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FOREWORD 

The work described in this report was accomplished by members of the 

Dunham Laboratory, Yale University under subcontract to the SUBIC 

program (contract NOnr 2512(00)) for which the Office of Naval Re- 

search is the sponsor and General Dynamics/Electric Boat the prime 

contractor.  Cdr P. R. Haselton, Jr., USN, is Project Officer for 

ONR; Dr. A. J. van Woerkom is Projet Coordinator for Electric Boat 

and Chief Scientist of the Applied Sciences Department. 

The SUBIC program encompasses all aspects of submarine system analysis. 

This report is one of a series dealing with acoustic signal processing. 
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ABSTRACT 

This report describes work concerned with the detection of a single 

target in an Isotropie noise field.  In each case studied, the data 

source was assumed to be a given array of omnidirectional hydrophones, 

but many different schemes for processing the various hydrophone out- 

puts were considered.  The problems investigated involved comparison 

of optimum detectors with standard detectors and comparison of detec- 

tors operating on clipped and undipped hydrophone data, or, more 

generally, hydrophone data that have been operated upon by an arbi- 

trary non-linear device.  The results of these comparisons are de- 

scribed in detail. 
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The following is a summary of work performed under contract 53-OQ-1O-0231 

botween Yale university and the Electric Boat Company during the period 

21 January 1963 to 1 July 1963. Detailed results and supporting arguments 

for the various conclusions are contained in a series of seven progress 

reports that are appended» 

With minor exceptions the work reported on was all concerned with the 

detection of a single target in an isotropic noise field» In each case the 

data source was assumed to be a given array of omnidirectional hydrophones, 

but many different schemes for processing the various hydrophone outputs 

were considered» The basic assumptions concerning the properties of noise 

and target signal fell into one of two general categories; 

A. Both signal and noise are independent stationary Gaussian random 

variables; the signal is directional, the noise isotropic. In 

this case the statistical properties of signal and noise are 

completely specified by a statement of total power and spectral 

properties» 

B. Signal and noise have one component satisfying condition A» 

In addition each may contain one or more periodic components in 

the low frequency band 0 < f <W  cps. Furthermore the random 

component of the signal in the high frequency band VL < f £ W« 

cps may be modulated in amplitude by one of the periodic low 

frequency components of the signal» 

Assumption A clearly constitutes a minimal description of signal and noise 

and therefore leads to detection schemes of only moderate efficiency« On 

the other hand, knowledge ox power and spectral properties may be very nearly 

all that is available} in fact, even this knowledge may be quite imperfect« 



,The best detection scneme under assumption A therefore sets realistic bounds 

on attainable detectability in many situations of practical interest, 

Assumption B represents an attempt to obtain more refined detection 

procedures by specifying additional signal properties that do occur in 

important practical cases. The 3„ignal emitted by a moving ship contains 

periodic or quasi-periodic low frequency components generated by the 

propeller and other mechanical components. Amplitude modulation of the 

high frequency range at the propeller frequency is also a commonly 

observed phenomenon in such situations0 Periodic or quasi-periodic noise 

components are often generated by moving machinery on the observing ship» 

The problems investigated may also be divided into two broad classes: 

a) Comparison of optimum detectors with standard detectors. The 

term "optimum detector" is interpreted as a likelihood ratio 

detector operating on the outputs of an array of hydrophones 

mechanically or electrically steered "on target*" The "standard 

detector" operates on the output of the same hydrophone array by 

adding, squaring and then smoothing by means of a low pass 

filter.  A block diagram of a standard detector is shown in 

Fig, 1 of Progress Report No, 3c 

b) Comparison of detectors operating on clipped and undipped 

hydrophone data3 or3 more generally, hydrophone data that have 

been operated upon by an arbitrary nonlinear device. Where no 

remarks to the contrary appear, comparisons are always based 

on rms or mean square signal to noise ratio at the detector output. 

The input signal to noise ratio at each hydrophone is assumed to 

be small. 
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Results 

1) Comparison of optimum and standard detector undt.r or;-.ur.tJ.;''. ' 

This forms the subject matter of Progress Report Ho, 'i.    paint; »•♦.••:•. i 

given by Bryn the figure of merit (rms signal to noise ratio) of the 

Optimum detector for reasonably long observation times can be written %r\ 
mm 

the form 

Tw /  S(w Q(co) 
N(co) 

dco 

01L 

T is the observation time in seconds, ox.  and uu  are the lower and upper 

endpoints of the processed frequency interval in rnd/pec, S(«) and N(w) 

are the input signal and noise spectra at each hydrophone« G(co) is the 

array gain, a quantity introduced by Bryn and defined as the ratio of the 

contributions of signal and noise to the average deteutor output normalized 

with respect to the input signal to noise ratio at each hydrophone., 

Several features of the above expression are significant. The factor 

VT indicates the usual dependence of statistical fluctuation on sample 

size. The fact that the integrand is non-negative shews that the detector 

should utilize all frequencies where S(o>) does not vanish identically. 

In cases of great practical interest G(co) varies only slowly and over a 

moderate total range. Hence the greatest contribution to the integral 

is made by frequency ranges where the input signal to noise ratio is 

relatively large. It is clear that changes in signal or noise spectra are 

important only to the extent that they affect the integral. Thus knowledge 

of the detailed structure of signal and noise spectra is of limited value 

F, Bryn, "Optimal Signal Processing by Three~Dimensional Arrays 
Operating on Gaussian Signals and Noise," J„ Acoust0 Sac-, Am., vol. 3Uj 
no. 3, March 1962 pp. 289-297> 



in detection,, Even the knowledge that the signal contains a very narrow- 

band component, so that S(o>)/N(co) is large over a narrow band, contributes 

little to the solution of the detection problem unless the narrow-band 

component contains a significant fraction of the total signal power (or 

the noise power level happens to be exceptionally low in the frequency 

range of the narrow-band signal)« 

The array gain G(co) is larger for the optimum detector than for the 

standard detector using the same set of hydrophones, particularly at low 

frequenciesa This effect may be attributed qualitatively to the circumstance 

that the optimum detector tends to reduce the effect of noise correlation 

between different hydrophones„ The phenomenon is clearly most pronounced 

at low frequencies0  Thus the optimum detector is superior to the standard 

detector in two respects: l) It can combat noise correlation between 

hydrophones and 2) it can utilize variations in input signal to noise ratio 

2 
over the prooessed frequency banda  Significant differences in performance 

between the two types of detectors will arise only when one or both of 

these factors are important. 

If signal and noise spectra are both flat over a frequency band 

0 <<o$u  and vanish for a > oo „ and if co is sufficiently large so 
a a        a 

that the noise correlation between hydrophones is negligible, neither one 

of the above factors is operative and the performance of optimum and 

standard detectors is identical» (Report No, 3> Eqc (55)). If the noise 

At high frequencies, where there is no noise correlation between 
hydrophones, the array gain simply equals the number of elements in the 
array. 

2 
The standard detector is sensitive primarily to total powers    Spectral 

properties affect its design only to the extent that they determine what 
frequency range should be processed,, 



has the specified properties but the signal deviates from the flat 

spectrum, the optimum detector is better by an amount depending on the 

extent of the deviation Eq. (58) 

If signal and noise spectra are not bandlimited, the figure of merit 

of the optimal detector can have a peculiar property. Consider for 

example the case (quite closely approximated in situations of practical 

interest) of signal and noise spectra identical in shape. Since G(CD) 

approaches a constant equal to the number of hydrophones as co-*» , 

the figure of merit clearly approaches infinity as ay-*» . This says 

that detection can be accomplished to an arbitrary degree of certainty 

in any finite time. The statement becomes reasonable as soon as one 

recognizes that the assumptions imply equal input signal to noise ratio 

in every frequency band. Thus the optimum detector can in principle 

extract as much useful information by observing a 100 cps band at 

extremely high frequencies, where signal and noise power are both 

negligible, as by observing a comparable band near zero frequency where 

both signal and noise power are substantial« 

This example illustrates a common danger in the use of optimal 

procedures: Assumptions that appear at first glance quite innocuous 

may have exceedingly far-reaching consequences. In important practical 

problems the signal and noise spectra are in fact closely similar over 

the frequency range where most of their power is concentrated. At high 

frequencies, however, the signal spectrum inevitably falls off faster 

than the noise spectrum, if only because of white noise locally generated 

in the circuitry, and this effect becomes crucial when one works with 

optimal techniques■ 



In order to obtain realistic comparisons one must therefore restrict 

the optimum detector to the frequency range over which the postulated 

spectra may be expected to describe the actual state of affairs with 

reasonable accuracy.    Specific calculations were carried out under the 

assumption that signal and noise spectra both fall off with the second 

power of frequency above 150O cps.   When the frequency range processed by 

the optimum detector extends to 5000 cps its figure of merit then has a 

value 2fc6 times that of the standard detector.   When the processed frequency 

range extends to 10,000 cps the corresponding figure is 3»8.    (Report No. 3,, 

pages 28-29). 

In order to avoid the son>what arbitrary assignment of an upper 

frequency limit, a second approach was also taken.    By using a model of the 

transmission characteristics of sea water proposed by Eckart    (Report No. 3, 

p. 29, footnote 2)    one can obtain a modification of the high frequency 

characteristics of the signal spectrum that removes the basic difficulty 

and leads to a finite result, even when an infinite frequency range is 

processed.    The ratio of performance indices of the optimum and standard 

detector is now range dependent but varies only from a value Eq. (9k) 

somewhat less than 2 to about 8 for the variations of range for which the 

analytical assumptions are likely to be valid. Thus the two lines of 

analysis lead to quite comparable results, and one comes to the conclusion 

that improvements of this order of magnitude cannot be exceeded unless 

signal and noise spectra differ drastically from the assumed form. 

The foregoing comments should not be construed to infer that 

improvements by factors of 2 to 8 are unimportant. If they were realizable 

by even moderately simple instrumentations, they would be quite significant, 



However, in interpreting these figures it is necessary to keep in mind 

two factors: a) The larger improvement figures correspond to conditions 

such as extremely close range or identical shape of signal and noise 

spectra over a very wide frequency band, conditions that are either of 

limited interest or unlikely to be satisfied in practice« b) The 

optimal instrumentation i3 likely to be very complicated. In practice, 

therefore, one is likely to pay a very high price in complexity of 

instrumentation for only limited gain in performance« 

2) Comparison of optimum and standard detector under assumption B0 

The effort to exploit the presence in the target signal of low 

frequency periodic functions and amplitude modulation; by one of these, 

of the high frequency range has taken two distinct directions, 

a) A study was made of the optimum scheme for detecting a Gaussian 

signal amplitude modulated by a sinusoid in the usual isotropic 

Gaussian noise background. This is very nearly equivalent to an 

optimum detector processing only the frequency range W.. < f < W« 

of assumption B. In practice the frequency W would be sufficiently 

low so that the power of the random signal component in 0 < f < W_ 

would be a small fraction of the total signal power«, However, the 

periodic low frequency components of the signal, which could well 

be important to the detection process, are ignored. The reason 

for considering a detection process neglecting such important 

information is that the frequencies of the periodic signal 

components are not known a priori and that the self noise 

generated near the receiver is likely to contain very strong 

periodic components in the same freqiency range so that the 

filtering problem would be very formidable. 



b) An attempt was made to utilize the low frequency periodic signal 

components as well as the high frequency amplitude modulation 

without requiring either knowledge of the frequencies of the 

periodic components or identification and removal of the periodic 

self noise« The analyzed system is not optimal, but It ha3 at 

least some of the features that one xfould expect to find in an 

optimal system«, 

The approach described under a) is covered in detail by Progress 

Report No. 5o The following specific cases are considered: 

i) Noise and unmodulated signal both have the properties of white 

noise limited to the aame band. The receiving array consists of 

a single hydrophonec 

ii) Signal and noise have the same properties as in i)0 There are 

K hydrophones spaced sufficiently far apart so that the noise 

correlation between different hydrophones is negligible0 

iii) The noise and array properties are the same as in ii) but the 

unmodulated signal spectrum falls off with the second power of 

frequency above a certain point. 

iv) The unmodulated signal has the properties of i) but the noise 

spectrum falls off with the second power of frequency above a 

certain point„ The receiving array consists of a single 

hydrophone» 

In cases i), ii), and iv) the ratio of the figure of merit of the 

optimum detector to that of an optimum detector operating on the 

1 2 
unmodulated signal in the same noise background is approximately 1 ♦ m b , 

Progress Report No« 5, Eqs, (30), (39) and (5U)L The symbol b is the 

8 
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modulation index, a number certainly less than unity and in most practical 

cases substantially less than unity. Thus only a very limited improvement 

in detectability results from use of the knowledge that the signal i& 

periodically amplitude modulated. In case iii) the improvement ratio i? 

even smaller [Eq. (Uli) More complicated cases have not bean analyzed, 

but there is no reason to expect significantly different conclusions. 

The result appears even more decisive if one considers that the 

analysis assumed purely sinusoidal modulation of known amplitude, frequency 

and phase» In practice the phase and amplitude would certainly be unknown 

and the frequency would most likely be known only to lie between certain 

limits. The effect of these uncertainties would be a further degradation 

in the detectability index. Thus one is forced to the conclusion that the 

existence of periodic amplitude modulation of the random target signal is, 

by itself at least, of little value in target detection,. 

The reason for this phenomenon becomes clearer if one considers the 

instrumentation required for optimum detectione For case i) it is given 

by the simple configuration shown in Fig«, 1 of Progress Report No, 5 

(p. 11)e The circuit evidently consists of a standard power detector 

followed by an arrangement for coherent detection of the envelope» Thus 

the basic detection scheme is incoherent and the slight gain over a 

simple power detector results only from the secondary coherent detection 

operation on the envelope. The latter would obviously be degraded by lack 

of knowledge of envelope amplitude, phase or frequency0 

Progress Report No« 7 deals with the second approach (b) to the 

problem of utilizing the added information supplied by assumption Br 

It postulates the specific instrumentation shown in Fig, 1 of the report. 



The outputs of the various array elements are added and the resulting 

signal is split into the two frequency ranges 0 < f < W. and W. £ f £W0. 

The high frequency range, with its sinusoidal amplitude modulation, is 

processed by a standard power detector. The output of thi.s detector 

contains the modulating signal in addition to fluctuating components« 

It is used to multiply the signal carried by the low frequency channel, 

which contains a sinusoidal component at the modulation frequency. 

Thus the high frequency channel is used to generate a sinusoidal "reference" 

for the coherent demodulation of the sinusoidal low frequency component 

of the signal. The attractive feature of this scheme is that the low 

frequency sinusoid and the "reference" automatically assume the same 

frequency. It is not necessary to have a priori knowledge about this 

frequency, and the presence of sinusoidal noise components in the low 

frequency range presents only a secondary problem, as long as they do not 

coincide.too closely with the signal sinusoid, Only the assumption that 

low frequency sinusoid and modulation envelope are in phase may be somewhat 

artificial. The weakness of the proposed scheme is the low amplitude of 

the reference sinusoid, particularly when the modulation index is small, 

and the presence in the "reference" channel of large non-sinusoidal 

fluctuations, all of which are "noise" to the proposed instrumentation. 

Detailed analysis shows that this defect outweighs the advantages of more 

complete utilization of assumption B, Under typical operating conditions 

the performance index of the proposed instrumentation is substantially 

lower than that of a simple power detector operating on the high frequency 

band alone [Eq, (2U)|, One must, of course, keep in mind that the proposed 

detector is not optimal. One could, for instance, use it to supplement a 

10 



simple power detector and thus presumably obtain a performance somewhat 

better than that of the power (standard) detector*  However, the results 

if the report raise some doubts whether, even with optimal procedures, 

detectability under assumptions B is significantly greater than under 

assumptions A. For the present this question must still be regarded as 

unresolved. 

The conclusions from 1) and 2) concerning possible improvements over 

the standard detection scheme (Fig. 1 of Progress Report No. 3) may be 

summarized as follows: 

a) If signal and noise are characterized only by total power and 

spectral properties and the spectral properties do not differ 

drastically, the performance index of the standard detector is 

not greatly inferior to that of the optimum detector. One must 

also keep in mind that the instrumentation required to realize 

the optimum detector is apt to be complicated» Unless simple 

modifications of the standard detector can be found that make it 

optimal, the attainable improvement would not appear to justify 

the increased complexity of equipment in most practical cases. 

b) Knowledge that the random signal is periodically amplitude 

modulated is of little value in detection, 

c) It appears that large :improvoments in performance relative to the 

standard detector can be made only under one of the following two 

conditions: 

i) An effective scheme, different from the one discussed in 

Progress Report No« 1,  can be found for detecting low 

11 



frequency periodic signal components in the presence of 

strong periodic components of self noiser This requires 

continuous monitoring and careful processing of self noise 

data« 

ii) It is possible to give a more detailed characterization of 

the signal than is implied by assumptions A or B, In 

particular it would be valuable to have a description of 

the typical waveshape of the signal, with as few random 

parameters as possible» This would open the way to use of 

genuine coherent detection schemes. 

3) Effect of clipping and other nonlinear operations on target 

detectabi].itye Assumptions A. Same noise power at each hydrophone. 

The procedure of clipping the basic hydrophone data before further 

processing has certain practical advantages, particularly when digital data 

handling techniques are used, Theoretical studies were therefore undertaken 

to determine the effect of data clipping on target detectability and to see 

whether nonlinear operations more general than clipping might lead to more 

advantageous results. The problem was approached by two rather different 

routes« 

a) Progress Report No. U considers the standard (power) detector as 

the basic instrumentation but allows an arbitrary, odd function, 

zero memory nonlinear device to be inserted at the output of each 

hydrophone, (See Fig. 1 of Progress Report No. k*    Note that the 

linear processor and the clipper are special examples of such a 

device.) The analysis is carried out under the assumption that 

signal and noise spectra are identical in shape and that noise 

correlation between different hydrophones is negligible. The 

12 
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result is stated in terms of the usual output signal to noise ratio 

and also in terms of a second figure of merit, defined as the 

difference between on target and off target average output divided 

by off target average output. In each case Eq3a (58) and (l;0) L J 
it is demonstrated that the best performance is achieved with a 

linear processor. However, the dependence of the figure of merit, 

particularly the output signal to noise ratio, on the specific 

nature of the processor is not at all critical if the processor 

does not contain dead band. The signal to noise ratio for the 

clipped instrumentation falls below the optimum by a factor of 

only 0.89 (Fig, 3)0 

Progress Report No, U also considers modifications in the 

basic detector characteristic0 The processors are now taken to 

be linear but the conventional square law device is replaced by a 

general even power device. It is shown that maximum output signal 

to noise ratio occurs when the detector is a square law device, 

but once again the index of performance varies only slowly with 

modifications in the detector characteristic, The second figure 

of merit, the normalized difference of on and off target average 

output, can exhibit a very different behavior. If the detector 

has a dead band, for instance, the performance index grows 

monotonically with the size of the dead band and approaches 

infinity in the limit | Eq, (112) , The reason for this peculiar 

Note a slight difference in definitions between Progress Report No. h 
and the reports discussed earlier: In Report No. k the average signal 
component at the output is defined as the difference between average output 
on and off target, In the reports mentioned earlier it is the increase in 
average output which occurs when a signal appears that was previously absent, 
the array being steered "on target" at all times0 

13 



phenomenon is, of course, that the off target average output 

tends to zero more rapidly than the on target average output. 

This observation is not entirely of academic interest, for 

substantial reductions in off target average output can be 

achieved for values of dead band that cause only minor degradation 

in output signal to noise ratio (Figures 8 and 9). Thus the "off 

target plateau" of the directivity pattern can be reduced 

materially without significant sacrifics of output signal to noise 

ratio, 

b) The second approach to the problem of nonlinear data processing was 

an attempt to assess the inherent "cost of clipping" by comparing 

the output signal to noise ratio of optimum detectors operating 

on clipped and undipped data0  This analysis is contained in 

Progress Report No. 6. Results were obtained only under the 

following special assumptions! Signal and noise both have the 

properties of Gaussian white noise band-limited to 0 < f < W cps. 

The hydrophone outputs are sampled at regular intervals of yn 

seconds and there is no correlation between noise outputs of 

different hydrophones. Under these conditions the rms output 

signal to noise ratio of the detector operating on clipped samples 

is —111 —5 times as large as that of the detector operating on 

unclipped samples, where M is the number of hydrophones in the 

array. It is probably realistic to consider this as the actual 

cost (in terms of detectability) of clipping sampled data0 One 

must keep in mind, however, that part of the information loss 

n/\/hen the detection scheme is optimal it is only necessary to consider 
information destroying nonlinear operation (such as clipping) on the basic 
data. A one to one nonlinearity could always be removed by an inverse 
operation in the optimal detector. 

H 



might be due to sampling rather than to clipping. For while the 

assumed sampling rate is sufficient to avoid information loss from 

sampling in the undipped case, the spectrum of the clipped signal 

is not bandlimited, so that no finite sampling rate can guarantee 

complete reconstructabilJLty of the continuous signal from the 

samples. It is interesting to observe that evaluation of Eq, (£8) 

of Progress Report No, h for the white noise spectra postulated 

2 
in Progress Report No, 6 leads to a value very close to - for the 

degradation in output signal to noise ratio. This at least 

suggests - although it certainly does not prove - that the figure 

2 
— is indeed a good estimate of the "cost of clipping" for 

reasonably large arrays. It further suggests that the optimum 

detector for processing clipped data derived from spectra with 

the white noise properties assumed in Report No, 6 does not differ 

greatly from the standard (power) detector, 

I;.) Effect of clipping on target detectability» Assumptions A, 

Noise power may vary from hydrophone to hydrophone. 

One of the primary reasons for clipping hydrophone data prior to 

further processing is the possibility that the noise power may vary sharply 

from hydrophone to hydrophone. Due to malfunction or special operating 

conditions one hydrophone, or a group of hydrophones, may contribute far 

more noise than the rest. When this is a serious possibility, it appears 

reasonable to clip all hydrophone outputs, incur the small loss of 

information discussed in 3), but prevent a large contribution to the 

output noise from a few faulty hydrophones. This type of consideration 

is in fact one of the primary reasons for the use of clipping in 

practical instrumentations. 

15 



The theoretical background of this problem is explored in Progress 

Report No. 20 The basic instrumentation investigated was that of the 

The analysis standard detector with and without clippers« Fig* 1 

assumed signal and noise spectra of identical shape and the absence of 

noise correlation between different hydrophone outputs„ 

Output signal to noise ratios for the clipped and undipped 

instrumentations were compared under several sets of assumptions 

concerning noise power at different hydrophones. 

a) The probability density of noise power N. for the i ' 

hydrophone is uniform on a logarithmic scale over N_ < N. < N„ 

and vanishes elsewhere.  Eq„ (lU) 

b) The probability density of N. is uniform on a linear scale over 

N. < N. < N„ and vanishes elsewhere, Eqc (26) 

c) The probability density of N. varies as —*  over N. < N. < NH 

and vanishes elsewhere, 
Ni 

Eq„   (29) 

d)   The noise power at each hydrophone can assume only the values N, 

and N„ and does so with probabilities p and (l - p) respectively. 

JEq.  (15)] 
In each instance the noise powers at different hydrophones were assumed to 

be statistically independent, 

Comparisons were made primarily on the basis of a figure of merit 

defined as the difference between on target and off target average output 

divided by off target average output (as in Report No. U). The output 

signal to noise ratio was also considered and found to have identical 

properties except for a multiplying constant. 

16 



The results show the expected trend in each case. When there is little 

or no variation in noise power, the undipped instrumentation is superior 

by a small margin. When large variations in noise power can occur, the 

clipped instrumentation becomes superior» The exact extent of this 

superiority depends rather critically on the probability distribution of 

the noise» In cases b) and c) the ratio of clipped to undipped 

performance indices is close to unity for physically reasonable values of 

N- and N„„ In case a) and particularly in case d) (when approximately 

half of the hydrophones are in the high noise state) very substantial 

improvements in performance are made possible by clippinga 

The results of sections 3) and U) may be summarized as follows: 

a) The clipping of hydrophone data never causes a large decrease 

in signal detectability. It may result in substantial improvement 

if large variations in noise power from hydrophone to hydrophone 

are likely, 

b) Signal detectability is not at all critically dependent on the 

specific properties of nonlinear processors operating on the 

basic hydrophone data unless the processors have a significant 

amount of dead band. Neither is the precise nature of the 

nonlinearity used in detection criticdly important. Since 

some properties of the bearing response pattern are more 

critically dependent on these parameters, it appears possible 

to improve the bearing response pattern without seriously 

affecting detectability. 

17 



Progress Report No. 1 has not been mentioned in this discussion. 

It deals with the correlation between noise output at different hydrophones 

and provides computational results in this area that serve as background 

for several of the other reports. In particular it shows under what 

conditions one can make the very convenient assumption that the noise 

correlation between different hydrophone outputs is negligible. 

18 
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SPACE-TIME CORRELATION M ISOTROPIC NOISE FIELDS 

I.      Introduction 

Several investigations have been made in order to determine the 

cross-correlation between signals produced by two omnidirectional • 

12 3 transducers located in a field of many scattered noise sources.   '  ' 

Knowledge of the noise cross-correlation is often necessary in 

determining the performance capabilities of arrays of such transducers 

which are used to determine the direction of a signal source located 

in the field of the scattered noise sources. 

In this report, an attempt is made to expand and simplify the 

interpretation of the results given in the references listed.    Three- 

dimensional and two-dimensional isotropic noise fields will be 

considered.    The field is considered isotropic in that the power received 

from any direction is constant. 

An    infinite    number of noise sources distributed uniformly on the 

surface of a sphere of infinite radius from the local transducers is 

used to simulate the three-dimensional isotropic field. 

For the two-dimensional field, an infinite number of noise sources 

are distributed uniformly along a circle of infinite radius in the plane 

of signal propagation. 

In addition,  the noise produced by each source is assumed to be 

stationary and statistically independent of that produced by every 

other source, and each noise source is described by the same autocorrelation 

function. 
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II.      Cross-Correlation with Time Delay- 

Figure 1 describes the geometry for the spherical noise field. 
A  z 

Transducers 

\      ^-solid angle sin 9 d9 d0 

>-   y 

Fig.  1 

Geometry of Spherical 
Noise Field 

It has been shown   that the normalized cross-correlation function for the 

delayed output of transducer 1 with -the output of transducer 2 is given 

by Equation (l). 

