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ABSTRACT 

This  report  summarizes  the  research  accomplished under 

Grant AF-AFCGR-62-C9.     It consists  of  two  separate  parts 

representing  two distinct investigations carried  out withiu 

the scope of  the grant.    The   first   part  of  the report  is 

concerned with optimization  criteria  in systems design;   the 

second deals with  the  identification problem for nonlinear 

systems.     These  two   topics  correspond  to   the abstracts 

included  in  the Surarary Report, 'JSCEC 98-201,  ZE-21* submitted 

in April,   1963. 

Research  in  both of   the areas described herein  is 

continuing under the  renewal  Grant   AF-AFOSR-75-65.     Mr. 

R.   B,   McGhee  has completed  a  dissertation  based upon  further 

development  of Part   II  of this report.     This dissertation 

is  presently  being  prepared   for journal   publication.     As 

further significant   results   are obtained,   they will  also 

be  submitted   for publication   in  the  appropriate   technical 

Journals. 
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PART I. 

OPTIMIZATION CRITERIA 

1.  INTRODUCTION 

There is a fundamental difference between information theory and  the 

theory of control.  In information theory, it is desired to operate on an 

output signal so that as much information about the desired input signal is 

obtained as possible.  In control, the output is often asked to reproduce 

some desired signal, usually the input, as closely as possible.  If systems 

are optimized according to these two criteria, the results are in general 

not the same.  The difficulty in formulating a suitable optimization 

criterion for systems is mainly due to the wide range of purposes for which 

systems are used.  It would seem hardly reasonable, therefore, to expect to 

define a unique optimization criterion or measure of quality; at best one 

can only devise criteria which are satisfactory over a wide range of applica- 

tions.  The most general description of the purpose of a system is perhaps 

that it should give information about the input (or other desired signal). 

If the information desired is simply a reproduction of the input, or other 

desired signal, then we have a problem in control. Sometimes, however, it 

may be required to extract all of the information that is implicit in the 

output without regard to the possible complexity of the interpretation 

process. This type of requirement is particularly important when it is 

difficult or impossible to repeat an experiment.  Such cases are common 

in practice, and under these circumstances it is a prime necessity that the 

information gained be maximum whether or not the output exactly resembles 
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the input.  In such a case, the quality of the output is more important 

than that it exactly resemble the input.  In such a case, the output 

must be interpreted or reconstructed in some way.  Herein lies the 

difficulty of instrumenting an appropriate interpretive system.  In 

other words« somehow the information must be made useful to the observer. 

Such a procedure is a type of decoding. 

One of the purposes of this research is to consider various 

optimization criteria so as to determine which is best for the constrained 

system under consideration. Once a system has been optimized, it is very 

desirable to be able to evaluate it by comparing it to the theoretically 

optimum system.  In other words, it sr.ould be possible to determine the 

optimum system performance without regard to any specific system configura- 

tion.  Once this is done, a precise system evaluation can then be made. 

Such a procedure also has the valuable property that additional research 

on the proposed system can be made to yield the maximum return for the 

minimuiB cost.  In other words, the effort can be adjusted so as to take 

advantage of the law of diminishing returns.  If the proposed system is 

far from this theoretical optimum, additional effort is indicated, whereas 

if the proposed system is near to the theoretical optimum, the additional 

•ffort may not be worthwhile.  Furthermore, the systems evaluation 

techniques to be proposed will be useful in the comparison of systems 

on an absolute basis, so that if more than one system is under considera- 

tion, the optimum system can be appropriately chosen. 
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The most common optiir.izat :on criterion jned in system  desii^nt 

particularly feed back systems deGi,^n, is rrir.i.r.izat ion of mean square 

(or integral square) error. The disadvantages of such a criterion are 

well known« and include: the requirement of long time averaging, so that 

the system is essentially optimized only for steaiy state performances; 

excessive emphasis of large amplitude but sr.ort time deviations of the 

output signal from the mean of the desired signal, as well as other dis- 

advantages.  The principal advantage of this criterion is that it generally 

leads to mathematically tractable expressions, where as related criteria 

such as the miniir.ization of absolute error do not.  When a system is subject 

to stochastic disturbances such as noise, random load disturbances, etc., 

a commonly used criterion of goodness is the maximisation of signal-to- 

noise ratio at certain points in the system. Cther arbitrary criteria 

which have been used inc'.jde specification of some minimum liklihood of 

loss of track in tracking systems, minimum probability of exceeding 

thresholds on certain variables, certain stati-tical detection criteria, 

etc.  Let us consider some of the disadvantages of these arbitrary criteria. 

A disadvantage of the maximization of siijnal-tc-noise ratio criterion and 

related criteria is that no constraint is put upon the amount of time 

required to perform the desired maximization.  For example, the signal- 

to-noise ratio can be made to approach infinity by averaging (that is, 

integrating) over an infinite period of time.  In the vast majority of 

engineering systems, however, it i.« required that tho system perform 

optimally in a specified period of tin.e, or, more commonly, that the system 
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reach its optinwrn perfun.iance ir. t':.o  minlnua possible titiie.  Thus the 

question of a syste-r bandwiOth, res'onse tir.e, etc., is equally as 

Important as maximizaticn of 3i^n%l-to-noise rctic.  The same disadvantage 

applies to any criterion such as minimization of mean square error which 

has no time constraint included in it.  A disadvantage of setting thresh- 

olding limits and other arbitrary criteria which put bounds upon system 

behavior is that they are arbitrary, and therefore do not necessarily lead 

to an optimum system in the sense that all errors are minimized.  As an 

example, consider the typical specifications and criteria set upon antenna 

system design.  It is common to specify somewhat arbitrarily the beamwidth, 

sidelooe level, antenna jain, resolution capability, and other properties 

of the system.  All these specifications arc actually somewhat crude attempts 

to maximize the rate at which desired information is being acquired by the 

antenna and processed by the systerr..  A contnon requirement is that the 

beamwidth be as narrow as  possible for the specified aperture.  In a search- 

ing radar, if there is a specified maximurr; search time, a narrow beam antenna 

must search at a high angular rate in order to get adequate coverage during 

the specified frame time.  It could very well be that the rate at which 

information is being acquired would be improved by using a wider beam 

antenna and searching at a slower rate.  As another example, it is commonly 

required that the sidelobes cf an antenna be s^all compared to the main 

bean.  In fact, it Is often stated that the ideal antenna should have no 

sidelobes at all.  In the case of ground traccinj, however, information is 

gained through the sidelobes as well as through the main bea.T., and if this 

information could be so processed as to be made useful, the sidelobes mi^ht 
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actually be desirable. 

It is therefore concluded that the optimum optimization criterion for 

any system is the maximization of the information rate at the desired output. 

This is a most general statement, but it is valid, since it is always possible 

In principle to define just what information is desired from the system.  It 

then follows that that system which maximizes the desired information rate 

will be the optimum one.  If the maximization of information rate is to be 

used as an optimization criterion, the optimization must take place subject 

to the constraints which exist on the system.  The most common of such 

constraints is system cost.  There are many types of cost functions: 

dollar cost is just one of them, although most cost functions ultimately 

have some sort of economic basis.  Typical cost functions include size, 

weight, power consumption, complexity of equipment, etc.  Reallbility is 

also of great practical importance.  In general, the system must be optimized 

subject to some upper bound on cost and lower bound on reliability.  Since 

reliability is related to complexity of equipment, it can also often be 

specified as a cost function.  Thus, the proposed optimization criterion 

will be the maximization of information rate suoject to some maximum cost 

constraint where the cost constraint may include any or all of the preceding 

specified functions. 

2.  SYSTEMS EVALUATION 

Note that the proposed criterion subject to constraints is well suited 

to the comparison of or evaluation of systems.  Clearly, two systems can be 

readily compared as to their relative merit, or a single system can be 



\ 
compared   to   the  ti.eoretical  optimura.     The  criterion can  olso  be  used  directly 

for system optimization,   except  that when  the system is  so optiraized,   the 

information acquired  is not necessarilj   in  its most usacle for».     The 

example of the information  availabl; in  the  sidelobes of an antenna system 

illustrates this possibility.    ATso,  the deternination of the  theoretical 

optimum for a certain class of systems   does  not necessarily mean that  such 

a system can be instrumented.     The classical example of problems of this 

sort occurs in the problem of coding.     Shannon has shown that even in a 

noisy communication  channel,  it   is possible   to encode a message  source  in 

such a way  that the  information  rate will approach the  channel capacity of 

the system with the   probability  of error being negligibly small.    Thus one 

need only determine  the channel  capacity of the  system  exclusive of  the 

source  to determine  the  optimum  rate at which information can  theoretically 

be  transmitted.    However,   the  theorem  says   that   it   is  "possible  to encode" 

so as to reach this  theoretical  maximuiB;   it does not specify what this 

optimum code   should  be.     As a matter of  fact, a  practical code which even 

approaches   the optimum has not  as yet  been  devised. 

The aforementioned  difficulties  dc  not affect  the utility  of  the 

criterion for system evaluation  ani comparison.     When the criterion is 

used  for  system optimization,   the  requirement of  m;.xirnum utility  can  be 

imposed as a constraint  on the   system.     For example,  a  constraint which is 

commonly imposed on most  critei i'» is  that  of physical  reaii^ability,   since 

a system which is optimized without such a constraint  may end up by  being 

not physically realizable  and hence not useful.     Another way  around   this 
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difficulty is to specify the form of the sys'-eMi to be used apriori, 

leaving only certain parameters (such as the coefficients in the system 

differential equation) undetermined.  The system is then optimized by 

■axiaising the information rate with respect to the variable parameters 

subject to whatever constraints are necessary.  This approach also has the 

advantage of initially specifying the order of the system differential 

equation and hence the complexity of the system. 

3.  THE INFORMATION RATE CRITERION 

Information content or entropy is a concept that deals with freedom 

of choice.  The greater the number of choices available, the greater the 

entropy.  In the case of a signal which can assume only certain discrete 

levels, the entropy per sample point increases with the number of discrete 

levels possible.  Indeed, if the probability of each level occurring is 

equally likely, then the entropy is simply the logarithm of the number of 

possible levels.  If it were not for the disturbing influence of noise, a 

continuous signal would be capable of being quantized into an infinite 

number of distinguishable levels, even if the overall rar.ge in signal 

aaplitude were finite.  If the minimum distinguishable difference in levels 

is set, and the dynamic range is finite, an upper bound on the entropy is 

set.  The maximum entropy is, therefore, a function of the minimum distin- 

guishable interval where the latter is a function of fr.e si^nal-to-noise 

ratio.  It is very difficult to set any absolute criterion for resolution. 

For example, consider the resolution of two targets by an antenna.  Targets 

-7- 



commonly are said to be resolved if ti.ey are a half-beaiwidth (or more) 

apart.  But this designation is purelj- arbitrary and again depends on the 

sign&i-to-noise ratio.  Such a separation Tay be wholly inadequate for low 

signal-to-noise ratios; conversely targets rnuch closer than this aagular 

separation may be resolved at high signal-to-noise ratios.  Sather than 

attempt to specify arbitrarily some mininum distinguishable interval or 

difference in levelsi a far more sophisticated approach would be to specify 

information content in terms of the probability distributions of signal 

and noise in such a manner that the useful total entropy or information 

rate is, in effect, a function of sigr.al-to-noise ratio.  The total entropy 

is related to not only the sigr.al-to-noise ratio but also tr.e bandwidth and 

time duration of the message.  This can be seen from Shannon Sampling 

theorem which states that the number of samples in the messsje is propor- 

tional to the bandwidth-time product.  The infor.T.ation rate is the total 

entropy divided by the time duration of the message (provided the message 

is quite long).  Consequently the rate is proportional to the bandwidth 

of the signal and the signal-to-noise ratio. There is no absolute level 

of distinguishability in such a definition. The information content and 

rate simply improve as the si^nal-to-noise ratio improves and/or the band- 

width increases.  The classical Shannon corKrunication system is represented 

in Figure 1.  In this system the nature of the source is assumed to be 

known completely (that is, its 5;tatictics are known) .  Tne encoder includes 

the transmitter, the modulator, and whateve: actual encoding scheme is 

*  It is true that when a specific message is trans-nittei its exact form is 
known, however, one cannot design a system for that message alor.e, thus, 
»priori the nature of any mer.sage transmitted by a known source can at best 
be known statistically. 



used preceding transmission.  The link is the actjal transcission channel 

between transmitter and receiver.  The decoder perforrn.ä the inverse 

operation to that of the encoder and includes the receiver and whatever 

demodulating anj decoding apparatus is necessary.  For the systerr.s presently 

under consideration, an appropriate representation will be Figure,2. 

SOURCE ENCODER LINK 

31 
>    DECODER 

| NOISE ~| 

Figure 1. Comouaications System 

► DESTINATION 

[   TARGET k. LINK  ► SYSTEM     | w 

t a 

[NOISE   1 NOISE 

Figure 2.  General System 

In general, sirnal and noise may appear on the input of a syste.-n, where the 

link is essentially an adder, but, different from the classical comttunica- 

tions system in Figure 1, the noise may also be added in the system itself 

as shown. 

