Ad- 420 /76

FNL
/209
. AR

N
ect No. |MOI10501A003

INTRODUCTORY PROGRAMMING
A

— (=] e
by i (@]
= - (8’
<T - :
= = > %) m K.
= (] (3] o
e (o £ 2 «
—_— = @) me HIW w
o 3 . _
= . o 9 M.
= L. o
= o

C
FORAST (Formula and Assembly Translator)
J

|
I
I
||||.
|

I
|
|
|
|
|
|

ik
1]l

REPORT NO. 1209

JULY 1963

BALLISTIC RESEARCH LABORATORIES

e P sy P S el V-t



\;\
S
Q

>
N
R

ARE
1% \N

DDC AVAILABILITY NOTICE
Qualified requestors may obtain copies of this report from DDC.

The findings in this report are not to be construed
as an official Department of the Army position.




oe}
x>
=t
[ag
4
n

=}
]
Q

RESEARCH LABORATORTIES
REPORT NO. 1209

JULY 1963

INTRODUCTORY PROGRAMMING FOR ORDVAC AND BRLESC

I

=
EI
7]
i
o~
=
:
[y}
[\
=
a
=3
w
7]
g
o’
et
<
)
]
[\
=
10)]
o]
[}
ct
(o]
L]
~—

Michael J. Romanelli

Computing Laboratory

RDT & E Project No. 1MO10501A00% o ke

ABERDEEN PROVING GROUND, MARYLAND

[}
R

B



td
>
]
]
=
wn
-3
-
(@]
bd
]
5]
5]
o)
28}
Q
m
[
=3
os}
o
j2¢)
fe=3
L=}
o
s
L]
=
[¢2]

REPORT NO. 1209

MJRomanelli/sf
Aherdeen Pravinge
ER IV ALY L v 4 AUV Ll AT

July 1963

the high-speed digital ¢
Programs written in this language, with minor limitations, may be executed

on either computer. BRL Report No. 1172, [l] , describes FORAST in its
generality and was written primarily for professional programmers. This
report is intended for the novice. Fundamental concepts and details of the
language are illustrated in many examples so that the novice is taught how to
program and obtain practical solutions for a variety of mathematical problems.
Intended as a supplement to [l.) , this report does not illustrate the full
generality of the language. Some of the material is repetitious but amplified

and several references are made to [l] .



TABLE OF CONTENTS
PAGE
A B RAC T . vttt et e eetnesnenoneenennenseseasenensnsonnnessenennns 3
INTRODUCTION. oo vvvvunnn et e ettt 7
EVALUATION OF FUNCTIONS....... et e i, o
MAJOR COMPONENTS OF HIGH SPEED DIGITAL COMPUTERS. ......evveeeeennenn. 10
EXAMPLE 1, SIMPLE PROGRAM. ..ttt itittieteneetnnesenenesnnesssaneeonnnns 13
EXAMPLE 2, IDENTIFYING OUTPUT RESULTS. .. e teneerneennenneennenneennnnn 28
NAMES AND OPFRATIONS......... e ettt e, 31
EXAMPLE 3, SINGLE VALUED FUNCTIONS OF ONE ARGUMENT........ovvvvennnn. 34
EXAMPLE k4, SINGLE VALUED FUNCTTON OF TWO ARGUMENTS........eveeevnn... Ul
EXAMPLE 5, CONVENIENT OUTPUT FORMAT. ... ueiuieeenennnenennnnonnennnens LY
EXAMPLE 6, SIMPLE CONDITIONAL STATEMENT. . ..vv v rrrnnernnneennonennnss 52
EXAMPLE 7, VARIABLE EXITS. ..ttt rrrnnrnnreenneennnns et 60
EXAMPLE 8, INDEXING . . vt et onennenennanennonenesnenesneseonosnonnenns 68
EXAMPLE 9, SORTING, MONOTONE SEQUENCES. ....0uveeureeennnerenneennnnnns Th
EXAMPLE 10, STORAGE ALLOCATION LISTING..vvtuvneenneeennnernnnennnnnns 83
EXAMPLE 11, FIXED LENGTH TABLE OF FORWARD DIFFERENCES 88
EXAMPLE 12, COMPILATION ERRORS DETECTED......... e e 100
EXAMPLE 13, RUN (EXECUTION) ERRORS DETECTED. ... :veveeenrenneenenennns 104
EXAMPLE 14, VARIABLE LENGTH TABLE OF FORWARD DIFFERENCES............. 107
EXAMPLE 15, MULTIPLE ARGUMENT, MULTIPLE RESULT FUNCTIONS............. 115



8, SOLUTION OF A SYMMETRIC SYSTEM. .\ vvern v ernrennennnennnns

[
¢
[
I:"
=1
|.-J
\O
e
N
!—I
|
wn
¢
=
5
o
2
-3
—
Q
=2
o~
O
[
=)
;
£s)
>
=3
=
=
e’

EXAMPLE 21, MATRIX OPERATIONS, ADDITION, SUBTRACTIOCN,
MULTIPLICATION AND INVERSION...........

EXAMPLE 22, REAL ROOT OF CONTINUQUS FUNCTION, BISECTION.......0oc0....

EXAMPLE 23, REAL ROOT OF CONTINUOUS FUNCTION, NEWTON METHOD..........

{AMPLE 24, REAL ROCT OF CONTINUOUS FUNCTION, REGULA-FALSI...........

EXAMPLE 25, REAL ROOT OF CONTINUOUS FUNCTION, CONSTANT SECANT........

EXAMPLE 25, REAL ROOT OF CONTINUOUS FUNCTION, GENERAL INTERATIVE.....
EXAMPLE 27, POLYNOMIAL LEAST SQUARES. ... vvuttrenteneeeenannenenenn.
EXAMPLE 23, POLYNOMIAL LEAST SQUARES, RESIDUALS, RMS.........evvnn...
EXAMPLE 29, DIFFERENTIAL CORRECTIONS. .. .vtvevrenssnennennsnennenenes



I. INTRODUCTION

The Ballistic Research Laboratories' high-speed computers, ORDVAC and
BRLESC, are used to obtain solutions of mathematical problems. In general,
the numerical solutions are obtained by instructing the high-speed computers

to EVALUATE FUNCTIONS that approximate the solutions desired. Hence, to obtain

solutions from high-speed computers, the computers are instructed to carry out

the detailed operations required to evaluate particular functions of interest.

Conventional mathematical notation, which permits considerable freedom
of expression and in which problems, solutions, and functions are generally
expressed in a form governed by human convenience, 1s not fully acceptable by
high-speed computers. Indeed, the instructions to computers that specify the

essential operations and the numerical quantities involved in the operations

are ultima te_Ly eXpress sed in a PRIMITIVE TANGUAGE that is understood by the

Tl UV Lilo

computer. For most high-speed digital computers, the primitive language
consists of combinations of only two characters, O and 1, the basic characters
of the binary number system. Specific combinations of these characters must

be constructed to represent the sequence of operations and the quantities
required to obtain a numerical solution. The human task of constructing the
required combinations of binary characters is tedious, difficult and highly
susceptible to human error. To simplify this task, HIGHER-LEVEL LANGUAGES are
designed so that computers can be instructed by professionals with programs in
their primitive languages to automatically translate them into their respective
primitive languages. In contrast to the PRIMITIVE LANGUAGE, the HIGHER-LEVEL
LANGUAGES admit combinations of the letters of the alphabet, the decimal digits,
and some mathematical symbols such as + - = . ete. The programs which

automatically accept the higher-level language and carry out the translation

AQOY TLMO T AMADO L A A A Aasn 2

are called COMPILERS, ASSEMBLERS, TRANSLATORS, etc., and generally admit some

of the freedom of mathematical notation together with some English word state-
ments for controlling sequences of operations. Although the higher-level
languages do indeed relieve the human of many tedious details, & novice may
still feel burdened with the necessity for specifying particular details re-

quired in a high-level language.

~



| TR | e TAN

s a high-level language designed for use on ORDVAC and BRLESC.

=

FORAST
BRL Report No. 1172, Llj , describing FORAST in its generality was intended
as a reference manual for professional programmers. This report is intended

SvmmnAd A FrmA + 3 H
s confined tc fundamental concepts and important details

s

for the novice and
illustrated by numerous examples, teaching the novice how to program a variety

of mathematical problems. Each example includes:

a statement of a problem;
a method for obtaining a solution;

P :
t indicating the sequence of the necessary operations;

©
o
o
o]

a program written in FORAST;

a tabulated copy of the results obtained from the computer.

Many of the methods used in the examples were chosen to illustrate particular
concepts of the language and do not necessarily represent the most efficient

solutions in the given situations.

(0]



II. EVALUATION OF FUNCTIONS

: .
o many mathematical problems can be reduced to evaluation and

recording of mathematical functions. Below are listedrthe four associated
operations:
1.) SUBSTITUTION of numerical values for each argument of the functions;
2.) PERFORMING the indicated arithmetic operations;
3.) RECORDING numerical values of relevant functions;
4.) CONTROLLING the sequence of operations involved in 1,2, and 3.

More specifically, to obtain a solution to a problem from a high-speed computer,

we instruct the computer to substitute, to evaluate, to record and to control

all operations required to obtain a solution.

In a given problem, all these operations must be planned in advance and

the comp

A general

uter must receive specific instructions as indicated on a Flow Chart.

Flow Chart is illustrated schematically in FIGURE 1.

BEGIN
—_——

SUBSTITUTE numerical EVALUATE and RECORD

values for variables, } numerical values of

constants, parameters, relevant functions.

etc.

, \

SUBSTITUTE other Yes DETERMINE whether
numerical values of pe———— further evaluations
interest are desired

No

(o)

___/



Before describing the fundamental concepts of
next the major components of the computers and the

their use in obtaining a solution of a problem.

the language, we consider

function of each as regards

Fomm -
CONTROL ST 1
QLR ' STORAGE |
]
V4
Y
7
V4
INPUT INTERNAL OUTPUT
DEVICES >  STORAGE DEVICES
(MEMORY )
L }
ARITH
UNIT
FIGURE 2.
MAJOR COMPONENTS OF HIGH-SPEED DIGITAL COMPUTERS

The components shown in FIGURE 2. are typical

computers. The input nerally consist of

reading paper cards, magnetic or paper tape.¥ The

{ = A \ N
perforated, (i.e., holes are punched in them), wh
of punches define specific characters. On magnet

To record information on paper cards or paper tape, the cards or tapes are

erein specific combinations
ic tape, specific combi-

nations of small magnetized areas correspond to specific characters.

10



these devices together with high-speed printers and other optical or photo-

graphic devices for output. The input-output devices may also serve as

e
............... un ma nd are used as in

external storage units. Magnetic tape units m
put devices or even as external storage. Hence input and output devices are
used to get information into and out of the internal storage as indicated by
the arrows of FIGURE 2. In general, the information that passes through the
Amvrd mmnc 2T a mamAmArmAAR S o

ucviCoo 1o ccouorlucu LIl LIl
corded on output devices is a copy of selected information that exists in

internal.storage. Information recorded in internal storage is retained there
h

oMo na
Ul (=]

W
0
'..._J

ed to replace it with other information. The arithmetic unit is used to perform

O

rdinary arithmetic, i.e., addition, subtraction, multiplication and division.

