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by 

Trevor Williams 
System Development Corporation 

Santa Monica, California 

ABSTRACT 

This report continues the project of systematically developing the elements 

of a stochastic theory of combat begun in an earlier work.  The mean, variance, 

third central moment, etc., of a marksman's time to hit a passive target are 

evaluated in terms of the corresponding parameters of his time to fire a single 

round.  Next, the solution of the simple duel, in the case where each protago- 

nist's time-to-kill is distributed as a gamma-variate, is obtained as the cumu- 

lative distribution of a certain binomial variate, and this result is employed 

to furnish an approximate solution to the general simple duel.  An expansion of 

the moment-generating function of the marksman's time-to-kill in powers of his 

kill probability is next derived and found to provide a good approximation to 

the solution of the simple duel; various properties of the expansion are also 

considered.  We then examine a stochastic battle in which all men on both sides 

are at all times able to participate in the action:  it is deduced that for large 

numbers of opposing forces the lead-order behavior of the system is deterministic 

and reduces to Lanchester's square law, the exchange rate being suitably interpreted. 

Finally, we entertain a stochastic battle where the two forces can only be brought 

into play at a single point of contact:  we find that the lead-order behavior is 

now given by Lanchester's linear law, but in this case we are able to go much 

further toward obtaining a complete solution. 
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1.  INTRODUCTION 

After a tiresom harangue in his ordinary style, he took down 
from his book shelves a number of musty volumes on the subject 
of the duello, and entertained me for a long time with their 
contents... 

  Poe (Mystification) 

The present report is a continuation and extension of the project, begun 

by Williams and Ancker in an earlier paper, of developing the elements of a 

stochastic theory of combat by means of idealized mathematical models whose 

implications can be thoroughly traced out.  Free use is made of the results of 

that prior work, which we henceforth refer to as Stochastic Duels--!:  an 

equation cited here as, say, "(1-22)" means the 22nd equation of that paper, 

and the citation "I-Figure 3" means the third figure of that paper.  Tha term 

"stochastic duel" is a convenient one and we now broaden it to include any 

situation in which two enemy forces engage in conflict; in this we have a certain 

etymological authority since the Latin "bellum" is itself a variant form of the 

older "duellum," which meant a contest between two parties, and gives us our 

own "duel" by way of the Italian  "duello."  The discipline of model-building 

in any application of mathematics to the physical world requires certain 

qualifications if it is to be successful.  First of all, significant aspects of 

the problem must be ferreted out for consideration and in so doing we must hew 

away irrelevancies.  There are many instances In the literature of military 

operations research where the argument is cluttered up with minute details which 

lend a spurious verisimilitude to the model but have no bearing on the fundamental 

issues and render the mathematics completely intractable.  Having sorted out 

the key features of the system, we must weigh what we might like to do against 
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what we can reasonably expect to be able to do.  An idealized and simplified 

model which we can solve explicitly and completely is of much greater utility 

in fostering insight than a very realistic model which we cannot solve.  Finally, 

we must build up the bits and pieces of information so obtained into more and 

more comprehensive patterns in order to approach the complexity of the world we 

live in.  This report represents a modest attempt to take a fev such steps. 

2.  CONNECTION BETWEEN CUMULANTS OF TIME-TO-FIRE AND TIME-TO-KILL 

And a certain man drew a bow at a venture, and smote the king 
of Israel between the joints of the harness... 

---I Kings 22: 34 

We assume that a marksman fires repeatedly at a target until he hits it, 

his probability of doing so on any given round being p, where p is constant 

from round to round.  The frequency function of his time to fire we call f(t) 

and that of his time to score a hit, h(t).  The corresponding moment-generating 

functions we write as 

00 00 

cp(z)  =   feZtf(t)dt     and    *(z)   -  f eZth(t)dt  . (2.1) 
J o ^ o 

Assuming successive   firing-times   to  be  statistically  independent,   we have  shown 

(1-14)   that 

*/.,\   _     PtP(z) (o  o\ 
<KZ)   =   \Zmtm\   • *       ' 
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Strictly speaking, this result was derived for the characteristic function 

rather than the moment-generating function, but since one may be obtained from 

the other by the subsituation z=iu, i.e., a rotation through 90 , the distinction 

is of no importance analytically. 

The cumulant-generating function for the time-to-fire will be called 

oo     n 
z 

)(z) s log cp(z) =TJ 
K
n~l     > (2- 3) 

n=l 

where K, is the mean time-to-fire, /<„ the variance, etc.  Similarly, for the 

cumulant-generating function of the time-to-kill we write 

oo     n 

8(z) = log $(z) = D Kn ~ • (2.4) 
n=l 

Then (2.2) yields 

T      l-qe 

upon invoking (2.3); in other words, 

e 
e = e-log i^S» = 0-log[l - * (eG-l)] . (2.6) 

For convenience writing 

t = q/p , (2. 7) 

(2.6) becomes 
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oo v °° V        V 

v=l ,1=0 v=l 
V 

oo      v     v                         °° n n V-|i   v     yA i±_0_ 
. . . J       W Lt n, 

v=l (i=o rt=o 
= 0+Ef E(-)V"^)E 

oo n       oo V V 
0 +E ^T E — E<-)    <n)n 

n=o v=l u=o 
(2.8) 

But,  we recall  that,   by definition 

Au,   —  u,    , -u, 
k k+1    k (2.9) 

and 

*\ ■ ^v"\' 
(v-2,3,...) (2. 10) 

from which it follows that 

Av     VV Nv-u v. 

|i=0 
k+fi (2.11) 

n 
(See, e. g., Whittaker and Robinson.)  Hence, for the sequence u =k we have 

»V-H/Vv.n _ Av,n E(-)V"%K' 
u=o k=o 

= AV , (2.12) 

the latter form being the conventional abbreviation.  Since differences of a 

polynomial of higher order than its degree vanish, we have 
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£VOn = 0 (V > n) (2. 13) 

and substituting this result and (2.11) into (2.8), we obtain 

e- e+E^ Ef AV. (2.14) 
n=o v=l 

We note  that   the   term  for n=o   is  a  null   sum and may  therefore be  suppressed. 

Furthermore,   we have 

AV = vpV"1 +AV-10n-1)   . (2.15) 

For,   in consequence of   (2.9)   and   (2.10), 

äV
1
 - ZNV"Lln-1^V'10n'1   ; (2.16) 

hence  the right-hand   side  of   (2.15)   is 

Av-l..n-l TT-A .  . v-l-u.v-1. .   ,,*n-l ,     .   . 

u=o 

by  (2.11),   and  this  last may  be re-written as 

JL         ,    ._,        JL 

H-l u 

V/  NV-U.V-L   n-1        y>.  Nv-u  v   ,v-l.   n 

u=l li-1 ** 

V 

- E(-)V^<J)^ - äV  , (2.18) 
H-l 

when we refer back to (2.12) and note that the term for u=o contributes nothing 
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to the sum.  Hence (2. 15) is established; when we employ it in (2.14) we obtain 

00    ^n     n n ,        , 
V  6      v^   V/AVAn-l       Av-l_n-L e = 9 +Li rr  Lt*- (A °      + A    °     ) 

n=l v=l 

=  0+T)^    ( StVo11"1 + St^AV-1) . (2. 19) 
n=l \>=l v-o ' 

Now, of the sums within the parentheses, the latter may be extended up to v=n, 

since this entails merely the introduction of a term t A 0   which vanishes 

by virtue of (2.13); also the former may be extended down to v=o, introducing a 

term 0  , which also vanishes provided n > 1.  Hence we may rewrite (2.19) as 

e- G + et H-Efr d+t) StW-1 

n=2  "     v=o 

- cu*> £ IT EtVoa-1, (2.20) 
n=l   v=o 

upon noting that the term for n=l precisely compensates for the term in front 

of the summation.  From (2.7), 

1+t = 1/p , (2.21) 

and thus, writing (2.20) out at some length, in terms of the well-known values 

of the "differences of zero," we obtain, finally, 

p     p P       P 
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Going back now to (2.3) and (2.4) and substituting these expansions into 

(2.22) and comparing coefficients of powers ot z,  we readily derive the following 

relationships between the K's, which are the cumulants of the time-to-kill, and 

the K'S,   which are the cumulants of the time-to-fire: 

K2 = V^4^ ' (2> 24) 

K3 = ^3[p
2K3+3pqK1K2+q(l+q)^] , (2.25) 

and 
1     O      O Q 0 0 0/ 

K4 = — [p K4+p q(4K1K3+3K2)+6pq(l+q)K1K2+q(p +6pq+6q )K^   . (2.26) 

