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ABSTRACT

The forest fire control models developed by Parks and Jewell [1] [3]

assumed one type of suppression force with a particular effectiveness and

cost of operations. These models are extended here to the multiple suppression

force came.

If N types of forces are dispatched to a fire, they will either arrive

simultaneously or in a lagged sequence. Choosing the optimal (lowest cost of

burn plus suppression) mix of forces for simultaneous arrival requires the

use of a linear programing model that is simultaneously parametric in the

right-hand sides and in the objective function. For non-simultaneous arrival,

a dynamic programming algorithm, that compared pairs of forces, was developed

and solved on an IBM 1620 computer. The lowest envelope of cost curves for

all such pairs can be used as a planning tool in initial attack.



PARAMERIC AND DYNAMIC PROGRAMMING IN FOREST

FIRE CONTROL MODELS

I. Introduction

The fire growth model of Parks and Jewell (1] was constructed under

the assumption that the suppression force has a singular effectiveness de-

noted by E . In actual practice, however, suppression forces form a complex

organization with different values of E for each component. The extension

of Parks' model to the multiple suppression crew case is necessary for its

actual employment in initial attack planning.

This paper describes the construction of and application of some

decision rules concerning the choice of forces sent to a fire given the

essential fire characteristics, the values of E , and the attack time for

each group of suppression forces. The decision criterion used here is

minimization of total costs incurred after discovery of a fire. An al-

ternative criterion of decision, commonly used by the U. S. Forest Service,

is acreage control. Therefore, wherever possible in the mathematical solu-

tions, the optimal solutions for all values of acres burned after detection

will be included with the overall optimal solution.

The assumptions used here are basically those that appear in Reference

[1]. Tht most important of these is,

-V =G + Htdt d

where dy/dt is the growth rate of the fire in acres per hour, Gd is the

observed growth rate at detection. H is the acceleration in acres per hr
2

and t is any time after detection. After initial attack, the growth rate

is described by,

dt a - H)(t -a
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where X is the number of men sent, Ta  is the time interval between de-

tection and attack, E is the effectiveness of the men, and Ga  is the

grawth rate at the time of attack. For multiple forces two problems arise:

1) measurement of the various E values for each type of force, and 2)

description of the growth rate in terms of nonsingular attack times. Measure-

ment of E values for hand crews shows a clear relationship of E with the

basic line building rates. A more detailed analysis of this problem is

treated by NcMasters []. Let us concern ourselves with the :aecond problem.

In general, any group of forces will not arrive at the fire simultaneously.

The decision maker must decide how many of each type of force to send given

their effectiveness and inter-arrival times. As a simplifying assumption,

however, consider first the case of simultaneous arrival.

II. MOJEL 1: Simultaneous Arrival

Simultaneous arrival is possible both in actual practice and as an

assumption when the inter-arrival times are small compared to the detection-

arrival interval. Suppose a forest or region has N types of suppression

forces available. Let X the amount of the it h type of force sent to

the fire

Ei = effectiveness of the it h  force in acres

per man hr 2

Y = total acres burned at controlC

Y = total acres burned at initial attack

Ga = growth rate at initial attack

The fire is controlled when

dt-

This can occur if EiXi H,

i -2-



. . .... . .. .. .. . . .. .
. .. . .. .

and therefore by extension of Parks' equations,

G 2

(W) a - a

C B 2(Z E iXi~
i

and Tc , the control time, is given by,

G
(2) Tc G a

T E Xa - H
± i

The economics of fire control have been discussed in [I3. If fixed

costs are neglected as decision variables, the only cost factors to con-

sider are,

Li a the transportation cost per unit of the it h

force ($/man)

W, = the cost per unit hour of the ith  force

($/man hr)

C = the cost of burn ($/acre).

An optimal decision requires the minimization of,

(c) C " a LiX± + j WXiGa

i j ii-

A simple adjustment transforms this nonlinear system into a parametric linear

programming problem. If the cost of suppression is minimized for any given

value of the burn cost, then the lowest value of burn cost plus suppression

cost is the optimal solution.

