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hy] ABSTRACT 

This report presents and compares methods for computing the 
gravity vector outside the earth.  The gravity vector is conveniently 
split up into a normal part, the vector of normal gravity, and an 
anomalous part, the vector of gravity disturbance. 

Part I gives the theoretical foundations and a practical methodA 

for the computation of the vectors of normal gravity and gravitation. 
The method is adapted for electronic computation.  It is illustrated 
by a numerical example,,     ' r 

Then the formulas for the computation of the gravity disturbance 

vector from free-air gravity anomalies Ag at the surface of the earth 
are developed, (a) for the direct method, which uses Ag only, and 
("b) for the coating method, which requires Ag and the geoid heights N 
but involves simpler formulas. 

The components of the gravity vector are first computed in a local 

coordinate system and then transformed to the geocentric world system 
by a spatial rotation. If the gravity vector is required along a rocket 
trajectory, then also the components along and normal to the trajectory 

can be computed by a spatial rotation. 

Part II is concerned with accuracy studies,in order to determine 

the best practical procedure for the computation of the gravity disturbances. 

The standard errors of the components of the gravity disturbances, 

due to the interpolation of the gravity material, are, approximately, 
inversely proportional to the elevation and very small for high altitudes, 

provided there is uniform coverage by gravity stations. 

The influence of the distant zones is considered in some detail. 

This influence decreases very slowly beyond a certain radius, so that it 

is impracMcal to go farther than about 30° in the direct method and 20^ 
in the coating method (with an error of about ±5 mgal in both cases), 

unless the integration is extended over the whole earth, which is necessary 

for higher accuracy. 

There is another method, for which the influence of the distant 

zones is completely negligible and which furthermore is the simplest. 

the upward continuation of the surface disturbances.  If presupposes, 



however, the deflections of the vertical 5 and T] for the horizontal 

components, and Ag and N for the vertical component. 

For practical use the following methods are proposed: if only 
Ag is given, the direct method; if Ag and N are given, the 
coating method for the horizontal components and the upward continuation 

for the vertical component; if Ag ,  5 ,  T]  are given, the upward 
continuation for all three components. 

Finally, a detailed practical computation procedure is described 
for the practically most important case that Ag and N are given. 

II 
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PART I 

by 

R. A. Hirvonen 

INTRODUCTION 

The purpose of this report is to develop a method of computation 

of the gravity vector for a great number of points at high altitudes, 

e.g. for trajectories of moving hodies, when the geocentric coordinates 

are given. Formulas will be summarized in a form suitable for auto- 

matic high speed computers. Numerical examples illustrate the method. 

First, the components of the normal gravitation (attraction of a 

reference ellipsoid) will be computed.  Those of the normal gravity 

can then be obtained by subtraction of the components of the centri- 

fugal force. Finally, the deviations of the actual components from 

these normal values will be evaluated on the basis of the free air 

anomalies of the gravity observed on the physical surface of the earth. 

The accuracy of the method is studied in Part II. 

The method is based on the formulas first published in [Hirvonen, 

1959], but several practical improvements have been introduced. 

1. CONVERSION OF THE COORDINATES 

It is supposed that the Cartesian geocentric coordinates x,y,z 



are given for each point P at which the gravity will be computecl. 

The z-axis is the axis of the earth's rotation, the x-axis has the 

longitude 0° (Greenwich) and the y-axis has the longitude 900E.  These 

coordinates must be converted into three other systems. 

I. Geocentric coordinates, defined by 

x = r cos Y cos X 

(l)    y = r cos ¥ sin X 

z = T  sin Y 

and called 

r = radius vector 

Y = geocentric latitude 

\ =  geographic longitude 

When x,y,z are given, r,Y,\ can easily be computed: 

(1.1) p2 = xs + y2 

(1.2) rs = p2 + z2 

(1.3)  cos \ = ~ 
P 

(1.10   sin \ = - 
P 

(1.5)    cos y = ^ 
r 

(1.6)   sin Y = - 
r 

For the computation of the normal gravitation, we shall use the 

function 



(1.7)  F = cos 2 Y 
2   S P - z° 

(II) 

II. Geographic coordinates, defined "by 

p = (N + H) COS cp 

z = (N + H - esN) sin cp 

(1.8)  N=^ 
w 

(1.9)  W2= 1 - es sin2 cp 

aa-b2 
e = 

and called 

cp = geographic latitude 

H = geographic height 

The geographic coordinates refer to a reference ellipsoid with equa- 

torial radius a and polar radius b ,  and they are used for the 

computation of triangulations, in spite of the fact that the "orienta- 

tion" of the ellipsoid (or the "data" of the triangulation system) can- 

not he determined without world-wide geodetic operations.  The names 

suggested here are, however, not yet in a general use. 

The normal gravitation is the attraction of the reference ellip- 

soid which is supposed to have the same mass as the actual earth.  The 

masses inside the rotating ellipsoid are supposed to "be distributed 



in such a way that the combined potential of the attraction and of ' 

the centrifugal force is constant at the outer surface and very close 

to the actual potential of the gravity at the mean sea level. 

At higher altitudes, the geographic coordinates are less practical 

for the exact computation of the geodetic quantities. Especially, 

we cannot use them for the computation of the normal gravity.  However, 

we should use them for the evaluation of the deviations of the actual 

gravity from the normal gravity on the lasts of the anomalies observed 

on the ground. 

The computation of cp and H from x,y,z  is rather complicated. 

First, we obtain 

(1.10) H =  P  - N 
cos cp 

(1.11) H = ~— - N + e2W 
sm cr 

The difference of these equations gives 

/    N z    2 N 

(1.12) tan cc = — + e — sm cp 

This equation will be solved with respect to cp by successive approxi- 

mations.  The first approximation is usually obtained by H = 0 in which 

case we have 

.   . 1    z 
(1.13)  tan cp! = ^-^ - - 



For the higher altitudes, it is slightly "better to start from 

H = ea N * it-3 faa, in which case we obtain 

(1.1^0 tan cp! = (l + e2) - 
P 

The latter case will he used in our present applications. 

Any approximate value tan ^ can he improved as follows.  Compute 

.   ,    p      tan3cp1 1.15)  sin3 v^ = ■ I r 1+tan cpi 

and Wi hy the aid of the value thus obtained.  Then we have a second 

approximation 

(l.l6) Wx3 = 1 - e3 sin2 ^ 

1.17) &  = e3a—^ 

(1.18) tan cpg = tan Y + S 

If this new approximation is improved in the same way, the change 

is already much smaller and it can he estimated roughly: 

a 
t \ COS ^1  / N (1.19) tan cp„ - tan ccfe  = S  *  '■*■ (,tan CDS  -  tan qh) 3       ' tancp]^ 

In the numerical example given in chapter U  we have H = 129.  Even 

in this extreme case the error of cps is 0".0002 only.  That of cps 

is 0".035 and that of cpj. is 9". 

In our present problem, we shall use cp only for the computation 

of the disturbances of gravity.  Therefore, we may think that the 

first approximation cpi already is quite sufficient for this partic- 



ular purpose.  However, we have included the computation of the correct 

value into our program because it may he useful for other purposes. 

Note that cp is not the direction of the normal gravity at the 

elevated point P hut the direction of the normal of the reference 

ellipsoid.  The former direction can he computed only when the compo- 

nents of the normal gravity are known: 

(1.20) tan cp" = :^ 
yp 

¥e shall call cp" the geodetic latitude, hearing in mind the definition; 

§ - component of the deflection of the vertical is the difference of 

the astronomical latitude cp'  and geodetic latitude cp" at the 

elevated point P , 

The difference cp"- cp is caused hy the curvature of the normal 

plumb line.  In [Hirvonen, i960], a series is given for the computation 

of cp"- cp 

cp" - cp = sin 2 cp (0". 170293 H 

(1.21) + 0 ,001103 H cos 2 cp 

+ 0 .00003U H2) 

(H in kilometers).  In the present problem, however, we cannot use 

this formula for the computation of cp because H still is unknown. 

Therefore, we have to compute cp hy successive approximations as 



described above. When the final approximation has been found, H can 

be obtained from (l.lO). 

For latitudes higher than ^5°, our program should be based on an 

alternative set of formulas.  Instead of (l.l^) through (1.19), compute 

(1.22) cot cp! = -^—y 

(1.23) cos2 cpi = -^ .f1 
1+cot cpi 

{1.2k)    cot cpg = - - —  ^ = cot Y - 6 
z   Wi   z 

. sin^cDi , v 
(1.25)  cot cpa - cot ccg = 5 • ——^^ (cot cps- cot Cpi) T cotcpi 

With the final approximation of cp, compute H from (l.ll). 

III. Elliptic coordinates, defined by 

c 
p =   cos ß 

sm e 

(III)  z = —-— sin ß 
tan e 

c = e a 

and called 

e = angular eccentricity 

ß = reduced latitude 

At the surface of the reference ellipsoid,  e has a constant value 



e with 
o 

(l.26)  sin e = e 
o 

When p and z are given, we could compute e  and ß by 

rigorous formulas 

(1.27) ks = ra + 2  ^a ,  2 

(1.28) h4 = k4 - V c 

,2 V,3 

1.29) sina e = —a- 
2p 

(1.30)  cos3 ß = -P~ 
k +h 

For practical computations, however, we shall use power series. 

By the aid of 

(1.31)  Hs = p- 

we can replace the formulas above by 

(1.32) k2 = r2(l + K3) 

(1.33) h4 = r4(l - 2H2 COS 2Y + K4) 

(l^)     sin3   e  = K
S
[1 -   K2  sin2 Y 

- K4   sin2  Y cos 2  ¥ 

- K6  sin2  Y  (f cos 2 Y - 7-)] 

(1.35)     cos2  ß = cos2  Y [I  -  H2   sin2 Y 

-   K4
   sin2   Y cos 2 Y] 

8 



Ucing the abbreviating symbol 

(1.7)  F = cos 2 Y 

we obtain,   after lengthy but easy computations, 

e = K + ~ H3  (3F - 1) 

(1.36) + ^ K
5
(35F

S
 - 10F - 13) 

+ ^g KI(33F3 - 9F3 - 21F + -^ ) 

2. THE POTENTIAL OF NORMAL GRAVITATION 

The Newtonian attraction of the reference ellipsoid is called the 

normal gravitation of the earth.  The potential of this attraction can 

be expressed in a closed form: 

/   \      fM    üu2aa  ,2     2  . 
(2.1) V = — e +  q - - cos2 ß) 

c     2q    3 
o 

where 

f : gravitational constant, 

M : mass of the earth, 

uu : rotation speed of the earth. 

The auxiliar variable 

(2.2) q = - [s - 3 cot e (l - e cot e)] 

is a function of e only.  At the surface of the reference ellipsoid 

q has a constant value q . 
o 



The closed formula (2.2) of q is not suitable for practical 

computations,, but must be replaced by power series: 

2    3   1+.    5    2    7 
(2.3)  'I " T5 tan * ~ I? tan f + 21 tan € " • • • 

or 

/o k\     2.3   3,5   5 sin7 e ♦ . . . {2.k)      q = — sxn c + ~ sin c + jjj- 

Therefore, it is only logical that we use power series throughout for 

our computations. 5y the aid of (1.3^), {2,k)  gives 

Now we have to insert (1.35), (I.36) and (2,5) into (2.1). Using 

another abbreviating symbol for the constant 

o 

we can write the result in form 

V = ^H{I+IK
Z
  {1~ C)(F-i) 

(2,7) + S H'    (1 - 10C)(7F3" 2F - ^) 

+ 128 H6(3
- 50m**- 3Fa- TF + g)} 

3» THE COMPONENTS OF NORMAL GRAVITY 

Differentiation of (2,7) and (l.3l) with respect to r gives 

the component of the normal gravitation toward the center of the earth: 

10 



r=-f^H2{i+i*Mi-c)(3F.i) 
r      or      c 4 

(3<1) 
+ ik ^ (7" ioc^35F2 -10F -13) 
+ -^ H (3 - 5C)(231F3 - 63F2 - l^TF + 19)} 

Differentiation of (2.7) and (1.7) with respect to f and 

division by r give the component perpendicular to f : 

1 SV  fM 4 . v w fl r,lf = - - T = — H   s:Ln * cos 1 11 - c ^    r 5Y  cs 

(3.2) + i8 K2 (7 " 10C)^F - 1) 

+ ^ H4 (3 - 5C)(33F2 - 6F - 7)} 

In order to facilitate the numerical computations, we replace 

the increasing powers of KS by those of 

(3.3)  Ca- 

using convenient units.  In other words, we Insert: 

(3.M   Ha - G .. ^ 

For the international ellipsoid with the international normal formula 

of gravity we obtain, when r is expressed in kilometers and T    in 

-2 
gal = cm sec 

(3.5)  G = 3986 3290-^ 
ra 

11 



(3.6) 

(3.7) 

r   = looo G 
r 

- 0,835 888 G2 

+ 2.507 66^ Gs cos 2Y ■ 

- 0.005  118 G3 

- 0.003 937 G3 cos 2Y 

+ 0.013 778 G3 cos3  2Y 

+ O.QOO 007 G4 

- 0,000 05^ G4 cos 2.1 

- 0.000 023 G4 cos2  21 

+ 0.000 085 G4 cos    21 

ry =  sin 1 cos 1   [3,3^3 551 Gs 

- 0,003 l^ G3 

+ 0.022 0^5  G3  cos 2^ 

- 0.000 031 G4 

- 0.000 026 G4  cos  2Y 

+ 0.000 ll+5 G4 cosa 21] 

As G is always slightly smaller than 1, it is easy to see 

that the accuracy of one milligal can "be ohtained without the terms 

with G4. 