5.  LINEAR INFORMATION THEORY 

The information content, or entropy, of a random time function x(t) 

with a (continuous) amplitude probability distribution  p(x)  is by 

definition 

H(x) = - i    pU) /n p(x) dx 
J-ao 

(1) 

.Q_ 
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The entropy     ;:(x}     is   the infarmation  contained   in a  sa.Tiple of    x    at  tixe 

t   .     For example,   the  entropy   of  a   ja.- jlsn   distribution with  variar.ce 

3      and sean  zero   ira ^iven by 

H - i  «n  (2>ieCT2) (2) 

This,   incidently,   is  the maximuffl  entropy per  sample  of all  continuous 

distributions  with  a given variance.     The infcination contained  in  the 

total   function    x(t)   ,   which  is  assumed  to  be of duration    T  ,   is found 

from  the  joint  entropy   function 

H(x1.x2..--,xn)   =  -^        ...   J      p(x1.x2t-...x  ) 
-00 -OD 

n 
la pU.. .X;,,".^  )    n      dx. (3) 

12 n    i-1        i 

where the subscripts denote the instants of time at which the samples are 

taken.. If the time function has a finite frequency banJwidth  B , 2TB 

samples will completely represent the time function.  It is important to 

recognize that a function of finite duration cannot have a Fourier transform 

which extends over a finite domain, so that the sampling theorem 

TB 

c(t) - I , . -> sin (23t - n) ,, v 
x(nto;)   (2Bt - n) (U) 

n«-TB 

is only an approximation to the true x(t) .  T.Ms approximation is very 

close when the function ftr.J its transform fall off without abrupt discontin- 

uities (e.£., the Gaussian function),  equation C») therefore represents a 

Actually  2T3 ♦ 1  samples are neeie !, but  2T3 » 1 ^ 2T3 for TB »I . 
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function whose principal spectral energy lies in an audio oand of width 

T 
B .  Note that if x(t)  is of duration T , aporoximately — = 23T 

to 

samples are needed to completely define the function.  If the samples 

x(t.) = x.  are statistically independent, Equation (5) becomes 

«total 3 "(VV'-V ■ 
p0"      p00   rn 1n 

••• !   in n p(x.) n.  p(x.) dx. 
J_aB   '-CD ""j.!   J  i.l  x   1 

n  .« 

>1 " j-1 

(6) 

In this case, the total entropy can be found by adding the entropies at 

each sample point.  If  p(x)  is stationary in time, the entropy at each 

sample point is the same, ana  the total entropy is simply the entropy per 

sample times the total number of sample points.  The successive samples 

will be uncorrelated if the spectrum of the signal is flat over the 

specified bandwidth.  Zero correlation implies statistical independence for 

most distributions of interest, such as the Gaussian distribution. 

Information rate is defined as 

_  ,.   total ,n\ R ■ lim —=  w) 
T-KD 

where    H.        .     is  the  total  entropy of  the signal    xvt)     of duration    T  . 

If  the  successive samples  are   independent  and   the   process  is  stationary, 

then,   from Equation  (6) 

R - lim    | 2TB H(x)   » 2B K(x) (8) 
T-flD 
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Under  these  circumstances,   tne   inforrroit ion  rate  can   oe  tt.ou^ht  of  as   the 

entropy  per saaple  times   the  number  of  .lainples  per second. 

The   "useful entropy" at   the  receiver is   the  received  entropy    H(y) 

less  the received conditional   entropy     H(y'x)     where  the distribution of 

received signals    y     depends  on the   transmitted signal    x   .     By  definition, 

OP 

lUy'x)   - - JT    p(xfy)  in  p(ylx)  dy dx (9) 

- OD 

where p(x,y)  is the joint distribution of x and y and p(y'x) is 

the conditional distribution of y given x . The useful entropy is then 

Hu - H(y) - H(ylx) (10) 

It can  be shown  that    H(ylx) -• 0  ,   or    H    -• HCy)    when    x    is  linearly 

related  to     y    and  that     H(y|x) -• Si(y)     or    H    -• 0    when    x    and    y    are 

Independent,     y    will  differ  from    x     because  of noise and distortion,   so 

that  the useful entropy  decreases with  increasing noise.     The concepts  of 

useful  entropy and  its  time  rate of  change,  called  "information  rate", 

«re very important.     In  this  report,   the  system  is  said  to be optimized 

when  these  quantities  are maximized  on   the output.     It  can  be  shown  that 

H(y|x)   - H(N)     if    x    is   the  sum of signal and  noise     (x » S   + N)     and 

the signal  and noise  are  independent  and   that     H(y)   =  K(x)     to within an 

additive constant  if    y    and     x    are   linearly  related.     If    x    consists 

of the  sum of independent signal    S     and  noise    N     then the useful  entropy 

at the  receiver  is  the si^nal-plus-noise  entropy less  the  noise  entropy, 

or 

HU  -  HS*N  - S ^ 
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The useful  information rate  at   the  receiver  1.3   then 

H «  2B(HC  „  - H„) (12) S+N N 

The maximum rate« or "channel capacity" for a given average transmitter 

power P„ and noise power P„ is achieved when both the sijnal and 

noise are 3aussian and independent.  From Equation (2), Equation (12) 

becomes 

C x B   » 23 i {/n [2ne(Pc+Pu) 1 - in (2aePM)]- 

- B in Tl * ^ (13) 

where  "C" is the "channel capacity".  Equation (15) is one of the most 

widely used (and misused) formulas in information theory.  It is strictly 

valid only when:  (1) the nijnal is Gaussian, (2) the noise is 3aussian and 

additive to the signal, (3) the noise and signal are statistically independ- 

ent, Cf) all processes are stationary, and (5) the signal, noise, and 

signal-plus-noise spectra are flat and United to band B.  Equation (13) 

illustrates one of the advantages of the maxinization of information rate 

over the maximization of si^r.al-to-noise ratio and related criteria. The 

rate or channel capacity is clearly proportional to the si.^nal-to-noise 

ratio but it is also proportional to the modulation bandwidth 3. Thus, 

maximizing the information rate mfeximizes the sisjnal-to-ncise ratio 

subject to a restraint on system msduLation bandwidth or response time. 
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Equation (13) is an example of the calculation of information rate. 

In the work which follows, sore complicated expressions will have to be 

evaluated.  The more complicated expressions arise because the restrictive 

conditions mentioned following Equation (13) are no longer satisfied. One 

of the principal complicating effects when information theory is applied 

to system design is that of filtering. 

5.  EFFECT OF FILTERING ON ENTROPY 

Even if the time samples are independent at the input to filter« 

they will in general not be independent at the output, since filtering 

produces a non-flat output spectrum.  Only in the special case where the 

filter attenuation characteristic is flat will the output time samples 

remain independent.  The joint entropy on the output is, therefore, no 

longer the sum of the marginal entropies, and the entropy per degree of 

freedom is difficult to find.  It is possible to find the entropy for a 

particular time sample, and if the output process is stationary (which 

it will be only in the steady state) the entropy at each sample is the 

same.  The total entropy is not the sum of the entropies at each sample 

point, however, since the successive sample values are not independent. 

As aa example of such a calculation, suppose x(t)  is Gaussian with 

mean zero, and spectral density and u(f)  is the unit step function 

Sx(f) = wo TuU+B) - u(f-B)l (Ik) 

Let x(t)  be the input to a linear filter whose transfer function is 

T(f) .  The output y(t)  will also be Gaussian since a linear operation 
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on a jaussian variabl« jie'.is  a Sausslan variable.  The output spectral 

density is 

3y(f) = 3x(f) |T(f)|2 (15) 

and the  output variance  is 

'/" J     Vf) df = J     ax(f)   lT(f)<2 df ■ wo I    l^fH2 df (16) 

The variance  of the  input  is 

2     p00 rB 

a    »  I      3 (f) df = w     '    df » w B (I?) 
x      j x o .i o o o 

The difference between the input and output entropies is 

2 

H(y) - H(x) « J in ( -^"J (18) 

Substituting Sqaations do) and (17) in Equation (18), 

H(jr) - H(x) ♦ | in [ |J lT(f)|2 df] (19) 

Equation (19) is the entropy far a particular time sample.  It is not the 

average entropy per sample except for special caöes and t:.u3 will not 

yield the total entropy when multiplied by the number of samples. To 

find the average entropy per sample for an arbitrary filter, it iö more 

convenient to consider frequency ra'her tr-an *,irre sömplin^.  The tr.'-nsforr.a- 

tion between frequency and time s-mrling points is ortho.Tonal, hence the 
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Jacobian of the transforxa-ion has the absoiate value of unity. Gince 

the difference between the entropies of two variaoles related oy a linear 

transformation is sirnply the logarithm of the absolute value of the 

Jacobian, it follows that the joint entropy ard/or total entropy of the 

function is the same whether expressed in terras of frequsncy or time samples. 

The entropy per degree of freedom after frequency filtering can, therefore, 

be calculated from the effect of frequency filters on frequency rather 

than time samples.  This greatly simplifies the calculation of the output 

entropy, since the relationship between input  (x) and output  (y) 

frequency samples is the simple product 

Y(ju)) = T(ju) X(ja) (20) 

The  frequency samples at   the filter output are independent since multiplica- 

tion of   the  input  variables  by  a  nonrandom  function doe:;  not   affect  their 

Independence.     If  the  frequency   saraples   are  stationary   in  frequency as   well 

as  independent,   the   total  entropy  can  be   found  by   simply  multiplying  the 

average  entropy  per  sample  by   the   total  number  of  samples.     Although 

X(j(ii)    may be  "stationary  in frequency,"    Y(ju)     is not  in general.     The 

term "stationary  in   frequency"  means   that   the   probability  distribution  of 

amplitudes  in  the  frequency  dor.ain  is  not  a   function of   the  origin  in 

frequency.     Equation  (26)  car. be used  to  generate  a set  of linear equations 

relating    Y.     and    X.   .     The successive  saraples are   independent,   so  that 

the  total  or  joint  entropy   is   the  sum  of   the  entropies,   and   the  entropy 

per degree of  freedom,  is   this sum divided by 2TB. 
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It can be shown that the Joint entropy after filler inn; is related 

to the joint entropy before filtering by 

TB 

H(Y1, Y2, ••• t^) « H(X1, X2, ••.. X^) + ^ ^n ITUJC (21) 

i=l 

Note that the upper limit on the sum is T3 rather than 2T3 since of the 

2TB independent samples needed to define the function,  TB are associated 

with the real part and TB with the imaginary part.  Since the samples are 

independent, the average entropy per sample is 

HU., Y , •.., Y  )    5 H(Y ) 
H(Y) - —i—^ 2L = y  L. 

L 2TB 
i.l 

2TB 

TB H(x j       TB 

'I -2T5- + 2fe  Iin ^^ 
i-1 i=l 

(22) 

If TB » 1, the frequency samples are equally and closely spaced in the 

band B.  Let 

.r.i (23) 

TB 

H(Y) . (H(X) + 2^ T I /n '^V'2 af 
i-1 

,  ,3        , 
H(X) + ^  ;  'n |T(f)r df 

" o 
(au) 

i 
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Equation (,2U)   actually represents the average entropy per degree of 

freedom on the output, where a "degree of freedom" refers to either a 

time sample or a frequency sample! since the average entropy per sample 

Is the same for both types of samples.  It is interesting to compare 

Equation (Bk)  with Equation (19).  in general, these two results are 

different, since the log of the integral is not equal to the integral of 

the log.  In the special case where the filter characteristic is constant 

across the band B the two are the same, however. 

Note that the successive input time samples are independent if the 

power spectral density of  x(t)  is constant over B.  In other words. 

Gx(f) " f |^T Cx(t)1 | = vo  ^(f+B) - »U-B>3 (25) 

where  w   is a constant.  This condition is sufficient to insure that 
o 

samples spaced  t  = — apart be uncorreiated.  Likewise, the successive 
O    tdü 

input  frequency samples are   independent   if   the   power spectral  density  of 

X(f)     is constant over    T  .     In other words. 