If the total cost of burn is known, then (Yc - Ya) is also known;

hence,



G2

ZEix - H = 2 Y -Y A
ic a

(4) ZEiXi A + H = B

Ga

(5) c a

(6) (Li + W±Ga/A)X, + c(Ya - ) = inimum
i

III. Generalization of the Simultaneous Arrival Problem

In order to generalize the above problem, let

y - y =xc a 0

and

ZEiXi " H = 0 + aXi Xi a linear combination of the X
± ±

for (1 = 1...,n) . Then,

(4) Xo Co + Zaixi] G A2

(6) CX0 +ZL±X± +ZDXi O[ + Y X.i]'l= Z (Min)

i i i

where Di = WiGA

(8) xi > 0

We must minimize (6) subject to (4) and (8). If we assume X0 > 0 , then for
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any particular value of X0 , say X0

(4a) + R*x)i  2 F o

0

(6a) C0 + Z (Mivn.)
i

where Di Li L+ D,/(Xo)

(8) x > 0.

Equations (4a), (6a), and (8) describe an elementary linear programming

problem that is parametric simultaneously in the right-hand side as well as

in the objective function.

The addition of other constraints on the X will not change the

problem. Most generally we must solve,

(4a) C9o +Cgx- R(*)
i

(a) < xi < Ki  i

(6a') (Li + DR(Xo ) )X, - Z (Mi.) -0< P <
i

-5-



IV. Solution Algorithm for Simultaneous Arrival Problem

The following procedure yields the required optimal solution:

Set Z' oo Choose X0  Solve the linear
________program (l4a),-(6a')

(8a)

Z Min(Z' , Z *) Store

X0 , Xi associated with

Z1

X = X0 + 9 U - 1,2,...,s)

Terminate with optimal Yes
solution Z' ,X

EXAMPLE: Simultaneous Arrival

In order to illustrate the above technique, consider the following

example for two suppression crews that can arrive simultaneously at a fire.

E 1  4E 2 -2

= 25 L2 10

W1 -10 W = 6

H =20 Ta =2

-6-



For simplicity assume the fire is detected immediately after it starts. Then,

G = HT = 40 acres per hr.

Y - 1+UT 0 acresa 2a

For C equal to $200 per acre, the following results were obtained:

TABLE I

X0 X1 x2 Csupp Cburn Ctotal

No. of No. of
acres forces forces $

60 8:' 0 458 12,000 12,4583
40 0 20 440 8,000 8,440

20 0 30 480 4,000 4,480

5 0 90 1,035 1,000 2,035

2 0 120 2,226 400 2,626

Notice that the optimal solution occurs where the cost of burn after arrival of

crews is about equal to the cost of suppression. This type of solution agrees

with the intuitive idea that it is uneconomic to spend more money per acre on

suppression than the value per acre of the burning land. The results are

plotted below in Figure 1.
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A further analysis of the optimal solution yields some useful results.

The minimum cost occurs at X= 5 acres. The equations of this system are,

X1 2X2 = 18o

27.5X1 + 1l.5X2 = Z(Min)

The optimal solution is X2 = 90, and Z = $1,035. Suppose we now consider

the use of a bulldozer for which

3bu M 50

Wbu - 25

What is the maximum transportation cost for which the bulldozer can be

used? The transportation cost is important in the consideration of bulldozer

usage because we must consider the cost of getting the bulldozer to the fire

in the same time that the other forces require. This type of problem is easily

analyzed by the dual linear programming problem.

V. Use of the Dual Linear Program

For every primal linear programming problem.

Ax = b

Cx a Min. x > 0

there is an associated dual,

yA < C

yb = Max. y unrestricted

such that at optimality

yb = Cx

-8-



Furthermore, by the theorem of complementary slackness,

X =O whenever YaL < ci

and

yai = i whenever Xi > 0.

For a full treatment of the subject, see Chapters 1 and 4 of Gale [2].

Let the number of bulldozers used by represented by Xbu. From the

above, if

Yabu < Cbu p then Xbu = 0 and hence the optimal solution does

not change.