2n        n 
<J.(t - T) v2(tj> r. p(£, T)    -    Ü n -     - 00      P (T + Ä cos 0) i- sin 9 d9 

f p'(T + ^ cos 9) £2-£   d9 (1) 

In Equation (l), - is the time required for the signal to travel the 

distance between the two transducers,  and p  (T) is the normalized 

autocorrelation function for each noise source.     A chaige of variables 

T      =   T   +  X      COS   0 
• s 

4  =   T 
c        s 

(2) 

results in Equation (3) 
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s   ' 
(3) 

I 

I,     I 
Equation (3)  simply represents the average value of p (T ) over an 

t 
interval 2T    in length,  centered at T    ■ T.    Figure 2 depicts this 

interpretation graphically.  OVT') 

1 

M 
1 1 -• 

'*»—^ 
Fig.   2 

Graphical Interpretation 
\ 

><—    s—>, 
of p(x 

terpi 
, -0 

For the circular noise field, the cross-correlation function has 

been shown to be 

P(T8, T) - I      p (x + xo cos 6) i dö (U) 

With the variable transformation in Equation (2), Equation (I4) becomes 

2r 

T   +T 
S 

2 
n 

-T   +T 
S 

PV) *' 
1 r«n 

Equation (5) represents a weighted average of p (T) over an interval 
1 

2x    centered at T   = T.    The weighting function is shown in Figure 3. 
t, 1 

It can be seen that the values of p (T ) at the ends of the interval 

are weighted very  heavily. 

(5) 
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T  -  T 

f(T    ) 

«'•)•! 
1 - 

T      -   T 
T 

3 

2 

i?" 
Fig.  3 

I.   I 
Weighting Function for p (T ) 

Note also that the average value of the weighting function expressed in 

Equation (6) is unity. 

T   +T7 

2x n 

S 

' \2 T      -  T 
1-1/2 

dx    -    1 (6) 

A comparison of the results in Equations (3) and (5) reveals that the 

evaluation of the cross-correlation function for the three-dimensional 

noise field is considerably simpler than that for the two-dimensional 

case      For each pair of transducers in an electronically steered array, 

the observation is also made that the maximum relative electrical delay 

necessary to steer the directional response of the array is never greater 

than the wave propagation time between the pair of transducers in question. 

In terms of the  symbols used previously, the  following  is  always true 

for the determination of bearing response patterns. 

T   < T 
s (7) 
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An examination of Figures 2 and 3 indicates that the  cross-correlation 

function for a two-dimensional field is less than that  for a three- 

dimensional field for values of T near zero.    Identical well-damped auto- 

correlation functions are assumed in both cases.    In the two-dimensional 
t.   t. t      + 

case, the small values of p (x ; near T   = - T     are weighted more 

heavily than the same values in the three-dimensional case.     However, 

for values of x near x , p(x , x) for the two-dimensional field should be 
S S 

greater than that for the three-dimensional field since the large value 

of p (x  ) near x    ■ 0 receives infinite weighting in the former case. 

Evaluation of p(x , x) for two simple forms of p (x ) follows, s 

III.    Evaluation of Cross-Correlation Function - Case A 

The function p(x , x) is first evaluated for the   simple exponential 
s 

autocorrelation function given in Equation (8) 

p  (x  )  =    e (8) 

The  corresponding spectral density is 

S(co) 
WO       1  +, 

0 \ CO 

1 (?) 

The integral for p(x , x) must be performed in two parts because of s 
III ! .    I . 

the term Ix   |  appearing in the expression for p  (x ).     For the  three- 

dimensional noise field: 
" n 

I 

p(x  , x)    =    -i- 
S 2x 

Q x +x . 
s r 

60   X -CO   X 

e  °    dxt +  I       e    °    dx 

J X    +T 
S 

-CO   X 
-, OS, 1 - e cosh co x o 

CO  T 
0   S 

X    <   X 

(10) 
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If x ■ x , the maximum electrical delay necessary, Equation (lO) s 

reduces to 

P(TS, TS)  - 
1 - e 

-2co T 
o s 

(11) 
2co T 

0  s 

Furthermore, if wr     »    l and T = 0, * s ' 

p("V  0) 
&       X 

CO T 
0   S 

(12) 

Equation (12) also places an upper bound on p(T , T) for any x and T . s s 

If the separation is defined in terms of wavelengths of the half- 

power frequency of the individual noise spectra, the relation with the 

parameter co T    is 
OS 

_d_ 

\ 

d  " 
_ • _2 
c  2n 

0 S 
2n (13) 

The upper bound for p(f ,T) is s 

p s' r,    /transducer separation in wavelengths\ 
of upper half power frequency 

(11*) 

For the two-dimensional noise field, Equation (U) may be used with 

several approximations to evaluate P(T , T).    Equation (l£) is obtained 
s 

after appropriate substitutions are made. 

it 
-co   |T+T COS 0| 

P(VT)   "  k '  *   °      s       d0 
0 

o 
-co (T-K COS Q) 

0 s 
e 

* 1 
CO  (T+T  COS ©) 

d9 + I dO (15) 
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where cos -1 T 

\        S 

(16) 

If co T   is large, the integrand has negligible value except in the 
O     S 

vicinity of Q ■ 9 .    The exponent of the integrand may be approximated o 

by the first three term,? in the Taylor series expansion around 9 » 9 : 

2 
co (x + T    cos e) * o - co T    sin 0 (9 - 0 ) - B T    cos 6„ ±—^—oi- os os o o o s o        2 

= 0 - O>-\/T 2 - T2    (9 - 9  ) + CO T oV   S 0 0 

(9 - 9o)< 
(17) 

/0 9 
If a s CO"A/T     - T     and   b ■ co x, then Equation (15) becomes 

P(xg, T) - 1 
0 a(9-90) - |(9-9o) 

n 
-a(9-ö  )  * &9-9)2 

d© + |      e °        c d9 
(18) 

Befere Equation (18) is evaluated for the general case, 0 < x   < T , 

several special cases will be evaluated. For T ■ 0, b = 0, a ■ co T , and 

-x.    Then Equation (18) becomes 

p(V 0) • £   I      e 
CO T 

0   S 

(19) 

1 
1 
I 
I 

For T = T, a = 0. b = co T  , and 9    = n.    The second integral in s' * o s7 o 

Equation (18) disappears, and the result is 

ii 

f    -I co T (9 - n)2 

Jn 
"\/ 2n w T w o s 
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The results in Equations (19) and (20) are valid only if tt T     > > 1. 
O    3 

For values of T near zero,  such that the quadratic portion of the 

exponent may be neglected, the result in Equation (2l) applies. 

p(*.# *> * h 
fC   COVT

2
-T

2
'(9-0 ) r" -CO"\/T 

2
-T

2
'(9-© ) 

0    B 

1 
°'d0+   I   e    °    s dG 

2/n 

.V^ Cü   VT        - T 
0      s 

(21) 

Finally, the integrals in Equation (18) are evaluated by completing 

the squares in the exponents, and by letting Ö    a 9 - 9 , and 9    =9-9. 

P(V T) - | 
a2   fgo     . (A/b9T - a/VbY 
2b" dO   + e 

2      n-9 a 
2T 

o(fo9 -a/fg)  2  
e £        d9 

2  " 

0 

(22) 

Additional variable substitutions found in Equations (23) and (2U) and the 

definition of tabulated functions ,5 in Equations {2$) and (26) allow the 

final result to be written in Equation (27). 

1? 
(23) 

(2U) 

2 r erf (a) =-   -r I 
-t2 

6   t     dt (25) 
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! 

1 

■ 

I 

F(n) 
r t2 

e    dt (26) 

JL 

Then 

P(TS, T) *l^fff-rf-.^l—bfe 
2 a 

2b -\/2 
b •f PI -=-] - F (27) 

The result in Equation (10) for the three-dimensional noise field is 

plotted in Figure h for two values of (Bt    as a function of T/T    and 
OS s 

compared to similar results in Equations (19), (20),  (21), and (27) for 

the two-dimensional field.     Previous quantitative conclusions  concerning 

the relative size of p(x , T) for the two types of noise fields are seen 

to be substantiated in Figure k. 

IV.      Evaluation of Cross-Ccrrelation Function - Case B 

The normalized autocorrelation function found in Equation (28) is 

considered next. 

P   (T )  ■ 2 x"#r; 
'l +      J 

(_^_V^2 - IKIT'I 
(28) 

If c    < 1, Equation (28) may be put into the form 

T,   : - X».   T 
P (O ■ --A.   e cos (Vl - j2'» k'l   + cos_1Vi -^2)      (29) 

«/   t 
The corresponding spectral  density for p'(x') is  the  simple narrow band 

spectrum which follows. 
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S(») 
n 'f w. 

I2 

1 - ^jYT^Ji? (30) 

In Equation (30), co   is the center frequency, end 2^^ is the bandwidth 

between half power points. 

In order to find P(T , T) for the three-dimensional field, Equation (28) 

is  substituted into Equation (3).    One step in the Integration process 

yields 

p(T , T) -      r=M ;  
3 UVT-l  » T o s 

(^-Y^VL)«y      (VVV^T)COT 
-   6 + e 

(--W^-i) co xl        (- i-V^-T) co T' 
T   +T 

s 

-T   +T 
S 

(31) 

Evaluation L ■ the limits indicate'', in Equation (31) end simplification of 

terms results in Equation (32). 

I 
I 
1 
I 
I 

- S.CO  T 
.     ;i    0   S 

P(V T) \ /r-Vft A/1 -?1" CO T 
" J OS 

sin (\/l - "j^'co T ) cos (Vl - r, 2co T) cosh ($» T) 
OS o u 

cos (Vl -^2 co T ) sin (Vl - <t2' co T) sinh (^co T) I        (32) 
OS 0 O      J 

Combination of the terms inside the brackets of Equation (32) yields 

Equation (33)* 
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-$COX - tco X   - /0 

ft        ° s 2 2A/ ?        N3*2 

p(x , T) -   j, ■ M   .i^y,  (cosh   ♦ «T - sin   vi -<£    UQTJ 

Vl  - '      Vs 

x sin 
I 51 -1        A I 2* vl - '     w x   - tan    (tan  vj, - *    to T tanh f co x) 

OS o o ■)     O 

(33: 

Special cases f or T - 0, and T - x    are found in Equations (3U) and s 

(35) respectively. 

- f co T     sin Vl-^w-r 
p(t-, o) -. 6 

AA-rv£ 

-2 \ to T sin 2 Vl-f* co x 
/ \ ■■'    o s ° p(TQ> o = e o s 

S'     s 
2VI  - r     » T c OS 

(3U) 

(35) 

Interesting behavior of P(T , x) is also apparent, if f is small, 

for values of x    in Equation (36) s 

nn 
X     " X   + 75-— s 2co a o 

n = 0,1,2,3,....   (36) 

a -Vl -frZ a 1 

With the substitution of the relation in Equation (36), Equation (33) 

becomes 

- <f CO  X      -   7f — 1   0    .    2a nn       _%        e 
"Saw 

0 aco x + 

x sin 

2 2 xVS 
  (cosh TOOT - sin aw x) nn u   o 0 

aco x + ^ - tan   (tan aco x tanh Vco x) o 2 o 0 (37) 

Examination of the arctan function in Equation (37) reveals that 

-1/ 

• f , nn =    aco x   when   aco x ■ -*- o 0 2 
tan" (tan aco x tanhi1 co x)< 

o 0 
(38) 

aco x   when   ^co x  >  1 
o 0 
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Thus 

nn 
-      CO  T 

0 la 

*    o aco T + 5S 
0 £ 

(co sh   J CO T 2 ^2 

sin    aco T)      sin 3p nn 

(39) 

Sufficient computation with Equation (32) or (33) would result in a 

contour map of pflx , T),  similar to that in Reference 2.    However, s 

Equation (39) gives some important details about such a map, without 

resorting to detailed computation procedures.    The loci described by- 

Equation (36) are plotted in Figure $.    The axes are appropriately 

normalized. 

L 

aw T 
0 s 

approximations do not hold near origin 

n 
7 

Fig. 5 
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The lines in Figure $ for vihich n is even give approximate loci for 

which P(T , T) is zero.    The lines for which n ■ 1, 5, 9, etc.   are the s 

approximate loci for the ridges of the contour plot in regions where 

P(T , T) is positive.    Similarly, the lines for which n - 3, 7> H* etc., s 

describe the approximate loci for the ridges for negative values of 

P(TD> T)»    The relations are exact where aw T ■ ■*-• 

Finally, from Equation (33) it can be seen that the upper bo\r 1 on 

the magnitude of P(T , T) for all values of x    and T is 
S 8 

- I W T 
!                         I                       6            OS                                                                    - 
|P(T   ,   T)|     <        COSh^T   < U,  T     <T 

v        ü       o s '•'os 
Wo) 

For the two-dimensional noise field, substitution of Equation (28) 

into Equation (h) yields an integral which does not yield to the 

approximation techniques tried in Section III.    Due to the oscillating 

nature of p (T ), the integrand can have  appreciable value over the entire 

interval of integration for small    *',    The Taylor series approximation in 

Equation (17) for the exponent is not useful since this approximation 

becomes inaccurate for values of  I© - 0   I   >   1.     Such angular differences 

are well within the interval of  integration,   since 19-61  can be as & ' o 

large as n. 

Numerical integration seems to  offer the most fruitful approach to 

the solution of P(T , T) for narrow-band two-dimensional noise fields. s 

This will not be attempted here. 

V.     Evaluation of Cross-Correlation Function - Case C 

In order to gain insight into the question whether the results 

obtained thus far depend critically on the somewhat arbitrarily postulated 
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roiia o£ p(v), a second narrowband model will be considered.    For 

convenience in mathematical manipulation the normalized spectral density 

of each elementary noise 3ource is represented by the equation 
(co-cii ) it*+i* ^t - 

,"~~io^~ S(co) 
col 

co -\/2n a o v 

(co+co )' v      o 

+  6 2a' co    > > a '    o {in) 

Equation (Ul) is not Wiener-Hopf factorable and therefore represents 

only a limiting form of a realistic spectral function.    For the purposes 

of the present discussion this causes no difficulty. 

The autocorrelation function corresponding to Equation (Ijl) is 

2 2 
T a 

P(T)   =   6 
T 

cos co X - TO" —    sin co T 
0 CO 0 

0 

(U2) 

With co   > > a   the second term is small compared to the first for the 

significant range of T, 

The desired cross-correlation for the three-dimensional field is most 

easily evaluated by use of the expression 

C3 

/ \     1   I     0/   \ sin cot^   jcor  , p(V T) = 2 I   s(w) —zr^ e    dco 

Substitution of Equation (Ul) into Equation {Id) leads to the result 

2 n _2 

(U3)- 

PK, T) = -i 
2co T 

o s 

s -5- (T„-f)' 
sin co    (T    - T) + e sin co (T +T) 

o x  s 0^  s 

This relation is equivalent to Equation (32) in case B.    The  special cases 

T ■ 0 and T ■ T   yield s 
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p(^s,   0)  -   6 

P(T8J   Ts)   =   6 

1 
2   CO T 

I  "o      °   S sin cc T 
o 3 

CO T 
o s 

(1J5) 

— 21—" co T co      os sin 2 co T 
0 o 3 

2  CO T 
0 s 

CU6) 

If one identifies   —   with       and considers ^   <<1   Equations (U5) and go 

(1|6) are closely analogous to Equations (3U) and (35) respectively. 

An upper bound equivalent to Equation (ho) can be obtained by 

replacing the sinusoidal functions by unity. Thus 

1    a2 „ 2,        s2 la2 „ 2, 

|p(T  ,   T)|   <    -i 
3 O/.N       , 2C0 T 

0  s 

C  CO   <i      OS c   CO   '      0 S 

+   6 
CO T 

0  s 

(U7) 

Ch the other hand Equation (UO) can be rewritten in the form 

-     CO T 
o s 

Vi -^ CO T 
0   3 

cosh H co T 
1    0 2~\l 1 - ^2 co T 

0 s 

->coo(Ts-r)        -^»0(T84T) 

CUB) 
T     < T 

Again identifying ^   with —- and letting ^ « 1,  one observes that Equation 

(ii8) is the direct analogue of Equation (H7). 

Finally it is clear that, except in a neighborhood of the origin 

sufficiently small so that CT(T + x )  <■   0(l), the function p(x , T) of 
s s 

Equation (kk) is characterized by ridges and valleys parallel to the line 

T = T      (for T, T    >   0), much as those shown in Figure 5.    It therefore 
S S 
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! 

I 

1 

1 

appears that the general properties of P(T , T) are relatively independent 

of the precise nature of the  autocorrelation function assumed for the 

elementary noise sources. 

VI.      Conclusions 

The results found in Equations (12)  and (J4O)  are valuable in that 

they allow a quick estimate of the maximum value of    p(x ,T)    for a 

given separation of transducers.     The results for the wide-band case(A) 

and the narrow-band case (B)  are approximately the same when a    is 

interpreted to be the upper half power frequency in the first case,  and 

the center frequency in the latter case.     These answers in an approximate 

sense can be emended to other spectra, wide or narrow, if co   is 

interpreted to be the upper half power frequency for the spectral 

density of  each tiny noise generator in the field. 

Also a general pattern of regularity has been established for 

P(T , T) for the narrow-band, three-dimensional noise field.    Coupled 

with Equation (UO), Figure 5 can provide a more accurate estimate of 

pit ) TO.    Figure 5 is also of value in determining  transducer spacings s 

that yield little or no cross-correlation. 

A comparison of results for P(T , T) for the three-dimensional noise 
s 

field and for the two-dimensional noise field is also  interesting.     Under 

the assumption that  the spectra of the individual noise generators  are 

given by Equation (9) in both cases, p{x , T)  decreases for increasing x 

and constant x    for the three-dimensional case,  and increases for the 
s ' 

same  conditions in the two-dimensional case if w x    is large enough. 
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SIGNAL DETECTION BY ARRAYS IN NOISE FIELDS 

WITH LOCAL VARIATIONS 

I.  Introduction 

A considerable amount of work has been done in recent years ' }-'>^'-} 

in analyzing systems composed of local arrays of transducers used to detect 

the presence of a plane wave signal in an isotropic noise background. 

Such systems have had direct application in undersea signal detection, 

and of particular interest in this field is the DIMJS system. The DIMUS 

2 
system has been defined to consist of the following steps in signal 

processing: 

1. Sampling the output of each transducer at small, equal time 

intervals] 

2. Providing infinite clipping for each sampled output; 

3. Delaying the clipped signals electrically by integral multiples 

of the sampling interval; 

U. Adding the delayed signals; 

5. Squaring the  sum; 

6. Filtering the squared sum. 

3 2 Analyses carried out by Faran and Hills,    and Rudnick   have assumed 

that the background noise power output of each transducer is  the same. 

Furthermore,  the average noise power output on a short-time basis was 

assumed to be  constant for each transducer. 

Although the system analyzed by Thomas and Williams    was not a DIMJS 

system, infinite  clipping  of signal plus noise was incorporated in the 

analysis.     Thomas and Williams compared the  performance of a system with 
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infinite clippers to a similar one without infinite clippers for the 

situation in which the short-terra average noise power output of each 

transducer varies with time.    However, this analysis is limited by the 

assumption that the short-term noise power outputs of every transducer 

are described by the same time function. 

Experimental observations have shown that the average noise power 

outputs of transducers mounted in an underwater array are not the same 

from transducer to transducer.     One possible explanation lies in the 

fact that different turbulent flow patterns are set up around each 

transducer when the array is in motion.    Also,  the  self-noise due  to 

the internal construction and possible malfunctions is different for each 

transducer. 

The purpose of  this report is to incorporate the variation in noise 

power output from transducer to transducer in the analysis of  the 

performance of the array.    A system which is essentially DIMUS in nature 

is analyzed and the performance is compared to  a system which is identical 

in ever;'' respect except that the infinite clippers are absent.     For each 

of the two systems,  two quantities form the bases of  comparison: 

1. The maximum average signal  output of the  system, which occurs 

when the array "beam"  is steered directly at the  signal source. 

2. The ratio of the  square of the maximum average  signal output 

to the variance of the  output of the low-pass filter. 

For purposes of  comparison, two performance indices are  calculated by 

forming  the ratios of the quantities defined above for the system with 

clippers present and for the system with clippers absent.     The assumptions 

involved in the analysis are listed in the following  section. 
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II. Assumptions and Definitions 

The system to be analyzed is shown in Figure 1. 

Summer 

a ~ 
Transducers Infinite clippers 

v1(t) 

M 

Q 
s2(t;+n2(t) 

sH(t)+nM(t) 

O  

Vo(t) 

i "I v,(t) 

Square Low Pass 
Law Filter 
Device 

Fig.  1   Essential Configuration of a DlliUS System 

■(t) 

I 
I 
1 
I 
I 

1. The transducers, in the array depicted in Figure 1 have omni- 

directional characteristics. 

2. The normalized autocorrelation functions of both the signal and 

the noise inputs to the clippers in Figure 1 are identical. 

3. The crosscorrelation between noise inputs for different channels 

is zero.  In an actual system, the crosscorrelation may be made 

arbitrarily small.  This assumption makes the following analysis 

mathematically tractable. 

!l.  The signal and the noise inputs to the clippers are gaussian and 

stationary. Signal and noise are independent. 

5, The signal power input to each clipper is the same, but the noise 

power input is allow-d to vary from channel to channel. 

6. It is assumed that the short-term averages for the input signal 

powers and input noise powers do not vary significantly for any 

particular channel. 
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The effect of sampling is neglected.    Effectively, the sampling 

takes place at a high enough rate that the higher harmonic 

power spectra produced by sampling do not overlap the fundamental 

power spectral density. 

The digital tine delays have been omitted,   since the analysis 

is primarily concerned with "on target" and "off target" quantities. 

It is assumed that such combinations of delays are available to 

electrically steer the array directly at  the target,  and to steer 

the array far enough away so that gain effects due to the array 

configuration are negligible. 

III.    General Form of System Directivity Patterns 

The correlation matrix for the noise components is  given by Eq,   (l). 

It is assumed that    n. (t) = sTTtT = 0. 

n.^t» n.it + Tj    = llN. . | P(T) 

Nl 
0 0 0 

0 W2 
0    - -    0 

0 0 N„    - -     0 

0 0 0 N M 

P(T) 

(1) 

The correlation matrix for the signal components of the array 

inputs is 
P(T)              P(Ti2+ T^~ p(^lM+ T^ 

= S 
p(^2i+ T)      r(^)  • -- P(T2H+ T^ 

s.(t)  s.(t + T) = s p(x. . + T) 
ij 

P(THL+ ^    P^TM2+ T^ '       p^ 

(2) 
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1 
I 
1 

1 
1 
I 
I 

In Eqs.   (1) and (2), the N    are the noise power inputs to each channel, 

and S is the common signal power input to each channel.    The function 

P(T) is the normalized autocorrelation function for the signal and the 

noise.    The delay factors T.. in Eq.   (2) represent the combined effects 

of spatial time delays introduced by the plane wave signal relative to 

each pair of transducers, and also the electrical time delays which are 

usually introduced in all steered systems, but which are not included 

in Figure 1. 

The average output of the squarer, y, yields the so-called directivity 

pattern, which may be obtained by varying the electrical time delays and 

keeping the physical orientation of the array fixed, or by keeping the 

electrical time delays fixed and varying the physical orientation of  the 

array relative to the plane wave signal.    For the system in Figure 1, 
2 3 

with the clippers removed,  the average output has been shown  '    to be 

the sum of all the matrix elements in Eqs.   (l) and (2) with T = 0. 

The subscript A in Eq.   (3) and following work is used to denote the 

fact that the clippers are removed. 

M       M   t n n    ,• i 

I 
i-l j-1 

M MM 
y \ + s M+ 2s y  y P t^j    (3) 
i-l i-l   3«i+l 

The angle 9 is defined as the steered beam angle and is a complicated 

function of the  electrical time delays which iiiake up part of the T. .. 
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Figure 2 shows a typical directivity pattern resulting from Eq. (3). The 

signal and noise are assumed to have low-pass spectra.' 

,^97 

_  I 
yA0 

yAL 

Fig.  2    Typical Directivity Pattern 

9 

At some angle, 0 ,  the steered beam is "on target"  and a maximum 

output, yA0, results.    When the beam angle is greatly different from the 

target angle, 0 , the directivity pattern approaches a lower asymptote, 

yAL' very cl°se^y> because the P(T..) approach zero.     These quantities 

are 

AO 

yAL 

M 
\ < 

I 
i-1 

N.   + SM 
1 

. M 

)     N.   + SM 

i-1 

(U) 

(5) 

With the infinite  clippers present in the system, the directivity 

pattern has much the same  shape as that in Fig.   2.     However,  in order 

to define y(9) mathematically,  it is first necessary to define a 

normalized correlation function,  u.. . (x), for  signal and noise: 

(s + ^(S t» )Vi (6) 
ij 
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Furthermore, 

M^W ■ 

5 

(S + N^^S +N  )V2 lJ 

(7) 

P(T) i ■ 3 

The correlation functions for the clipper responses, with the assumption 

that the clipper output is either +1 or -1, have been shown to be 

i 

J 
I 
I 
I 

■ . 2 f 
IVjW = vi(tj v (t + x) ■ - arcsin<, H^OO (8) 

Note that 

^(0) 

— arcsin 
\(S * N.)V2(S + N   )1/2 P ^ J  X      J  (9) 

i = J 

The directivity pattern is found by summing Eq.   (9) over all i and j: 

M       M 

1 
i-l   j-1 

M M 
T1        X1      2 -    M + 2  ) )       - arcsiiv 

i-l   j-i+1 

(10) 

The "on target"  and "off target"  values, y~ and yT  respectively, are 

M H 
! ^n c M + 2  / 7       7 arcsin <^ yrn =r-r* 

0 f-«      ,^1.   n (S+ N.)1/2(S +N.)1/2 

i=l    j=i+l L x i' J        J 

M2 

^L M 

3' (ID 

(12) 
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IV.    Performance Comparison - Ratio of Average Signal Outputs 

The average signal output is defined in Eq,   (13) to be the difference 

between the "on target" value of the directivity pattern and the "off 

target" value for both systems.    Note that the  signal  source is still 

present for both conditions. 

Ay = y0 - yL (13) 

For purposes of co;,iparison, the directivity patterns for both systems are 

normalised with respect to the "off target"  response in each case.    The 

ratio of the normalized Ay in both cases then becomes meaningful as a 

performance index. 

The indicated computation may be carried out for any particular 

system for which the N.   are known by measurement.    However, in order to 

get some general results,  it is convenient to assume a  statistical 

distribution for the N.  which applies to all transducers.     Of course, 

physical measurements should support any assumed distribution.    Two simple 

statistical distributions are assumed and analyzed in detail,  one of which 

is continuous, the other is discrete.    The  continuous distribution of N. 

is described by the probability density function, f (N. ). 

f(N.) 

(N± In Nj/NL) -1 N    <   N.   <   N„ 
Lin 

(lli) 

0 elsewhere 

The discrete distribution is two-valued and is described in Eq.   (l5). 

N    = 

N H 
f   with probability   < 

N L ) (1 - p) 

(15) 
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Statistical averages of Ay over the N.   are used in Computing the  ratio 

of the Ay for both systems. 