1
i+ 4
A

Knawineoe +the ranahilditdiac AfF +he masar yammidte anAd +he A iimAdamantal ~anepante
L\JLVWJ.LLa viic \_u_blu WMidl Voo AL viic ulﬂd i “uiil vo Alina viic 4 dliviaiuc i vev \_VIL\_CHVD

of the high-level language, a programmer designs a set of instructions (expressed
1 1 language) that will when executed by the computer produce a

data
(called a program) are recorded on paper cards. These cards are inserted in

a card input device. Without loss of generality, one may assum= that, after
activating a few switches on the control panel of the computer, an equivalent
copy of the instructions that were recorded on cards, is recorded in internal
storage. The instructions are then executed and results produced accordingly.
Actually, the FORAST COMPILER which is temporarily recorded: in internal storage
activates the card input device, and translates the high-level language to the
primitive machine language. It is the primitive machine language corresponding
to the high-level language that is recorded in internal storage, 1In interpre-
ting and attempting to transform the high-level language, the compiler can and

some violations of grammatical errors

PP By - = 24 e A a
1 sSucn cases, it recoras

A e Ad o4
aoes aeuvecCu

o
[wN

pertinent information on the cutput device that identifies the particular

violation and does not permit the computer to attempt to execute the program.



2.) write a se
the plan;

3.) record the
4.) submit the
5.) obtain the

Although not explici

once a program has b

responding to & given problem, we:

ution and exhibit the plan in the form of

»
]
=
Q
%
1
Q
jog
[
s}
fea

[

t of instructions in the high-level language to execute

set of instructions and accompanying data on paper cards;

computer output and tabulate the results.

tly stated previausly, it is important to recognize that

een tried, tested and proved, it can be re-used for other

12



EXAMPIE 1.

To illustrate some of the general concepts stated thus far, and to

-

introduce some fundamentals of the language we consider next Example 1.

GI"LJJ.I: Xi P Yi 3 where i = 1’2,5, s 5.
i.e., a table of numerical values for
X X
1 1
30 4o
-8 6
REQUIRED: For each pair of values, X,, Yi; compute and record
7(X,,¥,) = X2 4+ Y2
i.e., we want to produce a table with entries
X Y 2(X,Y)
1 il 1.4k
50 Lo 50
-8 6 10

for an indefinite number of pairs, (X,Y).

13



1 1.

or this problem, we tacitiy assume that the given
numerical values of X and Y will be recorded in a "prescribed form" on paper

cards, one pair of wvalues on each card, and utilizing as many cards as are

At Fha Aot
v v

e ;£ +he nlete tahl £ + +1.4
necessary 1ior tie COmpi€ile Taonie Oi values. Aluhough this nov Tii€ mo

w

efficient method for recording the data, it is a practical assumption that is

readily fulfilled. One could assume two, three, or more pairs recorded on each

rdo hnvoavar fAr
rG, 1o (024

wever, f simplicity we assum= one pair per card.

Next, we make use of a fundamental characteristic of card-input devices.
Cards containing information to be used in the solution of a problem are
stacked in the input-hopper of the input-device with the card at the bottom of
the stack "engaged" under a "read" station. (See FIGURE 7.) When the input-
device is activated by the computer, the information punched in the card under
the "read" station is interpreted and the information transmitted to internal
storage. During the process of interpretation and transmission, the card auto-
matically moves to a storage bin and the "next" card in the stack moves under
the read station ready for the next activation of the input device. Hence,
cards that have been read accumulate in the storage bin and are not accessible
to the computer for re-reading unless manually re-inserted in the input-hopper.
recorded on them is recorded in internal storage indefinitely for as many
future references as desired. A similar sequence of card-processing applies
the automatic passage of cards from input-hopper

L) 1P

to "punch® station and then to & storage bin. To utilize this fundamental
sequence, we plan to have a pair of values read and substituted for X and Y,
t

Jua record the result

.er to evaluate the corresponding function

—————— H 15

on the card output device and then repeat the process using the nsxt pair, ete.
Hence our plan can be exhibited in the form of the simple Flow-Chart as shown

in FIGURE 3.

1k

-x



o
“1

START &

SUBSTITUTE a pair of
numerical values for X and Y;
i.e., record internally the
palr of numer1cal values that

>Correspond; to the numerical
values of X and Y that currently
exist internally, EVALUATE and

record internally

/ ] oy

7z =/ X%+ ¥°

that currently exist internally

"WORDY" CHART

START ¥
READ:

>4
-

CONCISE SYMBOLIC CHART



The "wordy" chart is intentionally "wordy" for the beginner. The concise
symbolic chart is generally used and implies all that is stated explicitly in

the "wordy" chart. Note the capitalized words: SUBSTITUTE and its equivalent,

ing to a given pair of values, the next processing desired is indicated by a
. . . . 1 1t .
line to the original START sequence which causes the "next’ pair to be pro-

cessed in the same manner as its predecessor. The process is to be continued

until the cards in the input-device are exhausted.

Next, we write instructions in the FORAST language to instruct the computer

to carry out the desired processes shown on the flow-chart. These instructions

1
are written on the standard CODING FORM shown in FIGURE L4,

wi id ii 22C

16



LT

FORAST CODING FCRM
PROBLEM

€905

CODER M.J.RomanellDATE 1 Jul 63 PAGE 1

ORDER CARD
LOCATION | TYPE FORMULAS STATEMENTS COMMENTS IDEN
1 67 10|11 76 T7 80
PROB Co06_ M.J.ROMANELLI 45107 EXAMPIE 1. 1

START READ(X)Y 2
Z = SQRT(X**2 + y*¥2) 3

PRINT(X)Y)Z % GOTO(START) L

END COTO(START) 5

FORAST INSTRUCTIONS TO CARRY OUT PLAN OF FIGURE 3.

FIGURE L.

AMIBR Form 2534-(R), Rev 28 Mar 63




-
-t
-
=g

XXX

000
12
e
v
1

v v
[

XXXX
0000

IRENH

At

VRV RVEY)
Truy

XXXX

l!!

v
[l

can then be submitted to the computer.

structions written on the Coding Form of FIGURE k. are shown in

vy v wwy

llf‘llll

|

I
| iARA]
qxx |y|xxpx|xxxxxxxxx
Oﬂoohooohoolhoolouonoooo

5 I 7 lllIllll!‘!lllslljll'lllmﬂﬂn '7“2‘772!
DA s Y
YYYRY

Yy

I‘
xquxxllglxxuxxXﬁxxxlxlx
losoaloosoloomolomolmocomoolmoo

l"" '1'"12'1!“!5“!11Ill“012|22?]24’5?6h"3[)“‘]1!3’}
Al =

X X XXX

‘ Ry
- ,‘ . '
| I

\ A A4
t

<

v
¥

«

o
l‘ VvV
1 .I [ A

ARV

v
111

-t

! ! ¥ i ll! VY !!
lel;lxl xxxpxxx
oolohooghlonbolnoooohooo

lmnuﬁnmuwmmmMznunzu 0

XXX X

xxxxkl|x

20000
45|1|

||oohooohoonmnolblnomnoopooo
122458 7 ll! XQ n "‘11) 10 IS BrTen 20.21227)141251517 o

YYyvy

3333
4444

65675087

EREBEREE
eI it R i |

v

Lok
6666666 @Ct0

111

7
2
uiv e

NMa(J’.’(

hvv vavivlvwvlvhvvl

0060090

-”nuuxﬂul
D2

!11n||||111|

b

I

3333H333l3l333333ii3

4|44
Le4T4T M

44444444%44IM1
L5398 TN BAL N 5 5"4:
::::sq&zn.qq

[ IR A R RRURY B SR SRV BV )

a4

ReiE24: 1745 45 =129 7 .'
55§ g
LA AV I

Ten

[ M)

4
v

!
11
Ll

(-]

on

XX

Lm

UUOOMODGGUOOODOO

e xanen lFllvkv

YYYETRT X
4550331

6655%655%5"

|

| !
TYTVYYYYY:AYYY

Ja'lﬁﬂﬂr",”‘l“"”‘ 16
YYly .lv.vavJ.Y
kxxxxxxxxquxxxx
%ooohooomqoo

VU ‘Si!l »8 Jllll QY “'5 owe

!YYYHYYY

XXXXXXXX}XXX

GOOONOOOGOOG

BUBRN U

....

" ‘4*\7””40"{203“‘

-
AANIARAHARE

xVVthxxtxx '

A

1|1h|111|||n||

| ZZ’ZZ;|
|

aaassaassasJ
quﬂ

1444
oduvmﬁ & add AR
FL%&&&!;
SEAE IS AL

i1 B
l3 55 8l

|

ZZZ? 2222

313

.

-~

YYYYHYY“YYYY
Ixxxﬂxxxx

the Coding Form are punched on

The cards corresponding

YYYqYYYYrYYY
XXXXXXXX&XXXXXX XXXXXXXX:

XXXX

ByyyyyYYYY
AI'AA'\I\I\

444

IR Y

‘iiiiﬁiismus"s
2738 Y940 47 43 6. ' 48 7 ABEd 50 1 S2%3 14 3L SBIST N0 L9 ot €

XXX

to

S |
YYYY?YYYWYY

t
XXXXXXXXXXX

ﬂOUUbOOOOOUOQOO 000“000000000000%0000000

'3”-1-5-3.&3&41Sﬂ.-.lu&ﬂﬂ.d&uh.dh.:

BOOPOOODUOOOOOOBMBGU

vlﬂcs's*s 5‘55!&:75&"36\45 ilﬂﬂii‘i’ w

...._...L...L.......

)

00“00000000"'000000%00&

luﬂ“‘i“ﬂddﬁd a)..l;‘!\&s

.
vvrvvvvﬂvaerY

xxﬁxxxxxxx

‘b AHIAIMJM&-“L’

|
f
'
|

vldvvlvh vavvvvrvavvv

><

i
'
1
'
|

0000000000.0@000DIUOBOOﬂQOUGGDDUOOOUUOOO

19-1|11nun‘v TN AGIes A2 4344 45 36 47 RIS S) 1112 %0 9D 6,57 L0 99 6T 61 K2 83 64 65 66 €

1111]111111111111111

333333333343
A44444444444
""CJB’LS!.".‘

i7771777771777777777

: !:«r

XXXXXXXX(XXK

the in-

FIGURE 5.

: |
YWY!YYYYY“YYY

XXX AXXXX s £ XXX

nna!?nnnﬁnnn

XXYXXXXXﬁXXX

700“00ﬂ31000
9w nin ns<v ERT

N
I
|

YYYYrYYerYY

Il
XXX XXX XXX 'S £ XX

| 1
OOCG“EQODQUO

I TN A 10T e Mas

YYYJYYYYYYYYYYYY

|
XXXHXXXXﬁXXxVxxxWxxxxxxxXXXX}xxxxxxx
]
000 c]o 009 0 000 0eo 0‘0 009 0 0o Ulﬂ 0no 0 009 8 0 00

4505‘1&]!!505‘5 .aﬁ»S’&lewmuuwww TARI N 1,.:1 o .,:

Y

vvvvvvvﬂvv

S

YYXyyyyx
ni\nr\

GDOOU”"OWBUU

SRR u.‘<x:wnn

Illlllllllll

Y Y
nA

f
717777°77777

44444444 444

1’1133'55V

1bbbobbORLOD

77777117:777
i
|

FIGURE 5.

18



The instruction cards of FIGURE 5, together with a few data cards, (the
ars T e e - -\ - .
cards on which we assumed the X's and Y's would be recorded), are shown in

FPIGURE 6. These cards represent the complete package to be submitted to the

computer to obtain the desired solution.