For the optimal solution of Example 1, the dual is,

4Y, < 27.5

2y1 , 11.5

By the complementary slackness requirements,

2Y1 - 11.5

Yl= . 5.75

The dual is optimal because,

Y1b = 5.75(180) - 1035 - Cx

The bulldozer should not be used if,

50Y < ('tu + bu)

or if,

287.5 < (Lbu + 6.25)
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If Lbu > $ 281.25, the bulldozer should not be used. If the inequality

is not satisfied, then another cycle of the simplex method will determine the

correct number of bulldozers to use. Further, if they are used at the optimal

acreage, the entire problem should be re-worked with the bulldozers considered

in case there is a new optimal acreage allowance. Even for the case where

bulldozers are not used at the optimum acreage, X0 , part of the problem

must be re-solved. At some larger value of X0 , it is possible that

bulldozers will be economical to use. Therefore, one should rework the
* *

problem for all X0 > X0 . In the neighborhood of X0 , where the set of

basic variables does not change, one can compute a region in which bull-

dozers are not used, thereby reducing the actual amount of re-computation

of the linear program.

Note that the solution has not been restricted to integers. In practice

a fraction of a man cannot be sent to a fire nor can you send a fraction of a

bulldozer. Rather than complicate the linear programming problem with

integer requirements one can arbitrarily send an additional man for each

fraction greater than 0.3. Parks (13 has shown that it is cheaper to

overkill a fire than to underman the suppression force. Therefore, little

is to be gained by formulating complex integer programming problems. For

problems with more constraints, one might also investigate fractioral pro-

gramming algorithms.

VI. Uncertain Growth Rates

The extension of Parks' model for uncertain growth rates follows

directly from the argument in [13. In actual practice Ga may only be

measurable to a distribution function with mean 
and variance 17 .

Taking the expected value of (6),

-10-



~~.L X+WXi -j &(L:LXi+ i Gia Xi.~ +i--- -L-

i iWX 2

because

G a 2X /GaG~a.EoOa

A - f(Ga) .

Therefore,

(A).

and

07) (y2 + 1) (GO))2

where

a2

Then as before,

(Ka + 1)(6(G)) 2

~-'.. 2X 0

(6b) L(XLi + )X - Minimum

( ) + 6ixi=  T x +

The insertion of uncertainty into the problem 
will increase the number of men

sent on the initial attack. The solution method here is the same as that outlined

in Model 1.

-11-



VII. MODEL 2 Nonsimultaneous Arrivaol

The usual deployment situation is characterized by different arrival

times for groups of forces dispatched at the same time. For example, a

helitac crew should arrive early than a tanker truck crew under average

conditions. Before developing a mathematical model of this situation note

that values E for each force are important in eliminating a class of

problems. For those cases where the most effective force is closest to the

fire one shouldusually send as many of these forces as possible. Only under

an unusual cost spread between types of forces would there be a change from

this strategy.

Under most circumstances there arsusually only a few types of forces

that are sent initially. Let us consider just two types of forces and develop

the mathematical structure of the model.

Let G1 = Gd + HTda = growth rate at the time of attack of the

first crew

T = inter-arrival time between crews
T2 = time from attack to control for crew 2

T - time from attack to control for crew I (the first

to arrive)

E = effectiveness of the ith crew.

TdA= time from detection to arrival of the first crew

Using the time of attack of the first crew as a base, the growth rate of the

fire is described by,

(9) t Gi (E X - H) T - (E X + E2 X2 - ) (t -T)

Equation (9) holds for all non-negative values of XI and X2 We must

minimize,
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(iO) (L +w1 T) XI + ( + w22T2)X2  cx 0

Such a process is not trivial beuause T1  and T2 depend directly on X

and X2 . The variables, X0 , X, , and X2  are related by,

[0 - T+ 1- (E1X1 -[O 2 (Ex - )ijT 2(E1X1 + E-2X2 - H1)

The control times are given by,

(12) x ( Ix, - HT , = T +T

T2a(EX +EgX 2 -H)1 i 2

At the boundary, however, we get different expressions for control times.

For k- 0 , and X1 > 0

a
(2a) T = 1

E.X3 - H

and for X, 0 and X2> 0

( 1 b ) T 2 32x2 - H

The variable X1  is also bounded above and below for X2  positive; its minimum

value must not allow more than X0  acres to burn beforo the second crew

arrives, and its maximum value must not allow control of the fire before

the second crew arrives. Thus, for X2 > 0

2 G01G I 1 H
1 + x- I  H or A(Xo ) < X, < B

2EX 0 El FI, + 1



The following algorithm will solve Model 2:

Compute A( X0 ),B

K

I=- Mivn ( zo z)

No is

13?