(26) Gx(t)  - | | ^g-1   [XCf)] |      = w^   [u(t+T)   - u(t-T)] 

If Equation (26) is satisfied by x(t) , the frequency samples spaced 

f    m —    apart are uncorreiated. 
o   i 

Let us now consider the case where the average power for X(f)  per unit 

time interval is constant but where the amplitudes of the frequency spectra 

of both signal and noise are non-flat. Since successive frequency samples 
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are independent in this case, out the process is not stationary in 

frequency, the total entropy will be the suai of the entropies contrib- 

uted by infinitesimal frequency bands over the bandwidth B .  If a non- 

flat Gaussian signal 3(f)  is added to independent non-flat Gaussian 

noise N(f) , the useful entropy at the output of the adder at a" particular 

frequency  [X(f.) = SCf^ + N(f.)] will be 

ul 
'I 

H(Xi)  - H(XiISi)   > i /n (^ 2 
i    ^ (27) 

where 

VSi  "Ni- Wl (28) 

fff    = G   (f.)  | x   [G  (f.)   + G   (f.)] | Xj^        xi2 si ni2 

where the capital letters refer to frequency sampies and the lower case 

letters to time samples.  G (f), G (f), and 3 (f)  are the frequency 

spectral densities for the time functions x(t) = input,  n(t) = noise, 

and y(t) = output, respectively.  Equation (27) becomes 

,     a (f.) 
H (X ) = i in (1 + f^) (29) 

n i 

To get the total useful entropy, the sum must be taKen over the total 

number of frequency camples, which is 2BT.  Thus, 

Hu total = Hut a   Z    I <n C1 * cTTTV (50) 

i=-BT n     1 
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Now let  T approacr. infinity and £f  approach  0  in such a way that 

TAf « 1 (31) 

Now that we have an infinite number of samples of infinitesimal separation, 

the sum will approach an integral as follows: 

Hut " I I in C1 * (TTTV Af 
i-BT        n 1 

T ^B   r      G8(f)> 

—a        n 

The average entropy per frequpncy sample is then 

—B        n 

Observe that if the signal and noise spectral densities are constants 

given by 

G.(f) - S„ B O 

G (f) = N (34) 
n      o 

then equations (32} and (33) reduce to, respectively, 

Hut -1 f R ^ C1 + r>df -B? 'n C1 + te (55) 
—D O O 

3 
Hu " I in C1  * FT) (56) 
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Equations (35) and (36) are the results wnich  would have been obtained had 

the spectra been flat to be^in witn.  Mow consider the situation depicted 

in Figure 3 

S,+n(t) 

T(s) 

-BN  -BS 

So tNo 

Bs  BN 

Figure 3.     Signal and Noise Spectrum  for Simple System 

where    T(s)     is a linear filter.     Let  the signal,  S   ,  be Gaussian with 

mean    0    and spectrum    S.    over a bandwidth  from    -Bg    to    Be    and let  the 

noise,  N,  be Gaussian with spectral density    N-    over the bandwidth 

-B„ to  Hj.,  where 

|BSI  <   |BN| 

The total entropy at x will be 

(37) 

Hut(x)   .  Ht(S+N)  - H (N) 

B0T In  [2:te(a,2-K7M
2)i *  (3M - Bc)  T£n [Sn« ff„2T S S    N N S N 

BNT in  [2^e3N
2] = BgT ^n (l  + -^ (38) 
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■■■, — 

where 

ff = variance of a signal frequency sample 

ffj. » variance of a noise frequency sajnjle 

Notice that the useful entropy at x is exactly the same as if B = B . 
n   s 

Thus, so long as Equation (37) is satisfied, the useful information 

contributed by the noise alone is 0 .  This is in keeping with the con- 

cept that the noise contributes no useful information. Now linear 

filtering is a linear transformation on the frequency samples, and the 

useful entropy is invariant under linear transformation .  According to 

Equation (58), the total entropy is independent of the noise bandwidth so 

long as it is greater than or equal to the signal bandwidth.  Thus, if 

maximization of entropy is to be used as the optimization criterion to 

determine the bandwidth of the transfer function T(s) (assumed to be a 

square filter), there is no constraint on its bandwidth except that it be 

greater than or equal to the spectral width of S.  This conclusion is a 

direct contradiction to the conclusion that would be drawn from the mean 

square error criterion, which says that the transfer function spectral 

width should be exactly equal to 3c  so as to maximize the si^nal-to-noise 

ratio at y .  This is a very good illustration of the difference between 

control and information theoretic concerts.  The control arjjument says 

make the average si^nal-to-noise ratio per frequency sample as great as 

possible and maximize the overall power siTn-.l-to-noise ratio on the output. 

F.M, Beza, An Introduction to Information Tneory, Kc3raw-Hill, 1961, p. 277. 

-22- 



The information theoretic approach sayr.   that it is unnecess'-ry to Jo tr.is 

—- that all that ia required is that the total information be passed. 

Thus, although the average signai-to-noise ratio per frequency sample is 

smaller the larger BN gets relative to B  , the larger the number of 

samples, so that the total average information remains the same.  The 

fact is that the information is in a more usable form if B = B„ .  But 

the information is indeed available if condition 37 is satisfied.  It 

also specifies what that, maximum availaole useful information is.  It 

will be shown in later reports that tne condition of noise at the output 

of the filter does cause an interaction between the transfer function 

TCs) and the output, or receiver, noise.  Under these circumstances, the 

useful entropy is indeed a function of the transfer function T(s) . 

Information theoretic concepts may be applied to the optimization 

of feedback and servo system design.  A general servo system block diagram 

appears as 

r|=r+ n 
 Kg)  Gc (s) 

u 

G,(s) 

is) 

4^ ->c 

Figure '♦. Typical Servo Block Diagram 
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where  d(t)  is load disturbance, n.Ct)  is measurement noise or internal 

amplifier noise, n is noise at the input to the servo and r is the 

desired input signal,  r. = r + n is the total input signal.  c(t)  is 

the servo output.  Internal sources of noise such as d(t) and n.Ct) 

affect the output information rate at c in such a way that the servo 

transfer function is related to d(t)  and n.(t) . The output entropy 

or rate is dependent on the servo transfer function in this case, and the 

system may be optimized by tnaxinizini; the output rate as a function of the 

variable parameters in the servo transfer function.  The open loop transfer 

functions are Q (s) , the series compensator, G.Cs) , the plant, and 

HCs) , the shunt compensator.  In the case where d(t) and n, (t) are 0, 

however, the output entropy of c is independent of the servo function 

and is simply equal to the input entropy at r. .  If the servo is to be 

optimized with signal and noise only on the input and no constraints on 

the system, the optimization by the mean square error criterion is the 

Wiener problem.  Let us replace the servo in Figure 4 by the simpler 

structure in Figure 5. 

r + n 
KG (s) -► c 

Figure  5.    Simplified Servo Block  Diagram 

The error is  defined  as 

KGr 
e " r-c " r " ITKS = r-rri (39> 
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where 

KG 
1+KQ CfO) 

r.  ■ r ♦ n (kl) 

The spectral density  for  the complex variable    s    is defined as 

0(s)   =  lim    2 F(s)F'(5) 
lk2) 

T-OB 

where F'Cs) » F(-s)  and where the bar or overscore denotes an ensemble 

average.  The corresponding spectral density in the real frequency variable 

u) is defined as 

a(f) - lim  |  lF(j(ü)|2  where - | < t < | 
T-OD  1 t ~      ~ * 

(43) 

Fro« Equation (39)i the spectral density for e is 

0      * 0      + FF'0 - 0      F' - 0  F 
ec  ^rr     rlrl   rlr    rrl 

(hh) 

The optimum closed  loop   transfer  function can be  found  by satisfying  the 

following equation 

!5 
^F 

ee 
1   ^r! "r^ (45) 

where  X,  is analytic in the left half plane and on the imaginary axis. 

Let 

ZZ*  * 0 =0  + 0 * 0      * 0 (46) r^r^   rr   nn   rn   nr 
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and 

then 

0   = 0      * 0 
r^r  "rr  ^nr 

FZZ» - 0   «X. 
rj^r   1 

(47) 

CtS) 

F by definition must have poles and zeroes only in the left half plane or 

on the imaginary axis since it is to be a stable closed loop transfer 

function.  Z by definition has left half plane poles and zeroes only, 

so that  Z*  has right naif plane poles and  zeroes only. 0 may have 

both left and ri3ht half plane poles and zeroes, but may be expanded into 

a partial fraction expansion such that 

where 

and 

0   « (0  )  + (0  ) 
r^r    rlr *+ rlr ' 

(0  )  has poles in the LHF only 

(0  )  has poles in the RHF only 

(h9) 

Rewriting Equation (U8) so that terms having left half plane poles only 

are on the left half side of the equation and terms having ri-jht half plane 

poles only are on the ri^ht half side of the equation, we have 

" - fe. ■ % • &o. (50) 
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The only way  that  both  sides  of Equation   (50)   can  oe  equal   to  each  other 

is if  they are  equal   to a constant and  it  turns  out  that constant must  be 

equal  to zero.     It therefore   follows  ti.at  the solution for    F    is 

■ I (rF")++ 
(51) 

Equation (51) yields the optimum closed loop transfer function for 

minimizing the mean square error, and when this function in Equation (51) 

is substituted bac'K into Equation (^4), the least mean square error results. 

The condition for physical realizability of the transfer function has been 

inherently included in this development. 

Unfortunately, the foregoing procedure does not seem to be feasible 

for the technique of maximization of information rate with respect to the 

variable parameters of the system.  For one thinj, the variable parameters 

of the system are unknown in the Wiener problem and are specified only 

after the optimization has taken place.  In the second place, the information 

rate criterion involves the bandwidth of the system, in this case, the closed 

loop bandwidth of the servo, which is specified only if the form of the 

transfer function is known, but is unspecified in the «iener problem.  It 

therefore follows that the optimization must take place after the closed 

loop transfer function and the open loop transfer function have been 

specified as to form.  This procedure has the advantage that thj complexity 

of the system can be specified by specifyin- the older of the differential 

equation describing the system before the optimization takes place.  From 

Equation (39), the mean square error can then be written as 
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« • 7-577 (r ■•■ n; » . „,, - -r-TTT;  = Ar - Fn (52) 

/. Ge(f) . lACj«,)^ Grr(f) 
+ ^(j^)» G^Cf) (53) 

since the signal ana noise are independent. The mean square error is then 

2  r* *   -      a it) df (54) 
Jo  e 

and this mean square error is then minimized with respect to the variable 

parameters of the system by taking partial derivatives of the mean square 

error with respect to those parameters and setting them equal to zero. 

This procedure yields the optimum set of parameters in the mean square 

sense. 

For the Wiener problem, the total useful entropy and useful rate on 

the output of the servo are the same as that on the input, since the closed 

loop servo is simply the equivalent of a linear transfer function. Therefore, 

this procedure does not yield any way of optimizing the closed loop transfer 

function in an information theoretic sense.  It will now be proposed to 

define the minimization of the useful entropy of the error as the optimiza- 

tion criterion rather than the maximization of the useful entropy of the 

output in order to get an  information theoretic criterion which is closer 

in both form and concept to the mean square error criterion. The minimiza- 

tion of the information content or rate of the error criterion is, to the 

best of our knowledge, completely new.  The following argument shows that 

it can be justified on fundamental grounds.  The proposed criterion is 
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similar to the mean square error criterion and leads to similar results 

when the probability distribution is Gaussian. The criterion, wr.ich is the 

minimization of the useful entropy 

Hu{e) . H(e) - H(e|r) = H(r) - KdHe) (55) 

is particularly useful when used with nonlinear systems, since a non- 

linearity results in a non-Gaussian distribution even when the input is 

a Gaussian distribution.  A probabilistic criterion, such as that in 

Equation (55)« takes into account differences between the signal and the 

noise in moraents higher than the second, and thereby produces improved 

discrimination over that which would be provided by the mean square error 

criterion alone.  The error is defined as 

c = r-c (56) 

Ideally the error should go   to aero so that  r = c . The correlation 

between the error arui the signal input (all means assumed zero) is then 

er ■ r^ - re (57) 

In the ideal situation where e = 0 , 

er x r^ - r2 = 0 (58) 

Thus if e  and  r are uncorrelated and the distribution is such that 

they are independent, 
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H(e|r) = H(e) (59) 

and 

Hu x H(e) - H(c'r) = K(e) - H{e) = 0 (60) 

Equation (60) leads one to the logical conclusion that the system will be 

optimized if the useful entropy of the error is minimized. It is also 

interesting, to observe that the servo error must be simply the noise on 

the input in the ideal situation when e  in Equation (56) is zero.  The 

"servo error" is defined as 

«■r, -c«r+n-c (6l) 

Ideally,  e ■ r - c = 0 and 

e . n (62) 

The basic conclusions in Equations (56) through (62) do not take into 

account the physical realizability constraints.  When this constraint is 

taken into account, the mean square error criterion yields a Wiener filter. 

When a servo is optimized in the Wiener sense, the servo error is white 

noise  . This conclusion is illustrated in the following example (refer 

A2 
to Figure 5):  Let 0  = —=—-    and 0  «1 a 'rr   2 2       nn 

«* +a 

H.   E.   Kaiman,   A New   Approach   to  Linear  Filtering  and   trediction  Froblons, 
Trans,   of   the   ASXE,   March   I960,   pat-e  Ü2,   item  m. 
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Then 
2  2 .2   2.2 .    ,  . 

<fi m  ZZ     •  —5 :— « -r r w.-iera  b  = a f« r-iri 2 2     2 2 
i J- j) +a u »a 

3+a 

F , i /<Z,^^^    s+_a <  _ _A (-e+a) 
2 Z      Z'    *r  '  s+b V(-si-a)(stb)(-3+b)>++ 

= (a»b)(s+b) " i ~ i+Y 

But  e . ir-^r  = r.d-F) and 0  =0   (l-FKl-F') = 0   (l-F-F1 tFF') 
l+i   1 ee   r^r^ rlrl 

2       b   ii 
where  LF . (aTb)^;b)AA   =        h

a^ 
la+bKs+b; s+b 

2 A2   2 2 A2   2 

_ 2 , 2 a +(b  - —-) -j  +(b  - —r) 
0      = (Zf ll-Fl2  = V^  5    T =  5—1^ ee riri 2    2 2 . J; 2    2 

•'•  * u)  -t-a ui  ♦o u)  +a 

.2        v , 2   ,2       , 2 
_   .     . A ba  +  b  -A oa  +  a 
But     b -  —- =   r  =   r— = a 

a+b a+b a-»-b 

:. 0   .1*0 
ee nn 

or  the  servo  error  spectrum  id  white  noi.-se,   and   in   this  case,   has the   sarr.e 

spectrum as  the   input  noise. 

