:) (8% =+ fhp) — R :'

T =

hor

where R = aot.
The maximum value of h/R does not exceed B% — Bpr (see Fig. 60).

Consequently, discarding the term h/4R, we can approximately put
1=1;2"%(ﬁ“+pnp)‘ (3-66)

At large depths of ﬁhe meagurement point, the time of action of

The wave differs little from the value obtained in the acoustic approx-
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imation.

All the considerations advanced above are valid only for the case
of propagation of a plane wave.

The situation bhecomes much more compllcated in the case of an ex-
plosion of a sphérical charge near the free surface. Here the pressure
on the wavefront does not remain constant, and the angle of encouﬁter
between the wave and the surface also changes. The formulas obtained
can then serve only for gualitative estimates. Nonetheless, their use
yields a result that is closer to reality than the acoustic formulas.

In view of this, let us make a few remarks concerning the esti-
mate of the influence of the free surface 1in the case of the explosion
of a spherical charge. ‘

The pressure on the front of the wave in an unbounded liquld is

estimated in thils cage by the formula

o= (2.151)

r

At a large distance from the center of the explosion we have

A
r

Bap ==

where H is the depth of the charge.

The critical angle of encounter between the shock wave and the

free surfacé'is, in accordance with (3.53)

-/ "= 1 14300
p*= / nQBn 1;1,’30 == 1,60 ;c}w ' (3. 67)
since
H* a*"
p* f—1 r == ——_;_-—,
H" = 1,66r". (3.68)

At relative depths of the charge B > H*, the reflection 1is regu-

the same as 1n an

]

lar. The pressure on the front of the shock wave 1

unbounded ligquid.
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When H < H¥ it is necessary to take into account the nonlinear
effects due to the influence of the free surface of the liquid on the
Pressure fields in an underwater exploslon. As a result of the pbropaga -
tion of the rarefaction wave, tensille stresses and cavitatlon zones
can then arise 1in the liquid, as will be discusgsed in greater detail
in the next section.

Example. Plot a pressure-time pattern at a specified roint with
allowance for the nonlinear influence of the free surfaces, taking as
the initial data those of the first and second problems of the pPreced-

ing section:
= 100 m,

a) G = 300 kg, L
h =2.0 m, H = 10 m;
b) G = 300 kg, L = 100 m,
h = 2.0 m, H=3m.

Compare these results.
Solution: a) First we consider the first case. The angle of en-
counter Qpr between the direct wave and the free surface is

H 10

la‘up = = 00 < 0.l

The critical angle is determined from the formula (3.53):

I

L .
&=y o

where

Thus

B* = )/_—1\:1')_‘_")?_3—. == 0,00K6.

IPIRERRE:
Since Bpr > B¥*, the reflection is regular,
Up to the instant of arrival of the zero-amplitude characteristic
at the point, the pressure pattern remains the same as in an unbounded
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-1liquid.
According to (3.52), the time when a rarefaction wave of given

amplitude arrives at the point is

20 fy_n+l
fp = T sludyp | U= == Py +
1 n+5 e N T -1 -“
+ Bup [( Ty T osZdn, e T T el

The time of arrival of the zero-amplitude characteristic (pv r =

= 0; p = pf) at the point will be

R, n -+ 1 ne—-3 ne N M)
ty = 7 sin k.,,p{l — [—ﬁ;— -} T-f—:m."'—.".—x; ( ] + cos J""”)J Ik

or after substituting the corresponding values

Pm = 23,2 refen® sin 3y, = 0,0008;  cos 3y, = 0,993, cos 28,, = 0,980.
2.2 715 + 1 1 7,15 —3 25,2
lo = = p —_ : : - R
° = TI50 Q0993{1 [ T T 50,0005y ( 7T 0980> 7&5-3045}
=241.10—¢ Sec.

At the instant to the pressure 1in the direct wave will be

s 0,00024]

Lk - Shooi >
Plims, = pme * =232 "7 =210 kg/em”.

The rarefaction wave with amplitude pl. _ .
- 70

(v, , = —21.0 kg/en®; D = 25.2 — 21.0 = 4.2 kg/em®),

will arrive at the specified point at the instant of time

715+ 1 =
T ss05 T

B 71545 25,2 8,15 }
1 ) — 3 ) — ) —
E (Qdﬂ&“[( 7 090570 T 115008 ¢2]

= 206.10—¢ gec.

We can assume approximately that at this Instant of time the pres-
sure in the shock wave i1s zero.
Comparison of the results of the calculation with the data of the
first example of the preceding section is made in Flg. 61.
Tt is eaéy to see that in the reglon of irregular reflection it
is perfectly permissible to use the acoustic-approximation formulas.

b) Now let H = 3 m.
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Fig. 61. Comparison of the acoustic solu-
tion (solid line) and the solution in
which the nonlinear effect of the free
surface is taken into account (regular re-
flection, dashed).
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The angle of encounter between the direct wave and the free sur-
face turns out to be

Bap = - = o = 0,03,

Tne critical angle is as before 8% = 0.0686.
Since ﬁpr < B¥%, lrregular reflection occurs.

The pressure on the front of the shock wave is determined from

Formula (3.62)

g ey, 7o
P=p 14 gyt =
BT Pup /‘BJ
where
, 1 rm‘up 2
14 =me[l - ﬁ*] ’
7z E o put®
S S TP L (e — ),
Zp lig B up
Thus

1 , Bup 2 h g
p=ru 1+ ] |14 ]
Substituting the corresponding valueg of the quantities, we obtailn
1 2

p=252——[1+04wrr1+——————]2—1g8kg/cm2'
e ' L 0,0086-100_4 — °

The time of action of tThe positive phase of the shock wave will
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Fig. 62. Comparison of the acoustic solu-
tion (solid line) with the solution

in which the nonlinear Influence of th
free surface is taken into account (irreg-
ular reflection, dashed).

be in accordance with (3.60)

2-0,0986

= .10—¢ .
1160 162-1 sec

T 12 (30 ) = 12
g

The presgsure pattern 1s closely approximated by a linear relation-
ship. Figure 62 shows a comparison of the results of the present cal-
culations with the calculations in the acoustic approximation (Example
2 of §3).

An essential difference 1ls clearly seen in the final estimnates.

It must be borne in mind, however, that for spherical waves the
computation scheme presented is crudely approximate, since the rela-
tions employed are strictly speaking valid only for plane waves.

§4. OCCURRENCE AND DEVELOFMENT OF CAVITATION IN THE REFLECTION OF AN
UNDERWATER SHOCK WAVE FROM A FREE SURIACE

As is well known, cavitation is a process wherein the gas dis-
solved in a liquild 1s released and a vapor-gas mixture is produced. An
analysis of these phenomena 1s closely related with a study of the
strength characteristics of a liguid on occurrence of tensile stresses.

It is stated in the papers of Ya.I. Frenkel' and Ya.B. Zel'dovich
that the upper 1limit of the bulk strength of water is a quantlty on
the order of 2000-3000 atm.* Bridge has shown experimentally that dis-
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tilled water free of mechanical impurities and air bubbles, can with-
stand a tensile stress of approximately 280 atm, and 1ts strength de-
pends essentially on the temperature (Fig. 63). It was also clarified
that the presence of solid particles, bubbles of dissolved gas, and
other similar inclusions in the liquld greatly reduces the ability of
the liquid to withstand tensile forces. One can assume, finally, that
the very process of loading the liquid is of no little importance in
the estimate of its strength.

