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ORBIT DETERMINATION OF A NON-TRANSMITTING SATELLITE

USING DOPPLER TRACKING DATA

/ "ABSTRACT

A method is presented for predicting the orbit of a passive (non-

transmitting) satellite, using exclusively Doppler data collected during one

passage of the satellite by a tracking system consisting of only one trans.

mitter and one receiver. Equations are derived which relate passive

satellite Doppler tracking data to ranget speed and time parameters at

closest approach. Thece determine an ellipsoid whose loci are the

transmitter and receiver stations, The satellite lies on this ellipsoid, and

it* trajectory is tangent to the surface. The satellite position and velocity

components at closest approach are calculated on a digital computer using

information contained in the Doppler data together with the geometry of the

tracking system. Preliminary orbits determined in this way agree

favorably with the refined orbits of BRL and Spac:e Track,
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ORBIT DETERMINATION OF A NON-TRANSMITTING SATELLITE

USING DOPPLER TRACKING DATA

1. INTRODUCTION

In connection with the application of radio-Doppler methods to

satellite tracking, the Ballistic Research Laboratories, Aberdeen Proving

Ground, requested the Space Sciences Laboratory of General Electric to

investigate the problem of orbit determination of a passive (non-transmitting)

earth satellite using exclusively Doppler data collected during one pass of

the vehicle.*

The basic problem in orbit determination is to determine the

components, with respect to a geocentric inertial coordinate system, of

position and velocity at a particular time for the orbit being observed,

i.e., determine x(t ), y(t ), X(t )t, i(to), for a given time

to, For an earth satellite, this is equivalent to determining the orbital

elements a, e, i, , , M(t ), where

a is the semi-major axis,

a is the eccentricity,

i is the inclination of the orbital plane,

n is the right ascension of the ascending node,

W is the argument of perigee,

M(t ) is the mean anomaly at to.

The equation which describes the Doppler shift of radio signals

transmitted from a station on the earth, reflected from the passive

*Contract No. DA-36-034-509-ORD-3159-RD.

- I -



satellite, and received at another station on the earth is'

where and are the range rates of the satellite relative to

"the transmitter and receiver stations,

respectively,

4. and fi are the transmitter and receiver frequencies,

respectively,

and c is the speed of light.

A typical Doppler curve is shown.

1*'

,Time

The measured Doppler data - f ) is related to the solution x(t
r R 0

Y(to), Z(t 0.), i(t ), -r(to ), .(t ) of the orbit determination problem by the

expressions relating the time-dependent range rates to the time-dependent

solution x(t), y(t), z(t), k(t), j(t), 1(t) of the equation of motion of the

satellite, A'/4/ . /A 3 2 , since the solution of the equation of motion is

unique, corresponding to a particular set of initial conditions x(t ), Y(t
0 0

z(t), A(t0), j(to), g(t 0 ). The desired expression for ýT is

•.(t)= (x(t) - X t)) (klt) - k'(q) + (y(t) - Y, (tý ((t) -•t A) + Zt)..-Z'.(tq) (I(t) -,.t!

[cx(t) -X(t)) + (y(t) - Yr Mt) Z + (z(t) - Z.r(t)) 2] 4

where Xr' Y.' ZT are the position components of the transmitter,

k r' 'T' Z7 are the velocity components of the transmitter.

Similarly for &(t).

*For derivation of the Doppler equation see Appendix.
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Having obtained Doppler data from one or more transmitter-receiver

stations, the procedure for arriving at a solution to the orbit determination

problem is as follows:

1. Select preliminary values of the initial conditions x(t ), Y(to),

Z(t ), i(to), 01(t ), i(t ), i. e., establish a preliminary orbit.

Z. Solve the equation of motion for the time-dependent position

and velocity components.

3. Compute values of (o+ for each transmitter -receiver

pair at times corresponding to measured Doppler data.

4. Compare computed values of r+ with data.

5. Select an improved set of initial conditions and repeat

the process until the computed values agree with the

data.

Items Z to 5 constitute the determination of the refined or final orbit.