Note   that  Equation   (59)   implies   that 

c | |r    or    r-c   | |r  (the  symbol    _|_[ means  "is  independent   of") 

.'.  er.   ■  [(r-cKn]  [r*n]   = n(r»-n)   =  n r  -^  n^ - n^- (63) 

Thus,   the  correlation   function  reiatin.-   the   input  signal   plus noise  an-;   t:.e 

servo  error  at   the  sa.T.^   inötar.t  of   time   is   found   to  be  simply   the rr.ean   noise 
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power.  This agrees with the conclusion in Equation (6^).  Equation (63) 

suggests that the criterion in Equation (55) will lead to a result similar 

to that found for Wiener optimization when the physical realizability 

constraint is included.  A necessary and sufficient condition that the 

error be minimum in the Wiener sense is that the signal and the error be 

orthogonal to (i.e., independent of) each other .  But, as has been pointed 

out, this is exactly the condition asked for in the proposed criterion, 
■ 

that is, that 

H(r|6) . H(elr) . 0 (6*0 

Returning to the problem of minimizing the information content in the error 

defined in Equation (52), let 3 (f)  be the spectral density of the error 

and ^Ll-^)  b® the spectral density of the error conditioned on r . 

Then from Equation (32), the total useful entropy is 

Hut - i J.B
in Or77fT> (65) 

providing the input signal and noise are Gaussian sind independent and the 

system is linear.  Since r  is independent of n , the conditional mean 

of e  given r is 

cjr » Ar (66) 

.*. e - elr « - Fn (67) 

and 

aelr(f) " 'r<>)'2 Gnn(f) (68) 

ibid 
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where the mean of the noise is assumed to be zero.  The total entropy in 

Equation (57), where G (s) is defined in Equation (53) and G , (f) is 
c e ir 

defined in Equation (68), is then maximized with respect to the variable 

parameters in the transfer functions by taking the appropriate partial 

derivatives. 

It is illustrative to illustrate the mean square error approach and 

the maximization of the useful entropy of error approach with a sir.ple 

example. Let Q(s) be 1 in Figure 5 so that we are trying to optimize 

a simple positioning servo. K is then the parameter to be varied to yield 

the optimum.  First consider the mean square error approach. 

1*K 1+K (69) 

or 

—    —   2 2 2 .2 2  _2 2  r +K n 1 r + Fn «  r 
(1*K)2 

ae2  (l+K)2 • 2Kn2 - (r2+K
2n2)2(l+K) 

(70) 

•sir = 0 
(1+K) 

(1+K) Kn2 = r2 + K2n2 

n 
(71) 

According to Equation (71), the mean square error is minimized when the 

servo gain is equal to the power signal to noise ratio.  Let us now proceed 

to do this same problem by the minimization of total information or informa- 

tion rate of the error criterion. 

. 

1 
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Let 

„2        2       .2 2      _2 2 a    = c    «Ar    + r n 

--/, ff-7ie " (e - e'r)2 ■ ^ 

»2    2 A    r !ut  - Bf in (l  + -l-J) . 3T in (1   > ^ S^ 
M eir F   nc 

2      rZ 

T     - = 

(72) 

(73) 

(7^) 

(75) 

The information  rate is  then 

»--^i.BXn c-e (76) 

Assume that Equation (69) holds only over the servo bandwidth and that the 

closed loop servo bandwidth increases linearly with gain K .  This is very 

nearly the case in practice.  The rate in Equation (76) then becomes 

2. 
H - f K in f 1 + ^^ where 3 = f K o    V   K2y o 

14JC 
4>" 

(77) 

or 

in C1 ♦ ¥)■ „2 2 
K ♦Y 

For K large, in Q.  * ^J^)^ 1 It— 
IT2    If2  2 

K   K +Y 

or 

K - Y ■ J =5 
n 

(78) 
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Notice the close similarity between solutions in Equations (71) and (78). 

This example illustrates the similarity between the two approaches and 

suggests that the two approaches can be expected to yield similar results. 

In the forthcoming period, research will continue along lines of investiga- 

tion into various optimization criteria.  In particular, the approaches 

investigated during the past period will be considered further.  Both the 

criteria of maximization of information rate at the outpit and the minimiza- 

tion of information rate at the error will be considered for more complicated 

systens, particularly those involving noise entering at points other than 

at the input.  So far only the unconstrained or Aiener case has been 

considered.  Extension of the information rate maxiTiization criterion to 

constrained cases will also be considered.  Ultimately it is hoped to 

develop an extensive optimization of information rate theory analagous to 

that presently existing for the mean square error criterion. 
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PART II. 

ESTIMATION AND OPTIMIZATION OF NONLINEAH DYNAMIC 
SYSTEM PARAMETERS BY RB3RESSION ANALYSIS METHODS 

1.  INTRODUCTION 

Modern theories of control are generally based upon an assumption 

that an accurate quantitative model for the object being controlled is 

available. There are many practical situations in which this is not the 

case.  In such circumstances, it becomes necessary to devise a computational 

procedure which will permit the inference of a mathematical description for 

the controlled object from records of input and output.  This problem has 

been attacked with considerable vigor and substantial success by a large 

number of investigators for the important but restrictive class of systems 

possessing the properties of linearity and time invariance [l, 2, 3t  ^l     . 

In comparison to the linear problem, little progress has been made 

toward a practical solution of the more general problem of "identification" 

of nonlinear dynamic systems  .  While a very broad theory for nonlinear 

systems has been advanced by N. Wiener, certain rather serious computational 

difficulties inherent in his formulation have retarded the application of 

this theory to real physical systems [6, 7, 8].  The difficulties encountered 

in attempting to make use of the Wiener theory seem to arise from the very 

generality of his approach.  Wiener assumes at the outset that a state of 

complete ignorance exists concerning the nature of the object to be identified. 

This is rarely the case when real physical devices are under consideration. 

In a great many situations, basic physical theories permit the construction 

In this document, superscript numbers refer to footnotes, while bracketed 
numbers correspond to the list of references collected at the end of the text. 

The term, "identification", appears to have been coined by L. A. Zadeh to 
describe processes which seek to Infer a mathematic description for a dynamic 
system from input and output data [3]. 
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of a parametric  model of  finite  dimensionality  for  the system under Investiga- 

tion and  it is only  the numerical values of parameters which remain unknown. 

A simple example of a parametric model is provided by  the equation 

for the motion of a damped pendulum.    Straightforward summation of moments 

yields the equation 

10 . - Hgi sin 0 - BO (l) 

which can be normalized to 

CpO ♦ c.6 + sin 0=0 (2) 

The determination of c. and c,  along with two initial conditions 

completely identifies this system  .  A more intriguing example for which 

a parametric model exists can be obtained by considering the equations 

describing the atmospheric re-entry of a ballistic vehicle.  In this case, 

nonlinear trajectory prediction becomes possible if the important vehicle 

parameters can  be obtained in a sufficiently short period of time.  Cther 

situations in which paranetric models exist are not hard to imagine. 

When an appropriate parametric model for an unknown systen has been 

established, then, if the system is to be Identified by a process of parameter 

estimation, it becomes necessary to state an explicit criterion for the 

adjustment of the model to match the data.  A criterion which has been 

widely utilized in linear problems is the integral-squared error function 

In the discussion to follow, a set of such coefficients and initial 
conditions will be called a"parameter vector" and will be denoted by the 
symbol«  c . 
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evaluated over some interval of operation.  Specifically, let y(t;c) 

represent the theoretical or model response for a npecified set of parameters, 

c .  Then if the true parameter vector is indicated by c  , the observed 

response will generally consist of the theoretical response plus an error 

tern; i.e., if y (t)  is the experimentally observed system output, then 

yo(t) . y(t;co) + e(t) (3) 

where  e(t)  represents an error function.  This error may be due either to 

measurement error, noise internally generated in the system under study, 

imperfections in the assumed model, or possibly a combination of these and 

other effects.  In any event, the integral squared error function is given 

by 

T 
^(c;y ) - I ^(t) - y(t;c)"P dt CO 

o 

A "least squares" estimate of the true parameter vector,  c  , can be 

obtained by finding a vector, c  , such that 

■f 0i*\yo) - 0(vyo) (5) 

Estimation of nonlinear system parameters according to this criterion forms 

the basis for the research to be reported in the following discussion.   The 

inference of mathematical models from experimental data based on such estima- 

tion will be referred to as the "parameter space method". 

Most of the remainder of this study is concerned with the development 

*n explicit computational technique for the achievement of the desired least 

squares estimation of nonlinear system parameters.  The particular procedure 
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to be described is derived from the methods employed in classical statistics 

for the estimation of linear system paraceters; i.e., from the subject of 

"linear regression analysis" [9].  However, before continuing the discussion 

of computational procedures, it is worthwhile to note that the problem of 

parameter estimation is very closely related to the problem of parameter 

optimization.  If, for example, the desired response of a network and the 

form (possibly nonlinear) of the network sure both specified in advance, then 

adjustment of the network parameters to obtain an approximation to the desired 

response which is "best" in a mean square sense is essentially the same 

problem as the estimation of unknown system parameters [10].  While the 

discussion to follow will use terminology consistent with parameter estima- 

tion, the results obtained translate very simply into parameter optimization 

problems. 

2.  LINEAR REGRESSION ANALYSIS 

2.1 Least Squares Estimation and Norrral Equations 

In the preceding introduction, a parameter space characterization of 

dynamic systems was proposed.  It was suggested that a very general method 

for estimating unknown parameter vectors could be based upon the minimization 

of an integral-squared error function defined over the parameter space.  In 

classical statistics, a very similar problem is treated under the heading 

of "regression analysis".  In regression analysis it is assumed that a finite 

number of measured values of a variable, say y(t.;c ), are available.  It 

is further assumed that there are raniom errors included in the experimental 

values for y ; i.e., the variable actually measured is 
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y0 - y(ti;co) + c± i = 1,2,3 ••• N (6) 

The objective of regression analysis is then to determine a vector, c  , 

which estimates the true parameter vector, c , by making use of the 

theoretical response function, y(t;c) . This estimation is conveationally 

accomplished by the ndnimization of sum squared error; i.e., if 

N 

aC?;y0) =■ £ Cy^-yU^c)]2 (7) 

then 

i-1 

uf a<c5yo) - ^V^ (8) 

where y  is an N dimensional vector composed of the N  time samples of 

y0(t) . 

The minimization of integral squared error discussed in the above 

introduction may be cast in the form of regression analysis by approximating 

the integral by a sum.  That is. 

T 
0(c;yo) - J [yo(t) - y(t)]

2 dt 
o 

N 

ta }      LJ W, I   ~   3\T-= '}      Ät l  Cy^t,) - y(ti>r 
i«l 

N 

I SX-y,!2 (9) 
i«l 

Since the N time samples of either y  or y may be regarded as N 

dimensional column vectors, then, except for a scale factor, 0  is just 
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an Inner product. Because minimization of 0 is unaffected by a constant 

scale factor« it will be assumed in all that follows that T/N ■ 1 . This 

being the case« if an error column vector is defined by 

then 

• - y0 - y (10) 

0(c;yo) * e' e (11) 

if 
where the prime denotes a transpose  .  In the remainder of this investigation« 

0 will be redefined so that equation (11) is exact; i.e.« least squares 

estimation will be based upon the sum-squared error rather than the integral- 

squared error function. 

When the theoretical response function«  y(t;c), depends linearly upon 

the parameter vector,  o « the minimization of sum-squared error is partic- 

ularly simple.  In such circumstances« the N dimensional vector of samples 

of y can be written 

y 3 A c + e (12) 
o     o 

where A is an NxM matrix of coefficients and e  is a random error 

vector  .  The function 0    may be written in this case aa 

C(c;yo) - (y0-Ac) (yo-Ac) 

- e e (13) 

Note that there are two sources of error which contribute to 0.  There is « 
firs^ of all, the difference between ^y and y0 which results from the fact 
c / c0.  Secondly« the random error, E « causes 0 to be greater than zero 
even when c ■ c0 . 

5 
The elements of  A are usually known or measured values of independent 
variables or functions of independent variables.  A constant term may be 
included in this equation by choosing one column of A such that every 
element is equal to one. 
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which is a positive  definite  quadratic   form in   the  coordinates of  the  trial 

parameter vector,  c   .     The unique minimum value of    0    aiay  be found,   there- 

fore, by equating to  zero all of the  partial  derivatives of    0    with respect 

to  the components of    c   ;  i.e. 

0 « yoyo - yoAc  - (Ac)  y     +  (Ac)   (Ac) 

so 

and 

»yy    -2c Ay    +cAAc 'o'o 'o 

2%  *   10   m   -   Zky      ♦   SA'AC 
5c 'o 

ilk) 

(15) 

äc i c  ^ e 
2A y    +  2A Ac     =0 

'o e 
(16) 

This equation  reduces   to  the  standard  "normal  equation" for least  squares 

estimation [9]: 

A Ac     =   A y 
e 'o (17) 

Assuming     A    is  of full   rank,   this relationship may  be inverted  to give 

O.  -   [A*A] 11 A7    - S"1 A'y 'o 'o (18) 

The parameter vector provided by equation (18) is thus the "least squares 

estimate" of the true parameter vector, c  . 

If the number of time samples of y(t) is exactly equal to the number of 
unknown^parameters, then A is a square matrix. In this case, [A,A]~iA' 
A so c ■ A~ly ; i.e. least squares analysis reduces to simple simulta- 
neous solution or linear equations. 
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There are several reasons why equation (18) provides a very desirable 

estinate of c  .  To begin with, since the matrix  A is am array of known 

coefficients (possibly values of known time functions),  c   is computed by 

means of a simple linear transformation applied to the data vector,  y  . 