These are the desired results.  A convenient check on the algebra is afforded 

by the fact that for exponentially-distributed firing time with rate of fire r; 

we have 

cp(z) = feZtre"rtdt =YrV (2.27) 
J o 

by (2.1) and 

j •<«>-—!—■ T^TT; > (2-28) 
1 -7" q 

by (2.2).  Also, from (2.3) and (2.27) it follows thar 
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n °°      n 
E,n^=-lo8(l-f)=E  £-z, (2.29) 

11— i il — L 

whence 

K     = - "^ , (2. 30) 

and  similarly, 

(n-1) 
n r 

r P 
K    =  v     J       . (2. 31) n n n 

Substitutions  into   (2.23)-(2.26)   yields 

i- . A .  I 
rp       p  '   r 

and 

4tp   — + P q(— + —) + 6pqQ+q) — 
r  p p r r r r 

(2. 32) 

1      - ^(P K + q \) (2. 33) 2  2 2^     2       H    2 
r   p p r r 

~3i= Vp2' H+ 3pq h+ q(1+q) h] (2-34) 
r   p p r r r 

6 1   r   3  6 2   ,8 

+q(p  +6pq+6q2) —1    . (2. 35) 
r   J 

The first two of these are obvious identities; the latter pair reduce to 

' 
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and 

2p2+3pq+q(l+q) = 2 , (2.36) 

6p3+llp2q-H6pq(l+q)+q(p2+6pq+6i2) - 6 , (2.37) 

which may be verified by replacing p by 1-q throughout. 

3.  SOLUTION OF THE SIMPLE DUEL WHEN THE TIMES-TO-KILL ARE GAMMA-VARIATES 

Laertes.  My lord, I'll hit him now. 

King.     I do not think't. 

---Hamlet (V,ii) 

The solution of the simple duel which we have already exhibited (1-20) 

becomes, in terms of moment-generating functions, 

e+i°° 

P(A)  =i f     $A(-Z)n(z)^    • (3-D 2rtiJ Av    '^Bv  ' z 
e-ioo 

As we might expect, the only difference in the result is that the path of 

o 
integration has been rotated through 90  in the complex plane.  Now, we define 

a y(k,a) variate as one having as frequency function 

k-1     . 
f(t) =— r e_t/a . (3.2) 

(k-1) la 

The MGF (moment-generating function) is thus 

00 

n                k-1     , . 
*/■ \   / zt  t      -t/a,_ 1                        ,~  ^ •(•) = / e   r e   dt =  r . (3.3) 

Jo        (k-1) la (1-r/z) 
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This result is obvious when we recall that a y(k,a) variate is the sum of k 

independent exponential variates, each with mean a. 

Let us now assume that A5s time to kill is distributed as 7(k,a),  while 

B's is 7(i;ß).  Then we have 

e+i°° 

p(A) = 2^7 f    r 1 • f • <3-4> 
c

J_i0O   CH«>k(i-ßOi 

This is, of course, merely Prob{7(k,a) < y(i,ß)).  Writing 

if  - a/ß , (3.5) 

and replacing z by z/ß in (3.4), we find 

e+i°° 
pcA)=^rf 77-TkT—rr- es.« 

Strictly speaking, the e in (3.6) is not the same as that in (3.4), but all we 

need be concerned with is the fact that it is some positive number.  We complete 

the contour in (3.6) into the right half-plane since by doing so we pick up one 

residue (namely the one at z=l) rather than two.  Since the contour encircles 

the pole in the negative sense, we obtain 

P(A) = - \t\   jf   • (3. 7) 
(l+tz)K(l-z) z 

Writing 

= 1+w , (3. 8) 

■ 
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this becomes 

P(A)   -   -  c?f f  -i  
i/W     (l+t+i|fw)K(-w)JS(l-K/) 

LLLL   coeff 

(l+^)k      w^-1  (l+I^W)k(l+w) 

i=a^iS(;*)(1|L)V(_l)i.v-i 
(l+»|/)k    v=o i+t 

1     «=1 Bc->v<;k>tvcu*>i-v-1 
,. , lNk+J-l 
(l+i|f) v=o 

(1+^) v=o u=o 

(l+ljf) V = 0 \1 = V 

41 
-—Wi sV fc(-)v(;k>(i?vl) • (3.9) 

(1+\|0 U = 0 v=o 

The inner summation here may be evaluated by means of two elementary and 

well-known identities, namely, 

(v) = (-)YT1) (3.10) 

and 
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v=o 

The first of these is self-evident, and the second, known as the "factorial 

binomial theorem," and due to the mathematican Vandermonde, may be obtained by 

equating coefficients of like powers of t in the identity 

(l+t)X(l+t)y = (l+t)X+y . (3.12) 

Using (3.10) twice and (3.11) once, the inner sum in (3.9) may be written 

i-f £(?)<jj:6 - c-),lckjri) ■ c^if"1) (3.i3) 
v=o 

and so we arrive at the result 

A_i 
1 *p,k+£-l.   u.k+i-u-l ,        s 
 kTZT   ^C    |i    )«ß                  »                                                    (3.14) 

(a+ß)k+i i n=° 

upon   invoking   (3.5).      In other words,   if we  set 

p = ^' q = £* > and n=k+i-L <3-l5> 
and define [i to be a binomial variate, 

u * B(n,P) (3.16) 

then 
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P(A)  = Prob(u < |-1)3 (3.17) 

may be looked up in the standard tables.  We may summarize the result of our 

calculation in the single identity 

Prob{7(k,a) < ?(£,&))  = Prob(B(k+i-l, ^) < i-l) . (3.18) 

We may combine this result with those of the first section to derive an 

approximate solution to the simple duel.  It follows from (3.3), and is of course 

2 
well-known, that for a 7(k,a) variate the mean is ka and the variance ka . 

Identifying these with corresponding cumulants of the time-to-kill in (2.4), we 

have 

2 
K. = ka  and   K    = ka , (3. 19) 

from which it follows that 

a = K0/K    and   k = K
2
JK„  . (3.20) 

2  l 12 

We now make use of (2.23) and (2.24) and make the fact that the quantities k 

and a refer to side A explicit by putting a subscript A on all the symbols: 

a=(pAVqA);¥A   and   k =-A^AV-V!) • <3-21) 

2 
Here we have also replaced K.   and K by the commoner u and a .  Likewise we 

have the pair of relations 
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p ■ ^v^ifB and *= »lnpA«A) • (3-22> 

Utilizing (3.21) and (3.22) in (3. 15)-(3. 17) gives rise to the approximation 

alluded to. Of course, k and £ are no longer integers here and interpolation 

in the tables of the binomial distribution becomes necessary. 

Certain limiting cases are of interest.  First of all, we may dismiss the 

situation where p.-> 1, for then (3.21) merely falls back into (3.20) and indeed 

all the K's become equal to the corresponding K'S, as they must, since the time- 

to-kill becomes identical with the time-to-fire.  The same is true when p.,,-* 1. 
B 

When,  however,   p    and  p ■*■ o we  find  from (3. 21)   and   (3. 22)   that 

a^— ,     P~— ,     k - 1,   i-1     (p,p + o). (3.23) 
PA PB AB 

Now,   in   (1-1),   we  defined 

rA=   ^A    3nd     rB=   1AiB- <3-24> 

Hence  in  this   limiting case we have,   from   (3.17), 

P(A) -PtobtBCl, £.) < 0} - 4 - J£^    , (3.25) 

which is the same as (1-6).  Indeed the left-hand side of (3.18) tells us that 

we are dealing with precisely the same problem, since, with k=i=l, both gamma- 

variates are merely exponential-variates.  Equation (3.25) suggests that we 

might expect our isoprobs to radiate from the origin of the (p.,p )-plane the 
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same way as in Figure 2 of Stochastic Duels-I, and we shall subsequently find 

further confirmation of this. 

Another case which recommends itself is that where the coefficients of 

variation of A's and B's time-to-fire are small; we might at least hope that 

this would be a reasonable assumption in practice.  We then find that 

FA        l B       4A      4B 

where the symbol "»" carries the customary meaning of "is much greater than. " 

If we further assume that q. and q are small, as many military men would insist, 

then (3.16) approaches normality and (3. 17) may be evaluated accordingly. 