- : ) i ! . ! . I ] + i ] ' ] ' t
J ! | | i ! !
|YYYWYYYhYYY]YYYVYYYﬁlYYxYYthYthngYYYpY!thYﬂYYYYhYYY&YYYNYYYHYYYthvhwvvhvvv
i i i i ! § ; ' f i ' ' i i ! i
- g SR ] : l | t ; . ; i ] I '
YYYY1YYYPYYY|YYYHYYYYlexYYYFYYYgYYwiYvﬁvvaY7417vaYYYFYvaeryvvthYvwvayvvv
! 5 | L ! i h 1 P i i
= 1] ' l | . ; 1 | , i l : 1 i . ! 1 ) |
IYYYWYYYhYYYXYYYNYYYfYYYdYYYhTYYXYYYYYYTYYYYYYYdYYYYYYYﬁYYYYNYYYXiYYHYYYYYYYYYYY

| . . ‘ <
YYY'r_{YY‘;i'rYY'r‘.’YYY,‘.’YY'T:Y‘:’YYiYYYY‘.’YYYlYYYYYY’YY}YTYY!YYY\JYYY‘IYH1"1 YYYYYY H‘!‘ﬂ‘!“!“fIHYYY YYY

!

. l | . , . ’ \J {
TYYYﬁ%?1ﬁ¥¥¥¥¥¥¥h¥¥¥ﬁ7¥¥ﬁ;111¥¥¥;1!¥W¥¥z¥¥¥vf¥Y YYVYYVYYCYYY'Y*YgYYYdYYYYYYY“YYY
- | | ’ ] ) ! ! '

LR R LV RY R VR Y]

S UV MRV SYUUR S FOR T N T T NSRRI B
IRRRARL Y LI RRARRAL AR ARRRRRR (AR AN AR N A S A L R R A R R AR (RS0 ARE AR LR TAE,

[ 1]
Fyy,ﬁ¥¥¥pYYYHY¥¥¥Y¥¥ﬁ¥¥¥h¥¥¥ﬁf¥¥H¥vvp7%77:vvﬁ¥vv
, B 1 ]
- ' S R | .
YO Y Y Y Y Y Y Y Y Y Y Y YT Y Y Y Y Y Y Y Y Y Y Y YY Y Y YY Y Y Y Y Y YY Y YYYY Y Y
) [ N D R ! P R E e Y R
| |

' ; ! i ! ! I
YYRuYYYilyy 1|||YY|rYY(vaﬁvvvpvvvpvvvhvvvvvvvpvvavvvrvawvvvgvvvquvpvvv§Vvavvv
i ] 1]
i . o i i i 1 t

o ' . !
! f ' |
vvvvavvvv!ervavvvxlvl JYthYYlYYY dYY\YYYYiY.J;YlYYIYYﬁYYYJiYYJYYYYYYYPYYYYYYY
| | ‘ i .
XXX X BB A AX XXX xBXB YRR R XBXBE XXX
; i
5

b3

XXX XXLOKX XX lxxxxxx%zzx;xxXﬁxxxxxx ,vxxgxxx
i i Lo ' 5 ! o -‘-
'UJ ‘JC"""E 7(3063:06000§0000 ,0000'93.0'0000 4

win'? Ilih )"uzn X671 W29 30 X8 2100 M DS w4 ‘auw«u LYR 1

)
Rf 1|11|1|1:t|11 1|1|1|x||||p|||h|||

= i e

- & W

-
=
-9
IS

0
s e mu AAELT AN
1

"]II"V‘II
zzzzzzzzzzzz

~ ERso

N
-
2
~y
'~y
~y
N
~
"~
\I
~
~
~3
a
o
~
"~
Land
~>
~
"~
~>

?77?17222227

N
~
[ond
2
~
~>
Land
~~
I~
s
)

]
N
N
S
N
N
and
~
N
)
g

........

<
[
[
@
w
w
w
e
oy
s
w
_
T
o
w
'y
an
[
[X}
I
w
-
w
w
3
o
P9

1

ul
‘a
Gﬂ
h
Cal
Cal
[
3 b S e L
Lo
cal
Cal
s
Lak
€A
(]
[y

I
rlssﬁlsaﬁsasﬁsasa33333333333ﬁ333
1 { H H

; I
4 444|44444444444|,44444444444.44444;4444414444444
[ Pt witis -:. P G t,ivl- )4.4‘040‘444 o pu.o:ﬂ.ux:o J..ua AGGBTIUIOBB IS I T 1383 T 68V R TR T A T S S |
54554;:4JSMM,J450335 555555080 5555I555355:I5555al54055«43535555353355535555555
R ) T b | r P
j a

- o plp e ovoale o o oo ap
5608568 ] 5555;£5u‘5u”-;uﬁ%uESESSESSEEb.\585&.55

i I
414444445 4'11,44~ls4444l44

g WD

u-ggo. -
u-y-.:h

52

o
o
an
o
<2

| !

IRREUEE RilRi 7777777777|117777[177777717]711 il?’7l?l77 11101 "7l'l7|l'l'l'l'l'l171111:717?'7717
: : {
8888/353% ! 888’1:8880803’8'3‘8883888888883888868338883n8?d'8 38833888388E33;%3883'3388
| ! i i i
9‘9“!-'3'3‘=!-i°r"~§'=3‘393395959 9%9%#‘3%9%%‘%%9*99:35‘35”5“95‘*333"";3'9“‘”"'“‘““9395"&939‘9999
120:’«}3.‘!'.‘& AN TN U Aﬂﬂnllnhl}‘”&- 7.3‘!9‘3‘\0 MQ“““‘QW?IZ.'\.HSLK SSRGSl b Bl A on'uismn’n.“-n‘snlﬁnnl
BRLESC Eac ar 6
FIGURE 6.

'.J
\O



Recall that we assumed the given input data, (the numerical values of the
X's and Y's), would be recorded on paper cards in a "prescribed form". The
FORAST programming language provides for instructing the computers to accept
data represented on cards in many forms. A few specific forms are considered
standard, (i.e., those forms that are most convenient for scientific calcu-
lations and used frequently), and only departures from standard forms must be
ed in a manner provided by the language. The prescribed form chosen
for this example is referred to as standard "floating-point” form. This form
is similar to that generally called scientific notation, where numerical values
are expressed in a two-part form; one part called the "coefficient", the other

is called the "exponent". For example, the quantity 72.45 can be expressed as:

7.245 x 10  or .72W5 x 10° or T245. x 10'2 , ete.

o
Rt

s generally cmitted and the two-part form used consists of the

(0]

signed coefficient and the signed exponent. The exponent is restricted to

integers. The computers represent numbers internally in a similar manner, using
binary notation instead of decimal. In ORDVAC, the base is 2, binary; in BRLESC,
the base is 16, sexadecimal. The use of other bases and forms is permissible and

means for transforming from one base or form to another base or form is provided.

For input data, some standard floating-point forms used are:

Coefficient Exponent
a.) Sign,8 decimal digits Sign, 2 decimal digits
b.) Sign,7 decimal digits Sign,2 decimal digits
and a decimal point
c.) Sign,11 decimal digits (no exponent)
a.) Sign,10 decimal digits (no exponent)
and a decimal point

20



In the forms where the decimal point of the coefficient is not specified,

1

(forms "a" and "e"), it is assumed to be before the first decimal digit

punched. In each of the above forms, 12 columns of a card are used. Other

T AT TV

variations of these forms are permitted; however, in EXAMPIE 1. we used form
a" for both input and output representations. As is conventional in mathe-

matical notation, the positive sign may be omitted.

To introduce some of the fundamental rules of the FORAST language, we
f

refer the reader to the standard codin

Observe the division of the form into four general headings, namely:
LOCATION, (1-6); ORDER TYPE, (7-10); FORMULA STATEMENTS, (11-76): and CARD

( J; ORDER TYPE, 10); FORMULA STATEMENTS (11-76); and
IDEN, {77-80). The numbers written here in parentheses, and written under
the general headings on the coding form correspond to the columns of the

paper cards on which the information will be recorded. The space allocated

r names

-~ FRRT P Sy P R .
O reier L0 sSTale -

ments and pertinent data. Columns (7-10), labelled ORDER TYPE, are reserved

ct

IOURY A labelled LGC .- S P
umris (1L-0 ), ladelied bﬂJ..LUl‘, 15 reservea 10

for classifying the information recorded in columns (11-76). Only a small

+
H)

for arbitrary identification of individual cards. Although not mandatory, the
cards are generally ordered in numerical order for easy reference so that if
and when the compiler detects a violation when it reads a card, the identifi-
cation recorded in columns (76-80) of the card is printed to identify the card

containing the violation.

M.n £3 ot ~Anrd ~AF Ao —nm o ot 4.2 4+~ LTn A
L€ 11050 Calud Ul cacCll proglrall bubuu.bbeu Lo une C

ch
recorded in columns (7-10). Columns (11-76) of this card may be used to record

a problem number, persons name, title of problem, etc. The information recorded

on thi Aawd So aluave rerardeld s +ha €
on 118 CarG 1s aiways Tecioraed as vne 1

U)

subsequent results which follow, if any!

[\Y]
=



o identify the beginning of a program, an arbitrary name composed of at
most 6 characters must be recorded in columns (1-6), i.e., opposite the first
statement to be executed. In the example, we chose the name, START. Note
that commencing in column 11 of this card we wrote READ(X)Y, the instruction
designed to start the processing of a data pair by copying in internal storage
the numerical values recorded on the first data card. Next, we wrote the
function to be evaluated. No doubt the beginner will note the difference in

the conventional mathematical notation, Z = X2 + Y and the cumbersome

notation Z = SQRT(X**2 + Y**2). Unfortunately, the former is not acceptable
to the input media. In contrast, the latter uses a serial arrangement of
acceptable symbols or their combinations. Subscripts, superscripts, exponents
or other conventional symbolism which is not included in the restricted set of
>ters acceptable by input media are denoted by special characters in the
restricted set or by combinations of them. For example, in place of the symbol
/r—- , we use SQRT ( ) or ( )**.5 enclosing the argument in parentheses.
. S

The latter evnress
ine 1atter eXxpress

on, as do the forms X*¥2 and

v e . 2 I N
Y**2, which correspond respectively to X and Y . The general form of ex-

ponentiation is
(E1)**(E2)

which represents the expression El raised to the E2 power. The equality
symbol, =, is used in a different sense from the customary mathematical meaning

in that even expressions such as
X=X+1 or U=2=Y + Z¥%2

are valid. The special meaning of equality is: EVALUATE the expression to the
right of the equality symbol, using values of the quantities that currently
exist in internal storage, then record the resulting value in internal storage
as the existing value of the function or variable whose name (or names) appear

to the left of the equality symbol. In the example, U =2 =Y + Z¥*¥2 the

22



Aamriitar w111
bumyuuc; Wil
existing value o
existing value o

prior to the reco

uvare the existing value of Z, add thi

o ra
[v B 4wl

and then record this result in internal storage as the
a

Z; the previous values of Z and U are erased just
f\

ine 4 of FIGURE 4 appear two distinct statements with the special
t

0 separate them. One may write many statements or symbols

on a given line in the space provided. Each line of the coding form is

punched on a single card. Three lines (or 3 cards) would have sufficed for

EXAMPLE 1. as illustrated below:

PROB C906 1
START READ(X)Y % Z = SQRT(X**2 + Y**2)% PRINT(X)Y)Z% GOTO(START) =2
END GOTO(START) 3

The rules for the use of

ko]

rded in the ORDER TYPE space. Thi

the FORAST program into primitive machine language.

of this card is not recorded in internal storage.

o the FORAST compiler the end of the

arenthesis will be explained later. The last card

r»d carves two
rad Ser S TUWC

el ~f
AULL UL

The equivalent

2.) The GOTO( ) statement recorded on this card directs the computer

to the first statement of the program to be executed. The first

statement to be executed need not follow the PROB
any statement in the program.
The GOTO(START) statement on line 2 is recorded in internal

the computer to process every data pair following the first

on line 3 directs the computer to commence the program with

card it mav be
card, 1t ma

) ~ J P

storage and directs
pair. The GOTO(START)

the reading of the

first data pair. It is not generally true that the processing of subsequent

vith the first instruction of every program.