The linearity of this relationship results solely from the fact that the 

criterion function, 0 , is quadratic in the parameter vector, c .  If any 

other criterion were chosen, differentiation would lead to a nonlinear 

relationship between c  and the data vector.  So far as the computational 

aspects of parameter estimation are concerned, this is the strongest reason 

for choosing a squared error criterion. 

From a statistical point of view, equation (IS) is a optimum estimator 

in two senses.  First of all, providing only that the random measurement 

error, e , has the properties 

E{e) - 0 

£(?£')- a2  I (19) 

where  I  is a unit matrix, it follows from the Gauss-Markoff theorem that 

equation (l8) provides the minimum variance unbiased linear estimator of the 

true parameter vector, c  [9]«  Secondly, if in addition to possessing these 

properties,  e  is also a Gaussian random variable, then the value for c 

specified by equation (18) is, moreover, a maximum likelihood estimate of 

2,2   An Example of Parameter Estimation by Linear Regression Analysis 

Suppose that an oscillating system is known to be governed by the 

equation 

V* ♦ w2y - 0 (20) 
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Tfa« parameter vector for this equation Is 

e - 

(21) 

The solution to equation (20) is given by 

y{t;c)« y(0) cos wt + *  sin u)t (22) 

'While this equation is nonlinear in u , it is linear in the unknown Initial 

conditions.  If additional information exists so that it is known that 

u « a»  . then the coefficient matrix, A , appearing in equation (12) is 
o 

given by 

cos u t,   — sm u) t, 
o 1   It)       o 1 o 

cos o» t_  — sin a t_ 
o 2  <d      o 2 

o 

(23) 

cos m  t   — sin u t 
o n      ID on o 

and the parameter vector c  is reduced to 

(2^) 
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Sine« the sine and cosine functions are linearly independent, A    is  of 

full rank (unless all rows of A are identical) and equation (l8) may be 

used to compute estimates of c  from sample values for y . 

2.3  Orthogonalization in Linear Regression Analysis 

When the coluons of A are chosen to be orthogonal to each other, 

then the matrix 

S - A'A (25) 

is a diagonal matrix. 

Sll 0 

'22 

0 

0 

(26) 

In such circumstances, equation (1?) consists of an uncoupled set of linear 

equations. If the columns of A are further adjusted by a change of scale 

so that they are orthonormal, then the normal equation is itself a solution 

for c  since S becomes a unit matrix and equation (17) therefore reduces 

to 

-.    —   -.    •_ 
So - Ic  « c  -Ay (27) 
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Inversion of    S     is   thereby   avoided.     This  may  be of considerable  practical 

value when  the  dimensionality  of    c     (and  consequently,  of    3)   is large.     If 

A    is  thougnt of as  a  row vector with orthonoiinal colurn  vector elements 

A -   (A^  A2,   •   •   Aj^) (28) 

then« from equation (27) the kth component of the vector c  is given 

c.k - **' *o - (V V (29) 

That is, the components of c  are just scalar products of the columns of 

A with the observed output variable. 

The example matrix specified by eqaation (23) is easily orthogonalized 

by a proper choice of sampling times,  t. .  unfortunately, most coefficient 

matrices are not orthogonalized so simply.  However, when modern digital 

computers are used to solve the normal equations, the time required to invert 

the matrix  S is not likely to be significant until the dimensionality of c 

7 
becomes quite large  . 

3.  NONLINEAR REGHESSION ANALYSIS 

3.1   Nonlinear Analysis and the Need for Iterative Methods 

While linear regression analysis produces estimators with many desirable 

characteristics, the assumption of linearity with respect to all parameters is 

7 
Exactly what constitutes a "large" .r.atrix will defend upon the particular 
computer used.  However, matrices up to tenth order will certainly be 
handled with ease by almost any computer. 
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seldom supportable in practical circumstances.  Even in extremely simple 

systems such as the one exemplified by equation (20), it will usually be 

found that the dependence of solutions on some parameters will be very 

nonlinear.  Thus, for example, if it is assumed in equation (20) that u 

is also to be estimated from data, equation (22) shows that the connection 

between w and y  can scarcely be approximated by a linear relationship 

(except for very small variations In UJ). This illustration is typical 

rather than exceptional.  Consequently, it is necessary to consider 

minimization of error functions which are not quadratic In the parameter 

space. 

The location of minima for arbitrary surfaces by automatic computa- 

tional procedures is a subject which has received considerable attention in 

recent years.  The mathematical treatment of such techniques is usually 

labeled "mathematical programming" [11 ].  In the language of mathematical 

Programming, the sum-squared error function of regression analysis is called 

a "criterion" or "objective" function [11,12]. 

In problems treated by mathematical programming, it is usually 

required that the minimization of criterion functions be carried out in 

some bounded subspace of the parameter space which is specified by a set of 

constraint equations.  When both the criterion function and the constraint 

equations are linear, the minimurr is unique and may be located in a straight- 

forward way by application of the techniques of "linear programming". 

Related methods have been developed for quadratic criterion functions [11], 
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For general nonlinear problems, only iterative methods exist,  rurthermore, 

there may well be more than one minimum associated vith a nonlinear criterion 

function so that it becomes necessary to examine the local minima to find 

the lowest or absolute minimum. The research reported in this document 

deals entirely with the problem of determination of local minima for non- 

linear criterion functions in unconstrained parameter spaces. Subsequent 

reports will deal with the solution of computational problems arising from 

the consideration of multiple minima and constraint equations. 

3.2   Parameter Estimation by Iterative Linear Regression Analysis 

It has been suggested, occasionally, that nonlinear parameter estima- 

tion problems may  be solved by iterative application of linear least squares 

regression analysis [10,13,1'*]. This approach differs from the more general 

techniques of nonlinear programming in the respect that it is restricted to 

situations where the criterion function is a sum-squared error function 

computed from data and the response of an assumed parametric model.  When 

such a model exists, then assuming that the model response, y(t;c), 

possesses first partial derivatives with respect to each component of the 

parameter vector, c. , these derivatives may be used to fit an approximating 

quadratic surface to ^(c;y )• Let X be the NXM matrix of partial deriv- 

8 
atives given by 

a 
The elements of X have sometimes been referred to as "parameter influence 
coefficients" [15]-  A computational metr.od for obtaining these coefficients 
will be presented later in this discussion. 
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ayCt,) 

"äcT" 
ayftj^) 

(30) 

dy(tN) 
3cu 

Then an approximation to  the  response vector    yCc.   + &c) can be 

constructed by  truncating the  Taylor series for    y    to obtain 

y(c,  + Äc) » y(c,) + XÄc (31) 

Associated with this approximation to    y     is sin approximate criterion 

function: 

A ^ 
fiScic^y^ - (yo - y) (yo - y) (32) 

Utilizing equation  (10),   this  may  be written as 

0(Ac)   «'(• - XZcMe  - XÄc) 

• e -  e XAc  -Ac     X e   +  Ac  X  XAc 

■ ^(City«)  - 2^c X e  + Äc SÄc (33) 

-^ 



This expression is a quadratic form in Äc analogous to eijiation (IM, 

The associated normal equation for the minimizing value of Ac  is obtained 

by differentiating with respect to Ac and equating the derivative to 

zero: 

- - 2X e + 2SAC. » 0 

Ac m  Ac. (3*0 

The minimizing  value of    Sc    is then given by 

SG1 « S^x'e (35) 

This result may be written in a more meaningful form by noting that 

so that 

- -ä-e'e - 2(«) S 
8c 

C " c. 

ic' 
2X e (36) 

Ä^ - - | S"1 TflGj  - ^ (37) 

The value for Ac provided by equation (37) can be used to obtain a new 

value for c 

c- ■ c, + Äc. (38) 

which may then be used as a basis for further iteration.  This procedure 

has been called "Gauss - Newton" iteration [l1*].  As in linear regression 

analysis, the normal equation for iteration (equation (3'+)) is linear 
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(and therefore solvable by matrix inversion) only because the criterion 

function 0 is quadratic in Äc . 

Since the validity of equation (37) rests upon an assumption of 

linearity, there is no reason, apriori, to suppose that iterative applica- 

tion of this result to the estimation of the parameters of a nonlinear 

system will produce a convergent sequence of estimating vectors.  Indeed, 

while this method has been used with some success in certain problems 

[10,13], it may well fail to converge in other circumstances.  Necessary 

and sufficient conditions for convergence and other aspects of stability 

are discussed later in this report. 

3.3   Determination of Solution Partial Derivatives 

In order to make use of the techniques of nonlinear regression 

analysis, it is necessary to compute partial derivatives of the solution 

to the assumed system differential equation with respect to each unknown 

parameter. These derivatives car. be obtained approximately by perturbing 

the parameters one at a tiire and approximating derivatives by finite 

differences; i.e. 

*v±     yC^; c1ic2, 
xij " aSJ « 

= . . Ac_1.--cM)-y(t1; ^ .c , ii  CM) 

Ac 

(39) 

Precise determination of derivatives in tr.ia manner is limited by round-off 

error in digital computation and by noise in analog computation. These 

difficulties may be avoided by differentiating the assumed differential 

equation with respect to the parameters to obtain the "parameter influence 
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~ 

4 

equations" [ij]«  The solution to these differential equations then yields 

the desired partial derivatives as functions of time. 

The system governed by equation (20) provides a convenient basis 

for the illustration of the parameter influence method. 

Let 

Then, -differentiating equation (20) with respect to ui : 

-£I_ * 21-y + u2 |^-0 (1*1) 
d«at 

Assuming continuity of  the appropriate partial derivatives,   the order of 

differentiation can be reversed yielding: 

_ä_    31 + „,2 äl , _ 2^ (^2) 
at'1  aw        a« 

This equation may be written 

xl + ^ xl " ~ 2My ^'^ 

which is a linear inhomogeneous equation in x. .  The initial conditions 

for this equation are obtained from 

x-co) - ^4r> - 0 (W 1 Ou» 

V'-* l£ri-° 
Equations ('♦5) and ('♦'+) taken together uniquely specify x,(t) . 

Ordinarily, the forcing function y in equation (i+5) would be 

obtained by simultaneous computer solution of equations C+J) and (20). 
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However, in this particular case, y can  be obtained analytically and is 

given by equation (22). Thus, the equation to be solved for x1 is 

•J^ ♦ m x.  - - 2My(0) cos ut - 2y(0) sin ut (45) 

The solution to this differential equation with the initial conditions given 

by equation ('+4) is 

XjU) - - [ty(0) ♦ ^121] sin uit + t ^- cos wt       (46) 

as may be verified by substitution. Since equation (46) represents the 

partial derivatives of the solution with respect to the parameter c,  at 

«11 values of time, the coefficients x.,  of the matrix X are obtained 
il 

from the relation 

xil " xl(ti.) i - 1, 2, ••• N (47) 

The validity of equation (^6) may be ascertained by direct differen- 

tiation of the system response function, equation (20). This, of course, 

represents the conventional method for obtaining partial derivatives of 

an analytic function.  However, while this operation is easier for a human 

being than solving a differential equation, quite the converse is true of 

an electronic computer.  The purpose of the parameter influence equations 

therefore, is to provide a method for determining partial derivatives which 

is well suited to computer rather than human implementation.  Further 

illustrations of parameter influence equations and their computational 

solution are furnished by the examples provided later in this report. 
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3«'»   Stability and Convergence Properties of Oauss-N'ewton Iteration 

3.'♦.I Local Stability in the Absence of Measurement Error 

An ideal iteration scheme for fitting theoretical response curves 

to data should not only be convergent, but should also have the property 

that as a minimizlns value for the parameter vector is approached, the 

ratio of the computed parameter error to the true error tends to unity 

for each parameter.  That is, if c  is vector such that 0(c )  is 

locally minimum, and Ac.  is the parameter change vector computed at the 

i*11 stage of iteration, then it is desirable that 

lim 

i-OD 

Ac., 
- I (W) 

«i - c. 

where  I is a unit matrix.  An iteration procedure which has this property 

will be termed "asymptotically efficient"; obviously it is also locally 

convergent.  An equivalent statement to equation (k8)   is 

3Ac 
(«♦9) 

c « c 

When experimental conditions are such that the response function, 

y , can be measured with entirely negligible error and, moreover, the 

parametric model for the process producing the data points is exact, 

then e  will itself be a minimizing value for 0 .  Moreover, in such 

circumstances 

• (c) » y^ - y(c ) ■ 0 o    o     o 
(50) 
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so 

0{c   :y  )  ■ • • ■ 0 o    o (51) 

It turns out  that,  under  these conditions,  Gauss-Newton iteration is not 

only stable at    c  « c     ,  but it  is also asymptotically efficient.     More 

precisely,  if    P.     denotes   the parameter change  vector computed  at    c  ■ c. 

by equation  (37),   then the  following theorem states a set of conditions 

sufficient  to ensure  the asymptotic  efficiency of the  iteration: 

Theorem 1: 

Suppose that the sum squared error function,  0(c), takes on the 

value zero at c 

atives possess a uniformly convergent Taylor series in an e-neighborhood 

c  . Then, if y(t:c) and  its first partial deriv- 

of c  , it follows that 
o 

& - I (52) 

' c ■ c 

Proof: 

Let  6c denote the true parameter error; i.e. 