The Ballistic Research Laboratories has a numerical technique for

establishing the final orbit that will, converge with data from a single

transmitter-receiver system provided the preliminary values of the

initial conditions are sufficiently accurate [I ].*

Doppler tracking of active (transmitting) satellites has received

considerable attention [ (o 3, 4, 5, 6 ], but little has been found in the

literature regarding the problem of establishing preliminary orbits.

For these reasons, emphasis at the Space Sciences Laboratory has

been placed on obtaining a reliable method for determining a preliminary

orbit of a passive satellite, using only Doppler data collected from a

single transmitter-receiver system during one passage of the satellite.

The method is formulated in this report, and applied to actual Doppler

data.

*Numbers in brackets refer to bibliography at end of paper.
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The geometry of such a system can cause an ambiguity in the position

and velocity components of the satellite at a given time. For a specific

altitude, the satellite can be at one of four possible positions. These

positions consist of two pairs of points, each pair consisting of points

symmetric with respect to the midpoint of the base line between the

transmitter and receiver. For each such pair, the velocity components

are uniquely determined.

It is shown, however, that the transmitter antenna beam can be

oriented so that ambiguity in the direction of motion of the satellite

(signs of velocity components) can be completely eliminated. Further-

more, severe restrictions can be imposed on the position coordinates by

the speed of the satellite and the location of the satellite relative to the

antenna beams at the given time.

Thus, ambiguities caused by the basic geometry can be considerably,

if not completely, eliminated by judicious orientation of the antenna beams

and by using all possible information contained in the data.

The theory is formulated analytically, and computation can be

performed on a digital computer. This suggests the possibility that the

orbit of a passive satellite. can be determined using only Doppler data

from a single transmitter-receiver system while the satellite is still

visible above the horizon.

The application of this theory to active satellites is also described.

-4-



2. ESTABLISHING A PRELIMINARY ORBIT FOR PASSIVE SATELLITES

Integration of the Doppler equation for a single transmitter-receiver

pair.,

~+Aev~ where A,. f!-~ (Z.1

yields

O + cv( (T. 2)

which indicates that, at a given time t, the satellite lies on an ellipsoid

of semi-major axis a(t), with foci at T and R, the sites of the trans-

mitter and receiver. Since T and R are known locations, the eccentricity

of the ellipsoid is obtained from the expreasion Le TR/2. Thus the

ellipsoid is compliately determined once the constant of integration

r+ e(0)to IiR known. This is determined in the following manner:
The DOppler equation (2. 1) may be written in vector form as

- -

(2. 3)
In a geocentric inertial coordinate system neglecting the earth's rotation,

* where i; is the satellite velocity, and equation (2. 3) becomes

Define tho vector

, J . (a. 5)

Then

*For a low earth satellite, the error incurred by this assumption will be

small.
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and the Doppler equation (2. 1) becomes

2'A f (2.7)
2

or

p (2. 8)

Define the time of closest approach as the time at which is

minimum ( £+=Q ) and let t in (2.2) be this time. Then the constant
0

of integration in (2. 2) is the major axis of the smallest ellipsoid upon

which the satellite will lie, the ellipsoid at closest approach. From

(2. 2) and (2. 6),

Using zero subscripts to denote, values at to, the time of closest approach,

it follows from (2. 4), (2. 5) and (2. 8) that

S~(2.9)

*o (2. 10)

Further, the vector FO) is perpendicular to the tangent plane of the
ellipsoid at the location of the satellite. Hegce, both vectors • and

lie in the plane which is tangent to the ellipsoid at closest approach, at

the location of the satellite.

Thus, the following conclusions have been established:

At the time of closest approach t the satellite lies on the surface of

the ellipsoid of semi-major axis r. , having foci at T and R, the trans-

mitter and receiver; further, the satelliLe trajectory is tangent to this

ellipsoid. The location of the satellite on this ellipsoid, together with

its associated velocity and the time t , will determine a preliminary
0

orbit of the satellite.
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Before proceeding to determine po and the satellite position and