The components of gravitation in directions of the Cartesian 

coordinate axes are here chosen to he positive towards the origin. 

They can he computed hy formulas 

(3.8) r = r cos Y - r sin i 
p   r Y 

(3.9) r = r cos x 
x   p 

12 



(3.10) T = r sin X 
y  p 

(3.11) r = T sin Y + T^ eos Y 
z   r        Y 

The components of the normal gravity are obtained by subtraction 

of those of the centrifugal force; 

(3.12) y = r U)2p 

(3.13) y = r 
X    X 

(3.1U) y   = T 
y 

a)3 X 

(jDay 

(3.15) y   = r 

The total gravitation is 

(3.i6) r = /rr
3
+ rY

8 

and the total gravity 

(3.1?) y = /y % y 2 

The direction of the former is 

p 
(3.18) $ = arc tan -p5- 

P 

that of the latter was given in (l.20), 

k.   SUMMARY OF FORMULAS FOR NORMAL GRAVITY 

The formulas given above will be summarized here in form of a 

program for automatic computers. First, the constants are listed which 

pertain to the international ellipsoid and to the international normal 

13 



formula of gravity. Then the computations are described in detail, 

using a numerical example as illustration. 

Input Constants 

(1) 1,0000 0000 

(2) e2 =    0,0067 2267 

(3) 1 + e2 =    1,0067 2267 

00 a 6 378 ,,3880 

(5) eaa 1|2,8798 

(6) f M 3986  3290 

(7) 1000,0000 

(8) 0,83589 

(9) 2.50766 

(10) 0,00512 

(11) 0,0039^ 

(12) 0,01378 

(13) 3.3^355 

(110 0,00315 

(15) 0.0220i+ 

(16) U)2 =    0,000 531 7^9 

Input Variables 

(IT) Identification number of P 

(18) X 

(19) y 

(20) z 

Example 

521,051f 

14-957.^762 

14-169.1994 

14 



Program of Computations 

(21) Pa (18)  • (18) 4 (19) •  (19) 2h8k 8065 

(22) za (20)   .   (20) 1738 22214- 

(23) ra (21)  +   (22) 1+223 0289 

(210 cos 2Y [(21)   -   (22)] - (23) O.I767 8877 

(25) P /(21) 1+98!+, 7833 

(26) r /(23) 61+98.1+836 

(27) cos  Y (25) - - (26) 0.7670 6869 

(28) sin Y (20)  - - (26) 0,61+15 61+96 

(29) tan Y (20)  - - (25) 0.8363 8528 

(30) cos  \ (18) - - (25) 0.101+5 281+6 

(31) sin X (19) - " (25) 0,9914-5 2191 

(32) cot X (18) - - (19) 0.1051 01+23 

(33) cosY cos^ (27) • (30) 0.0802 

(3*0 sinY cösl (28) • (30) 0,0670 

(35) cosY  sin^ (27) •  (31) 0.7629 

(36) sinY sin> ̂ (28) . (31) 0.6381 

(37) X arc cot (32) 81+°00: 0000 

(38) tan cp (3) ' (29) 0,81+20 0802 

(39) tans  cp1 (38)  •  (38) 0.7089 7751 

(^0) sin2 cp! (39) -r [(1) + (39)1 0.1+11+8 51^79 

(^D W2 
(l) - (2)  • (^0) 0.9972 1107 

(^2) sin cpi yt^o) 0.6I+1+0 9222 

(^3) W Ahl) 0.9986 01+56 

m (5)   •   (^2) 4 (25) 0.0055 ^057 

(^5) S (MO - (^3) 0,0055 ^831 

15 



(^6) tan CRB (29)  +   (^5) 

(hl) (38)  -   (M5) 

> (^8) (38)   '   [(1) - 

(^9) {kl)  •  (1^5) 

(50) tan cp (U6) - (1^9) 

(51) tan3  cp 

sec  cp 

(50)  •  (50) 

(52) /(l) + (51) 

(53) cos 9 (1)   - (52) 

(5^) sin cp (50)  •  (53) 

(55) cp arc tan (50) 

(56) (25)   •   (52) 

(57) 00 v (U3) 

(58) H (56) - (57) 

(59) G (6) - (23) 

(60) G2 
(59)  '  (59) 

(61) GSF (60)  •  {2k) 

(62) 
3 

G (60)  •  (59) 

(63) G3F (62)  •  {2k) 

(610 G3FS (63)  '  (210 

(65) (7)  •  (59) 

(66) (8)  •  (60) 

(6?) (9)  •  (61) 

(68) (10)   •   (62) 

(69) (11)  •  (63) 

(70) (12)  •  {6k) 

0.8kl9  3359 

0,0000 7^3 

1,^390 

0.0000 0029 

o,8Ui9 3330 

0.7088 5168 

1.3072 305^ 

0.76^9 7601 

0.6^0 5878 

ii0o05,.7085 

6516.2610 

6387.3011 

128.96 

0.9^39 5022 

0.8910 k2 

0.1575 26 

0,8Uii 

0.1U87 

0.0263 

9^3.950 22 

0.7^ 81 

0.395 02 

0.00^ 31 

0.000 59 

0.000 36 

16 



Input Variables Example 

(71) rr (65)-(66)+(6T: -(68). •(69M70) 9^3-595 90 

(72) (13)  •  (60) 2.979 2k 

(73) (lM  •  (62) 0,002 65 

(7*0 (15)  •  (63) 0,003 28 

(75) (72) -  (73) + (7*0 2,,979 87 

(76) rY (75)  •  (27) • (28) 1A66 hi 

(77) rp (71)  •  (27) - (76) •  (28) 722.862 0^ 

(78) rz=yZ 
(71)  •  (28) + (76) *   (27) 606.502 95 

(79) rx (77)  •  (30) 75.559 66 

(80) ry (77) ^ (31)  - 718,902 l^ 

(81) ^p (77) - (16)  • (25) 720,211 39 

(82) y 
X 

(79) - (16)  • (18) 75.282 59 

(83) y 
y 

(80) - (16) . (19) 716.266 01 

(8U) tan $ (78) v (77) 0.8390 3002 

(85) tan cp" (78) * (81) O.8U21 1796 

(86) r2 
(71)  •  (71) + (76) '  (76) 890375.37 

(87) 
s 

V (78)  •  (78) + (81) •  (81) 886550.27 

(88) r /(86) 9^3.5970^ 

(89) y /(87) 9U1.56799 

(90) $ arc tan (8^) 39059,.8596 

(91) cp" arc  tan (85) i|.o0o6'.o8oo 

Output 

(17), (55), (37), (58), (53), (79), (80), (78) 

(33), (3M, (31), (35), (36), (30), (28), (27) 

in full 

four digit values 

17 



5. GRAVITY DISTURBANCES 

If the free air anomalies Ag are known everywhere on the physical 

surface S of the earth, the potential disturbance T at any point 

on or ahove S can be computed.  The computation is very complicated, 

especially if the point is very close to high and steep mountains.  In 

most cases, however, the generalized formula of Stokes gives a sufficient 

approximati on. 

We shall use following notations: 

P : fixed point at which T is wanted; 

M : "moving" point at S ; 

r : distance from the centre of the earth; 

Y : angle between radii r and r 

a = azimuth from P to M ; 

(5.1) t=^; 
r 
P 

(5.2) D2 = 1 - 2t cos Y + t2; 

(5.3) äcr = sin Y dY da = cos cp dcp d\ 

is the element of solid angle, situated at point M . 

The generalized formula of Stokes reads 

18 

,     , v                 rP     i->   .           a     2                                               ,              m-l-t cos  Y   , 
(5 A)    T    = -p    J   Ag    t2   {- + 1 -  3D - t cos v (5+3Än ) }dCT 



The integration must "be carried out over the entire surface S . To a 

very good approximation^ 

where H is the height of P ahove S . Usually, r can even "be 

replaced by a constant R ,   the mean radius of the earth. 

Especially, if H = 0 or t = 1, we have 

(5.6)  D = 2 sin - 

and 
r 

^'^      Tq  = i^     JASM   [   COSeC   o   +   !   -   6    Sin Ö 

- cos ^ [5 + 3 -^n (sin ~ + sin3 —)]}äa 

The quantity 

(5.8) C = f 

is called the height anomaly and 
T
s  ' ^ 

(5.9)  cs = - 

is approximately the elevation of the geoid ahove the reference ellipsoid. 

Because £ is one of the most important quantities of geodesy, we 

may often assume that the values of it have already been computed. 

Then we can compute the "coating" function of Helmert: 

(5.10) ^ ^ Ag + ^ -f 
S 
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This function has the advantage that the long formula (5A) for the 

computation of T at higher altitudes can be replaced by a shorter one; 

(5.11) T =^L f^da 
P 

In our present problem,  we have to compute the components of the 

gravity disturbance: 

(5.12) 5    = 
n 9r 

(5.13) 5    = 
m 

cos a 5T 
r        öY 

(5.1M 6.= 

sin a 5T 
r         aY 

If we take    T    from the long formula (5.^),  the result can be 

written in form 

(5.15) ö^^jAgFi da 

(5.16) 5   = |- fAs Fs cos a do 
m      2Tr u 

(5.1?)    5. = —■  f Ag Fa   sin a da x,       2TT 
l' 

where 

(5.18) F, =itM^ + 5+i -ÖD 

„   ,           ,      D+l-t cos Y., 
- t cos Y   (13 + 6^n )} 

(5.19) F2  = t
3   sin Y   {p +^ - 1+ 

3   ,D-l+t cos Y       ^    iH-l-t cos YN1 
+ —   ( 5  -   £n  ) j 

2  V D sln8Y 2 
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If we use the short formula (5.1l), we obtain 

(5.20) 5n = ^J^i^ 

(5.21) 5 = — f M, f2 cos a da m  2TT 
J   s 

(5.22) 5 = — f M- fs sin a da 

where 

(5.23) ^ = ^ (1 - t cos Y) 

t3 
(5.24) fs = p- sin Y 

Table 5.1 shows some values of ?! and ti,   Table 5.2 those of Fa 

and fa. We see that for small values of Y ,  the functions F and f 

are almost equal. 

In practical computations, we must first find the values of Y 

and a . If the earth is considered as a sphere, we have 

(5.25) cos ¥ = sin cp sin cp + cos (p   cos cp cos (X - X  ) 

(5.26) sin Y cos a = cos cp sin cp - sin cp cos cp cos {X ~  X  ) 

(5.27)- sin Y sin a = cos cp sin {X -  X   ) 

For small values of Y ^ we can use the approximate formulas: 

(5.28) m = cpM- cpp 
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Table 5.1 

H 2 km H = 8 H -  32 H = 128 H 512 

0' 10l6xxxx 636XXX ll-OOxx 2559 17^ 

1 ^009xxx 588XXX 398xx 2558 17^ 

3 395 3xx 3522xx 382kx 2552 17U 

10 1321X i|002x 259^x 21+81 173 

30 710 2062 5085 1980 171 

1° 182 356 9^7 1120 162 

3      • 
10 

^5 51 76 11+8 105 

12. 1 12, 2 12. 8 1^. 9 18.8 

30 - 3. 7 -   3- 7 -   3. ,6 - 3. h - 2.7 
- 2.!+ 

- 1.8 
6o - 3. • 3 -   3. ■ 3 -   3. .3 - 3- ,1 

90 -   2. .3 -  2, .3 -   2. .3 - 2. ,2 

120 0, ,h 0. .)+ 0. A 0. A 0.3 

150 3, .0 3 .0 3 .0 2 .8 2.3 

180 \ .1 1+ .1 \ .0 3 .8 3.1 

0' 10l6xxxx 635xxx 397xx 2ii80 155 

1 1^005 XXX 587XXX 395 xx 21+80 155 

3 39 37 xx 3512xx 3795x 21+72 155 

10 1267X 395 6x 2568x 2^03 15^ 

30 
1° 

528 1883 ^928 1908 152 

88 262 858 106l ll+H 

3 
10 

12 18 1+1+ 118 90 

2. .9 3. 1 3. 8 6. 3 12.2 

30 
60 

1. 