6c « c - c (53) 

Then for 16c I < e , 

y(c) = 'o       2 L     Sc. dc. 
i,j J 

6c. 6c . + 0(6c?) 

C a C 

(51») 
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The notation 0(ic )  indicates a remainder consisting of cubic and higher 

terms in  5c . Now, from the definition of 0 , equation (11) 

(y0 - yMy,, - y) 

so substituting from equation  (3^) 

0 - Sc' XX Sh + OiSh3) 

DifferentiatiHij this expression,   , 

•jjfr - zx'x Cc + 0(&2) 

Now  from equation  (37) 

so 

(55) 

(56) 

(57) 

f± - - [x^J^x'x fc^ - | [x-xi]"
1o(^) (58) 

However, under the continuity and full rank assumptions regarding X , 

X1 - X 4 O(Je) 

so equation  (58)  reduces to 

? - - fVx]~1X,X Ac   + 0(6^2) 

and consequently 

IL ,-M i   * x x , . i 

(59) 

(60) 

(61) 

c « c 
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3.^.2 Necessary and Sufficient Conditions for Stability in the General Case 

In read problems of system identification it is not to be expected 

that 0(c)  can be forced to zero for any c . Therefore, it is important 

to determine necessary and sufficient conditions for the convergence of the 

Gauss-Newton procedure in the general case 

■^ 0(?5yo) > 0 
c 

(62) 

Toward  this  end,   let     c      be a value of    c     which locally minimizes    0    and 

let    y      be  the response vector associated  with  this parameter vec tor.  Then 

a matrix D , of second partial derivatives may be defined at c = c  aa 

- ■ fc^ <Jo - ;.>•;] -.: 

Another matrix, Q , may be defined from D  as 

Q ■  Cx'x]"-      -    D - 3"1 

c  » c 

(63) 

(64) 

Utilizing  this definition,   the  following  theorem  provides  the desired 

conditions  for  local   stability  of  the  Gauss-Newton  procedure. 

Theorem 2: 

Suppose  that    y(t;c)     and  its  first  partial derivatives possess a 

uniformly convergent  Taylor series  in an e-neighborhood of    c       in parameter 

space.     Assume also  that  the matrix    X     is  of full rank in  this neighborhood. 

The elements of this matrix may be obtained by  solving the appropriate 
parameter Influence equations. 
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Then if c.  denotes the trial parameter vector at the i**1 stage of Iteration 

and the initial parameter vector, c. « is chosen so that 

^1 "«.i <eo • 0 < e < e 
o (65) 

it  follows   that  there exists an    c       for which o 

li«    - 
ci-ce (66) 

for any  c.  satisfying equation (65) if and only if all of the eigenvalues 

of the matrix Q are less than one in absolute value. 

Proof; 

As before, let 6c stand for the true parameter error measured from 

the minimizing vector 

So.   ■ c. - c 
i   i   e 

(67) 

Then an equivalent statement  to equation  (66)  is 

lia   rci - 3 (68) 
i-»a) 

Now for     |Sc|  < e 

KS).y. + xrc^ ^j- tc^ 6c    + 0(rc3)  (69) 
c " c. 

so,   making use  of this expansion 
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0 = (y0 - 7' (y0 - y) 

+ Sc'x'xK: ♦ OCJi3) (70) 

Referring to equation (36) and notinz also that (y - y )  ia a constant 
o   e 

vector which may be taken inside of the differentiation operation, the 

expression for 0    reduces to 

0 - 0(c ) ♦ T&Kc > ic + Je* (S - D) lc ♦ 0(rc3) (71) 

Since c  is, by definition, a minimum. 

"^(c ) » 0 
e 

and 0 simplifies still further to 

0 - 0(c   )  t-  6*0(3  - D)  Jc ♦ 0(5J:3) 

(72) 

(75) 

Now, utilizing the Gauss-Newton iteration equation 

1 r.-l    £* V-Isi •* (7^) 

where S.  denotes an evaluation of the matrix S at c. . Because of the 

assumptions regarding y and X , this equation may be rewritten 

1 „-1 Z, ^ - - ± s-1- -^ * o(rc) •# (75) 
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Mm 

From equation  (73) 

•^ - 2(S  - D)  Äc  + 0(&2) (76) 

so 

1L  - - S"1  (S - D)  ic ♦ 0(Ä2) 

• (- I ♦ s"1©) R ♦ o(äc2) (77) 

Now 

«i+l " % + rci*l " «i + ^i - % +  rci + ^i (78) 

rci+l - rci + ^i 

M S<si - 1 So^ * S      D Si^ * Oiicp 

,-1 .-2 .■*2N S      DTCJ^  + 0(6cp   - {J rci  + 0(6c*) 

(79) 

(80) 

By choosing e  sufficiently small, the quadratic term in this expression o 

■«y be made as small as desired in comparison to the linear term.  It follows1 

therefore, that for  löc,! <e 

Sc,   m  Q1"1 Sc,  ♦ 0(6c, f) 
i-1' 

(81) 

«uid consequently 

lim    f lim    „i-l f lim    „..       2»      rt 
4   -. *C4   "    <   ^ ^        *ci   * 0(6c.   i)  ■ 0 i— oo      1        i-» <x> 1        i -^» i-l (82) 
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If and only if 

£". ^ - co] (83) 

This situation in-turn prevails if and only if all eigenvalues of Q are 

less than one in absolute value.  This completes the proof. 

The following additional inferences may be made from this theorem: 

Corollary Is 

If D • [O] , then the Gauss-Newton procedure not only convergesi 

but it is also asymptotically efficient. This condition is satisfied, for 

exanple, when the response function depends linearily upon the parameters. 

It is also satisfied when y  corresponds exactly to y ; i.e. when no 

measurement error is present and c = c  .  Thus, Theorem 1 is a special 

case of Theorem 2. 

Corollarj II; 

If the second derivatives of y are computed and 

Di ■ (yo - y ^i» 
•   sf2  | (8*0 

then providing the second partials of y are continuous in  '5c| < e , 

the adjusted Gauss-Newton iteration equation given by 

Aci .ai (S.. Di)'
1 •?5f(ci) (85) 

will always converge locally and will be asymptotically efficient. 
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3m'*.3    Convergence  with Scale Factor Adjustment 

When a criterion function and its partial derivatives are continuous 

in aa e-neighborhood of a point, c. , in parameter space, then if T^Kc. ) 

differs from zero it is always possible to reduce 0(c)  by proceeding in 

parameter space along the negative gradient for a sufficiently small distance. 

Equation (37)  shows that Gauss-Newton iteration is based upon a linearly 

transformed step along the gradient.  This linear transformation will, in 

general, induce both a magnitude and an angle change in "70    and (as shown 

by the preceding theorem) may well fail to produce a convergent estimator 

of the true parameter vector,  c  .  It is relevant, therefore, to consider 

the possibility of stabilizing 3auss-Newton iteration in such circumstances 

by reducing p by an appropriate scale factor whenever the basic procedure 

fails to converge.  The crucial question involved in the implementation of 

such a scheme relates to the angle which exists between the gradient vector 

and the Gauss-Newton correction vector, p . Specifically, since the gradient 

vector is normal to the contour lines of 0  , motion along  p for a suffi- 

ciently small distance will result in a decrease in 0   providing only that 

the angle between {? and 7^ is obtuse; i.e., providing that the scalar 

product of ß and 7$  is negative. The following lemma expresses this 

statement more precisely and shows that the angle condition is always 

satisfied. 

Leama 1; 

Consider a region, R, in paraaeter space such that the matrix X 

is of full rank everywhere in R .  Assume, furthermore, that about every 
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point  in    R     there  exists  an e-neighborhood  in which a uniformly convergent 

Taylor series may be constructed  for the criterion  function, 0(c)   .    Then for 

any point in    R    such that    ^(c) / 0 

■£r 0(c  + Tip) I -  ^f'l < 0 
d71 • 71 - 0 

(86) 

Proof: 

Locally,     0    is represented at any point in    R    by 

0(c  ♦ TlK)   - 0(c)   + ^f T]| + 0(T;2) (87) 

so 

Ä . ^'I + o(Tl) (88) 

and 

71 « 0 
(89) 

Now from equation (37) 

■^ . . 2Sß « - 2X Xß (90) 

so 

ß*^ . - a^'x'xl » - 2(x|),(x1) = - 2 |xßl2 < 0       (91) 

However« since X  is of full rank,  |Xp| / 0 unless 3=0.  Furthermore, 

since  7(? / 0 f equation (90) shows that D / 0 so the inequality in equation 
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(91) oust be strict; i.e. 

ß 70 . - 2 IXßl < 0 
,?|2 

(92) 

Thla completes the proof. 

Leama 1 provides the basis for the following basic convergence theorem 

for the modified Qauss-Newton procedure   . 

Theorem 3? 

Assume that the conditions of Lemma 1 are satisfied.  Suppose that the 

region R is in addition convex and has the further properties that the 

criterion function, 0(c) ,  is concave in R and possesses a minimum at an 

Interior point,  c  , of R .  Let 0  be the infimum of 0 assumed on the 

boundary of H and let c.   denote the paraaeter vector obtained at the 

i*11 stage of iteration.  Then for any initial point, c. , interior to  R 

such that 

0(c1) < (93) 

it Is possible to choose a sequence of points 

Ci+1 - c + T^ P1 , 0 < T^ < 1 (9*0 

such that 

lim - 
i-a, ci - ce (95) 

10 A related theorem involving more restrictions on R has been proved by 
H. 0. Hartley [!**]•  Hartley refers to the Gauss-Newton iteration procedure 
with scale factor adjustment as the "modified Sauss-Newton Method", 
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Proof; 

From equation (87)1 0 is represented locally at every point in R 

by 

0(c ♦ T|ß) - 0(c) + nß'^J * 0(712) (96) 

Now due to the concavity of 0 , if c. / c  , then "70 /I 0    and 
X     9 

p'^Xc^ - ^ < 0 (97) 

so there exists an T).  at every stage of iteration such that when c. , 

is chosen according to equation (9^01 then  c. ,  is interior to R and 

0(ci+1) - 0^ + Tljj < 0(.Zi) (98) 

Since 0 is bounded from below by 0(c )  and 0(c.)  forms a monotone 

decreasing sequence for the c.  so chosen, it follows that 

liB  0a,) - 0(c ) (99) 

The concavity of 0 in R then guarantees that the sequence in parameter 

space also converges; i.e. 

lia S. - c (100) 
i-oo i   • 

3,k,k    Discussion and Conclusions 

Theorem 1 can be utilized in circumstances where no real physical 

measurements are  to be made.     It  is applicable,   for example,   in situations 

where a differential  equation is  to be determined whose solution is a given 
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i. 
analytic or computed function [10]. Since this theorem relates to local 

stability only« it may be necessary to employ a scale factor reducing 

algorithm in the initial stages of an iteration in order to achieve a 

convergent sequence of parameter vectors.  The existence of such an algo- 

rithm is guaranteed by Theorem 3«  It does not appear that Theorem 1 is 

of any significance in parameter estimation problems involving real physical 

measurements since errors are inevitably present in such data. 

Theorem 2 provides necessary and sufficient conditions for the Gauss- 

Newton iteration to be locally stable without scale factor adjustment in the 

case where the minimum of 0 is greater than zero.  As a practical computa- 

tional matter, it is unlikely that any eigenvalues of the matrix Q will be 

close to unity.  More likely, either all values will be considerably less 

than one or else at least one will be considerably larger than one.  Thus 

one would expect that unmodified Gauss-Newton iteration will either converge 

Tery rapidly in the later stages of iteration or else it will sharply diverge. 

In any event, computation of D for the purpose of establishing convergence 

does not seem worthwhile.  The number of differential equations to be solved 

to obtain the elements of D increases alarmingly with an increase in the 

dimensionality of c .  It is much easier to simply compute 0(c. •>■?.)  at 

each step to see if an improvement results than to investigate stability by 

determining D and its eigenvalues. 

The above remarks also apply to the modified Gauss-Newton equation of 

Corollary II. A simple search along the vector     p may be carried out 

with lass labor than is involved in evaluating D at each steige. 
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The net conclusions to be drawn from the stability theorems 

developed in this section may be stated in terss of the following 

computation policy: 

1. If the Qause-Newton parameter change vector,  3. < provides a 

reduction in the sun-squared error functions,  0(c;y ) , at the i-th 

stage of Iteration, use ^4, " <j. + 'S , 

2, If this Is not so, then determine c, ,  by searching along 

"$.     for a locally minimum value of 0 . 

The implementation of this policy in terms of a complete computational 

algorithm for unconstrained nonlinear regression analysis is presented later 

in this report. 

k.     STATISTICAL PROPERTIES OF NONLINEAR 

LEAST SQUARES PARAMETER ESTIMATES 

k.l Linearized Estimation of the Variability of Parameter estimates 

The preceding investigation of the stability properties of iterated 

linear least squares regression analysis shows that it is possible to devise 

a computational algorithm which will ensure convergence of a sequence of 

parameter estimating vectors to a vector, c  , which locally minimizes the 
e 

sum-squared error function, 0(c) . This vector may fail to accurately 

estimate the true parameter vector,  c  , for two reasons.  First of all, 

it is possible that the iteration process will converge to a local minimum 

of 0(c) which is not the minimum associated with c • c  .  The detection 
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I 
and correction of this t^pe of error is a very difficult problem whose 

treatment has been reserved for a later report. Secondly, even if the 

computational procedure converges to the proper ninimum of 0(c}t measure- 

ment and other errors will prevent computer generated solutions from fitting 

the data exactly. Consequently, there will remain a residual statistical 

error in the estimation of the unknown system parameters. Estimation of the 

magnitude of this type of error by analytic procedures is extremely difficult 

when the systems involved are nonlinear and the errors are large.  Quite often, 

error estimates can be obtained only by recourse to statistical methods 

involving many repetitions of the same physical experiment. However, if it 

can be assumed that c  is quite close to c  , then an asymptotic error 

estimate may be obtained by linearizing the relationship between measurement 

errors and estimation errors. 