velocity components at t 0 an interpretation of •C*) is in order. This

vector can be expressed in the form

where a, b, c are time-dependent scalars, for the vectors FT

constitute a basis in three-dimensional space. The vector Pc•) may be

interpreted as a fictitious velocity, for if we hold the base of F(O)fixed at

the origin of a three-dimensional vector space, the locus of the end point

of f(t) will be a fictitious trajectory. We take as origin of this vector

space the base of i. , i.e., T at closest approach. This point will be in

the plane of and on the normal to the actual trajectory at the point

of the trajectory where -+ is a minimum, and at a distance along this

normal equal to 1/2 this minimum value of *T.• • In the vector space

there will be a sphere of radius /Z = 1/Z (,. ÷ ) -,such that the ficti-

tious trajectory and the true trajectory are both tangent to this sphere at

the point of closest approach. Elsewhere both trajectories are exterior to

the sphere. actual trajectory

O Ictitious trajectory

If we now assume that is constant ( = p0 ) in the neighborhood of

closest approach t , we can write, in this neighborhood,
0

Then, using (2. 10)

+ (212)

and 2

f-r: (2.13)
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Determination of Closest-Approach Parameters. - If the measured data

consists of values of frequency shift 6f at specific times, equation (2. 7)

shows that the parameters to) pop .i can be computed using (2. 13). If

the data consists of average values of frequency shift ( a ) over specific

time intervals At , the mean value theorem together with (2. 7) and (2. 13)

gives at~2 (

4 t

and the desired parameters are computed from this expression.

Great care must be exercised in fitting the right side of (Z. 13) or

(2. 14) to the appropriate data. For example, (2. 13) can be writton as

VAL + r2(2. 15)

and for PC -4 N (T) can be represented by the series

rz + r -(2. 16)

which indicates that b/a will be insignificant if the data used to deter.

mine a and b is linear inT. This can lead to inaccuracies in the

computation for b. Similarly, (2. 14) can be written

end points of the interval &t,

and for I'ItZI!rvrl ,

-8-



Since - =--TC 4't does not change significantly, it is apparent that if the

data is linear in the discrete variable 2" • , then again b/a will

be very small.

Since the use of (Z. 13) as a representation of the Doppler curve, or

S-curve as it is commonly called, is restricted to the neighborhood of

closest approach, this equation cannot be fitted directly to the measured

data if noise obscures non-linearities in the neighborhood of t . Further,o

formula (2. 13) is symmetric about t , whereas the actual S-curve is0

asymmetric for large values of t. We therefore require an analytic

representation of the measured data which is non-linear and almost

symmetric for small T = t -to, to which the symmetric formula (2. 13)

can be equated in the neighborhood of t . The simplest desired
0

representation is a polynomial fit to all the measured data.

If L is known, standard comnputational procedures can be applied to0

fit (2. 13) or (2. 15) to data. Write (2. 15) as

Tr2
= • (2.17)

a linear expression in a and b, and the usual least-squares formulas

apply.

Two different methods have been used successfully to determine to

prior to fitting (2. 15) or (2. 17) to the analytical representation of the

data. One method, easily programmed for a digital computer, is to fit

the cubic in t,

(2. 18)

to the measured data in the neighborhood of t , with the time origin
0

for t fairly close to t so that round-off errors will not be significant.0

Once the coefficients in (2. 18) are determined, t is computed as theo

single root of the equation p o that lies in this neighborhood.
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An alternate procedure, which has been very successful, but more

difficult to program for a digital computer, is based on formula (2. 17),

which indicates that if Tz/ P is plotted against tC the data will lie on a

straight line with slope b and intercept a. The parameter t must beo

known in order to measure T, of course. If t is not known, denote
0

t t•'•, t, the assumed time of closest approach, and let i be the

time measured from t, -i.e., •=t-t . Then I'-q+$ and (2.17)

becomes

a af +a

(2.19)

Thus, if a is selected as the time origin, the measured values

will plot against q as a straight line upon which is super-

imposed the curve af; the straight line will have slope b and intercept

a, as before. Clearly //' F=o, which suggests that different values

of €; be selected until one is reached which results in VXAX being

linear in ' . This is not easily adapted to digital solution, however.

Instead, we proceed as follows.

Denote y, • •qgthen (2. 19) becomes

o. + I+af

2 (Z. 20)
. //, * /(asee figure 1).

Then

dy d'.. Z.*I (221)

and

(2. 22)

Now, if t is chosen to the right of the correct value t, Et' I >o.

