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ONE METHOD OP DETERMINING THE CRITERION OP OPERATIONAL 
* • 

STABILITY OF A IIQUID-PROPELLANT ROCKET ENGINE. 

by 

G. I. Zamuruyev 

At the present time the methods for determining the conditions 

under which the operation of a liquid-propellant rocket engine (LREj) 

is stable are still not reliable enough. In the published literature 

the stability regions are determined graphically. 

In this article an attempt is made to find a certain new criterion 

which will allow analytical investigation of the operational stability 

of LRE. 

Liquid-propellant Rocket Engine with a Mono- 

( Single-component)-propellant 

Figure 1 represents a simplified liquid-propellant rocket engine. 

The subscripts 1 and 2 in Pig. 1 refer to the tank and the feed line, 

respectively. 

Let V, F, V, and d denote the volume* the cross-sectional area, 

the velocity of the fluid, and the diameter of the propellant tank, 

respectively, and p^ denote the pressure in the combustion chamber. 

The investigation is conducted without taking into account 
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acoustic vibrations in the combustion chamber and without taking into 

account wave processes in the propellant circuit. 

The monopropellant is forced out of tank 1 under constant 

pressure pj through feed pipe 2 and is injected through atomizer 3 

into combustion chamber 4, where it bums and the combustion products ' 

are ejected outside through Jet nozzle 5. 

An oscillatory operating regime of the engine can develop in the 

following manner. 

Let us assume that for some accidental reason the flow of propel¬ 

lant through the atomizer suddenly decreases. As a result, the dis¬ 

charge of combustion products will decrease, and therefore the 

pressure in the chamber will also decrease. The decrease in the pres¬ 

sure in the chamber leads to an increase in the propellant flow, to 

a corresponding Increase in the discharge of combustion products, 

and then to an increase in the pressure in the chamber and a decrease 

in the propellant flow. Thus, the system returns to its initial state, 

and the oscillatory process, if it is sustained, can go on as long 

as desired. On the whole, the oscillation amplitudes may be constant 

or variable and may assume larger or smaller values. If they increase 

in time, the system becomes unstable. As a result, dangerous pressure 

fluctuations may develop in the chamber or the pipe and may cause de¬ 

struction of the chamber. 

Equation of Motion 

, In order to set up the differential equation of unsteady one- 

1 dimensional motion of a fluid flow in a fuel-supply system, we shall 

use the continuity equation and the theorem of kinetic-energy change. 

For a finite fixed volume of material particles we can write 
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Fig. 1. Simplified scheme of LRE. 
operating on a mono-(single¬ 
component) -propellant. 1) tank, 
2) feed pipe, 3) atomizer, 4) combustion 
chamber, 5) Jet nozzle. 
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or 

where j* a/( 2 )^ account the change in kinetic energy inside 

the fixed volume; 

V, rfS accounts for the change in kinetic energy on the 

surface S; 

p is the density of the fluid and is assumed to be 

constant along the feed pipe. 

In Pig. 1 there are two regions with constant cross sections. 

Obviously, the kinetic energy inside the system corresponding 

to these two sections after a time interval dt can be represented 

in the form 

in which case we assume that the partial derivative — at each 
dt 

point of the volume Vi and Va is constant. 

The change in kinetic energy on the surface (caused by the dif¬ 

ferent velocities of discharge and intake of fluid particles on the 

surface) is written as: 

where Qj « ViPj and Q = vF is the per-second volume flow of fluid 

through the tank and atomizer cross sections, respectively. 

In Eq. (A) we can easily calculate the sum of the elementary 

work of all the forces applied to the fluid system (the work of the 
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weight of the fluid Is neglected) : 

the work of normal-pressure forces 

a a 

•2 M,— S PldT,w,pxFxvx dt —pJFvdt—p$x dt—ptQdt; 
M l-l 

the work of friction forces 

-HiVidt-R&dt-Rodt, 

where Tj ■ p^P^, and ïïl^^ are elementary displacements. 