23



INPUT
CARDS

CONTROL

!

CARD READER

(input device)

' 4

INTERNAL STORAGE

READ (X)Y%Z=SQRT (X**%2+7Y%*
¥ 2 )4 PRINT(X)Y)Z%GO0TO (ST

ART ) %

X

ARITHEHMETIC

FIGURE 7.

CUTPUT
CARDS

i

CARD PUNCH
(output device)




Illustrated in FIGURE 7 are the machine components used to obtain the
solution of our problem. Note that the cards shown in FIGURE 6 are first
inserted in the CARD READER, (input-device). The FORAST compiler causes the
five (5) program cards to be read and the information on them is recorded in
internal storage as illustrated. When the compiler recognizes the card with
END punched in columns 7-10; (the 5th card), it directs the control unit to
commence executing the instructions t
Note also that in addition to utilizing space for the instructions in internal
storage, space is also reserved in internal storage for the numerical values
of X, Y, and Z. Each time the computer carries out the instruction, READ(X)Y %,
the numerical values on the card at the read station are transmitted and re-

corded in internal storage, the card itself being moved to the storage bin.

Next, using the existing values of X and Y currently in internal storage, the

| G A N

V x° 2 . N
computer evaluates 2 =V X~ + Y and records the numerical value thus obtained

in internal storage. To carry out the next instruction, PRINT (X)Y)Z %, the
control unit activates the CARD PUNCH and records on a card the numerical values
of X, ¥, and Z that currently exist in internal storage. This completes the

d processing for a given data pair, (X,Y), and then the instruction
GOTO{START) directs the computer to READ the "next" data pair and process it
in the same manner as the previous pair. After all of the cards in the CARD
READER have been read and processed, the computer stops and one obtains the

results in the form of the punched cards from the bin of the card punch. A few

A tabulation of the FORAST program, the input data, and the results
obtained are shown in FIGURE 9.

N
\n



I

]
YYYYYYYYYRYYYYYYYY

XXXX

ﬁXX XXXXXX XXX

37 35 DD A0 4G a3 s s 4 gty s 4 ’!‘NSS‘H"!5!!“515““!6'-616-1&m"n'lM
.

4 e o aa!

8000000000 ﬂUJUOUUUﬁﬂﬁﬁﬁUU"mﬂ00””00%.!!'..0

YVYYYYYYHYYY'YYYYYYYW'YYNYYYFYYYYYYYHYYYVYYYhYYYYYYYHYYY
XXXXXXXLXXXXXXXXXXXXXXY!(Xxxkxxxkxxxmxxxvxvvxvx XYY YY
L
I

| | XXX- ' XXX XX
ﬂ"‘\IIIII T T i
U HHH ERRRE H Jgoce quuuuuu&uOuO 0000000000 U}
' ‘4‘5 eje l}l“llsll_"-.'l.!!.’.!'l'-".if H'IT?J’,\’J;'D":J"‘ 13301..4':)- u‘4 XN RRPET 9239‘02223?‘ ;.:}ﬁggs;gg:‘q..!!.l!’q
i1 rl'lTl{‘lll{llllillll'll|I.!||I§|||||||||||||||||||||||||‘|||||||||'||llllllllllllﬂlllu
i . | ] 1

|YY1¥YYYPY1devvdyvvavYYYYYvavrvvvhvvvhva YY YA Y Y Y Yy Yy

I
YYYJYYYYtYYY“YYYYYYY

| I
XXXXXXXdXXX XXYXXXXXXXXHXXX&XXXWXXXXXXXXXXXXXX XXXX XXXXXXXPXXXXXVXXXXEV”XX! Y
' ' i | ! ‘ !
iiiiii%?ﬁﬁﬁﬁiiiiii%u'u;ﬁ..hiii%ﬁ‘ gonosG20N000 Cﬁﬂﬁ00uG36ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁwnvumiiiiiiﬁ
AT AR EIN R M PRS- FUE | I ETIDATEE T ~'v:s1-n4un a0 0 ey 53 81 3253 54 e 56 5 10 59 80l81 £2 5 KAEG 6 G B 70 11 2313 4y s .~
IREREH IPI‘ il I!llllllll |?|I|||W|llllllllllIlllllllﬂ!Illlllllllﬂlllllll"'l‘ﬂ. i
! i ! i ‘ . H ! G

i
!
J

1
1 H |
Y Y Y Y Yy Yy y v vy vy vy y vy vvYYVYYYYJYYYYYYVYVYvavvvwxvvvyYvwvxvhyvv
xvxxxx;xLxxx;xxVQxxx&xxx&xxxxxxx&xxxxxxxxxxxaxx xxxx XX XXX XXX Xy X xpx x xy xxxh!xx
: i ' l

! g
°°IIIIIII"““"9IIII“ R |
"1’1!‘ 'lill'lllllllllﬂll

1

__________ [} YRR

v| no
nnr"l)'!!!!!.ﬂvﬂﬂOOﬂ"UCMON‘M- 0"0000000000"‘00000“00- ...I."
RRRH

B PR TR SV O R R UGV R L L S UR SRR N 151‘65"7!‘!!“‘!!75)001“‘6!7“”K H ARSI I N A |

lllrlll|lllllllrll1llllrlllllllhlll RRIREERE
|

1YYYYYYYYYYYYYYY

n.

;

yyyvly I vyvyylvyvy

XRX MO N XY M XK XK
| {

i I
) f " n neigonogggorrasng F"PﬂﬂﬁﬁﬂﬁﬂﬂPﬂOOGﬂ”F'ﬂ""ﬂ"ﬂm Q
i ll!!.l. W n!lll..!!.o(‘u“ﬁ E?.?. 0 I R R R AR U ' TLE T ‘~‘.5|:.~5='5'--_vsu SIS tie O MmN n'u.«ls's.!)!ﬂe
tos PR LR LA YL SILY T E B IV . » - . . B 0
] RN ‘vll! llll»llll"ll! |||I;I!i|!||1lIlllllll'l'.!;llll"ﬂll'.lHllll‘Hil'llHl'
- - - - ' !

bzzﬂvz?7:72f722773;3%20"vzzzazzz:vv‘fzz?arzzbyzz
. i - ! : i |
1 N ' -

333157fj‘;’?‘733433??3323133333|ﬁ3333’3’*“33533?33 337"‘313339713333‘“"1‘3"’]
i .
) .

r.«a-r!‘.'«‘!nﬂ'ﬁﬂ'\'.'\‘\’vll'!_
. EFAEERAE AN AF SF A AF S AN AR SN

L4444 . ""4‘5-‘4"4444¢-,<-141li.‘4'14‘4‘444l~4@14444-’1’ ‘444 -!4;4444"444344‘1444,-1
e o g . acyort i, o ety e Bl g M Ux-'"'a‘ PO P KR g - '4!)" 206 T ES5(4 30 9’870;,4 %2
5.9 : '1‘-‘5555555"‘5":‘;'-‘5i5b.25:535555553‘55555" 3’"53"555555555555553555552}5345
’ ’ i | | ] i 1

! L H ““____L_’__J_ T
§FRE6ACTE E| LEEAEEE6665 8 966563 Si‘ 5666 ' 666 A58 G BECSEREGED £566 Glﬁ 66 5 R6E6E666 Gib th b'b 6ob

: ] i . i ’
1771171 I7l77777l77777""77lli ‘77]77777777-771777177777'7777777777717777‘7777{777l
: i

aeeoa&ssaesetaesé:ae»3eaﬁep3L5293assbase!easﬁaasaas=@aees!saasassaaa gs8lgaaale

| RN S IO IS B O SN

}:

: | TN
3999995??49-39:‘3939@9049 999“99&99999959999QSQPQQSS
PSR 36 Phii 1t tipas TNATUTSUNRIAT N ML THIKA L QU & & 0y

35lse°@553§99§wsssw9:swsss
TR TR L
FiR C".(, vaC aTn ¢

L RUR]] l?}ll’l"ﬂ?‘"i nno



A tabulation of the FORAST program, the input data, and the results are shown in
FIGURE 9. PROB

START

END
10000000
30000000

~80000000
75000000
-40000000

MAY.23,63
PROB €906

10000000
30000000
-80000000
75000000
-40000000

C906 M.J . ROMANELLI

READIX)Y

I=SQRT(Xea2+Ynn?2)
PRINT{X}Y)ZZGOTO(START)

GOTOISTART)

01 10000000 01
02 40000000 02
01 60000000 01
00-50000000~-01
01-50000000-01

BRLESC FORAST F62

1 10000000 1
2 40000000 2
l 60000000 1
~-50000000-01
1-50000000-01

MaJoROMANELLI

14142136
50000000
10000000
75166482
40003125

45107

45107

EXAMPLE 1.

EXAMPLE 1.

FIGURE 9.

JULY, 63 PAGE

0000001
0000002
0000003
0000004
0000005




EXAMPIE 2.

To illustrate a convenient means of identifying the "output" produced by
the computer, we consider an additional requirement in the problem of EXAMPLE 1.
In particular, we require that the letter X be printed (approximately centered)
above the columns corresponding to the num=rical values of X, and similarly the

letters Y and Z centered over the columng that correspond to their respective

numerical values.

To provide this facility, FORAST accepts a PRINT statement wherein we
enclose in "special quotes” the literal characters that are to be printed. The

"special quotes" are the less than and greater than symbols, < > . The PRINT

statement takes the form
PRINT < >

and all characters within the < and > symbols are recorded on the output card.

For our purpose we write:

PRINT <« X Y Z >

Since the numerical values of X, Y, and Z require 12 characters in the standard
form of output that we obtained, some spacing between the letters enclosed

within the < > is necessary if we desire that the letters be approximately

centered over their respective columns. Hence if we choose to have the letter
X over column 6, Y over column 18, and Z over column 30, we indicate this spac-

ing by writing
7~ 77\ 7\
PRINT < @ X Ql? Y-(119 Z>
where the circled quantities, 5 @ , and @ indicate to a key punch
operator and hence to the computer the number of "pblanks" between the literal

characters. (This is the only place in the FORAST language where "blank"

characters are not ignored! i.e., blank characters are ignored everywhere

except between the < and > symbols of PRINT statements). Knowing how to

achieve this convenient identification, our immediate problem now is to deter-

28



x L 2o ~D TTUTAMDT T

mine how to "fit" this requirement into the original program of EXAMPLE 1.
More specifically, if we recorded the above PRINT statement on a card, what

is its logical place in the original program? If we inserted it between

= = ), s K =~ e o 3 A AaAmiit o
cards 3 and 4, i.e., in front of the card that instructs the computer to

PRINT the numerical values of X, Y, and Z, we would obtain the printing of

the literal letters X, ¥, and Z each time the PRINT < X Y Z > was
£

encountered. FORAST instructions are executed in sequence cne a

unless a specific instruction directs the computer to do otherwise. Since we

require the identification to be printed only once, a logical place for the

identifying PRINT statement is at the very baginning of the program. Con-

sequently the following program will produce the desired results.

PROB €906 M.J. ROMANEILI EXAMPIE 2. 1

ADDREQ PRINT < (5b) X (11D Y @ 7 > 1.1
NS N/

START READ(X)Y 2

7 = SQRT(X¥*2 + Y*¥2)
PRINT(X)Y)Z % GOTO(START)
END GOTO(ADDRER)

VoW

Note that card 5 differs from the original in that instead of directing the
computer to begin by reading a card at START, it directs the computer to begin
at ADDREQ where it is instfucted to print a card with the desired X Y 2
heading. The above program and the results produced are listed in FIGURE 10.