-0 a 0
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Selecting values of • .o, - will be positive and, from (2. 22),

4 0 . If, on the other hand, t is selected to the left of the
correct value t , 6-C • Again using values of f >Q ,0 i will be

0

negative and >O . Also, it is seen from (2. 21) that for 1 0

and finite, if and only if E:o ; further, Z-1 approaches

zero monotonically from above (or below) as *t. converges to t from

the left (or right). Similar results hold if values of V are chosen in

both cases.

The procedure then is: (1) Choose a value of ; (Z) Select three

values of t to the right of t0' and compute the second difference of

T/• at the center value of t, using measured • data. If this

second difference is negative, say, this indicates that the tc selected

is to the right of t , the correct value; (3) Choose . second t• , to the
0

left of the first one; (4) Using, for convenience, the same three values of

t previously used, compute the second difference of y again at Lhe center

value (the values of V are now different). If this second difference is

again negative, select a third t, farther to the left. If the second

difference is positive, select the third t' slightly to the right of the

second, In either case, repeat the procedure until the t is found that

makes the second difference vanish. By selecting the three values of t,

used in computing the second differences, sufficiently far from the chosen

the singular situation/ 1" is easily avoided.

This procedure suggests that t be determined as just discussed, and0

then, using (2. 17), a and b be computed as the intercept and slope,

respectively, of the straight line %'/ obtained from the measured data.

Error analysis shows that the parameter a can be found in this way, but

not b; for to insure accuracy in p to one mile, and in 1I to 100 ft/sec,

it is necessary that time measurements be accurate to . 4 seconds in

computing the intercept a, and to . 00025 seconds in computing the

slope b. The latter requirement is clearly too restrictive when the

- 12 -



measured data consists of values of p assigned to the midpoints of . 15

second intervals.

Instead, the most successful results have been obtained by the

following procedure:

(1) Determine t , either by the £ -function• second0

differences (2. 14) - (2. 22) using measured data,

or by fitting (least squares) the cubic equation

(2. 18) to the measured ý data in the neighbor-

hood of t0

(2) Using this t , use least-squares to fit the cubic
0

at T i- ~I- r 23

to all the measured data.

(3) Determine a, b, and p by fitting (lease squares)

equation (2. 17) to values of ý given by (2. 23) over

a sufliciently large neighborhood of t . The inter-

val "f Z 30/,of the time interval between t and
0

the side beams has been found adequate.

Determination of Position and Velocity at Closest Approach. Once p0

is determined, the ellipsoid at the time of closest approach is known,

since the eccentricity isLTR/2, , where TR is the length of the base

line between the transmitter and receiver, the foci of the ellipsoid. It

remains now to determine the location of the satellite on this ellipsoid,

as well as its velocity components.

We know from the previous theory that the satellite trajectory is tan-

gent to this ellipsoid. Further information can be obtained from the

Doppler data and also from the geometry of the transmitter and receiver

*A truncated series (2. 16) or a truncated Fourier series might also fit

the data well.
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beams. In particular, the DOPLOC* transmitter station, located at Fort

Sill, Oklahoma, consists of a 50 KW transmitter and three high-gain

antennas. All of the antennas can be excited separately from the trans-

mitter but not simultaneously. Each antenna is capable of radiating a

thick fan-shaped beam having dimensions of approximately 8 x 76 degrees.

The beam from the center antenna is directed vertically with the 76

degree dimension in the east-west direction. The north and south

antennas are identical to the center antenna except that they are tilted to

radiate fan-shaped beams 20 degrees above the north and south horizons

respectively. This arrangement of beams is intended to detect a satellite

as it rises over the horizon, track through the beam width, switch to the

center antenna, track through its beam and then switch to the third

antenna to obtain three segments of data from the characteristic S-curve.

The DOPLOC system has two receiving stations, one at the White Sands

Missile Range and the other at Forrest City, Arkansas.

At each receiving station three high-gain antennas, which are identical

to the transmitting antennas except in power-handling capability, are

tilted to see the same volumetric space that is illuminated by the trans-

mitting antennas. Thus each center receiving antenna has its fan-shaped

beam in the east-west vertical plane but tilted toward Fort Sill. In

addition to being tilted, the 'north and south receiving antennas at each

receiving station are rotated so that each station sees approximately

half of the volume of space illuminated by the north or south transmitting

antenna. The receiving antennas are switched synchronously with the

transmitting antennas.