For the system without clippers,  from Eqs.   (I4),  (5)  and  (13) 

and 

<AyA)   = SCM2 - M) (16) 

(yAi>-M«Ni> + 3> (17) 

The normalized signal output found in Eq. (18) is denoted by primes. 

<#A> 
= 7^H  " (M-D-~— (18) 

<yAL) s+<iV 

For the system with  clippers,  the normalized signal  output from 

Eqs.   (11),   (12) and (13) is found to be 

<£>'    =    <£>    -  (M-l)§<arcsini     * —i) 
<yT> 

n\ \(S + N.)1/2(S + N,)1/2|/ 

(19) 

The  signal response ratio, which is an index of relative system 

performance with respect to average  signal output, is defined to be the 

ratio of Eq.   (19) to Eq.   (18). 

*, 1 J (2C) 

Equation (20)  remains to be evaluated for the two cases indicated in Eqs. 

(110 and (15). 

For the continuous distribution in Eq.   (lit), which describes a 

uniform distribution of noise power en a logarithmic basis, we have 

1 
A2-9 
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N. 
H 

<V 
N -1 

H 
NjN.^n^l     dN^-  (NH V 

N 
tn 

-l 

■*! (21) 

H. 

N. 
If the- definition    a.  ■   -i   is made, 

1 + _^_| = i + (a       a.) to -5 
H     "I/I "" a 

-1 

(22) 

Furthermore,  the evaluation of the expectation of the arcsin function 

in Eq.   (20) is simplified if the restriction is made that    a„ > aL>    1. 

Since the detection of strong  signals presents no problem, the  restriction 
7 

is almost always satisfied, Thus, 

arcsin   * ^ * Ai * a.rV2(i ♦ a r^y (i t 3: 
(S + N1)

V2(S +N.)V7        \ X 3 / 

(1 + ai)"
l/2|a.  In — I 

V 
% 

ln< 
[a ♦ yV2-1] [d^L)v^x]! 

1      aL 

(23) 

Substituting the results in Eqs.   (22) and (23)  into Eq.   (20) yields R^l 

Vl fttt^8-i][(i*H^*1] 
-3 

,U + V      - 1    u ♦ aLr   ♦ lj |      a l      a .  V 
■L 

(2li) 

If    a„ > aL »1,    and    aVa,  ■ b,    Eq.   (21;) further simplifies to 
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I 

s 
I 
I 
I 
I 
I 
I 

p   »   8    (bV2 - l)2(b - 1) 

^      n bite b)3 (25) 

The results given for K. in Eqs.   (2l|) 8nd (25) are  evaluated for 

several values of a. and plotted as functions of b in Figure 3,    The 

results show that for sufficiently large b, the performance of the system 

with clippers is superior to that of the system with the clippers removed! 

although the results are certainly dependent to a great degree on the 

assumed distribution of noise power given in Eq.   (lit).     Other assumed 

distributions show much less improvement. 

For example, if 

f(N.) 
V=X L        i        II 

elsewhere 

the relation for R, becomes 

«1 
8 
Tt 

(1 ♦ ^ - (1 . ^ 

aH ' aL 

2 r 

1 + 
aH + aL 

When a, is large compared to unity, Eq.   (27) becomes 

P   ~  k       b + 1 
v * i^2:1)2 

-   for   b = 1 
Tl 

-   for   b -»c= 
n 

Very little advantage of the system with clippers is shown,  even for 

large b. 
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Similarly, if 

f(N±) - < 

elsewhere 

(29) 

7 
the relation giving R, is 

\i 
(1 ♦ aL)V2      ft + aH)V2 J [(1 , ^V*. jjj , ^% {ti 

*H 

fa -r— 

aH" aL 

aH " *L + fa !s 
a H*L aT 

(30) 

Equation (30) reduces to Eq.  (31) -with  considerable manipulation if aL 

is large compared to unity. 
r 

0 
for b ■ 0 

\*w (b3/2 - iY 

2 
n 

(b - 1) " 
fab   ■ { 

o 
—*- fa b for large b 

C3Ü 

Evaluation of Eq.   (31) for   b - 1000   yields    R_  = 1.95.    The system with 

clippers again shows very little advantage over the system without 

clippers. 

Next, Eq.   (20) is evaluated for the discrete distribution found in 

Eq.   (15).    The average noise power becomes 

(N^- pNL + (1 - p)NH (32) 
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Also, 

<(1 ♦ a.r^Cl ♦ a.,)""172) - P2(l + aL)_1 ♦ 2p(l - p)(l ♦ aL)-V2(l ♦ a^2 

♦ (i - p)2d ♦ aur
x 

n 

[p(l ♦ aH)V2 ♦ (1 - p)(l ♦ aL)l/2_ 

(1 + aL)(l +  aR) 
(33) 

Combination of Eqs.   (20),  (32)  and  (33) yields the relation for R-i 

h-i 

o 

[p(l + ijV2 + (1 - P)(l ♦ aj.)3/2]   [p(l + aL) + (1 - p)(l + aH)] 

(1 + aL)(l + aH) 

«i-l 
2 r 

(c^2 - 1) + 1 *'   p(c"1 - 1) + 1 

1 + a 
where c ■ H 

(3U) 

(35) 
1 + aT 

Note that c * b for . a  > >1. 
L 

The maximum value of R.  occurs for 

V2 +1 
3(c1/2 + 1) 

2 c =   < 

1/2 for c ■ 1 

2/3 for c ->« 

(36) 

The maximum value of R_  is plotted as a function of  c in Figure It. 

Also of interest are the limiting forms of Eq.   (3I4) for which either 

the percentage of noisy transducers'is  small,   or the percentage of quiet 

transducers is small.     For a small percentage of noisy transducers,     (1 - p) 

is small, and Eq.   (3I4) becomes 
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1 ♦ (o - 3 ♦ 2c'l/2){i - p) (37) 

For a small percentage of quiet transducers, p is small, and Eq. (3I4) 

becomes 

1 + (2cl/2 - 3 + c"1)? (38) 

V.    Performance Comparison - Ratio of Output Signal-to-Noise Ratios 

The output signal-to-noise ratio for both systems is defined in Eq. 

(39)i where (Ay) is the average signal output,  and (o     ) is the variance 

of the output of the low pass filter,  shown in Fig.   1,  averaged over 

the N.. 

<&f 
<«'> 

and 
(Ay/ A/ 

LA      /       2 y°,n 
(39) 

The performance index, R?,  considered in the following analysis is the 

square root of the ratio of r, for the   system with clippers, to r.  for 

the  system without clippers.     It can be seen in Eq.   (1|0) that R- is 

closely related to R-., which is calculated in detail in Section IV. 

R2 = 
/       \l/2 

r 

\  rA 

<£>   \<PJ) 
V2 

zA 

<*A>    W.   > 
h 

'    2    ^2 

s + (N.) v  1 

(1*0) 

From Eq.   {l±o), it can be seen that the major part of the analysis in 

determining R„ involves the calculation of the average variance of the 

output of the low-pass filter for both systems.     Both distribution?  of 

Lnput noise power [;iven in Eqs.   (IJ4) and (15) must also be considered, 
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Since all the input signal and noise time functions are assumed to 

be gaussian, the sum, ::(t), shown in Figure 1 is also gaussian for the 

system without clippers. Under these conditions, 

V(T) = Rx2(0) + 2 RX2(T) ([;1) 

where R .(T) is the autocorrelation function for y(t),  and R (T) is the 

autocorrelation function for x(t).     In Eq.   (I4I), R    (0) simply represents 

the average output of the squarer, which has been given the  symbol y.. 

Thus the variational component of y(t) has the autocorrelation function 

2 RV
2
(T). 

The spectral density of the function y(t)  is 

SyA(»)  - 1 2 RX
2
(T)  t"^ dT (k2) 

The variance of the output,  z(t),  of the low-pass filter is found in 

Eq.   (Iß), where H (jw) is the frequency response function of the filter. 

°a    ■   I    V' 

CO 

Hz(jca) dw (I13) 

In order to make the value of r.   large,  the bandwidth of  the low-pass 

filter must be much smaller than the bandwidth of S (co), the input 

spectral density.    Under this assumption, we have 

C3 

2 ~ 
0  1 zA sy(o)      |HZ(J»)|    dw (Uli) 

0 
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Furthermore, if H (jtt) has the form 

H  (jco)  - —A— 

then Eqs,   (1|2),  (I4I4) and ([1$)  combine to yield 

(kS) 

°J - 2 "F     R>} dT 

^0 

(I46) 

For the "on target"   situation,  the function R (T) is  simply the sum 

of all the matrix elements in Eqs.   (l) and (2), with T.     =0. 

M 

RX(T) -I  YJ Ni + ^   P^ (147) 

and 

i-1 

M 

R N. + Ii2S| P
2
(T 

/   M W    M 
2(x) J I   h ♦ M2S    £ 

* i-1 nj=l 

M       M M \ 

y y N. N. + 2 ^s y N± + 1-fe2 p2(x) 
ii="i  3-1 £i '       ( 

Combining Eqs.   (I4.6) and (U8) and averaging over the N. we have 

\azk^a  2uF']M(Ni2) + ^2 " ^ (l]-)2 + 2 M3S {Nj) + ^S2'}   P2(T) dT 

(1*9) 

The ratio of the square of Eq.   (16)  to Eq.   CU9) gives the signal- 

to-noise ratio for the undipped system, 
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(H - ir s. 

rA = 

1-|  ♦ 2M i21- 
<N±> \(\) 

2cüp |    p  (T) dT 

0 

(50) 

I 

The first denominator factor is nearly a perfect square if M is large 

so that 

2 

rA I 2uF 
i<"5 

(M - 1) 

1   S    \ 
Oh) M + 1 

(51) 

The result in Eq,   (5l) is plotted in Fig.   5 on logarithmic coordinates. 

For values of S/<N.)   significantly less than l/K,  the   value of r^ varies 

normalized r. 

(\) 

+2 slope 
log scales 

Fig.  5   Normalized Output Signal-to-Noise Ratio as a 
Function of Input Signal-to-Average Noise Ratio 

:an as the square of S/(N.), and the first two terms (noise x noise) CJ 

be used to accurately determine \a .   ). 

This result is of quantitative value in the analysis of the system 

with clippers in estimating the region of validity of the result for 
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(o    /.     In this case only the noise x noise terms are easily evaluated. 

The assumption of low input signal-to-noise ratio is not unduly 

restrictive,  since only low input signal-to-noise ratios cause any 

detection problems. 

In the analysis of the system in Fig.  1 with clippers present, it 

is assumed that the  signal components,  s.(t), of the  inputs to the clippers 

are negligible.     This assumption makes the mathematical analysis for 

the evaluation of (a    ) tractable. 

The output of the  square law device is given by 

M       M 

y(t) = £    £  ▼i(t) v,(t) 
i-1   3-1 

(52) 

The autocorrelation function for y(t) is 

R (T) - E 
y 

M       11 M       M 

\ Z vi(t) vt} Z Z vk(t + T) \(t + T) 

i-l    j-l k=l    m=l 

(53) 

The evaluation of Eq.   (53) is helped by breaking down the terms into 

different categories as shown in Table 1. 

Subscript relations No.   of terms 

M2 

Evaluation and comments 

2 
Each tern is unity since v.     = 1 i ■ J  and k = m 

i = j  and k / m M3  - M2 These terms are all zero because 
each is of  the form 

EIV«2Vi v 1 = ETV.V   1= 0 Li    k mJ        LkrnJ 

k / m 

i / j  and Ic = m M3 - M2 

i / j and k / m M^ -  2V?  + M2 Only terms of  the type where 
i - k, i - mj   and i = m.  j  = k 
are non-zero.     2(H    - M) in 
number. 

Table 1   Classification of Terms in Eq.   (53) 
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In view of the information in Table 1, Eq.   (53)  reduces to 

M M 

R (T) = M2 + h y   y 
i-1   j-i+1 

E v.(t) v.(t + T)    E v.(t) v.(t + T) (5U) 

From Eqs.   (7)  and (8), Eq.   ($k) becomes 

2 
R (T) = M2 + 2(M2 - M) ■%   arcsin P(T)1 
y n L j 

2 
In Eq.   (5^), M    represents the  squared average output of the squarer, 

and the second term is the one which represents the  time-varying 

component of y(t).    By a development similar to that in Eqs.   (hi) 

through (1|6), it may be shown that 

(55) 

°z   * "F /   RV'(T) * (56) 

where R    (x) is the second term in Eq.   {SB)-    Then 

2 .   _8 ,2      „ a     ■ -» OCL, (Mr - M) I     arcsin p(x) 

0 

dx S   < <<N.) (57) 

Since the clippers effectively normalize their inputs,  a      is not a z 

function of the H.  and 

\    Z   / Z 
(58) 

The substitution of Eqs.   (1*9),  (57),  and (58) into Eq.   (J4O) yields 

the expression for Rp. 
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R„ - "lS I (M - 1) 

V2 

CO 

p  (T) dr 

2 
larcsin P(T)J    dr 

V2 

<^y 

(59) 

It should be remembered that  only the first two terms  in Eq,   (U9) are 

used in Eq.   (59) and also the S in Eq.   (^O) is neglected.     Furthermore, 

/„ 2\ if M is reasonably large, the \1I.   ) may be neglected in Eq.   (59).    Then 

p     c v n   p 
H2 ~  K 2 *! (60) 

and K is the square root of the ratio of integrals  in Eq.   (59). 

The integral terms in Eq.   (59)  remain to be evaluated.     Three 

representative normalized autocorrelation functions are chosen in Eqs. 

(61),  (62) and (63). 

PI(T) -  e    1 

P2(T) =  e    2      (1-Cü2ITI) 

P,W ■ 
5»3JT| 

V^ 
cosi/l -^2 CfluJTl  + cos"1 VI -$ 

(61) 

(62) 

(63) 

<j   <1 

The function p, (T) represents a process with a low-pass spectral density 

having a half-power frequency at w • p (T), a pro cess with center 

frequency co    and bandwidth 2 co •  p  (T), a process with center frequency 

co , and bandwidth 2 ^J co_. C3 

Table 2 gives the exact value of the integral I    p (T) dT for. the 

three autocorrelation functions. 
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PJC-O P2(T) P»(*0 

1 

2W1 

i 

h*2 

Table 2   Values for       p (T) drr 

0 

It should be noticed that the integral yields the following general 

result in each case: 

L 
p (T) dr 

2 (process bandwidth) 
(610 

The evaluation of the integral involving the arcsin function is most 

easily accomplished by means of a series approximation. 

arcsin p Wap + rp3 + ^p5 + 4p? + ... ws 112 (65) 

Squaring, 

I 
1 
I 
I 
I 

[arcsin P(T)J    ■ p2 + .333 P^ + .178 p6 + .111; p8 + ... (66) 

Evaluation of the integral I sin"    P(T) I     dT    using the first four 

-1 >(T)]' terms of the series approximation of     [sin      p(x)J      yields the values 

listed in Table 3.     The integration for P,(T) is accomplished by 
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PX(T) P2(T) P3(T) 

i§3 i£2 .60 

2J«3 

f        -1      I2 
Table 3    Values for I     [sin"    p(x)J    dx 

replacing the even powers of the   cosine function in Eq.   (63) by the 

average value of  the function. 

/     2n \cos (vr^co^cos-1^-^1)) (2n)i 

22n(nl)2 
(6?) 

This is an additional approximation, tut the result should be accurate 

for low <f .  It can be seen that the values for the arcsin integral are 

remarkably close, regardless of the nature of the autocorrelation 

function. 

From Tables 2 and 3, the factor K is evaluated: 

K = 
.62 

1/2 
.90 

Combining Eq.   (68) with Eq.   (60), we have 

R2 V i. m ^ M>>1 

<N.)>>S 

(68) 

(69) 

An obvious  consequence of Eq.   (69) is that the results for the normalized 

signal response ratio, R,, in Figs.  3 and h may be applied directly to 

the determination of the ratio of signal-to-noise factors, R^. 
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VI.     Conclusions 

The results in Section IV for the average signal response ratio, 

R., have shown that the system with clippers is superior to the  system 

without clippers if the variation in transducer noisiness is  fairly 

large.    However, in the case of the continuous distribution for the 

noise powers,  the value of R,  is dependent to  a great degree on the 

form of the probability density function that the N.   exhibit.    Very 

little advantage is shown for most monotonic density functions, except 

the one which varies inversely with the noise power.    This particular 

density function describes the  situation in which the number of transducers 

having noise powers above the geometric mean of the extreme values is 

equal to the number having noise powers below the geometric mean. 

Qualitatively,  this result agrees with the result obtained for the 

two-valued discrete distribution of noise powers.    Maximum benefit 

offered by the system with clippers is obtained when  approximately half 

the transducers produce the lower noise power,  and half produce the 

upper noise power. 

The significant result of Section V is the effective equivalence of 

the two performance indices.    From Eqs.   (60) and  (69), R? is just a 

multiple of R_ .    The numerical factors entering into the multiplier are 

consequences of the types 0f elements used in processing the signals. 

The factor n/2 in Eq.   (60)  clearly arises from the presence of the 

infinite clippers,  and the factor K arises from both the clipping and 

squaring operations. 
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Finally, the rosult for R« is seen aot to depend greatly on one 

autocorrelation function for the  signal and noise,    -"or the three 

different functions  chosen,  the  results are essentially the sane.     The 

exact properties  of the low-pass filter are not important,  either, 

since the filtering effect is exactly the same for both systems. 
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SOB&KX 

The performance of  an optimal detector is compared with that of a 

standard detector;  each uses the  same array of hydrophones in  an effort 

to detect the presence of a directional Gaussian signal  in an isotropic 

Gaussian noise field.     Output signal to noise ratio is used as a figure 

of merit.    The following results are obtained: 

1) If  signal and noise both have flat power spectra of  sufficient 

bandwidth so that the waveshapes received by different 

hydrophones are uncorrelated, then  the  optimum detector and 

standard detector are identical in performance. 

2) If the noise spectrum is flat as in l) but  the   signal spectrum 

is not,  the  optimal detector is better than the  standard 

detector by an amount depending  on the  differences of the 

spectral properties of  signal and noise. 

3) If the  signal  and noise spectra are  identical in shape the 

optimum detector  is theoretically capable  of detecting  a signal 

with any desired degree  of certainty in  an arbitrarily small 

length of time.     In practice the noise always   cont?ins more high 

frequency components than  the  signal.     This phenomenon limits 

the improvement  attainable through optimum detection to a 

moderate amount in most practical cases. 

k)    Knowledge of small differences in the  shapes cf  signal  and 

noise spectra is  of limited value  in detection, 

5)    Correlation between noise disturbances  received by different 

hydrophones appears to degrade the performance of   the strndard 
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detector.     Che case of this type has  been worked cut in detail. 

It assumes a linear array of five hydrophones spaced at two-foot 

intervals and signal  and noise spectra falling  off with  the 

second power of frequency  above 15>00 cps. 

6)    An attempt is made to  estimate the probable high frequency 

behavior of the  signal  spectrum in order to  set realistic bounds 

on detectability by means of the  optimum system.    Using a model 

for signal transmission due to Eckart, a range-dependent 

expression is obtained for the ratio of performance figures of 

optimal and standard  detectors.    At ranges  of practical  interest 

the ratio assumes values not  larger than  8. 

In general,  if  signal and noise are  characterized only by total power 

and spectral properties,  one  is led to the   conclusion that the   optimal 

detector exhibits only a limited advantage  over the  standard detector 

unless the  spectral properties of  signal and noise differ drastically. 
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I.     Introduction 

This report deals with the problem of optimal detection of a weak 

directional signal in a very much stronger isotropic noise field by means 

of a given array of hydrophones.     Both signal and noise are  assumed to be 

Gaussian random processes with known power spectra.     The investigation 

has two primary purposes: 

1) To set bounds on the detectability of signals characterized only 

by their total power and spectral properties in a noise background 

similarly described.     If a signal is not detectable   with the instrumentation 

considered here, then it is not detectable  at all with the    given array 

unless additional properties of signal or noise are known. 

2) To determine how far conventional data processing procedures fall 

below the optimum.    As in many optimization problems, the best instrumentation 

may well be too  complex for practical realization and serves primarily as a 

standard of comparison for more realistic procedures. 

It is well known that the optimization problem described above is 

formally solved by a likelihood ratio detector.    The physical realization 

of such a detector has been discussed by F.  Bryn.      Bryn goes on to 

compare the performance of the optimal detector with that of standard 

detectors, primarily on  the basis of a figure of merit which he designates 

as the "array gain," G    £ G(« ).     It may be defined as follows 

/Contribution to average detector output\ j      .     .      ,   . 
G(c0n) J of signal at frequency c^      j_    LP

ise "afio at each' 
iContribution to average detector output I   '      1 hydrophone  at 
\of noise at frequency »n / ^frequency wn 

Finn Bryn,   Optimal Signal Processing of Three Dimensional Arrays 
Operating on Gaussian Signals and Noise.    J.   of the Acoustical Society 
of America, Vol.  3U No.  3, March 1962, pp.   2Ö9-297. 
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The array gain is therefore  a steady state  (JX) performance criterion 

depending only on array geometry.     For the purpose of the present discussion 

a more useful performance criterion is the signal to noise ratio at the 

output, of the detector.    Its  computation will therefore be the first task. 

II,    Nomenclatuye 

The first part of this report will draw heavily on Bryn's work and 

his nomenclature will therefore be used as far as practicable.    Thus the 

signal e.(t)  received by the i      hydrophone will be represented over the 

observation interval   0 < t < T    by the Fourier  series 

e±(t) - )    jX(n)  cos »ftt + Bi(n)  sin at] 

n 

where    to    = -=— and the  summation extends over all frequencies in the signal 

band.     Signal and noise are assumed to be independent Gaussian processes 

with power  spectra S(w)  and N(u) respectively.     Then if T is large  compared 

to the correlation time of the signal and noise processes one can make the 

following statements: 

a)    A.(n) and B.(n) are Gaussian random variables with zero mean and 
1 x 

variance    [S(co ) + H(tt1 A<*> , where    Aco = -~ 

h)    A,(n) is statistically independent of A_.(m) for all j  (including 

j = i) if n / m 

c)    A (n) is statistically independent of B.(n) 
i i 

However, A,(n) is not in general independent of A.(n).     For ease in later 

manipulation Bryn introduces the symbolism 
t 

x.(n) 

A.(n) 1 < i < M 
i - 

B.(n) M+l < i < 2M 
i 

(1) 
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M is the number of hydrophones in the array.    The symbol   (    )„ is used 

to indicate  the statistical average of the bracketed quantity when only- 

signal is present.   (   V. designates a similar average when only noise is 

present.     Still following Bryn we define 

and 

<x.(n) 3^(n)>s 

<x.(n) ^(n)), 

S(fl)n) A<o Pih(n) 

N(con) Aü3 qih(n) 

(2) 

(3) 

Thus p., (n) and q., (n) are the elements of the normalized correlation 

matrices of signal and noise respectively: 

P(n) = 

Plx(n)     .   . 

PMjl(n)     . 

PM+1>1(n) . 

« 

p2M,l(n)   ' 

pl,M(n)        pl,M+l(n) 

•   PM,M(n)        pM,M+l(n) 

'   pI<I+l,M(n)    PM+l,M+l(n) 

p2M,M(n)      p2M,M+l
(n) 

Plj2M(n) 

« 

pM,2M(n) 

pM+l,2M(n) 

p2M,2M^n^ 

(ii) 

and ' 

Q(n) = 

qu(n) 

qMA(n)     .   . 

^M+l,l
(n) 

ql,M(n)        *l,M*l(n) 

qM,M(n)        qM,M+l
(n) 

qM+l,M(n)    qM+l,M+l(n) 

q2M,l(n)   •   •  •    q2M,M(nj      q2M,M+l
(n) 
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ql,2M(n) 

qM,2M(n) 

qM+l,2M(n) 

q21<I,2M(n) 

(5) 



Finally it will be convenient to have  syubols for the square matrices 

consisting of the first M rows and columns of Eqs.   (I|)  and ($); 

Pu(n)   *   •   •   PlM(n) 

and 

Pl(n) 

PMl(n)   •   •    •    P«(n) 

(6) 

Q]_(n) 

qin(n)   .    .   .    q1M(n) 

%(")   •    ■   •   %i(n-> 

(7) 

The inverse  of Q(n),   and hence of Q, (n), will be assumed to exist.     Since 

Q(n) is a correlation matrix this represents no significant restriction. 

III.    Optimum Detection 

Bryn gives the likelihood ratio LR, the  output of the optimum detector, 

as 

LR = 1 + £   (W(cün}  " <W(WIA} (8) 

where 

W(a ) 
n 

2M      2M        .,     v. 

HE    n 2M    2M 
Q,4(n) Q„(n) 

p    (n)    )      \     _AJ }* x.(n) x,(n) 

1  M [NK)^] L   L 

(9) 

j<L M.  lQ(n)l    lQ(n)l 

Qii(n) -1 —"    is the  ji element of the matrix Q    . 
lQ(n)l 
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The only term in Eq. (3) dependent on the signal and noise actually received 

by the various hydrophones is  )_, W(co ).  Hence the change in DC output due 
n 

to the presence of a signal is simply 

A(DC output)  - *    )   (W(cü j) 
<-    is n    v 

n 

i <r 
2 L 

c,     o2    2M    2M    2M    2M r,     .   x    n    ,   v 
S(<Ol     „ Q    (n)    Q    (n) 

LhLu pih(n) T^:~     ~ p-(n) n 

n L 
v n J i-1 h=l j-1 k=l lQ(n)l        lQ(n)l    Jk 

(10) 

Using the fact that the matrices P and Q are symmetrical this expression 

can be written in the matrix form 

2 

Tr A(DC output) = | / 

n 

S(con) 

N(co n 

P(n) Q_1(n) P(n) Q_1(rJ 

s(,n) 

n L 
N(co ) 

n - 

Tr [P(n) Q_1(n) \ 
(11) 

[ 
I 
1 
I 
I 

where Tr<' 'is the trace of the indicated matrix. 
I j 

Bryn has shown that 

2M    2M    2M    2M n     ,   v    r     ,   s 

r^y P4in)^-(n) Qkh(n) 

k fa k A   ^        l^n)l     lQ(n)l   ** 
P.Jn) - 2 

M      M -|2 
Q,.(n) 

ij 

or in matrix form 

Tr P(n) Q_1(n)J   I - 2 Tr    P^n) Q1"1(n)| \ 
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Hence Eq.   (ll) becomes 

A(DC output) r L 
sUU n 

Tr |P (n) 0 "x(n) 

nt11^ Ll " - 
(1U) 

Next it is necessary to compute the rms fluctuation of the detector output. 

This quantity will be designated by the  symbol D(output).     If the input 

signal to noise ratio is very low,  a condition already assumed in the 

derivation of Eq.   (8),  essentially all of the output fluctuation can be 

attributed to noise and the signal cumponent can be ignored.     Then 

D2(output) H 
T"1 

/      W(co„) 

n 
n 

/ N 7><v> 
n 

(15) 

From Eq.   (?) 