29



0%

PROB C906 M.J. ROMANELLI

ADDREQ
START

END
10000600
30000000

-80000000
75000000
~40000000

MAY.23,63

X
10000000
30000000

-80000000
75000000
-40000000

PRINTL X
READIX)Y

I=SQRT(X#n2+Y4u2)

PRINT(X)Y)ZZ GOTO{(START)

GOTO(ADDREQ)

01 10000000 01
02 40000000 02
01 60000000 01
00-50000000-01
01-50000000-01

BRLESC FORAST Fé62
PROB (906 M.J. ROMANELLI

Y
1 10000000 1
2 40000000 2
1 60000000 1
-50000000-01
1-50000000-01

z
14142136
50000000
10000000
75166482
40003125

EXAMPLE 2.

>

EXAMPLE 2.

FIGURE 10.

23 JULY,63 PAGE

00009001
0000002
0000003
0000004
0000005
0000006



NAMES AND OPERATIONS
EXAMPIE 1 & 2 illustrated the substitution, evaluation, internal-external
recording and controls required to obtain a high-speed digital computer solution
of a simple problem. Common to each of these processes is the fundamental re-
uirement for identifying particular quantities and operations of interest.
FORAST uses names constructed from a restricted set of symbolic characters.
In EXAMPIE 1, we used the symbolic names X and Y to identify variables, Z to

identify a particular function, SQRT another function, * and ** dencted parti-

and START to describe an instruection.

To avoid ambiguities in the definition of names, operations, and numerical

values, the 49 characters of the FORAST language are divided into two classes:

Class I .'"ABC: -2 012+ -9 38 characters
Class II +-*/()=9, 11 characters

The characters of Class II have special meanings and must not be used to define

non-indexed names of variables, functions, statements or other parameters.

+ is used to denote addition

subtraction

1
=
0]
o
0]
1%
o7}
(_'.
(¢]
o7}
]
ja]
(e]
(_'.
1]

is used to denote multiplication
division

is used to denote end of statement

- N 3
M
0
=
[ 2}
4]
Qs
(_f.
(o]
Q
1]
]
(o]
ct
D

(equality) evaluation

{l
'_J
n
=
n
D
%
(_'.
[@]
o8
)
]
(@]
(_’.
o)

>

*¥* is used to denote exponentiation
< is used to denote "less than"

> is used to denocte "greater than"

() are used to denote multiplication, enclose arguments, indicate
order of operations, separate names, parameters, numerical values,

ot~
cuC.

31



%% is used to denote that the information on a card following the
%% is to be ignored by the computer.

Non-indexed symbolic names of variables, functions, statements and para-

meters may be constructed by combining characters of Class I under the follow-

ing restrictions:

1.

‘N

The leading character must not be zero and at least one character
must be other than a decimal digit.

Non-indexed names must not exceed 6 characters in length unless
those after the first 6 are not required for unique identification.

The special names such as SELF, SIN, COS, READ, PRINT, etc., have
been reserved and should not be used as arbitrary names. (A complete
list of reserved names is given on page Gg of [1.]

Names of indices should not exceed three characters in length, 4 are
permitted only if the rightmost 2 are decimal digits.

Despite the above restrictions, -considerable freedom in the choice of names is

permitted as illustrated in the examples given below:

X X! BOX 1. X3VEL. LAST
Y8 XDOT 1BOX 4 SINA
17A XBAR YACC Dz" TANX
1X START VELZ 8.9 BETA2
X1 SAM FOURTH 10.2.4 9GAMMA
X15A WORK Y" A.'B!? DELTAX
F300 N.Y. L.A. FIA. TEMPO
EVALYS EPS RHO ATPRES DENSTY
FOFX FOFY FOFZ FOFz" FINIS

Many problems require the processing of groups or arrays of numerical

data, particularly discrete functions, vectors, matrices, etc. Conventional

+ .
mavtnema

example, X,,

Q

ation by subscripts or indices. For

=024 ...m) ; Z., 2., Z,5 --. Z
10 “22 73

352

K



In the FORAST language, we use the special character, comma, to denote an

indexed name; i.e.,

X, 1is represented as 51
i

Y is represented as Y,d
Yy rep ;

Z, 1s represented as 72,K
k I

meanings which depend on the name before the comma and the existing value of

index whose symbolic name appears after the comma. Flexible and convenient

means for setting and manipulating index values is provided; however, it is

.
5

important to recognize that the internal form of representation for index

values differs from the floating-point representation discussed previously.

Index values are restricted to a limited range of integers and consequently

combining indeX values and floating-point values is not permissible. The

language does provide for transforming from one form to another. The con-
venient use of index names and means for establishing and generating desired
values for them will be illustrated in later examples. The index names were

0 indicate the general means of identification by

[l

introduced here briefly
symbolic name permitted in the FORAST language.

We introduce next the means of denoting the fundamental arithmetic
operations of addition, subtraction, multiplication and division, which are
denoted by the special characters, + - ¥ and / respectively. Hence, the sum,

, product and quotient of two quantities, A and B, are exXpressed as

A+ B
A-B
A*B
A/ B



The special symbol, *, is used to denote multiplication to distinguish the
product A times B from the single quantity, AB. Other means of denoting a

product are

(4)(B)
or A)(B)
or A)B
or A(B

or even the redundant symbol, *, is permitted in the above forms. In general,
parentheses may be used to denote multiplication or to group operaticns in any
desired sequence. In the absence of parentheses, particularly in ambiguous

expressions, priority rules govern the sequence of operations.

When the order of operations is not specified, the established priorities

1.) Single-valued functions of one argument;
2.) Exponentiation

3.) Multiplication and Division

L.) Addition and Subtraction

Next, we introduce the means to denote evaluation of the convenient

elementary functions such as sine, cosine, square root, etc. These functions

are denoted by special names as is conventional in mathematics. For example:

sine is denoted by SIN
cosine is denoted by COS

——

J is denocted by SQRT .

We classify these and similar functions as single-valued functions of a single-

argument. (This is not to be interpreted as a single-valued function of one
variable, on the contrary, the argument may be a function of many variables and
indeed many other functions. We emphasize the classification of this set of
convenient functions to distinguish them from another set which includes

functions of more than one argument).

3l



X=Y+2Z %W implies X =y + zw

since multiplication has priority over addition.

v _ v o . . Z

X=Y-2/W implies x=y-=

since division has pricrity over subtraction.
% - ; 2

X=Y+2 2 implies X =y +z

since exponentiation has priority over addition:

X = SIN(Y+Z)**3  implies % = sin5(y+z)

since single-valued functions have priority over

exponentiation.

35



s Ae T T

EXAMPLE 3.

example is given to illustrate the single-valued functions of single-

that are available in the FORAST programming language.

Numerical values of two variables, X and y. Assume that they
a

are recorded in
are recorded 1r

Mnched card
1 chea cara

N
1% pS ~ -

For simplicity, we will let x =1 and y = 2.

Compute the following functions; identify and record each

function on punched cards.

A=y R = arcsin x/5

B = sin x S = arcsin (-x)

C = sin xy T = tan xy

D = sin bx U = tan (-x)

E = sin 5x V = cot (y - x)

F = sin (-x) W = cot (-y)

G = cos X FX = sec x

H = cos (x + n) FY = csc y

I =fn(y + X) Fl = sign of x

J = loglo(y) F2 = sign of (-x)
K=e"t7Y F3 = sign of (y - y)
L = arctan (x - y) FL4 = sinh x

M = arctan (y) F5 = cosh x

N = arccot (-x) F6 = tanh x

0 = arccot (y) F7T = integer part of &
P = arccos (x/y) F8 = fractional part of A
Q = arccos (-x/y) F9 = sin%y+ cosey

36



AT

The program, input and output for this example are listed in FIGURE 12.

BEGIN
READ: PRINT: COMPUTE, IDENTIFY & PRINT
—_— X=.... A=y ; Print: SQRT(Y) = ....
¥y Y=.... B =sin x ; Print: SIN(X) = ....
C =sin xy ; Print: SINXY) = ....
Fg = sin2y + coszy 5 Print: CHECK = ....

|
1

FLOW CHART FOR EXAMPLE 3.

FIGURE 11.

W
—~



—— NN OMNOCC—~ANMIN IO~ TNO~OTO~NAOITNOM~OCNO

i ot ] e e o o et = = VOO NN NN YO MY OO Y O A A A S

23 JULY,063 PAGE
>F9

CHECK

A @}
- AL N

0] A Z AV SN [l 0]

-— ZA0 Ll A ~U AT NHADOLU Vv

LW —_m,IY A AN ] — > X>UA WWLULAAM

g AAAWL OAXAA " —~ HADAILUA IIAAA Zz
AD AL + — —~ U I~ A AAA "o~
AN AN D> o~ DN~ [} [ TR ] o d
" N —cZ | =~ NN nin —~o —~—Q.
o~ HATemma D> | >»>X | X )~ o~ — K e~ e~ L ]
~ I DY) D o et s et ot it et D= MmO | 22 O e 2R
DTN QD b b ZZ e NN ZZHW | D2 v e (D o e e L = LN
X | X O QAILOOOO = | > | == Z 2T TTdO
e Z 2T e = OOV ONNE = e QO ONZNZ DA »

>P

EXAMPLE?S

VALUED FUNCTIONS OF ONE ARGUMENT

S Y Tttt ) VGPCELLECCCAVTTESI[ —OQ<I T Y %
A=t NN~V ADXK AL X LY

[Ve 1V, ) NO =V I I <
I Z -

1 (
TT( <
V=V 2T Vi \AY4
\YAA4 AVV = Z =2V V VFEZVVVe—
Vi X YTRNKNR#R]T(T((&WNKWYTVN&
ViV ZZ 2 =~ ZZOA A A YT T Zrd X T Z Z =D
M et ik et T Pttt XA X I At Z et T2 Z et Xttt XX
At Z XL ~ZNX XYL AR~ LY== YO XXYQAQA +
KA Al X~e—~i—0 A~ ¥ ~>~RAaYoxXxza Xaaa o~
e x QA X F DA~~~ DL ana 0 — AN~
QAW A~ | ~ X ~N\HKN\X¥ ¥ RPN~~~ w O ~T
XI e~~~ 8 Frm X D>= | > | X | ~RA~INPNN A~ | mmnmrdI~DZO
RN V) D= D e s e e e e e e e | XK e e T
1> >t A M ot b T Z b NN T2 I | D=2 D ot ot et s o e L e AL DO
W XXX | XX > OXAILIOOOD =t =X | > | e ZZZTTT JOZ +C
wd XN P ot ot ot et o e e e e e b= O QI e e e I DD ZNZOOI =T 0
D= ZZ2ZZZNNAVAVIJIVVOVDIIVOZ T Nttt = DI T X N
ZQZP=trtrat et QOO0 DIXX XY XXX XLXLILILIO DN NNNNO= T L —DIN
st Lt NN YN AN QO d U T L LT <L T b (O H 00001 b
LI N I B e N XK= AT DO OO -
YA ODWIL D T=™MIY Y 200 TIXN=DD> UL Lhdd il dlu OO

Y)*'Z

> xe
z

01

Me Jo. ROMANELL I

Qo
z0
wo

PROB C£906
COMM

BEGIN
10000



*

EXAMPLE3

62

FORAST ¢
M. Jo ROMANELLI

BRLESC

PROB €906

MAY«Z3Nﬁ

—~_AOETNOMNOCC~NNAOINONOTOmNMENONSCOO~NMIN
OCODT OO QO el rd el el e eed ool el o el (N N N ONL NN N NN NN A A (A N 0O 1
OO0 OOOCTOOOOCOOOOOOOOOOOOOCCOOOZOOO
[elelololelololalclofolslolelolololalelelelelolelelelololelololal ool o]
CCOoOCOOoOOOOoOIOCCoOOOLOO000Q0000000200
CO00OOOCOOOCOOOOOOOOOCOOOOOOOOOOCOO
COOSTCOTOCOTIICCTOOOCOQOOCOOo0O00ID00000
o)
(@)
(@)
(@)
o
Qo
o
(o)
.dl —f 2 — o) g rd gl ol o) ] g e — o —d )

SN FESEOSO=O=NARNNSNOOCSNO
AR TINNONNNOM A= OATO I~ OINNOO0 0O =0
; —“ONTI TP DINDMONSACTCOOTO

< . 4
NCONMOQOOMINO T ~AN-OFONOMROOONOrQ~NO
FITNOPITANDODOAN~AIO~FTFAONM-OOOTOCOoOONMNOND

S et P ODADON~=ONONNGT I =W NANSNACOD DT —~DOT O
TTONNIITIODDD—~DVDI0OON~NF NOODOCO—~NQVT —~CT
OO O =N QO LN LN et (OO P et P oI el O (N ot (] et O T ot el el meed O et et N e

U I T | i i i
LI T T T T T T T 1 L L L T O L I | (T L | 1

OYXYXXXXIXYYYYXYYYbXYXXYXYXXOXXXAAC
Owr =M TN | A || = NN X ]| e | o e v e
ITN((((S+TOXXN(TXXX(((Y(CCN(“HHHETH
Xt Z 22 2O L A= L= O | = Z T T b= LINDZDZNZT IO
CH SNt it g et (e (B NA Z o O N Dot L T e D N ) Dt DT O <

N NNHNYI VNOXILVVVVON=NN=~0OL N—=NANO=T X

Q+ b X O IO N Q w1 E L
> O> (S1 - 4- {18 I8 T 4
— ¥ o Xoxd
z <t aQx<
[] -1

59

FIGURE 12.