Taking Into account that the total friction force during the move¬ 

ment of a fluid through a pipe Is determined from the well-known 

formula 

we obtain 

¿M,— 

wtere we have taken 

•* Ui/ «i ^ w/ 

and It Is assumed that /2>/„ l^luád^d* dtzzd. 

Now, taking Into account all of the formulas obtained, Eq. (A) 

can be represented In the form 

-P,Qdt-Of±F,dt. 

Cancelling out by the time dt and taking Into account that 

♦In the eeneral case when local hydraulic losses occur, the 
value If R1 sédete mined as R = *(p vV2)P. Here X Is the total 
coefficient of the losses in the propellant circuit and Is related 

to the given Impact pressure. 
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Vi - l,Fi and Va - laFa, we obtain 

íV 

In view of the validity of the continuity equation Qi ■ Qa ■ Q ■ 

FiVj * Fava for an incompressible fluid, we can cancel out the per- 

second volume flows; then the energy equation of an unsteady one¬ 

dimensional fluid flow may finally be written asi 

or 

or 

From the continuity equations for an incompressible fluid it 

follows that v - v,(di/d)a - v2(da/d) 8. Then Eq. (B) assumesthe fom 

xpfí/i-VA 
2 [a¡J dt • 

We shall assume that the velocity v differs from the velocity of a . 

steady flow vs by the amount v’, l.e., v ■ v8 + v'. 

Nèglecting terms containing (d/dx)4 and v'2, we obtain 

Let us denote the quantity liid/dj2 + lafd/da)2 by I'fd/dg)2, 

then 

(1) 
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Assuming, that a change In velocity causes a change in pressure, 

the dependence between them can be represented in the form of a Taylor 

series; confining ourselves to terms of the first order of smallness 

and expanding Pc(v8+v¿) in powers of v¿, we obtain (in the case of 

small oscillations) 

(2) 

where p is the pressure in the chamber during a steady regime; 

K is a constant reflecting the dependence of the pressure in 

the chamber on the velocity of the burned-up propellant; it 

is assumed that the time that the gases remain in the com¬ 

bustion chamber is negligible in comparison with the gasifi¬ 

cation lag a; 

a is the gasification lag ( the time from the moment that a 

portion of propellant enters the chamber until it is converted 

into combustion products). 

The sign v^ designates v’ calculated for the time t o. Æie 

subscript V refers to the steady-state process. Substituting 

Eq. (2) in (l), we obtain 

r.-ruKKp-faAJjir W'+c £(£)V + (5> 

But for a stable flow v' - 0, v¿ - 0, dv'/dt 

Consequently, from Eq. (5) we find that 

Pi-P e.a. 2 I 

Using Eq. (4), from Eq. (5) we obtain 

0. 

(*) 

«9 

# 
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where «ten» 
c-í(í)'í?* 

here we have taken K>0. 

Equation (5) thus obtained is a homogeneous differential equa¬ 

tion of the first degree with a delayed argument a for a single-line 

system. 

Pig. 2. LRE scheme operating on a two- 
component propellant, l) tanks containing 
fuel and oxidizer, 2) feed pipes, 5) atom¬ 
izers, 4) combustion chamber, 5) Jet nozzle. 

Let us extend the results obtained to a double-line system, 

where the fuel and oxidizer are supplied separately (Pig. 2). 

LRE with a double-line propellant-supply system 

Figure 2 presents an ordinary double-line system. We shall use 

the same designations as before. The index "f" will correspond to 



the parameter^ of the fuel-supply line, the Index "0" to those of the 

oxidizer-supply line. 

We shall assume that the lag time a for both main lines Is 

Identical, i.e.. 

Prom a consideration of the energy, as before, we finds 

for the fuel 

(6a) 

for the oxidizer 

(6b) 

These equations, (6a) and (6b), completely correspond to Eq. • 

As before, let us expand the pressure pc in a Taylor series, but 

now for a function of two variables: 

Pt=+ Kf— f-+ % 
Then for any moment of time Eq. (l) for the fuel is written as: 

Thus, taking into account Equalities (6a) and (6b), we obtain 

for the fuel the equation 

(8a) 

where 

U/ trf#i; 
Lf= — 
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Changing subscripts, we obtain the equation for the oxidizer 

(8b) 

.here 

C--^(Ä 
’t*$. 