0. 

,0 

,5 

1. 

0. 

.0 

.5 

1. 

0. 

.0 

.5 

1. 

0. 

,1 

.5 
1.3 

0.5 

90 
1 20 

0, 

0, .3 

0, 

0, 

,1+ 

.3 

0, 

0, 

A 
.3 

0, 

0, 
.3 
.3 

0.3 

0.3 

150 

l80 

0 

0 
.3 
.2 

0 

0 
.3 
.2 

0 

0 

.3 

.2 

0 

0 
.3 
.2 

0.2 

0.2 
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Table 5.! 2 

H = 2 km H = 8 H = 32 H = 128 H = 512 

Y F3 

0' 0 0 0 0 0 

1 JJlhxxx 1362XX 237x 36 1 

3 ' 1095xxx 2445 xx 662x 109 2 

10 ll66xx 9l6xx lk9kx 353 6 

30 1327x I286x 85 9x 842 18 

1° 3366 3333 2957 936 33 

3 396 394 385 309 62 

10 ^3.5 43. k U2.9 40.5 28.0 

30 7.5 7. 5 7-5 7.1 5.9 
6o 1.2 1. 2 1.2 1.2 1.1 

90 - 1.^ - l. 1+ - 1.3 - 1.3 - 1.0 

iao - 2.2 - 2. ,2 - 2.1 - 2.0 - 1.7 
150 - 1.5 - 1 .5 - 1.5 - 1.4 - 1.2 

180 0 0 0 0 0 

0' 0 0 0 0 0 

1 3713XXX 1360xx 229x 36 1 

3 1093XXX 244 2xx 660x 107 2 

10 1160XX 9l4xx l487x 348 6 
30 1310X 1271X 85 Ox 827, 16 

1° 3280 3252 2894 915 31 

3 364 363 357 289 72 

10 32.7 32. 7 32. 5 31.2 22.3 

30 3. 6 3. 6 3. 6 3.5 3.1 

60 0. 9 0. .9 0. 9 0.8 0.8 

90 0. 4 0 4 0. 4 0.3 0.3 

120 0. 3 0 .3 0. 3 0.3 0.3 

150 0 3 0 .3 0. 3 0.3 0.2 

ISO 0 .2 0 .2 0 2 0.2 0.2 
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(5.29) 4 = (ÄM- \p) cos cpp 

(5.30) n =|+| (m2 + £ 2) 

(5.31) A3 = n2 + m3 + £2 

(5.32)  fx 
^ 

m 
(5.33)  fs cos a =^- 

(5.3^)  fs sin a = -^■ 

These formulas can be used only when ^ < 20°. On the other hand, 

the effect of zones ^ > 20° is often negligible. Otherwise, this effect 

may be computed for a few points only and interpolated for the other 

points. When the components 5,5, 5„have been computed, we must 
n  m  ^ 

convert them to the system x,y,z by the matrix multiplication: 

(5.35) 

- cos cp cos X      -   sin cp cos  X      -  sin M    / 5 

- cos cp sin X      -  sin cp sin X cos X\ 

- sin cp cos cp 0 
m 

The components 

5  along the trajectory 

5 horizontally to the right hand side 
R 

6 perpendicularly (not vertically) down 

can be obtained as follows. Take three consecutive points P.  . P. 
i-l  i 

and P   of the trajectory. Compute; 
i+1 

2h 



X'     =    X -    X 
1+1      1-1 

(5.36)     y' = y.      - y. , 
i+i       i-i 

z'   =.■   z -   z 
i+1 1-1 

„     (x'xi+y'yi)   zj-z'pi5 

x    = 
r,pir1 

(5.37) 
„ = x'yj-y'x,- 

r 'p. 

...   _ x'Xj^+y'y^+z'zj 
z     = 

r'p. 

(5.38) |/x"8 + y"2 

A 

R 

D 

/ 

0 y 

x':z" y"z" 

/5n 

5 
m 

Size of Blocks.    Around the point    P    define  four regions^   each bounded 

by latitudes cpi^   cpg  and longitudes X-^,   \s, 

Region A cfe-  cPi  = 3 

cp -  cppl   < 1 

IX -  I  1  < 1°  30' 
P 

Region B Cfe-  9i  = Tc 

outside A Xs- Xi = 9C 

Icp - cppl  < 3 

\X -  X  \ <k° 

2^ 



Region C. 

outside B 

9a- <Pi  = 25( 

Xo-    A.1 30c 

Iffi  -   CD   .1     <   10 

IX -  X   I   < 12°   30' 
P 

cpi,   c% j   Xi,   \s    are all  divisible by 5 

Region D outside 0 

For region A , pick up the mean anomaly cards 5'x 5' (3^ X ^-8 = 

1728 cards), for region B , 20'X 20' cards (21 X 27 - 9 x 12 = 459 cards), 

for region 0 , 10X 1° cards (25 X 30 - 7 X 9 = 687 cards) and for 

region D , 50x 5° cards. Region D will be used for a few points 

only. 

The influence of zone D on 5 , 5 , 5 can also be computed directly 
x  y  z 

by means of the Cartesian coordinates x,y,z. If these coordinates 

x,y,z are computed for the centers of the 50x 5° squares, then the 

integration can be carried out by the formulas 

x - x 

(5.^0)   A5 =— J M- • -TT— do 
Ra  . 

x  2TT 
D Ac 

Ac    ^   P      M   P 
AS    =7-    . M- *  .3   da 

R2 

y  2TT 
D A3 

5       z - z 
Ac  R  r    M  P 

D ^ 

where 

(5.^1) A2 = (x,r xj
2 + (y - yjs + (Z„- zj

: 

M  P' M  P' M  P 

and A& > Aö 5 ÄS are the contribution of the zone D to 5 , S , 5 , 
x   y ^ z x  y  z 
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PART II 

by 

H. Moritz 

6.  INFLUENCE OF AN INACCUEATE GRAVITY MATERIAL 

For simplicity^ the error propagation will be studied for the 

coating method. 

Since, hy eqs. (5.20) - (5.24), the components of the gravity 

disturbance are given by 

l  2TT
 ^     ts 

6 = — f  f p. • — (1 - t cos Y)sin Y dY da, 

6 ""l 2TT  TT 3 ("COS a^l 
m   1  P  r»   . t 

2TT  TT s /"COS a'! 

r  f ^ * ^r sin8 Y { kv da, J  J     D       1 sin aj    ' 6    2TT ij    a=o Y=o 

we find for their standard errors m , m , m : 
n      m       i 

a 2TT      TT 2TT TT 4 

n = ^   J     I     I       !     a(Y,a,Y',a')  -53^(1 - t cocY). 
2TT    n      2TT      n 

1 
m 

a=o ^o a'^o ^'=0 

(1 -  t cos Y^sin Y  sin Y'   dY da dY'   da'. 

(6.1) 
ma>\ 2TT      TT        2TT TT 6 

jej 0=0 Y=0 a'=0 ^'=0 

I cos a cos aH 
, > dY da dY'   da', 

sin a sm a' 

where a^a^'^a') is the error covariance function, or error function, 

of |i [Moritz, 1962a, 19b3]. 
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We shall assume uniform coverage of the whole earth by gravity 

stations so that c approximately depends on the relative position of 

points P(YJa) and P'^'^a') only. Furthermore we assume that the error 

function has a sharp maximum at P' = P and drops off rapidly to zero 

with increasing distance PP'. 

Then we can simplify the integrations considerably by approximately 

replacing G{^}a,^',a')  by 

(6.2) -T^7-6(Y' - t)  6(a' - a) 
sin i 

where &(¥' - V),   6(a' - a) are Dirac's delta" functions and S is a constant 

given by 

2TT   TT 

(6.3) S= J   J a(Y,a,r,a') sin Y' dY' da'. 

a'=0 Y'Lo 

Since according to a property of the delta function 

J^x') 6(x, - x) dx' = f(x), 

the integrations with respect to Y',  ot'   aan be performed immediately 

and we get 

2TT  TT   4 

m2 = TTa J  J ^ (l - t cos Y)a sin Y dY da, 
n     a=0 Y=o I) 

m2l 2TT    TT 

; = 

S       p       p 
^       1+TT2       J        J 

ILJ 0=0 Y=0 
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and finally, 

(6.U) 

a  ö 
m = — 
n  2TT 

t4(ta+l) 

2(t8-l)z' + 

t4   t3 „ 
—5  - 1— to 

a   a  D 

m = m. = — 
m   X  2TT 

t4(ta-n) 
^(t8-l)s f-\m] 

Since 

R    ,  H 
t =   = 1 - — + . . . 

R + H      R 

(R:mean radius of the earth) we can develop in series, and neglecting 

higher powers of — we get 
R 

(6.5) 
SR' 

m = 
n  8TTH

: a > ma = ma 
SR' 

m £      16TTH2 * 

(For H = 500 km the error of these approximations is smaller than 7^-) 

Validity of the Simplified Integration 

Now we have to investigate in more detail the validity of replac- 

ing the error function a "by a product of Delta functions. For 

simplicity we limit ourselves to the plane approximation.  In this 

case, eqs. (5.20) - (5.22) are simplified to 

H  n"   ^(x,y) 
5n = ^    JJ  (H^x^y2)3^ dX dy ' 

(6.6) 
6 -i 
m l—  rr    ^(x,y) 

2TT JJ  (H3«?V,)3/8ly 11   T^T^TT^TT^ ._ > dx dy , 

where the xy-plane is horizontal and the z-axis contains point P. 
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These equations have the general form 

00 

(6-T)   H ^U,y) f(x,y) dx dy 
-oo 

and the mean square error is given "try 

so 

(6.8) m3  = JXTJ a(x,y,xSy')  f(x,y)  f(xSy')  dx dy dx'   dy'   . 
-00 

As "before we assume the error function a(x,y,x'^y') to have 

appreciable magnitude only for (x',y')=(x,y) and to "be almost zero 

elsewhere.  Then, only the points (x1 ,y' ) = (x:,y) will contribute signi- 

ficantly to the integral and if we put 

x'   = x +   %  ,     y' =y+Tl, 

then only small values §, T\  need to be considered.  If the usual 

conditions of continuity and differentiability are satisfied, 

fCx'^y') can loe  developed in a Taylor series with respect to 5, Tj: 

fUSy') = f(x,y) + 5 f + T] f + 
x    y 

+ ^ iaf   + m f   + ^ Ti8f   + . . . 
2   xx      xy  2   yy 

where f , f ,■.-.. denote partial derivatives at the point (x,y) and 
X    XX 

I = x' - x ,  T^y' -y. 

Inserting this in (6.8) we can separate the integrations over x, y 

and over x', y', getting 
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m = H ü(*>y>*' ,7') dx'   dy'   •    JJ [ f (x,y)] 8 dx dy + 
-oo -oo 

00 00 

+ JJ (x'-x) a(x,y,x,,y') dx'  dy'   •    JJ ff^ dx dy + 
" 00 — OO            "' " 

03 00 

+ H (y'-y)  ^x^y.xSy') dx'  dy'   •     JJ ff    dx dy + 
y 

| JJ (x'-x)3 a(x,y,xSy') dx'  dy'   •  JJ ff      dx dy + 
-00 -oo 

CO 00 

JJ (x'-x)(y'-y) aCx^x^y') dx'   dy'   • JJ ff      dx dy + 
— oo 

00 

+ dT (y'-y)3  ^x^y^xSy') dx'   dy'   •  J7 ff      dx dy  . . . , 

provided a(x,y,x',y') depends on x-x',  y-y'   only^   i.e.,  we have the 

same accuracy everywhere.    Furthermore,  if    a    is a symmetrical 

function of x'-x and y'-y which is a very natural assumption,   then 

the integrals containing x'-x and y'-y linearly will vanish and there 

remains 

m 

(6.9) 

= So JJ,[f(x,y)]2 dx dy + 

+ - Si   ff ff      dx dy + - Sg   ff ff      dx dy    .   .   . 
2JJ      xx 2JJ      yy 

— 00 "00 

where 

(6.10) 

S0 = JJ a dx'   dy',   Si  = JJ (x'-x)2 adx'   dy', 
-00 -00 

CO 

s2 = JJ (y'-y)aa dx' dy' 
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If we would have replaced^ as "before^ the error function o "by a prod- 

uct of delta functions, 

S0 • 6(x'-x) &(y'-y) , 

we would have got 

m 

00 

2 S0 JJ [f(x,y)]s dx dy 

which is the first and principal term of (6.9). 

Thus the use of delta functions is justified.  Transferring these 

results from the plane to the spherical case offers no difficulties. 