In the following analysis, only one transmitter-receiver pair will be

considered. Without loss of generality, we will describe the technique

for the transmitter at Fort Sill, Oklahoma, and the receiver at Forrest

*The word "DOPLOC" is a combination of the first three letters of

Doppler and lock and implies a phase-locked Doppler measuring system.
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City, Arkansas. These stations are separated by a base line of 435

statute miles, and of course are the foci of the ellipsoid of closest

approach for each satellite observed. We will assume that this ellipsoid

po ) has already been determined.

A typical Doppler data plot for this transmitter-receiver pair is shown

in figure 2. Here the time of closest approach occurs while the satellite

is in the center beam, which means that the satellite lies on-the associ-

ated ellipsoid of closest approach in the strip intersected by the center

beam of the transmitter. In all cases, the ellipsoid of closest approach

associated with a particular transmitter-receiver pair will be intersected

by the three transmitter beams, and the location of the satellite, at time

of closest approach, relative to these beams gives a good indication of

where the satellite lies on the ellipsoid, Further, the time of appearance

in the beams indicates the general direction of the satellite. For example,

the satellite of figure 2 is clearly going south as it passes over the

stations.

This information can be expressed analytically, in a form easily

programmed for a digital computer, in order to calculate the approxi-

mate position and velocity components of the satellite at the time of

closest approach.

At the time of closest approach, a horizontal plane at the altitude h

of the satellite above the transmitter will intersect the transmitter beams

as shown in figure 3. If we assume that the satellite remains in this

plane during its flight through the three beams, and also that its speed

-tr is that corresponding to a circular orbit at this altitude h, then the

satellite path length,6s between the center and north beams is given by

as = -V' (2.24)

where At is the time interval corresponding to the gap in the data

between the center and north beams. The acute angle G between the

- 15 -
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path and the vertical plane of the transmitter center beam (in this case

this plane is in the east-west direction) is obtained from

-S (2. 25)

where AN is the perpendicular distance between these beams at the

given altitude h.

It will be convenient to use a topocentric coordinate system, having

originat T, x-axis vertical, z-axis in the horizontal plane at the

elevation of the transmitter and in the direction of the ellipsoid base line

TR extended westward; y-axis in the same horizontal plane and normal

to TR (figure 3).

Then, corresponding to a given altitude h (or x), equations (2. 24)

,and (4. 45) give

A A=rCtx

(2. 26)

where A = *cot 280 - tan 40 i

r =radius of earth at transmitter

ka Newton s gravitational constant

M mass of earth.

Clearly the altitude x of the satellite will be restricted by the upper

bound of sin G . This restriction can be seen intuitively: the higher the

satellite, the greater must be its speed to traverse the wider distance

between beams in the fixed time interval; on the other hand, the speed in

a circular orbit reduces with increased altitude. There will thus be an

upper bound on permissible altitudes.

Now denote by/T o -41L 4 r the angle at T measured clock-

wise in a horizontal plane from the base line TR to the vertical plane of

the transmitter center beam; and by o( , ./ 7< rr4, the angle at

T measured counterclockwise in a horizontal plane from the base line

TR to a line through T parallel to the satellite path (figure 3).
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In the horizontal plane at some altitude x, the satellite will lie on the

ellipse
02 22 -Y

X
(2.27)

where a, b are the semi-major axis p0 and semi-minor axis respec-

tively of the ellipsoid at closest approach. Since the satellite path is

tangent to this ellipse at the location of the satellite, this point is to be

determined from the expressions

S(2. 28)

6 - tan2 o

The velocity components of the satellite are to be determined from .the

expressions

'(2.30)

Z * Cos 0 2. V2

Clearly, the problem is not yet solved, first because • is not yet

known, and, in addition, we must establish a criterion for determining

the signs of y, z 4 ae, y and i.

From figure 3 it is clear that for

-< O < (2, 31)

0ý is given by '(. 32)

For
T . << (2.33)
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c( is given by o.'=7-- - 4,- .-(. 34)

Due to the manner in which 6 is determined (2. 25), we do not know

which expression is the correct one for Of . We do know, however, that

all possible paths are uniquely defined either by lyr or by CLX *.