Restrictions on the single-valued functions of one argument illustrated

in EXAMPIE 3 are:

1.) BEvery argument is enclosed in parentheses, the closing right

parenthesis is optional.

Every argumesnt and every result is in floating-point form.

3.) The arguments of trigonometric functions and results of inverse

trigonometric functions are in radians.

L.) The results of ARCTAN and ARCSIN are in the interval

< Result < g

IR

5.) The results of ARCCOT and ARCCOS are in the interval

0 < Result < =

6.) The arguments may be functions of many variables and functions;

1~ Q-
nowever, Oniy

A

the sign of the resulting argument is considered in

the evaluation of the particular function.

Although not illustrated, names of variables, arguments and results may

be indexed.

Violations of restricted bounds of arguments will be detected and

recorded during the execution of the program.

Lo



EXAMPLE L.

LE 3. illustrated the available functions of one argument. Another

f LS PR ]

set of convenient functlons are those which are functions of more than one
argument and often produce more than one result. Included in this set are
methods for interpolation, quadrature, matrix operations, solution of ordinary

3 3 3 > IS oy R e}
differential equations, etc. To instruct the compulers 1o evaluate functions

e
[o}
=]
]
s
=]
()]
d
o3
Qo
fol)
o]
—b
[
]
ot
(D
H
(D
[4)]
ot
;
= -
(1]
2

B e 1 =

represent the names or values of the arguments, parameters and the defining
names of the results. Many of the available functions in this set will be

illustrated in separate examples.

To introduce one of these functions, we will consider an extension of

EXAMPLE 1. Assume that the given pairs (x,y) represent the rectangular

ct

R ol oS s ate R Ve ==
LU prouducc a

coordinates of a point in a plane and that we wan

includes the corresponding polar coordinates of the point, i.e.,

GIVEN: X.5 ¥y oo i=1,2,35, ...
REQUIRED: Corresponding to each point, (x,y) determine, identify and

list in a table the polar coordinates p, and 6 (1ist & in

degrees).

2 2
+ yi

L)
e
I
<.
~

i

R

= arctan (yi/xi)

L1



Before constructing the flow-chart and writing the program which will
produce the desired solution we emphasize the distinction between the available

arctan function of one-argument illustrated in EXAMPLE 5, and the arctan

function of two-arguments to be used and illustrated in this example. The
distinction is that the arctan function of one-argument produces a result which

lies in quadrants I or IV. (Note 4. on page 38, -1 < Result < n ). Since
2 2
the arctan function of two arguments take into account the signs of both

arguments, it produces a result which may be in quadrants I, IT, III or IV, i.e.,

-t < Result < =x

START READ PT
,
PRINT: column identification READ: J 2 2
P =YX 4y
X y RHO  THETA 3 X Yy o
O; = arctan (y/x)
e’d = 57.295780 €
|
PRINT:
X h P &

FLOW CHART FOR EXAMPIE L.

FIGURE 13.

Lo



The program, input and output for this example are listed in FIGURE 1k.

PROB C906 M.J. RUMANELLI EXAMPLE 4.
COMM TRANSFORMATION OF RECTANGULAR TO POLAR COORDINATES
START PRINTC X RHO
READPT READ(X)Y%S RHO=SQRT(X#X+Y#Y)
ENTER(ARTAN )Y)X)TH
TH=57.295780%TH
PRINT(X)Y)RHO)THY GOTO(READPT)
END GOTO({START)
1C0000GO0 L1 10000000 01
30000000 02 40000000 02
-80000000 01 60000000 01
- 75000000 00-50000000-01
e -40000000 01-50000000-01
MAY.23,63 BRLESC FORAST F62
PROB C906 M.J. ROMANELLI EXAMPLE 4.
X Y RHO THETA
LO000000 1 10000000 1 14142136 1 45000000 2
30000000 2 40000000 2 50000000 2 53130103 2
-80000000 1 60000000 1 10000000 2 14313010 3
75000000  —-50000000-01 75166482  -38140749 1
-450000000 1-50000000-01 40003125 1-17928384 3

FIGURE 1k.

Z3 JULY,63 PAGE

0000001
0000002
0000003
0000004
0000005
0000006




EXAMPIE 5.

In the previous examples, the output results were recorded in standard
floating-point form. In this example we will illus
the tabular results in a form with the decimal point actually punched (and

printed) instead of the exponent. For example, instead of obtaining the

<

printed value for JE- as 14142136 1, we will obtain the printed value for
J as 1.414% . This example will illustrate a special case of the general
PRINT statement where a departure from standard form is desired and must bsz

specified accordingly.

To designate a non-standard form, the PRINT statement is written in the

form
PRINT-FORMAT (Name of specifying form) - ( )) -+ )} %

where the "Name of specifying form", enclosed in parenthesis after the word

FORMAT, identifies a quantity which explicitly defines forms and horizontal

To provide for arbitrary spacing of the output forms and for transformations
from internal to external forms the format word is composed of parenthesized

expressions of the form
(T - s -1L)

where T, S, and L are decimal digits with defined meanings:

T generally specifies a type of transformation, a repetition of a

previous format, spacing of quantities, end of format, etec. ;

of a decimal point;

wn
m
[13
o]
[¢)
H
W)
]
)__J
~
w
fo}
D
[¢]
H
th
..J
W
v
[4h]
¢p]
«
o)
[}
[
@]
H
H
(]
=
W
t
o
<
3
[}
@]
Q
4]
ot
}._‘
(@]
ja}

L generally specifies the length of a field, i.e., the number of

columns or characters to be used in representing a given form.

&
I



m.

The parenthesized expressions may contain all three of the above descriptors,

(T -s -1L)
or only two descriptors, (T - L)

or only one descriptor , (T)

_____ DMOAT =

Similar expressions may be constructed for use with the general READ statement.
The permissible values of T and their corresponding meanings are given in [l] .

Only a few of the most frequently used T's will be illustrated here.

In EXAMPIE kL. the entries in the output table were expressed in standard
floating-point form; i.e., coefficients with corresponding exponents. To
depart from the standard form and obtain numerical values with decimal points
printed instead of exponents, we will specify (using a format word) the parti-
cular transformations desired, the relative location of the decimal-point, the
number of columns to be used for each quantity and the spacing between indivi-
dual quantitie In the standard form we used 12 columns for each quantity and

provided for no spacing between them.

o

Assume that we want the following format for the table corresponding to

the output of EXAMPIE UL,

X Y RHO THETA
+ DDD.DDD + DDD.DDD + DDDD.DD + DDD.

" " 1 1"
" " " "

" " " "

where the D's represent decimal digits. That is, we will specify a total of
8 characters for each quantity and 4 blank spaces between each quantity. Note
that in the total length, 8, we include the algebraic sign and decimal point
n the count. (We chose four spaces between quantities since the column head-

ings,; X, Y, RHO and THETA were approximately centered over 12 column entries;



hence, with the choice of 8 characters for each quantity and 4 spaces between
quantities, we will not have to alter the spacing of the characters of the

column headings).

To specify this format we construct a format word which we arbitrarily

Jlabel SEEI.

LOC 0.T. FORMULAS, STATEMENTS, COMMENTS IDEN.
1 6 7 10 11 77-80
SEE1. FORM (3-2)12-3-8)3-4)12-3-8)3-4)12-4-8)3-4)12-3-8)2 T.1

LOCATION columns and the word FORM in columns T-10 of the coding sheet. The

parenthesized expressions are written in columns 11-76.

The PRINT Statement that refers to this format word is written in the
f

following form:

PRINT-FORMAT(SEE1l.) - (X)Y)RHO)T % 7'

The expressions (3-L) in the format word, SEEl., correspond to T = 3 which
denotes that a spacing of L columns is desired. (Note that we begin with 2
spaces before the first quantity, X, and denoted spacings of 4 thereafter).
The expression (12-3-8) corresponds to T = 12

S=35

L=28

and represents the form for the quantity, X.

T = 12 denotes that the quantity exists internally as a floating-point
number and the output form desired is a "fixed" form with the
"a -1 - H o a e oy A . . a n 1 e ma A Y
fixed” decimal-point location specified by the corresponding o.

S = 3 denotes that the "fixed" decimal-point is tc be recorded after

the 3 digits that follow the algebraic sign.

L =8 denotes that a total of 8 columns (or characters) are to be used

for the quantity.



Note the identical forms for the quantities X, Y, and THETA and the decimal-
point after 4 digits in the representation for RHO. The 2 after the last
parenthesized expression corresponds to T = 2 and denotes the end of the

format word.

To obtain the desired results, we will replace Card 7 of EXAMPIE 4. with

T - v

the card identified as T' above, (i.e., the PRINT Statement that refers to the
specified format), and add the card identified as T.l1l that defines the speci-

fied format. The program, input and output are listed in FIGURE 15.

£
|



81

PROB

START
REALPT

END
10000000
30000000

-80000000
75000000
-40000000

MAY.23,63
PROB

X
1.000
30.000
- 8.000
« 750
- 4.000

L9306 M.J.ROMANELLI
COMM TRANSFORMATION OF RECTANGUILAR TO POLAR COORDINATES
THETA> 3

PRINTKL X

Y

READ{X)Y% RHO=SQRT{X®#X+Y#xY)
JYIX)TH

ENTER{ARTAN

TH=57.295780#%TH
PRINT-FORMAT(SEELl.}=(X}Y)RHO)THIZ GOTO{READPT)®
SEEl. FORMI(3-2}12-3-8})3-4)12-3-8)3-4)12~-4~-8)3-4})12-3-8}2

GOTO(START)

0Ol 10000000 01
02 40000000 02
01 60000000 01
00-50000000-01
01-50000000-01
BRLESC FORAST Fé62
C906 M.J.ROMANELLI 44107
Y RHO
1.000 l.41
40.000 50.00
6.000 10.00
= «050 « 75
= .050 4.00

49107

EXAMPLE 5

RHO

EXAMPLE 5

THETA
45.000
53.130
143.130
3.81¢4

-179.284

FIGURE 15.