So; the integral of the error function over the plane (6.10), is 

replaced "by S, the integral over the unit sphere (6.3); we have the 

relation 

So 
(6.11)  S = — 

Rs 

where the scaling factor Rs represents the transition from the 

terrestrial sphere (or its tangential plane) to the unit sphere. 

The error of the delta function method is the effect of Si and 

S2 in (6.9). 

In order to evaluate the quantities S, So, Si,   Sa we have to 

make some assumption concerning the error function o  .  If this 

function has the character assumed above - everywhere the same form, 

sharp maximum at x' = x, y' = y, vanishing farther away from this 
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point - then, within the limit of the obtainable accuracy, we can 

usually take the veil-known function 

iC  ^   ( .  M  „* -ca[(x'-x)a + (y'-y)
a] (6.12)  aCxjyjx'jy') = a0e 

(6.10)  can then he evaluated immediately to give 

rrac rra. 
(6.13)       So =   ,     Si  = S2  =   

2c'1 

and 

(6.1U)      S 
TTa0 

caRa 

Now we can return to eqs.   (6.6).    First we consider S  .    Here 

w       N      H 1 
f(X^)  = 2TT    (H2

+x3
+ya)3/a  ' 

Differentiating twice,  inserting in (6.9) and integrating yields 

So SCSi+Ss) 
m3 = 
n  STTH

3
  ö^nH4 

The first term is clearly the same as the first equation in (6.5). 

Inserting (6.13) we finally get 

(6.15) m = (1 
n  ScV     8csH2 

and in a similar way we find 

(6.16)  ma = ma = 
m   I      .r  aus 

(1 
l6caH' 

Sc3^ 2^8 . . . ) 

The correction term in the parenthesis is practically zero for 

elevations H » c  , hut in view of the practical purpose of these 
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-1 
accuracy formulas, it can already "be neglected for H = c 

Discussion 

To sum up the formulas we have for the standard errors of 5 ; 

m Z 

kj kjg 

(6.1?)  m = — ,    m =m= — 
n  H     m   J6  H 

where 

SR3   .    . / SRS 
(6.18)  ^ ^— , k8 . ^ 

and 

TTOo 

RSc2 

These formulas are valid for elevations  H > c ' . For smaller 

elevations they cannot be applied (for H = 0 they would yield ^ , 

which is obviously wrong). 

The error covariance function a    is supposed to have the form 

(6.12) : 

-c3s3 
(6.19)  aU^xSy') = a0e 

where s is the distance of the points (x,y) and (x^y1). According 

to the derivation of the above formulas,  a is the error function of 

p. , the density of the coating.  Since |i=r Ag + TT N , it contains the 
2R 

influence of errors in Ag and in N . The errors of N have a 

3^ 



small influence but they diminish much less with increasing distance 

and can hardly be represented in the form (6.I9).  So, in order to 

apply our formulas, we must be able to neglect the errors of N. That 

this is possible can be seen in the following way. 

We would have avoided the trouble concerning the errors of N , 

had we used the direct formulas (5.15) - (5.19) instead of using the 

coating method (5.20) - (5.24). These formulas are, however, very 

difficult to handle for our purpose. On the other hand, for smaller 

values of Y > where the effect of errors in ^ is largest, F and 

f are closely equal so that, for this particular purpose, we might 

replace p, in (5.20) - (5.24) by Ag. Then we can take a in (6.1) 

and in the subsequent developments to be the error covariance function 

of the gravity anomalies Ag only. From this we can conclude that 

the error of (6.17) due to neglecting the inaccuracy of N must be 

small. 

Thus, we can consider a in (6.19) to be the error function for 

the interpolation of gravity anomalies. Then, 

CTo = m 

is the square of the average standard error of interpolation, m . 

In Table 6.1 some numerical values of m and c are given, together 

with the constants ki and k2 defined above. 
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Table 6.1 

Constants k^, k 2 for average station distances s 
_ . 

s m        c k.! k2 
km        mgal       km       mgal.km      mgal.km 

10 1 13          2.5          1.8 

50 9 25        ^5 32 

100 I**- U5 126 89 

200 l6 90 287 203 

To get the standard errors of 6' and of 6 ,, 5 , the above 
n        ml 

values for ^ and ks have to be divided by the elevation 

H in kilometers. 

For the computation of the dependence of m and c on the 

average station distances, an idealized gravity station net consisting 

of equilateral triangles with side s has been assumed. The com- 

putation was done in a way described in [Moritz, 1962b, Appendix], 

using numerical values for the covariance function of gravity anomalies given 

in [Kaula, 1959] combined with the standard interpolation errors of 

[Molodenskii et. al., 1962, p. 172],  Since the method used is not 

quite rigorous, the results of Table 2 must be considered somewhat 

preliminary. 
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Error Correlation of 6 , 6 , 5 ^ 
n' m i 

For the error covarlances of 5 ^ 6 , 5 in two points P, P' 
     n  m  ä 

we have found [Moritz, 1963] 

3    sa 

^ T.T..     =      [1 - ö   rä+ •   •   •   ]   , n,PP'     -Q^ 8    Hs 

(6-20)   VP' 
; = 777 Cl" 16 F (1 + 2 cos2a) + ] ' 

00 3      s3 

a .     =      [1 - -^   -s- (l + 2  sinaa) + .   .   .   ]   . 

P, P' are assumed to have the same elevation H,  s is the distance 

and a is the azimuth from P to P'. These formulas, being the first 

terms of power series, are valid for small distances s only. For 

P = PS by (6.5) and (6.1^) 

(6.21) a ^ = ms. a „„ = m2, a„ ^^ = m2 ; v   '   n, PP   n' m,PP   m' i,F?        i 

the error covariances become variances, i.e., the squares of the 

standard errors of S . S , 5„ . 
n  m  * 

Dividing the covariances (6.20) by the variances (6.2l), we get 

the correlation coefficients 

1   3 f, 
Pn,PP'   "- 1 ' 8    Hs +   *   •   '     ' 

3      sa 

(6.22) Pm,PP'  = 1 " 16    I? (1 + 2 COs3a:) *   '   •   '   > 

P^pp' = ' -16 F (1 + 2 £inaa) + • • ' ■ 
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p = ± 1 means maximum correlation, i.e., complete functional 

dependence;  p = 0 means independence (more strictly speaking, com- 

plete lack of correlation).  For a definite s , the correlation 

coefficients (6.22) will be the closer to 1, the greater the altitude 

H is.  Thus, with increasing altitude, the standard errors of 5 , 
n 

5 , 5 decrease, but the correlation increases.  Since the accuracy 
m I   

is characterized by the standard errors and the error correlation, 

this is significant, too. 

7. IEFLUMCE OF THE REMOTE ZOKES 

The purpose of the estimation of the influence of the distant 

zones is to decide how far the integration must be extended if certain 

accuracy requirements are prescribed. 

Since the effect of the distant zones is almost independent of the 

elevation H , we may, for simplicity, put H=0, i.e., we consider P 

to be situated directly on the geoid.  Then, since 

&n= AS + ^  5m = ^ \ = ^' 

we can, for the direct method, use one of the evaluations of the effect 

of distant zones on the components %,  ,     T| of the deflection of the 

vertical and on W (e.g., [Kaula, 195?]).  For our purpose it is best 

to use the formulas of [Molodenskii et al., 1962] which can also be 
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easily adapted to the cpating method. 

Direct Method (using Ag).    The disturbing potential is 

2TT    rr 
(7.1.a)      T = yN = ^-      J      jAg S(cos Y)   sin Y dY da 

0=0 Y=0 

where S(cos Y) is Stokes' function 

i y    Y 
(7.2.a)  S(cos Y) =  - 3 cos Y in  (sin - + sin3—) 

sin — 
2 

Y 
- 6 sin — + 1 - 5 cos Y , 

If we extend the integration .with respect to Y only up to a spherical 

radius Y < TT, we commit an error 
o 

2TT  TT 

(7.3.a)   AN = -p- J  J As S(cos Y) sin Y dY da 
^0=0  Y=Y 

which can "be also written 

2TT  IT 

il.k.S.)       AN = |- J  J As S(cos Y) sin Y d^l da 

where 
r 0 if Y < Y 

(7.5.a)  S(cos Y) = J 
ls(cos Y) if Y > Y 

— o 

Expand S(cos Y) in a series of Legendre's polynomials: 
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(7.6.a)  S(cos Y) = I 
2n+l 

n=:0 
2    n n 

P (cos Y) 

where the coefficients Q  depend on Y .  Then, hy multiplying both 
n   '       o 

sides by P (cos Y) sin Y and integrating from 0 to n we find 

TT _ TT 

Q    =   P S(cos Y)  P (cos Y)   sin ¥ dY =   f S(cos Y) P  (cos Y)sin Y dY . n      J n ^ n 

5y substituting 

Y ¥ 
(7.7.a)  z = sin — , t = sin -£L 

2 ' 2 

we get 
t 

(7.8.a)  Q = -1| f P (l - 2zs) S(l - 2z3) z dz . 

Performing the integration yields (we need the Q only for n ^ 2): 
n 

Q2 = 2 - irt + 5t2 + lUt3 -— t^ - 30t5 + i^t6 + l8tT - ^ t8 + 

+ (6t   - 2iit   + 36t   - 18t ) in t(l+t)> 

(7.9.a)      Q, 
3 

2 ^ 
1 - ij-t + 5t    + 22t hG^ - ^^ t5 + 136t6 + 101+tT 

- l66t8 - ^8t9 + ^ t10 + (6t2 - h2^ + 108t6 - 120t8 + 

+ ^8t     )  in t(l+t) , 

2 2       98^^ 5 6 7^: 
Q,   = - - Ut + 5t    + ^-t    -  72t'   -  156t    +  320t     +  360t1   -61+5t 

1120 9  ^  10   ,11      12   ., 2  ,, ^ 
-  b + 602t  + lUOt  - 210t  + (6t - 66t + 

3 v 

^ 6  ,0 8  ,  10   ,12,    ,  N + 260t - ^80t + ^20t  - l^Ot  ) in  t(l+t). 

)+0 



Higher order Q (up to 8th order) may he found in [Molodenskii et al., 1962, 
n   

p. 1^9]. 

^y (l.h.a)  and (7.6.a) we get 

00 

(T.10:.a) AN = ^ 2  Q Ag 
27 ^  n   n 

if 
n 

Ag =   2  Ag 
n=2   

n 

is the development of Ag in Laplace's spherical harmonics ( Ag an(i 
o 

Agi a^e missing, as usual). 

The coating method can be treated in an exactly analogous way. 

Coating Method (using |i). The disturbing potential is 

2TT      TT 

(T.l.b)      T = yN = ^-      J      J*    M- M (cos Y)   sin Y dY da 
0=0 Y=0 

where 

(7.2.b)      M(cos Y)  = -i-^  . 
sin - 

If we extend the integration with respect to    Y    only up to a spherical 

radius Y    < rr,  we commit an error 
o 

2TT      TT 

(7.3.h)        AN=^-    J      J      n M (cos Y)  sin Y dY da 
7a=0 Y=Y 

o 

1+1 



which can he also written 

2TT      TT 

(T.4.b)        AN =,—    J      J*    U- M (cos ¥)   sin Y dY da 

where 

'0 
(7.5.b)       M(cos y)  =. 

if w < Y 
o 

i 
w if Y > Y 

sin 
2 

M  (cos Y) 

Expand M(cos Y) in a series of Legendre's polynomials: 

(7.6.h)  M(cos Y) = Z (n-l) q P  (cos Y) 
n n 

n=0 

where the coefficients q depend on Y . Then^ hy multiplying hoth sides 
n o 

hy P (cos Y) sin Y and integrating from 0 to TT we find 
n 

TT 
2n+l  n - q = —i, f M cos Y) P  cos Y) sin Y dY 

n 2(n-l) J   v    ^ n v 
v   '  0 

2(n-l) V si^ n 
o   2 

By substituting 

Y Y 
(7.7.a)  z = sin -,  t = sin -^ 

we get 

(7.8.b)  q =2(22ill np (l_2z2) dz< 
n    n-l  ^  n 

t 

\2 



Performing the Integration yields (we need the q only for n ^ 2): 
n — 

q2 = 1(1 ' 5t + 10t3" ^^ 

q    = -(l -  7t +  28t3-  l|2t +  20tT), 

q = -(l - 9t + 60t - l62t + i8otT- TOt ), 

2 ^     5     7     9     11 
a    = -(l - lit + 110t - k62t +  880t - TTOt + 252t  ), 

2 ^      5      7      9      11     1^ 
(T.9.h)  q. = -(l - 13t + l82t - 1092t + 3120t'- U550t + 3276t - 92l|t ), 

a = 7(1 - 15t + 280t - 2268t + 9000t'- 19250t + 22680t 1- 

- 13860t13+ 3^32t15), 

q0 = -(l - 17t + l+08t3- U28i+t5+ 22^0tT- 65i+50t9+ lll38irt11- 
8      7 

- 109956t   + 583^t   - 12870t 7) . 