/ 
\ 

\     W(co ) L        n 
-2 

n 

\ 1 C^    r1 n v m 

ILL 
n N2(co )(to)2 N2(co ) Aw 

ra n ra 

2M 

\ Q. .(n) Q. 1. i(m) Q., (n) Q, i. i(m) 

/_,      ™ Xh lQ(n)l      |Q(m)|      |Q(n)|      |Q(m)| 

.1.1,!.!    , 
i,j,h,k = 1 

x (n) xk(h) x (m) x^m)) 

(16) 

jsian in four dimensions Now since   |x ,(n), x^(n), x (m), x^m)    is Gaussi 

(x(n) ^(n) x (m) x^nON 

(x.(n) x (n))  <x (m) xAmj) + (x (n) x.(m)}   (xAn) xjm))  + /x.(n) xj»)/x(n) xAm)) 

v»_ V77 
term (1) 

N 
_/     v. 

term (2) 
■\ 

term (3) 

(17)' 

J.  H.  Laning and R.   H.  Battin, Random Processes in Automatic Control, 
pp.   82-8I4.    McGraw-Hill Book Co.,  \9W. 
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The substitution of Eq.   (17) into Eq.   (16) leads to three terms that will 

be  treated separately. 

x,(n) x(n))   (xim) JLi(m))     -    q.M q.drn)    N(co ) Aa> N(co )  Aco (l8) 
J *       'M     \ J K       H JK JK n m 

I 

Hence terra (l) is 

«    £_,    L   N(m ) Aw N/u ) to 
n      m n m 

2M 

\ Q,,(n) Q.,im) Q    (n) QA,(m) 
) p.. (n) p....(m) -Ü a 2 S    q    (n) q   j(ra) 
7    ,       lh lh        |Q(n)|    |Q(.)|    |Q(n)l    '|Q(m)!     ^k ^ 

/_ .j 

i,j,h,k ■ 1 

2M " 2 

1  ^    *£) Aa> \ 
£    N2(con)(AW)2 / 

,    , Qih(n) Qkh(n} ,   v ■   < ö   )     -* ö )       P-uinJ q., (n; 
''   ^ ^        |Q(n)l   lQ(n)l       jk 

V. i,j,k,h = 1 

<wKl' (19) 

n 

The last step of this  computation follows from inspection cf Eq.   (9). 

Returning to Eq.   (17)   c?.nd using conditions b)  and c) on page 2 

( ? 2 
I   q^Cn) q^n) N  (an)(Aco) ra ■ n 

<x (n) xIm))  \\M Xyfinp    = ( 

m /■ n 

(20) 
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Thus term (2) assumes the form 

2M 

u L 
n 

S(co ) 
n 

- 2 

N(u ) 
n 

Q,.(n) Q,,,(n) Q    (n) Q^(n) 
p    (n) p..,(n    JJ SI k2i ^  q..<n) q,Xn) 

,    lh *        |Q(n)|   |Q(n)l     Q(n)    lQ(n)l     ^ kk 

ijjjh'k'- 1 

■IE 
n 

S(con) 

N(co ) 
n 

Tr P(n) Q_1(n) Q(n) Q~\n) P(n) Q_1(n) Q(n) Cf^n) 

II 
n 

S(co ) 
n 

T2 

N(o ) n . 

Tr<j  I P(n) Q~\n) 
-i 2 

S(w ) 

£j   N(co  ) 
P^n) Q^Cn) 

The last step results from Eq.   (13). 

Finally, returning once more to Eq.   (17) 

'q.kI(n) qkin) N2(^)(Aco)2 

n 

\X (n) xj,m))  (x. (n) ximj>    =   I 
M   x K 3       N N 

0 

(21) 

m = n 

m /n 

(22) 
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Thus term (3) reduces to 

2M 

1 ^ 
I L 

n 

-1 N(co ) / n L v n J /_ 

Q    (n) Qy(n) Q    (n) Q u(n) 
^W PA(n) -41- -4L- J^_ A- q    W q^n) 

|Q(n)|    |Q(n)|    |Q(n)|    lQ(n)| 

ijjjkjh«- 1 

5 ^ [N(.n) 
Tr P(n) Q_1(n) Q(n) Q_1(n) P(n) Q~\n) Q(n) Q_1(n) 

.2 

2 U |N(« ) n n 

P1(n) Q^Cn) 

Substituting Eqs. (19), (21) and (23) into Eq. (15) we obtain 

s(«U 
D2(output) =     /  < 2-    Tr [Pn(n) Q "^n) 

n 
N(co ) 

V.      n i 

(23) 

(2U) 

Equations (ll|) and (2lj) together determine the rms  signal to noise ratio at 

the output of the detector 

A (DC output) _' 

D(output) %\ 

S(" ) 

N(co ) 
n 

2-   Tr [P.(n) Q "^n)! (25) 
> )       L 1       1      Ji 1 

Equation  (25) may be rewritten  conveniently in terms of Bryn's "array gain" 

M     M 

Z pih(n) 
-, Q,h(n) 

G(w. )  ' 

i=l j=l 
lQ(n)| 

(26) 

"xhis expression is similar to,  but not identical with,  an expression 
described by Bryn as the output signal to noise ratio (S0).    Since Bryn 
gives no derivation or physical definition for S    it is not clear whether 
he is in fact referring to a closely related measure of performance. 
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or in matrix form 

G(» ) = Tr 
n 

?3(n) Q-^Cn) (27) 

Hence Eq. (25) becomes 

A(DC output) 

D(outout) I 
|S(w ) 

G(co ) 
n 

n P^ 
(28) 

The frequency index n ranges over the entire band to which the hydrophones 

are sensitive. 

If T is sufficiently large so that the signal and noise  spectra are 

essentially constant over a frequency interval of    Aw = -=-    rad/sec., Eq. 

(28) can be expressed in integral form 

A (DC  output)  = -   /_T 

D(output) \lt^ 
n 

S(») 
—a- o(» 
N(o) )        n 

72" CÜ 

Aco    - 
\'2n 

2r 

w. 

S(co) 
N(co) 

G(») dco 

(29) 

W.   and w? are respectively the lower and upper bounds of the frequency range 

being processed by the hydrophones. 

Two special cases are  of particular interest. 

a)    If signal and noise spectra are identical in shape,  a situation 

closely resembling conditions encountered in practice if one ignores 

periodic components of signal and noise 

A (DC output)    v    /_T_  O. 

D( output) V2n   tf 

u 
2r       i2 

[G(w)J    dw (30) 

w, 
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ca CD 

I 
where   O =   I S(w) dw      and   N =   I   H(») dw      represent the total signal 

I 
I 
[ 

0 

power and noise power respectively.  At sufficiently high frequencies the 

correlation between noise disturbances received by different hydrophones 

tends to zero, that is 

1  for i = h 
qih(n)-* (31) 

0  for i / h 

Then Q,(n)  reduces to the identity matrix: and    G(w )-* TriP, (n) .     Thus 

G(CJL>) approaches a positive  constant so that Eq.   (30)  tends  to infinity if 

one permits w    to grow without bound      In other words,perfect detection is 

theoretically possible in a finite  time under the stated conditions.     This 

is not unreasonable,  for the ratio of signal power to noise power is the 

same in any frequency band of a given width.    Thus the optimum detector 

can be thought of as operating  simultaneously on an infinite number of 

bands,  extracting  equally significant information concerning the presence 

of a   signal from each.     In practice,  of course,  the noise has components 

that do not fall off with frequency as rapidly as the  signal so that  the 

input signal, to noise  ratio     ■)"{    tends to zero for sufficiently large co. 

Noise electrically generated in the hydrophones or associated circuitry 

will certainly have this property even if the acoustical noise does not. 

Determination of the frequency at which the effective input signal to 

noise ratio begins to decline  sharply is therefore an important practical 

problem. 

b) If the hydrophones are sufficiently far apart so that q.,(n) *■ 0 

for all i / h throughout the frequency range processed by the hydrophones, 

the array gain is  simply    Tr P,(n)  .     If one further assumes that the array 
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is linear and mechanically steered ou target or that, for a general array, 

appropriate delays arc introduced at each hydrophone to compensate for 

relative differences in distance to the target,  then the elements of the 

P,  matrix are all unity.     It followc that the  array gain is  simply equal 

to M, the number of hydrophones in the array.     In that case the output 

signal to noise ratio is 

v— 
V2n 

A(DC output)    .,.J_T_ 

D( output) 

The general expression for output signal to noise ratio    [Eq.   (29)J 

also deserves some further comment.     The linear dependence of detectability 

on vT   was,  of course,  to be expected on general statistical grounds.     It 

is interesting, however, that knowledge of small differences in the  shapes 

of signal and noise  spectra contributes almost nothing to the detection 

process..     Differences in spectral  shape  become  important only if they 

result in a value of    -i—f   very much larger than   —    over some frequency 
N(co) N 

range.    A case of this type would be one in which a finite amount of signal 

power is concentrated in a very narrow band (i.e.,  the signal contains a 

quasi-sinusoidal component).     Because the integrand is squared Eq.   (29) 

then leads to a large value of output signal to noise ratio even if the 

total power of the quasi-sinusoidal component is quite  small.     One must 

keep in mind, however, that the optimum detector now depends heavily on 

knowledge of the precise frequency range in which the quasi-sinusoidal 

signal component is located.     In most practical situations it would 

probably be unrealistic tc assume  such knowledge.    An interesting problem 

that has not been solved to  date would be the detennination of signal 
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detectability in the sense of Eq. (2y) when the signal contains one or 

more quasisinusoidal components whose frequencies are unknown, or at least 

not known accurately. 

IV.  Standard Detection 

The performance of the optimum detector will now be compared with that 

of a standard detector using the same array of hydrophones.  The standard 

detector simply adds the outputs of the various hydrophones, squares the 

sum and averages the resultant signal over a time interval T (see Fig. 1). 

Square r 

Fig. 1 

Practical instrumentations frequently include  • clippers and digital time 

delays.    These are omitted here for two reasons: 

1) It is desired to  compare the likelihood ratio detector with the 

best version of the standard detector.     Under the conditions assumed in 

this computation clipping and digital delay are known to degrade 

performance. 

2) The degradation in performance due to clipping and digital delays 

has been discussed elsewhere    and it is therefore not necessary to 

introduce this added computational complexity here. 

It will be assumed that the  array has been steered "on target,"  so 

that the  signal component s(t) of each hydrophone output is the same.     The 

P.   Pudnick, Small Signal Detection in the Dimus Array.     J.  of the 
Acoustic! Society of America, Vol.   32 No.   7,  July I960, pp.   Ö71-B77. 
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noise output of the i  hydrophone will be designated as n.(t).  It is 

resumed to hr.ve zero mean and to be independent of s(t).  Then from Fig. 1 

the DC component of y is 

El 

M 

)     s(t) + n±(t) 

1-1 

>  = if  E< 
I 

M  M 

i-1 j=l 

n (t) n (t)| 

(33) 

Thus the increase in DC output due to the signal is 

2FJ A(DC output) = M2 Ei   s(t)]   I = ll2S (3U) 

where £ is again  the average  signal power at each hydrophone. 

Calculation of the rms output fluctuation is perhaps  accomplished most 

readily by integrating the continuous portion of the power spectrum W (to) 

of y .    For direct comparison with the optimal detector the smoothing 

filter will be defined simply as a device which averages y (t)  over T 

seconds.     Its weighting function is therefore 

h(t) 
0 

0 < t < T 

elsewhere 
(35) 

By Fourier transforming one obtains the transfer function 

Hence 

H(co)  = l «f*** dt - 1 - cos cot + J   sin cot 

J 3"T 
0 

(H(eo)l2 -    2 - 2 cos "T 

(coT)2 

sin coT 

coT 
2 

(36) 

(37) 
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I 
Therefore the variance of y. is 

I 

2 

1 D2(y3) =  / ir2(»J--j^I]  dO (38) 
Jo    l 2 

where W?(o>) is the power spectrum of y2. 

For low signal to noise ratios the smoothing time must be long 

compared to the inverse bandwidth of W (cu).  "under these assumptions W ( «) 

in Eq. (38) can be considered constant at W (O) = lim W„(w). Thus 

D2(y3) = w2(o) / Kji.  *» - 2 w2(o) (39) 
V T / 

W2(0) is calculated most readily from the corresponding autocorrelation 

function t9(^) 

W2(co) = 1 *2(T) a"3"* dx (UO) 

_CD 

Now t2(T) = E^y2(t) y2(t + T)] 

M      M      M      M      r 

3 

n      n      n      n      r 
£    ]T   £   )_'   E   [s(t) + n±(tj\ [s(0 + n..(t)][s(t ♦ T) + nh(t + T)] 

i=l i=l h=l k=l    I 

[s(t + x) + nk(t + T)]   I 

M     M     M     M 

E EE E Hs2(t)s2(t + T) 
i=l j-1 h-1 k=l 

+  s(t)  s(t.+ x)[n (t) n^t + T) + n^t) nh(t + x)J     +  s2(t) n^t + T) n^t + x) 

+ s2(t + x) n.(t) n,(t) ♦ n.(t) n,(t) n, (t + x) n, (t + x)l 

(I4D 
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The symbol E i  I is used to designate the mathematical expectation 

of the bracketed quantity. 

The first term of Eq. (Ill) results from the into modulation of signal 

with signal, the next three from intermodulation of signal with noise, and 

the last term from intermodulation of noise with noise. When the signal 

to noise ratio is low (the situation of primary interest) the last term ■ 

dominates.  One can therefore approximate 

M      M     M     M r \ 

*2(T) = Y, Y Y Z E ini(t) no(t) nh(t + T)nk(t + T4 
i-ij-ih-ik-i     ^ J J(U2) 

An equivalent approximation was made by Bryn in the derivation of the 

likelihood ratio detector.    When the noise is Gaussian,  one  can use Eq.   (17) 

to express Eq,   (I42) in the form 

E J ni(t)n^(t)nh(t + T^t + x)> 

■ E|ni(t)n (t)l E|nh(t + T^t + T)|   + E Lu^t + T) Kn^t + A 

+ Bn .(t)n,(t + T)   En,(tk(t + T)1 U3 ) I   1       K j    j  0        n j 

Introducing the nomenclature 

EJn.(t) n.(t ♦ T)1 =Nq.,(T) (1*) 

Eq.   (I43) becomes 

E,jn.(t) n..(t) n^t + x) nk(t ♦ T)|   =  N^q^CO) qhk(0) + ^(T) q.^) 
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I 
i 

I 

N is the average noise power at each hydrophone (as in part III) and 

q..(T) is the normalized crosscorrelation between the noise components 
J 

at hydrophones i and j.     Using Eqs.   (39) >  (kO),  (U2) and (U5) and 

recognizing that the term q..(0) q    (o)  contributes only EC power,  one ij nK 

obtains 

2      M      M      M     14 2      a      a      n      n        r 

i-1 3=1 h-1 k-1    iM 

^ih(T) »Jk(T)   dT (U6) 

Hence the figure of merit corresponding to Eq.   (29) is 

A(DC output) 

D(y3) 

.,2 M25 
r       o~M      M      M      R cT 

2bT   V  v   V  V f 
"T~ <L Z_,  L 6 J 

i=l j-1 h=l k-1 -co 

qih(T) qjk(T) dT 

m 

i 
i 

IV1 - K   ' 2 
M2 

/ . 

W2 
\ '    \ 
/ ,     / qih(T) qjk(x)  dT 

CUT) 

i-l 3=1 h=l k-1 _n 
CD 

Thus the figure of merit depends rather critically on q-h(T) q--u(T) dx. 
-CD 

Two cases will be considered. 

l)    Uncorrelated Noise 

If the hydrophones are  separated sufficiently so that q    (T) ■ 0 for 

i f h, then 
CD 

J 
-CD 

qih(T) qik(T) d7 

P^(T) dx i = h, j  = k 

elsewhere 
(U8)- 

lm.  • This'corresponds to the assumptions made in Progress Report No.   2. 
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p(x) - q. . (T)  is the uoiu'.T 1 zed uiifcccorrol/vfc-.lfmf £\-c\o+..-i.<- »■» >■£.  fjvs »v*i IKJ  at 
'11 

each hydrophone. When Eq. (I48) is satisfied 

A (DC output) 

D(y3) 

/T 

N V? 
M 

W2 (1*9) 

p (T) dr 

L-° 

The equivalent result for the likelihood ratio detector is Eq.   (32). 

A typical situation in which Eq.   (I48) is at least approximately 

satisfied would be the following:    The noise has a power spectrum flat 

over a wide band    0 < CO < a      and vanishing for   co > co .     'Then 

sin co x 
p(x) =  —        co    ?.arge 

CO   X a 
(50) 

Thus 

p  (T) dT = 
sin    co x 

1 n 

dx • — 

-co 
(COQT)' 

n 
CO. 

(51) 

Hence Eq.   (k9) assumes the form 

A(DC output) m   5 1 Tc°a 

D(v_) N    1   2TT 
M 

D(y3) 

N 

(52) 

Introducing the symbol N    = ~ ,  the value of the noise spectral density 
a 

for    0 < co < co 
a 

A (DC output)    B    *L\pL     \_ M 
D(y3) 

No V2n   Ttta 

If the frequency range being processed by the optimum detector coincides 

with    0 < co < co    , Eq.   (32)  can be written in the  following form      for 
a L 

N(co) = N  ,     0 < co < co 
o' a J 

(53) 
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I 
1 
1 
t 

A (DC output)    a    b_     X   M" 

D(output) NQ   V2n 

S(co) 

s 
dco 

The ratio of the two figures of merit is 

(5>4) 

—   /    CO /- ? 2 
performance index of optimum detector    _    U a     (     ^(«H     dco KO 

performance index of standard detector        V   5     J 

The reason for terminating the processing range cf the optimum 

detector at co   is  almost certainly that virtually all of the signal power 
a 

is  concentrated in the range    0 < co < co .     Thus it is reasonable to 
< d 

assume that 

co 

J 
S(co) dco =  5" (56) 

If one expresses the  spectral function by 

S(co) = £-   + F(co) 
a 

then Eq.   (56) demands 
co 

F(«) dco ■ 0 

It fellows that 

co co 

js(co)]'" dco = 1L + 2 1 F(co) + F2(co) 
co 2 wa 

a 

dco 

CO 

.    2_    +  J       F2(co) dco >     ~ 
CO CO, 

(57) 
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with equality if and only if    5 (GO) 
A 

CO 

When S(co) = -— the ratio of the performance indices[ Eq. ($5)1 is 
a 

unity.  In general, therefore, 

performance index of optimum detector  > ^ , ^ v 

performance index of standard detector 

Thus if the signal as well as the noise has properties of white noise 

bandlimited to 0 < co < co  the optimum detector is identical in performance 

with the standard detector. If the signal has different spectral properties 

the optimum detector makes use of these properties to improve performance 

while the standard detector is only sensitive to total signal power. 

2) Markov Noise 

If the crosscorrelation between hydrophones does not vanish, additional 

terms in the quadruple sum of Eq. (Iff) must be considered. Assuming that 

the noise at each hydrophone consists primarily of far field noise, a 

reasonable approximation to the noise autocorrelation function might be 

- co ITI 

P(T) = e  ° (59) 

co    is the frequency (in radians per second) at which the noise spectrum has 

fallen to half of its low frequency value.    Where numerical  computations 

are called for the numerical value   to    = 2n x 1500 = 9J42O radians/second 

will be used. 

The problem of computing <LAx) from p(x) has been discussed in 

Progress Report No.   1.    With a spherically isotropic noise field the 

required relation is 
VTih 

q,u(-0 ■ —      /        P("0  dT (60) 
2Tih    J 

T-T.. 
ih 



where x.,   =   .     d.,   is the  distance between the i   L *and h   J hydrophones xn        c in 

(a non-negative quantity) and c is the velocity of sound in water. 

Substituting Eq.   (59) into Eq.   (60)  one obtains by straightforward 

computation 

qih(T) 

00     X., 
o    ih 

-CO   X., 
-. o ih        u ,, 1 - e cosh co T 

o X      < X., 
-    ih 

, -co  IT! 1 o .  ,      e sinh co   x., 
o    ih 

XI    >   X 

CO  X., 
o ih 

ih 

(61) 

q., (x) is evidently non-negative for    all values of x and x.        Thus all 

terms in the fourfold sum of Eq.   (Ifl) are non-negative.     It follows that 

noise  coherence from hydrophone to hydrophone  (at least of the  type 

assumed here)  can only reduce the figure of merit relative to the value 

given by Eq.   (U9). „ 

The computation of      /     q    (x) q.. (x) dT    1S tedious but straightforward. 

j 

I 
1 
I 
I 
! 

Assuming x      >    x      and taking advantage of the fact that q., (x) is an even 

function of x one obtains 

r 
qih(T) VT) dT 

j 

'ih. 

CO        X.,     X.. 
o      ih    jk 

-co x., -co X., 
T 0 ih        , I. o jk        , 1 - e cosh co x    1 - e        d    cosh co x 

o I o 
dx 

:jk 

o      ih    jk 

-co x 
o      .  . o sinh co   x., 

o    ih 

-CO  X .. 
o ik        , 1 - e        J    cosh co x o 

dx 

^ih 

+ -T 
co     x.,   x.. 

o     ih    jk 
■ ii 

-2co x 
e sinh co   x.,   sinh co   x.,   dx 

o    ih o    jk 
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After integration and some algebraic manipulation this becomes 

OS 

qih(T) V°  dT 

o      ih    jk 
ih      to 

-co T., -co T., I 
o xh ^ o   nk     .   ,    , 

+ e J     sxnh w x,, 
o in 

-co (T.,+T.. ) 

2 
' i 
— sinh co T.,   cosh co T.,    + T., 
co o ih o ih        xh 1   o 

, ,   -CO T.. -Ü X..  I 
1     i_v *» -      I       oih oik + -— sinh ü x.,     e - e        J 

co o, ih 
o \ 

2 e 

. ,      I   -2co T., -2co T .. 
it-, I ,1 o xh o ik sxnh io x„     x„ - T.,    +      c - c 

o xh      JK        ih      2co    | 
L o 

\ 

1 ' ~2ü) T-k 
+      sinh co T.,    sin co T .,   n       5 J    ? 

2co o xh o jk 
o 

(63) 

For numerical values likely to occur in practice this equation can be 

simplified considerably.     If the minimum distance between hydrophones is 

2 ) 
2 feet and one uses    c ■ U7$0 ft/sec, Tih > m-    = U. 21 x 10"u sec.   for 

i f h.    With co    = 9li20 rad/sec,    co x..    > 3.97 for i / h.     Hence the 
o ^'oxh 

approxiraati on 

CO  T. 
.  , -v       , <N» 1      0 ih sxnh ca T.,   =  cosh co T.,    ■ ± e 

o xh o xh      2 ,    i / h (61;) 

introduces negligible error.    Using Eq.   (6U)  and discarding terms of 

and smaller,  one  obtains A _2"oTih order    e      u ±n 
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qih(T) VT) * 

2 I   T J^ 
co2 77 T.,   I     ih "  2C0 

o      lh    jk  I o 

-co  (T.. -T., ) 
! ♦  e    o    jk    ih 

-co (T  -T.,; 
+ JL e   °  °k  ^ 

8co 

2co, 
1 - e 

-co (t.. -T     )l -CO (T.,-T..) ,       -co (T.,-T., ) 
o    Jk    ih'    _1        cK  JK    ih'(T^   „ T_j + _1_ c    o

v jk   lh; 

jk        ih'       8 1 
■«J^rtJ 

°   jk   *   [3 ♦ »J 
CO        T 

o      jk <■ o    ih 
L 

T .,     "   T ih)]j>,   i/h   ,   j/k 

(65) 

when   T      = T        this reduces to 
jk        ih 

<jkW^)** ^' I,. _•_! 
CO        T., 

o      jk 

, l / h, j / k, T.,   = T., I      /      » o i      '    jk        ih 

o    ih (66) 

Similar expressions must now be obtained for the cases i = h,  j = k and 

i ■ h, j £ k. 

C3 

r 

J 
_C3 

q.. (T) q. .(T)  dx Hn        ^JJV 

CD 

_C3 

-2co   |T| , 
e dT - — 

0 
(67) 
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CD ^0 

r f 
qii(T) qjk(T) dT = 2 Nü(T) qjkW dT 

-co 0 

—  1 - e    ° 3 cosh w T    e    ° d-r + —  e      ° sinn U   i.,   dT 
o o     lk 

o    jk    J o    ,ik 
0 

-^_[i-.-»'*(i*i,0, ) 
O)      T.,     L J 

o    jk 

(68) 

Results for Linear Array with Equally Spaced Elements 

All of the terms of the fourfold sum in Eq.   (I47) are now available and 

the evaluation of  the output signal to noise ratio becomes in principle  a 

straightforward computational problem.     Unfortunately the number of terms 

grows very rapidly with M and manual computation quickly becomes impractical 

unless some simplifications are made.    A configuration leading to 

particularly simple results is a linear array with equally spaced elements. 

Here 

T^ ■  |i - h| TO (69) 

where x    is the time required by a sound wave to traverse the distance 

between adjacent hydrophones. 

If one uses the notation 

CO 

qih(-0 qJk(T) dx - G.M}k (70) 

.JCO 

then for the array satisfying Eq.   (69) 

Ci,h,j,k = C|i-hl,|j-k| (71) 
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! 

1 
1 

i.e., the coeiTicients of the fourfold sum ca bo characterised effectively 

by two rather than four subscripts.    With the  change of variable 

the sum becomes 

M 

\ 

i - h = I 

M 

(72) 

C. 

i,j,h,k = 1 

li-hl , |j-k| 

i,j,h,k = 1 

M M M-l 

MC .   + 2 
o,l j-kl (M-'>cMJ-kl 

j,k ■ 1 j,k - 1   « - 1 

(73) 

A scheme for counting the number of identical terms for each value of 

is indicated in Fig.   2. 