An illustration may help to clarify the relations between the approximations 

we have obtained.  In (1-24) we have derived the solution to the simple duel 

with firing-times distributed as gamma-variates with k=2.  For this case we have 

2   12       2   12 
CTA = FA  and  JB = 2^B * (3-27) 

Hence (3.21) and (3.22) become 

i+qA     i+qR      ,        2 
a=-  ,  ß = -T—— ,     k = —-    and I  - -r— . (3.28) 

2rAPA       2rBPB       1+qA 1+HB 

For simplicity, take 

PA " PB * 3 and rA ■ 2rB • °- 29> 

- 
then the exact solution, (1-24), yields 
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P(A)  = || -  .71795  , (3.30) 

whereas (3.17) leads to 

P(A) « Prob{B(2,-|) < ^) . (3.31) 

Now,   when £ is an  integer,   all  terms up  to and  including  i-1 are  to be  taken  in 

evaluating  (3.17);  hence we may display  the complete cumulative  probability 

distribution implicit  in  (3.31)  as  follows: 

I C. D.F A A2 A3 

1 0 
4/9 

0 4/9 
4/9 

0 
-1/3 

1 8/9 
1/9 

-1/3 

2 1 

Table 1. 

We have here taken the range of i to be such that the first column of differences 

consists of the entire binomial distribution of order 2, with p = 1/3; we thus 

retain all the information at our disposal. First of all, linear interpolation 

in Table 1 yields 

2 
P(A) «= - ,   7. 147o smaller than true value. (3.32) 
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It is interesting to remark that this is the same answer we would get upon 

substituting (3.29) into (1-6), the solution of the simple duel with exponential 

firing-times.  That this might provide a fair approximation may be seen from the 

fact that the isoprobs of I-Figure 5 are all reasonably straight.  Applying 

the Newton-Bessel interpolation formula to Table 1, on the other hand, we find 

P(A) ■■  | + 2  2  . j  (- -|) - -j| - .6875 ,  4.24% too small.   (3.33) 

Hence in this case the use of the more refined approximation has not quite cut 

the error in half, and furthermore remains on the same side of the true value. 

It seems likely, however, that duels for which the isoprobs display greater 

curvature would give rise to a more consistently favorable behavior of (3.17) 

over that of (1-6). 

4.  APPROXIMATION TO THE SOLUTION OF THE SIMPLE DUEL IN 

TERMS OF MOMENTS OF THE TIMES-TO-FIRE 

Round numbers are always false. 

 Dr. Johnson 

Looking at (2.23)-(2.26) we see that if we define a new variate 

T = pt , (4. 1) 

where t is the time-to-kill, then 
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KnCO = pnKn ♦ (n-l)!/<1   (p-K>) , (4.2) 

th 
where K  (T) is the n— cumulant of the new variate T and K,   without any argument 

n -L 

is the mean of the time-to-fire.  But, it follows from (4.2) that T is ex- 

ponentially distributed, with mean K., i.e., 

T % yil,K$ , (4.3) 

or, in virtue of (4.1), 

t ~ 7(1; —) (4.4) 

Hence, when p. and p  are both small, the times-to-kill are, in the limit, 

exponentially distributed, with means \±  /p    and u /p , respectively.  The 

solution therefore reduces to the one for exponential firing-times, for which 

we saw (1-2) that the situation just described holds rigorously. 

This, then, yields the zeroth-order behavior of the solution and raises 

the natural question of whether one can push the analysis further to obtain 

higher-order corrections, thereby taking into account the curvature of the 

isoprobs for all but the case of exponential firing-times.  The multiplication 

of the time-to-kill by p in equation (4.1) results in a random variable with 

MGF 

$x(z) S E(e
TZ) = E(eptZ) = ^(pz) 

Hence, by (2.2), we are led to consider 

(4.5) 

J 
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»(p«)  -    reW     ■ (4.6) l-qcp(pz) 

Employing ü'Hopital's rule we find 

lim aj^Dz^  = rnfo^   l-im  2  =   lim   p^o HP*J       <PW   p+o l-(l-p)cp(pz)       P^o , 
r \      t-v'TM    ; 9(pz) -(1-p) ZCp    (pz) 

- = T^—  j (4- 7) 
1-zcp  (o) 

where u is the mean time-to-fire.  We recognize (4. 7) at once as the MGF of an 

exponential variate wi^h mean \i,   and thus we have a corroburation of (4.3). 

Prompted by the last result we now write 

*<Ps) =E^k(z) ^    , (4.8) 

and recall   that 

q>(P«) =E^k
£^r ' (4-9) 

k=o 

where we use u  to designate the k— moment about the origin, of the time-to- 
K. 

fire.     Equation   (4.6)   then yields 

C °°klqoo v ■» k k 

The term within the accolades is merely 

O00 k k       « k+1  k       o»      r k-1 k"i 
1 • S,,k ^kf- + £u

k 
£-rr~ " ?p   Vi Tk^iTT ■ ilk kil ' 

0 O 1        L J 

(4.11) 
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and  so  (4. 10)   becomes 

It     «o v        a» k-1 k 

E(Vuk-1  - z^-1 ft   S*v(Oft - ZX.! füT^T    • C4. 12) ......   .  (k-1) ! k=l v=o k=l 

But the left-hand side of this equation may be rewritten as 

k=] 
;(kur 

>!£ 
k-r2\)z '  ki £Vk<z) 0MÖT v=l       v  ' 

v  v »v» k-1. 
- E ftE(k)-fc'l0vk.i-*k)*v.kw , C4.13) 
v=l  k=l 

upon inverting the order of summation.  Comparing the coefficients of like powers 

of p in (4.12) and (4.13), we find 

v 
£(k)z  (kuk_rzuk)^_k(z) = vz

v- uv_L      (v-1,2,3,...) .  (4.14) 

Repeated application of this formula enables us to solve successively for the 

\|/'s.  We readily find 

*0<«)-Tb' (4-15) 

2  2 (u -2u )z 
^(z) = —« — > (4- 16> 

2(l-nz) 

*-<*) =  " S ((u -6uu +6u3)z3 +|(3u^-2uu„)z4} , (4.17) 
'     3(l-nz)Z   J   L lib 

and 
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• 

1 0 0// 

*3(z)   ■  3  U^4-8^3 + 36u u2-6u2-24u )z 
4(l-uz) 

2 2      5 
+ (8(i n +4|a n -12|J.M.2-2|J.M.4)Z 

0, O      A 

+(3n2-4w2M-3+P- l-1^2 )  • (4.18) 

From here on the complications become well-nigh insuperable.  It is very 

questionable, however, whether we would ever want to go any further than ty„f 

since \|r. introduces the fifth moment of the time-to-fire; all we ever really 

know about these moments are statistical estimates and we recall that the sampling 

variance of the k— moment entails moments up to and including the (2k)—. 

Hence, it is extremely difficult to get any kind of hold on the higher-order 

moments of a distribution unless the sample size is very large indeed. 

A check on the algebra of the last four equations is afforded by considering 

once again the case of exponential firing-times.  There we have 

Hn = nlu
11 (n-0,1,2,...) , (4.19) 

and when we substitute these values into (4. 15) -(4. 18), we see that iff., \|f and 

\jr_ vanish identically.  This, of course, re-affirms equation (1-2). 

We shall have a little more to say about the \|/' s later in this section, but 

for the present it will suffice to note that their general form is obviously 

1      n 

* (z) "  —TT   E* zn+V  • (4-20) rr '   .,   .n+1    nv ' 
(l-|iz)   v=o 

(The doubly-subscripted if  will not be confused with the singly-subscripted and the 
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dual use of \|r presents a needless proliferation of the notation.) We note that 

\ir  is just a Kronecker delta: Yno   J 

\|r  = l(n=o) , = 0 (otherwise). (4.21) 
no   %  ' *    * 

The following \|r's are,,   by  (4. 16)-(4. 18), 

tn = |(u2-2n2)   , (4.22) 

*21 - 3(n3-6[iu2+6^3)   , (4.23) 

t22 - |<3H^-2nn3)   , (4.24) 

t31 = ^(^4-8nu3+36u2u2-6n2-24fi4) ,                                                                (4.25) 

2 2       1 ♦ 2 = 2M- u3-Hi2ti3-3p.H2  - ^u^ , (4.26) 

and 
13 2 

^33 = 4^3l-l2"4tni2[i3"Hl ^l)   ' (4-27) 

Let us now specify in (4.8) and (4.20) which duelist we are referring to, 

as follows, 

k 

•A<V> =£\A<Z> — > (4-28) 
k=o 

k 

VpB2> -SWE>k. ' (4-29) 
k=o 

k 

KAZ)  "  ^-TZT   ZX„(A)*k+W  , (4.30) 'kAv"'        ,. .k+1    ^Tkv 
(lvAz) v=o 
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and 

k 

W2>  =   -       \k+l   Sfkv(B)^k+V  • (4.31) 
(l-UßZ) V=0 

Here,   e.g.,   we  clearly have 

tn(A)   -\bu-&l)   , (4.32) 

where u   is the second moment about the origin of A's time-to-fire; and so on. 

