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1. INTRODUCTION

One problem that arises in implementing a network for the detection of

specific operations over an area of interest is the optimum placement of a

given number of detection stations. Another question that is related to this

station placement problem is the selection.of the economically optimum

number of detection stations. The solution of these, two problems has many

applications; for example, in the selection and placement of (I) missile

launch detection stations, (2) nuclear test detection stations, (3) disarma-

ment control stations, and (4) aircraft detection stations.

This report will set up the formalism for an attack on thes~e two problems,

discuss a suggested approach to the problem, and then present some prelim-

inary results that have been produced.

Basically, the problem to be attacked is the following: We are given an

arbitrary area within which the enemy is likely to produce an event that we

would like to detect. Our detection mechanism shall be detection stations

that are set up within this area; the effectiveness o~f each station in detecting

an. event shall, of course, decrease with its distance from the event. If now,

we are given n stations to place in the area of Figure 1, the first question

posed above is the optimum placement of these n stations within the area so

that their effectiveness in detecting enemy events is a maximum.

The second question is one of cost. As we place more and more stations

within the area, our effecLiveness in detecting enemy events will increase in

general; but it can not, of course, increase indefinitely since we can do no

"better than detect all .enemy events with unity probability . On the other hand

there will be a definite cost associated with placing the stations within the

azea, and as we place more and more stations within the area we shall

eventually reach a point of diminishing returns. The question, then is one

of determining the optimum trade-off between the effectiveness of the network

of stations and its cost.
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1j. PROBLEM FORMAT

The following notation will be used in the preliminary analysis of the pro-

blem:

n = the number of detection stations.

p(r) the probability that a station will detect an enemy event if it

occurs a distante r from the station (assumed independent of

location and orientation for this preliminary analysis).

q(r) 1 - p(r) It is assumed throughout that;

"d"r)> 0 for all r (1)
dr

i.e.,, the probability of no detection increases with distance,

w(r) log q(r)

x. the x coerd'nate of the ith station
1

Yi t the y coordinate of the ith station
1N

X = tXl x 3 x n the set of x coordinates for the n stations

Y - y 1 Y2 9 Y3 , "'.Yn3 the set of y coordinates for the n stations

C (n)= the cost of implementing a network of n stations (assumed in-5

dependent of X and Y for this initial investigation.)

Sd(V)=the cost to us if we can detect an enemy event with probability

(l-~eV

As implied by the above notation, the effectiveness criterion that we shall

use is the probability of detecting an enemy event. This is a desirable criterion

in that it conforms with the intuitive ideas of a "good" detection system.

We shall assume in this report that the enemy will know where our detection

stations are located as well as how effective they are, i. e,, he knows X, Y,

and p(r). If he-has this information, then he will certainly make sure that his
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event occurs at a point where its probability of not being detected by us is a

Maximum.

Now if there are n stations each operating independently of the other, the

probability Q(x, y) that an event occurring at (x, y) will not be detected is just

the product of the probabilities that each of the stations does not detect it:

n Z 2
Q(x,y) v- q ( (x-x.) + (y- y.) ) (2)

J. -l 1 1

Taking the logarithm of both sides of Eq. 2 we have
n -n 2 2W(x, n) lo ( 4 7•" 7  x-.

>-•-i o1g q(V/x-x ++ (y-y =;-" w('/(x-x. + (Y-Yi) 2  (3)

And by the argument of the preceding paragraph we know that the enemy will

cause its event to occur at that (x, y) where W(x, y) is a maximum. Our problem

is to place the n stations such that this maximum value of W(x, y) is a minimum.

In other words, if we define:
Max

M(X,Y) = x,y W(x, y) (4)

where Ix, y) ranges over all points of the area in question; then our problem is

to find that X and Y, such that M(X, Y) is a minimum. This minimum value of

M(X, Y) will be labeled V(n):

V(n) = Min N-1(X,Y) Min MaW(x,y) (5)X, Y X, Y x, y
Thus we are faced with a typical ga.me-theory minimax problerm This is

not surprising since the problem as posed here fits quite naturally into the game

theory formalism. The fact that it is a perfect information game insures that

the best strategies will be pure strategies (i.e. not random).