However, the material available at the present time does not pro-
vide an unambiguous answer to the question concerning the values of
the tensile stresses that water can withstand upon propagation of a

rarefaction wave.
“Z“' In order for cavitation to set in,
st

m the tensile forcesg must overcome the hy-

20} Fﬁ}‘mhhqiaxmh drostatic-pressure forces and cause a
w0 ;““mh rarefaction equal to the value p,. Conse-
‘ quently,

w0t

lpe=— (Pl 2 (3.69)

0t

0f . where Prey is the resultant pressure caus-
iy ) ing cavitation of the liquid, and p, 1s
TR R A the hydrostatic pressure at the specified
Fig. 63. Cavitation depth h

pressure according to

Bridge's experimental Po==Pacu + 1. (3.70)

data.

Iet us consider normal incldence of a

plane wave of exponential form on the free surface:

¢
P =Pnf 6. (3'71)
We use the scheme of mirror reflection of the source and sink,

and obtain without difficulties that the resultant pressure at the

- 210 -

L




. —

7

K
; Ofefeduey

AEESENERTR

r_l

Fig. 64. Formation of cavitational dis-
continuities. 1) Free surface.

depth h amounts to

o2 2
—PntPal =pm(e "°‘,’——1>. (3.72)
If the quantity is equated to the pressure causing cavitation in
the liquid, we obtaln a relation from which we can readily find the

thickness h, of the cavitatlonal layer (Fig. 64):

(oo |
) Ctniens )
hence

= in {1 — Bl R, (3.74)

The liquid will move in the cavitational layer in the direction
of the free surface. The pressure in it will have a value close to the
pressure of saturated water vapor, l.e., close to zero.

For the tail part of the direct wave, the first cavitational

3 T A S e i ~
= - L = e oL ~

o

[§)

W AHE
2 n

t

haXy -]

(
o
o

surface of liguid, %the only dif-

ference belng that on the free surface the pressure 1ls equal to atmos -

[ P S AR e - S =

D= T e D v ek o e o e =

th

[

[ W e e T . - I [ S ~ = - &

close %to zero. Consequently, the tail part of the wave will be re-
flected from the surface of the first cavitatlonal layer. A rarefac-
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tion wave will arise, the precpagation of which can give rise to a new
cavitational discontinuilty.
The depth h2 of the surface of the second cavitational discontinu-

ity can obviously be determined from the equation (Fig. 64):

m o
pm(e a —¢ "°“)=~-lpxl. (3.75)
hence
_ 2 2,
e agh — __'_n‘x l e- _5:6_
P '
but
- il
P _...'z". “+ Do
e 1 pl”
Consequently,
ah {pe] +
- .j-um{1==—1"—p';—ﬁ°—}. (3.76)

The procesgs of formation of cavitational layers will continue un-
til negative stresses in excess of !pkl will arise in the water.

The depth of the i-th cavitational layer will in this case be

- agh { 20p ity
b= — i {1 — 2L °}. (3.77)
Its thickness is
ﬂ 1_ ”pxl+p0
e — a - Pnm
By by = by = == I — R (3.78)
: Pm

Perfectly analogous reasoning enables us to find the depth and
thickness of the 1-th cavitational layer 1n the case of oblique incil-
dence of a plane wave on the free surface. The only difference is that
the initial equation contains as the coefficient of the exponent the

sine of the angle between the normal to the front of the wave and the

surface of the liquid:

Pule” B ] (] ro) (3.79)

As a result
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b= e m[x_m—‘—t&]. (3.80)

P'm
The distance from the l1-th cavitational discontinulity to the sur-~
face of the water and the thickness of the 1-th cavitational layer
will be

hl= HOQ__ ]n{l ___l_!...l’!’.!._t_l_’.o._l

BEEE P f’ (3.81)

p el o,
Al — ___’_7_00 1 Pm
e o 10 . (3.82)

sin 3 =T,
/’f”

The formed cavitational layers, moving wilth different veloclties
gt definite instants of time, will collide with one another. As a re-
sult of the collision, new systems of shock waves will arise, the
propagation of which in the liquid leads to repeated increases in the
pressure.

Let us consider thls process using as an example the motion of
the first cavitational layer. Quite approximately, one can regard this
layer as a mass of liquid moving with a certaln average veloclty under
the influence of the forces of gravity and atmospheric counterpressure.
Under this assumptlon, the differential equation of layer motion can be
writfen in the followlng form:

Po/1iZ = — Pur — oo, (3.83)
where g is the acceleration due to the earth's gravity.

If z = zqq and z = 2z, when t = t,, then the solution of (3.83)

will be
. r . atm T ookt
z(t)="'xo+zlo(t—tx)—'£'§ﬁgg"x‘(t—‘tl)2; (3-84)
2(f) =gy — Lo TR (p ). (3.85)

pofty
The filrst cavitational layer extends from a depth hl to the free
surface. Therefore the quantities Z10 and %lO can be determined from

an analysis of the motion of the points of the free surface. t is 00-
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vious that

2 =2 sin (3.86)

I I
__Tip __'_.p()c __2sinB
o= (o at = [ D sinp = E0E 1), (3.87)

where I(tl) ig the impulse of the pressure of the direct wave.
The maximum displacement of the cavitational layer can be readily
calculated by equating its velocity of motion to zero.

According to (3.85), we obtain

tm'.'"t1=élo—%él—““ (3.88)

Patne + Gpolt !

from which we obtain in accordance with (3.84)

- 5o polty ) pofty )2 Parn t+ £00f
z = —
max = #10 T 2y Paru + Zpolt 0( Fanu T &polt Zpolty =
— polty
=Zpt 2 210 (Parse -+ Haoly) ° (3 ° 89 )

Starting with the instant of time tm’ the layer begins to move
downward, and at a certailn Instant 1t will collide with the main mass
of liguid.

Let us examine this process. To this end, we first find the dis-
placement of the liquid at a depth hl at the instant of formation of

the cavitational discontinuity:

21,=—";—"3— sng
& - n Ll sinf
2= [ p”’ .sin Be °dt— p"‘ sm@(l-—e i )===
]
.y 'Pk|*"/’o,___ lm|+pn
Po“o in Om 0 Poflo sinf. (3.90)

From then on the vertical component of the veloclty of the par-

ticles on the boundary will be¥*

0,0
=[Rt 2280 Y sin o, (¢4 — £) =

t+-(T°-sln{3

1 .,[ -
— 1 5 g
o Sin# 1 o+ 2p,.e

oy (£—1,). (3.91)

Thus, the displacement of the water particles on the boundary of

the cavitational discontinulty turns out to be
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. . 1 "
2, () =2y + [ 2,db = Zo + o sind {/’o (£—1¢)+

t

t4 {;i—sln,'s (—t, l
+2pmoe_ i \l_—e— T)J % (t_tl)n
(3.92)
or, inasmuch as t; = (hl/ao) sin B, and
e—%!ma;-l_’_pk_p’_tﬁl
we have
\ . NIO b 0
23 () = 220 =22 sin f { o (¢ — 1) +
Loal+p - e
+ (1= (e e, (3.93)

The instant of collision between the upper cavitatlonal layer and
the main mass of the liquid can be determined from the equation
10 = Femt ) T 0 (3.94)
where the quantities contained in (3.94) are determined by Eags. (3.84),
(3.87), (3.90), and (3.93).