By  (TA.'b)  and (7.6.b) we get 

if 

AN = -   s ^7   q n 
y      „ 2n+l    ^n n r n=2 

n 
\x =    T,    \i 

n 
n=2 

if the development of    M-    in Laplace's  spherical harmonics  {\i    and ]!■, 
o 

are missing together with Ag and Agi). 
o 

If 

Ag = 2 Ag 
n=2  

n 

^3 



then 
GO 

R ^ A 
N = - S - 

y  ^ n-l 

Therefore, 

A    Jy 2n+l i 

n=2 

so that 

2n+l 
As   . n ~ 2(n-l) " n 

Inserting this in the formula for N we finally ohtain 

00 

(T.io.h) AN = -- s q Ag , 
27     n   n 
' n=2 

which is analogous to (7.10.a). 

Mean Square Effect on N, %,   T\.     Squaring (7.10.a) and averaging over 

the whole earth we get 

_    00   OS 
R2   

AN2 = —2 Z E   Q Q , • Ag Ag , . 
ky n n'    n  n' 

n=2 nI=2 

Since the integral, over the sphere, of the product of two Laplace 

harmonics of different degree is zero (Orthogonality I), only the 

terms where n' = n remain and we obtain 

2 

(7.11.a) ÄNa = f-j E Q a Äg ' 
hy n   n 

n=2 

where AW is the root mean square influence on N of the zones "beyond 

a spherical radius ¥0 , and Ag  is J^ie  root mean square average of 

the Laplace spherical harmonic AS 



The derivation of the RMS influence on the components ?, T] of the 

deflection of the vertical is rather involved. Since it is omitted in 

[Molodenskii et. al., 1962],   it may be of interest to give it here. 

By (T.lO.a), 

SCp    y n=2 n ^ 

(7.12) 

Ail =  i -^ =  i  E Q  - 
R cos cp 9X  2y  cos cp     n    'dX 

for the direct method.  (For the coating method replace Q by q .) 
n    n 

Hence, 

liy3 "      n n'  5cp  3cp  ^ 
^ n=2 n'=2       y   Y 

09     CO 

^ 1   E  E  Q Q , -^ ^ 1^ , 
ij-V^ n n' cos cp oA  oA. 

n=2 n,=2 Y 

so that 

(7.13) A? + ^ = A E  E  Q Q , ^^ +-V~f-^ i+y^ n n'  ocp  ocp     cos cp oA  oA. 
' n=2 n,=2       H'   Y 

(The bar denotes averaging over the sphere.) 

Ag can be written as 
n 

n 

(7.1*0  Ag = 2 (a  cos mX + b  sin m.\)  P  (sin cp) 
n       nm nm        n 

m=0 

where a , b  are constant coefficients and cp, X are geographical 
nm  nm 

coordinates. Now we can differentiate with respect to w and X: 

U5 



(7.15) 

«\g n dP 
n              ,                     ,                            , N       n 

—r— =    T, [a.      cos mA. + b       sin mA.)   , 
OCD nm run dcp 

m=0 

öAgn        n m 

—r— =    S  (mb       cos mk - ma       sin mA.)  P 
oX nm nm n 

m=0 

Hence we get,   taking n'   5" n  , 

^g    ^g  ,         2TT      n/2       aAg    öAg 
,           n        n'            f         n              n        n' 
it-TT —^  =       j J —^ • cos cp dcp dX 

ÖCP      ^      '     Xlo cp=-n/2 9CP      SCP 

(7.16) 
TT/2    dP      dP 

r» n        n 
= 2TT a    a  , 

0     j-n   O 

I 

no n' o    " ,      dcp      dcp 
TT/2 

cos cp dcp + 

n TT/2 m        m 

+ rr    I]    (a    a        + b    ID   ,   j n n'   cos 9 dec 
nm n'm        nm n'm      0 ,  

m=l -n/2    dcp      dcp 

Here we have used the well-known orthogonality relations 

2n f 0, p ^ q 

j cos pX cos qX dX =J TT, p = q ^ 0 , 
0 I 2TT, p = q = 0 

2TT 

(7.I7)       j   cos pX  sin qX dX = 0  , 

2T\ 

\   sin pX   sin qX  dX = 

0 

0,   P  7^ q 
n;   p  =  q 7^ 0 

0,   p =  q =  0 

1+6 



Similarly 

öAg    &g   , 2TT    n/2 ,       aAg     ^g   , 
1 n        n' r,      ' p 1 n n' 

cos2cp    ä\       äX ^ ^      , Y \=0 cp= -n/2 
cosacp    5X      dX 

COE9 dcp dX 

(7.18) 

TT    E   ma(a    a 

111=1 

rT/2        m.    m 
'        P    P 

+ b    "b       )        I n    n'   cos cp dcp    . 
nm n'm nm n'm ^ ,     s— 

-TT/2 COS cp 

Putting 

sin cp = x ^     cos cp dcp =  dx 

we find by formulas of [Molodenskii et.al.^  19^2^  pp.  165-6] 

TT/2 mm 1mm 
V      dP      dP  , f dP      dP 
J n        n'   cos cp dcp =    J       n n'   dx = 

-n/2    dcp      dcp -1    dcp      dcp 

r 2n(n+l)       (n+m)1 m 
- m*C     ,     if n'   =  n. 

2n + 1       (n-m)l 

■/   - m2C     ,     if n'   -  n is even,   n'   > n; 

0  ,     if n'   -  n is  odd; 
V 

TT/2      mm 1mm '     p    p P    P 
J       n    n'   cos 9 dcp =     [       n    n'   dx = 

.TT/2 
cosscp -1    1-x" 

/    m rC    ,    if n'  = n, 
n ' 

m 
C    ,     if n'   - n is even,  n'   > n, 

0,     ifn'  -nis odd, 

V7 



where 

m , ,   (n+m-2)l ,       ^,   (n+m-U)i 
C      = 2(2n -  1) ^7 rf- + 2(2n-5) -, "T- -i 

n (,n-mj; (n-m-2)l •   •   i 

. m A ii mii (Concerning C     ,   there is a misprint on p.   165,   op.   cit.:       + C 
n n 

should read " = C m".) 
n 

Hence we  find,   for n'   ^ n: 

öAg   äAg    , 
 n  n' 

^    5cp      öcp 

Sni. ..   n      \ r -n    T.    (a    a        + b    "b  ,   )•(   -msC 
ran n'm        nm n'm r 

m=l 
n -n even, 

0,  n'   - n odd, 

/ m 

Urr 1 
öAg   hi 

n n' 

TT    E     (a    a        + b    b   ,   ).m2C     , 
nm n'm        nm n'm n 

m=l 
n'-n even, 

cos^cp 9cp    SX      hi 

0,  n'   - n odd 

so that 

(7.19) 
2Ag    äAg   . ,       ^g    SAg   , 

n        n 1 n        n' 
öcp      äcp cosS9    3X      5\ 

for n'   ^ n. 

For n'   = n we find in the same way 

'^„V 1     l*Sn\ 
+   5- 

n 

Scp cos cp ÖX 
n(n+l)       2       1 n(n+l) (n+m)'       2   ,  h 2 
2n+l        no       2 2n+l      m=l   (n-m)l     nm        nm 

Wi 



Forming the average of  ^g s itself we find easily 

  2TT    TT/2 

X=0 cp= -17/2 

(7.20) 
Inm^ (a 3 + b 3) 

2n+l    no      2(2n+l)      ,   (n-m)l      nm        nm 
m=l 

2 ] 

a      + 

so that 

(7.21) 
'^M 1      /^n]   

Taking  (7.19) and (7.2l)  into account,  we find hy  (7.13) 

A?3 + ATI2 = A    2    n(n+l)  Q 2Ag a   . 
4v n n 7    n=2 

For reasons of symmetry, Al and All can be taken to be equal, and we 

finally get 

(7.22.a) Al3' = 2^ = ^ 2 n(n+l) Q„
3 Ag„8' 

■n-O 
n   n 

for the direct method. 

For the coating method we must replace Q   by q  .  obtaining 
  n n 

R2 

1+y8 (7.11.b)Zi8 =7^   E    q aÄg a  , 
n=2 

n        n 

(7.22.b) A|8 = AT]3 = A    2   n(n+l)  q 
a Äg 3  . 

oy n        n 
^    n=2 

^9 



Relationship between Ag and the Covariance Function. Comparing  _—-_ n  

eq. (7.20) with eq. (33) of [Kaula, 1959] and taking the relationship 

between conventional and fully normalized spherical harmonics into 

account, we find that 

(7.23)   Ag n    n 

the coefficient of n-th degree in the development of the covariance 

function of gravity anomalies, C(s), in a series of Legendre's poly- 

nomials: 
CO 

(7.2^)   C(s) = E c P (cos s). 
n n 

n=2 

Mean Square Effect on 5 , 5 , 5 .  In order to avoid confusion, we 
 ä • K — M — L 

shall change our notation of the components of the gravity disturbance 

vector, now writing as subscripts,   capital letters W, M, L instead 

of n, m, i. 

Then, 

2y 
(7.25a)  S = Ag + -^ N,  5 = yl,       5 = yT\. 

N        R      M        L 

Denoting the RMS effect of the zones beyond Y  on these components 
o 

by A5 , ZE) , A5 , respectively, we find from (7.11.a,b) and (7.22.a,b), 
IN    M    ij 

taking (7.23) into account, the following formulas: 
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Direct Method 

n=2 
(7.26.a) 

00 

ÄS~2  = K5~a = ^    S n(n+l)  Q a  c 
M L        o      ^ n      n 

n=2 

If we use the  coating    |i ,  then 

(7.25.b)  &N = y- + ^N,    5M=v53     &L = y^ 

and we have instead: 

Coating Method 

00 

a N   16     n  n ' 
n=2 

(T.26.h) « 

W* =WT
a =i   En(n+1) q

2 c . 
M    L   8  „      n  n 

n=2 

Numerical Results. First we give tables for the Q (Tahle 1,1.a., 
  n 

taken from [Molodenskii et.al., 1962]). and for q (Tahle T.l.b, 
n 

computed by eqs. (7.9.b)). 
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Table 7.1.i 1 

Coefficients Q      for 
n 

the direct method as functions of radius 
0 

Y 
o 92 S \ % "6 s «8 

0Q +2.000 +1.000 +0.667 +0.500 +0.1+00 +0.333 +0.286 

5° +I..8OI +0.802 +0.^70 +0.301+ +0.206 +0.11+1 +0.095 

8.990(lOOOkni) +I.63U +0.639 +0.312 +0.152 +0.061 +0.001+ -0.032 

10° +1.593 +0.596 +0.271+ +0.118 +0.030 -0.021+ -0.056 

13.^9°(1500km) +1.^57 +0.V72 +0.159 +0.015 -0.058 -0.095 -0.110 

17.99°(2000km) +1.306 +0.339 +0.01+9 -0.070 -0.116 -0.126 -0.118 

20° +I.2U7 +0.290 +0.011 -0.091+ -0.127 -0.125 -0.105 

25° +1.133 +0.20i4- -0.01+1+ -0.116 -0.120 -0.093 -0.057 

30° +I.062 +0.161 -0.058 -0.103 -0.087 -0.050 -0.013 

U00 +1.021 +0.lkk -0.051 -0.080 -0.057 -0.021+ +0.002 

50° +1.0hh +0.122 -0.091+ -0.116 -0.067 -0.006 +0.033 

60° +I.0I1O +0.02^ -0.188 -0.131+ -0.009 +0.069 +0.063 

70° +0.958 -0.I30 -0.21+0 -0.053 +0.095 +0.081 -0.015 

80° +O.807 -O.260 -0.187 +0.073 +0.111 -0.016 -0.075 

90° +0.636 -O.306 -0.068 +0.128 +0.023 -0.076 -0.011 

100° +0.5* -0.271+ +0.021+ +0.090 -0.01+6 -0.03h +0.01+1 

110° +0.khl -0.222 +0.01+9 +0.038 -0.01+3 +0.008 +0.020 

120° +0.^31 -O.208 +0.01+7 +0.028 -0.035 +0.010 +0.010 

130° +0.^30 -O.237 +0.078 +0.019 -0.050 +0.03^ -0.003 

iko0 
+0.389 -O.263 +0,11+0 -0.039 -0.025 +0.050 -0.01+5 

150° +0.291 -0.231+ +0.171 -0.107 +0.050 -0.006 -0.023 

160° +0.159 -0.11+5 +0.127 -0.107 +0.086 -0.061+ +0.01+1+ 

170° +0.0U5 -0.01+1+ +0.01+3 -0.01+1 +0.039 -0.037 +0.035 

180° 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Table T.l.b 

Coefficients q for the coating method as functions of radius Y 

5° 

8.99°(1000km) 