Once we have found V(n) for all n as well as the optimum placement of the

detection stations, the question as to how many detection stations to use can be

answered, Obviously, one can place detection stations infinitely aense over the

area and insure that the probability of missing a detection will be zero. This

would require infinite resources, however, so one assumes the existence of a
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cost iunc:tion CdV), that is, the cost to us if our probability of missing a
Vt

detection is e Vassuming, of course, that the enemy event will occur at the

best location for the enemy).

The total cost to us for an n station network is then;

Ct(n) = C (n) + C d(V(n) ) (6)

For smll n the cost of the detection stations will be small, V(n) will be

large9 and the Cd term in Eq. 5 will predominate, while for large n, V(n)

will be small and the cost of the stations, C., will predominate. The opti-S'

mum value of n occurs when Ct is a minimum,

Ct(n pt) < Ct(nopt +t 1) (7)

The cost analysis in Eqs. 6 and 7 assumes that C (n) is independent of
s

the location of the detection stations and their relative positions. If this is

not true, then the problem is much more complicated, since the optimum

placement of the stations must now take into account this additional cost

cons .de ration.
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U1!. APPROACH

In the solution of this problem we shall proceed from the simplest possible

situations to the more realistic cases1 , being careful at each point to list the

assumptions and approximations that have been made.

The first case to be analyzed will be the placement of n identical stations

on a unit line; that is, it is assumed that the event will occur some place on the

unit line and we would like to find the placement of n stations such that:
MaaxR

Max W(x) Max w(x-x. (8)
X X

is i rainiinu-n, -!n Section 4 wc snall list several necessary conditions for this

optimum placement. Sufficiency, existence, and uniqueness remain to be

proved. These conditions also apply for the non-identical station situation,

Some preliminary remarks are also made in Section 4 concerning the two-

dimensional situation for specially symmetrical areas.

Once these simpler models of the problem have been solved, there are

several direotions that can be taken in making the above problem more

realistic. Some of them are:

1. The detection station effectiveness--or probability of detection--

may be a function not only of distance from the event, but also the angle from

some preferred direction. In this case, one must consider not only the place-

ment of the stations, but also their orientation.

2. in the initial analysis symmetrical areas will be used, but

ultimately, one must extend the problem solutions to arbitrary areas.

3. There are instances in which there will be constraints on the lo-

cation of detection stations. As examples, it may be necessary for stations

to lie in a straight line, or to be within a certain minimum distance of one

another, or perhaps not to lie in certain areas.

4. While we will be concerned with identical detection :stations initially,

there is the possibility that the detection stations may not be identical.
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5. The effectiveness of a station may also vary with its location

within the area.

6. The simplest assumption for the cost of the network of stations

is a linear one, i.e. C (n) = nc. There may be, however, more complicated

station cost functions. Furthermore, the cost of a station may also be a

functlon of its placement, and even the relative location of cther stations.
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IV. SOME PRELIMINARY RESULTS

4. 1 The One Dimensional Case

In this section we shall consider the problem of the placement of n

detection stations on the unit line.

4. 1. 1 Two Stations

Let us consider first of all the placement of two stations on the unit

line when:

d 2 w(r)> 0 for all r (9)
dr 2

This situation is illustrated in Figure 2. Symmetry of the situation and the

identical nature of the stations require that x 2 = l-xI for any fixed value of

Xl, If it were not true, then one of the boundary values of W(x) ( W(0 ) and

W(l) ) would be greater than the other and so M(xl, x ) would not be a mini-

mum.

As shown in Figure 2, W(x) will have its maximum value at x=0 and

x:.l. Furthermore, Condition 9 requires that:

ýW{O 2 )wxx 2 I =0 )wx- =x 1 (10)

w(x-xxI> w(x-x )
x=1

for x2 > x1

Therefore, if x 1 and x 2 are moved closer to the center of the line (with

l = -x 2 ) the values of W(I) and W(O) will decrease, Thus M(xl, x 2 ) will

have its minimum value at x1 = x2 = 1/ 2, and V(2) = 2w (1/2) for this case.

The next case to be considered is the placement of two stations when:

dw(r) < 0 for all r (11)

dr2
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FIGURE 2. ONE DIMENSIONAL CASE, n22, >0
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(Although the results for this situation can be applicable tu the mixed

case in which Condition 9 and Condition 11 apply for different ranges of r,

we shall concern ourselves principally with these two cases in this report.