From (Z. 3Z) and (Z. 34),

if 0 < LA. then - o s o and -

if then V. <-y. 4 2and Z < 0 W- 3A-

if 1-1 then Z,- andd(2

Further, it is clear from figure 3 that

if 7,U-4 0 the satellite lies in the lst quadrant (QI) or 3rd

quadrant (Q3)of the ellipse (2. 27);

if 0< N< i, the satellite lies in the Znd or 4th quadrant (02 or Q4)

if M<7•<7 •-, the satellite lies in the 1st or 3rd quadrant (Q1 or 03).

The relationships that exist between the computed values of ,'

and (M and the quadrants in which the satellite might lie are shown in

figure 4. In general, a given value of 0 determines four possible

points on the ellipse, consisting of two- pairs of symmetric points, A

unique velocity is associated with each pair. If all four points lie in the

1st and 3rd quadrants, then the direction of the satellite is clear, i.e.,

j/• )Q . Further, the sign of j is determined by observing, from the

data, which beam the satellite crosses first. Hence the sign of i is

known. Similarly, if all four points lie in the 2nd and 4th quadrants,

*If the center beam is rotated above the base line, and if ,s is measured

counterclockwise from the base line to the beam, the formulas will be
different but the results will be the same.

**The satellite of figure 2 is travelling in a southerly direction, hence ý-<O
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Thus, the following conclusions have been established:

For a given/ , 4t and altitude x, and hence e (2. 26), and denoting

!f O< .</~ there are two possible points in ist quadrant and two

all these points, the general direction of motion of the

satellite is known.

Points in 1st quad: y : B1 . z -ae + B2 ; •r : v" lsn(es/'),• t t'cos(8•)

y C1 .I z =-ae'+ C 2 ; j' ± t•rsin(eyi,), ±- =T~cos(•+24)

Points "- •rd quad: y =-B 1 , z =-ae -22; • =• %r sin (8e•,), z -17 cos( &94-)

If /4.( . ec i"/,S there is one possible point in each of the four quadrants.

(B2 >0o c• <aO) The. direction of motion of the Satellite is not known. "*

*The sign of r is to be determined from the data for each satellite.

**Although the sign of @r is known from the data, thle sign of z depends

uipon whether the satellite is either in the lst or 3rd quadrants,, or in

the 2nd or 4th quadrants. This is not known in this case.
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Point in Ist quad: y = C1, z = -ae + CZ; :k = V r sin(G-), + =Vcos(e-/s)

Point in2nd quad: y = Bi, z = -ae + B 2 ; V = irsin(e-,), z = -v cos(9>,)

Point in 3rd quad: y = -C1 , z -ae - C?; =r . sin(G+/4), -- -r cos (eD,5,4)

Point in 4th quad: y = -Bi, z = -ae - BV; r = * Vain(eu), • = (V cos (0

If 9 • .4 there are two possible points in the second quadrant and

>a C2 >~) two possible points in the 4th quadrant. Since Y/I <

for all these points, the general direction of motion of

the satellite is known.

Points in 2nd quad: y Bi, z = -ae:+ B?; j = 1Ysin(@ ), . = V 'rcos(69;,")

y = C1, z = -ae + C2 ; t ±.V asin(&4), 1 - V rcos(GO)

Points in 4th quad: y = -B 1 , z = -as - B :; V - ifsin( /9), V V ir cos(G a( )

y = -Cl, z = -ae - CZ; V " "ln(e/s), = ± rcos(6 ,).

Clearly, the ambiguity of direction in the second case (4, . , O )
is removed if , i.e., if the transmitter antenna is rotated 450 from

the base line.

We still have the problem of selecting the correct altitude x, and the

correct point ( y, z ) at this altitude, out of four possible values of ( y, z

We have seen that the possible valuer of x are already restricted by the

upper bound of sin G (2. 26). For a chosen x, the four possible values of

( y, z ) just defined are not all acceptable. The data tells us where the

satellite is, at to, relative to the center beam. That is, the satellite is

either in the beam or on one side of it, and proceeding toward it or away

from it. This informationo expressed analytically, imposes severe

restrictions on the possible values of ( y, z ) that are to be accepted.