10° 

13.^9°(1500km) 

17.99°(2000km) 

20° 

25° 

30° 

ko0 

50° 

60° 

70° 

80° 

90° 

100° 

110° 

120° 

130° 

1^0° 

150° 

160° 

170° 

180° 

q2 q3 ^ % % "7 ^ 

+2.000 +1.000 +O.667 +0.500 +0.U00 +0.333 +0.286 

+1.565 +O.697 +0.^08 +0.265 +O.I79 +0.123 +O.083 

+1.226 +0M5 +0.215 +0.095 +0.026 -O.OI6 -O.OU2 

+1.1U2 +0.1+08 +0.170 +0.056 -0.007 -o.okk -0.066 

+0.858 +0.222 +0.024 -O.O62 -0.102 -0.119 -0.121 

+0.512 +0.009 -O.I28 -O.I7O -O.I73 -O.156 -O.I29 

+O.366 -O.O75 -O.I82 -0.202 -O.I85 -0.152 -O.II3 

+0.033 -0.251 -0.275 -0.233 -0.169 -0.101 -O.OllO 

-0.255 -0.37^ -O.309 -O.206 -O.IO3 -O.OI8 +0.040 

-0.676 -0.460 -0.228 -0.045 +0.066 +0.103 +0.085 

-O.878 -O.363 -O.O37 +0.116 +0.127 +0.057 -0.021 

-0.875 -0.156 +0.138 +0.153 +o.o4o -0.058 -0.071 

-O.707 +0.070 +0.206 +0.06l -O.O74 -O.O73 +0.007 

-0.433 +0.235 +0.149 -0.064 -0.090 +0.014 +0.060 

-0.121 +0.293 +0.018 -O.II9 -O.OO7 +0.068 +0.003 

+0.165 +0.241 -0.101 -O.O7O +0.070 +0.020 -O.O5O 

+0.376 +0.115 -0.147 +0.026 +0.060 -0.048 -0.011 

+0.484 -0.028 -0.105 +0.086 -0.012 -0.039 +o.o4o 

+0.483 -0.137 -0.014 +0.068 -0.058 +0.020 +0.015 

+0.406 -O.I78 +O.O65 +0.002 -O.O35 +0.041 -O.O29 

+0.275 -0.153 +0.092 -0.050 +0.018 +0.004 -0.016 

+0.138 -0.088 +0.066 -0.051 +0.038 -0.027 +0.018 

+0.037 -0.025 +0.021 -0.019 +0.017 -0.015 +0.014 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Now we are going to evaluate formulas (7.26.a,ID) for the direct 

and the coating method, for different sets of c . First we use the 
n 

maximum estimates for c of [Kaula, 1959^ P« 2^19]: 

c2 = 15, c = 1+3, c^ = 30, c5 = c6 = c^ = Cg = 25 mgal! 

The results are given in Table 7.2.  The summation has first "been 

extended to n = 8; higher order c have "been neglected.  In order to 
n 

see the convergence of the series (7.26.a,h) we have also performed 

the summation up to n = 5 only. 

5^ 



Table 7-2. 

RMS influence of the zones "beyond a radius Y    on 5  ,   5  ,   5  , based J o    N'  M'  1/ 
on the maximum estimates for the degree variances of [Kaula, 1959] 

Summation up to 8th order   Summation up to 5th order 

Direc t Coati ng DJ .rect Coating 

Y Kb As = As As   As = Ä5 As Äs = As As   As = As 
0 N      M L W M         L N M        L N VI 

mgal mgal mgal mgal 

5° 9.^ 10.6 2.0 9-3 9-3 10.1 2.0 8.8 

8.99o(l000km) 7.8 8.1 1.1+ 6.0 7.8 8.1 1.4 5.9 
10° 7.5 7-7 1.3 5.1+ 7.5 7.6 1.3 5.3 

13.^9°(1500km) 6.6 6.7 1.0 k.3 6.5 6.3 0.9 3.4 

17.99°(2000km) 5.7 5.9 0.7 h.3 5.6 5.2 0.6 2.6 

20° 5 A 5.6 0.6 1+.1+ 5.2 4.9 0.5 2.8 

25° ^.7 h.Q 0.7 1+.5 4.7 4.3 0.6 3.8 

30° h.h h.l 0.8 h.l 4.3 4.0 0.8 4.6 

1^0° k.2 3.8 1.1 5.2 l+.l 3.7 1.0 4.8 
50° k.2 k.O 1.1 1+.6 4.2 3.9 1.0 4.3 
6o0 

h,3 h.3 0.9 1+.0 4.2 4.1 0.9 3.7 
70° h.i h.3 0.8 3-3 4.0 4.0 0.8 3.1 
80° 3.8 h.2 0.6 3.1 3.7 3.8 0.6 2.8 

90° 3.3 3.7 0.5 2.8 3.3 3.5 0.5 2.6 
100° 2.7 3.0 0.5 2.6 2.7 2.9 0.5 2.3 
110° 2.3 2.h 0.5 2.2 2.3 2.4 0.5 2.0 
120° 2.2 2.3 0.5 2.2 2.2 2.3 0.5 2.0 

130° 2.4 2.6 0.5 2.2 2.3 2.5 0.5 2.1 
1^0° 2.1+ 3.0 0.5 2.2 2.4 2,8 0.5 2.0 
150° 2.2 2.8 0.1+ 1.8 2.2 2.8 0.1+ 1.8 
160° 1.6 2.1+ 0.2 1.3 1.4 2.0 0.2 1.1 
170° 0.6 1.1 0.1 0.5 0.4 0.7 0.1 0.4 

180° 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Fig. 7.1 shows a graphical representation of the first part of 

Table 7.2. 
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One would expect a rather monotonous decrease of the curves from 

0 to l80o. The non-monotonousness is especially apparent in the 

coating method.  It is probahly due mainly to neglecting terms of 

higher than 8th order: it is still stronger if we use only terms up 

to 5th order as Table 7.2. shows. It seems, however, to be hardly 

worth-while to go up higher than to 8th order, in view of the increasing 

complexity of the formulas for Q and q and the uncertainty of the 
n    n 

numerical material for c .  Since the higher order terms can be ex- 
n 

pected to influence mainly the dips, it is justifiable to "bridge" 

them empirically in order to get a smooth monotonous function. 

More recent values for the c can be obtained from [Kaula, 19^1] 
n   

and from [Uotila, 1962],    Both give a development of the gravity anomaly 

field in fully normalized spherical harmonics. Writing (7.20) in fully 

normalized harmonic coefficients we get [Kaula, 1959^ eq. (33)1 

n 
c = ~KBa =      E (a 2 + b 

s). 
• n    n     „  nm    nm 

m=0 

By this equation, the c can be computed. 
n 

From [Uotila, 1962, Table 5] we get (flattening 1/297): 

C2 = 22'    C3 = k2'    % =  32, 

Only values up to kth  order are given. The almost perfect agreement 
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with the c of [Kaula, 1959] is accidental, 
n      

From [Kaula, I961] we get for the flattening 1/298.2H: 

c2= 0.7,  c3= 19,  c^= 11,  c5= G,      c6= 11,  c^= c8= 5; 

if we use the flattening 1/297^ then aa is changed to a2= 17. The 

influence of the distant zones, according to these values, is given in 

Table 7.3 and in Fig. 7.2. We see that the effect of a wrong flattening 

is much stronger in the direct than in the coating method.  This can be 

expected since, as Tables 7.La and 7-l«h show, qa is smaller and changes 

sign more often than Qg. 
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Table 7.3. 

RMS influence of the zones beyond a radius Y on 5 , 5 , S , 
o    N'  M'  1/ 

for two different flattenings, based on a spherical harmonics 

development obtained by a combined adjustment of gravimetric, astro- 

geodetic, and satellite data [Kaula, 1961] (summation up to 8th 

order) 

flattening I/298.2I+ flattening 1/297 

Direct Coating Direct Coating 

Y LK ^ = ÄsT As  te> = As As As = Ab As^ As r^\ 0 u N      M L N M        L w M         L w     1 vi        L 

mgal mgal mg al mgal 

5° M 5.7 0.9 5.0 8.5 8.6 1.9 l.h 
8.99o(l0001aii) 3.3 h.i 0.6 3.0 7.5 7.1 l.U 5.3 

10° 3.1 3.8 0.5 2.6 7.2 6.8 1.3 1+.8 

13 A90 (1500km) 2.5 3.1 0.3 1.9 6.5 6.0 0.9 3.6 
17.99°(2000km) 2.0 2.5 0.3 2.2 5.7 5.3 0.6 2.8 

20° 1.8 2.U 0.3 2.1+ 5A 5.0 0.5 2.7 
25° l.h 1.9 o.u 2.7 1+.8 1+.1+ 0.1+ 2.7 
30° 1.2 1.5 0.5 2.9 1+.5 l+.l 0.6 3.1 
1^0° 1.3 1.3 0.6 3.0 h.3 3.8 0.9 3.8 
50° 1.2 l.h 0.5 2.1+ h.k 1+.0 1.0 3.9 
60° 1.2 1.5 0.3 1.6 h.k 1+.0 0.9 3.5 

70° l.h 1.9 0.3 1.5 k.2 3.9 0.8 2.9 
80° 1.6 2.1 0.3 1.8 3.6 3.6 0.5 2.3 
90° 1.6 1.9 0.3 1.7 3.0 3.0 0.1+ 1.8 

100° 1.3 1.7 0.3 1.6 2.1+ 2.1+ 0.3 1.7 
110° l.l 1.3 0.2 1.2 2.1 2.0 0.1+ 1.8 

120° 1.0 1.2 0.2 0.9 2.0 2.0 0.5 1.9 
130° 1.2 l.h 0.2 1.0 2.1 2.1 0.5 2.0 

1U00 
1.3 1.7 0.2 1.1 2.0 2.2 0.5 1.8 

150° 1.2 1.7 0.2 1.0 1.7 2.0 0.3 1.1+ 
160° 0.9 l.U 0.1 0.7 1.1 1.5 0.2 0.9 
170° 0.3 0.6 0.0 0.3 0.1+ 0.6 0.1 0.3 
180° 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Finally we consider the spherical harmonics expansion of Zhongolovict: 

quoted and used in [Molodenskii et al., 1962^, pp, 2h^-G],     Here^, 

c2= 61,  c3= 96,  c^= 12,     c5= 8,  c6= Ik,     c^  5,  c^ mgal 

(computed by c = Ag 2)o  With these coefficients we find values con- 
n    n 

siderably higher than those given above (Table "J.k-),     They are; however, 

probably too high since the development of Zhongolovich is already out 

of date (it was computed in 1952), 
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Table 7.^ 

EMS influence of the zones beyond a radius Y on 6 . & . 5T, based on o    N  M  L 

the spherical harmonics development of Zhongolovich, 1952 (summation 

up to 8th order). 

Direct Coating 

Y W Ab = A6T K Ä& = A5 
0 R M        L N M        L 

mgal mgal 

■5° 16.2 16,0 3.5 13.9 
8.990(l0001ntt) il+.2 13.6 2.6 10.1 

10° 13.8 13.0 2.1+ 9.2 
13.49° (I5001aii) 12.3 11.5 1.8 6,6 

17.99° (2000taii) 10.7 9.9 1,0 k,2 
20° 10.2 9.3 0.8 3.7 

25° 9.1 8.2 0.7 k.O 

30° e.u 7.5 1,1 5.3 
1+0° 8.1 7.2 1.7 7A 
50° 8.2 7.3 1.9 7o5 
60° 8.2 7,2 1,8 6,4 

70° 7.6 6.9 l.k 5.0 

80° 6.8 6.5 1.0 4.3 
90° 5.8 5.7 0,8 3o7 

100° U.8 h.Q 0.7 3.3 
110° h,l ko0 0.8 3.4 

120° k.O 3.9 1.0 3.4 

130° k.l k.l 1.0 3.7 
140° k.O k.2 0.9 3.5 
150° 3.3 3.6 0.7 2.7 
1600 2.0 2.k 0.4 1,5 
1700 0.6 0.8 o.l 0.5 
1800 0.0 0.0 0.0 0.0 
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Conclusion. On the whole, the values of Fig. la,"b, based on [Kaula, 

1959] and confirmed by [Uotila, 1962],  might be the most realistic 

estimates, apart from the dips. We should like to propose the 

smoothed values of Table 7.5- 

Table 7.5 

RMS influence of the zones beyond a radius Y on 6 , 5 , S : proposed 

values. 