23 JULY,63 PAGE

0000001




Tom A3 42 4o~ 1 3
In addition to accepting FORMULA statements which involve a

subtraction, multiplication, division, exponentiation and many single-valued

functions of one-argument, FORAST also accepts eleven English word statements

and twenty-two special English words. The latter
types" and are labelled "ORDER TYPE" over columns
coding form. Only 11 of the 22 permissible order

this report. Included in the eleven English word

of more than one argument.

We have in the previous examples illustrated

are called "pseudo order-

T through 10 of the standard
types will be illustrated in
statements is the general

. .
approximately forty functions

special cases

the above categories. Each example included at least one English word state-

ment and at least one single-valued function of one argument. The READ, PRINT,

GOTC and ENTER statements illustrated 4 of the 11 English word s

PROB and END, (which are required in every problem), illustrated two of the

special O.T. English words. Listed below are the

1]l English word statements

and the 11 order-types to be illustrated in this report.
ENGLISH WORD STATEMENTS SPECIAL ENGLISH WORDS (0.7T.)
GOTO PROB (Problem
SET END
SETEA DATE
INC coMM (Comment )
COUNT CONT (Continue)
IF FORM (Format)
CLEAR LIST (Listing)
MOVE BLOC
ENTER SYN (Synonym)
READ, PRINT (PUNCH) DEC (Decimal)
HALT DEC = (Decimal Equality)

and are transformed to computer instructions that will be executed during the

k9



.-

-~ X e ol
lie nvo

computer instructions, the words themselves may only appear in columns

through 10. (Note

an
i1l

as in the previous

ations illustrated

Many problems

special English words are not transformed i
T

that none of these names exceeds four characters). Rather

in their full generality, we
examples to introduce a few in each example, with va

in succeeding examples.

require definitions of functions, or more generally, many

problems require control of processes which are based on conditional relation-

ships.

X

We assume

W Qoo wut vl

£(X) is defined accordingly.

follows:

———->|x>1.5?N° £(X) = A + BX + CX°
[ Yes
DEF2
I f(X) = D + EX
L
WORK

We have arbitrarily labelled one of

~ L . B - N 2 . . P : ~ L
Iunction 1s evaluated) The computer 1S to continue operatlons at a place calleaq

WORK.

For example, it may be necessary to evaluate

2

Y ™ + Cl\.

4y

H

A
P2

+
o

[

(
\

(

) if X < 1.5

&

D +

X) it X > 1.5

may take on values in either range but as stated above

Schematically, the above may be illustrated as

the definitions DEF2 and indicated that

definition is applied (i.e., after the appropriate

o

To instruct the computer in the FORAST language to carry out the above

50



LOC. 0.T. FORMULAS, STATEMENTS, COMMENTS

IF{X >1.5)GOTO(DEF2)% FX = A + X(B + C * X)% GOTO(WORK)
DEF2 FX =D + E * X
WORK

The above is an illustration of a simple conditional statement. It has the

form

IF (a specified condition is satisfied) GOTO(someplace)%

As indicated in the form, if the specified condition is satisfied the computer

is directed to GOTO the someplace denoted for subsequent instructions, other-
wise the computer will execute the statement immediately following the con-
ditional statement. It is to be emphasized that the above is an illustration
of a simple conditional statement, more general compounc forms are permissible.
The conditional exXpressions may contain <, > , and equality relations whose
terms involve the arithmetic operations and single-valued functions of one
argument. Indeed a single conditional statement may contain many conditional
expressions separated by the logical operations AND or OR and each expression
may be prefixed with ABS, NOT, INT, etc., where: ABS denotes absolute value;
NOT denotes negation of the parenthesized relation, INT denotes that the
guantities involved in the relation are integers in integer form, (not fioating-
point form). In the following example, we will illustrate the simple form of

a conditional statement.



GIVEN:

EXAMPIE 6.

A, B and N recorded in standard floating-point form in the
first three fields of a punched card; (Assume several such

cards.)

f(X) =sinX ; H=B -A

Use the trapezoidal rule to obtain an approximation for the

definite integral

I = )(B £(X)ax
A

J

( f(X)ax = I
“A
I-H I—ﬁi)_ + £(A+H) + £(A+2H) + --- + £(B-E) + f(};)
I 2

—

Print and identify: A; B; N and I

Note that the trapezoidal rule requires that the function
(integrand) be evaluated at (N+l1) discrete values of X,
" .

alues (A and B) are weighted 1/2, the interior

values have unit weight.

To construct a flow chart that outlines a plan to obtain the desired

solution we begin

by denoting that we want the computer to read the card that

contains the pertinent values A, B and N. Recall that once they have been

read, they are recorded internally for as many future references as desired.

52



Hence to indicate that we want to begin by having the computer read a card,

we write

REGTN

5] READ: | 3
A,B,N

Next, we observe by studying the definition of the trapezoidal rule that we

need the value H for two purposes:

l.) it is needed as a factor to obtain the final result after the

weighted integrand values are summed;

2.) it is needed to construct the discrete interior values of X, i.e.,

A+ H, A+ 2H, A+ 3H, etc.

Hence, since we need H for the two purposes given above we append to the chart

a box indicating the desired definition and evaluation of H.

Next, noting that the definition requires weights of 1/2 on the "end" terms
) =3 Y / >
we can dispose of these by instructing the computer to evaluate the following

function

I =1/2(sin A + sin B)
We indicate this on the chart accordingly

MLV TAT

DOLULN

5| REiD; ; S H=B-4A T =1/2(£(a) + £(B)) {—=>

U1
N



Now note that the remaining required arguments, A + H, A + 2H, etc., can be
obtained in general by adding H to the previous argument. If we let X
be an existing argument, the next argument can be obtained by adding H to X.

Symbolically we can write this as

where it is understood that the X on the right of the equality represents
an existing value which will be used to generate a "new" existing value.
Hence we have generalized, in that anytime we want the computer to generate
a new argument, we need only direct it to the generalized expression. Note
also that each of these arguments will undergo "similar treatment", i.e.,
each is the argument for the function, sine. Hence we can generalize a two

step process and write it in the form

X=X+H% I =1 + SIN(X)

If we let X take on the initial wvalue of A and direct the computer to

the above two step process, it (the computer) would in the first step evaluat

@

the function for existing values of X and H which result in a wvalue of

X = A + H. In the next step, the computer would add the sin(A + H) to the

existing value of I. Hence, after the first execution of the two step process,
I would then represent the sum of three terms of the bracket [ ], namely the
first, second and last terms. To schematically illustrate the above, we augment

the flow chart as fellows:

BEGIN
READ: H =B = A I = 1/2(r(A) + £(B)) X =A
A,B,N
NXTERM
r& =X+ H
II: +SlnX

Ul
=



. .

labelled the generalized definition of arguments and the
summing of the general term, NXTERM. We will want to make reference to this
process and direct the machine to carry it out as many times as required.

+.

we can apply a simple conditional statement.

If one refers to the definition of the Trapezoidal Rule, it will be
noted that the "last term" we want the computer to add to the existing I is

(B - H), i.e., sin (B - H), (since we have already accounted for the term

)

(B) )
5 .

a term to the existing I, whether the corresponding argument was equal to

Hence we need only instruct the computer to determine, after adding

B - H. If indeed X = B - H, all of the required terms have been evaluated
and summed; otherwise, we can instruct the computer to "go back" to evaluate

and add the next term to t

he existing I. Schematically this condition can be

illustrated as follows:

/ e
NXTERM
X=X+ H
I =TI+ sinX

No

4

es

g conditional statement in the FORAST language would be written

IF(X = B - H)GOTO(FINISH)% GOTO(NXTERM)

however, since the computers use a finite number of places in the calculations

the conditional statement written above may not be adequate for all values of

25



A =0

B =

N =23 5
then, H = 1/5 and the equivalent internal representation = .333--:-3%;
similarly, B - H = 2/3 and the equivalent internal representation = .666---7

(The internal representations result from conventional rounding and truncation
procedures). The X argument, "corresponding" to B - H, generated by the speci-
would be A + H+ H = .666:++6 ! Note the "6" in the least

significant digit. Hence this value is not equal to the .666---7, i.e.,

6666 £ .666°++T7. In conditional expressions, equality relations are not
ied unless the resulting numerical values on both sides of the equality
have identical representations. Hence, we should relax the stringent equality

condition and ask if X differs from B - H by a "tolerable" amount, say ¢, i.e.,

X - (B-H)| < ¢

If we choose € = 151 , we will provide for a maximum tolerable error. We

express this conditional statement in the following form:

IF-ABS(X-(B-H) < H/2)GOTO(FINISH)% GOTO(NXTERM)%

When

\BS precedes a conditicnal expression, the computers first evaluate both

sides of the conditional expression, then take the absolute values of both
sides before checking to see if the relation is satisfied. In essence, the

above statement corresponds mathematically to

. 1H P . . )
JE#-go o finish, otherwise go to the computation of

=
jos}
L]
/

the next term. At the location called FINISH, we want the computer to multiply

r

a
The complete tlow-chart is shown in FIGURE 16.

56

alue of I by H to complete the definition of the trapezoidal rule.



READ: Slg - BoAl Sl _Liea) + £(8) |——= x = a
L <
A,B,N
NXTERM
X=X+H
I =1+ sin(X)
No ;
Ro by - (me)| < L
Yes
FINISH
PRINT & IDENTIFY I=H

FLOW CHART FOR EXAMPIE 6, (TRAPEZOIDAL RULE).

FIGURE 16.

The program, input and output for EXAMPLE 6 are listed in FIGURE 17.

o7




i
o

B

PRQOB L9006

EGIN

NXTERM

[

A
A
A

Il SH
END
000000UO
00000000
00000000
00000000
00000000
006000000
00000000

X=X+H%
I=H=[%

Meda

GOTU{BEGIN)

00
00
00
00
0u
00
00

MAY.23+463
PROB C906

00000¢00
00000000
00000000
00000000
00000000
00000000
00000000

BRLESC

15707930
15707930
15707930
15707930
15707930
15707930
15707930

Medeo

(o= o< B v B o <BN o * 2N » c Bl o
b

ROMANELLI

PRINTCA

01
01
ol
01
oL
ol
ok

= >A<C B

25000000
50000000
10000000
20000000
30000000
40000000
0000000

FORAST Fo62

ROMANELLI

15707930
L5707930
15707930
15707930
15707930
15707930

15707930

45107
REAU(AIBINZ H=({B-A)/NE I=.5(SINCA)+SIN[B)) & X=A

[=1+S5IN{X)E IF-ABS{X-B+H<H/2)GOTO{FINISH)Z GUTO(NXTERM)
>1% GUTUI(BEGIN)

45107

P pme gt s el pme e

g2
02
03
03
013
03
03

>B<

Z Z2 2 2 2 2 Z

EXAMPLE

N = >NKL

EXAMPLE

25000000
50000000
10000000
20000000
30000000
40000000
50000000

FIGURE 17.

6.

I

6.

W oW W oW e NN

L L R T ]

Laa

23 JULY,03 PAGE

99966767
99991443
99997611
99999153
99999439
99999539
99999585

0000001
0000002
0000G03
0000004
0000005
0000006
0000007




m tdentifuv +h 4+t T4 . A .
To identify the cutput quantities, we have used a variation of the

general PRINT statement. The statement

PRT <
4+ ~

PASSL NN

b=b> A <bb

~ ~

to

b=b> B < bbNb=b> N <bbIb=b> I %

ia

instructs the computer to PRINT{PUNCH) the name of the quantity, an equality
symbol, followed by the corresponding numerical value of the quantity. (The
lower case D's merely serve to indicate blanks and are used to obtain con-
venient spacing between symbols, numerical wvalues, etc.). Since all characters
specified between < and > in PRINT statements are printed, the above state-

ment provides for output in the form

Observe in FIGURE 17 that the numerical values are represented in standard
floating-point form since we did not specify any format to depart from the

standard representation.