We first construct a new coordinate system x', y', z', by rotating

the y and z axes of figure 3 clockwise about the x-axis through the

angle/4. . The x'y' plane is then vertical and normal to the center beam
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(figure 5). Denote by tI and t? the times. at which the satellite crosses

the edges of the center beam. The distance travelled by the satellite along

its path in the horizontal plane at altitude x = x' between the time of

closest approach to and the time it crosses the vertical plane x'z' is

given by

t2 .

Then, for the case where y'>o (satellite travelling north), the y' co-

ordinate of the satellite at to is given by

and for y'-O (satellite moving south), the y' coordinate at to is given

by

Since Y= -A c$y' S,•#, the appropriate formula can be used as a

criterion for selection of permissible points ( y, z ) at a given altitude,, x,

from the four points previously computed. To allow for possible inaccuracy

in the precise location of the satellite at times tl, t?, and to, we can

accept values of the y' coordinate that lie in the range y'" < 6 Y + o.

To iselect this range, define the angle $ in the x'y' plane by the relation,

Then, assigning the small angle A01 0 , the x, y, z coordinates of the

satellite must satisfy the inequality

K ' " (Z. 35)

Application to Doppler Field Data. - Using the methods just described,

preliminary orbits were established for two revolutions of the Discoverer

XI satellite. The data was obtained from the ARPA - BRL DOPLOC system,
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using the transmitter at Fort Sill, Oklahoma, and the receiver at

Forrest City, Arkansas. The transmitter operated continuously; the

receiver was turned on at one second intervals and operated until 1000

cycles of Doppler were counted. The recorded data consisted of the time

duration of these 1000 cycle Doppler intervals, together with the starting

time of each interval (figures 6A and 6B). The average frequency shift

over each 1000 cycle Doppler interval was computed from the data by the

formula

where 4ti is the duration of the Doppler interval, and the quantity 7000

represents an empirical constant of the particular transmitter-receiver

system. This was converted to the range rate by

and was assigned to be the value of p at the midpoint of the associated

Dopplar interval at,.

The preliminary orbits obtained are given in figure 7. For compari-

son, the final solutions obtained by BRL and NSSCC (Space Track) are also

listed. * BR.L uses an analog procedure to determine a preliminary orbit

from the DOPLOC data, while at Space Track all available data is

compiled over a period of time to compute the orbit.

*Space Track results were furnished to the author by BRL.
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3. ESTABLISHING A PRELIMINARY ORBIT FOR ACTIVE SATELLITES

When the transmitter is aboard the satellite, (D 0 and the

Doppler equation for a single receiver is

S@• = A,. • f,
S(3.1I)

Integration of this equation discloses that at any given time t the satellite

lies on the surface of a sphere of radius 0() with center at the

receiver.

Eliminating the subscript R for convenience, the vector form of

(3. 1) is

e

and again neglecting the earth's rotation,

S(3.2)

where V' is the satellite velocity.

Now define the tirre of closest approach as the time at which is

minimum. Then the following conclusions have been established for an

active satellite:

At the time of closest approach to the satellite lies on the surface of

the sphere of radius • with center at the receiver R; further, the

satellite trajectory is tangent to this sphere.

If we now assume that i- is constant in the neighborhood of

closest approach to then

Fc÷• •0+ • ('t-to)

See appendix.

30-



and, in analogy to (Z. 13),

Thus, in the case of the active satellite, the parameters at closest

approach, e, , are related to the Doppler data by (3. 1)

and (3. 3). These parameters are computed in the same way as were the

passive satellite parameters • ji/, "

The procedure for determining the satellite position and velocity

components at closest approach is quite analogous to that for the passive

satellite, except that now the satellite speed at closest approach is

known(tr-V ).

If. corresponding to the base line TR of the ellipse of figure 3, we

define the parameters •. and (X for the circle of figure 8 with respect

to the latitude of the receiver R, then, as before,

We will place the origin of the topocentric coordinate system at. R , with

x-axis vertical, y-axis due North, and z-axis due West. Then the first

quadrant of the circle is the north-east sector, the second quadrant the

north-west sector, and so forth (figure 8). Thus, the relationships that

exist between the computed values of e , aeL , and , and the

quadrants in which the satellite might lie are again given, by figure 4.