Substituting into (3.1) we obtain, upon invoking (4.28) and (4.29), 

e+i°° oo k i 

P(A) - £ / &„(- «-) ^- S*iB(f-) J- f • (4. 33) 
J.  k=o      A     £=o    B e-o.00 

Writing  for  convenience 

a = I^A/PA    
and    ß = ^B/PB t (4- 34) 

(4.30)   and   (4.31)   now yield 

e+i°° k I 

()=2-   J       k=ok! (l^z)k+1Ä£!        (1-ßz)^1 
e-ioo 

k * 
Z>,.,.CA)C- ^k+V    St.,(B)   £V+* ? • (4.35) kvv  ' v     p. ,        iXv   y   Np z 

v=o A X=o B 

If  now we write 

e+i°° k+/.+v+X-l 
«*   .   _1_   / z dz . . 
i'X "  2tfi  / ,_     >k+ln        N£+l  ; ^* JD; 

(1-H/z) (1-ßs) £ - ]_00 v ' \ >        / 
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then (4.35) becomes 

*>. .k+v *kv<A> A  VW w PC« - £ fc E Jr S(->kw ■«- 2 -&- «• (*. 37) 
k=o  £=o  v=o        A   X=o  B 

Now, when we attempt to evaluate this we are immediately confronted by the 

unpleasant fact that the integral in (4.36) only converges when v + X < 1. 

It is easy to calculate by residue theory that 

but as soon as we consider the next case, where k+i=2, we run into divergent 

20  11     02 
terms, namely, I9n.> I< -,   and T-n0>   although the remaining two terms that do not 

20     02 
vanish, namely, I.  and In1> are convergent.  Hence, all that we can rigorously 

deduce from this expansion is the first-order correction to the linear isoprobs. 

From equations (4.21), (4.32), (4.34), (4.37) and (4.38) we are led finally to 

P(A) - - " "  + r -\  -^~ - —-^  l    .        (4.39) 
VPB + 

1 
2     2 

r CTA^A 

I      PA 

2     2 

^A+^B 
PA       PB < >PA       PB 

2 

) 

PB 

Of course, the lead term is again merely the familiar (1-6) in a slightly 

different form. 

I As a test of (4.39) we use the same example we have considered hitherto, 

viz., (3.27), (3.29) and (3.30); we find 

2   I f  I „i  2   1   13 P (A) of eqn. (4.39) = | + — (- - + 2} = | + -±  - y| - .72222 . (4.40) 
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The error here is, comparing this result with (3.30), positive and precisely 

one part in 168, or, approximately 0. 67-  This is, needless to say, a great 

improvement over any of the approximations we have so far derived. 

The success of equation (4.39) in this case makes one wish that one might 

extend it at least to the next order, which would, as we remarked below (4.38) 

entail five new terms.  The divergences already cited, however, seem for the 

present effectively to block this.  Still, it is very difficult to feel that 

(4.37) does not really contain all the stochastic information inherent in the 

duel, provided a suitable interpretation of (4.36) is found.  One might, for 

example, call upon Hadamard■s notion of the "finite part" of an integral; or 

one might attempt to confine attention to contributions of residues in the right 

half-plane alone.  At this writing, however, our efforts in this direction have 

come to nothing. 

We close this section with a brief examination of a couple of properties 

of the if       of equation (4.20).  Substituting the latter into (4.14) and reversing 

the order of summation, we find 

v-1 
Zv(k)z [(v-k)n       -mv   ] -—-^ Ly^z 
k=o (1-^z)   A=O 

- VEV"lnv-1 , (4.41) 

which becomes, when we clear of fractions, 

v-1 k 
S(k)[(v-k)uv_k_1-zuv_k] (l-uz)V~ " E*kXz 
k=o \=o 

o 
- v,!y4(l-Hz)V . (4.42) 
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The highest power of z which occurs in this identity is the v—, and when we 

equate its coefficient on both sides of the equation, we find 

v-1 

£(-) Cfc)nv" " LVkVkk 
= v^\-i • (4,43) 

Letting v=l,2,3 and 4 in this, we are easily led to equations (4.21), (4.22), 

(4.24) and (4.27) again. 

Consider next the generating function 

v=o 

v 
1 VV V (x) HE(-)V, TT ; (4-44) 

then (4.43) yields 

00   V oo   V V 

v=l v=o 

oo   V V-1 

■"2Hr S(-)k<&nv'k" üv.k*tt 
v=l   k=o 

_   v v-k-1 

= E(-)kTJrS 
k=o       v=k+l   v  ' 

V,. 
= J E(-)U # xk S % *#" = ^g(x)[cp(.x)-l],(4.45) 

** k=o    Kl    v-1     '    ** 

from which it follows that 

*-» * ' yVV V       CDUix)-l N     ' 
v=o TV ' 
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Here again we readily check the validity of the equations listed at the end of 

the previous paragraph.  We note, furthermore, that for an exponential firing- 

time, cp(x) = l/(l-|ix) and the right-hand side of (4.46) becomes identically 

unity, confirming the remark made in the paragraph containing (4.19). 

We may also examine similarly the behavior of the coefficients at the 

"opposite end," so to speak.  The constant term in (4.42) yields 

k=o 

which is trivial, in light of (4.21).  The coefficient of z gives, on the other 

hand, 

v-1 

k=o 

v-1 
+ £0\1O-k)lVk_1 - -v RVl , (4.48) 
k=o 

which becomes,   by virtue of   (4.21), 

v-1 

or 

v-1 

iv-v(v-l)nnv-l +EO-k)(k)liv_k_1tkl ■  -v lmy_1 , (4.49) 

2><V)tlv-k-l kl = V^v-l  » (4-50> 
k=o 

whence, on replacing v by v+1, 

>Vl 
^vk/hv-k*kl   v+1    v s   ' 
k=o 
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Here, again, setting v=0,l,2 and 3, in succession, we obtain verification of 

(4. 21) -(4. 23), and (4.25). 

Let us now consider the generating function 

oo      v 

G(x) -E+Vl7j- J (4.52) 
v=o 

(4.51) then yields 

00    V  LL oo      V-l      oo      V 
K ■* x /_v+l v v* *  y>  x 
/ J  —r ( r - uu ) = / /u —— -  M- Z-/U —r L-'  vl v v+1 V , v vl r  rv vl 
v=o v=l v=o 

= - [cp(x)-l] - ucp(x) 

oo v  V oo  ty     oo M 
<p x   VVV\ i V*     kl V»     v-k v 

- L, vT^VVAl ".^ kl ^   (v-k) I  x 
v=o       k=o k=o v=k 

■ En1 xk S ^ ** = G(x)cp(x)   , (4. 53) 
k=o v=o 

thus  showing  that 

oo v 1 

J)* . 2L. - i - |i 7-.-    . (4. 54) Tvl  vl       x xcp(x) * ' 
v=o T     ' 

Once again we have a  verification of  equations  (4.21)-(4.23),   and  (4.25);   and 

this  time an exponential  firing-time causes  the right-hand  side of   (4.54)   to 

vanish  identically,   which  is as  it should be. 

There  is  a   last  identity which we  shall point  out.     From  (4.44)   and  (4.46) 

we have 
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ON '       |ix      u  xcp(ux) 

and  from (4.52)   and   (4.54), 

(4.55) 

G(ux)   = — - u  -  -f—r x    '       ux uxtp(ux) (4. 56) 

It  follows   that 

—rr =  1 + - G(ux)   , 
g(x) U 

g(x)G(ux)   = u[l-g(x)] 

(4.57) 

(4.58) 

From this we obtain the curious convolution identity, 

k 

1 £(-) (£)nk" *(k.X)i*xx ■ ^^k"\k:!'     (k^0) 

= 0 (k-o) (4.59) 

5.  A STOCHASTIC BATTLE 

When, without stratagem, 
But in plain shock and even play of battle, 
Was ever known so great and little loss 
On one part and on the other? 