Ye~s



VIII. Generalization of Nonsimultaneous Arrival

This problem can be generalized to

(lOa) Z = Iv (XoXlx 2 )

where

(la) x2  (x0o x1)

and

(13) h2 (Xo) K X K h1 (a,...,a n ) (ai  are constants)

which is a dynamic programming problem.

The minimzation process can be computed using the following scheme:

Compute h (Xo),h2(a ,...,a n)

X1 = X1 + n)
TemaewithZ 1

K = x ... + ar

X = XX

Yes

k~ R? Z=Mn (z,Z
o, X, ) o ass oted th Z

,-15-



IX. Use of the Planning Model

An optimization process for a system such as (i0)-(13) is tedious and

is not intended for use on individual fires. The process lends itself to

solution by an iterative computer program. Such a program was written for

the IBM 1620 located at the Survey Research Center et the University of

California, Berkeley. Frc" the solution of many possible cases using the

same set of forces, a family of cost curves can be drawn; then depending

.on the value of H , G and E for each force, a dispatcher can easily

choose the best mix of suppression forces for most fires. If the estimates

of H are too low then it will be necessary to employ reinforcements. As

Parks has shown [i], the reinforcement problem is similar to the initial

attack problem and hence presents no great difficulties.

Before using the model to solve a specific problem, consider intui-

tively the results that we should obtain. For all values of X0 less than
*

X0 , the closer forces will begin to be used until at some point the control

time is less than the inter-arrival time and only the earliest arriving

forces can be used. For X1  0 , the equation for X0  implies,

Xo > (GI + HTi /2)Ti"

The critical value of X0  is reached where

x0 = (G1 + HTi/2)Ti , the area burned until crew 2 arrives.

If the most effective force does not arrive first, one would expect to use

it only when the values of X0 are large. If the number of early arriving

forces is limited, then so is the minimum acreage that can be controlled.

Thus there will be three critical regions to define and they are all

linearly dependent on H. For large values of H the transitions should

occur at higher values of X0 than for smaller values of H

-16-



EXAMPLE: Nonsimultaneous Arrival

In order to illustrate the use of the planning model consider the

following problem: Three crews are available for initial attack on fires

in a particular region of a forest. They are, (1) a 2-man helitac crew,

(2) a 4-man tanker crew and (3) a small bulldozer. For values of H of

3 , 10, and 50 acres per hr2 , find the optimal strategy.

Crew Inter-arrival E Li  Wi

Time*

1 4 50 8

2 2/3 8 25 32

3 2/3 25 100 28
*
Inter-arrival time fron Crew I to other crews.

Let C = $200 per acre

G, - 5 acres per hour.

The two crew model can be solved for Crews 1 and 2 and for Crews I and 3;

the lower envelope of cost curves will indicate the optimal policy among

all three crews.

Some of the results of the computer solution are listed in Appendix A.

There are 2 columns in the appendix that bear further explanation. MVS refers

to the values saved in controlling the fire at the next lowest XO value. The

value saved at XO = 20 acres compared to X0 = 30 acres is $2,000 because

MVS equals Cburn a 0 . MC is the extra cost of suppression associated with

controlling the fire at the lower X0 value. These columns indicate the

following requirement for an optimal solution:

occurs where MC = MSV . (X0  is optimal XO)

Optimality then, is not defined as the X0 value for which burn cost per

-17-



acre equals suppression cost per acre; such a condition may be true at

lower values of H , but it is not true in general. Notice that at high

values of H , the suppression effort is rather costly on a per unit acre

basis; such a measure of spending efficiency is biased, however, because

it does not reflect the potential acreage saved.

Returning to the simultaneous arrival case, notice that the marginal

criterion of optimality holds there too. This concept is similar to the

determination of optimal output in a production system; optimal output

occurs where the marginal cost of the next unit produced equals the marginal

revenue derived from the unit.

The results for the fixed inter-arrival problem are plotted in

Figures 2, 3, and 4.