These equations, (8a) and (8b), correspond to Eq. (5) of b. single 

line system. 

Prom Eq. (7), it is obvious that 

*-*•(%*)» 

«.-Ht)- 

Thus, we obtain two equations, (8a) and (8b), of the first order 

with constant coefficients of the disturbances vj and but with , 

delayed arguments, these equations being reducible to one differentia: 

equation of the second order in the following manner. 

As in the article by D. Gander and D. Priant [1], let us differ¬ 

entiate Eq. (8a) with respect to t* 

¿V , cdvr_ r fhl /«\ 
-liT+Sir—Ct-1T V'T- (9) 

Let us write Eqs. (8a) and (8b) for the moment of time ti ■ t-2a 

(i.e., we shall delay the argument still more by the amount a) t 
dV't 

■ — Ef, e— CfZ'Uf—Vs* •* 

dv. 
— = — E0v[ o — C0v'u « — ¿o'Oí.f, 
dt 

( 10a) 

(10b) 

in which V1 plays the role of the velocity v', related to the 
aa f 1 

period t-2a. 

From Eq. ( 10a) we have 4 

t-;, () = _ 1 + Ef\ t f C^. f) 

and from (8a) 

Let us substitute Eqs. (ll) and (12) in Eq. ( 10b) : 

-9- 
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Let us substitute Eq. (15) in Eq. (9)* 

— C0 + ^ v’f+rj+# 

here there is no velocity with the subscript ’'O". 

Grouping the tenns* we obtain 

^+<£f+£J^+£^—<<i+cj£- (UO 
• -^c,+Efi) - (¾ c„-iw ^ 

and since CfC0 - LfL0 - 0 ( which is easily verified, if we substitute 

the expressions for each term of the equation), then 

^+(£f+£.>^+W 

or 

where 

=■ -(C.^CJ Ai-i^C.+f.qrK, 

51+1>f!Í+«,;+0ílt+«í,-ft 
dfl tu t dt (15) 

^Et+Eo>0-, o«Cf+C0; 

v-£/:o>0; '. = Ef, + 

Equation (15) is a differential equation of the second order 

with a delayed argument, in which case the argument does not figure in 

the highest derivative. 

Investigation of the Equation of Disturbed Motion 

A necessary condition for stability of the system is that the 

differential equation obtained ( 15) should have no partial solutions 

which increase infinitely in time. 

These partial solutions can be made up of terms of the type 

zt 

vj, ■ Cea ; consequently 
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/(/-.) a 
v.t=*V'-,=-Ce * -= Ce* e-*, 

where the disturbances vj, are taken in the interval - a < t < 0. 

After substituting these expressions for and ^ in Eq. 

(15) » we obtain the following characteristic equation, which the value 

z must satisfy [z is the root of the characteristic equation): 

-7-+1*-^*+v + «— 

or, multiplying by a*, we obtain 

^ + ^ + /^+^(51+7)=0, (16) 

Where A/=an>0; A/=a*v>0; S=aa>0; r“a*t>0. 

The expressions for M, H, S, and T can be written differently. 

Let us Introduce the notations 

ßtmaEt H—Ç] 

Using (8a) and (8b), let us write 

f n 

Po \ I. Vg. I, 

(17) 

or else, in accordance with Eqs. (6) and ( 17) 

OJr^ gof'ti ., . ß ^2 *'Fat ß,=2SW. 
(18) 

where is the per-second weight flow of fuel} 

G„.r=g:‘ovo.fo is the per-seond weight flow of oxidizer; 

iPo—Po\—Pn,,.ls the pressure drop on the oxidizer atomizer; 

^Pf^Pf is the pressure drop on the fuel atomizer; 
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Finally, we obtain 

■Y-««.; T-B/I.+II.H,! 
(19) 

For the solution of Equation ( l6) let us assume z ■ x + iyj 

then the expression for vi will assume the form 

Thus it is obvious that three cases of oscillations are possible: 

1) x/a > 0 - the oscillations of the system increase infinitely 

( the disturbances vj, increase), and consequently the system is un¬ 

stable) 

2) x/a < 0 - the oscillations are damped; the system is stable; 

5) x/a ■ 0 - there occur periodic oscillations, which we shall 

not investigate in this article, in view of their complexity, since, 

owing to Insignificant disturbances, a transfer of the root of Eq. 