 King Henry V. (IV, viii) 

We assume that two opposing forces, A and B, consist of a and ß men, 

respectively.  All men on side A have the same rate-of-fire, r , and the same 

kill probability, p , and their time-to-fire is exponentially distributed. 
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Then we have seen that their time-to-kill will be exponential, with rate-of-kill 

equal to r p .  Making the letters A and B do double duty for simplicity of 

notation, we write 

A ^ rAPA ,   B = rBpB . (5. 1) 

Since all a men on side A are firing simultaneously, the time to A's first kill 

of one of B's men is the smallest in a sample of size a from an exponential 

variate of mean 1/A.  By the well-known formula from order statistics, therefore, 

the probability that A's first kill occurs at time > t is equal to 

_ ,..  r -At-ict  -Aat ,_ 0. HA(t) = Le  J  - e    , (5.2) 

and so his time-to-first-kill is distributed as 

h.(t) = Aae"Aat , (5.3) 

i.e., it too is exponential, the rate-of-first-kill being merely Aa.  A similar 

result holds for B: 

hB(t) = Bße"
Bßt . (5.4) 

Hence, the probability that the first kill is inflicted by A on B (rather than 

by B on A) is, just as in the case of the simple duel with exponential firing- 

times: 

J 
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AQ 
Prob. A first kills a B = Aa+Bß . (5.5) 

If we consider a point in the (a,ß)-plane of coordinates, this means that 

precisely two transitions are possible, and that their respective probabilities 

are 

Ar y 
Prob((a,ß) - (a,p-l)) =Ä^iß ' (5>6) 

and 

I  ■ Prob((.,rt * (a-1,»} - j2L_ . (5.7) 

At this juncture it might be argued that, once a kill has occurred on one 

side or the other, the situation becomes very complicated, since we must now 

wait to see whether the second kill for the successful side comes before or after 

the still-awaited first kill for the other side and the developing pattern of 

events ramifies out more and more.  That this is not the case it is quite easy 

to see.  For, an exponential distribution describes a constant-risk situation, 

and is inherently Markovian.  Thus, to say that A's time to his first kill is 

distributed as (5. 3) is the same as to say that in every time interval dt the 

probability that A scores his first kill is Aadt, regardless of what may have 

happened prior; the only assumption necessary is that A does have a men during 

the interval dt.  Of course, if B gets in first with a kill, then A's probability 

of a kill immediately drops to A(a-l)dt. 

Thus, equations (5.6) and (5.7) fully characterize the course of the 

engagement as it unfolds.  They are of course merely a description of a two- 
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dimensional random walk in which only downward and leftward steps are permissible 

and for which the transition probabilities are not constant but vary from lattice 

point to lattice point.  Clearly the walk can never pass either of the axes 

since the number of combatants on either side is necessarily positive.  Now, in 

practice; a military unit which is suffering a sufficiently high casualty rate 

will break and run, but for purposes of simplicity we shall assume that both 

sides stick it out until one side or the other is utterly annihilated.  It would 

be simple enough to treat the problem on the assumption of a built-in breaking 

point, but the present discussion will be adequate for a first treatment.  Thus, 

the random walk must with probability unity ultimately be absorbed into either 

the a-axis or the ß-axis, the former event representing a victory by B, the 

latter a victory by A.  A moment's consideration will show that a tie is 

impossible since the origin could only be reached from either the point (1,0) 

or the point (0,1), both of which are absorbing states.  We should like to 

determine the probability that A wins and the distribution of the number of his 

survivors, given that he wins. 

We define p (cc,ß) as the probability that A wins starting with a men opposing 

ß, and that he has precisely v men left at the termination of the battle.  In 

other words, 

P (a)&)  = prob, of absorption at (v,0), starting from (a,ß) .   (5.8) 

It then immediately follows from (5.6) and (5.7) that 

>v<a>« ■ Ä^BP Ma-1'« + Ä^Bß M«'^ » <5'9> 
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for his path to (v,o) must pass through one or the other of the points (a:-l,ß) 

or (a,ß-1).  We note also that 

Pv(a,ß) =0 (v> d) , (5.10) 

since rightward steps are prohibited.  Clearly the over-all probability that 

A wins is given by 

a 
P(A) =£P (a,ß) • (5.11) 

v=l 

We note that here we are using our conventional notation for the simple duel in 

using A as an "argument" on the left-hand side of the equation; the OL  and ß on 

the other side of the equation are arguments in the customary mathematical 

usage of the term. 

The random variable v is unnormalized, because of the possibility of 

absorption of the process into the ß-axis.  Even for an unnormalized variate, 

however, we can define moments by means of the usual formula for the k— moment 

about the origin, 

v=l 

The notation makes explicit the dependence of the moment on the initial point. 

Plainly we have 

P(A) = po(a,ß) , (5.13) 
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* 

and in order to convert to moments in the traditional meaning we have only to 

divide (5.12) by (5.13).  By virtue of (5.9) we now have 

a , 
(Aa+Bß)uk(a,ß) -2> (Bßpv(a-l,ß) + Aapv(a,ß-1)} 

v=l 
(5. 14) 

k a"1 k a k 
= oTBßp (a-l,ß) + Bßl> Pv(a-l,ß) f AaSvpu(a,ß-l) 

a        v=l v-l 

But the first term on the right vanishes because of (5.10), and (5.12) evaluates 

what remains on the right; we find 

(Aa+Bß)nk(a,ß) = Bßuk(a-l,ß) + Aouk(a,ß-l) . (5.15) 

This equation is of precisely the same form as (5.9), with the subscript v 

dropped.  It is interesting to remark that (5.15) does not depend at all upon 

k itself.  This is not to say, of course, that u, (a,ß) is independent of k, 

since the latter enters into the boundary conditions. 

In this respect we note that specifying the values of u along the (positive) 

a and ß axes serves to determine the solution of (5.15) uniquely throughout (all 

the lattice points OJ:) the first quadrant.  For, all we need to know, by (5.15), 

to find the value of u at a given point are its values at the lattice points 
k 

next left and next below.  We can therefore build up the solution from left to 

right a tier at a time.  As for the appropriate boundary conditions we note 

that (5.8) patently implies that 

P (a,0) = 1   (v-a) , 
v 

■ 0    (v*x) , (5.16) 
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and 

p   (0,ß)  - 0     (all  v)   . (5.17) 

Putting these values inLo (5.12), we obtain 

uk(a,0) = a
k , (5. 18) 

and 

uk(0,ß) = 0 . (5.19) 

In a recent paper, Brown has considered the special case where k=0; in 

other words he has confined his attention to consideration of P(A).  He obtained 

for it an expression which we unknowingly duplicated; the reader is referred to 

his paper in the bibliography for the details.  The expression follows readily 

enough from successive applications of (5.15), together with (5.18) and (5.19); 

it is an alternating series containing exactly a terms and is of limited 

practical applicability for large u because the individual terms become enormous 

and a very great cancellation of significant figures results, so that in order 

to obtain meaningful answers one would have to carry an inordinate number of 

decimal places.  Equation (5.15) itself involves no such loss of accuracy and 

is quite suitable for oc  and ß not too large, and could very readily be 

programmed for a digital computer.  Here again, however, for increasing 01 and 

ß one finds that the computation time mounts rapidly.  What we require is a 

serviceable asymptotic expansion.  We shall now present merely the zeroth-order 

behavior of the solution for large a and ß; we have not yet succeeded in 
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extending the analysis any further (notwithstanding repeated attempts), but 

the result which emerges seems to us interesting, unexpected, and indicative of 

the desirability of pursuing the matter. 

We note first the Taylor's expansions 

uk(a-l,ß) = nk(a,ß) - §JHk(a*ß) +-..., (5.20) 

and 

nk(a,ß-l) - uk(a,ß) - ^k(a,ß) +-.... (5.21) 

Since we are looking for a "stabilized" asymptotic behavior for large a  and ß, 

it is reasonable to ignore the higher-order terms here; the two Taylor's series 

are in powers of unity, which we assume small compared with a and ß.  Substituting 

into (5.15), we find 

^k     ^k Be*r + Aaar=0; <5-22> 

we here suppress the arguments (a,ß) since they are the same as the independent 

variables.  Now, the subsidiary equations necessary for the solution of (5.22) 

cf. Forsyth -- are 

Ä = & = *fc (5 23) 
Bß  Aa   0 ' ^""; 

the last two of which yield 

du.. = 0 ,  VL.   m C. , (5.24) 
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C, being the constant of integration.  Similarly, the first two equations yield 

Aada = Eßdß ,  Aa2-Bß2 = C2 . (5.25) 

Hence the most general solution of (5.22) is 

Cl  = *(C2) , (5.26) 

where ^ is a completely arbitrary function, soon to be specified by the boundary 

conditions.  Employing (5.24) and (5.25), (5.26) becomes 

uk = * (Aa2-Bß2) . (5.2 7) 

But, from (5.18) we have 

* (Act2) = ak . (5. 28) 

When we write 

u = Aa2 ,  a = (u/A)1/2 , (5.29) 

(5.28) becomes 

* (u) = (u/A)k/2 , (5. 30) 

and using this in (5.27) we have, finally, 

, „>   ,2  B 2.k/2 
uk(a,ß) = (a - - ß )   . (5>31) 
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These are, of course, moments about the origin, and the cases k=l and k=2 

provide us with the mean and variance, namely, 

u(a,ß) = la    - f ß2 (5.32) 

and 

tf2(a,ß) - n2-n
2 = 0 . (5.33) 

It is the last result which comes as a surprise, but looking at (5.31) we see 

that it is indeed precisely the situation which obtains when we have a "random" 

variable which is in fact constant and therefore identically equal to the value 

given by (5.32).  Now, it is clear that for (5.32) to be a meaningful statement 

we next have 

■ :  / | ß • (5-34) 

When this holds, then (5.13) and (5.31) show that 

P(A) = 1 . (5.35) 

/ Vt 
In other words in the wedge between the a.  axis and the line CK "<J ~ Q   ,  a always 

V A  '   i— 

wins (assuming that a  and ß are both large) and he always finds himself at the 

end of the fray with precisely the number of survivors given by (5.32).  Of 

course, a complementary situation obtains in the remainder of the first quadrant. 