Upon encounter between the cavitational layer and the main mass

z ——
(t=coyz)

of the liquid, secondary compression waves are produced and propagate
in opposite directions from the collision surface. The amplitude of
these waves can be readlly determined from the condition that the nor-

mal veloclity components must be equal:

: Peoya a2 _ Peoya .
zl('ccyx) - _m{o— M “fenya) Pollo sin, (3 . 95)
hence
C o P > s
Peoyr = % in i {.z"’(%oy;) z’(’coy:)] ’ ( 3- 96)

It is possible to consider in similar fashion the process of col-
lision between the remalning cavitational layers.

An approximate estimate of the character of mection of the cavita-
tional layers can be obtained by applying the laws of momentum and en-
ergy conservation. Indeed, estimating, for example, the initlal momen-
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tum of the two upper layers, we can state that it is equal to the im-
pulse of the pressure forces in the direct wave prior to the instant
of formation of the second cavitational discontinuity:
ko = 1(28,). (3.97)
From then on the system of the two layers 1s acted upon only by
the forceg of atmospheric counterpressure and gravity, with the latter

being negligible.

course of time by an amount equal to the Impulse of the atmospheric

forces p (t — t

atm )t

Thus, the momentum acquired by the layers will decrease in the 1
/"20—'/‘:2 (t)=pa'm (i“—t‘.‘) (3.98) ‘

After collision between the first and second cavitational layers,

thelr average veloclty of motion will be

K@) 128 — pan (= b)

2 () ==t i (3.99)

The kinetic energy of motion is expressed by the well-known rela-

tionship
To(8) =15 5 (1) = i [/ (2) — P (P — B2 (3.100)

It i1s obvious that this quantity should be equal to the energy of
the shock wave from which the work done by the counterpressure forces
is subtracted.

Since the waves propagate at an angle o to the free surface, the
initial value of the energy will be E(2t2) sin B.

The work done by the counterpressgure forces 1ls approximately
equal to
| A= P [5,(8) — 7, (1), (3.101)

where

12t) ..
2 () = L2 cing,
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Thus,
EQ8) = Pana [21(8) = 22 (8)] = T (1) (3.102)
On the basis of (3.102) and (3.100) we establish the following
connection between the resultant displacement of the layers, on the

one hand, and the momentum and energy of the shock wave on the other:

2 () = 2, () + ZEN=T0 - TC4 ginp 4

Parm Poo

4 EO gL (7(28) — P (E— B (3.103)
Parn 2001 Pavma
or, i1nasmuch as
!
hz=‘§i]9,";"» (3.104)
we have
- 7(2¢) £  [J(2) = pary ( ~ L))}
= (t) sin p{ Po“: + Fatu 20000t 11y eu }‘ (3 ¢ 105)

After a definite time interval, the two upper layers are over- '
taken by the third cavitational layer, and at the instant of time tk,
k upper layers catch up with the k + l-st layer.

Arguing in identical fashion as before, we can readlly obtain the
followling general expressions characterizing the motion of the k join-

ing layers:

atfy om L2t = oy U —=tp) o L) = Pare U —11) 7],
=)= Polta —s”h)'. ) Pafiutk ]" (3'106)

2 emsing{LEA 4 EE0) (£@t) = Par U= 1)1 (3.107)

Pule Parm 20000 a1nl k f
We recall that the values of the impulse of the pressures and of
the energy in the shock wave are determined in terms of the shock wave

parameters as follows:

/ _ M
1(2t) =p, 0\l —e™ ¢ ) (3.108)
oxr
1(2ty) == p, 0 AL 0 (e py | 4 1) (3.109)

P
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QL) = ~ 1= ¥ =

ey __e;!i_ 11 o — ”fl Pel 4+ ps 72
i (1= [1 - AT, (3.110)

Formulas (3.106)-(3.110) enable us to calculate the maximum dis-
placement of the polnt of the free surface of the liquid.

Assuming that by the Instant of time corresponding to Zmax there
have joined together N upper layers, we obtaln on the basis of (3.106)

tux:x =y _iggifﬂz_' (:3 . :L:L:L)

Porm

Consequently,
a

==ﬁng(1(mN)%-E(ﬂN)l

max L Bl Hatu

(3.112)

If the value of the maximum displacement of the points of the
free surface 1s estimated without account of the cavitational phenomena,

it 1s obvious that
;e 2 .ol
zlmax=fz,,(t)dt=smf3f——;loaia-)-dtzsmﬁm. (3.113)
0 0 !

On comparison of (3.112) and (3.113) we see how large the changes
Introduced by the account of the cavitation processes in the final re-
lations are.

The calculations performed show that the maximum amplitudes of
the compression waves arising upon collision between the cavitational
layers and the main mass of the liquid reach two-thirds of the pres-

sure on the front of the direct wave:

s

Py (3.114)

pcoyn -

The duration of the positive phase of these waves amounts to
Teoyx == 1.80. (3.115)
The instant of collision is approximately equal to

2p
by == = (3.116)
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Fig. 65. Pressure oscillograms in the
cavitation zone: solild line — experimen-
tal data; dash-dot — calculation with
acccunt of the cavitation; dashed — cal-
culation without account of cavitation.
1) Vacuum.

The foregoing theory, developed by B.V. Zamyshlyayev, greatly
schematlzes the actual process. It is necessary to determine more ac-
curately the wvalue of the negative stress Pies at which the region of
cavitation begins to form. One can hardly Jjustify fully the assumption
of surface cavitational discontinuities and of the displacement of the
cavitational layers with certain average velocities.

Calculatlons performed with the ald of the foregoing formulas are,
however, in sétisfactory agreement with many experiments, as evidenced

by the osclllograms shown in Fig. 65. A more rigorous solution of this
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broblem was obtalned by A.N. Patrashev.

We note also that an account of the cavitational phenomena 1n the
propagation of shock waves in the liquid is essential nbt so much in
the study of reflection from the free surface, but also in the analysis
of the Interactlon between a shock wave and a structure. Some remarks
on this guestion will be made in the last chapter of the book.

§5. QUALITATIVE PATTERN OF REFLECTION OF AN UNDERWATER SHOCK WAVE FROM
THE BOTTOM OF A RESERVOIR

A study of the influence of the bottom of a reservoir on the pres-
sure filelds produced in an underwater explosion entails difficulties
of principal character. It is necessary first of all to know the
mechanical properties of the grounds. Yet, the available limited data
offer evidence of a rather wide range of acoustic impedance of grounds
(from 0.1 to 4.8 of the acoustic impedance of water), thus predetermin-
ing a varied character of reflection.* In many cases it is necessary
to take into account the inhomogeneity of the grounds and their lay-
ered structure. Of great significance in the study of wave propagation
is, in addition, the relief of the bottom, the character of which is
not amenable as a rule to a mathematical estimate.

In view of the foregoing, 1t is possible at present to consider
the qualitative rather than quantitative aspect of the phenomenon.