Direct Coating 

Y 
0 

A6
H 

A6 
M 

mgal 

-\ A8N 
mgal 

M '\ 

8.99°  (1000km) 8 8 2 6 

13.U90  (1500km) 7 7 2 5 

17.99°   (2000km) 6 6 2 5 

20° 6 6 2 5 

25° 5 5 2 5 

30° 5 5 1 5 

45° 5 5 1 5 

60° k 5 1 k 

90° 3 4 1 3 

120° 2 3 1 2 

150° 2 3 0 2 
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These values are referilng to a flattening in the neighborhood of 

1/297. If we use a better flattening, then these values should be 

somewhat less. 

We see that for Y > 20° or 30° the influence of the distant 
0 

zones decreases very slowly. It is, therefore, impractical to extend 

the integration much farther than 20° (coating method) or 30° (direct 

method), unless it is extended over the whole earth. 

The effect of the distant zones on & and 5T is somewhat less 
M    L 

in the coating than in the direct method. The effect on 5 is much 

less. Ey using another method which will be described in the next 

section, however, the influence of the distant zones on S can be 

made still smaller. 

8. PRACTICAL COMPUTATION OF THE GRAVITY DISTURBANCES 

We shall describe now a method for the practical computation of 

gravity disturbances. Since the geoid undulations N have been com- 

puted for large parts of the world—the accuracy is as good as the 

existing gravity material--we can assume them to be known. Therefore, 

the coating method can be applied which has certain advantages over 

the direct method: simplicity, less influence of the distant zones, 

etc. 

Upward Continuation Method. For the vertical component 5 there is,   n 

however, a method which is still better than the coating method. 



Compute the vertical component at ground (or at the geoid) "by 

(8.1) Ag.f^N. 

5T 
Since r6 = -r — is a harmonic function, Poisson's integral for 

n    3r 

harmonic functions can be applied to give 

rS 
^TTR 

R  f> f R6n   „p, 

a   s 

where 

r = R + H 

D = y-R*  + r2 - 2Rr cos i 

Setting as before 

R     R 

"   '' T        R + H ' 

D =^1 - 2t cos Y + ta 

we have 

D = rD . 
s 

Hence 

(8.2) 
„  ta(i.ta) rr Sn

0 

where 6 0 is given by (8.1). 
n 

This formula (8.2) is called "upward continuation integral"; 

it can also be used for the upward continuation of the gravity 

anomalies A,g > since rAg is also a harmonic function. Here, 
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however, it is used for the upward continuation of the gravity 

disturbances. 

If we compare (8.2) to the corresponding formula for th-a coating 

method, 

(8-3)     \ = h JJ ^ • ^ d - ^ cos Y) do 
o 

where 

^ =Ag +^N , 

then we find that the integrand in (8.3) decreases, with increasing 

distance D , like 1/D, whereas in the upward continuation integral 

(8.2) it decreases much faster, like 1/D3 •. It can, therefore, "be 

expected that the influence of the distant zones in the upward con- 

tinuation method is much smaller than in the coating method. 

Indeed, if we put H = 0, then 5 = 5 0 , i.e., the gravity 
n   n 

disturbance is equal to the point value in P Itself and it does not 

at all depend on the other values and on the distant zones. Thus, 

for H = 0 the influence of the distant zones is rigorously zero in 

the upward continuation method whereas, as we have seen in section 7, 

this is not at all the case in the coating method (neither in the direct 

method, as a matter of fact). From this we can conclude that, even 

for higher elevations, only the nearest surroundings of P will be of 

some influence. 
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Therefore, we can replace the terrestrial sphere hy its tangential 

plane at P.  If in this plane we assume a rectangular coordinate system 

x,y (origin P; the x-axis pointing northward, the y-axis pointing 

eastward), we have Instead of (8,2) the plane formula 

00     00 

11      * n 5 ° 
(8.1+) 8    = —       f       f    :  a    ^     a,3/S  äx dy v       / n      2TT      

J       J     (Ha+x3+ys)3/s 

_00   _00 

In order to estimate the influence of the distant zones "beyond a 

certain distance s from P we introduce polar coordinates s. CC hy 
o 

x = s cos a, 

y = s sin OC, 

getting 

2TT  =0      o 

o = —  !   | -7—5—aN3/p s ds da . 
n  2TT  J  ^  (Ha+sa) /2 

0=0 s=0 

The influence A5 of the zones beyond the distance s is given by 
n o 

2TT  a»   ., 0 

A5n = I;  i"  J1 (H^sS)3/S s^to • 
0=0 s=s 

0 

Since for large s, yE2 +  s2 =  s  ,  ve  can simplify this to 

A5 = H r ^vds 
n     «J   s8 

s 
o 

where 5   is the average of 5 0 over the circle with radius s, 
n,s n 

If M is the upper limit of the absolute amount of 5 '  , 
n, s 

5 0  < M . 
n, s 
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we get 
00 

. r^ <3.s  H 
AS < HM  1 -ä = — M . 
" n      J  sa  s 

s       o 
o 

To get some kind of average effect Aö  rather than this maximum 
n 

estimate, we may replace M by the average disturbance M outside the 

radius s which is certainly close to 0: 

(8.5)   £r = —M. 
n  s 

o 

From this we see immediately that, to get the same error for different 

elevations, s must be proportional to H.  If, e.g., s = 10 H, then 
o o 

Ä5~ = 0.1 M . 
n 

Since M will hardly exceed 10 mgal, Aö  , in this case, will be smallei 
n 

than 1 mgal.  So, it should, in general, be sufficient to go as far as 

10 times the elevation. For larger H, conditions are even more 

favorable since, the larger s is, the smaller can M be expected to be, 
o 

Plane formulas analogous to (8A) also hold for the horizontal 

components 5  and S  : 

5 -\      oo oo r & 0>i 
m 1   H  f>  p m (8-6)      Um   = f; J J i^LM  - * • 
IJ -« -co (HS+x2+yS)3/2l I 

But, since 6  = y§ , 5  = yT] , the use of these formulas would 

require the knowledge of the components §, Tj of the deflection of the 

vertical in the entire neighborhood of P „  If we know § and Tj , then 
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these formulas can indeed be applied with advantage.  (To compute | 

and Tj by differentiating the N-field will not, in general, be 

accurate enough.) In the following, however, we shall regard only 

Ag and N as known, so that S  and 5 must be computed by the 
m      jfc 

coating method. 

Formulas and Approximations. For easy reference we put the relevant 

formulas together: 

/o    v      ta(l-ta)  pn Sv^ , (8.7.a) 5n = -i—i JJ^-da, 
a 

5 ^ 
(8.T.b) 1* 

where 

3 (cos a] 
= — fr^sinY^     Vda 

2TT 
JJ
 D      ^sin a J 

t = ~ , D = /l - 2t cos Y + t4* , da = sin Y dY da; 
R+H 

At least for the nearest neighborhood of P, the spherical formulas 

can be approximated by plane ones: 

(8.8.a) 5n = I; JJ ^ dx dy , 
o 

(8-8^ {l*\-b J'^Q-* 
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where 

(8.9)   D = 1/H2 + x2 + y2 . 

They follow from (8,7.a,"b) by a series development with respect 

s       H 
to Y = — and to — if we put s cos a = x , s sin a = y . 

R      R 

In order to get an estimate on the validity of these approximations; 

we develop l/D3 or, which is equivalent, 

ir   (R+H)3D3  (Rs+ra-2Rr cos Y) )3 
s 

sTT 

in this manner, finding 

(8.10)  ^3 

s 
M 3. H s' 

2 R D 
+ T: a-n a R8D ••■). 

Here l/D3 is spherical and l/D 3 is the equivalent plane quantity 
s o 

-i    3 a s and s    = x    + y 

(8.9)] 

The first  small quantity in the bracket is 

3 H s* 3H 
2 R D 2  2R ' 

o 

independent of the distances.  If H = 63.7 &^ this is 0.015 or 1,5* ^ 

if H = 637 km it is 15^ .  Since the higher up we go the smaller the 

gravity disturbances are, this can "be neglected anyway. The second term is 

8RaD 2  8R2 * 
o 

For s = 1000 km this is 0.003 or 0.3^ ', for s = 2000 km it is 0.01 or 

1^ . This can he neglected, tooj the more so as l/D itself becomes 

smaller with increasing distance. 
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We see that up to 20° distance from P we can^ in general, use the 

plane formulas (8.8.a,b) instead of the spherical ones (8.7.a.b).  In 

particular this holds practically always for the upward continuation 

integral (8.8.a), except for very high elevations ( > 250 km, say). 

It is also useful in the case that in the coating formulas (8.7."b) we 

extend the integration only up to 20° (as we have seen, it is impracti- 

cal to go much farther unless the integration is extended over the 

whole earth, which of course is necessary for highest accuracy). 

Wow we have to show how the x,y in (8.8.a,"b) are to be computed. 

The simplest way is 

x = R(cp - cp ) , 

(8.11) 
y = R cos cp (\ - \ ) ; 

P     P 

another way, 

(8.12) 

x = R(cp - cpp) , 

y = R cos cp (\ - X )   . 

The x's are the same in both; the y's differ in that in (8.11) 

we have the factor cos cp and in (8.12), the factor cos cp . In our 

latitudes there is, for large | cp - cp I , a big difference between both 

formulas. Take cp = Uo0 , | cp - cp 1 = 20° , i.e., cp = 20° or 60°. Then 

cos 20° = O.9I+O , 

cos 1+0° = O.766 , 

cos 60° = 0.500 . 
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The differences "between cos cp and cos cp    are 22^ and 35^1 
P 

It is easily seen that (8.12) is preferable for larger distances; 

only if we use this formula rather than (8.1l) is the reasoning fol- 

lowing (8.10) applicable.  The disadvantage of (8.12) is that the 

5'X 5', 10X 1 , etc., blocks are not rectangles in the system x,y but 

trapezoids. In (8,ll) these blocks are represented by rectangles. 

Evaluation of the Integrals.  In practice, the integrals must be evalu- 

ated by sums. The formulas (8.7.a,b) and 8.8.a,b) are of the type 

(8.13.a)  5 = JJ H • f(cp,X) dq , 

(8.13.b)   5 = JJ u • f(x,y) dq. 

In 5 we have 5 0 instead of p-j Y^Q^D in (8.7.a,b) are, of course, 
n        n 

functions of the geographical coordinates cp, X;  dq is the element of 

area, defined by 

dq = R2da = R2 cos cp dcp dX , 

dq = dx dy, 

respectively. 

The preceding integrals can be approximated by sums: 

(8.1^)    6 = E n c 
k k 

where 

(8.15.a)  ck= f(cpk, y • qk, 
or 

(8.15.b)  ck= f(xk, yk) • qk, 
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where q  is the area of a certain block B  (5 x 5 or 1° x 1° ^ 
k k 

say), and cp , ^  or x . y  are the cooräinates of the center of 
k   K        K.   K 

the block B, . 
k 

Especially for low elevations and for the nearest neighborhood of 

P it is better to compute c  in the integrated form. 

We limit ourselves to rectangular coordinates x, y.  Then 

(Fig.8.l)we can compute c  by 

■yy 

Figure 8.1 

(8.16) ck = F(l) - F(2) + F(3) - F(U) 

where 

(8.17) F(x,y) = JJ f(x,y) dx dy 

is the indefinite double integral of f(x,y) so that 

S8F(x,y) 
f(x,y) 

5x5y 

73 



and, e.g., F(l) is the value of F(x,y) in point 1. 

As a matter of fact, this is equivalent to computing c by 
K 

(8.18.a) c = |J f(x,y) dx dy 
B 

rather than hy 

(S.lS.b)    ck . f(xk,yk) ■ qk . 

If f(x,y) varies  little in the block B considered, then (8.l8.a) 

and (8.l8.b) are practically equal.  If not, then (8.l8.a), i.e., 

(8.l6), is to be preferred: if U is constant throughout the block, 

then (8.l8.a) yields the correct result whereas (8.l8.b) does not. 

(8.l8.b) is in this case, therefore, subject to a systematical error. 

Let us now return to formulas (8.8.a,b). For (8.8.a). 

H H 
fn(x'y) = 2^ = 2n(xa+y

s
+H

a)a/3 '' 
o 

for  (8.8.b), 

m 
_x        x 

2TTD 
3 = 2TT(x2+y2+H3): 

/ ^ X   _     _ 
^Lvx^y; = ^^ 3 = 0„^..2 ,,,2 ,TT3\3/a  > 

tiU'¥) = i^^ = 2TT(x3
+ya

+H2)3/3   * 
o 

Integration by (8.17) yields 

(8.19.a)  F  (x,y)  = ^ tan^^ ^- , 
n 2TT HD 

o 

Til 



(8.19.13) F (x,y) = - — in  {y + D )   , 
m        2TT        o 

(8.19.C) F.(x,y) = - ^ ^n (x + D ) . 