(l6) from the imaginary axis to the left or right half-plane is 

possible. 

Examining the three cases of oscillations presented above, we 

can conclude that If 2q. ( l6) has a root z with a positive real part, 

then the system is unstable; if z has a negative real part, then the 

system is stable. 

Thus, for stability it is necessary that Eq. (l6) have no roots 

in the right half-plane. 

Replacing z by the number iz and expressing eiz in terms of 

cot z/2, let us transform Eq. (l6) . 

According to Euler's formulas 

« 
cos -- 2 
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and 

* * sin — = - 
li. -ti. 

* 

therefore 

whence 

2/ 

<4- -4 if 
.. * .< * -i-i 2 , ^ + 1 

t 2 —e 2 t 1 

e1'— 'T+i 

•it-y-i 
After replacing z by the number Iz, let us write Eq. (16) In 

the form 

-z2 + Mlz + N + (Slz + T) e’1* - 0. 

Expressing e^z In terms of the cotangent, we find that 

* (Ar-/»-r)+i(M-S)«_Q 
cot 2* W-*+T)+li(M+S) 

or 
cot y+Q(*)-f(z)-o, (20a) 

where 
Q (z) = i + 

(N - zi + T) + l(M + S)i * 

Separating the real and imaginary parts of the function Q(z), we ob¬ 

tain 
Q(r)=<p(z)+/*(*), 

where 
2t[rAf-S(N-/2)1 

? - .-J + T)» + X» (A* + s)* ’ 

< v {N - ,5)3 _ ■nj tHM-si) 
(,v-x- !- T)* \-zHM+S? • 

The itmctions <p(z) and z) are rational functions assuming real 

values for real values of z. 

Equation (l6) can now be represented in the form 

cot + <p( z) + i^( z) s F( z) « 0. (20b) 

When z is replaced by the number iz, Eq. (l6) is replaced by 
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Eq. (20b); in-this case the roots located In the right half-plane pass 

respectively into the lower half-plane. 

Thus the determination of the number of roots of Eq. (l6) lying 

in the right half-plane, rational with reapect to e* and z (e* enter, 

only In the flrat power), reducea to a determination of the number 

of root, of Eq. (20b) lying In the lower half-plane, and therefore 

to ..certain the clrcumatancea under which the syatem la atable 

reduce, to the que.tlons under what condition, doea Eq. (20b) not have 

roots in the lower half-plane? 

In order to determine the number of roots of Eq. (20b) lying 

in the lower half-plane, let u. conalder the contour depicted In Fig. 

3. On the real axla the function F(z) will have aa polea the point, 

where cot z/2 goea to Infinity, l.e., the pointa ±2ir, 6». «te¬ 

lhe polea of the function cot z/2 are by-paaaed by thla contour by 

meana of aemldrclea of email radlua ». 

Pig. 5. 

The number of roots of the function F(z) located In the lower 

half-plane la equal to the limit to which the number of complete 

revolutions described by the vector representing the function F(z) 

during a passage around the contour tends, when the numbers 1 and k 

tend to infinity and the radius » of the semicircle tends to zero. 
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plus the numbpr of poles of the function F(z) lying In the lower 

half-plane. 

As was first shown by I. V. Svlrskly [3]# and then specified 

more accurately by Ye. N. Yeslpovlch [2], the formula for the 

calculation of the number of zeros of the function F(z) in the lower 

half-plane, appears as: 

N - £ (J - n) + » + P. (21) 

In this case, for stability of the system. Expression (2l) should be 

equal to zero. In this formula 

N is the unknown number of zeros (for a stable system N ■ 0; 

for an unstable one N 0) ; 

J Is the order of the pole at an infinitely distant, point of 

the rational part Q(z) of the function F(z); 

Q(*) = 9(2) +W*) - S V*. 