For an approximate analysis, we start out with the following as-
sumptions. We consider the surface of the bottom to be a plane inter-
race between two media. The ground will be regarded as an isotropic

elastic half space.

As is well known, two types of elastic waves can propagate through
unbounded isotropilc solids: longitudinal waves, which result from
bulk deformation of the material, and transverse waves, due to shear

deformation. Sometimes these waves are called dilatation and distortion
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waves, respectively. The vélocity of propagation of longitudinal (c)

and transverse (b) waves 1s glven by the relations
AT 2
c=) =5 (3.117)

b1 (3.118)

.where A and L are elastlic constants, frequently called the Iame cén-
_stants, and which determine completely the elastic properties of an
isotropic body.*

In additlon to the indicated two systems of waves, 1n the pres-
ence of an interface between two media another type of wave can also
arise, the so-called Rayleigh surface waves. The amplitude of the Ray-
leigh waves decreases with depth exponentially. Consequently, they
propagate as 1t were in two dimensions. They atfenuate with dilstance
more slowly than the longitudinal and transverse waves. The rate of
propagation of the surface waves amounts to 0.87-0.96 of the velocity

of propagation of the transverse waves.

Fig. 66. Diagram showing reflection of a
shock wave from the bottom of a reser-

voir. 1) Frontal; 2) lateral: 3) re-
“Tected from bottom; 4) direct: 5) trans-
erse waves; 0) longltudinal waves.

The buildup of compression pressure in seismic waves, unlilke
shock waves, 1s not Jumpwise but gradual. This 1s due to the fact that
in elastoplastic media the compressibility of the medlium Increases
with increasing pressure over a considerable range of pressures. Since
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the velocity of the compression wave is 1nversely proporticnal to the
compressibility of the medium, the regions of the wave with large pres-
sure will move with lower velocity, and the formation of a steep pres-
sure front is impossible.

One can present the followlng qualltatilve descriptlon of the wave
picture in a liquid upon single reflectlion from the bottom of a water
reservoir. Assume that at some point =z =-—HO, in the coordinate system
indicated in Fig. 66, an explosion occurred and at some Instant of

time the direct wave comes to the bottom ¢of the water reservoir. Its

angle of incidence will be

B = arc cos

|

-' | (3.119)

W

L
Vs m?

(=3

The rate of displacement of the wave along the surface of the

bottom amounts to

N, = —22 (3.120)

cos§ °”

At first, at large angles B, the velocity Nd will exceed the ve-
locity of propagation of the longitudinal and transverse waves in the
ground, ¢ and b. The perturbations in the liquid will be characterized
by the direct and reflected waves. The reflection will be regular.

At some value of the angle B = BO’ the velocities Nd and ¢ be-

come equal, l.e., the following relation becomes true:

4y

YA (3.121)

The angle BO is called the angle of total internal reflection of
the longiltudinal waves. When B < BO there occurs the so-~called first
irregular reflection. The longitudinal perturbations in the ground
overtake the direct shock wave and produce an additional wave disturb-

ance in the liquid. This disturbance is customarily called the frontal

wave.
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With further propagation of the shock wave, 1ts velocity Nd de~

creases and becomes at a certain B = Bl equal tTo the velocity of the
transverse waves in the ground:
T =0; (3.122)
B;=arccos%. (3.123)

The angle Bl is called the angle of total internal reflectioﬁ of
the transverse waves.

When B < Bl the transverse waves in the ground overtake the di-
rect shock wave and cause stlill another wave system in the liquid
(lateral wave). The so-called second irregular reflectlon takes place.

In order to construct the fronts of the -lateral and frontal waves,
one can use the mirror-reflection scheme. It is easy to verify that
the tangents to the circle at the points where it crosses the rays
drawn from the center Ol at angles 50 and 51 to the surface of the
bottom will be the envelopes of the spherical surfaces of elementary
distufbances, which determine the frontal and lateral waves, respec-
tively (Fig. 606).

As was already mentioned earlier, along the surface separating
the ground from the water there propagates a Rayleigh wave. The dis-
turbance which it produces in the liquid is customarily called the
bottom wave.

Thus, when a shock wave 1s incident on the bottom of a reservolr
there arise in addition to the reflected wave three addlitlional systems
of wave disturbances: frontal, lateral, and bottom waves. Each 1is re-
flected from the free surface of the water.

The process of successive reflection of waves from the two bound -
ary surfaces contlnues, generally speaking, without limit. In the major-
ity of cases, however, only the first system of waves is of practical
slgnifilcance.
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This 1s the general outline of the qualitative pattern of reflec-

tion of an underwater shock wave from the bottom of a reservoir. We
develop below some results of the linear theofy, which at the present
time is rather fully developed.

§6. PRINCIPAL RESULTS OF THE LINEAR THEORY OF REFLECTION OF AN UNDER-
WATER SHOCK WAVE FROM THE BOTTOM OF A RESERVOIR

In the linear formulation, the problem of the reflection of a
shock wave from the bottom of a reservoir can be expressed as follows.
The gpecified pressure variation in the upper half space (ideal

liguid) on a spherical surface of radius R = Ry is

‘bx—‘ a

p=p.e (3.124)
The connection between the pressure and the velocity of the par-
tlcles in this half space 1is expressed with the aid of a function of

the potential ¢, with

p=po-‘f§—, (3.125)
Z:gmdg (3.126)

The strain and stress field in the lower half space (elastic

medium) is determined by the system of equations of elasticity theory:

Z:gmd9+mmg (3.127)
o A+ 2
=] (3.228)
% >
—tal (3.129)

where Gfis the vector of the strain velocity of the elastic medium; X
and p are the elastic constants of the medium (Lame constants)¥; o is
The scalar displacement potential; W'is the vector displacement poten-
.tial.

On the plane interface between the ideal liquid and the elastic
medium there 1s satisfied the rigid-contact condition (the normal com-
ponents of the particle velocities and of the pressures are equal).
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An analysis of this s&stem of equations under the above-formulated
boundary conditions was made, using the method of incomplete separa-
tion of the varilables, by Ye.I. Shemyakin.¥*

Without stopping to discuss the complicated mathematical appa-
ratus employed by Ye.I. Shemyakin, we present the final results of his

-investigations.

The pressure in the direct wave is¥*¥

1,13 t—?
PRyl ———T—-"

ST =

p ' (3.130)

where Ppy is the value of the presgssure on the Initlal spherical surface

R035 Hl is the distance from the center of the charge to the bottom;

hl is the distance from the point of observation to the bottom; L is

the distance in the horigzontal direction; tn is the time of arrival of

the direct wave at the point (L, h,).

Relation (3.130) can be written, in accordance with (2.151), in

the form
14700 —om
200 —
p="me (3.131)
where
=g VI + (= 1) (3.132)
ty= - VI F (H, — 1) (3.133)

So long as the velocity of propagatién of the shock wave along
the bottom of the reservoir exceeds the velocity of propagation of the
longitudinal waves 1n the ground, ao/cos g > ¢, the reflection will be
regular.

The pressure in the reflected wave is

—~t
AN oTp
poTP:::AO%./T(;Qe 9 , (3’13”’)
2
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in this formula

- 1 e T A W R
r2=—R;3—VL“ - (H )% (3- 135)
Y e e v
tog =V IF 4+ (L 15 (3.135)
AO is the reflection cocfficient.