The case where Condition 11 applies with the equal sign is the linear case in

which M(xi, x 2 ) is independent of the location of the stations, as long as

xI= 1--x2 ).

The situation for Condition 11 is shown in Figure 3; the same argument

that we used before applies here for making xl= 1-x,, As illustrated in

Figure 3, W(x) will always have a local maximum at x=i/ 2 as long as

Xl =]-x 2 :# 1/2. If x1=0 and x 4i, this maximum at x=/ 2 will also be the

absolute maximum for all x between 0 and 1; i.e. M(0, 1) = 2w (1/2). Now

if x and x2 are moved toward the center of the unit line at the same speed,

the value of W(l/Z) will decrease. On the other hand Condition 11 assures

us that the movement of xI will have more effect on W(0 ) than the movement

of x2 as long as x2 > x 1 ; more precisely:

xW(O) dw(x) IW(0) (12)

ýx 1  [d x, d x j x?

for x 2 '> x 1 . Therefore, as we move x 1 and x 2 toward the center, the value

of W(0I = W(W) will increase as W(I/2) decreases. At some value for xl,

the values of W(0), W(l), and W(1/ 2) will all be equal; and if x and xg

(=l.,.xI) are moved any further toward the center, the maximum value of W(x)
will occur at x=0 and 1 instead of at x=1/ 2. And since W(0.) will be increasing,

M(xlP 1-x ) will cease decreasing and start to increase, Thus, M(xl, 1-xI

will have its minimum value at the point where W(O) = W(1) = W(1/ 2).

In equation form, the optimum value of xI is the solution of the

equation:

W(0) = w(l/z)

w(xI) + w(l-xI = 2w(-- _x) (13)
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Two graphical methods for solving Eq. 13 are shown in Figures 4 and 5. In

Figure 4, the intersection of (w(x) + w(l-x) ) with 2w (-x) is found, while

Figbire 5 portrays a trial and error method in which values of x are tested to

see whether the average of w(x) and w(l-x) is equal to w( 1 - x). In Figure 5,
(I) (2) . 2

is an initial trial that was incorrect; is a successful trial.

For the non-identical station situation in which Condition 11 still holds

for both stations, the optimum placements are somewhat more difficult to

obtain0 In this case, we are no longer allowed to assume that x 2 = l-xl, In

general, however, if W(x) has a local maximum somewhere between the two

stations, then a necessary condition for optimum placement is for:

W(0) = W(1) = W(x 0 ) (14)

where x 0 is the location of the local maximum, The arguments for obtaining

these conditions are exactly the same as those used in deriving the solution

for the two-identical-station case. Thus, if a local maximum exists for some

1 x 0  2 x then a possible optimum placement is the solution of the equations:

Wl(X0-XI) + w (x0-x) Z W1 (XI) + wz(x 2 ) = W1 (l-x 1 ) + w 2 (l-x 2 ) (15)

where w (r) and w (r) are the logarithms of the probability of a missed

detection for the two stations, and x0 is the solution of the equation:

n
w! (x 0 .x) = 0 (16)0 i

The reason behind the cautious wording in the above paragraph is that

there may be situations in which Condition 11 is satisfied for both stations,

but for which W(x) has no local maximum for certain values of x 1 and x2 , As

an example consider the situation in Figure 6a in which wl (r) > wl (0+) for
1 2

r < r 0 o If one then plots W'(x) as the sum of w'(x-x ) + w (x-x ) as in Figure
0 2 26b, it is obvious that there will be no local maximum between x 1 and x2 if

(x2 -xI) < r0 * Thus, if one starts with x 1 = 0 and x2 = l and moves them toward
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FIGURE 6. THE TWO NON-IDENTICAL STATION SITUATION FOR NO

LOCAL MAXIMUM



the c-enter under the constraint that W(O0 = W(i), it may happen that the local

maximum disappears before Eqs. 15 and 16 are satisfied. If this occurs then

one m,.st look for another solution to the problem.

This "other solution" can be il~ustrated by considering the case in Figure

6a when r 0 > 1. For this case there will never be a local maximum between

xI and x 2 and so we must only considar the end points. A necessary condition

for the solution is that the values of W at these two end points be equal. If

they were not, then x and x could be moved closer to the end point with the

maximum value of W, thus reducing M even more. Therefore, our problem

is to find the location of x 1 and x½ such that W(O) = W(l) is a minimum.