Then, the coefficients c for 5,5,5  can "be computed "by (8.l6). 
k      n      m      i, 

In order to be able to apply (8.l6), the figure 123^ must be an 

exact rectangle.  'Therefore, x,y must in this case be computed by 

(8.11) instead of (8.12). Therefore, we are limited to the nearest 

surroundings of P where (8.11) and (8.12) are practically equal, 

say to a rectangle 3° x ^ in "the center of which P is situated 

(Region A, p. 25).  Outside this rectangle,  c  can very well be 
A. 

computed by the simpler formula (8.l8.b). 

For the computation of the contribution of the innermost zones 

it is necessary to use as small blocks as possible. The smallest 

size is usually 5  x 5  .  Even so, it might be necessary to take the 

deviation of the gravity   anomalies from the mean anomaly of the 

respective block into account. 

For this purpose we consider the gravity anomaly to be a linear 

function throughout the block. Then, 

(8.20)   Ag = a + a1x + aay . 

Inserting this in (8.8.a) and (8.8.b) and integrating over one block 

B only we get 
k 
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AS    = H(a J    + aiJi + a3J2)  , 
o o 

As    = a Ji  + axJn + a2J12 mo 

As    = a J8  + a!Jig  + a2J22     , 
XJ O 

where   As  , As  , As „ are the contributions of the "block    B    to    S  , 
n        m        A k n 

6   ,  5      and 
m      i 

(8.21) J = F(l)  -  F(2)  + F(3)  -  F(^) 

where 

(8.22) 

F  fx vl  _ i-     fr    dX ^  - — tan  ("1) ^- - - F  fx v) Fo(X,y)  -  2TT    JJ       D 3    ^  2nH    a HD    _ H FnU'yj   ' 
0 o 

x^dy = - ^ ^n(y+D )  = F (x,y)   , 
2TT o m 

o 

, . 1 f>r»     x  dx 
Fi(x,y)  = —    JJ    ^-3- 

o 

F8(x,y) .1-   U^,.'- to(xtDo) = F/X,y)  , 
0 

/       \      1       cfx'dxdy      y^/^x H          (-l) xy 
Fii(x,y)  = —             s—^- = i— in(x+B  ) - — tan -■*— , li\*>J J       2TT    

JJ       D 3               2TT       
v       o 2Tr HD    ' 

o o 

,       ,1       ff    xy dx dy Do F12(x,y) =—   JJ    -ps  = -  2TT      , 
o 

„  /   v  1   fP ya dx dy  x  , , ^ v  H  ,  (-1) xy 
Fps(x,y) = —    -—3—-^ = — £n(y+D ) - —- tan    —— , 

Consider now the contrihution of the innermost "block. Let the 

sides of the block be 2a, 2b, so that the points 1, 2,   3, h  have the 

coordinates: 

l(.a, -b) 

3(+a, +b) 

2(-a, +b) 

ki+a.,  -b) . 
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Then, 

and 

"^i = Jg  = Jis  = 0 

(8.23.a)    A6    = a HJ    , 
n 00 

(8.23.13)    A5    = EaJn   , 
m 

(8.23.c)    A&fl  = a3^2   , 

where 

(8.21+) 

T        2    +     (-1)     ah J    = — tan   , 
0      TTH HD ' 

0,1 

T ^   „    Do   1   + a 2H  ,      (-1)    ah 
J,,   = — in —7*  - — tan —  11       rr        Do,!  -  a rr HDo,! 

J82 
a ,n Bo.^h _  2H ^(.1) ^ 
17 Co,!   "   'b TT HDo,! 

Do,i  =    |/a8 + hs + Hs . 

We see that for the central hlock   A&      is the  same as if ve 
n 

would use formula (8.l6). For tp      and As  (8.16) yields zero 
m       n 

whereas the correct values are given by (8.23.h,c). 

In order to estimate numerically the contribution of the 

innermost compartment, A5  and As , we take it as a square with 
m       H 

sides s , so that 

a = b = s ; Do,! = /2s8 + H8 , 

Since, then,  Jj^ = J22 it is sufficient to consider A 5  only. 
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We have 

(8.25)        Jn • 
TT             Do,!    -    S 

2H +     (-1)     s2 

tan           Tm 
TT                     HDo,i 

we take 

I     I 

s = ^ km 

which corresponds to the average size of 5 x 5 blocks. Tahle 8.1 

gives the values of J^ for several elevations H . 

Table 8.1 

Factor Jj^ for s = U km as a function of elevation H 

H Jil 
km km 

0 2.2^ 

1 1.1+1 

2 O.87 

5 0.23 

10 0.0k 

20 0.01 

50 0.00 

100 0.00 

If we have a north-south gradient a! = 1 mgal per 1 km, then 

<]"]_! is numerically equal to the effect A5 in mgal; e.g., for H = 0 

we have 

A5 = 2.2 mgal . 
m 
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Since also gradients of 2 or even 3 mgal/km are possible, the 

effect of the gradient on the horizontal components As  and As 
m      l 

can he considerahle for lower elevations, H < 5 km. For H > 5 km, 

the effect of the gradient is negligible. 

We have also to investigate the influence of the eight "blocks 

adjacent to the central one.  Since the effect is a maximum for 

H = 0 , we consider this case only. We again take the block to be a 

square, but with arbitrary sides. We find that the effect of the 

innermost block is 

(8.26)   A5 = 0.561 ais 
m 

and the combined effect of the eight surrounding blocks is only 

(8.27)      /V8   = - 0.071 B-yS     . 
m 

If the gradient a! = 1 mgal/km and s = U km (5 X 5 blocks), then 

A;5 =-0.3 mgal . 
m 

These values hold for H = 0 , but even here the effect of the gradient 

in the surrounding blocks will be negligible in most cases, even if 

it must be taken into account for the central block (for H < 5 km). 

These considerations are equally valid for the component 5 ; 

we have only to replace a^^ by the east-west gradient ag . For the 

vertical component 5 , the influence of the gradients B.I  and a2 

will always be negligible. 

79 



An easy way of computing the gradients a-^  and a2 which can also 

be used for high-speed computations is (Fig. 8.2): 

X 

0 

X 

3 

X 

I 

lb 

la 

F-Lgure 8.2 
Station and Substations 

(8.28) Ag; - Aga      Ags - Ag4 
ai =  ka        >    a* -      ^ 

^g! through Ag* are the gravity anomalies in the centers of the 

adjacent blocks 1 to k,  which we call substations. These point 

anomalies can also be replaced by the mean anomalies of the respective 

blocks, provided the gravity anomalies are sufficiently linear (this 

is presupposed in (8.28)). 

Station and Substations. For reasons of symmetry the station P 

at which 6,5,5  are computed must be at the center of the 
n      m      i 

central block.  If we, however, use given 5 X 5 mean anomalies 

for which the division into blocks is fixed a priori, it is best to 

select 5 substations (centers of adjacent blocks) 0, 1, 2, 3, k  (Fig. 8.2) 

80 



and compute the gravity disturbance in those three substations -which 

are the corners of a triangle containing P in its interior (0, 1, 

k  in Fig. 8.2).  The value for P is then interpolated between these 

three substations. This procedure is particularly necessary for 

elevations smaller than about 70 km. 

Summary of Formulas and Outline of Computation.  In the following 

we shall give a computational method valid for any elevation from 

0 to several hundred kilometers.  It is, therefore, suitable for the 

computation of the gravity vector along rocket trajectories. 

According to p.25 we use the following regions 

A    . ., . cfe '■- «Pi. = .3°    ,   , 
5x5 blocks, 

B       % - «Pi = 7° 
outside A, 20 X 20 blocks, 

\a  -   ^  =  9° 

Cfe  -  9i  =  25° 

\s  -  X1  =  30c 
outside B,   1°  x 1    blocks. 

D outside C,  5°  x 5° blocks, 
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1, For each block compute 

|A = Ag + 0.231 N ,   B = Ag + 0.308 N ; 

Ag: mean free-air anomalies, N: geoid undulations; Ag> ^ 8 0 in 

mgal, N in meters. 

2. For each station P select 3 substations, according to Fig. 8.2. 

One substation, 0, is the center of the block in which P lies, the 

other two are centers of adjacent blocks so that the three substations 

form the corners of a triangle containing P . The elevation of each 

substation is equal to the elevation H of P . 

The gravity disturbances are computed at each substation and 

are interpolated for P . 

In the following, only the substations will be considered; they 

will be denoted by Q . 

3. Now we consider one definite substation Q only. 

Zone A. 

Compute for all grid points ( = corners of blocks)*. 

x = R((p - cpQ) , 

y = R cos «p (X - O ; 

D = / xa + y8 + Ha ; 
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F = i. tan(-i) s , 
n      2TT ED ' 

o 

F    =  - — ^  (y + D)   , 
m 2TT O 

F    =  - — in  (X + D)   . 
£ 2TT V O 

Compute for each "block 

c    = F  (1)  -  F  (2)  + F  (3)  -  F  (k)     , 
n        n n n n 

c    = F  (l)  -  F  (2)  + F  (3)  -  F  (k)     , 
m        mv   / mv mVJ; mv   /     ' 

csi = F/1) " V2) + F£(3) " V10   ' 

Be sure that the grid points 1, 2, 3^ ^ are arranged as in Fig. 8.1, 

For elevations H > ^0 km the coefficients c can also he com- 

puted as in zone B. 

Zone B 

Compute for all block centers 

x = R(cp - cpQ) , 

y = R cos cp(X -  \  )   ; 
H 

D = / x2 + y2 + Hs   ; 
o 

H 
c     =  !?  •   q  , 

n      2TTD
3 ' o 

X 

m      2nD3   '       ' o 

_ _y  

o 

q is the area of the block. 
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Zone C can be treated either like Zone B or like Zone D. 

Zone D 

If many points are to be computed then the following computatione need 

not be performed for all points. In this case it is sufficient to 

compute the effect of Zone D for a few points only and interpolate 

between these. 

Compute : 

Y = cos      [sin ©    sin «p + cos m   cos ep cos (\ - X )]  , 

(-l)rCQ8(p^ sin tp -  sin tfo cos tp cos (X ~  \Q) -I 
a = ctn      L      lII,t .   ^/,       i   \ *^J   i cos 9 sin (X - XQ) 

D = / 1 - 2t cos Y + t8  ; 

y- 0 , H 5 200 km 
c    = J , 

11 t'^l-t*)   .  q ,  H > 200 km 

t3 

c    = ■a' sin f cos a »  q , 
m      2nJr 

t3 

CA = i^ 8in Y 8in a '  q ' 

1+.    For the substation   Q   considered compute by tuBmatlon over all 

blocks   i : 
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5 = E c   B0 .,, 
n  . n,i n,i 

5 = E c   n , 
m.  . m, i i 

5 „ = ^ c „ . U. • 
i 

For elevations < 5 km we have to add, to S and to S , the terms 
m I 

£ß    and l\b  .  respectively: 
m i 

. r  b   ,    Dx+a      2H ±     (-1)  ab   1 A5    = a1   •   [ - in —— - — tanv     / — ], 
m TT        Di-a       TT HDi 

. r   a   „    Di+b      2H A     (-1)  ab   1 ■ 
A5    = aa   •   [ - Xn —— - — tanv — ] , 

i        a TT        Di-b        rr HDi 

where 2a,2b are the  sides of the central 5  x 5!  block and 

Dx  = /a2+ b2+ H2; 

Agi- Ags Ags- Ag4 
ai =      ka      >     ** =        k-b 

These formulas for &i    and ag are valid for the central substation 0 

(Fig. 8.2);  for the other substations they are to be modified in an 

evident way. 

5. Now denoting by x,y,z the coordinates in the geocentric system 

defined on p. 2 (z-axis = axis of rotation of the earth)  compute the 

components of the gravity disturbance in this system by 
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6    = - cos cp cos X  •  5    -  sin cp cos  X  •  5    -  sin X •   5  . 
x n TO. z 

5 = -  cos cp sin X  •  6    -  sin cp sin X •  S    + cos X •  6  . 
y n Y m X' 

6 = -  sin cp •  6      + cos cp •  6   . 
z n m 

These components 6,5,6 are positive away from the earth's center: 
x  y  z   

cp,X refer to the substation Q . 

6. This procedure must be repeated for all substations and the values 

of 6 , 6 , 6 for the station P are interpolated, 
x  y  z 

For elevations H > 70 km, it is in general sufficient to use the 

central substation 0 only and to put the values at P equal to the 

values at 0 . 

7. Computation of the components of the gravity vector; 

g = ty - 6 , 
XXX 

g = y  - & , 
y  y  y 

g = y   - & . 
z   z   z 

g > g > g > y > y > y    are positive toward the earth's center. 
x  y  z   x  y  z   
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