When B = 900J i.e., when the wave 1s normally incident on the

surface, the coefficient AO 1s calculated from the formula

Ay =L (3.137)

peC + P’

For an analysils of the angles 90°>@>arccos=> , this coefficient
differs little from the quantity calculated by Formula (3.137), and
only near B =arccos-> does 1t change radically and attain a value of
unity.

The first irregular reflection occurs at angles of incidence
< B =arccos %

The pressure in the reflected wave 1n the region of the first ir-

regular reflection 1s characterlzed by the dependence

14 700 .
Porp = =113 [Al"o (¢ —top) —
2

: =ty

o (t—tyry : ——
"BzEx< Q°p>°o(t"‘tx)]e ? (3138)
where
1—8?
@—ﬂq&ﬂ»—n@—ﬁﬂ—&ﬂ“%li
02 —
4= — Visa (3.139)
@_nw-4vx—1yd—ﬁx+uv IJ
' Vde—1
Vi—x
%ﬁ@—xﬁyn .
By=— =TS (3.140)
2 —x) + 4Vx—4VK—§x+mﬂ——-Lj
I [ : Vit —1
b, b
x:::-———-——————-2 ‘c::.—lp—o' 81=——C—; 02=Z;

T is the time of arrival of the reflected wave at the point, calcu-
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lated by Formula (3.136); t'l is the time of arrival of the frontal

wave at the point,

=—§(L+ B=hyg=sy, (3.141)

( torp) . £ . %
and E, —1is the EBuler function.

The first term of Eq. (3.138) describes a process simllar to ihe
reflection in the regular zone. The second term characterizes the dis-
tortion of the reflected-wave pattern as a result of Interaction with
the ground, which has gone into motion. Its Influence begins at the
instant when the frontal wave arrives at the point (t > tl).

The section of the pattern of the compression zone In the Inter-
val t; <t < b, 18 customarily called the "foreshock."

If the veloclty of propagation of the transverse waves 1n the

ground, b, exceeds the velocity of sound in the water, ags then when

p<:%__amcos~_the¢e sets in the zone of second irregular reflection.

The pressure field in the reflected wave in the zone of second
irregular reflection is characterized by a relation analogous to
(3.138):

14 700
CPorp = -1 /13 [Azco (¢~ orp)“'

orp

-—-BE,( °“’>co(z‘——tx)] (3.142)

However, the coefficients A? and B2 have a somewhat different form:

R
-
<R

TR T—iix, T —etvt
A 4 c.,f—'l : (3.1&3)
1—
[(Q—r\“—lﬂ/l—le—oxJZ«-c,\ T 01:

-

—-—AZ ———-——_’
%ﬁvl.%x[@~xﬁ—4Vl—kV1~qq
1 o —1
By == - i (3.144)
[@—xﬁ—4VL—xV}—ﬁx]+cﬂ~2

w

x—1

Here the coefficient 32 already determines the Joint influence of
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the disturbances due to the longltudinal and transverse ground oscilla-
tions.

ILet us note now the qualitative laws thaﬁ result from the formu-
las given above.

It 1s obvious, flrst of all, that the coefficiants Ai and B, are

i
functions of the acoustic properties of the grounds and of the angle

|

l

of incldence B only. This enables us to construct for the most typical l
grounds, once and for all, diagrams of Ai(B) and Bi(B) which are con- |
venient for practical calculations.
Table 16 lists the characteristics of some types of grounds. Fig- %

ures 67-69 show the angular diagrams for rocky, clay, and sandy bot- %
toms. Frequently the last two types of grounds form only a thin near-

bottom layer that lies on a rocky base.

F BCKOPOC” L‘CKOPOCTL Bépaa.\xepﬂme napaserpsl rpyura
Tunw 2 . pacnpo- pacnpo-
Qo -~
| rpyuros g &% | cTpaneuis cTpauenis
£ S« | upomoms- | momepey- b b
JHa c Z,& | HBIX BOJH | HBIX BOH ¢ = Po By = —— 8y = —
| =28 | ¢ smfcex | b, aefcex Pr ¢ 9o

-~

6 Mecuano- |160—190(1400—1700| 600— 900 0,640—0,540 0,35040,640 0,40—0,60
HAHCTbHIH

[ | TanmzeTwit [220—230,2000—2200]1000—11000,465—0,445(0,445—0,550/0,66 —0,74
8| Mecwannx [230—240/2500—3000 1200—1700,0,410—0,425/0,400—0,680/0,80—1,10
Q| HMssecrtusnic|240--250,3000—3500 I700—ISOO|O,425-—O,410 0,485—0,600|1,10—1,20
10 I I‘fmmn" 260—270 5000~550013000—31OO{O,BQS--O,BSO 0,570—0,620/2,00—2,05

1l) Types of bottom ground; 2) density of
ground Per kg—secg/mq; 3) velocity of prop-

agation of longitudinal waves, c, m/sec;
4% velocity of propagation of transverse
waves, b, m/sec; 5) dimensionless param-
eters of the ground; 6) sand-silt; 7) clay;
8) sandstone; 9) limestone; 10) granite.

If the fthickness of such a layer is much smaller than the wave-
length, the reflection of the underwater gshock wave occurs in exactly
the same way as from a solid bottom having the characteristics of the
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Fig. 67. Angle diagram for a rocky ground.
1) Regular reflection zone; 2) first ir-
regular reflection zone; 3) second ir-
regular rellection zone.
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Fig. 68. Angle dlagram for clay ground. 1) Re-
gular reflection zone; 2) first irregular re-

flection zone.
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layer.

For grounds with velocilties ¢ > ag > b, the wave pattern becomes
simpler; there is neither the lateral wave nor the zone of second 1lr-
regular reflectilon.

In the case of low-velocity grounds (¢ < ao) a rarefactlion wave
is reflected from the bottom of the reservolr for all angles of inci-
dernice and attenuates the direct wave in a manner similar to what oc-
curs upon reflection of shock waves from the free surface.

As follows from the angle dlagrams, such a phenomenon is observed
for all types of grounds, starting with a definlte value of the angle
of incidence Bkr' According to the linear theory, the angle ﬁkr is

calculated from the equation

. ' L Vit
(2 —xp—dVT=ZV1 —agx]z—czx'f—-a-%}—_-_‘%

ST A

=0, (3.145)

where

PP S (3.146)

5 .
83 ces? ﬁ‘(?

In the case when B < Bkr’ the coefficient Al becomeg negative and
the waves reflected from the bottom of the reservolr become rarefac-
tion waves. This is explained by the fact that in this range of angles
of incidence {0 < B < Bkr) the front of the direct wave begins to be
overtaken by the disturbances caused by the motlon of the ground down-
ward from the interface, with velocitiles greater than the normal com-
ponents of the ground velocities behind the front of the direct wave.

The deductions of the linear theory of reflection of shock waves
from the bottom of a reservoir are qualitatively well confirmed by the
éxperimental data, and can therefore serve as a basis.for correspond-
ing approximate estimates.

However, just as in the problem of the influence of the free sur-

face, the waves propagating in either the liquid or in the ground will
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Filg. 69. Angle diagram for sandy ground.
1) Regular reflection zone; 2) first
irregular reflection zone.

have displacement velocities which differ somewhat from their values

in the unperturbed medium.