In this case 

Is the number of intersections of the real axis and the vector 

F(z) when passing around contour G along ABCD (the number ¿ 
is equal to the difference between the powers of the 

numerator and the denominator of the function Q( z) ; in our 

problem J ■ 0) ; 

n is the number of intersections of the real axis and the vector 

F(z) during movement from D to A along the rectilinear seg¬ 

ments of contour Gj 

VI . f 1 dlmF (/)) 

n"2sl8nnw7“rlsi8n 
1 

t . .. dt 
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where are .the real roots of the equation f ( z) » 0; 

T' 7 TW (JV_/»xr)»^./»(Af.}.S)l * 

0, (z) - * it) . 
TW TW (Ar«/í + Dj+|í(M+s)í • 

m Is the number of poles of cot z/2 at which f(2)cr) < 0 (when 

passing In a semicircle around each such pole we obtain two 

Intersections of the real axis« l»e.« one complete revolu¬ 

tion of the vector P( z) ; 

P Is the number of poles of the function Q(z) In the lower half- 

plane; It Is equal to the number of roots of Its denominator 

located In the lower half-plane. 

Formula (2l) Is correct, when the function Q(z) does not have 

zeros or poles on the real axis. 

Let us carry out an Investigation of the function Q(z). The 

function Q(z) on the real axis (y - 0) vanishes provided that: 

(22) e(z)«-f (x)—_2x[rM — 5(^-X»)) ^q. 
7 * (Af-jrJ-j.Dí+xííAI+S)* 

7 Yl ; (N — X5-}- TT + ^W + S)* 
(23) 

Simultaneous solution of Eqs. (22) and (23) gives the following 

conditions of applicability of Formula (2l): 

NJ. T h (W-S^iP-rNS'-MTSj^Q. 

Now let us show that the function Q(z) does not have any poles 

on the real axis (y ■ 0).. For this purpose, we shall equate the de¬ 

nominator of the function Q/z to zero and we shall solve the bi¬ 

quadratic equation 

•V4 K(.W rS) ’ - 2.V>*+^+71=0. 

whence we obtain 
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It Is difficult to tell from the appearance of the expression 

thus obtained whether the roots of the equation will have zero solu¬ 

tions. However, we note that the function Q/z on the real axis has 

poles In very rare cases. 

Let us analyze another possible case, where the numerator and 

denominator of Q/z both vanish simultaneously. In this case ^llm 9( x) * 

■ 0 and 11m z) » 1, and, consequently, the function Q/z does not ' 

have any poles when z-» ». 

Let us determine the values P, m, and n, which enter Into 

Expression (21). 

1. Determination of the Humber of Poles P In the Lower Half¬ 

plane of the Function F( z). As was shown In the article by I. V. 

Svlrskly, the function cot z/2 does not have any poles in the lower 

half-plane; therefore In Eq. (20a) only function Q/z is subject to 

investigation. 

Let us write out the value of this function; 

Q(z) = ; (A'-^-O + ZW-S)« 

Let us see where the poles of this function are located. For 

this purpose let us equate to zero the denominator of the fraction 

(N— z* + T) + 1 (M + S)z ■ 0, whence 

/—-— (24) 

Here two values of the root z are possible* 

1) N+ r>S.J> then the vectors zi and z2 will be located 

in the upper half-plane and, consequently, there are no roots in the 

lower half-plane. Therefore, we shall consider the number of poles 

P located in the lower half-plane to be equal to zero; 
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^ then both terms of the exp1*®881011 for 1 are 

Imaginary. 

In this case, if the vectors Zj and z8 are located in the upper 

half-plane; then the number of poles P is equal to zero; if one of 

the vectors (zi or Za) .1» located in the lower half-plane, then the 

number of poles P is equal to unity. 