We remark that (5.32) is exactly what we get from Lanchester's "square" 

law (Morse and Kimball) if we set A's efficiency relative to B equal to 
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E ■ A/B (5.36) 

and put the number of combatants on side B equal to zero.  Thus, we have 

established that Lanchester's square law, which is based on strictiy deterministic 

reasoning, is in fact valid and, furthermore, valid in a strictly deterministic 

sense (i.e., with no random component to a first approximation), when large 

numbers face one another.  But, more than that we have, by (5.1) and (5.36), 

been able to identify his relative efficiency in a very simple and natural 

manner. 

It is of interest to remark that the solution of (5.22) calls upon only 

one of the boundary conditions, namely, (5.18), whereas the solution of (5.15) 

calls upon both (5.18) and (5.19).  It is this that accounts for the discontinuity 

in the solution of the former.  Equation (5.35) is less anomalous when we 

consider that (5.18) implies that P=l along the a-axis, and hence dP/oA = 0 

there.  But, setting (3=0 in (5.22) shows that uP/uß = 0 also, along the a-axis. 

Thus P must be constant and hence equal to its value, unity, along the a-axis. 

The overwhelming effect of superiority of numbers has long been recognized, and 

reference to the index of Clausewitz's On War will show the reader that that 

work is laced through with injunctions as to the importance of this factor. 

The author inveighs against quixotic generals who have deliberately failed to 

bring the full force of their troops to bear upon the enemy, although as a 

practical man of affairs he occasionally tempers his position with a warning 

against the over-simplification of assuming that there are no other factors 

involved in the outcome of a battle besides superiority in numbers. 

The fact that k does not appear explicitly in (5.15) means we can rewrite that 
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equation very   simply  in  terms  of a  tk    moment-generating  function.      Define 

00 k A 
cp(z;a,ß) = £nk(a,ß) {.,-, (5.37) 

k=o  K kl " 

Then   (5.15)  yields at once 

(Aa+Bß)cp(z;a,ß)   =  Bß<|(ij,Mjö- l,ß)   + Ac*p(z;a,ß-1)   , (5.38) 

and  the approximate analysis  folloit lovs    through  exactly  as  before,   leading  to  the 

counter-part of  (5.27),   viz., 

cp(z;a,ß)  =   *(Aa2-Bß2),,   , (5.39) 

The boundary condition  is now, by royvrLrtue  of   (5.18)  and  (5.37),  given by 

°°      ,      k 
cp(z;a,0)  = £ a    kp«°* e*    • (5.40) 

k=o 

In equation  (5.38),   z  plays  the tS iSle  of a   parameter,   just as  k did  in  (5.15). 

Equations  (5.39)   and  (5.40),   togetjgether   with  (5.29)   now yield 

cp(Zja,ß)  = exP{z^||!p2}   ; (5.41) 

thereby  checking   (5.31).      It  ItaiMI to   be   pretty much  of  a  toss-up whether   this 

analysis  or  the former  is  any simgfctopler  in   this case,   although  this does not 

preclude  the  possibility  that oneimeozf   them might,   in  a more  fully-blown  treatment, 

turn out  to be preferable  to  the oaeotl-ier 

We assumed  at  the  beginning 0$ of    this   section  that  firing-times  were 

exponential and noted  in  (5. 3) thai) that    this   implied  that  time-to-first-kill was 



13 September 1963 43 SP-1017/003/00 

also exponential.  It makes sense to ask what happens when we drop this restriction. 

The extreme-value distribution, of the algebraically smallest value in a sample 

of large size, is known to follow a Fisher-Tippett distribution (cf. Cramer), 

provided certain conditions are met, one of which is that the distribution 

being sampled from have an infinite tail in the negative direction.  This is 

plainly not the case with the inherently positive firing-times we have to deal 

with, and we may expect that result to break down; it does.  For concreteness 

let us take the. time-to-fire to be distributed as a gamma-variate with parameters 

2 and v: 

2 
r,     V      V  t    "Vt ,r  , „s f(t) - — e   . (5.42) 

This will obviously be a more realistic assumption than the exponential.  It 

follows that 

F(t) = / f(t)dt = (l+vt)e"Vt , (5.43) 

upon integrating by parts.  Hence the right-sided cumulative distribution function 

of the time-to-first-kill is, analogously to (5.2), 

H(t) = (l+vt)ae"QVt , (5.44) 

where a is still the number of men on side A.  Thus, the frequency function is 

h(t) = -H'(t) . (5.45) 
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Now, for any positive random variable, and, in particular, in the present case, 

the mean is given by 

00 00 00       00 

H - f h(t)tdt - - / H'(t)tdt = - tH(t)   + / H(t)dt 
J o J o Jo  ^ o 

oo 

= / H(t)dt , (5.46) 
~ o 

provided H(t)   goes  to  zero  as  t +»  faster  than  1/t,   i. e. ,   provided  that 

H(t)  = o  (1/t) (t ■* oo)   . (5.47) 

Therefore  the mean time-to-first-kill  is,   in  the case sub judice, 

uu 

H =  /   (l+vt)ae"°a'tdt , (5.48) 

on account of (5.44) and (5.46).  Consequently, 

00 00 

Zy<Pv t e   dt =2^Qv I  t  e   dt 
; o k=o k=o     ' o 

^,CL   k   kl     al  v-v 
- L/\UV if ,i " on, Li k'       .    sk+l av ,        .    . v , k 
k=o    (av)       k=o (a-k) la 

v« a  k=o 

upon reversing the order of summation. Now, the terms in the summation are 

proportional to the probabilities in a Poisson distribution of parameter a. 

This has mean a and standard deviation va, and approaches normality when a -*■ °°. 
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The terms for k=a-l and k=Q! are readily seen to be equal, and the last argument 

shows that the totality of terms contributing appreciably to the sum lie within 

a few multiples of va on either side of these terms.  Thus, 

Ä a 1 v a       la 
L ~ -   2kf0 kT = Ie 

k=o 
kl 

(a ■*■ °°) (5.50) 

Substituting  this,   and  Stirling's  formula,   into   (5.49)   we  get 

u ^ — a v 
1    -a-1       a+i rr~   -a     1   a    , . •   a    ^V2it e       ■   — e       (a -> °°)   , (5.51) 

which  is  to say  that 

n      l    ,        x Li «v-    /  T— •  —    (a -> oo) 1'  2a     v    N ' (5.52) 

We therefore introduce a new random variable, 

T   £=   VU  Vt   , (5.53) 

for which the expectation is 

Jl ECO * J 7   (a*-) (5.54) 

Its  RSCDF   (right-sided  cumulative distribution  function)   is,   by   (5.44), 

H(0   - (1+ J$  • (5.55) 

4 
which  yields 
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Thus, 

Log H = - von; + a log (1 + -rj-) 

2      3 r ,  T    1 T    1  TJ 

-> - i T2 (a*-) . (5.56) 

H(T) - exp(- | T2)   (a -») , (5.57) 

and, by (5.45), 

1  2 
" 2 T h(x) -we        (a -* °°) . (5.58) 

It is a simple matter now to check the. validity of (5.54). 

We see from this last analysis that the time-to-first-kill behaves quite, 

differently from the way it did before; contrast (5.58) and (5.53) with (5.3). 

However, although the battle commences differently in this case, we may legiti- 

mately anticipate that it will soon shift over to the situation described earlier. 