The optimal solutions of this model clearly agree with our intuitive

assumptions. The cost curves have a typical convex shape and a minimum

point. There is an error in the curves, however, caused by the lack of

restrictions on using integral crews. For example, the cost of transporting

a helitac crew is 025 per man, but the cost of sending only a one man crew

is $50 per man. Therefore for each fractional crew there is an added fixed

cost of transportation not considered here. The results will not be changed

markedly because these fixed costs will only cause Jumps in the cost curves

at several points rather than causing changes in the cost curves.

For the lower values of H , the cost of suppression decreases as X0

decreases, and then increases again. This behavior is caused by the

balancing of extra transportation costs with decreased hourly work costs.

With or without these refinement,. +-hm n.iin crew model can be

used to advantage in choosing among different types of forces.
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X. Multiple Crews Fire Break Model

Jewell [3] has constructed the fire spread model illustrated in

Figure 5.

Vf

D

Vf is the velocity of the fire front. L is the length of the front, D is

a distance away from the front at time zero that a crew must move in order

to build a fire break of width W by the time the fire front reaches the

crew.

ax/W = feet of fire break constructed by X men per hour.

If the time to construct the break equals the travel time of the fire front,

T= -W/ax .

The area burned A = VfLT = L2 W(VfcX) . For the multiple crew case,

L 1f

A =

iii

Let a I/W - = the line building rate of the ith force at a standard

width W

L2v

A = f T =L/Zo Xi

If A is held constant, then

-20-



(13) iZ i = L2Vf/A
i

and

Z C XiA/LVf = Minimum (where Ci is the unit cost per man hour)
i

forms a linear programming system whose solution yields the optimal mix of

forces. An iterative procedure on A will define the overall optimal

strategy given the unit cost of burn.

Now suppose that a fire spreads in N directions and N such fire

breaks must be constructed. Because of the terrain and fuel type, let the

area Ai , be fixed. Then,

(15) Vx L/A for all j - 112,...,M,

where piJ rate for the ith force on the jth fire front and

X = number of the ith type of force sent to the jth fire

front,

and

(16) X i KI  for all i

J=l

(17) Z C z XjAj/LVfj = Minimum

i J

describes a linear programming problem. We can solve these problems with

the same parametric procedure outlined in Model 1. The optimal solution of

this system is given the best deployment strategy for all forces. On a

campaign fire, where there are a number of divisions and sectors, such a

model would be a useful tool to a fire boss; the linear programming device

-21-



automatically investigates the trade offs among costs of crews, line

building ability and values burned.

As models are constructed that analyze other types of fire line

strategies similar extensions to multivariable case can be readily made.

In conclusion, I would suggest that extensions of these models are easily

attained through the use of parametric prorams that are solvable on a

computer.

-22-



APPENDIX A

Fixed Inter-Arrival Time Problem

H X0  Crew I Crew 2 C tota Csupp MVS MC

3 30 0 .49 $6,l25 $ 125 $2,ooo -28

3 20 0 .56 4,097 97 2,000 -26

3 10 0 .88 2,071 71 1,000 17

3 5 .91 .63 1,088 88 400 19

3 3 1.79 0 707 107 400 99
3 1 3.87 0 406 206 150 467

3 .25 13.24 0 723 673

10 30 0 1.59 6,254 254 2,000 -62

10 20 0 1.83 4,192 192 2,000 -36
10 10 0 3.16 2,156 156 1,000 40

10 5 2.29 1.40 1,196 196 400 15

10 3 3.54 0 811 211 400 88

10 1 5.62 0 499 299 150 463

10 .25 14.99 0 812 762

50 30 0 12.55 6,620 620 2,000 63

50 20 4.21 9.06 4,683 683 2,000 95

50 10 10.20 2.81 2,778 778 1,000 14

50 5 2.29 1.l4o 1,792 792 400 4
50 3 13.31 .84 1,396 796 400 35
50 1 15.62 0 1,031 831 150 339
50 .25 24.99 0 1,320 1,270

KEY

H Acceleration

X 0  Acres burned after arrival of first crew

MVS Value of burned acres saved in reducing X0 at each step

MC Additional cost of suppression in reducing X0 at each step
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