2. Determination of the value of m. In order to determine the 

real roots (tj of the function *(t) - 0, let us equate its numerator 

to zero; then we obtain the following biquadratic equation: 

{N—P) t—P+t* ( Aí’—S») - 0, 

or 

(O 

(25) 

It is possible to have cases where all four roots (25) will be 

real, or two roots will be real and two imaginary, or all roots will 

be Imaginary. 

Bearing in mind that m is the number of all poles of cot z/2 

lying within intervals where the function ÿ(t)< 0, we obtain the 

following values of m for various cases': 

-l8- 



1) if the biquadratic equation has two real roots ( see Pig. 4a), 

then 

(26a) 

2) if the biquadratic equation has four real roots ( see Pig. 4b), 

then 

(26b) 

The sign of the integral part is [ ] (for example, 1¾] « 3) j 

3) if all four roots of the biquadratic equation are imaginary, 

then it is necessary to see where the function ^(t) is located: 

if *(t) > 0, then m - 0 (see Pig. 4c, broken line) and from Eq. (23) 

by means of the substitution x ■ t ■ 0 we obtain 

N2-T8>0. (26c) 

If ^(t) < 0, then m - • (see Fig. 4c, solid line), and from Eq. (23)we 

obtain 

N2 - T2 < 0 ( 26d) 

3. Determination of the value of n. As was shown in the 

-19- 
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article by I. .V. Svirskiy, 

'2si*n 
Mj+fíO 

t-i. 

where 
..._ V\SlN-fl)-TM\ _ 

+0» + ^ (Al+S)* 

♦ (f)« 
IN — <2)2 — p -j- /» (Al>—5*) 

(N_/2 + r)*+<*(AI + S)* 
Consequently* 

■jt (0 - 2i KN-ta+r^ + iMAI+i)2!* 

4-<n +Mslfr^^-^tsP-ih - n\ 
“4‘ ((/V -fl + T)i + <* (M + S)’!* 

Sbubstituting 9( t), f(t), and (d/dt) t) in the expression for n 

and discarding in the expression newly obtained after appropriate 

transformations the quantity 

(iv - i 
4 ^-/2 + 7-)2 + 1^+^11 

which does not influence the sign change, we finally write 

n^gn 
* HAT _ (1+ D> !• I> (AI 1- S)!l .=4+2(11()1-0-^1 

(27) 

Mi 

From Formula (27) It is obvious that the number of sign changes 

can vary depending on the values of M, N. S, and T, and also on the 

number and values of the real roots (25)• 

Using the expressions for m and n and taking Into account that 

in the case of our data J - 0, let us write In final fom the criterion 

of stability of LRE ( 21) for the three cases: 

1) the case where the biquadratic equation ( N — ta) 2 -T8 

(M2- S2) »0 has two real roots: 

-20- 



P+2[-^-]+l-ÿ2*le”X 
1 J t 

.4- (N+T)\MT4¾ (T - y) - P) 
1— . _ t  . 1 

(28a) 

KV+r+s)»j «tç+.¾ - r^l 
-0: 

t-*, 

2) the case where this biquadratic equation has four real rootas 

p+2|in^L]^±2s,gnx 

<«(mj+j*-f)+»Hn+n r+ 
4(jyxni,w^4.^«5(r-.^-Ar(5»+r)-r«i 

KAT+r-./í)í4-<*(«+5^1^-+a |S(AT-<J)-WI| 

(28b) 

-Ot 

3) the case where all four roots of this biquadratic equation are 

Imaginary ( in this case Expression ( 27) assumes the value n • 0). 

If f(t) > 0, then m ■ 0, and for stability of the system the 

conditions 

AP-7*>06J (28°) 

P-0 I 

must be fulfilledi (if f(t) < 0, then m - • and Na - T* < 0; the 

system is unstable). 

Here 

tj^ are the real roots of the biquadratic equation and are 

determined from Formula (23) l 

P is the number of poles and is equal to the number of roots 

with negative coefficients in the imaginary part, these 

poles being determined from Formula (24); 

M,N,S,T are quantities entering into Expressions (19) and are 

determined by the structural parameters and also by the 

physics of the combustion process a. 