In order to obtain the desired error estimate, assume that y(c ) 
' e 

can be represented by a uniformly convergent Taylor series expansion about 

c  .  Denote the difference between the estimated and true parameter vector 

by 6c ; i.e. 

Sc ■ c - c (101) 
e   o 

Then 

y(ce) - y(co) ♦ X(co) Se 2 L    *:. ac . ÖCj^ 6c. ♦ CKTc3)    (102) 

c ■ c 
o 
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Now,  the data vector,     y^  ,   Is given by equation (3)  ag    y    = y(c  )  + e 

so the residual error vector,     e   ,  may be written 

• •j0-y-«-xl«-| Y    £ yac     6ci 6cj + 0(6*?) (103) 

i.J       1      j 

and 

jJ-ee =  Ee- 26c  X c   + 6c  X X6c 

. e'e - SÄcVe  ♦ Sc'   (S-D)  5c  + 0{Sc3) (KV») 

where    S    and    D    have  the same significance as before.     Assuming that  term- 

wise differentiation of  the  series  for    0    is  pernr.issible, 

■jjj . M dgL = _ 2X'- + 2(s-D)6"*c  + OCTc2) (105) 
dc      d(6c) 

Since c  is a minimizing value for 0 , this expression must equal zero 
e 

and therefore, to a first order of approximation 

x's - (S - D) 6c (106) 

or 

ic « (S - D)"1 X e 

Typically,  c.  will be a random variable with zero mean. In such 

c ircumstances 
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E(4c) . (S-D)"1 x'E(e) « (3-D)"1 x'o = 0 

and the covariance matrix for 6c is given by 

(107) 

Ceo» 6c] = Etrc &']  M  E{(S-D)_1 XUeC(S-D)"1 X*»]' } 

- (S-D)"1 x'Ccov e] X (S-D)'1 (108) 

It is • common occurrence in experimental situations to find that 

tcov c] = a I (109) 

When this is the case 

[cov 6c] « 02(S-D)"1 X,X(S-D)"1 

- O2 (S-D)"1 S(S-D)"1 (110) 

Ifi furthermore,  D *  [0] , (as in linear regression analysis, for example), 

then the covariance matrix reduces still further to 

[cov 6c] - aZS'1SS'1  = ^S"1 

which is a standard result in linear statistical theory [16], 

(Ill) 

b.Z        Relationship of Length of Record to Parameter Estimation Accuracy 

It is a general characteristic of estimation problems that accuracy 

may be increased by considering more data points.  When the estimation 

problem involves determination of dynamic system parameters, this neans 

that it should be possible to increase the reliability of parameter estimates 
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by observing the system for a longer period of time.  In situations where 

the system under observation is known to be linear in the unknown parameters, 

it is possible to obtain quantitative relationships linking estimation 

accuracy to the amount of data available in a relatively straightforward 

fashion [17].  However, when the system is nonlinear, determination of such 

relationships becomes very difficult. 

While the relationship between observation time and estimation 

accuracy may very well be unattainable by analytic methods in the general 

nonlinear case, under certain simplifying assumptions, an asymptotic error 

theory can be constructed.  In order to arrive at such a theory, it is 

necessary to modify the parameter estimation equation slightly to avoid 

the possibility of the S matrix becoming singular in the limit.  The 

estimation formula given by equation (37) may be rewritten as 

p .iNs"1 7^ = | (i S)-i ?| (na) 

and in a similar fashion, equation (110) can be expressed as 

[COT «C] - T (JJ - jf)  S (jj - ff) ^3) 

With the covariance matrix for  4c written in this form, it becomes 

possible to consider its behavior as the number of samples,  N , approaches 

infinity. 

Assume for the moment that the matrices S/N  and D/N have limiting 

values as N approaches infinity.  Specifically let 
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lim    s 
N-OD  N " V 

(ll'f) 

Then, pfoviding that the limiting operations can be interchanged with the 

algebraic operations« it follows that 

liB NCcov 6C] - O2 [V - UT^-V [V - U]"1 
NxQD 

(115) 

This equation reveals that the magnitude of the elements of the covariance 

■atrix vary inversely with the number of samples; this is a familiar fact 

in linear statistics [18]. 

The existence of the assumed limit matrices may be related to the 

behavior of the solution partial derivatives.  Referring to the definition 

of the matrix of partial derivatives, X , (equation (30)) it can be seen 

that this matrix may be written as a row vector 

X ■ (X,, Xp, V (116) 

whose elements are the column vectors, X. .  Each X^    is in turn given by 

asr(t1) 

ay(t2) 
»c4 

ayCO 
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Since the matrix S  is defined as S ■ X X, this notation pemits the 

elements« S. . , of S to be written as 

SiJ-^J (118) 

That is, the elements of S are just the scalar products of the appropriate 

columns of the matrix X .  The elements of the normalized matrix, V , are 

in turn given by 
■•i -* 

li«   *! x.i 
*ij " N^a, -IT1 (119) 

When     i  a  J   ,     this expression reduces to 

n      2 
li«   ^ xkl 

ii  N-a> 
k-1 

i.e.  v..  is just the mean square value of the partial derivative 

äy/jc. .  Consequently 

V^ > 0 (121) 

when it exists.  Moreover, unless the partial derivative,  ?y/*c. , tends 

toward zero as t becomes arbitrarily large, the inequality is strict; i.e. 

k±±  > 0 (122) 

When i / j , the situation is somewhat different. Since the partial 

derivatives involved may be either positive or negative, the terms in the sum 

^ " N! I H^ - ^ij ^) 
k-l 
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1111 II 

may have either positive or negative signs and nothing can be said about the 

sign of  X. . .  It is, in fact, quite possible that  X. .  may equal 

zero even though X.  and X.  do not individually tend to zero« 

The asymptotic behavior of the matrix 0 may likewise be related to 

the characteristics of certain vectors.  Referring to equation (63) 

■bsf*; l?.-?.''7]:,;# 

The vector y - y  is the residual error between the data and the best o  "'e 

fit generated in the estimation process.  It is therefore a constant vector 

which may be factored out. Making use of this fact, the elements of the 

vector U may be written 

lim  r- i r a y^w^i 0^ -     >» iCy (O - y (t. )] T r-> ij  N-K» Z. N l.'-Jo k 'e k J  lie    he J 
k»l ^  J 

(124) 

The convergence of the matrix D/N to the limit matrix U is thus contingent 

upon the existence of an average cross product between-the two terms of 

equation (12'0.  As in the case of the off diagonal elements of the V matrix, 

every element of U may be positive, negative, or zero. 

There is one circumstance of particular interest in relation to the 

above results.  If it should happen that the vectors  X.  behave as if they 

were samples of uncorrelated random variables, then, in the limit,  S/N 

must become the diagonal matrix 

V -   /  .     .        .   \ (125) 

0  .   .  .   .  Xj^ 
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If the rectors y - y  and 5 y/5c. >c. are likewise uncorrelated for 
o   e 1  j 

every  1 and j , then U  must tend to a zero matrix.  When this occurs, 

equation (113) reduces to 

NCcov 6C] - 0*V (126) 

or 

and 

N-»CD 

E^cii - »r£: (127) 
*ii 

El6ci öc^) - 0  ,     i / j (128) 

5.     AN AUTOMATIC COMPUTATIONAL ALGORITHM FOB  PAfiAMETER 
IDENTIFICATION BY NONLINEAB REQHESSION   ANALYSIS 

5.1 Stopping Rules 

To provide a fully automatic basis for the determination of minima of 

a criterion function, it is necessary to provide a stopping rule for the 

iteration sequence , [c. ) .  That is, the iteration cycle must be subjected 

to a supervisory procedure which determines that further refinement of the 

estimate of the true parameter vector,  c  , is not justified. Such a 

stopping rule may be based, for example, on a percentüge change in either 

the parameter space or the criterion function itself. Let 

fie  fie 
d - -4  (129) 

ci ci 

and 

d^ - —^—-—2Ji. ay» 
JK^) 
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be  the normalized  differences  between   t«o  successive  computations measured 

ia terms of the parameter estimates and criterion function respectively. 

Then an appropriate stopping rule ia: 

1. Stop if    d    < e 
c        c 

2. Stop if    d- < Kg. 

The choice of the values of c  and z-,    must be made in advance by the 

human experimenter. Since  d  and d- may behave quite differently, the 
C J0 

initial values for these two quantities may require adjustment during the 

course of an experiment.  While this particular stopping rule is somewhat 

arbitrary, it is essential in every case that some criterion for halting 

computation be provided since otherwise the computer will continue to 

calculate new values of c  indefinitely even though the practical value 

of greater precision may be entirely negligible. 

5.2 Stabilization of the Iteration by Binary Search 

In the discussion of the significance of the convergence theorems, a 

specific computational policy was proposed.  This policy involved stabiliza- 

tion of the iteration procedure by superimposing a scale factor search routine 

onto the basic Gauss-Newton iteration scheme.  A very simple type of search 

may be obtained by simply reducing the parameter change vector by a factor 

of two repeatedly until a value of the criterion function is obtained such 

that: 

1, 0 is less than the starting value. 

2. 0 is locally minimized (with respect to the binary search along p). 
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Figure 1 is a flow diagram for a computer program to achieve the 

desired stabilization.  This diagram also includes a "stability" test for 

the function y{t;c)  for the purpose of assuring that the magnitude of 

the computed variables does not exceed the range of the computer arithmetic 

registers.  The equations written in the boxes of Figure 1 represent 

difference or "up-dating" relationships as is conventional in such diagrams. 

The sequence of operations is always to be taken from top to bottom in each 

box. 

It Is certainly possible to devise more sophisticated search procedures 

than the one shown on Figure 1.  More efficient techniques are currently 

being developed and will provide the basis for future reports.  However, 

binary search has been found to be entirely satisfactory for the purpose 

of experimentally verifying the theoretical results obtained in this study. 

5.3   Flow Diagram for the Complete Algorithm 

All of the preceding Jiscussion is summarized in the flow diagram 

displayed as Figure 2.     This diagram has been coded in the Fortran compiling 

language and utilized to produce the experimental results presented later in 

this report.  The numbers appearing at various points of Figures 1 and 2 

refer to statement numbers from the Fortran program.  While the program 

itself has not been included as part of this document, copies of both the 

Fortran decks and a listing of these decks are available upon request. 

, 
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FIGURE 2     FLOW DIAGRAM   FOR   PARAMETER   ESTIMATION 
SY  NONLINEAR   REGRESSION  ANALYSIS. 
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S.'* Equations  for  the  Inference of  Pendulum Parameters 

The  experimental part  of this study  is concerned  with  the estimation 

of parameters  for the  pendulum equation   (2) 

CpO + 0,4 + sin 0 ■ 0 

In conformity with the notation established for regression analysis, this 

may be rewritten as 

cJy ♦ c^y + ain y ■ 0 (131) 

The parameter vector,  c , is therefore given by 

(132) 

and elements  of the  parameter  influence matrix,     X   ,  consist of  the  partial 

derivatives 

ayU.) 
"ij- — 

These partial derivatives are obtainable from the appropriate parameter 

influence equations.  For exairple, differentiating equation (131) with 

respect to c.  yields 

J_ t. \: . . :. .  .,•_ „1 _ _ä_ n _ r. (133) •^- (c^jr + c^ + sin y) = ■—  0 « 0 
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OP 

c 3 ^JL_- + c   
a / + ^L + coa y JJL . o (13'») 

* acj^ at*1     ■L ^GX at    at ac^^ 

Assuming that the order of differentiation may be interchanged, this last 

equation may be written 

CgV^ + Cjij^ ♦ Xj^ cos y » - y (135) 

Repeating these steps with respect to each component of c results in the 

set of equations 

c^Jtg + c^ + x2 cos y « - y* (136) 

c-jx' + Cj^i, + x5 cos y - 0 (137) 

c2*i» + c^ ♦ x^ cos y ■ 0 (138) 

The initial conditions necessary for the solution of these equations are 

given by 

X1(0) . ij. (0) - 0 ; ^(0) . ^ ^L (0) . ^- (0) - 0 (139) 

(0) - ^2- (0) - 0 ; i,C0) - -^ (0) - 0 (ll»0) x. 
dc,      ' 2   ac 

x3(0) - ä^7(0) •1 = V05 - äTfer(0) ■0 (1U1) 

x. (0) . -^- (0) . 0 ; i. (0) . -S—  (0) - 1 (1U2) 

This completes the set of equations required for regression analysis.  The 

matrix X may be calculated for an initial parameter vector estimate, 

c ■ c, »by simultaneously solving equation (131) with equations (135) 
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thru (138} subject to the above Initial conditions. Quantitative results 

obtained by carrying out this procedure are presented in the next section 

of this report. 