Fig.   2 
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The further change of variable 

|J - k| - ■ (7U) 

leads to the form 

M 
c—'                                                   M-l M-l 

)     C.   .    .  ,   = M2 C        + 2M V (M - S) C        + 2M)   (M - I) C, „ 
/       i,h,j,k           ■  0,0             U O,S           L>                    l,o 

L 1                                                                                  B-l i=1 
i,j,h,k = 1 

M-l M-l 

*L   I   CM - OCK - .) 04>1 

£=1   B-l 

M-l M-l M-l 

- M2 C        + U M V    (M - s) C        ♦!*•>)      (M - «)(M - s)C    , 
0,0 <_, 0,S £_l      L-i *** 

B-l 4-1   8-1 

(75) 

The coefficients C      , C    „and C.      are given by Eqs.   (67),  (68), and (65) 
0*0 0 ■ S v.S 

respectively (with   T      ■ sr , T.    = It ), 

A further considerable simplification can be made if we recognize that 

for the numerical values introduced on page 22  (co    ■ 9li20 rad./sec., 

-CO   T 
hydrophone spacing T    = 2 ft. ). CO T    ■ 3.97.    Hence e    ° ° = 0.0189, 

so that the exponential terms in the definitions of the  coefficients C^ 

can be omitted with only very minor error.     Then 

C     ' - i (76) 
0,0 CO 

» o 

c    wJL—£— B/O (77) o,s      coo sVo 
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1 
1        2 
a 

0 0   0 
J 

1^ 
CO 

0 

2 
£co T 

0 o 
; 

1 2 
SCO  T 

0   0 

/ 

I1- 3 
CO 

o l|CO   T   S 
0  o 

s >   * 

e > a      > s,i i- G       (78) 

,   8 - I 

Now 

M 

)    c|i-h|,|j-k| 

i,h,j,k - 1 

M-l 14-1 

CÜ 
O   0 

8=1 S=l 

SCO   T 
o o 

1 - 
I4W  T   S 

0   o 

i 

M-l s-1 

1»  V    V   (M -  *)(M - s) 
M-l l-\ 

s=2 1=1 
SCO   T 

O   0 
k Y_, Y, (M ~i)i 

M -  s) 

£=2  s=l 

•hi2. 
M-l M-l 

n - s + r
1   (II - s)' 

co    ] CO T 
01 00 s-1 s-1 

1 _ _^— 
^C00T0S 

M-l s-1 
<T    (M -  D(M - s) 

s=2 4=1 

&0 T 
0   O 

(79) 

Hence  the figure  of merit of Eq.   (J47) is 

A(DC output)    ~ 

3(y3) 

<?      jTco M 

,   .     8 
- M-l                M-l 
l'T M-s       1 r1 (M-s) / 

1 - 

M-l s-1 
3    L 2 r r (M-O(M-S) 

1 
2 

S4-      »T 
0   0 - s=l               s=l Kv' M2

ST2 fe   
s • 
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Discussion 

a) If    co x   >» 1.    C.      ^ 0    unless  s =  I = 0.     In this case  (noise oo '       ifs 

components at different hydrophones uncorrelated) Eq.   (80) reduces to the 

simple form 

rt        \ TV ■> 
A(DC output) „  S o    M /8IN 

D(y3) N V   2 

This expression is similar in form to Eq.   (52),  but differs by a numerical 

constant because the noise spectrum has a   different shape than  that  assumed 

in the earlier computation. 

b) If co   T    = 3.97, »    = 9U20 rad./sec. ,  as  assumed earlier, and M = 5, 

the figure of merit becomes 

A (DC output) m 12    5_^- ^82) 

D<73) ""    M 

If signal and noise spectra have    the same shape, the output signal 

to noise ratio for the optimum detector using the  same 5>-element linear 

array with 2-foot hydrophone  spacing is from Eq.   (30): 

A (DC output)      f¥   $_ 

D( output)        '2n-H| 

?2 
[G(co)]2dco (83) 

Bryn has plotted the array gain for a five-element equally spaced 

linear array.    Adapting his plot to the parameters used in this computation 

one finds that G(co) has essentially reached its maximum value of 5 at 

co = 7000 rad./sec.    Making a  rough approximation to the curve below that 

frequency,  one obtains the following numerical expression for output 

signal to noise ratio in terms of  the frequency co? 
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I 
I 
I 
1 

A(DC output)^ JT      5       ^ ^ x 103 (BU) 

D(output) V 2n    N 2 

If a)    ■ 2n x 5000 ■ 31,000 rad./sec.,  this reduces to 

I A (DC output) „ 3U0 £ ^ C85) 

D( output) * 

If co    = 2n x 10,000 = 62,800 rad./sec. ,  the  corresponding value is 

IA(DC output)   ~ . 90 £_ JTjT 

D( output) N 
(86) 

[ 
[ 
i 

I 
I 
I 
I 
1 
I 
I C,  Eckart,  Optimal Rectifier Systems for the Detection cf Steady 
I Signals.     University of California, Harine Physics Laboratory of the 

Scripps Institution of Oceanography, SIO Reference 52-11, U March 1952, 
p.   13, Eq.   (18). 
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Thus the rms output signal to noise ratio of the optimal detector is better 

than that of  the  standard detector by a factor of about 2.6 if the  range 

of frequencies processed by the optimum detector extends to 5000  cps  and 

by a factor of about 3.8 if the processed range extends  to 10,000 cps. 

Which, if either,  of    these figures is realistic depends on the frequency 

range over which the assumed equality in shape of  signal and noise spectra 

corresponds reasonably well to the actual facts. 

c)    In order to remove the somewhat arbitrary upper bound co    of the 

frequency range    processed by the optimum detector,  an attempt will be 

made to gain more insight into the probably high frequency behavior of the 

signal spectrum.     One factor that should undoubtedly be considered is the 

frequency dependence of the transmission characteristics of water.     Using 

a model discussed by Eckart    one oan write the following expression for 

the signal spectrum received at each hydrophone 

TJo band limitation was assumed in the standard detector. 

2r 



106   -6 x iO"^*xw2 

Received spectrum » —w e 3(u>) (8?) 
r 

S(co) is the signal spectrum at a point close to the  target and r is the 

target range in yards.    Assuming S(co) and N(co) identical in shape,  one 

obtains from Eq.   (29) 

agj output) . -J I     5    ljtA[f712y-10'^\üM]^      (86) 
D( output) V2'1    N      r

2 yj 

C   = / S(w) dw is the signal power at the reference point.    Evaluation of the 
0 

integral is cumbersome because   of frequency dependence of G(co).     However, 

since G(w)  only varies from a minimum of 3.55 near » = 0 to a maximum of 5 

above w =  7500 rad./sec. , a reasonable  approximation  can be obtained by 

treating it as a constant.     Then 

C 8 A (DC  output) ~» _£_ ^   Q 6. Ul X 10 

D( output)        J* r9/U 
(89) 

For G = U this is 

(90) A (DC output) ~ 2.56 x 109    £_ ^r 

D( output) r9/^~     tf 

For G ■ 5 "the value is 

A (DC output) ^   3.20 xlO9     5  ^r /9]j 

" D(output) r9/U        3 

Except at extreme ranges (above 1CP yards) Eq.   (91)  should be the 

better approximation and will be used in further comparisons. 
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For the standard detector the shape of the   signal spectrum is 

unimportant;  only the total signal power matters.    Hence the factor 

-ill    2 
e can be ignored if it is essentially equal to unity over the 

effective bandwidth of the signal  spectrum.     This is true if 

6 x 10_lii x 1500 x 2nr  «   1 

or (92) 

r  «   1.89 x 10^ 

Then the figure of merit for the standard detector becomes   [from Eq.   (82)| 

A(DC output) _ 1.29 x 108      5 
T 4 VT (93) 

D(y3) r X 

The ratio of Eqs.   (91)  and (93) assumes the form 

rms  signal to noise ratio of optimal detector 2li.8 .  „.      ,-5  a c    m ~jr , r   «   1.89 x 10 
rms signal to noise ratio of standard detectcr        r 

(9k) 

Thus even at a range of 100 yards the possible improvement due to the use 

of optimal detection procedures is limited to a factor of somewhat less 

than 8.   (If the  assumption of  low  signal to noise ratio  remains valid.) 

V.    Concluding Remarks 

The report has  compared the performance  of a likelihood ratio detector 

with that of a standard detector on the basis of output signal to noise ratio. 

Under the conditions investigated,  the improvement attainable through use of 

optimal  (likelihood ratio) techniques was in most cases only moderate.    It may 

therefore be important to review once more the basic assumptions underlying 

the analysis. 
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1) Signal and noise wore assumed to be independent Gaussian random 

processes. 

2) The signal to noise ratio at each hydrophone was assumed to be 

small compared to unity. 

3) Signal and noise processes were assumed to be stationary and the 

signal to noise ratio at each hydrophone was assumed to be the  same. 

h)   Numerical calculations were concerned primarily with cases of 

relatively broadband signals and noises, mostly with  similar or 

identical power spectra. 

5>)    The array of hydrophones was    considered fixed.    Numerical 

calculations dealt particularly with a linear array of equally 

spaced elements. 

Assumption l) is particularly important.    It implies that signal and 

noise  can be characterized only by their total power and spectral properties. 

Of these two features the standard detector uses  only total power, hence it 

is in general inferior to the optimum detector.     However, the report 

indicates that  (unless the spectra of signal and noise  are drastically 

different)  the benefit to be derived from use of spectral properties is 

quite limited.    Further work is planned to investigate the improvements 

possible with optimal detection schemes when there are pronounced 

differences in signal and noise  spectra.     Signals containing narrowband 

components at known or unknown frequencies would be a case of particular 

interest. 

The analytical treatment of non-Gaussian random processes tends to be 

very difficult, and an attempt to solve    the problem under such assumptions 

does not appear promising.    However,  if information  concerning waveshapes 

of expected signals were attainable, great improvements in detector 

performance might be possible.    The analytical tools for handling this case 
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are also available.    An effort to search out features of the expected 

signals related to waveshape rather than spectral properties therefore 

appears indicated. 

Assumptions 3)  and 5) suggest additional possibilities for further 

investigations.     It has been shown, for instance,  that clipping can improve 

the performance of a power detector when the noise power varies from 

1 2 hydrophone to hydrophone,    or as  a function of time.      It would be 

interesting to investigate whether the optimum detector also performs an 

operation analogous to clipping under these  conditions.     If hydrophone 

locations are regarded as an additional set of adjustable parameters the 

optimization procedure  can, in principle at least, be carried one  step 

further.     One could then perhaps inquire into the best location for a fixed 

number of hydrophones in a given volume and the performance index of the 

associated optimal detector.    It appears unlikely that a very general 

solution to this problem would be  computationally feasible, but it would be 

of interest to gain even limited insight into the dependence of system 

performance en hydrophone location. 

Finally the theory of optimal detection may provide a means for 

assessing realistic costs of such signal processing techniques as clipping. 

One  could, for instance,   compare the performance of an optimal detector 

operating on clipped hydrophone data with the performance of an optimal 

detector operating on undipped data.    Whether such a comparison is 

computationally manageable for cases of practical interest has not yet been 

investigated. 

"r.  Usher, Signal Detection by Arrays in Noise Fields with Local Variations. 
Progress Report No.   2.    Electric Boat Co.   Research.    Yale University, March I963, 

J.   B.   Thomas, T.  R.  Williams,  On the Detection of Signals in Non- 
Stationary Noise by Product Arrays.     J.  Acoust.   Soc.   of America.     Vol.  31;, N0.I4., 
pp.   U53-U62, April 1959. 
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SIGNAL DETECTION BY ARRAYS WITH 

ARBITRARY PROCESSORS AND DETECTORS 

I.  Introduction 

The signal detection characteristics.of local arrays of transducers 

112 3 
have been extensively analyzed • '•' for the situation in which: 

1« The output of each transducer is subject to infinite clipping 

or purely linear processing; 

2. The processed output signal from each transducer is summed; 

3. The summed result is applied to a square-law detector; 

1+, The squared sum is filtered. 

However, the effect of a general nonlinear processor following each 

transducer relative to signal detection efficiency has not been determined« 

Neither has the effect of a general non-square law detector been 

examined. It is the purpose of this report to investigate both effects. 

The two performance indices defined in Reference 3 are used to provide 

a numerical indication of the signal detection efficiency. 

The signal response ratio, R_, is defined to be the ratio of the 

normalized average signal output of the system with either the nonlinear 

processor or the non-square law detector to the normalized average signal 

output for the system with the linear processor and square-law detector. 

Similarly, the index, R2, is defined to be the ratio of the square 

root of the signal-to-noise ratio of the directivity pattern for the 

system with either the nonlinear processor or the non-square law detector 

to that for the system with the linear processor and square-law detector. 
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The major purpose cf the analysis is to determine optimum processor 

functions and optimum detector functions for maximizing both response 

indices. Another consequence of the analysis is a derivation of a genera], 

expression giving the autocorrelation function for the output of a 

nonlinear device in terms of the input autocorrelation function. The 

major assumptions of the analysis are listed in the following section. 
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II,  Assumptions and Definitions 

The system analyzed in the following sections is shown in Fig. 1, 

Transducers Processors 

•^\ B^(t) *Mt) 

a,(t) *  n2(t) 

v1(t) 

J \ 

Low-Pass 
Filter 

©A? 

Fig. 1 Array with Nonlinear Processors and Non-Square Law Detector 

Following are the major assumptions inherent in the analysis: 

1. The transducers in the array have omnidirectional characteristics. 

2. The autocorrelation functions of both the signal and the noise 

inputs to the processors are identical. The signal power input 

and the noise power input to each processor do not vary from channel 

to channel* 

3. The cross-correlation between noise inputs for different channels 

is zero«, 

kt    The signal and the noise inputs to the processors are Gaussian 

and stationary. Signal and noise are independent» 
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5. The processor is an odd-function,  zero-memory device, 

6. The detector is an even-function device, 
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III.  Correlation Between the Output Signals of Identical Nonlinear Devices 

Since the analysi3 of array performance in following sections requires 

an evaluation of the cross-correlation of the output signals from two 

identical nonlinear devices, or the evaluation of the autocorrelation for 

the output signal of a nonlinear device, a general derivation applicable 

to both situations is made in this section, 

It is assumed that the input variables are Gaussian, with zero mean, 

and equal variances. Furthermore, the two-dimensional probability density 

function is given by 

f(el»e2) = 

2na 
;VTT 

- exp e„ ~ 2ae 132] 

The characteristic function of f(e,,e?) in terms cf the complex 

variables w. and w~ is 

(1) 

I 

$<vV exp elWl + °2W2 f(e..,e0) de-.de l'w2'  12 

„J30   _00 

a  exp a■    ,   2   2  _    v ~Y  (w1 + w2 + 2aw1w2; (2) 

It is desired to find the statistical average of g(e1)g(e2) where 

g(e) is a general nonlinear function with zero memory. The development 

follows the transform method used in Chapter 13 of Reference h»    The 

correlation function iTeTlgTeTl in its final form is expressed in terms of 

a power series in a, the normalized correlation between e- and e«. 

It is convenient to define the function g(e) in two parts: 

fg(e) 

g+(e) -< 

e 5- 0 

(3) 

A4-$ 
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and 

g (e) 

g(e) 

e > 0 

e < 0 

00 

Then 
g(e) °  g+(e) + g_(e) (5) 

The Laplace transforms for the two parts of g(e) are 

CO 

f -we 
G+(w) - I g+(e) e  de 

0 

0 

G (w) = 
-we 

g (e) e  de 

_oo 

The inverse relations are found in Eqs. (8) and (?). 

(6) 

(7) 

ew 

8+(«) - 2^TJ 
G
+(
W
) 

e dw (8) 

ew 
g (e) ■ Tr~ I G (w) e dw (9) 

The required contours of integration are shown in Fig. 2, The 

infinitesimal displacement A in each case is required for convergence 

of the transforms. It is assumed that g(e) dees not increase exponentially. 

A 
D 

-A 

w-plane 

C 

+ A 
"tit 

For contour C w - A + jv 

For contour D w ■ -A + jv 

Fig. 2 Contours of Integration in the Complex w-Plane 
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The correlation between g(e.. ) and g(e2) is 

00   oo 

g(e1J g(e2) g(e1) g(e2) fC^eg) de1de2   (10) 

•JOO  _po 

Substitution of the results of Eqs. (£)> (8) and (9) into Eq„ (10) gives 

oo  oo 

«<v«<v ■ -^2 J j Jw ■-A dwi +/w eeiWl dwi 
-PO        _0O 

e„wr e„w„ 
]G+(W2) e~2"2 dw„ +   /o  (w0) £ 2 |QJW2 

LC 
'2  "   J"-v"2 

D 

f(e1,e2) de^^deg 

(11) 

With the application of the definition in Eq.   (2), Eq.   (11) becomes 

g(«■!_-> g(e2) 
a   

(tajr 
G+ (W;L ) G+ (w2 )<£ (W;L,w2 ) dW;Ldw2 

C    C 

fG+(wx) Gjw2)(£(Wl,w2) dw^^dwg 

C D 

♦    /    / G  (Wl) G+ (w2 ) ^(w^Wg ) dW;Ldw2 

D    D 

If the infinite series for   exp a a w..Wp 

(12) 

is utilized for the corresponding 

term in (p(w.,w2), the double integrals in Eq, (12) become separable as 

products of integrals. 
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Sinne 
w  2n n n n a   aw, H, 

exp[o2a W;Lw2] - £  - 

n-0   n* 

(13) 

then, 

oc 

n-0      (2nJ} 

2 2 a w- 

7 
2 2 a w2 

w1
nG+(w1) £   dw1 w2

nG+(w2) e dw„ 

2 2 a w.. 
2 2 o w2 

+ w^ G+(W;L) e 2 -Wl w2
n G^(w2) e dw. 

2 2 

r      v   f       : 
+ w1

nG_(w1) e 2 d-^ w2
nG+(w2) 

6 

2 2 
j w2 

"2 

D 

2 2 a w.. 

dwr 

2 2 
a w„ 

+ lw n G_(w1) e   d»1 w2
n G_(w2) e   d»2 

D D 

(1U) 

Due to the product form of Eq. (lit), it may be rewritten as 

0,7 

c-T 2n n  . —i 1—-, r  \ a   a   1 
gle, ; g(e9; - ) —~-t 2 

n-0     (2nJ} 

2 2 
a w 

2 2 a w 

wn G (w) e   dw + lw11 G (w) s   dw 

C D 

(15) 

It may be shown that 

-we 
g+(e) e  de = w G+(w) - g(0) (16) 

and 

-we 
g (e) e  de ■ w G (w) + g(0) (17) 

.JOO 
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whore 

g  (e) 
de 

(18) 

Furthermore, the relations in Eqs.   (16) and (17) may be extended for the 

n     derivative to yield 

00 

f     W ~We n O        ^n'm^    Lm-l] 
gfJ(e) 6     de - wn Q+(w) - ^   w g        (0) (19) 

and 

g[n](e) e"W6de 
"      (n-m)[m~l] 

= w    G  (w) +   )      w g       I 

^00 
m=l 

(0) (20) 

wnere 

,n 
gN(e) = 

de11 
(21) 

When the results of Eqs.   (19) and  (20) are substituted into Eq.   (l£), 

Eq.  (22) is obtained. 

oo 
r-i     2n n      - 

n=0 (2lt^ 

2 2 oo 
aw    f -we 

|g|n](e) e      de 

C 

! 2 

J 
0 

2 2              . 2 2    0 
n      ( i      \ r   -n         aw              f o" w     /- 
n          (n-m)tm-U        —-- —*-   (   f , 
^       w          g       (0)  e   2   dw +      dw e   2         g™( 

m=l y                                                  J i 

-we 
gL"'(e) B      de 

2  2    ~i 
A      f (n-m)[m-l]        £~ 

-   I        Jw g       (0)  e        dw 

m=l „ 

(22) 
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It can be shown that the terms involving g  (0) cancel (See 

Appendix A) because the difference of the integrals over contours C and D 

may be made as small as desired by making A in Fig. 2 arbitrarily small, 

The inverse transform of the single-dimensional characteristic 

function, yields the Gaussian probability density function: 

2 2 
a w 

2nj 

2 

r'~dw „_L- e" 
T<? - f(e) 

-we 

«a 
(23) 

C 

The contour C1 is the imaginary axis of the vr-plane«, Since C and D may be 

made arbitrarily close to the imaginary axis of the w-plane, Eq. (22) 

becomes 

2n n 
a 

n=0 

gW(e) f(e)de ♦ I g[Jl](e) f(e) c 

-00 

(2U) 

Finally, 

g(ex) g(e2) - £ ^ gCn)(e)2an 
(25) 

n=»0 

In Eq. (25) the bar indicates an average with Gaussian statistics 

for e. An alternate form of Eq, (25) is possible since it can be shown 

(See Appendix B) that 

gM(e)=a-nHn(f)g(e) (26) 

In Eq.  (26)   H (-) is the Hermite polynomial of order n with - as the 

argument. 

Then 

i^^IV-L   n7Hnlf)^>   a' (27) 
n*0 
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The results in Eq. (25) and (2?) can be used in determining the cross- 

correlation between the output variables of identical nonlinear processors, 

In this case, a is the normalized cross-correlation between the input 

variables of the processors. The result can also be used to determine 

the autocorrelation function of the output of a nonlinear processor. In 

the latter case, e. and e? represent the input variable at two different 

times and a is the normalized autocorrelation function of the input 

variable. 
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IV.  Average Signal Output—Nonlinear Processors and Square Law Detector 

The symbols and definitions in Reference 3 will be followed as closely 

as possible. For the system with the nonlinear processors, the directivity 

pattern is 

M  M  

7(0) - YJ   ü *{■!<*)+ *_(*>} B{«j(*)+ »<(*)}       <28> 
1-1 3-1 

For the input signals to the processors, 

o2 - S + N (29) 

The normalized cross-correlation a is 

S 

S + N 

m^i^ ±n 

(30) 

J 

In Eqs. (29) and (30), p is the normalized autocorrelation function 

for the signal, S is the total signal power, and N is the total noise power. 

The T. . depend on the spatial time delays and electrical time delays 

associated with the typical steered array. 

The results in Eqs. (25) and (27) may be used to simplify Eq. (28). 

It should be noted, however, that when a ■ 1, Eq. (25) reduces to one term, 

the mean square value of g(e). Furthermore, the processor function in the 

array has been assumed to have odd symmetry, so that only odd order terms 

in Eqs. (25) and (27; are present. 

Using Eq. (25), we have 

MM«    <2n+l) -5-J-* 2n+1 

77©5-Mg(er + 2 )    )   ),—   g   (•) P   CO    (3D 
1-1 j-1+1 n-0 un XJi 
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The "on target" response occurs when all T. . ■ 0, and the "off target" 

response occurs when the T  are all large enough so that the p(x  ) 

approach zero. These responses are found in Eqs. (32) and (33) 

respectively, 

00 

yQ - M g(e) + (M -M))  —2 ir2n+:U(e) 
« (2n + 1)1 n=0 

(32) 

7L - M g(e) (33) 

The normalized signs! output Ay is 

00 

-   - I 
-'    70 " yL      /„     , N n=0 

.(2n+l) -* 

Ay (M -1) 
(2n + 1)J 

g        (e) 

g(e)' 

For the system with linear processors, g(e) = Ke and 

(3U) 

yA0 - K2(MN + SM2) 

yAL - K2M(N + S) 

Ay' ■  (M - 1) -£— 
A S + N 

(35) 

(36) 

(37) 

The signal response ratio, R_, has previously been defined to be the 

ratio of Ay to Ay.. 

R-äL. 
^A 

f        S2n+1         P»\.)2 

S + N|   n=0  Ca» ♦ DJ 

3    '                   g(e)2 

(36) 

P 

I 
A4-13 



An alternate form of R. is obtained by using Eq, (26): 

oo 

I   x 2n  , - j 2 
IT           ...    ®,   - \   c(a) 

s + HI     a+1|Va + N| 

1                                              2 
g(e)2 

(29) 

Frcm Eq. (39) it is evident that only the first tern of the series is 

important for small values of input signal to noise ratio. Then 

0         ~! 1 
P   ~ o-   g    (e)   , 

g<e)2 

.    eg(e) 

2    /   V* o-   g(e) 

f or | < < 1 (1*0) 

It is interesting to note from Eq0 (38) that for large values of 

signal to noise ratio 

S + N 
a_}l 

and the sum in the numerator cf Eq0 (38) approaches g(e) . Thus the signal 

response ratio approaches unity. Under strong signal conditions, then, the 

average signal performance of the system with nonlinear processors approaches 

that of the system with linear processors. 

Also if one considers the non-negative function 

(X g(e) + ef >   0 

where X is an arbitrary parameter, we have by expansion, 

X g(e)2 + 2\ •%{•) + a"    >    0 

Since there can be no real, unequal roots for X, 

eg(e)    - a    g(e)      <   0 

(ia) 

U2) 

(143) 
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Applying the result in Eq„ (U3) to the small signal approximation for 

I 
I 

I 
1 

I 
I 
I 
1 
1 
I 
I 
I 
I 
I 
I 

IL, wo have 

\<1   *«   !<<1 (W) 

Since all terms in the series expression for R. are positive, unity 

Is  an upper bound for TL.  for all ratios of signal to noise. Furthermore, 

the equality in Eqs. (lil) through (1;3) holds only if g(e) is a linear function 

of e (i.e., g(e) ■ ku), so that the signal response ratio is less than unity 

for all finite input signal-to-noise ratios for all nonlinear processors. 

Thus the linear processor is optimum in the sense cf producing maximum 

average output signal for the array. 
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V. Signal-to-Noise Ratio at Output of Array—Nonlinear Processors and 
Square Law Detector 

The goal of this section is the development of an expression for the 

performance index, R„, which is the ratio of the square root of the signal- 

to-noise ratio for the system with nonlinear processors to that for the 

system with linear processors. Since the expressions for average signal 

output were developed in the previous section, most of the analytical 

development in this section will be concerned with the evaluation of the 

variance of the output of the low-pass filter in Fig. 1. 

In general 

y-0 = E[y(t) y(t + T)] ■ y2 + ^'(T).       (h$) 

where y represents the average array output, and R (T) is the autocorrelation 

function for the variational component of y(t). If 

V» —s (W) 
1+^ 

from Eq, (56), Reference 3> we have 

00 

Oj2 - Up I Ry' (t) dT (cog, small) (1*7 ) 

0 

For the analysis of array performance with nonlinear processors, it 

will be assumed that the input signal-to-noise ratio is sufficiently small 

so that only the input noise contributes to noise  (o*   ) at the output. 

This assumption is necessary for making the analysis tractable, and also 

is not unduly restrictive, since only small signal-to-noise ratios produce 

any detection problems. 
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Thus the autocorrelation function for y(t) becomes 

R (T) - EJx^t) x^t +T) 

M  M M  M 

i=l j=l k=l i"l 
i 

(U8) 

The evaluation of Eq. (1*8) is helped by separating the terms into the 

different categories as shown in Table 1. 

Subscript Number Evaluation and comments 
relations of terms 

i - j and k = I M2 
2 

i ^ k yields M - M terms. 

E "g2 (n. )" E g2(nk) 
-2 

= g 

i = k yields M terms. 