The active satellite, at altitude x , will lie on the circle

Since the satellite path is tangent to this circle, the coordinates
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of the satellite are determined from the expressions

cc (Z 9 ,kl) OO'O

As before, the velocity components are obtained from

12

The following conclusions are then established for the active

satellite:

Given 4t) altitude X and a -re sn *7AL

A cot 280 - tan 40

and denoting

If 0< , there are two possible points in lst quadrant and two

possible points in 3rd quadrant. Since Y/z >0 for

Rall these points, the general dire.ction of motion of the

satellite is known.

Points in lat quad: y D1 , z =DZ; T- v vsin((-i)'; v = cos(L9 )

y = FI, a -F 2 ; :t =vsin((r y ), / =zv cos( &ýA')

Points in3rd quad: y = -Dl, z = -D2 TF sin( ) i' cos( 1?;A

y -Fr, = F 2 ; V sin( cos(

The sign ofr is to be determined from the data for each satellite..
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If <4A . , there is one possible point in, Pach of the four quadrants.

Dl >c D > 0 The direction of motion of the satellite is not known. *

F >" F, >o
Point in 1st quad: y = Fl, z = -FZ; V =V/ sin( 8A,4), =-= cpcos(&41)

Pointin2ndquad: y=D1 , z=D 2 ; i=*V sin(G•), •=Vrcos(&•y)

Point in3rd quad: y = -F 1 , z = FZ; V = a1P sin( ) ; = a ticos(e,)

Point in 4th quad: y= -Dl, z -D?; =*V sin(9v), (& " ircos(&V);

If e ic. , there are two possible points in the second quadrant
2/ 2

( >o >j and two possible points in the 4th quadrant. Since
1? -9/0o for all these points, the general direction of

motion of the satellite is known.

Points in 2nd quad: y Dl, z= D2 ; - V= aisin( ,:F), V = coC (os( k)

y = -F 1 , z = F2 ; j- = •: sin(ig,"), V =: rcos(, ( )

Points in 4th quad: y = -D1 , z -D 2 ; =*-V sin ( );,,A), =:F Vfcos( •, )
y =,-Flo z -Fz; V, : sin( 94A), -4 := -ýcos( +/.,o

The ambiguity of direction in the second case / < A) is

removed if,•, - T , i.e. , if the transmitter antenna is rotated 450 from.

the latitude of the receiver.

Finally, the location of the satellite relative to the center beam can

be used as a criterion for selecting permissible points ( y, z ) at a given

altitude x , from the four points just computed. As in the case of the

passive satellite, this criterion is given by inequality (Z. 35).

*Although the sign of j is known from the data, the sign of • depends

upon whether the satellfte is either in the Ist or 3rd quadrants, or in the
Znd or 4th quadrants. This is not known in this case.
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5. APPENDIX

Derivation of the Doppler Equation for a Passive Satellite.

We will assume that radio waves travel with constant velocity of light

through all disturbances, and that the motion of the satellite is slow corn-

pared to the speed of light.

We consider a stationary transmitter T on the surface of the earth

at some positive distance from a stationary receiver R on the surface

of the earth. A signal emitted at T at time t, travelling at the speed

of light c, arrives at the moving satellite S at time

'C t +

where Or is the magnitude of the position vector •. of the satellite S

relative to the transmitter T . Denote by PT an active transmission

time interval and by ps the corresponding time interval during which

the satellite is illuminated. Then

PT+

If the relative range or of the satellite is assumed to be a linear function

of time during this interval, we obtain, dividing by Ps

which yields

where and are the reflected (satellite) and transmitted frequencies,

respectively.

In a similar manner, the relationship between the satellite illumination

interval and the interval during which the reflected signal is received at B.

is expressed in terms of the satellite frequency f and the receiver

frequency f by the equation

RC -it - - (5. Z)
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where higher order terms in &/C have been neglected. From (5. 1) and

(5. 2) we obtain the following expression for the Doppler frequency shift

of a passive satellite:

r Ca

and, again neglecting second order terms in ý/c this simplifies to the

Doppler equation for a passive satellite,

If the transmitter is aboard the satellite, r and equation (5.3)

reduces to the Doppler equation for an active satellite,
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