To find the solution let us start with xI = x 2  l 1 and move the stations

away from the center under the constraint that W(0) = W(i). Due to the fact

that Ccndition 11 applies to both stations W(0) and hence M(x x will decrease

"unti.] a station is at one of the ends o.f the line; for example, if wt (0+) <w' (1)

and if we a2bitrarily choose x > x1 then the minimum value of M(x x ) will
2is 2

occu,;r at:

X2
x. the solutionof the equation: Wl(X)-w I -x) = w 2(0)-w 2(1) (17)

Therefore, the complete solution for the optimum placement of two stations

(whether identical or not) is the following:

1, Start both stations at xI = x½ - 1/2 and move them outward one

station in each direction-- keeping W(0) = W(l).

2. If a maximum value arises between the two stations that equals

W(o), then stop; this is the optimum placement of the stationv.

3. if no maximum of this height materializes, stop as soon as one of

the stations is at the end of the unit line, and this is the solution.

4. 1.2 n Identical Stations

The arguments of the previous section can be applied to the n identical

station situation to yield some necessary conditions for the optimum placement

of the n stations on the unit line. First of all let us dispose of the case in which

Condition 9 applies.

As in the two identical station case, the stations must be placed symmetrically
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about the x -. 1/ point; othe rwise, the values of W(x) for one half of the unit

line will predominate over the other half, and those maximum values can be

decreased by making the placement of the stations more symmetrical. There-

tore, if we number the station. locations txl, x, *...x n with x. > x. the

idert.cal natare of the stat!ions forces:

x.=:l-X forI K <i S n (18)

Ncw consider the location of some station and its mate for the Condition 9

situation (see Figure 7). If xi < 112, then as x. and x.+ 1 are moved closer

to the center of the unit line (under the constraint of Eq. 18) Condition 9 will

fe.rce the value of W(x) to decrease for all values of -. This is true because

for x K 1/2, w(X-Xn'+I) will predominate while w(x-x. ) will predominate for
1

x > 1/ -o Therefore, i.U Condition 9 applies, the optimum placement of n

s$ it-on s S ror:

x. -1/a 1<in (19)
Before proceeding to the Condition 11 situation, let us investigate the

implications of these limitations on d w/dr Figure 8 shows examples of w(r),

qWr), and p(r) for the three cases in which d2 w/ dr 2 is positive, zero, and

negati.e for all r? As stated earlier, we shall not consider situations in which

d Zw/ dr has different polarities for various ranges of r, For the case in which

d w/ dr is zero, p(r) has the form
r Br I
;l-Ae r < - inA

pr 1 o 1 (zO)
Ir Or >- B inA
L

The restrictions that p(r) be a probability (i,.e., between 0 and i) and that

dq/ dr be posit:_-e require that:

A< 1
B>0

For the case in which d w(r)/ dr is negative, the followingthree conditions

are he essaay for the optimum placement of n identical stations:
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1. xi = 1 - Xn.i+1 The symmetry argument for this condition is the

same as the above argument for d w(r)f dr positive. (We shall assume that

xi4-1 x, for convenience from here on.)

2. The value of W(x) at the end points must be equal to the maximum

value of W(x) over the entire range of x; i.e.,

W10) = W(i) = M(xX 2 , .. X) = M(X) (21)

The argument for this (and for the next) is similar to the one used for only

two identical stations.

Consider the situation in which W(0 ) W(i) is not equal to the maximum

of W(x); ie. the situation in which W(0) = W(i) < M(X). (Figure 9) For this

situation it will in general be possible to move x 1 and xn (the two outermost

stations) closer to the midpoint of the unit line as shown in Figure 9. Because

of Conditions 1 and 11 this movement of the two stations will cause W(0) = W(i)

to increase while the maximum of W(x) in the interval between x 1 and x will

decrease. Thus, this movement of the two stations will decrease M(X) (since

this maximum occurs between x 1 and xn; see Figure 9), and so the original

placement of the stations was not optimum, since there are other placements

that have a lower value of M(X).

3. For all 1 _K i < n the maximum value of W(x) in the interval

(x. , xi+ 1 ) must be equal to M(X).