Actuvally, as indicated above, a nonlinear superposition of wave

systems takes place. The solution becomes much more complicated. The

expositlion of the nonlinear theory is beyond the scope of the présent

book. We present below only some general remarks, based on materials
of experimental investigations.

Example. At a distance of 5 m from a rocky bottom (granite, ¢ =
= 5000 m/sec, b = 3000 m/sec, p = 265 kg—secg/mg) there occurred an
explosion of a TNT charge weilghing 1200 ké. Determine the parameters
of the shock wave at the followling points of observation:

L = 5m, h, =5.0m,

L = 10 m, h, =3.0m,

o

L =100 m, h, =3.0m.

1=

Plot the pressure pattern for specifled dlstances and depths.

Neglect the influence of the free surface.
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Solution. To determine 61, Po s Prprs Bis and Bi we use the availl-

able angle dilagram for a rocky bottom (granite).

We determine the critical angles with the aid of the angle dia-
. O ~~O O
gram (Fig. 67): B, = 72730, B, = 60", B =T .

We calculate the reflected wave for the Ffirst conditlons: L = 5.0

m, Hl = 5.0 m, hl = 5.0 m.
The angle of reflection will in this case be

/ 4
—-f—{-’—l‘—ti = oare ty -—:,’.-——- 2 63°30" < 5y,

B arcty 3

Consequently, the point of observation is 1in the Tirst zone of
irregular reflection. Using the diagram of Fig. 67 (for a rocky bot-

tom), we obtain A = 79, By = 0.045.

The times of arrival totr and tl are calculated from the formulas
(3.136) and (3.141) (we take for &, and o, average values from Table

16):

| | — = 25 4 100 ” .
borp = -5: VITS(H + ) = JL—XSO()_A— = 7,46- 1073 3€C ;

pxm._é: (L+f_’x_:_’U/ g’..af) =

5+ ~gaie 1/ T 0505
—_— = 7,40.107? C.
500V ' Se

=

3,—
The radius of the charge is Rn=0083YG=051 m, hence

T I ey o e SO A A Lo R
ry = e V L3 (M + 1) = 050 = 19,0,

Finally, we obtain 6 = 935 ?20'24303-10‘6 = 935(19.8)0'24-0.564 X

X 10—6 = 1.08-10"3 sec. Summing the results in accordance with Formula

(3.142), we obtain

hmusm[m%“ﬂ—n@wa(%J%a~nﬂe E,

where T = t — 7,46'10"3 sec, 0 = 1.08-10"3 sec.
We calculate Potp for L = 10 m, H1 = 5.0 m, hl = 3.0 m. We deter-

mine the angle of reflection




: Hy + Iy __8_,.,_ oAry
Snarctg-—T—nnrctg ) = 38°40".

From a comparison of thils angle with the critical angles 1t fol-
lows that the point of observation is located in the zone of second
irregular reflectlon. Therefore the calculation of Potr should be car-
ried out by means of Formulas (3.142)-(3.244).

“ From the angle diagram (Fig. 67) we determilne A, = 0.905, B, =

= 0.09.
For the times totr and tl we obtain

TEE -
torp = LITFE 555,10 sec,

10 4 5 1/ T 0,505%
= 5600

= 7,13.10* S€C.

5 VIO

We have ra 0.50T = 228

hence o 935(22,8]0240,564 - 10-¢ = 1,12 10~ S€C.
Ultimately we obtain at the given point of observation

hw=4m[wmmq—wpma(%)%y—qﬂe_%,

where

c=f—853.107F SEC
= 1,12.10~2 S€C.

The third case 1s calculated also by means of Formulas (3.142)-

(3.2144).

After calculations analogous to those given above, we obtain

B = 4030, Ay = ~0,500, B, = 0,015

1007 - &7
fmp=liTﬁT~—=6&%m-’sec;

1004257 oy .
ty = 00— = 2514107 seC;

~  P100% 4 82 A
ry = _/—_0564 = 17

0=183.10"3CC.

Ultimately we obtain for this case

- 233 -

X



4

1

]

|

1

|

]
S i
&0 i :

k

107

e

7—-t::, 8 i 2 f taws

Fig. 70. Pattern of
reflected wave (L
=5m; hy =5 m).

= 10 m;
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Fig. 72. Pattern of reflected
wave (L = 100 m; hy = 3 m).
Pazp = 42,1 [ —0,8000, (1) = 0015T, (-t =t ¢ *,

where
% f-00,7.107 SEC
U 1,83.10-38€EC.

[E T

Fiz. 71. Pattern of
reflected wave (L
h1=3m).

The pressure vs. time patterns are presented in Figs. 70-T2.

§7. QUALITATIVE INFLUENCE OF NONLINEAR EFFECTS UPON REFLECTION OF A

SHOCK WAVE FROM THE BOTTOM OF A RESERVOIR

As was mentioned earlier, the linear theory, while

correctly de-

scribing the mechanlsm of formation of varlous wave systems 1in a liqg-

uld, cannot disclose completely the complicated pattern
between the shock wave and the bottom of the reservoir.
.causes explain the quantitative discrepancy between the
linear theory and the observed phenomena.

1. The assumption that the velocilty of propagation
ances in either the liquid or in the ground 1ls constant
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respond fully to reality. This velocity depends on the amplitude of

the compression wave and of the characteristics of the medium, and
whereas in water 1t increases with increasing pressure on the front,
in the overwhelming majority of the grounds, to the contrary, waves
with larger ampllitudes propagate with lower velocities.

2. The grounds can be regarded as linear ideally elastic media
only rather approximately. As a rule, the residual deformatlions of the
ground are quite important. As regards such material as silt and sand,
it dis closer in properties to liguid many-phase media.

In view of this 1t 1s necessary to desgcribe the 1nfluence of non-
linear effects at leagt qualitatively.

Figures 73 and T4 show typlcal osclllograms of waves of seismic
origin. One can see clearly on them the frontal and lateral waves, the
foreghock, and the direct wave. Depending on the distance to the epi-
center of the explosiocn, the frontal and lateral waves are either sep-
arated from each other by a definite time interval or, to the con-
trary, arrive at the polint under consideration in the form of some re-

sultant wave dlsturbance.

3/7p:dg_em~ux
= < (pe3onnan ylopuan
r )1 fonwe

i

g 1w F T i Mgy

prefen’ 1 fipe ‘7"\‘”7’”’” Coesannan ylopwen

fonotnos , _ Boxofan borna
g: Fonva |7 boina

0 10 40 30 40 50tancer

Fig. T73. Oscillograms of waves
of selsmic origin produced by
explogion of charges welghing:
a) 20 5 ) 100 kg. 1) Frontal
wave gi lateral wave; 3) fore-
shock; 4) cut-off shock wave.
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In the case of explosions at consid-

paz/ica :
&t erable distances from the charge to the
2 : bottom of the reservolr, the pressure in
,g/flaﬁk waves of sedlsmic origin is approximately
T n ! . N one order of magnitude lower than the pres-
140 5 L ¥rieb ot
agageen e sure on the front of the shock waves (the
Fig. T74. Character of amplitude of the direct wave has gone be-
the pattern ol a wave
of static origin. The yond the perforations of the film on the
foreshock is clearly
seen. 1) Foreshock. oscillograms presented). As the charge ap-

croacnes the otottom, the pressure in the frontal and lateral waves in-

Formon oo =
T e oS

by

PR

~ — o~
= k>3 ~ - - - -

owing to the reflected pressure-reductlion waves.