For, consider first of all a men firing at a target, each with mean time-to- 

2 
fire u and variance cr .  Then the a  first rounds fired by them will produce a 

near-volley which is a statistical image of the firing-time; the a second 

rounds fired will be spaced out a little more perceptibly, having mean 2\x  and 

2 th 
variance 2cr ; and so on.  The n— round will thus be a sample of size a from 

a distribution with mean nu and variance ncr ; and the (n+1)— round will have 

mean (n+l)u and variance (n+1)a .  Thus successive rounds will begin to overlap 
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and, provided a is not too small, this overlapping will ultimately result in a 

complete jumbling of the rounds, so that the timing of the successive shots as 

they actually occur will degenerate into a Poisson process.  The fact that B is 

simultaneously firing at A is, to be sure, an added complication, but it does 

not alter the conclusion that (5.6) and (5.7), with A and B suitably intepreted, 

will be valid for the bulk of the process. 

6.  ANOTHER STOCHASTIC BATTLE 

Or what king, going to make war against another king, sitteth 
not down first, and consulteth whether he be able with ten 
thousand to meet him that cometh against him with twenty 
thousand? 

---Luke  14:31 

It is evident that the difficulties intrinsic to the discussion presented 

in the last section are immediately traceable to the fact that the transition 

probabilities (5.6) and (5.7) are functions of a and ß.  Let us therefore 

replace these equations by 

Prob[(a,ß) ■»■ (a,ß-l)} - p, (6.1) 

and 

Prob((a,ß) + (a-l,ß)} = q , (6.2) 

where p and q are constant and, of course, 
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p + q - 1 . (6.3) 

This battle may be conceived of as a series of single contests between A's and 

B's men, there being constant probability p that A wins any one of these contests. 

A graphic way of bearing in mind the difference between the two battle schemata 

is as follows:  in the former battle the opposing forces were deployed facing 

one another along parallel lines and all surviving men on both sides were 

engaged in conflict at all times; in the present battle the opposing forces are 

deployed in two columns which meet head-on in a narrow defile and combat is 

confined to the men heading the two columns of survivors.  As before we were 

led to a justification of Lanchester's square law, here we might well expect to 

vindicate his linear law, and this we shall indeed find to be the case. 

We retain the notation of the last section and begin by skimming through 

those parts of the analysis which carry over with trivial alterations.  Equation 

(5.9) becomes 

Pv(a,ß) = qpv(a-l,ß) + PPV (a,ß-l) , (6.4) 

which leads to 

uk(a,ß) = quk(a-l,ß) + pnk(a,ß-l) , (6.5) 

analogous to (5.15), and 

^k    ^k 
q -— + p T— =0     (a and ß both large) , (6. 6) 

analogous to (5.22); all the rest of the intervening equations (except, of 



A. 

->■ 
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course, for (5.14)) remain unchanged.  The subsidiary equations (5.23) now become 

(6.7) 

yielding (5.24) and, in place of (5.25), 

q  " p    0   ' 

pa - qß = C2 . (6.8) 

Hence the most general solution of (6.6) is 

uk - * (pa - qß) , (6.9) 

analogous to (5.27).  Boundary condition (5.18) now yields 

* (pa) - ak , (6. 10) 

or, setting 

u = pa ,    a = u/p , (6.11) 

* (u) = (u/p)k . (6.12) 

Substituting these results into (6.9), we find 

Hk(a,ß) = (a - I ß)k , (6.13) 

which implies that the. random variable v implied in (6.4) is in fact identically 

equal to a - ™ ß 
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v ■ a - ^ ß     (a and ß both large) . (6.14) 

Thus, analogous to (5.34) and (5.35), we have 

P(A) = 1     (a > J ß) . (6. 15) 

Hence A always wins over B provided a. > * ß (assuming a and ß both large) and 

his victory costs him precisely -* ß of his men,.  If we set the number of men 

on side B equal to zero, and here define the exchange rate to be 

E = p/q (6.16) 

we are led to (6.14). 

But, we said at the outset that we might expect a detailed analysis to be 

more tractable for this schema than for the former and we shall now see that this 

is perfectly true.  For, the process may now be visualized as a two-dimensional 

random walk with downward transition probabilities all equal to p and leftward 

transition probabilities all equal to q.  For A to wipe out B, with a loss of 

precisely v of his men, requires, when he starts from the point (a,ß), that he take 

exactly v steps to the left and exactly ß steps down, which introduces a factor 

v ß 
of q p .  (To be sure, the order in which these leftward and downward steps are 

taken will vary from one realization to the next, but the total numbers of the 

two different kinds of steps clearly must always be v and ß, respectively.) 

Now, of these steps, the nature of the last alone is dictated; it must be 

downward, from (v,1) to (v,0), for, since the a-axis is an absorbing barrier, the 
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step   (v+l;0)   to   (v;0)   is   prohibited.     Hence  the  total number of   permissible   paths 

is   the number of ways  that  v   leftward   steps  can be  chosen  out  of  a   total of 

ß+v-1  steps.     We  therefore  see  that 

a-v 
,    nS       -ß+v-1.   v ß 
(a,ß) ■ (    v    )q P    • (6.17) 

It is a simple matter to check that this satisfies the recurrence (6.4) and the 

boundary conditions (5.16) and (5.17).  It follows from (6.17) that 

a-1 
p(A) = PP E<**-l-v 

)q   , (6.18) 
v=o 

and combining this with the corresponding result for P(B) we are led to the 

interesting and non-trivial identity 

a-1 '3-1 
ß y.ß+v-1. v   a 'yA.a+v-l v 

9   ZJV v   )q+q Z/( v )P 
=1 

v=0 v=0 
(6.19) 

For the purpose of clarity, solution (6.18) is set forth explicitly for the 

first few cases in the following table. 

3 
2 

0 

0 

3 
P 

2 
P 

p3(l+3q) 

p2(l+2q) 

p  (l+3q+6q ) 

p  (l+2q+3q') 

1 0 P P(l+q) 
2 

p(l+q+q ) 

0 [xj 1 I 1 

txr-0 

Table 2.  P(A) qua function of a and ß. 
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The symbolic argument A in P(A) is of no utility analytically and so henceforth 

we write 

P(a,ß) = P(A) , (6.20) 

understanding that the probability of win, P, refers to side A, and displaying 

explicitly its dependence upon the initial numbers of forces.  Reading up along 

any given column in Table 2 we see that, for fixed 0L3   P(a,ß) goes from 1 to 0 as 

ß goes from 0 to °°; in other words it behaves like a RSCDF with ß as RV (random 

variable).  This suggests that we might hope to get a firmer hold on (6.15) by 

looking at the moments of ß; thus, we would anticipate that its mean should fall 

somewhere near pa/q, and that, since P apparently drops precipitately thereabouts, 

the standard deviation of ß ought to be small, relative to its mean.  We proceed 

to follow up this clue. 

For a discrete positive RV, ß, with frequency distribution, f , we define 
P 

the RSCDF to be 

FR - £fh    (ß=0,l,2,...) , (6.21) 
ß  b=ß b 

which makes 

F  = 1 (6.22) 
o 

and 

£
ß " 

F
ß - Fß+1    (ß=0,l,2,...) . (6.23) 



13 September 1963 53 SP-1017/0O3/O0 

Thus the k— factorial moment is 

E[ß(ß-l)..-(ß-k+l)] = £ß(ß-l)---(ß-k+l)f 
ß=0 P 

00 

-I)ß(ß-l)...(ß-k+l)(F -F ,) 
ß=k p v 

- 2> • • (ß-k+l)F.- £ (i'-l)---(ß-k)F 
ß-k P ß-k+1 p 

«E(ß-i)---(ß-k»-i)[ß-(ß-k)]F 
a-k p 

= kE(F-l)(ß-2)---(ß-k+l)F     (ß-1,2,3,...) .     (6.24) 