Consider the situation in FiguJre 10 in which W(x) has its maximum value

at x ( xi+1 an equally likely situation is for W(x) to have a local maximum

for some x. < x < xi+1). Unless xi+1 = 1, it is obvious that W(x i1) is not equal

to M(X) since there are values of x just to the right of xi+1 for which W(xW >

W(x+). Since W(x) < M(X) for all x. < x < x M(X) will not be increased

by increasing W(x) in this interval. Therefore, let us move x. and xni+1

toward the endpoints and xi+1 and xn-i toward the center all at the same speed.
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FIGURE 9.
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FIGURE 10.



As shown in Figure 10 these four motions will cause W(x) to increase in

the •x, J x.+I and jxn-i, X ni+13 intervals and decrease elsewhere. And since

the maximum value of W(x) occurs outside the above two intervals, the net re-

sult is a decrease in M(X). Thus, the optimum placement of the n stations

cannot occur unless the third condition above is satisfied.

It is worth mentioning here that the value of W(x) at a station site can equal

M(X), e. e the case in which W(x.) = M(Xi only when x= 0. In this case the
L 1 -1

first and second necessary conditions force W(xI) = W(0) = W(x ) = W(i) = M(X).1 n
and so the third condition is automatically satisfied for i = 1 and i = n-l, It

can be easily proved that this is the only case in which W(x.) = M(X);1

As shown in Figure 6, the slope of w(x-x.) is discontinuous at x = x.; it1 1

jumps from some negative value to the positive value at that point. This is a

necessary by product of Conditions I and 11 and the fact that p(x) = p(-x).

Now for W( x) to have a local maximum at x = x., the slope of W(x) must1

pass through zero (continuously or discontinuously) from positive to negative

at x = x.. But sirnce dw(x-x./ dx has a jump in the opposite direction at x = xi,

the conditions for W(x) to have a local maximum at x = x. are impossible as1
long as w(x) has a continuous derivative for all x 1 0. This argument

obviously does not apply if x. = 0 or 1. Hence for any placement of the stations,
1

W(x.) must be less than M(X) for all i that have x. # 0 or 1.1 1
While there is no logical reason why the optimum placement of n stations

will not have x1 = 0 and xn = 1, intuitively one would not expect this to occur

for small n, since only half of the stations ranges are being used if they are

placed at the ends of the line.

While we have given three necessary conditions for the optimum placement

of n stations, we have not proved the sufficiency of these three conditions, nor

have we proved that Conditions 1 and II insure the existence of a

solution that satisfies these conditions. These three things must still be proved.

It is worth noting that the solution in'Section 4. 1. 1 for two non-identical

stations still satisfies the second and third above conditions. In fact the second

and third conditions are also necessary for the optimum placement of n non-
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I3.entical stations. The proofs proceed exactly as they did for the n identical

station problem, with the exception that the restriction that x. = l-x is1 n- i+l1

relaxed. This allows one the freedom to move only xI (or xn) in the proof

of the second condition and only xi and x.i+ in the proof of the third condition,

4.2 Fature Work

With the results of Section 4. 1 as a beginning, the following are the

problems that will be attacked next:
A. The programming of the "n stations on the unit line" problem on

the DX-l computer to determine V(n) and Xopt'
B. The extension of the results of Section 4. 1 to the situation in

which p(r) is a function of location.,

C. The extension of the results of Section 4. 1 to the situation in

which the cost of the station sites is a function of their location.
DQ The extension of the results of Section 4. 1 to the two dimensional

situation. The solutions of some simple cases of symmetrical areas are

shown in Figure 11.
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CONDITIONS FOR

OPTIMUM PLACEMENT

2 IDENTICAL C ('OzW-O-(,)
STATIONS 21 (,O-Wi)~(,)

m (x, X.; 2 ,12 )

y

4 IDENTICAL 00Ax 2: Iy 1X2  x4:

STATIONS EIHE:W(*)Z(11

W(41) : m m Xy)

OR: W(O,O)*W(O,I hWC 1,): W(I,I)v
W(O±-):-WUEIv):W(I±L)zWC±O)a

r0 * r1= r2 = r.

4 IDENTICAL W(,O WC1)W( I~,,)

STATIONS W(I, 57¾:WO ,9PrM(R,6))

0-

FIGURE 11
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