The intensity of the lateral wave is approximately twice the in-
tensity of the frontal wave.

The maximum amplitude of these waves decreases somewhat more rap-
1dly than l/L3/2. Thus, under all condltions, their action at large
distances is many times smaller than the actlon of the direct wave.

The duration of the compression phase of the lateral and frontal
waves is usually tens of times larger than the duration of the direct
wave. This circumstance makes 1t possible in many cases to regard the
action of the seismic waves on a structure as a static load.

As a rule, at large distances the effect of the lateral and fron-
tal waves can be neglected in practical calculations.

As follows from the oscillograms presented, one observes ahead of
the front of the wave a region of smooth growth of pressure — the s0-
éalled foreshock. Its mechanism of formatilon can be represented in
simplified form as follows: the direct wave, propagating along the

separation boundary, produces wave disturbances in the ground, some of

which overtake the front and generate in the liquid an increased-
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pressure field. At certain-distances there is superimposed on thils
field the field of the frontal and lateral waves. The maximum pressure
in the foreshock amounts to approximately 10-30% of the pressure on
the front of the direct shock wave. The lower 1limit corresponds to ex-
plosions at the free surface whlle the upper 1limit corresponds to ex-
plosions near the bottom of the reservolr. The bulldup time of thé
pressure in the foreshock is comparable with the duration of the posi-
tive phase of the pressures in the shock wave.

As was already mentioned earlier, at small angles of Incldence of
the shock wave, close to the slip angles (B < Bkr)’ the reflected
waves are realized by pressure-reduction waves. Propagating with the
local velocity of sound, these waves can, under definite conditions,
catch up with the front of the direct wave and reduce 1ts amplitude.
Such a process 1s analogous, in its general features, to.the process
previously considered iﬂ the study of the influence of the free sur-
face. The difference consists here in the fact that the rarefactlion
waves traveling from the free surface are formed at all angles of in-
cidence of the shock waves, and have an intensity equal to the inten-
sity in the direct shock wave, whereas the pressure-reduction waves,
propagating from the bottom of the reservoir, are formed ét angles of
incidence lower than the critical value (B < Bkr), and have a lower
intensity. Therefore they are unable to attenuate fully the direct
wave.

Approximate quantitative estimates of the nonlinear effect of the
attenuation of a direct shock wave by rarefaction waves traveling from
the bottom of the reservoir can be presented on the basls of the solu-
tion of A.A. Grib, A.G. Ryabinin, and S.A. Khristilanovich, developed

in §3 of the present chapter.
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The investigations performed show that the development of the
Physical processes accompanying an underground explosion 1s greatly
Influenced by the presence of the free surface of the ground. When the
compression wave reaches the ground surface, the ground begins to move
with increased velocity. And for the same reason as in an underwater
explosion, a rarefaction wave is produced with amplitudes of the same
order of magnitude as the amplitude of the direct wave.

As 1s well known, rocks and the majorlity of ground solils can
withstand very large compression stresses, but fail readily even under
insignificant tension stresses. Consequently, the region of the ground
located in the direct vicinity of the free surface of the ground, be-
comes a region of mailn damage. A funnel of conical form is produced,
the dimensions of which are usually determined by its radius RV and
depth HV.

The radius of the funnel can be determined from Boreskov's empilr-
ical formula

R, = mH® (0,4 + 0,618) (3.147)
where n i1s the so-called Horn eéxponent, frequently also called the ex-
plosive action exponent; H is the depth of the charge: and m is a co-
ef'ficient characterizing the type of the ground.

n = R_/H. (3.148)

According to G.I. Pokrovskiy

m = 0,80 -+ 0,085V, (3.149)
where N is the strength category of the‘rock (N varies from i to 16 on
fhe 1944 scale of unified norms for production and wages).

FPor TNT the Boreskov formula can be written in dimensionless co-

ordinates in the forn
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6,75-1C*

ﬁ}: 1,277 [-—:——0,4]"'. (3.150)

Formula (3.150) gives good accuracy for the range

Rn L
1<IZ=W— L2,

The depth of the funnel is estimated with the ald of the empirical

relation

(3.151)

\
=X
f
s
125
o
|
i

On the basis of theoretical congiderations and of an analysis of
modern experimental data, G.I. Pokrovskiy proposed for the calculation
of the funnel radius an equation that admits of wider extrapolation

than Boreskov's formula. This equation has the form

Ro=gl 11 (14 220 (3.152)

where v 1s the specific gravity of the ground in kg/m3.

The volume of ground expelled under optimum depth of the charges
in the ground reaches one or one and a half cubic meters of rock per
kilogram of explogive.

As was already mentioned earlier, the values of the normal
stresses in soft grounds, for the middle zone of uhderground explosion,

is calculated from the formula

o B0k g fom2 (2.165)

rmax a 7{1

The coeflficient F depends on the depth of the charge. Its values
are listed in Table 17.
In the case when the depth of the charge and the depth of the

measurement point do not exceed 10 radii of the charge we have

e 32007

c.’mu— "‘T{""‘ (3' 153)
In Formulas (2.165) and (3.153) the coefficlent k 1s taken in ac-
cordance with the data of Table 13.
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TABLE 17
1 T ‘ . .
| Tay6uua aanomwenis 3apsaia o | 3 ¥ 9 12 15
| o
2 o |
nauenie I ’ 0,20 ’ 046 | 0,67 | 086 | 096 | 1,0

1) Depth of charge H; 2) value of F.

For solid rock of the type of granite, limestone, and marble, the
value of the maximum stress 1s determined by the empirical relation
(2.166)

0F 05,1 70,1100 | 26,6-10° - 2
™ T e T @ T @~:jkg/cm .

In the same way as in an unbounded medium, the stress and the

particle velocity are linearly related:

v x-%¥ﬁuwcm/sec. (3.154)

rinox

According to American data¥ the acceleration of the ground par-

ticles at the free surface can be calculated from the formula

;
Ay= 63 g [P + 2 5 (3.155)
where Ag is the acceleration as a fraction of the acceleration due to
gravity; Ro3 is the radius of the charge in meters; p i1s the density
of the ground, kg—secg/mq.
In the far zone of underground explosions (lOO < R < 1000) the
main interest attaches to the velocity of the ground at the surface.

The maximum values of the velocity are calculated from the formula of

M.A. Sadovskly

1
108

man -3—::— jé';',-_‘ : CIﬂ/ﬁQO ) ( 3. 156) -
1 ZEQ)

k4

where f£(n) is Horn's exponential function; ¢ is the specific gravity
of the explosive in kg/cmS; R is the relative distance.