E g2{n.(t)} g2|ni(t + T)[ 

i - 3 and k / I 2(M3 - M2) Yields 

i / j and k = I E 2 
g (n±) gO^) g(n^) = 0 

because n, and n» are uncorrelated 

and g(n) is odd« 

i / j and k / £ V^  - 2M3 + M2 Only terms of the type where i ■ k, 

j = l\  and i » lt  j ■ k are non~zero, 

2(vf  - M) in number) 

Table 1 Classification of Terms in Eq. (I48) 
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From Tabl3 1,  Eq.   (U8) becomes 

Ry(T) -   (M2 - M) g2(e)    + M g2|e(t)l g2<je(t + T)U 2(M2 - M) g|e(t)J   g[e7o + T^ 

(U9) 

Both the second and third terms of Eq„   (k9) rcay be evaluated using the 
2 

result in Eq.   (26).    For the second term,  since g   (e) is an even function, 

we have 

■A-    SJ1W»(.)   e2nM g  (e-, ) g  (•,) -  ) 
-'    (2n)J      2n a 

n=0 

~2 1   „ ie\  2      2,   ,     1   tTTe| 2      U/   N 

+ oTH6(f)g"    p (T)+
 •" (50) 

For the third term, 

n-0  (2n + X)) 

HJIII   ^W^HJSI   H3||>g   p*M 

fJIT    n3l-cJg    +5J   Hliälg    H5lä)g P  (T) 

!1 6,   , 
JÄI    H3(-Jg    H

5!-a)g    + 77   Hl|-Jg    H7(f|gjpÖ(.)+... 

(51) 
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1 
1 Substituting the results from Eqs, (50) and ($1) into Eq. (U9) and 

collecting terms, we have 

R„CO ■ M g I + M^j H2g p + -g- H^g pH + 

+ 2(M2 - M) (H^ p2 + ^ h^g2 H3g
2 pU + ... j 

For large M, the terms multiplying M in Eq„ (52) may be neglected in 

2 
comparison with those multiplying 2(M - M), since in general the order 

of magnitude of internal terms multiplying p  is generally the same» Also 
  2 

/  2 \ —2 
the term (Mg ) in Eq. (52) is simply the y term in Eq. (US)« From 

Eq.  (1*7), 

(52) 

a 2 = 2coff(M2 - M) 

oo 

-U      2 2    2 2      k 
Hlg

UJ p^dT + jj Hlg    H3§   | p4dT 

N M 

(53) 

For the linear system for small signals,  from Eq,   (1*9),  Reference 3, 

we have _ 00 

oZA
2 * 2^ M2 K1* N2 I p2dT 

0 

The definition of R2 yields 

1 <<l 
N M (5U) 

R2 = 

y0 ~ yL 'ZA (55) 
yA0 " 7AL      CZ 

Substitution of the results in Eqs.   (32),   (33),   (35),   (36),   (53) and (51*) 
g 

for small -^   results in the following expression. 
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1    H3g \ 
3Ü7=fH + ?7 

2  M  \ A6 
- -1/2 

Hjl  / A2 

N M l (56) 

In Eq.  (56) A2n is defined to be 

2n, A9. -      P    CO dT 
2n (57) 

0 

The alternative form of Eq.   (56) utilizing derivatives of g(e) is 

An inspection of Eq.   (58) reveals that R2 is less than unity for all 

g(e) for which 

H2n+ll!M
e>    =    a2n+1 g

L2n+^(e)   /    0 for n > 1      (59) 

The only function excluded from the inequality in Eq.  (59) is the linear 

function g(e) = ke, for which 

H1|f)g(e) = ogtl](e) - ok (60) 

and 

H2n+l(!l*<«) " CT(2U+1)
 ^<*> ' ° for n > 1      (61) 

Thus the linear processor is optimum because it produces a signal-to-noise 

ratio at the array output which is greater than the signal-to-noise ratio for 

any nonlinear processor. 

In the following section, the general results in Sections IV and V are 

evaluated for several types of nonlinear processors. 
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VI.  Evaluation of R, and R„ for Specific Nonlinear Processors 

A wide class of nonlinear processors is described by the general power 

law relation found in Eq. (62). Note that g(e) is an odd function of e. 

X e " for e > 0 

0 for e = 0 

-Kiel"1 for e < 0 

g(e) ■< 

From Reference 6, page 20, it is given that 

oo       2 

(62) 

1  " T k , e   x dx 

k-1 

1  2 2 ,k - 1U 

2n V 2n 
(63) 

0 

where (k)J is the general factorial function (k is not necessarily an integer)* 

The averages of the functions found in Eq, (UO) are calculated below. 

2 oo 

° — + 1 
- • ■     1        " io^j K     m+1 02        | m|, e g(e) = 2/    e K e             e    c%i de = —— a        2          Ixji 

V2n a V2JI 
0 

(6U) 

Also, 
CD 

t   ,2      ,|    „2    2B      1 
g(e)   -2      K   e       —, 

-\[2n a 

A"    2m „        2  | 
de - _ a     2 m - ?)J 

V2TI 

2oV        K'-   _2m „- |_      1 (65) 

The performance index R. becomes 

1 (fjJ mj 

(?"?lJ(m-|)i 
(66) 

The last term in Eq.  (66) is evident because of the identity (see Reference 

6, p. 18) 

/ m\.  I m     1\.       -w^mi 
(67) 

A4-21 



The result in Eq. (66) is plotted in Fig. 3c It can be seen that the 

maximum value of R. occurs for m ■ 1. However, the peak is sufficiently 

broad so that the value of m may vary between zero and three so that the 

value of L > .6, -Note that the value m ■ 0 yields the function which 

describes the infinite clipper. 

Next, the performance index IL found in.Eq, (58) will be evaluated 

for the odd-function power-law processor. The averaged derivatives in 

Eq. (58) are 

m 

V 2n o 
00 

gt3](e) = 2 K m(m - l)(m - 2 ) en'3 -±-  e 
J A/2n a 
0 

m 

2 
e 
2o* de 

J^o-^On-l)!?)] 
V2n 

gt53(e) =■ 2\  K mj m-5  1 
e ■*  — e 

2 
e 
2o* 

0 
(m - 5)J    V2n a 

de 

m 
2K  m-5 „2 ,   - w   ,\|m|. -= a ? 2 (m - l)(m - 3) p J 

(68) 

(69) 

(70) 

Using 

one obtains from Eq. (57) 

P(T) 
-oo IT I 

■  e (71) 

2n 1 

l2 
(72) 

Thus R~ becomes 

R2(m) * \{m - l)2 + \ ~(n- l)1* + ~r0 
108 180 

l)2(m- 3)2 
? + ... 

1/2 

(73) 
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Fig. 3 Performance Indices for Odd-Function Power-Law Processors 
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Equation (73) is evaluated and plotted as a function of m in Fig. 3. It may 

be noted that the series terminates when m is an odd integer, and converges 

rapidly when m is reasonably small. 

The maximum value of IU is seen to occur for m ■ 1, as expected. The 

peak of the function, however, is again very broad. 

Another processor function which has evoked some interest is the 

infinite clipper with a dead zone at high amplitude. The function is shown 

in Fig. U. 
g(o) 

-e. 

-1 

Fig. h   Infinite Clipper with High Amplitude Dead Zone 

In order to evaluate R. in Eq. (UO) we have 

f1 

V2n a 
en 

1 - e 

1 
2o? 

J 
e. 

e)2 = 2   |     -L- £    2? ^ . jO 
^ßn a 

Ok) 

(75) 

•7 

In Eq.  (75),  the normal probability function P(X) is defined by' 

X 

P(X) 1     e     2   dx 
V^ 

-X 

(76) 
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Thus the index R, is h 

y<o 

n2 

1 - 

P(«0 

For small a, Eq»  (77) reduces to 

a a (77) 

\M 
2^/2^ 

(a); a < < 1 (78) 

Equation (77) is evaluated and plotted in Fig. 5. 

It is evident from an examination of Fig. $ and Eq, (78) that the 

infinite clipper with high-amplitude dead-band is an extremely poor 

processor to use if the variance of input noise is large relative to the 

level at which the dead zone appears. For all values of a the device is 

inferior to a simple infinite clipper,, 

An expression for the signal-to-noise performance index may be written 

following the calculation of the required averaged functions found in 

Eq. (56). 

Hjggo 

2 
e 

2? de 

2 1 

1-6 (79) 

Also 

■Willis)-2!  "Will)4IHII•2 

0 

H2n(0) f(0) - H2n(a) f(o) 

n - 0,1,2,0.. 

In Eq. (80) f(a) is the Gaussian density function of the normalized 

variable a.    Since 

H (a) f(a) - (-if fCn](a) 

(80) 

(81) 
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Eq.  (80) becomes 

H2n*li!) *<e> - 2 Ho) - Ma) - 2 B2n(a) (82) 

The functions in Eq.   (82) are tabulated in Reference 8,    The performance 

index R- in Eq.  (83) is obtained by using Eq.  (56).    Note that higher order 

terms have been added to Eq.  (83). 

,2 

RgCa) 
1B2 

6\B, 

\k /B "2] 

108\B, 180 \B, 

w -±-(h\%\2 .     X   ^ 
,21 

liMB0/\B0J 100801B 

X♦ -U 

0 

M /B6\ 1     (B8 
720OO\Boj        75600\B0/ \B0/        907,200\BQ 

'B, 

1,815,000\B0j 

/B„\2/B, '2 

B0/        6,530,000\B0 

-1/2 

B 0' 

'10 
B * on» 

102 x 10  B 
(83) 

The series in Eq. (83) does not converge well for values of a < 1. 

For a » 0, the series is definitely divergent so that ^(0) = 0„ Results 

from Eq. (83) are plotted in Fig. 5. 

From Fig, 5, it can be seen that the performance of the infinite 

clipper with high-amplitude dead-band approaches that of the simple infinite 

clipper for large a ■ e^/a, as expected. Below a » 3, however, the 

performance indices decrease rather sharply, which indicates that the device 

has little utility as a processor. 
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Fig. 5 Performance Indices for Infinite Clipper 

with High Amplitude Dead Band 
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VII. Average Signal Output--Liusar^ Processors and Non-Square Law Detector 

In preceding sections it has been determined that the use of linear 

processors with a square-law detector maximizes both performance indices. 

In this section the performance of a non-square law detector with linear 

processors will be examined. It would be desirable to obtain expressions 

for the performance indices of arrays utilizing nonlinear processors and a 

non-square law detector, but the mathematical expressions become extremely 

cumbersome„ For this reason, the following analysis is limited as indicated. 

Since the use of linear processors with square-law detectors was optimum, 

perhaps the use of linear processors with non-square law detectors is not 

unduly restrictivec 

With reference to Fig. 1, the detector function y(x) is assumed to be 

an even function of x. The input x is Gaussian because the transducer 

outputs are all Gaussian, and the processors are linear. For the "on 

target" case, the signal components from each channel are completely 

correlated and the noise components are assumed to be uncorrelated. For 

the "on target" case x(t) becomes 

x(t) - xn(t) - M s(t) + M
1/2n(t) (8U) ^0 

where s(t) and n(t) are representative signal and noise time functions at 

any transducer output.    For the "off target"  case, the signal components 

are uncorrelated, and so are the noise components.   We have 

x(t) - x^t) - K^sOO + M^2n(t) (85) 
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The "on target" and "off target" array outputs are defined by Eqs. (86) 

and (87). 

70 - W^) » y(Ms + M1/2n) (86) 

jL - TG£} - TQF
2
» ♦ K^

2
») (87) 

Both y(xQ) and y(x.) can be expanded in a Taylor series around the argument 

VH   n and the averages taken as indicated in Eqs.  (86) and (87),    These 

operations yield 

° 2J hi 

...♦ S£ 736?7^) ♦...    (88) 
(2n)2 

and 

^2       .-AH      ■  M ^2 

yT - y^n"! ♦ &! y^V/2n) ♦ EC /V/2n) ♦ ... 
L 2J UJ 

<2n)l 

Only even order terras appear in Eqs«,  (88) and (89) since the average of 

odd order derivatives of even functions yield zero. 

The normalized signal output is 

f   ** = j sk y^Qt^n) 
<£)' . ^2: . k£__  (90) 

7L f   _jL sk yt2kW/2n) 
(2k)] k-0 
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For the square law detector, 

(Ay) 
1   .  (M2 - M)S 
A M(S ♦ N) 

(M-l) 
S + N 

(91) 

Thus the signal performance index is 

1    (Ay). 

N + S   k-1 (2k)! 
(92) 

7^SV
2kV/2n) 

^ (2k )1 k=0 

From Eq.  (26) 

MN 
y^V^n) - (if ■J-JW 7 (^Zn) *2k N 572 (93) 

With the relation in Eqe (93), Eq. (92) may be put in an alternate form: 

yd^n) 
00 

h- N + S    k=l 

Mk-1 + Mk-2
+  ... +1/S* 

(2k )1 
-I    H 
N iffr* 

(9k) 

k=0 S)il;l M^r '(H^n) 

It is evident from an examination of Eq. (9U) that only the first term of 
Q 

each series expression is not negligible for small values of w„ For small r 
values of rr we have 

N 

H   1     n 
y(M1/2n) 

1 MN /^(K^2!!) 1 «2® *»> -,   2  [& N 

y(M] ^ö 2      y(x) 

x = in 2n 
a2 = m 

2   W) 

(95) 
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The expression in Eq, (95) does not yield an optimum detector function 

y(x)e A demonstration of the validity of this statement is found in 

Section IX, in which R. is evaluated for different detector functions„ 
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VlII.      Signal-to-Noise Ratio—Linear Processors and Non-Square Law Detector 

For the purpose of mathematical simplicity, the signal-to-noise 

performance index R? is determined for small values of tj. 

Since x(t) is Gaussian Eq.  (26) may be applied to yield an 

expression for the autocorrelation function of the detector output: 

2 2 
ByW - *&f * fa °k y^W P2(T) ♦ fa o8 jpM(x) pV> * ... 

k=0 (2k).' 

The first term of Eq0  (96) is simply the square of the average array output, 

and all other terms represent the autocorrelation of the variational 

S      ' 
component of y(t).    Thus, for low values of TJ, R (T) becomes 

»'<,). f _i_ frf* J&Wtf P2V) (9?) 
M <2k,f 

Also 
09 

H* . y £  _i_ (M.)^ ^V/*n)2   ( PV) « (98) 
k=l    (2k)' J 

For the square-law detector (y » x  ), either Eq.   (5U), in which 

K = 1, or Eq.  (98) gives a*: ZA 00 

2      „        „2 „2 a. - 2 fl^lT IT   /   P^(T) dT (99) 

0 

The definition of R« in Eq*  (55) together with the first two terms in 

Eqs. (88) and (89) and also Eqs.  (3$),  (36),   (57),  (98), and (99) yield 

the expression for R«. 
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f    2    (tsi)2k-2  J*'^2»*  A& 
-V2 

o2 - MN 

x - M1/ 

^^         "             ••• 
A2 

-1/2 

An alternate form of Eq.  (100) is 

,   2 Hulll y^)2 ju, 2 H
6(|) ^2  A6, 

".Hjf)y(x)     A2 HJ5)J(X)       
A2 

-V2 

MM 

For the function y ■ x   it is observed that 

JW 

and thus 

yL   J(x) = 0      for     k > 1 

yf2k](x) - 0     for     k > 1 

(100) 

(101) 

For all other functions 

and thus 

jr     (x) / 0     for some k and x 

y[2k3(x) / 0     for some k 

Since all terms in Eqse  (100) and (101) are positive, y(x) - Kx   therefore 

produces a maximum value for R«, and the square-law detector is optimum with 

respect to output signal-to-noise ratio. 

In the following section, R, and Rg are evaluated for specific detector 

functions. 
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IX.,  Evaluation of R. and R2 for Specific Detector Functions 

A wide class of detector functions is described by the general power 

law relation found in Eq. (102). Note that y(x) is an even function of x. 

y(x) - K|x|m (102) 

"T2I—    „,,. 
Equation (63) is helpful in evaluating y (x) and y(x): 

« 2 / x  , m-1 
yT^- 2    Kxm-^ E"27dx=lf|   Kan2 2    (iii) I (103) 

J 'V2n ' 
0 

00 o 
-x m-1 

yl2J (x) - 2 j   K m(m - 1) xm~2 -i- e2^ dx -ifF K om~2 » P" llflj I  (lOU) 
J V2^ yn 

0 

From Eq. (95) we obtain R-On): 

R^m)**- (105) 

As can be seen from Eq«, (105) the signal performance index increases linearly 

with m. 

The higher order average derivatives are computed below. 

T x2 

yCU\x) - 2  K m(m - l)(m - 2)(m - 3) xm"U -~L, e" *? dx 
J Yin 
0 
r-.    . Eli 

-y| K oH» n(m - 2) 2 2 (S^i) J (106) 

——-— m-1 

yt61(x) -^f* am-6 m(m - 2 )<m - U) 2 2 (S-J-l) 1 (107) 

Also from Eq. (71) 

A 

A, 

2k  1 m   — 
k 

2 
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for the low-pass spectrum, and is less than r-   for other spectra. 

The signal-to-noise performance index from Eq0 (100) becomes 

8g(») - 
1 + nl (m"2)2 + -£l?  0n-2)2(m-U)2 

+
 E7 Ti ^m " 2) ^m " ^  (»n - 6) + 

-1/2 

(108) 

Equation (108) is evaluated and plotted as a function of m in Fig«, 6. 

The optimum detector function from the standpoint of signal-to-noise ratio 

is, of course, the square-law device, but the maximum is quite broad, as 

can be seen in Fig. 6. 

Another detector function is described in Eq. (10?) and shown in 

Fig. 7. 

y 3s 

-X. < X < x, 

elsewhere 

(109) 

—* T "T 
Fig» 7 Detector Function with Dead Band 

The following equations yield the results for the averaged function and 

the averages for the higher order terms found in Eq. (101). 

00 

Rxl - 2 
Van a 

x 
2a   dx i - pft (110) 

& where Pl-^is defined as in Eq,  (76).   Also, 
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Fig. 6   Signal-to-Noise Index R? for Various Power Law Detectors 
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>4»lfI '<«' -VF  "anlfl •" * 48 -V? HaJ^ •" *  0" 

If we let ß = -= , the performance index E, from Eq. (95) for small s? 

becomes 

h Is 
2 

y^ 
ß  for  ß < < 1 

V2n 1 - P(ß) 
(112) 

| ß2  for  ß > > 1 

The approximation for ß > > 1 is obtained by using the asymptotic expansion 

for 1 - P(ß) found in Reference 7, p. VIII. Equation (112) is plotted in 

Fig. 8. 

Using the result in Eq. (ill) with the general result for Rp in 

Eq. (101), we have 

\- 
2lH3

2(ß)       2   jH/tp) 2      1HgL<P) 
1 + TTJ 2 —p— + ^T3"~^~      — + " 

(2n)l n       ßT 

-V2 

(113) 

I««» 
Equation (113) has been evaluated with the help of the tables in Reference 8 

for six terms of the series.    For large values of ß the series converges 

slowly.    The results are shown in Fig, 9o 

Figures 8 and 9 show that the performance of the detector with dead- 

band compares favorably with that for the square law device in the region 

where    l<ß<2    or   1<   x /MN < U. 
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X.  Conclusions 

The investigation in Sections IV, V, and VI has shown that the selection 

of linear processors from a general field of odd-funcvdon processors is 

optimum from the standpoint of both performance indices, It is assumed that 

a square law detector is used in conjunction with the odd-function processors. 

The evaluation of the performance indices in Section VI for specific 

processors shows, however, that the array performance is not greatly 

degraded for certain processor functions which deviate significantly from 

the linear function» For the odd power law device, 

R. > 06 and IL > c?5 for 0 < a < 3 

However, performance was degraded greatly with the infinite clipper with 

dead band when the rms value of the signal plus noise was equal to or 

greater than the dead band level of the processor. The examples indicate 

that significant performance degradation occurs only when the processor has 

dead space or zero output for a significant range of the input variable. 

Thus the use of the infinite clipper (m =• 0) as an array processor 

does not cause significant degradation in performance, particularly in view 

of the other advantages treated in part in Reference 3» 

The investigation in Sections VII, VIII, and IX, which treats an array 

with linear processors and a general even-function detector, has shown that 

the square-law detector is optimum from the standpoint of output signal-to- 

noise ratio. However, other detectors, particularly power law devices with 

exponents greater than two, yield greater signal detection indices than the 

square law device. This is a distinct advantage since suppression of the 

"off-target plateau" in the typical directivity pattern is a desirable result. 

A4-40 



I 
As in the investigation with the processors, the optimality of the 

square law device with respect to the signal-to-noise index is not 

critical. For example 

R
2 £ »75 for 0 < m < 6 

1 
1 
i 

I 

The results for the dead-band detector are interesting in that 

performance comparable to or somewhat better than that for the square law 

detector could be obtained if the dead-band level of the detector is 

adjusted properly. For example 

R-j^ = 20$ and R2 = .93 if ß = 2 

Further work might include investigation of arrays with multipliers 

as detectors since suppression of the "off-target plateau" in the directivity 

pattern is certainly desirable for small-signal detection. The inclusion 

of non-zero correlation between noise inputs for different channels seems 

necessary, since noise cross-correlation degrades performance in this respect. 
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Appendix A 

The terms summed over m in Eq. (22), will be considered a remainder term. 

- (A-l) 

n 

i(t) - £ 
m=l 

22 2 2 
(n-m)[m-l]   %—— \  (n-m)[m-l] 

jw   g"  (0) e   dw - |w   g  (0) e   dw 

For contour C, w = A + jv , and for contour D, w = - A + jv where -* < v < °°. 

Rewriting Eq.  (A-l) we have 

F(A) ■I 
m=l 

[m-1] 
g      (0) lim 

A+jR 
(n-m) 

w 

2 2 
q w 

2 
e        dw + 

-A-jR 
(n-m) 

w 

2 2 
q w 

2    . e       dw 

A-jR -A+jR 

(A-2) 

Figure    A-l shows a closed rectangular contour defined by A and R. 

The integrals in Eq.  (A-2 ) are taken over the long sides of the rectangle, 
v 

^|R. 

V 

~=l 

w-plane 
A 

U 

Fig. A-l Closed Rectangular Contour 

Since the integral over the entire closed contour is zero by Cauchy's integral 

theorem, Eq. (A-2) may be rewritten in terms of the integrals over the short 

sides of the closed rectangular contour. 
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F(A) =   )     g      (0) lim 

m=l 

n M, r—, |«'1-AJ 

=)     g      (0)lim 

m=l 

A+jR                  2 2             -A-JR 
f       (n-m)   ££            f         (n-m) 
1      w            e        dw +    /        w 

2 2 a w 
2   . e        dw 

-X+jR                                  A-jR 

2 2         -I 

f        (n-m)              (n-m)] «~ 
i(jR)          - (-JR)          [ e       -    (2A) 
I                                          J . 

(A-3) 

From the above, F(&) - 0,  as long as A is finite, since 

,n -R' 
lim      R" e      =0 
R->°° 

1 
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It is given that 

where 

Appendix B 

gln](e) a I gN(e) f(e) de 

_oo 

(B-l) 

f(e) ■ ■= 2a 
'ffi o 

(B-2) 

Integrating Eq. (B-l) once by parts, we have 

00 00 

gtnJ(e) -g     "(e) f(e) 
[n-1]        Tll 

g      (e) flll(e)-de 

»00 _00 

00 

[n-1] ill -0-       I      (e) fLJ-J(e) de 

-JOO 

(B-3) 

In the same fashion, the right hand side of Eq. (B-3) may be integrated by 

parts another (n-1) times with the result found in Eq, (B-U). 

00 

glnJ(e)= (-if  g(e)fLnJ(e)de In], (B-U) 

—oo 

[n-m]        [m-1] 
The product terms of the form g      (e) f      (e)   always disappear because of 

Cm-ll 
the exponential nature of f      (e). 

By definition: 

,n 
21 

2 

dx' n 
►. (-DnHn(x) r 2 

(B-5) 

where H (x) is the Hermite polynomial of order n. Applying the definition n 

in Eq. (B-5) to the probability density function in Eq0 (B-2), we hav« 
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f[ni(e)= (_l)n a-n Hn(S) f(e) 

Combining Eqs„ (B-6) and (B-U) we have 

OP 

gCn](e)= |g(e)a-nKn(^ f(e)de 

—00 

g
Ln](e)--nHnif)g(e) 

(B-6) 

(B-7) 

Given below is a table of the coefficients of the Hermite polynomials 

up to order 10. I important recursion relations are also given. 

10 9 8 7 6 

- 

5 

L 

h 3 2 1 

1 

0 k/n 
/order 

1 0 

  
■  

1 0 1 

1 0 -1 2 

  

1 0 -3 0 3 

1 0 -6 0 3 h 

1 0 -10 0 15 0 5 

_    __ 

— -- 
1 0 -15 0 kS 0 -15 6 

1 0 -21 0 105 0 -105 0 7 

1 

1 

0 

0 

0 

-28 0 210 
 , ,, 

0 

0 -U20 0 105 

0 

8 

0 

630 

378 

0 

-1260 0 9h$ 9 

1 0 -U5 -3150 0 U725 0 -9U5 10 

Table B-l Coefficients for Hermite Polynomials 
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dH (x) 
H^(x) = xH (x)--2— (B-8) W'    n'     ^ 

- x Hn(x) - n Hn-1(x) (B-9) 

From Table B-l, for example, 

I (x) = x7 - 21 x5 + 105 x3 - 105 x Hr 
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Summary 

The detectability of signals consisting of Gaussian noise modulated by 

a periodic function of time is considered in this report. It is assumed 

that the modulation has a precisely known form. Detection is considered 

in detail for four different examples. These are: 

1, The spectrum of both the background noise and the unmodulated 

signal is white (uniform)j the receiving array consists of a 

single hydrophone, 

2, Same as (l) except that the receiving array consists of K 

hydrophones, 

3, The spectrum of the background noise is white}  that of the 

unmodulated signal drops off with the second power of frequency 

above a certain point. The receiving array consists of K 

hydrophones, 

h»    The spectrum of the background noise drops off with the second 

power of frequency above a certain point, the unmodulated signal 

spectrum is white, the receiver consists of a single hydrophone« 

In all of these cases the improvement in detectability is very modest. In 

cases 1, 2, and h the ratio of detectability index of modulated to 

1 2 
unmodulated signal is 1 + w b , where b is the modulation index which is 

less than unity. The results of case 3 are even less favorable« For 

cases 1 and 2 the structure of the optimum detector has been obtained; 

it turns out to have essentially the form that is used in practice. 
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I.  Introduction 

The signals that have been considered in most of the previous studies 

of underwater detection were assumed to be samples of stationary gaussian 

noise. ' f  '      However, in practice signals having a certain amount of 

deterministic structure are occasionally observed. Utilization of this 

deterministic structure by the detection system should, in general, permit 

greater detectability. In the present report the type of deterministic 

structure that is considered is a low-frequency amplitude modulation of 

the signal power. Such a modulation can be observed quite clearly in the 

signal produced by a ship with a rotating propellere The general 

appearance of such a signal is shown in Fig, 1. The signal appears to be 

Fig. 1 Amplitude Modulated Noise 

a random noise whose power varies at the propeller frequency. 