29



To illustrate a concept that is applicable in many problems we will write

another program to obtain a solution to the problem of EXAMPLE 6. The concept

=
5
(0]
%
e
[
]

to be illustrated is one in whic "vary" the "exit" of a general

function evaluation so that we will direct the computer to various destinations

in order to weight (or in general utllize) the evaluated function in accordance
with given definitions. Recall that the definition of the trapezoidal rule
[ () ' £(B)
I=H | 5 + f(A+H) + £(A+2H) + -+ + > |
L

requires the end terms be weighted by 1/2, and the interior terms require
weights of unity. In EXAMPLE 6, we disposed of the end terms by treating them
separately; i.e., we explicitly defined them and constructed general definitions
for the arguments and functional values corresponding to the interior terms.

T -~ 1.2 — = i . -
In this ex: pie we

AL =27 o PRS- 1
ugde ait gu.mer b arna

terms in general definitions.
Although the generalizations are relatively simple for this example, the con-

cept is most advantageous when general definitions are complicated and mere

Consider the following generalization:

N B0 9 EE IO (we’

on a prescribed value. The function is then evaluated and recorded as per

definition and the computer then goes to "someplace"” for subsequent instruct-

T a4+ 3 + s .
In addition to specifying the

"~

FAar whieh
1O wilalrl uu

r
H
3

I Aol al11a 4
ER V) lens n AA= S BV iy L0
required, we can specify the "someplace™ for subsequent instructions! That

is, we can let "someplace" take on a specific name prior to entering EVFN.

[ON
(@]



For example, suppose:
First: Iet X =A

Iet "someplace" = Place 1

Go to evaluate function

This is appended to the above generalization and illustrated schematically

below

! GO TO

= o -

11
..-—————ia\\bomepLace‘ //

o
H
>

g
1l

o
(@]
IS
¢
el
[us]
o8]
Q
D
1]
av]
]
3]
«Q
(18
[

When the computer "arrives" at Place 1, (since someplace has existing value
Place 1), f(X) has been evaluated for X = A and hence is available for what-

ever treatment is desired. Suppose then at

PIACE 1 : Form I = £(X)/2
Let "Someplace" = Place 2

Go to generate next X
where at

NEXTX : Form X =X+ H

Go to evaluate function
The flow-chart is augmented to reflect the above as follows:
FIRST EVFN

;( GO TO
——t X =A f(X) E R nsomeplaceu )
N .

Someplace = Place 1

PIACE 1
I = f(X)2

Someplace = Place 2

Eanatanihvd
WNOLAL

& N
X=X+H

61



Place 2, hence at Place 2, f(
t treatment. Now, at Place 2, "subsequent" treatment depends on whether

as just been evaluated for X = B, (for if it has we want to apply weight

~ I Y . o o e\ r
1/2, otherwise weight unity!). Hence at

PLACE 2. Ir |X - B < J%I-I- go to finish ;

otherwise, form I=1I+7(X)
Go to next X .

(Note that "someplace" retains the undisturbed existing value, (Place 2).
When the computer "arrives" at finish, the existing value of I represents the
sum of the first N terms. Now we need only add 1/2 of the existing f(X) = r(B)
to I and multiply by H to obtain the desired solution. Hence at

FINTSH: I=H(I+fX)/2)

The complete flow-chart which includes the above is shown in FIGURE 18, the

corresponding program and results are shown in FIGURE 19.

62



BEGIN
READ:
A,B,N
r 3
H = (B-A)/N
X =A
SMPL = Place 1
~J
EVFN L
NEXTX
X=X+H £(X) = sin(X)
o
PLACE 1|
I=r(X)/2
la— —
SMPL = Place 2
- ; |
I=1+7f(X) . |x-B| < igi g
——

Yes

FLOW CHART FOR EXAMPIE 7.

I = H(I+r(X)/2




"6T FUNDTA

L000000 98966666 I ¢ 00000006 N T 0¢6l0L6T = § 00000000 = V
9000000 6ES566666 I €& 0000000% N T 0e6l0L65T = d 00000000 = V
5000000 6EY66666 I ¢ 0000000¢ N T  0e6l0L6T = 0 000"0000 = V
000000 LG166E666 I ¢« 00000007 N T 0t6l0LeT =4 0nooonno = v
£000000 11946666 I & 00000001 N T 0e6lL0L6T = 1 00000000 = V¥
000000 tHy16666 I ¢ 000000059 N T 0Qe6l0l6T = 8§ 00000000 =V
1000000 L9L99666 I 2 000000%2 N T 0t6L0L¢1 = 0 00000000 = V¥
» L 3TdWVX3 LOTSY  TIIINVAOY °Ir°*W 906D S0¥d
294 LSVY04 ISINUH  ¢94€2 AV
£0 000000046 10 0t6l0OLST 00 00000000
¢0 0000000% 1O 0e6L0L26T 00 00000000
€0 0000000t 10 0k6L0L4T 00 00000000
£t0 00000002 10 0&£6L0LST 00 00000000
€0 00000001 TO 0Ok6L0LGT 00 00000000
20 0000000% 1O 0E6LO0LST OO0 00000000
Z0 00000062 TO 0&6L0.GT 0O 00000000
6 (NTD3G)04109 QN3
155 (NI938)0109 %1< =1 ODN<C = N D>8< = g >v< = V>IN
L Y(Z2/XHd+T)H=T HSTIMT 4
9 (X1X3AN)OL09 IX4+1=1 Z(HSINIL)I0LO0D(2/H>E-X)SAV-d] 232V d
] (NAAII0L0D FHHX=X X 1X3AN
Y (Z232vId=1dWS 135S *2/%xd =1 132v1d
€ (TdWS*)10L09 T(XINTIS=XJ N4AZ
l (13IVId=TdWS) LIS V=X ZN/(V-9)=H EN(S(V)IQVvIH NTO39
1 L 3VdWVX3 L01S%  TTTINVWOU® MW 9062 HOXNd

1 J9yd €9*AINT €2



We have in our previous examples made direct references by identifyin
quantities by names, i.e., we constructed symbolic names of variables, functions,
statements, etc. It is important to distinguish between "names" of quantities

and the quantities themselves. If for example,

X =1.3
X =1.3
Y =172
and we yriteo
Al WO W1l L UuUCT
zZ =X +YX
Z, X and Y are names, whereas T73.3, 1.3 and T2 are the quantities or one may

that the operations are to be performed on the numerical values and not their
names. As We shall illustrate shortly, in some statements it is the name and
not the numerical value that is inferred. A trivial example is the statement,

comn! vt )
GULO\ BEGLIN )

. In 5‘:11‘:1"&1, one
name BEGIN, (we shall leave such interpretations to the professional pro-

grammer! ).

In this example we introduce the SET statement which illustrates a case
where the name and not the value is inferred. SET statements are generally of
4+ 1. £

1

vl orm

SET(A = B)

A is generally the symbolic name of an index;

is either a symbolic name or an explicit integer.

If B is a symbolic name, then A takes on a value that is the name B,

If B is an explicit integer, then A takes on the value that is the

explicit integer.

65



T, +ha Ya "4y s s
Hence, the "value that A takes on depends on whether B is a symbolic

name or whether B is an explicit integer.

EXAMPLES:
SET(A = SAM) , then the existing value of A is SAM.
SET(A = 4) , then the existing value of A is L,

Recall that in the previous discussion of general names, a name that contains
the special character comma is an indexed name and indexed names
the existing "value" of the index. For example, X1,I is an indexed name.
We call X1 the base name and I an index name.

If I has existing value 2, then X1,I re

o k3
=
[#
Ul
0]
3
ct
4]
ct
oy
(D
)
5
(@
&
N

Similarly, the name ,J 1is an indexed nam
If J has existing value PETE, then ,J represents the name PETE or we may say
that the "value" of ,J is PETE.

Hence, indices may take on two types of values:

a.) the value of an index may be a name * ;

b.) the value of an index may be an integer.
(In EXAMPIE 8 we will illustrate an example where the value of an index is an

integer).

In the generalization

EVEN S
GO TO
—_—t f(X) = ... "Someplace"
e e———
to let "someplace" = Place 1 prior to entering the evaluation of the function

* In general, an index can only take on integer values since all names are
automatically transformed to unique integers during the transformation from
the FORAST language to the primitive machine language.

66



SET(SMPL. = PLACE 1).
Then following the definition of f(X) we write
GOTO(,SMPL)

Hence, after evaluation of f(A), the existing value of

SMPL is PLACE 1
P 4Ty +la mmrrnnaad mna emmn dn DTAMT 71 Pce ~naleamrimn B I A T NPT QL2
Coullscyuelivey Ull coldlipurernl gucs LU Niauh L 11U bubsocCyucllLv LIS LLUCULOIS . olilil =

e
larly at PLACE 1, we defined

I = £f(X)/2 and followed this definition with
SET(SMPL, = PLACE 2)

+limvmntcsr AcFaoalT 3 At e 1l At ot Yt xralysra A COMDT ae DTAMT D |3 1) PRSI IS N 2 R
uuv:J.cuy Colalblliollllly Ul CcAloUll valut Ul ol Lo ao rruniviy . .Lll].Uu.E,llUu.b vlle
remainder of the computation, for the existing A, B and N, SMPL retains its
value of PLACE 2 so that all exits from the evaluation of the function are
A3 rarntar +~ PT.AMR D
L% O B R S A S v PERE SV LWH A [y

67



EXAMPLE 8.

This example illustrates a convenient use of an index which takes on
prescribed integer values. We will also introduce a COUNT statement, a
BLOC statement, anothar form of the general READ statement and a GOTO(next

problem) statement.

GIVEN:
Xi recorded on cards in standard form, six per card, i = 1,2,...,100
REQUIRED:
100
S = ; X, ; Print S = =cmecceceew--=-=«- in standard form
/ i
i=1
START PARSUM
READ: is= > Si*l = S1 + Xi+l
X S =0
i o

i=1,2,...,100

QIx
(@]
S

Yes

[N
A
|

( GO ’I‘O\ PRINT:
N. PROB/ SRR
N

FLOW CHART FOR EXAMPLE 8

FIGURE 20.

68



On the flow chart of FIGURE 20, we have indicated that we want the
computer to START by reading and recording the 100 numerical values correspond-
ing to the given Xi' We assume that they are recorded on cards in standard

his we

i

form, 6 numerical values per card. To instruct the computer to do
write
READ(100)NOS.AT(X1)%
The integer enclosed in parentheses immediately after READ specifies the
number of values that are to be read and recorded. (Actually, one may write

the explicit integer as above, or the name of an existing integer). The

name enclosed in parentheses immediately after AT specifies where they are

insure that there will be no conflict in identifying the 100 X's, we

reserve internal space by writing a BLOC statement
BLOC(X1 - X100)%

The BLOC statement not only reserves 100 consecutive spaces for the X's, it
a lishes X2, X3, ..., X99 as valid names associated with the X's.
(This may seem trivial, however, it is necessary since names such as XA, X',
X., ete. are also permissible names!). Since BLOC is an order type (

may only appear in columns T7-10, the bloc definitions themselves are
recorded commencing in column 11. Also, since BLOC is an order type (0.T.)
word, it is not transformed into machine instructions, hence it is generally

placed after the PROB card and before the START card.
To obtain the sum of the X's we could write a statement
S=X1 +X2 + X3 + ete.,

however; 1 may be large (several thousand) and consequently we generalize so
that we do not have to write and identify each and every term. We will genera-
lize by<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>