Horn's exponent 1s approximated by the following approximate rela-
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tions:

, 1,7 for a>2

”, \

V FOij=1{04 +06n for 221> (3.157)
1 for a<lI

For TNT (v = 1600 kg/mS) Formula (3.156) assumes the form

vmx=_rﬂﬁﬂ;_cm/sec. (3.158)
Vit R '

As a result of the propagation of the wave disturbances, the ground 1n
the far zone executes a series of complicated vibrations. Usually one
separates, from this serles, the principal phase characterized by the
largest ground displacements. In the principal phase of the vibrations,
these displacements along the surface can be determined approximately
by the relationship

u(t) = A" sin vt mm, (3.159)

where A, is the maximum amplitude of the ground-particle displacement;

0
w = 2n/T is the circular frequency of the vibrations; o 1s the damping
coefficient.

The value of o depends on the period of the vibrations and 1s de-

termined from the data of Table 18.

TABLE 18

1

T, cex. 0,111 0,083 * 0,067
[

a, cex.~! 10,020—0,025 | 0,036—0,040 | 0,055—0,060

1) T, sec; 2) a, sec™t.
The period of the vibrations in the principal phase 1s calculated
from the formula of M.A. Sadovskily
T=mnlg'R sSec, (3.160)
where s is a coefficlent that depends on the physical and mechanical
p)

properties of the ground and R is the dlstance from the center of the

explosion in meters.
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The values of the coefficilent Gy for some types of ground are

listed in Table 19.

TABLE 19

1 Bua rpyuta ;FI\'Oain;:fuucx;r
3| I'pyuts bogotacLImese 0,13--0,15
L'r Craanutle 1opoau 0,03=0,04

5] Cauua, abee 0,00—06,093 |

1) Type of ground; 2) coeffi-
cient; 3& water-saturated
ground; 4) solid rock; 5) clay,

loess.
The maximum amplitude of ground particle displacement 1s deter-

mined from the formula

Ay = 205 -y "RV ran. - (3.161)

For TNT

mm. (3.162)

x|

e

Example. Calculate the velocities of the ground at the free sur-

face at a distance of 500 m from the center of explosion of a TNT

charge weighing 50 tons in firm ground (saturated clay, N = 12). Find

the value of the overload at the same distance.
The depth of the charge is assumed to be 5 m.

Solution. We determine the radius of the equivalent spherical

charge RO3’ the relatlve distance of the investigated point from the

center of the explosion, and the relative depth of loccation of the

charge:
' Rqy = 0,053 /507107 = 0,033-10-3,68 = 1,95 M 3
0

5 800 oo
R= gz =256 H=

Y

10.
5
T = 2.56.

To estimate the maximum velocity we use the formula of M.A. Sadov-
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skly
= 16300 om/sec. (3.156)
Vf (n) JRus

Umax

For this purpose 1t is first necessary to calculate Horn's ex-

ponent n = RV/H. According to Boreskov's formula

ne= L _ 1,2[ 4 ”Hl, - 04 ]”3. (3.150)
Substituting in it
m = 0,80 + 0,085N = 0,50 + 0,035.12 = 1,82 (3.149)

and the indicated value of R, we obtain

6,75-10% ‘lm
o= A2
”"2( 829565 o
For n > 2 we have

9.

Vi) = 1,7

and therefore
16 300 16 3
Yiax = 35— = T 7_4(1)80 = 2,34 Cm/SeC.

V() e '

We determine the value of the overload by means of Formula (3.155).
The values of F, k, and p are found from Tables 13 and 17: F = 0.393;
= 7000 kg/cng p = 215 kg—secg/mg.
Substituting the initial data in (3.155), we obtain

104 10 [
Ag= oLt 3@104_Qg10+Q§]=
. PRos R4 R R
6,3-0,093.7000  38,4:10% | 0,17:10' 0317 _
= oR05 | 286 T oA *”ﬁ?]“
= 41,2 [0,805. 10— 4 0,026-10-2 4 0,121.10=2] = 41,2.0,156-10~% = 0,0643.
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209

214

220
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[Footnotes ]

See, for example, L.I. Briggs, J. Appl. Phys., 21, 721, 1950.

A.A. Grib, A.G. Ryabinin, S.A. Khrigtilanovich, On the Reflec-
tion of a Plane Shock Wave 1n Water from the Free Surface,
Applied Mechanics and Mathematics, Vol. XX, No. 4, AN SSSR,

1956.

When n = 7.15, the discrepancy amounts to less than 0.1% for
pressures near 1000 atm. ‘

Here and throughout the exrcszition of the present section we
follow the termini.o_y v S.... sarilstianovich.

In the x,z plane the front of the pressure-reduction wave 1s
a clrcle of radius at with centerliine on the free surface of
the liquid.

The second root of the equation Z'V = B¥ + 6pr’ which lies

in the region of positive Z (in the upper half plane) is dis-
carded.

See, for example, E. Kamke, Handbook of Ordinary Differen-
tial Equations, IIL, 1950C.

See, for example, Ya.I. Frenkel!, Kinetilic Theory of Liquids,
AN SSSR, 1945; va.B. Zeltdovich, J. Exptl. Theoret. Phys.,
12, 525, 1942,

The flrst term in the brackets 1s a consequence of the as-
sumption that the pressure 1s zero 1n the region of the cavi-
tational discontinuity.

This range of acoustic ground impedances corresponds to a
value of the reflection coefficient ranging from —0.8 to
+0.7 for direct incildence.

The Lame constant p 1s equal to the shear modulus G. The con-
nection between the constant A, the modulus of longitudinal
elasticlty E, and the Poisson coefficient v 1s expressed by
the relation

Ly

reTEw o=

As already mentioned earlier, the connection between the Lame
constants and the velocity of propagation of the longitudinal
and transverse waves in a medlium 1s expressed by the rela-
tionships ,—
=1 X
SYEE, eV
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Page [Footnotes (Continued)]
No.
225 *¥Ye.I. Shemyakin, K.I. Markova, Propagation of Nonstationary
Disturbances in a Liquid in Contact with an Elastic Half
Space, Applied Mathematics and Mechanics, Vol. XXI, No. 1,
1957.
- 225 **¥Here and throughout, foregoing a rigorous exposition, we as-
sume the amplitude of the wave to vary with distance not as
1/r, as would follow from the equations of acoustlcs, but as
1/r1'13, as would follow from the empirical formula (2.150).
. ‘ x e! :
227 *E() = I7~w.8ee, for example, Yanke and Emde, Tables of Func-
tions with Formulas and Curves, OGIZ, GITL, 1948.
240 "The Effects of Atomic Weapons,'" New York-Toronto-London,
1950.
Manu - ’
script [Iist of Transliterated Symbols]
Page g
No.
174 OTp = otr = otrazhennaya volna = reflected wave
174 ® = f = front = front
175 npen = pred = predel 'noye otrazhehiye = 1limit reflection
175 3 = z = zadannyy = glven
175 onT = opt = optimal 'nyy = optimum
183 ak = ak = akusticheskoye priblizhenlye = acoustlc approxi-
mation
184 MKCEK = sec
190 . xap = khar = kharakterlstikl = characterilstics
191 B.pP = v.r = volna razrezhenlya = rarefectlon wave
193 Ip = pr = pryamaya volna = dlrect wave
207 KT/CM2 = kg/cm2
210 K = k¥ = kavitatslya = cavitation

210 pes = rez = rezul'tiruyushcheye davlenlye = resultant pressur<
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215
222
226

" 230

234

235
238

arm = atm = atmosfernoye protivodavlenilye

counterpressure
coyn = soud = soudarenlye =<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>