We assume in this analysis that the signal has a gaussian probability 

distribution with zero mean, and that the variance is a sinusoidal function 

of time itfhose amplitude, frequency and phase are known precisely. In practice 

the modulation is probably not exactly sinusoidal, and even if it were, 

its amplitude, frequency and phase would be unknown a priori and would have 

to be estimated from the signal. Thus the situation that-is analyzed is 

considerably more favorable than the true situation. The analytical results 

can, however, be considered as providing an upper limit on the attainable 

detectability - an upper limit which cannot actually be reached in practice. 
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II.  Detection of Gaussian Signals in Gauasian Noise 

I 
I 
1 

The problem of detecting gaussian signals in gaussian noise has been 

studied extensively in the literature. '  The most complete results are 

probably those of Middleton.  Middleton takes the point of view that the 

received signal is given by 

x(t) - y(t) + n(t) 

where y(t) is the signal at the "transmitter" and n(t) is the noise. 

Although the received signal is usually observed continuously it is 

convenient to assume that the signal is sampled. In this case Eq, (l) 

becomes 

(1) 

y + n (2) 

where 

x = 

x(tx) 

x(t2). 

x(t ) 

y(tx) 

y(tn) 

n = 

M\) 

»<*h>j 

The samples do not have to be taken at successive time intervals; in 

fact the idea of signal samples extends directly to the simultaneous observation 

of several different signals« Thus, if signals received by an array of 

K hydrophones are to be considered, the signal and noise vectors of Eq. (2) 

would be of order n - mxK , where m is the number of time samples taken on 

each of the K hydrophones0 

In general the samples are not independent. Thus, if y_ is assumed to 

be a gaussian variable, then the n-fold probability density function of y_ is 
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vil)' fvsfe^ 
- * Z ?-\ 

0) 

where P is the covariance matrix of the transmitted signal samples; that is, 

the ij element of P is given by 

I PI is the determinant of P and y is the transpose of y. Similarly the 

n-fold probability density of the noise is given by 

q(n) 
(V^)nlQl1/J? 

l ' -l 

(U) 

Hence if signal and noise are independent gaussian processes the probability 

density function of the received signal x, given that there is a transmitted 

signal, is 

f(x/y) 

1    '/      \-l ■jx (P+Q) xx 

T7F72 V2n  fdet(P + Q)| 

If there is no transmitted signal, the probability density of the received 

signal ia simply that of the noise, i„e., 

(5) 

f(x/o) -     1 -75 

1  ' -1 
f 5 2. i 

(6) 

Hence the likelihood ratio is 

*x) 
f(x/z) 

f(x/0) 

det Q 

det (P + Q) 

1/2 -Is'lw^-sfls 
(7) 
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In the threshold detection case the signal-to-noise ratio is generally 

very low, so that the elements of the P matrix are all very much smaller 

than the corresponding elements of the Q matrix. In this case Eq. (7) can 

be simplified as follows: 

1/2  r -, 1/2 

The coefficient 
det Q 

det (P + Q) det [I + P Q"1! 
(8) 

It can be shown (Middleton, Chapter 17 ) that for any arbitrary matrix A 

and arbitrary scalar variable "X 

det I-^A\=exp£(-l)m+1£trAm (9) 

m=l 

This expansion is valid so long as for the largest eigenvalue X. of A the 

inequality >_K < 1 holds. (The "tr" in Eqc (9) means "trace," the sum 

of the diagonal elements of the matrix.) 

Applying Eq. (9) to Eq. (8) we set tf= 1 and A = P Q"1. If the 

signal-to-noise ratio is small all eigenvalues of P Q~ will be less than 

unity, so that Eq„ (9) is valid. Hence the coefficient becomes: 

det Q 

det (P + Q) 

1/2 

exP< 

00 

-|>_>y m+l 
tr (P Q^f 

m 
m«=l 

•ix2 

■ e 
- Itr I S"1 + Tj tr(E 2"1) - •• 

(10) 
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The exponent in Eq. (?) may be expanded as follows: 

*«' 
(P + Q)"1^"1 

,-1 -1 -1 s a"1 |(i ♦ t a",L) -i 

1 vV1 
5 £ a I - P Q'1 + (P Q"1)2 I x 

| x'cf ^ Q_1x - | x '(f1?  Q_1P Q_1X + ...  (11) 

For small signal-to-noise ratio the higher-order terms become negligible 

relative to the first term. However, instead of discarding all the high- 

order terms completely, it is desirable to retain the second term 

approximately by replacing it by its average value, where the average is 

taken for signal absent. Thus 

i j 

i tr (PCT1) 

i J 

(12) 

where a. , is the ij element of Q P Q P Q . 

Combining Eqs. (10), (11), and (12) with Eq. (7) yields then the 

result: 

*(x) ■» expi i xtf1? Q_1x - | tr P Q"1 - jj tr (P Q"1)2 + ... (13) 

In the standard likelihood-ratio test the likelihood ratio is compared 

to a threshold Kj if the threshold is exceeded it is decided that a signal 

is present. Hence the conditional false alarm probability a is the 

probability that t{x)  > K if in fact no signal i3 presentj- the conditional 

miss probability ß is the probability that £(x) < K if a signal is, in 

fact, present. It is usually more convenient to consider the log £(x); thus; 
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Po(u) du 

log K 

ß = /  p1(u) du (1U) 

log K _oo 

where u = log ■t[x),  p (u) and p,(u) are the probability densities of the 

log of the likelihood ratio for signal absent and for signal present, 

respectively. 

For small signal-to-noise ratio, p (u) and p.(u) corresponding to the 

likelihood ratio of Eq. (13) will be approximately gaussian as a result of 

the central limit theorem. In this case p (u) and p_(u) are completely 

determined by the mean and variance of log ^(x). From Eq. (13) 

2 

(log 4(xj> « I (x'cf1]? Q_1x) - \ tr P Q'1 - \ tr (P Q"1) 
N 

| tr Q_1P Q_1Q - \ tr PQ"1-^ tr (P Q"1) 

2 
T.  tr ( P Q"1) OS) 

[log *(x) ) -£eg 4(x)) 
tt N 

-i .A 

| tr p Q"1 + | tr (P Q"1)   - \ tr (P Of1) 

-| tr (PQ-1) +£ 
_2 

tr (PQ"1) 

1       l        1 * 
- t tr (SÄ ) ^ (PQ ) + 

£ tr (P S"1)' 

- i tr (P S X) 

tr (P Q"1) 

| tr P Q'1 + i tr(P Q"1) 

(16) 
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Similarly 

(log *fe))  -i tr (P Q'1) 
~ S+N  u 

log 4(x) - (log *(x))  - | tr (P Of1)' 
/S+N  x    " / S+N 

(17) 

(18) 

Thus p (u) and p.(u) are gaussian distributions having the same variance, 

and their means are symmetrically located from the origin by a distance 

1 1 2 

■r tr (P Q    ) .    Substitution into Eq.   (1U) then yields 

a 
1 
2 i-®(if (p*-1)2': 77=^%) 

\ (/tr  (Pä"1) (. 

(19) 

where 

Vn 
-t dt 

It is clear by inspection of this equation (for instance with K ■ l) that 

a and ß both decrease as    tr (P Q~  )     increases; thus    tr (P Q~ )      can be 

considered the figure of merit of the detection system. 

It is also interesting to note that the "output signal-to-noise ratio" 

may be defined by r v t 2 

Klog *(x)>     - <log ^(xj> 

N [log J(x)] ) - (log *(x) 

I tr    (P Q)2 (20) 

N 

1 -1 c 

Thus p- tr (P Q    )   can be identified with a performance index via a 

suitable definition of signal-to-noise ratio.    This index is computed for 

a number of specific examples in the following section. 
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III. Detection of Amplitude-Modulated Noise Signals 

An amplitude-nodulated noise signal of the type pictured in Pig. 1 

can be written in the form: 

y(t) - f(t) z(t) (21) 

where f(t) is a deterministic modulating function and i(t) is a stationary 

random noise function. Then the general element of the P matrix i3 

- f(tt) f(tj) (%(tt) a(tj))- f(tt) f(t^) K%(t± - tj) 

(22) 

where R (t. - t ) is the autocorrelation function of the stationary 

noise z(t). 

Case 1; Single Hydrophone, Uniform Spectra for Signal and Noise 

If the noise is white and stationary, the Q matrix is a diagonal 

matrix and can be written in the form 

S-NI (23) 

where I is the unit matrix. 

Also, if the signal spectrum is uniform, and if one considers only 

one hydrophone, then 

\{\  - Vj) - S 613 (2U) 

where S is the signal power in the unmodulated signal and 6. . is the 

Kroneker delta; 6..  =1,  6.- - 0, i / j.    Then the P matrix is diagonal, 

and its general element is 

Pii " S f2(ti> (25) 
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The matrix (P £ ) is then clearly also diagonal, and its general element is 

,2 

N 

so that 

[(PQ"1)2]  - SAV .       (26) 

2    2 n 

tr (PQ"1) -'S. V fU(t.) (27) 

To perform the summation a particular modulating function must be assumed. 

In order to provide a fair comparison between detection of modulated and 

unmodulated signals, the modulating function should be such that the average 

noise power is the same with modulation as without. Hence let 

f2(t) - 1 + b cos oat (28) 

The modulating frequency is assumed to be relatively low so that 

a(t.  <- t, ) < < 1. Equation (27) becomes 

n i 
N 

tr (P Q""1) - ^2 Y    (1 + b cos wt Y 

i-1 

T 
S    ( 

AS —*     I (1 + b cos cot) dt 
AN J 

0 

where A is the time interval between samplesj i.e., A = t. . - t.« 

AN '     '    N 
1 ♦ \\ (29) 

if the observation interval T ■ nA lasts for a large number of cycles of 

the modulating function, so that off > > 1. 
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1 

If there were no modulation, b = 0. Thus the ratio of detectability 

,    -l 3- index, tr(P Q ) , of modulated to unmodulated signal is 

r-1*^ (30) 

! 

I 
I 
1 

Since b cannot be greater than one, it is Böen that the improvement in 

detectability is rather minor» 

This result would appear to violate intuitive concepts,since practical 

experience with signals of the form shown in Fig, 1 indicates them to be 

much easier to detc-.ct in a noise background than steady noise signals. 

However, this is true only if the signal-to-noise ratio is quite large. 

For the threshold situation considered here, where the signal-to-noise 

ratio is much less than unity, the result given in Eq. (30) will also 

properly describe the practical detectability, 

_ The Optimum Detector 

The optimum detector is a likelihood-ratio detector; i,e», it performs 

the operations described by Eq, (13 )u The only term of that equation 

1 ■ -1  -1 
containing the signal is the first term * 3C Q P Q x ; the ether terms 

are constants. For the white-noise, white-signal-spectrun, single- 

hydrophone case considered hero 

11 2 

\ zsr1* pf1* - \ 4* y(i + b ccs "-v 
N 

T 

x(\) 

m —^~ /  (1 + b cos cot) x (t) dt (31) 
ZSTtJ 

0 

Thus the optimum detector squares the signal, multiplies it by the modulating 

function and than integrates the result.    This is shown diagrammatically 

in Fig, 20 
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:(t) vj / 

Squarer 

«>- fat 

1 + b cos cot 

L 

i tr(P Q"1) + i tr(P Q"1) 

Fig„ 2 Optimum Detector 

The part of the detector shown in3ide the dashed box can be 

implemented by a linear filter matched to the modulation envelope.  Thus 

the optimum filter has essentially the form that one would use intuitively 

on a signal of the form shown in Fig, 1. 

Case 2; Uniform Signal and Noise Spectra, Hydrophone Array 

Here we assume that there are K hydrophones in a three-dimensional 

7 
Isotropie noise background. For such a background Faran and Hills have 

shown that the cros3-correlation function for noise picked up at elements 

separated a distance d ■ CT , where c is the velocity of sound, is 
s 

S 

RCS-O 
2T 

R (T  ) d? (32) 

3 

where R (T) is the autocorrelation function of the noise at any one 

hydrophone. 
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For white noise 

R'(T)~ JL 6(T) 
2W 

(33) 

where N is the noise power and W the band width. 

Hence 
1 • +T 

S 
.    1 

6(T ) dT 
UVfc. 

S 

f 
N for 

s 
\ 

N for 
ewr s 

0 otherwise 

_T  < T < T 
8        S 

T=T   or T«-T 
a        s 

Oh) 

If white noise of infinite bandwidth but finite power is assumed, W-yoo 

so that R(T,T ) ■ 0 for all T / 0. However 
S 8 

R(0,0) = N. (35) 

Thus Q is a diagonal matrix of order m = K. 

The elements of the P matrix are computed under the assumption that 

the array is steered "on target," since this gives maximum detectability. 

Under these conditions the general element is 

P.. ■    S f  (O for  |i - j |- m,2m,3m...Km 

otherwise (36) 

where m is the number of observations and K the number of hydrophone elements. 

Hence the diagonal elements of the matrix (P Q    )    are 
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(PQ-1)]    -itAtJ 
li IT x 

K 3 «S*> N 

H 

for   1 < i < m 

for   m+1 < i   < 2m 

for    2ml < 1   < 2m 

S2    L 
K Sj r^^,)       for    (K-l)m+l <  i  S Km 

Therefore 

^S2 
m 

tr (PQ"1)    -K2^^^) (37) 

i«l 

If we again let    f (t. ) ■ 1 + b cos a>t.    and replace the summation by an 

integration, we obtain 

T 
2       2 r 

tr (P Q"1)    = K2 2*      (1 + b cos cab) dt 

0 

= K2T    S?(1 + £|aAs2|1+£j 
A   N2 1 2 I N2 1 2 I 

,1 
Thus the ratio of detectability index, tr (P Q ) , of modulated to 

unmodulated signal is as before 

,2\ 

(38) 

r ■ 11 ♦ (39) 

Also it is clear that the optimum detector would consist of a filter of the 

type shown in Fig. 2 attached to each hydrophone, with the outputs of all 

the detectors summed to give the total output. 
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Case 3t Markov-Type Signal Spectrum in White Noise 

In this case the power spectrum of the unmodulated signal is 

a + co 

where S is the signal power. The corresponding autocorrelation function is 

-a|x| 
R (T) = S e (10) 

For the moment consider only a single hydrophone. Then, with modulation on 

the signal the general element of the P matrix is given by: 

-ajt.-t | 
Pij ■s f(V f(Ve 

- S f(tt) f(tj) 
li-j 

(la) 

-a(t.+1-t )   -aA 
where p ■ e ■ e   and where A is the time interval between 

samples as before. Also 

Q - N I 

-1 
as before. Thus the matrix P Q  is equal to 

IS" 

h2 pfxf2 p2flf3 
p3Vu . . .   Pn-\*n 

"Vi f2 x2 pf2f3 Aft •    »   • 

s 
N • 

« 
• 

Pf3f2 f 2 

3 pf3fU •    »    • 

_pn~Vi • •          n 'n2 

- 

where f. is shorthand for f(ti). 

A5-15 



Then 

2      2 
(P Q"1) ■ % 

2^fi2p2(i-l) * 

i-1 

2 n 

X 

^fi2p2(2-i)+^fi2p2(i-2) 

1-3 

X 

i-1 

y     f, 

x     x 

- 3 n 
£fi2p2(3-i)+£fi2p2(i-3) 

1-1* i-1 

L   • 
where only the diagonal terms have been worked out in detail»    Thus we 

obtain 

2        2    n r 3 
tr (PQ-1) -S- y 

N    H 
3-1 

2V     2    2(j-i) 2C^       2 2(1-3) 
j<L_ji ü    «LJ     i 

i-j+1 i=l 

-J-J f2(j 
ITA ' 

4-?/ f2<! 
ITA ' 

s T 

f f2(t) p^^dt +[f2(t) p2(t"s>dt 
0 s 

B T 
« -2a(s-t)        f ,, -2a(t~s) 

r(t) e dt +/ r(t) e dt 

s (1*2) 

We again assume that f (t) - 1 + b cos cot* The integrations involve 

considerable algebra, but are otherwise straightforward. If all high- 

frequency terms are ignored - i„e„, if we assume as before that cSE > > 1 

the result is 

N A a \   co + Ua 
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and therefore, the detectability index ratio of modulated to unmodulated 

signal becomes in this case 

2 2 
r - 1 ♦ \* b „ 

w + itf 
(Ui) 

This result is actually less favorable than the one for a white signal 

spectrum, which it approaches for a-v>   or for co-^0 ; in other words, 

if the modulating frequency is much less than the width of the signal 

spectrum. 

This result extends directly to the multiple array case. A3 was shown 

under Case 2, the Q matrix is still diagonal, and if the array is steered on 

target the P matrix is a K x K array of m x m identical submatrices of the 

type considered above for one hydrophone 9 Thus we obtain directly for an 

array of K elements that 

tr(PQV = K2^(i + -f^] as) 
NVa \       of + Uar\ 

The detectability index ratio is then again given by Eq0 (kh)t 

Case h:    Uniform Signal Spectrum, Markov-Type Noise Spectrum, Single 
Hydrophone 

This is the only remaining case for which results can be easily 

obtained. The P matrix is diagonal and has the form 

(U6) 

n J 

I 
A5-17 



The Q matrix is 

Q    =    N 

1 P 

P 1 
2 

P P 

2      3 U 
P      P P 

2 3 
P     P P 

n-1 

.. P 
n-2 

2 n-3 
P      P      ...  P 

n-1 n-2 
P      P ... 1 

(U7) 

where    p ■ e"       as before. 

The inversion of the Q matrix is fairly easily accomplished; the 

result is 

~1 -p 

2 -p        1 + p      -p 

Q 
-1 

8(1 - p') 

-P       1 + p     ~p 

..p 

-p 

(W) 

Hence 

M 2 2 

N2(l -p2)' 

. IA 2. 2 2 
fl   + fl f2 p 

. 2. 2 2      _ Ur 2 f    f 2_ 2 2 
2    1 P 2 '-1-      p  ' " ~2 f3 p 

-f3
2f2

2p2 ♦ f3
2(l+ p2) - f3\

2p2 

2        2 2 2 
•fn fn-l p    + V 
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where the off-diagonal terms are not shown. Finally, we obtain 

1 2 S2 

tr(P Q-1) 

J<2(1 -P2) 

n-1 

Z 
i=2 

n-1 

<iu ♦ <«u ♦£<>♦>*>-p'EVr^ 
i-1 

11 

-p2 L *i\-i 
i-2 

This result may be simplified by using 

*w,-^,*|j«i,>»**f?0'* 

fi-i2-fi2-!r<fi2>4'ifs<*i2"2-"< dt dt 

(50) 

Then 

2 2 
tr(P g'1) 

N2(l-p2) 

n n 

&*Pk>£^.A»£t^cO 
i=l i-1 

" (flU+ f
n

U)p2(1+ p2)+ p2A fn2~   (fn2)-f12~^fl2) n  at    n        x  at   x 

(51) 

For large n, and as A becomes very small, the only significant term in this 

expression is the first summation; thus 

to (P Q-1) ~   ^ * fy f   fc* 
r(i-p2)   i-1 

(52) 
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2 
For   f.    ■ 1 + b cos cot.    this result is identical with that obtained 

for case 1, Eq.  (27), except for the coefficient multiplying the 

summation.    Thus for T = nA very large so that    coT > > 1 , we find here 

that 
_   2        c2,_       „Ux      . .2 i 

tr (P Q-1) &    5  N1 T *  ' Bill (53) 
9 9 1 c   I 

N2(l - p2)        ' 

The ratio of detectability indices of modulated to unmodulated signal is, 

as for case 1, 

r - 1 ♦ \ <&) 

IV.  General Conclusions 

The four examples of the effect of modulation on the detectability of 

a noise-like signal represent the simplest cases for which results could 

easily be obtained. Other examples, such as a Markov signal in a Markov 

noise, etc., could also be considered. The computational complexity begins, 

however, to grow very rapidly, especially when hydrophone arrays are 

considered, and it is unlikely that the results would turn out to be 

qualitatively much different from those that have been obtained in the 

simpler examples. All these examples show that the improvement in 

detectability resulting from modulation of the signal is quite small, with 

the maximum increase of detectability index being no more than 50 %»    This 

value is obtained if the modulation index b is unity and if the modulating 

frequency is very much lower than the bandwidth of the signal spectrum. 

Also implied in all the computations is that the form of the modulation 

envelope be known precisely; this would not normally be true. Thus the 

modest improvement in detectability that has been computed is actually a very 

optimistic estimate, and the improvement that could be obtained in practice 

would be considerably smaller. 
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If the background noise is white, the results extend directly to 

multi-element arrays. The case for non-white background noise in a 

multi-element array has not been completely analyzed, but it is doubtful 

that it would turn out to be radically different from the cases that have 

been considered in detail« 

Qualitatively, the reason for the poor results that are obtainable 

is that in spite of the coherent modulation the detection is basically 

incoherent. This means that the detector is sensitive only to the power 

in the signal and cannot take into account detailed signal structure. The 

effect of the amplitude modulation is simply to increase the signal-to- 

noise ratio above the average at certain times and to decrease it at other 

times. The detector can take advantage of this by increasing its gain when 

the signal-to-noise ratio is high, and by decreasing it when it is low«, 

However, even if full advantage is taken of the power fluctuation, the 

detection cannot actually be as good as that which would be obtainable on 

an unmodulated signal having a constant signal-to-noise ratio equal to the 

maximum occurring during the modulation cycle. Thus, since the modulation 

peak cannot exceed the average value, the maximum improvement in 

detectability cannot exceed a factor of 2; for sinusoidal modulation it 

turns out to be a factor of 1.5« 

In view of the foregoing discussion it seems clear that major 

improvements in signal detectability can only be obtained by some form 

of coherent detection. This would require that the detailed structure 

of the signal b3 taken into account. There is some indication that 

coherent wave patterns resulting from machinery noises, banging of 

snorkel tubes, etc., might be found at the low end of the signal spectrum. 

A suggested avenue for further study is, therefore, the investigation of 

these lower-frequency coherent signalse 
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List of Symbols 

any matrix 

a.i .1 ■ general matrix element 

a ■ break frequency of first-order Markov spectrum 

b ■ modulation index 

c ■ velocity of sound in water 

f (t.) = f. ■ modulating function 

f (x/y) ■ conditional probability density of x given y_ 

G (a) = power spectrum of unmodulated signal 

K ■ number of hydrophones 

K "   likelihood-ratio threshold 

l(x)    ■ likelihood ratio 

m «■ number of time samples 

n = total number of samples 

n(t) = noise signal 

n = noise sample vector 

N ■ noise power 

P = signal c©variance matrix 

P. . = general element of P 

p(y) ■ probability density of £ 

Q = noise covariance matrix 

q(u) = noise probability density 

R (T) = autocorrelation function of unmodulated signal 

r ■ ratio of detectability indices 

S = signal power 
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T ■ length of observation time 

W = noise bandwidth 

x(t) ■ received signal 

y(t) ■ transmitted signal 

z(t) ■ unmodulated transmitted signal 

x ■ received signal sample vector 

v_ ■ transmitted signal sample vector 

A ■ time interval between successive samples 

TT  = time difference between hydrophones 

cü ■ frequency 

det A = determinant of A 

<( \  ■ conditional averaging operation - noise only present 
N 

/ ">   = conditional averaging operation - signal and noise present 
'S+N 

tr A ■ trace of A = sum of diagonal elements of A 

r 
x  » transpose of x 

! 

I 
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!_. Introduction 

The object of this investigation is to obtain a realistic estimate of 

the cost in target detectability of clipping the outputs from an array of 

hydrophones prior to data processings The problem is approached by considering 

the performance of likelihood ratio detectors operating on clipped and on 

undipped data. Likelihood ratio detectors are chosen because they are known 

to be optimal under reasonably general conditions» Data processing is 

presumably accomplished by digital means so that the hydrophone outputs must 

be sampled«, 

Results have been obtained only under the following assumptions: 

(1) Signal and noise are both stationary Gaussian processes, 

(2) Signal and noise spectra are flat over a frequency band 0 <: f < W 

cps and vanish for f > W. 

(3) The noise disturbances received at different hydrophones are 

uncorrelated (hence, because of (l), statistically independent). 

(U) The signal to noise ratio at each hydrophone is small, 

($) The array of hydrophones is steered on target. 

(6) The sampling period is -^g seconds for the clipped as well as the 

undipped system, 

The second of these assumptions is probably the least realistic. It 

could, in principle, be relaxed, but only at the expense of greatly increased 

computational complexity,, At the present time it does not appear that the 

additional insight thus gained would justiiy the effort. 

If assumption (2) is satisfied, the disturbance (signal plus noise) 

received by each hydrophone is completely characterized by a series of 

samples taken at intervals of vsj seconds0 The continuous signal can be 
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reconstructed without error from the samples so that use of the samples in 

place of the continuous signal involves no loss of informationc Furthermore, 

assumption (l) in conjunction with (2) insures that the samples are 

statistically independent« 

If the samples are clipped they remain statistically independent^ for 

functions of independent random variables ere independent random variables» 

It is therefore only necessary to consider the detection problem for a single 

sample from each hydrophone. Extension to the 2TW samples that will be taken 

in T seconds is a trivial matter. 

In evaluating the results of the present analysis it is necessary to 

keep in mind that the optimal processor in each case is presented with 

sampled data. In the undipped system this represents no loss of information 

for the reasons indicated above. The clipping operation-, on the other hand, 

changes the original spectrum defined in (2) to one that does not vanish 

beyond any finite frequency. Sampling at intervals of -sr? seconds (or at any 

other finite rate) therefore may involve some loss of information• Hence, 

if one does not regard the sampling at intervals of TJTJ seconds as a fixed 

constraint, the performance of the clipped system might be improved. The 

price for such improvement is basically the requirement of greater bandwidth 

(or sampling frequency) in the data processing systemc 

II.  The Likelihood Ratio Detector 

The instantaneous value of the likelihood ratio is the quantity A. 

defined by <P{«r/S)> 

A-  SL (1) 
P(V/0) 
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: 

P(V/S) is the conditional probability that the sample set received by the 

M hydrophones assumes the value V when the signal component is known to 

have the value S, V and S are M-dimensional random variables (V1,V,),„,.v'M) 

rand (S,,S2jo.«SM) respectively. The notation ^ / indicates an averaging 
S 

operation with respect to the probability distribution of the signal. 

P(V/0) is the conditional probability that the received sample set assumes 

the value V when signal is known to be absent» 

The likelihood ratio detector operates by deciding "signal present" 

if A exceeds a certain threshold value and ''signal not present" if f\ 

falls below the thresholds A measure of performance can therefore be 

obtained by comparing the change in the average value of A brought about 

by the appearance of a signal with the typical fluctuation about the average 

value. Under assumption (U) the fluctuation is almost entirely due to the 

noise and one therefore arrives at the following figure of merit. 