P-k P 

We have, in the discussion preceding (5.8), remarked the inaccessibility 

of the point (0,0) to the recurrence equation, a fact which has already been 

duly indicated in Table 2.  Wc now want to set up a generating function for 

P(a,ß), and so, keeping this difficulty in mind, we write 

00   00 

g(x,y) =Exf"Z)yP"1P(a,ß) • (6-25) 
a=l ß=l 

The reason for the exponent on y is that it makes 

*k-1 
-Tj*a   D(ß-l)(ß-2)---(ß-k+l)P(a,ß) j (6.26) 

y=l  ct=l  ß=l 

the first k terms in the inner summation vanish and, in consequence, (6.24) and 

(6.26) yield 
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vk-1 -i 
E[ß(ß-i)...(ß-k+i)] - k cogff -2—T 8(x^y)      » (6-27> xa 

oy Jy=l 

where the notation introduced carries the construction: 

if f (x) = ^jCax ' ,   then   co£ff f (x) S CQ . (6. 28) 
0=0 

It  follows  from  (6.18)  and  (6.25)   that 

t      .       y> a   V*  ß-1 ß   T>/ß+v-1,   v 

g(*,y) ■ Zv*   2-/y    P    2J(.  v   ;q 

Qf=l        ß=l V=0 

- 2L/P y       2L/X    Lfu   )I   J (6.29) 
ß=l a=o     v=o 

since, ß being always greater than 0 now, the inclusion of the term for 0^0 

introduces only a zero into the summation over a.  Inverting the order of summation 

in the innermost pair of sums, (6.29) becomes 

g(x,y)  = EPV
3
"
1
   £(ßTV   £xa 

ß=l       V=0 0=v+l 

T— ZJFT        2J( v )q x > (6.30) 
ß=l      v=o 

which reference to (3.10) enables us to write as 

00 

g(*,y) - T— 1/p y   z_/(-) (y^qx 
ß=l      v=o 
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x       yß ß-1     1 

ß-1 (l-qx)f 1-x 1-qx         py 
1-qx 

(6.31) 

or. 

g(x,y)  - _E2L 

(l-x)[l-(qx+Py)] 

It is now easy to see that 

vk-1    -i 

öy 
k-1 

x_       (k-1) lp 
k-1 

y=l       ' [l-(qx+py)] y-1 

(6.32) 

_x_    (k-1) !p 
1-x .k 

(q-qx) 
= (k-i)i(!> —2 

*'      d-x)k+1' 
(6. 33) 

and,   expanding this  into a binomial  series,   we  obtain 

oyk"1 y-1 
- (k-i) Kf)    D(-)a(-K;1) a ,-k-iv ort-1 

X 

C2=0 

=   (k-1) IF)       Li   ( a >x * 
4     a=o 

(6. 34) 

upon yet another invocation of (3.10).  Equations (6.27) and (6.34) now yield 

E[ß(ß-l)...(ß-k+l)] = kl(f)  (°^Il) 

i ,r£\k /Ofk-l. 
= kl(*)  ( k ) , (6. 35) 

«»• 
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when we call to mind the fact that 

(v) = (n-v) • (6.36) 

Therefore we have, finally, 

D 
k 

E[ß(ß-i)-..(ß-k+l)] = a(a+l)...(ofk-l)(|) . (6.37) 

The first significant case here is that for which k=l; we find 

E(ß) = £ a . (6.38) 

This is really rather more than we dared desire, since it says that the handicap 

point described by (6.15), which marks a cross-over from a victory by A to a 

victory by B, and which was derived on the assumption that a and ß are both large, 

holds, in a mean sense, for all a and ß,and, furthermore, holds precisely. 

Letting k=2, we see from (6.37) that 

E(ß2-ß) = (§)2a(a+l) , (6.39) 

whence 

E(ß2) = (^) a(a+l) + *a . (6.40) 

Thus,   the variance of ß  is  given by 

var (ß) = (£)2a(a+l) +£ a - £) Q? 

= £(£ + l)a = -^a   . (6.41) 
q 

\ 

«- 
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*■ 

Equations (6.38) and (6.41) are very informative, indeed, sir.ee they begin to 

suggest that ß may actually be the sum of a independent selections of the same 

random variable.  Upon this hint we speak:  if this is truly the case, then the RV 

being sampled can only be that for which a=l, i.e., that whose RSCDF is the first 

column of Table 2.  But that is of course merely a RV distributed according to a 

geometric distribution whose frequency distribution is, by (6. 23) and (6. 18) with 

C£=l, 

fß = P
ß - Pß+1 = q-Pß. (6.42) 

Now, the factorial-moment-generating function of any RV ß is by definition 

*(z) = E(zß) , (6.43) 

which reduces, in this case, to 

00 

*0(z) ■ q£P
pzp --j-Jr • (6.44) 

ß=o F 

But plainly the MGF with argument log z is in general given by 

cp(log z) = E(eß log Z)   = E(zß) = *(z) , (6.45) 

according  to   (6.43).     The well-known properties  of   the MGF  show that  if  ß  is 

the  sum of CC independent RV's,   each of which has MGF cp   (z),   then  the MGF  of  ß 1 0 

is 

cp(z)  =   [cpoOO]a • (6.46) 
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Calling the FMGF (factorial-moment-generating function) of ß K(Z), we thus have 

rt(z)   = cp(log z)  =   [cpQ(log z)]     ■   [*0(«>]     , (6.47) 

i.e.,   the FMGF has exactly the same properties as the MGF.  Here rt (z) is the 

FMGF of the RV being sampled, and the hypothesis we are entertaining in the 

present paragraph assumes that this is given by (6.44).  Hence the conjecture 

before us states in effect, by virtue of (6.44) and (6.47), that the FMGF of ß 

is 

jt(z) = (T1-)^ x '   Nl-pz 
(6. 48) 

Now, it follows from (6.43) that 

k  i 
i-S     £ *(k)(l) - E[ß(ß-l)...(ß-k+l)] 
dz  Jz=l 

(6.49) 

Applying this to (6.48) produces the result 

ifeCp-D.-.O-hrt)] - q« a(a+l)---(a+k-1)P 
(i-pz) 

k n 

z=l 

a k k 
= a(a+l)- • • (a+k-1)  3 PQ+k - a(a+l)- • • (a+k-1)© ,  (6. 50) 

(1-p) 

which is identical with (6.37).  The conjecture is therefore established; namely, 

to statf it explicitly:  P(a,ß) is the RSCDF of a RV which is the sum of a 

independent selections of a variate geometrically distributed according to (6.42), 
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This is truly rather a remarkable result, since it affirms that the device 

introduced just following (6.20) seemingly as a deus ex machina actually leads 

to an exact and rigorous conclusion.  By (6.45) and (6. 48), the MGF of ß is 

equal to 

cp(z) = *(e2) = (-^-)a , 
1-pe 

and so  its   CGF  (cumulant-generating-function)   is,   by  (2.3), 

(6.51) 

)(z) = a log ( H z) = a 
1-pe 

-z+log (-^-^) 
1-pe 

(6.52) 

from which we can identify the successive cumulants from the right-hand side 

of (2.3).  But, we have come full circle, for no calculations whatsoever are 

necessary when we now call upon (2.5) and (2.22)I  To do so it is only necessary 

to interchange p and q and to write z for 6:  we find, from (6.52), 

: = i(-l +~)  = £ a , 
1        q   a   ' 

K2 2    l    > 

(6.53) 

(6. 54) 

and 

v 

= EL-, £\„ «3 -  ^(1+2 f) 
q 

(6.55) 

the first two of these equations agreeing with (6.38) and (6.41).  The last 

two give the skewness, 



13 September  1963 60 SP-1017/003/00 

q , ;> 
7 i'-fe-^ 7^ ' (6-56) 

or. 

y;:l±?. (6.57) 
'1  s/pa 

The proposition immediately following (6.50), together with the central-limit 

theorem, enables us to state that the variate 

i^*^   -N(0,1)     (a -») , (6.58) 

i.e., it is distributed as a standardized normal variate for large a.  Since P 

is the RSCDF of ß, the last result shows that if ß exceeds pa/q by appreciably 

r 
more than \0tt   then A is virtually certain to lose, whereas if ß falls short of 

pa/q by appreciably more than vcc, then A is virtually certain to win.  The 

tangible values may be read from the tables of the normal distribution. 

These arguments serve to validate and delimit (6. 15) and, in so doing, to 

add increased credibility to (5.34) and (5.35), which were derived by a completely 

analogous chain of reasoning.  The way is now open for a thorough-going 

examination of the "linear" battle, along the lines just initiated; we hope to 

be able to present further results in a sequel. 

7.  SUMMARY 

We have examined in this report a number of aspects which go to make up 

a stochastic theory of duels.  We have considered the manner in which a 
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marksman's time to hit a passive target may be statistically characterized in 

terms of his time to fire a single round, and have used this information to 

obtain approximate solutions to the duel.  We have worked out one case of some 

generality in which the solution of the duel may be written down in a simple 

form.  We have described two battle schemata which lead in the limit of large 

numbers of opposing forces to Lanchester's square and linear laws; for these 

we have broadened the stochastic output to include not only the probability of 

a given side's winning, but also the cost of victory in the number of his 

forces sacrificed.  We have found the latter schema to be the mathematically 

more tractable situation and have found there a convenient and rather remarkable 

expression for the probability that a given side wins, noting that the techniques 

there employed give promise of providing a full solution to that duel. 
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