Examples. Let us consider the following example (data borrowed 

from the article by D. Gander and D. Friant [1]): 
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4 

a=8* 10“* Me*« 

fp«0,389 M \ 
Fe,=0,66 e»1, 

A^=3,557 kg/om\ 

^4a3,557k«/M 

0,4; 

/C.«0A 

^==61 M, 

/,*=61 «tf* 
p-X.ST *!• ‘I 

öf= 0.1636 

0,-0.28804 tí/*-» 
i 

From Expressions (18) we obtain 

Ff—2,13; A/^—4^6; 

ß#-2,08; //,-6,24. 

Consequently, on the basis of (19). we have 

M=ßf+ß0=4,21; 5=//^//.= 10,6-, 
S=BfB0—^A3\ 7 = BfH0+Æ0//f = 22*2- . 

Proœ Formula (*) we find that z - 7.561 ± 5.261. whence 

. . 12.621 and z, - 2.11, l.e., both roots are located In the upper 

alf-planej therefore 
p > 0. 

From Formulas ( 25) we detemine 

/„=15.3; /„=5.66/; 
/„=-15,3; /„=-5.66/. 

Since we have obtained two real roots, we shall use Eq. (28a), 

for which we calculate 

2^j = 2|2,14) = 2-2 = 4. 

when tn ** 15*5 

si)!0 
1(2(),(.3- 

15.31-45.55000]_. 
= 51811 4809Cwt 23*21'-74900 

= sign signl -19 320) = -1 
111 300 — 74900 
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and when tit f -15»3 

sign 
1(26,63 - /„i)H-21.7/,^1 2/,, |10,5 (4.43- /,,*) - 93.S) 

•sign- 
696-101 •—sign (—19320)=—1. 

-1113004-74900 

The sum of the signs (2 sign) is equal to [-1 ♦ (-1) ] - -2. 

Substituting all the values found into Eq. (28a), we obtain 6^0, 

i.e., the stability criterion is not fulfilled; therefore the given 

system is unstable. 

Let us change the system parameters in the following manner 

(leaving the others unchanged): 

then 

whence 

Fft-0,162 «.I Vf-22.032 W«1. 

^,,-0,274 ..1 V.“22,032 m/-'*; 

£f—5,48; 

£,«5,35; 

/11=10,83; 
N=29,3; 

7/f= 1.768; 

//,=2,59, 

5=4,36; 
r-23,7. 

Moreover, 

P ■ 0, since z * l4.6l + 12.6i 

(whence z, ■ 27»2i and za * 2i) 

—3,3i; /,,=5,54 
/),— —3,3t; ~ 5,5(. 

All of the roots prove to be imaginary. According to(28c), 

we obtain Na- T2 - 29.38 - 23.78 > 0, i.e. *(t) > 0, which means 

that m ■ 0. 

Therefore in Eq. (21) the quantities m, n and P are equal to 

zero. Consequently, the stability criterion (21) is fulfilled, and 

the system has a stable character. 

CONCLUSIONS 

1. The method presented can be used for determining the 
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criterion for operating stability of LRE with separate feeding of 

fuel and oxidizer. 

2. If the equalities of Expressions (28 a, b, c) are fulfilled, 

then the system is stable only in the case of small deviations of 

the disturbances v' and provided that the following Inequalities 

are maintained! 

NfT\ (AI*—S2) (P+NP-MTS) /0. 

In the case where all four roots of Eqs. (25) are real, it is neces¬ 

sary to use Expression (28a)j when two roots are real and two 

imaginary, use Expression (28b). In the case where all four roots 

are imaginary ( in the case n - 0), it is necessary to see where the 

function t) is located. 

If *(t) > 0, then m - 0, and for stability of the system it 

is necessary to fulfill the conditions H2 - T2 > 0 and P - 0. 

If f(t) < 0, then m « • and N2 - T2 < 0; in this case the sys¬ 

tem is unstable. 

3. Examples illustrating the use of these criteria have been 

given. 
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