I 
R-JJuAl (2) 

D(A) 
A E(/\) is the change in the expectation (mean) of A. due to the signal 

and D(/\) is the standard deviation of A.in the absence of signal,, 

The quantity R will now be computed for both the clipped and the 

undipped instrumentation0 

III.  Clipped Data 

If the hydrophone outputs are clipped and there is no signal, all 

possible combinations of (V, ,..,VM) have the same probability. Hence 

P(V/0) - 2~M (3) 
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Thus the denominator of A is a constant independent of V. Now 

PC^ - t I, v2 - ±i,cc vM - ±1)  ■ 

(x_ +s f        (x2+s) Cya)' 
2N 2N 2N  1   dx,   •«•!    dx, e e ... e (h) 

to*fA0 

where N is the average noi3e power at each hydrophone and use has been made 

of assumption (5), which Implies that S--S2",., -SL.-8, The clipping 

levels have been written as i 1, obviously without loss of generality. 

Using the Gaussian property of the signal, the numerator of A. can be 

written in the following form: 

(pfl^ - ii, v2 - ti,...vM = tij) 

co o> oo 

s 

2  (xjs)2    (ys)2 

 1 cbc • • • I dXj.  ds e  *> e      e.. e 

»mPG5{       {   i (J) 

£ is the average power of the signal whose mean value is taken as zero. 

The integrations in the various x. are all identical and can be carried out 

separately. With the change of variable 

(x, + s)   - 
_i / (6) 

2N 
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I 
I 
f 
1 
I 
[ 
I 
] 

1 
I 
I 
1 
1 
I 
I 
I 
I 
I 
I 

one obtains 

V2nN 

op      (xL+s f 

2N . 1 
CX.    "  --2- 1   V7 

e"y   dy 

- -'s 

V2N' 

1+    1   Im    ~v2 

0 

e '    dy 

1  +    1 
2 VT 

8 1/    S 3        1 
—       ceo (7) 

Thus Eq„ (5) becomes 

(Pfrj - tl, 72 - t l,...VM-tl)) 

-ty2 
oe     2 

s 

V&öT 
ds e 25 

J» 

Vn* 0 

3     1 
11 s  \ 

2 V2U ■*fiHI "' 

K M-K 
|Vn_ __s_ + 1/ s 
2  V2N  %2N 

(8) 

K is the number of hydrophones having positive outputs. Under the stated 

assumption it is clearly immaterial which of the hydrophones have positive 

outputs• 

Expanding the two bracketed expressions in the integrand of Eq0 (8) 

I   s 
according to the Binomial law and retaining only terms up to the power | — 

one obtains 

(P(7X - t 1, V2 - t 1,... VM - t 1)) - 
S 

V2S 

-M/2 
<x>     2 

s 

V2^ 
ds e *l$ \M 

-00 

K(K-l) + (M-K)ftMMj . K(M-K) 

M-2 2 
3 VF 

T "2N 

Therms in higher powers of —a; are ignored because of assumption (U), 
V2N 
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K(K-l) ♦ (M-K)(M-K-l) m K(M-K) 
2N 

Thus from Eqs. (3) and (9) 

(9) 

/Y-l + § K(K-l) ♦ (M-K)(M-K-l) m  K(M_K) s 
N (10) 

In the absence of signal the probability that K hydrophones have positive 

outputs is simply 2" 7f> !r'\'j"yi' ° *n the presence of signal the probability 

is 

K(K-l) *  (M-K)(M-K-1) m K(M_K) >-M    BJ      J i * 2 

I 
Hence the quantity A E(A.) introduced in Eq. (2) is given by 

M 
AE(/V)-£ 

K»0 

r 

-I K(K-l) ♦  (M-K)(M-K-l) _ K(M-K)" 1 
N > x 

,-M MJ 

(M-K)J KJ    "  - 

K(K-l) ♦  (M-K)(M-K-l) m mm&)] S 

2 J  N 

M 

- 2' •MZ 
K=0 

M.' 

(M-K)J KJ 

K(K-1? +  (M-K)(M-K-1) _ K(lwcj 
N 

♦4 
n 

K(K-l) +   (M-K)(M-K-.l) _ K(M_K) 

2 

< 2 
JL 
N 1 

(11) 

The K sum can be evaluated without great difficulty if one recognizes by 

inspection of the binomial expansion for (l + I)       that 

M 

I 
K"0 

MJ 

(M-K)J KJ 

,M 
(12) 
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Consider first the coefficient of *■ in Eq. (11) 

M 
2-ny       m 

£Q  (M-K)l KJ . 

K(K-l) ♦ (M-K)(M-K-l) m  K(M_K) 

, ,,-M M,' 2 
M M-2 M-l 

y L_ +7 i 2y i  
^2 (M-K)i (K-2)i j^0 (H-K-2)J KJ   ^ (M-K-l)J (K-l ).» 

IS 
_• v_ 

(13) 

The three sums will be evaluated separately. In sum (T) the change 

of variable K-2 ■ j leads to 

M-2 

£Q (M-2-j)i ji (M-2)j 
by Eq. (12) 

Again using Eq. (12 ) 

M-2 

© = E 
,M-2 

K=0 (M-2-K).
5 KJ    (M-2); 

Finally the change of variable K-l ■ j and use of Eq, (12 ) converts 

sum (5) to the form 

M-2 

© = z 
,M-2 

3-0 
(M-2-j)J a (M-2); 

Thus expression (13) vanishes. 

(1U) 

(15) 

(16) 
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Next consider the coefficient of 

M r 

2 L 
K-01- 

T]    inEq,   (11) 

2 
K(K-l) +  (M.-K) (M-K-l) m K(lM) 

2 

MJ 

(M-K)J KJ 

M 

I 
K=0 

2"ME I (M2 * ***+ ^ * M) MJ 
(M-K)J K«! 

M 
2-(M+2)£ rM(M_l} _ ^(M-K)" KJ 

M (M-K)J KJ 

M M-l 

z'^Wowf y —i— 8M(M-D 7 1  
j£0  (M-K)J KJ ^   (M-K-l)J   (K-1)J 

© 
M-l 

+ 16V    K£M-K)_ 
J^  (M-K-l)j  (K-l)J 

(17) 

Sums Qy and (5)   can be written down immediately from inspection of Eqso  (12) 

and (16) respectively: 

© 
^M 

MJ 

Ji-2 

(M-2)J 

(18) 

(19) 

Sum (6) requires some further manipulation: 

M-l 
© = V     [(K-l) * 11 [(M-K-l) ♦ 11 

g^        (M-K-l )J   (K-l)J 

M-2 M-l 

£   i     ♦  (M-l)7    1  
££  (M-K-2)J  (K-2)j ^  (M-K-l )J  (K-l )J 
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I 
1 
r 

L 

M-U M-l 

y —i— ♦ (M-DV 

j-o (M-u-ö)j a K=l (M-K-l)J   (K«1)J 

where j £ K-20 

Now from Eqs.   (12) and (16) 

(M-U)J      (M-2).« 

Finally, combining Eqs. (17), (18), (19) and (21) 

M r 
2-M^  K(K-l)» (M-K)(M-K-l) , g(K_1) 

K=0 

MJ 

(M-K)J IU 

(20) 

(21) 

[ 
j- M2(M-1)2 - | M^M-l)2 + i M(M-l)(M~2)(M-3) + M(M-l)' 

M(M-l) - -r M(M-l) + i (M~2)(M-3) + (M-l) 

| M(M-l) 

Hence, substituting into Eq0 (11): 

A E(/\) - -4 M(M-l) N 

(22) 

(23) 

The reader will note that Eq„ (23) does not contain terms of the order ~ ,. N 

The question therefore arises whether an error was not introduced when 

terms of the order —r, | were discarded in Eqc (9), for terms of this form 
A/2NJ 

IS? would yield contributions of order -—■  after integration over the signal 
\ ■ 

distribution. It is a straightforward though tedious matter to demonstrate 

?'2 
that the added terms of order N cancel so that no error arises. The 

details of this demonstration are carried out in the Appendix,, 
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The next step is the computation of D(/\) 

D(/\)- ^ECA2) - [E(/\)1 (2U) 

both means being computed in the absence of signala 

From Eqc (10) and the vanishing of (13) it is immediately apparent that 

E(/\)-l 

Thus only E(A^ ) remains to be computed^ 

M f 

(25) 

K=0 

E(/\2) - 2-M Y  Jl + 2    K(K-l) ♦   (M-KJ(M^l) _ K(M_R) 
S' 
Y> 

Ml 

(M-K)J K,' 

(26) 

By Eq. (12) the term in   -~ |   is unityc    The term in ~   is identical in 
/ ^ >2 

form with Eq.  (13) and therefore vanishes».    The term in   -4-     is identical 

with the corresponding term in Equ   (11) so that Eq.   (26) can be evaluated 

by inspection of previous results. 

Hence 

E(/V2) - l*-i M(M-l) 

D(A) =^VM(M-I)'^- 

iS\2 

1 (27) 

(28) 

Again it is necessary to show that no error is introduced by omission of 

/ s \h 

the terms of order —^r  in Eq, (9), This demonstration is carried out 
W2N| 

in the Appendix0 

The figure of merit for a single sample from each of the M hydrophones 

can now be written down by use of Eqs, (2), (23) and (28): 

R 1 stands for the single sample figure of merit in the clipped case. 

(29) 
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The generalization to the group of 2TWM samples observed in time T 

follows immediately because of the independence of samples resulting from 

assumptions (1) and (2).    If the figure of merit obtainable by processing 

dipped samples for T seconds is designated as R , one obtains 

R   -VTW1 - VM(M-I)' .-I" (30) en w 

IV c  Undipped Data 

The likelihood ratio detector for operation on undipped data has 

been analyzed in Report No. 3» As pointed out previous!/, no it formation 

is lost through sampling under the assumptions of the present analysis. 

Hence the results of Report No. 3 can be used without modification. 

Because of assumption (3) the array gain is simply Ms Therefore Eq. (30) 

of Report Noc 3 reduces to the simple form 

I  2nW  ' 

A(DC output)   5 -]EJL   $    Jf   dcü   . VWM4 (3D 
D (output) u m    N        |J N 

R   is the figure of merit for the likelihood ratio detector designed to 

operate on undipped data. 

By comparing Eqse  (30) and (31), one obtains the desired value for 

"decrease in detectability" or "cost of clipping" 

(32) 
R° . 1 VM(M-I) 
Ru "        M 

2 
The performance ratio given by Eq, (32) is evidently close to - for all 

but very small values of M. The fact that R /R =0 for M = 1 is du© 
* c u 

to the definition of "useful output" adopted in the analysis. The quantity 
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A E(/\) is the change in the average value of A. when a target appears 

that was not previously present,, It is not the difference between the 

average values of A. on and off target. Thus a single hydrophone operating 

on undipped data is capable of detecting the appearance of a target by 

notirg an increase in received power„ A single hydrophone opevating on 

clipped data obviously has no such capability, 

V,  Conclusion 

2 
The figure of approximately - for the "cost of clipping" defined by 

Eq. (32) is not unexpected» It was shown in Report No* 3 that the 

likelihood ratio detector designed for operation on undipped data is 

identical in performance with a standard power detector if signal and 

noise have the properties assumed in the present analysis. It car. be 

shown also (see e.g. Report No* h)  that a standard power detector operating 

on clipped data derived from an input ifhose spectral properties satisfy 

assumption (2) on page 1, has a figure of merit lower than that of a 

detector operating on undipped data by a factor of approximately —. 

What has been demonstrated here is that this degradation must be regarded 

as an inherent cost of sampling and clipping. No detector operating on 

clipped samples could exhibit less degradation in performance, On the 

other hand, a detector operating on a clipped continuous signal (or a 

signal sampled at a rate above 2W samples per second) might perform somewhat 

better (see comment in section I). Since any possible improvement is 

certainly limited to a factor of about 5 and the analysis of the continuous 

case is not simple, no attempt has been made to date to carry it out. 
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Appendix 

<* 
In Eq,  (10) A_ is represented by the first two terms of a power Mrlttl 

in •* .    Since L E(A.)   Eqs,  (11),  (23)1     has a lowest order term 

'<\2 
it becomes necessary, to investigate whether the proportional to N 

£* omission of terms of order   ~]    in Eq,   (10) causes any error in Eqc   (23 )0 

Returning to Eq.  (8) and carrying terms up to order 

an expression of the form 

I** 

IVSi 
one obtains 

(p^ - t i, v2 = ti„„ vM - t lj> 

oo 

,-M 

V2«J 
ds e 

s 

[i * («^i s + a.sJ) 
K r 

. -  (a.,s + a.^r) 
M-K 

-00 

where a.., a_ are numerical constants. 

Expanding the bracketed expressions as binomials: 

(PO^ -tl,T2-t !,,.„ VM - i l)>    - 

(A-l) 

00 

,-M 

V2"5' 
ds e     J 1 + K(a,s +  a^s   ) KI 

-JOO 

(K-2)J 2.» 
(a,s + aQs  ) 

KJ ♦  2*  (as + a sJ)   + KJ 

(K-3)J 3J (K-U).s l*J 
(a.s + a.s-3) 1 - (M-K)(a1s +  a3s3) 

(M~K)! 

(M-K-2).' 2i 
(ans + a.s  )   - (M-K) 

(M-K-3)J 32 

l 3 - 
(a^ + a.^) 

+      (Mil        US + a -3) 
(M-K-a)i hi   i     J 

(A-2) 
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Only terms of order s in the integrand are of interest for the present 

purposes. These are 

oo     2 

»41 

V2S* 
ds e -^ su jMdOL . a ♦   {**)*      . * . 2K(M-K) a.a_ 

(M-K-2 )J X 3  (M-K-U)l UJ X ^ 
_oo 

K(M~K)J    h . Kj (M-K)i 
a, + i> + _!L.a... 

(M-K-3)J 3J -1   (K-2 )3 (M-K-2)* U 1   (K-2)}    1 3 

. u  (M"K) a ** +   Kj    h 
(K-3)l 3<! -1   (K-U)J UJ ^, 

2"M0 /S KJ (M-K)ji 

i 
1 

_(M-K-2)J K|  (K-l)J (M-K-l)J  (M-K)l (K-2)J. 

1        .       1    . 

V3 

. (M-K-U)I U hi      (K«1)J (M-K-3)J 3.'  (K-2)J (M-K-2)* U 

(M-K-l)J (K-3)| 3J!  (K-U)l (M-K)J !*J 
(A-3) 

It is apparent from Eq0 (11) that the contribution of the above term to 

AE(A.) is simply 

M 

K=0 (M-K-2)J KJ  (K-l)j (M-K-l)J  (M-K)J (K-2)i 

1 1 

ala3 

(M-K-li)J Kj UJ  (K-l)J (M-K-3)J 31  (K-2)J (M-K-2)I h 

(M-K-l)J (K-3)i 32  (K-U)J (M-K)J hi 
(A-ll) 

Where factorials of negative numbers appear in this expression, the term in 

question is to be interpreted as zero* 
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It is immediately apparent from Eqs. (13) to (16) that the coefficient 

of a^a. vanishes. The coefficient of a. can be rewritten in the form 

MP-U M-U M-U 

£—fcrr= -E • ) 
) (M-K-H)J KJ kl £Q (M-K-U)J KJ 3J      ^0 (M-K-U)l KJ k 

12      3       Ul     (M-U)i 

Thus A E(Aj is unchanged by inclusion of the higher order terms. 

Furthermore, it is clear from Eq. (26) that the additional term of order 

in E(A^) is proportional to Eq„ (A-U). Hence there is no change s>2 

. N . 

inE(A2). 
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I.  Introduction 

An important class of sonar targets has the following two 

characteristics: 

1) The signal emitted by the target contains periodic components 

in a low frequency band 0 < f < W . The frequency of these periodic 

components is not known a priori. 

2) The high frequency portion of the signal emitted by the 

target (W< f < W.) has essentially the properties of white 

Gaussian noise amplitude modulated by the same low frequency periodic 

component. 

Since the ratio of total signal power to total noise power at the 

receiving array is likely to be low, the question arises whether these 

special properties of the signal can be used to improve target 

detectability. 

Utilization of the periodic property of the low frequency signal 

is theoretically attractive but encounters the practical difficulty that 

self-noise at the receiving array also has periodic components in the 

same general frequency range. In the absence of a priori knowledge 

concerning the frequency of the periodic target signal it would be 

necessary to monitor continuously the periodic components of self noise. 

A second possible procedure deals only with the high frequency band 

W. < f < VL and attempts to improve detectability by using the fact 

that the signal is amplitude modulated by the same low frequency periodic 

component. This possibility was investigated in Progress Report No. 5# 

which showed that the best possible detector of this type could in 

general provide only small improvements over a standard power detector» 
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The present report investigates a scheme that attempts to use the 

periodic low frequency signal component without requiring knowledge of its 

frequency or monitoring of the self noise0  This is accomplished by 

demodulating the signal in the high frequency range and employing the 

detected modulation envelope as a "local oscillator" which can then be 

cross-correlated with the low frequency component of the signal. The 

difficulty with this procedure is, of course, that the "local oscillator" 

signal is extremely noisy, 

II.  Problem Statement and Assumptions 

A block diagram of the proposed instrumentation i3 shown in Fig. 1. 

transducer 
output 

L.P. 
filter 
(0,W  ) W(t) ■ a, (t)*A. cos 2nf't+A2cos 2ftfgt 

multiplier- 

Ww(t)z(t) 
B.P. 

filter x(t) ■ n2(t)+s(t)[l+a cos 2nf,t]   \\J 

square r 

y(t)=x'(t) Z(t) 

Av. 
filter 

(o,wo) 

block D.C. 

Figure 1   Cross-Correlation Detector 

v(t) 

The output from the transducer array is split into two parts. The low 

frequency portion (0 < f < W.) is given by 

W(t) = n^t) + Ac03 anf-jt + A2cos 2nfgt 

n..(t) has the properties of Gaussian white noise with average power N. 

limited to the band 0 < f < W.« A cos 2nf,t is the periodic signal 

component» A„cos 2rtf?t is a periodic component of self noise. 

(1) 
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The high frequency portion (VL < f < W2) of the array output is given 

by 

1 + a cos 2nf. *] (2) x(t) «■ n2(t) + s(t) 

ruft) is the noise component and l(t)|l ♦ a cos 2nf.t the signal component. 

Both ru(t) and s(t) have the properties of Gaussian white noise bandlimited 

to W_ < f < VL , wit'., average powers N« and S respectively, a is the 

modulation index of the sinusoidal amplitude modulation. In most cases of 

practical interest a < < 1. The implicit assumption that the modulation 

envelope and the low frequency sinusoid are in phase is probably not 

entirely rea." istic. However, it certainly represents the mos* favorable 

situation and will therefore serve the purposes of this study. 

The performance of the cross-correlation detector of Fig. 1 will be 

evaluated by comparison with that of a simple power detector operating on 

the band VL < f SW«,  A block diagram of the latter is shown in Fig. 2, 

x(t) - n2(t) + s(t)[l + a cos 2^] y(t) x2(t) 

squarer 

Av. 
filter 

(o,wo) 

Figure 2 Power Detector 

Up to the low pass filter it is clearly identical with the high frequency 

channel of the cross-correlation detector. The power detector uses the 

change in average output due to the appearance of a signal for detection 

purposes. The performance of each instrumentation will be characterized by 

a noise to signal ratio defined as follows: 

M _ Mean square value of fluctuating component of detector output 

5    Square of average signal component of detector output 
(3) 

4n practice W   would be a relatively low frequency compared to VL so 
that most of the total signal power would be concentrated in the range 
\St 5W2. 
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Ill»  Derivation 

The mean square fluctuation at the detector output is calculated most 

readily by integrating the output power spectrum. Since the quantity y(t) 

is of central importance in each instrumentation, the first task will be 

the computation of its spectral density G (f). 

y(t) - x2(t) -J xigCt) + s(t)fl + a cos 2nf1tli 

2 

- n2
2(t) + 2n2(t) s(t)fl + a cos 2n£-t + s2(t)[l + a cos 2nf tl   (U) 

Let 

n2'(t) - n2
2(t) -N2 (5) 

s'(t) = s2(t) - S (6) 

2       2 
where N? and S are average values of n0 (t) and s (t) respectively. The 

' i 2 
spectra of n, (t) and of s (t) can then be written down immediately. 

Gn .(f) - 2 I Gn (f') G (f - f") df' (7) 

_oo 

oc 

Gs'(f) ■ 2 I G^f'jG^f - f') df' (8) 

Since n-(t) and s(t) are statistically independent, the spectrum of 

n2(t)s(t) can also be written down without difficulty. 

Gns(f) " | Gs(f,) Gn (f - f,) df' (9) 

«JOC 

"4he notation G (f) £ spectral density of z(t) will be used throughout. 
Spectral densities Zare defined in such a manner that 

/ 0 (f) df = E[Z2]„ 
J*  Z 

V, B. Davenport and W, L. Root, Random Signals and Noise, section 12.2, 
McGraw-Hill Book Co., 1958. 
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Before proceeding further it is convenient to rearrange Eq. (U) as 

follows: 

2\ i t 
y(t) - N2 + Sll ♦ Y\ ♦ n2  (t) + 2n2(t) o(t) + s   (t) 1 + 

+ 2a ru(t) s(t) + s (t) a2    • cos 2nf,t + nr s  (t) cos Unf-,t 
—s/~ 

7\. 

+ 2a S cos 2nf t + yS cos Unf t 
 /      v  

(10) 

"V- j 

H 

I 
I 

Note that y„ is the only time-dependent term in Eq0 (10) that, does not 

vanish as a-^0. If a < < 1 y„ will therefore be the dominant component 

of fluctuation noiset Its three terms are uncorrelated so that its spectrum 

can be calculated easily from Eqs. (7), (8) and (?), The result is shown 

in Fig. 3 

N2
2 + 2N2S + S

2 

(w2 - w1) 

G (*) 

N2
2 + 2N2S ♦ S2 

2 
1 + -sr 

w - w 
2  Wl 

Figure 3 Power Spectral Density for y„ |3ee Eq. (10) 
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Res'ilts for the Pcwer Detector 

The change in average output due to signal for the power detector is 

simply the signal component of y, • Hence 

2 2 

£ - S2(l ♦ SJ      '•?  S2      for a < < 1       (11) 

Under the very reasonable assumption W < f  the terms y,- and y, 

do not appear in the power detector output at all» Furthermore, for 

a < < 1 terms y. and y, are clearly small compared to y2<> In practice 

the final averaging filter undoubtedly has a bandwidth W satisfying 

W < < W-. In that ease the spectrum of y« may be regarded as essentially 

flat over the band G < f < W  and one obtains ~ o 

N 2 + 2 N0S * S
2 

N-2GT (0) W*2Wn -± £  (12) 
y2    °    °    W2 - W 

Equations (11) and (12) immediately yield the desired noise to signal 

ratio of the power detector 

2W  N 2 + 2N0S + S
2     2W ~>    o   2    2    o_ 

s 2 
V/ - w     s       w - w IP.D.  W2 " Wl      ü "2  "l 

(13) 

Results for the Cross-Correlation Detector 

The blocking capacitor in the high frequency channel of Fig« 1 

eliminates the term y, in Eq. (10). Its effect on the other components 

of y(t) will be regarded as negligible«, The output z(t) of the blocking 

capacitor is therefore given by ' 

z(t) ■ y2(t) + y3(t) + yu(t) ♦ y$(t) ♦ y6(t)      (lU) 
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z(t) is one input into the multiplier. The second input W(t) contains 

three components. Hence the multiplier output u(t) is 

15 
u(t) - £ u.(t) (15) 

i=l 

where 

u^t) = ^(tjy^t) u6(t) - ygCtjAjCOB Zvtjb ^ft) a y2(t)A2cos 2nf2t 

u2(t) - ^(tfr^t) u?(t) - y3(t)A1cos 2^ u12(t) = y3(t)A2cos 2nfgt 

u3(t) = ^(tJy^Ct) u8(t) = y^t^cos 2«^* tt^fr) ■ y^t^cos 2nf2t 

u^(t) ■ ^(tjy^t) u^(t) = y^tjA^cos 2nf1t 
uii.^^ a y$(*>)A2

C0s 2nf2t 

u5(t) ■ n^tjy^t) \0(t) 3 y6(t)AlCos 2nf1t u^t) - y6(t)A2cos 2nf2t 

(16) 

Inspection of Eqs. (10) and (16) makes it clear that only u9(t) provides an 

average component of output,» Hence immediately 

5- (aJ^S)2 (17) 

The computation of ]\[ is simplified by observing that all terms of Eq. (16) 

2 
except u_(t), U/(t) and u_1(t) contain factors of a or a „ Therefore to a 

first approximation for small a only u_ (t), Uz(t) and u^(t) need be 

considered. As in the case of the power detector, W is assumed to be 

sufficiently small so that only the zero frequency value of 0 (f) is of 

interest. The two factors of each of the significant u.,(t) are statistically 

independent so that the corresponding spectra can be written down without 

difficulty. V^ 

V0)oi '^Vf)df <18) 
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or using 0 (f) as given by Fig. 3 

(N2 ♦ 3)' N /    W 
0 (0)-*—I * [2 - 

W2 - Wx  2 W2 - Kli 
(19) 

Similarly 

\ 

and 

*-w-^-[VV*VM*V 
I   

W2 " Wl' W2 ~ Wl 

(20) 

Q  (0) - [S(f2) * * Qy2(-f2> 
V 

1 - 
t      \   (N2 ♦ if 

W2-V w2.wx 
(21) 

u,(t), ux(*) and ULn(t) are uncorrelated so thst the approximate spectrum 

of u(t) is simply the sum of the three spectral components. Recalling the 

previous assumption that f- ,f „ < W  and W < < VL one can neglect 

W. f t 
*   and ——— compared to unity. Then 

W2-Wl     W2-Wl W2-Wl 

j\f*2W 
(N2 + S)2 / iL2      A 2 

—=    N-  ♦-*-♦-*- 
0   W„ - W,    \   l        2 2 2 " "1 

Hence the figure of merit for the cross-correlation detector is 

(22) 

N 2W 

0J>.    a'«2-Wl 

N \ 
1 ♦ -= l/l   +1

A2 5 :? ?^ 
2 " 

(23) 

r/.     Conclusions 

The ratio of the two figures of merit I Eqs.  (13) and (23)   is 

lo.D.        1 

NS 2? 
IP.D. 

2" 

1 + —S— + —5 
AT/2      A7 

(2U) 

A7-8 



I 
I 
I 
! 

I 
[ 
[ 

This ratio can be smaller than unity only if a > 0.707 and then only 

if the power ——- of the sinusoidal signal component is large compared 

y to N, and to -=— . It should be noted that the condition a > 0.707 
1       2 

is contrary to the assumption a < < 1 repeatedly used in the analysis, 

One i3 therefore forced to the conclusion that the cross-correlation 

detector is decidedly inferior to the simple power detector under most 

operating conditions of practical interest. 

One could, of course, use the cross-correlation detector to 

supplement rather than to replace the power detector.  However, the 

results of the present analysis indicate that the gains to be made by 

such a procedure would be slight. 

i 
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