6.  EXPERIMENTAL RESULTS 

6.1 Terainal Convergence Without Measurement Noise 

In order to illustrate the behavior predicted by Theorem 1, the 

prograa illustrated in Figure 2 was executed using noise-free data 

generated by the computer. The data was produced by numerical solution 

of the pendulum equation using the parameter vector 

co      i I (l^) 

nie resulting response function,  y(t;c ),  is shown on Figure 3 as 

the curve labeled "true response". The data vector, y ,  required 

for parameter estimation was obtained by using the ten equally spaced 

saaples of y(t;c ) shown on the figure as "accurate data points", 
o 

l}ie initial guess for the parameter vector used to start the 

Iteration was taken as 

.51 

1.01 
e. I I (1WO 
1      l  1.57 

.01 
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These values were deliberately chosen   to be   very  close   to  the  true 

parameters so that only   the   terminal  convergence  properties  of unmodified 

Gauss-Newton iteration would be  displayed.     The  stopping criterion used 

for this experiment was 

c- =. e    = 10"6 

0        c 

This very stringent criterion was satisfied  after only   two unmodified 

Gauss-Newton iteration cycles.     The  sum-squared error was reduced  from 

a value of I.85 x 10~5    to a value of 1.09 x 10        by the two steps  taken 

in parameter space.     Table  1  shows  the  sequence of values  generated by 

the computer  for  the  parameter vector,     c   .     These results strongly 

support the conclusions of Theorem 1. 

TABLE 1 

RESULTS  OF GAUSS-NEWTON  ITERATION  USING  EXACT  DATA 

Variable      Starting  Value First  Iteration Second   Iteration True Value 

0 

0,51000000 

1.0100000 

1.5700000 

0.01000000 

1.853 X  10"3 

0.50013945 

0.99966252 

1.5690003 

0.00007233 

'♦.'♦28  x  10 -7 

0.500OOO21 

1.0000002 

1.5690OO4 

O.OOOOOO68 

1.086   X   10' •13 

0.50000000 

1.0000000 

1.5690000 

0.00000000 

0 
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6.2  Stabilization of Oauss-Newton Iteration by Binary Scale Factor 
Adjustment 

According to Lemma 1, binary scale factor adjustment should always 

produce a monotonically decreasing sequence of values for the sum-squared 

error function, 0 .    To demonstrate this property, a computer experiment 

was conducted utilizing the modified Gauss-Newton iteration technique 

illustrated in Figure 2. The "accurate data" vector computed to produce 

Table 1 was also used in this experiment.  However, the parameter vector 

selected as the starting point for the Iteration was intentionally chosen 

to be quite far from the true parameter vector so that searching would be 

required. 

Table 2 summarizes the results obtained from 60 iteration cycles. 

The variable N appearing in this table refers to the number of times 

the computer reduced the parameter change vector, ^ , by a factor of two 

while searching for a local minimum within each cycle.  Large values for 

N indicate that the unmodified Gauss-Newton procedure is very unstable 

at that point. 

This example agrees with theory in the respect that a lower value 

for 0    was obtained at every stage.  It also shows that while convergence 

does occur in the sequence of values for 0 , successive values for c 

may vary quite erratically.  It must be emphasized however, that the 

starting value for c  which produced this data was grossly in error 

and was deliberately chosen to illustrate this type of behavior.  Later 

examples will show that the modified Gauss-Newton procedure works quite 
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TABLE Z 

SBJDENCE OF PARAMETER  VALUES  OBTAINED USING  CSAUSS-NEWTON 

ITERATION STABILIZED BY BINARY SCALE  FACTOR  ADJUSTMENT 

Iteration   c. 
Number 

c2 C3 
c4 0 N 

0 1.000 2.000 3.0000 1.000 360.3 m 

1 0.093 - 5-188 4.582 1.241 212.4 3 
2 0.129 - 9.877 3.643 - 1.141 163.8 3 

3 0.329 - 73.41 0.4556 - 0.1078 2.422 0 

k - 0.948 - 19.96 0.4733 - 0.1223 1.819 8 

5 - 0.449 - 16.53 0.4784 - 0.1269 1.816 10 

6 - 0.016 - 13.79 0.4834 - 0.1313 1.813 10 

7 0.192 - 12.61 0.4858 - 0.1335 1.811 11 

8 0.386 - 11.55 0.4882 - 0.1356 1.809 11 

9 0.568 - 10.57 0.4905 - 0.1377 1.807 11 

10 6.249 18.55 0.5641 - 0.2018 1.619 6 

11 11.91 31.69 0.6667 - 0.3057 1.563 6 

12 18.09 44.74 0.7209 - 0.3642 1.541 7 

13 23.51 55.87 0.7490 - 0.3955 1.529 8 

Ik 31.49 72.08 0.7776 - 0.4280 1.519 8 

15 37.71 84.61 0.7922 - 0.4448 1.513 9 
20 105.1 219.0 0.8517 - 0.5152 1.494 10 

25 2't3.0 493.1 0.87i»7 - 0.5430 1.488 11 

30 534.6 1072. O.8853 - 0.5559 1.485 13 
ifO 1772. 3531. O.8909 - O.5628 1.483 14 

60 1213. 2237. 0.9330 - 0.6143 1.421 14 

True 0.500 1.000 1.5690 0.0000 0.0000 
Values 
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well, even with noisy data, when more reasonable starting points are 

provided. 

It was not determined whether or not the sequence of values listed 

in Table 2 would eventually converge to the true parameter values or to 

some secondary minimum in parameter space.  3ince the parameter estimation 

procedure was unconstrained in this experiment, the possibility even 

exists that the sequence in c might grow without bound and fail to 

converge altogether even though 0    were to approach a limiting value. 

The experiment was discontinued after 60 iterations because the cost of 

computer time seemed to exceed the value of the information which would 

probably be obtained from further computer runs. 

The poor terminal behavior of the iteration procedure in this case 

is explained in part by a consideration of the angle existing between the 

Gauss-Newton parameter change vector, 3 , and the gradient of 0 .  At 

iteration number 60, the values obtained for these two vectors were 

- 1.159 x 10"3 1.108 X 106 

2.033 X 106 

^♦.027 

-5.07^ 

Vff  = 
6.286 x 10"^ 

- 1.8i*9 

- 2.389 

The cosine of the angle existing between these vectors may be obtained 

by normalizing the scalar produce; i.e. 

cos e - f "?  « - 2.2 x 10~7 (1*»5) 
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This result shows that the antjle between the contour lines of 0 and 

the ? vector is only about 2 x 10~  radians; i.e., V    points "down- 

hill" only very slightly.  As a consequence, 0    is reduced only when 

P la diminished by a very large scale factor (2  for the Optimum step 

in this case). 

6.3  Convergence with Measurement Noise. 

To simulate measurement errors, ten uncorrelated samples of a 

unit variance, zero mean 3aussian random process were generated by the 

digital computer.  These errors were then scaled to several different 

levels and added to the data points of Figure 5.  The resulting noisy 

response data is plotted on this figure for a scale factor, a   , equal to 

one-tenth   ; Figure 5 also shows the response fitted to these data points 

by the computer. 

Table 3 summarizes the results obtained by using different values 

of a    in this experiment.  The variable M  in the table stands for the 

number cycles of iteration required to satisfy the error criterion 

c0 = cc = ID"6 

"Bie starting vector used in each case was as given by equation (I'*'*). 

The iteration converged without scale factor adjustment for values of 

a    less than ^ = .*♦.  For  7 = .*♦ and .5 , the modified iteration 

procedure converged but the computer sometimes found it necessary to 

Since the basic process sampled by the computer possesses a unit 
variance, the scale factor, a , is just the standard deviation of 
the scaled process. 
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reduce ß by a factor of two.  The drastic scale factor adjustment 

encountered in the computation leading to Table 2 did not occur in this 

experiment since the starting parameter vector was reasonably close to 

the final minimizing vector. The apparently anomalous behavior of the 

variable M for (j = .4 and .5 is caused by the fact that the parameter 

adjusting steps are more effective when the search algorithm is evoked. 

TABLE 3 

PARAKETER ESTIMATES OBTAINED FROM NOISY DATA 

a cl c2 C3 % 0 M 

.0 .50000021 1.0000002 1.569000'» ,00000068 1.085 X 10~15 2 

.1 .'♦682 .95'+2 1.653 .06502 .0568 6 

.2 .'♦502 • 9265 1.782 .05652 .2290 11 

.3 .'♦387 .90b4 1.9^5 .0092 .5180 23 

.** .^is .8905 2.143 .1371 .9240 11 

.5 .4289 .8766 2.380 .3369 l.kk70 10 

True 
Values 

.50000000  1.00000000 1.5690000  .00000000 

This experiment shows that very large errors may exist in data 

points without upsetting the convergence of the modified 3auss-Newton 

procedure when the iteration is started sufficiently close to the final 

value. 
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b.U  Effect of Length of Record on Estimation Accuracy 

The linearized error theory developed in section '».I requires that 

the matrix of second partial derivatives,  0 , be computed.  As has been 

pointed out, this is a formidable task in all but the very simplest of 

situations.  However, as the previous experiment shows, the convergence 

of the unmodified Gauss-Newton procedure turns out to be quite rapid 

even in the presence of modest amounts of noise (o < .1).  This being the 

case, the results of Theorem 1 and 2.  seem to indicate that the matrix D 

is probably quite insignificant in comparison to the regression matrix, S. 

When this is in fact true, the linearized estimate of the variability of 

parameter estimates is given by equation (111) 

r   ..-1   2 „-1 [cov 6cJ = ff S 

To check the applicability of equation (ill), a total of thirty statistical 

experiments were conducted.  A data vector was generated for each experiment 

by producing a Gaussian error vector from a random number generation routine 

and adding this to the standard correct solution to the system equation. 

The parameter vector used to generate the basic solution was 

(146) 
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The thirty computer runs were broken into three groups of ten each with 

the data points collected over 10 seconds of simulated operation in the 

first group, 30 seconds in the second group and 100 seconds in the third 

group. Samples were taken at one second intervals in every case and 

uncorrelated Gaussian noise with -j = .1 was added to each set of data 

points. 

Table 4 summarizes the results of this experiment.  The theoretical 

standard deviations appearing in this table were computed using the 

approximate formula given by equation (111).  The experimental standard 

deviations represent the observed r.m.s. deviation of the sample values 

from the true value for each parameter. 

TABLE k 

EFFECT OF LENGTH OF RECORD ON ESTIMATION ACCURACY 

Number of Average Theoretical Experimental 
Parameter Response True Value Experimental Standard Standard 

Samples Value Deviation Deviation 

cl 10 0.0500 0.053^ .0355 .0407 

c2 10 1.0000 1.0095 .0391 .0268 

C3 
10 1.0000 1.0'*22 .1181 .1424 

10 0.0000 0.0529 .1028 .1138 

cl 30 0.0500 0.0516 .00868 .00350 

c2 30 1.0000 0.9995 .01028 .00741 

C3 
30 1.0000 1.0071 .OS?1* .0469 

30 0.0000 o.om .0633 .0340 

cl 100 0.0500 0.01*93 .00375 .00279 

c2 100 1.0000 0.9995 . 0041*0 .00378 

C3 
100 1.0000 0.9777 .048? .0436 

100 0.0000 0.0183 .0520 .0453 
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The agreement between the theoretical and observed quantities in 

this table appears to support the analysis carried out in this report. 

The Gauss-Newton iteration procedure converged without searching for 

every one of the thirty computer runs.  The rms error in parameter 

estimation seems to decrease roughly in proportion to the square root 

of the number of samples, as predicted by theory.  The experimental 

standard deviations are well predicted by equation (111) in every case. 

This result lends credence to the hypothesis that the 0 matrix may 

commonly be ignored in computing rough error estimates in situations 

where the unmodified Gauss-Newton procedure converges. 

7.  SUMMARY AND CONCLUSIONS 

This study shows that the methods of linear regression analysis 

may be extended to cover the estimation of parameters for nonlinear 

dynamic systems.  The minimization of the sum squared error criterion 

function may be accomplished by treating the nonlinear problem as a 

succession of linear problems.  The local linearization required can 

be achieved by solving the auxiliary parameter influence differential 

equations.  The necessary and sufficient conditions for the convergence 

of this process involve the eigenvalues of a particular matrix of first 

and second order partial derivatives of the nonlinear system response 

with respect to the unknown parameters. 

A complete parameter estimation algorithm possessing universal 

stability may be constructed by adding an automatic scale factor 
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adjusting feature to the iterated linear estimation procedure.  This 

algorithm produces not only parameter estimates, but also an approximate 

evaluation of the accuracy of the estimates.  The results obtained by 

utilizing this method in experiments involving the response of a pendulum 

are entirely in agreement with theory and establish iterated linear 

regression analysis as a practical tool for the identification of non- 

linear dynamic systems. 

Certain problems remain unresolved.  While it always converges, the 

modified Gauss-Newton or iterated linear regression method is really 

effective only when initial parameter estimates are not grossly in error. 

Alternative procedures are needed for situations in which good initial 

estimates are not available.  The problem of constrained parameter 

estimation has not been treated.  The possible existence of multiple 

minima of the criterion function has likewise been ignored.  All of these 

problems will be made the subject of further research and reports will 

be submitted whenever significant progress has been made. 
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