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ABSTRACT

This report summarizes the recearch accomplished under
Grant AF-AFCSR-62-09. It consists of two separate parts
representing two distinct investigations carried out withiu
the scope of the grant, The first part of the report is
concerned with optimization criteria in systems design; the
second deals with the identification problem for nonlinear
systems. These two topics correspond to the abstracts
included in the Sumrary Report, USCEC 98-201, EE-24 submitted
in April, 1963,

Research in both of the areas described herein is
continuing under the renewal Grant AF=AFOSR-75-63, Mr.
R. B. McGhee has completed a dissertation based upon further
development of Part II of this report. This disser:ation
is presently being prepared for journal publication. As
further significant results are obtained, they will also
be submitted for publicgtion in the appropriate technical

journals,
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PART 1I.
OPTIM1ZATION CRITERIA

1, INTRCDUCTION

There is a fundamental difference between information theory and the
theory of control. In information theory, it is desired to operate on an
output signal so that as much information about the desired input signal is
obtained as possible, In control, the output is often asked to reproduce
some desired signal, usually the input, as closely as possible. If systems
are optimized accorling to these two criteria, the results are in general
not the same. The difficulty in formulating a suitable optimization
criterion for systems is mainly due to the wide range of purposes for which
systems are used. It would seem hardly reasonable, therefore, to expect to
define a unique optimization criterion or measure of quality; at best one
can only devise criteria which are satisfactory over a wide range of applica=-
tions., The most general description of the purpose of a system is perhaps
that it should give information about the input (or other desired signal).
If the information desired is simply a reproduction of the input, or other
desired signal, then we have a problem in control. Sometimes, however, it
may be required to extract all of the information that is implicit in the
output without regard to the possible complexity of the interpretation
process. This type of requirement is particularly important when it is
difficult or impossible to repeat an experiment. Such cases are common
in practice, and under these circumstances it is a prime necessity that the

information gained be maximum whether or not the output exactly resembles
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the input. In such a case, the guality of the output is more important
than that it exactly resemble the input, In such a case, the output
oust be interpreted or reconstructed in some way. Herein lies the
difficulty of instrumenting an appropriate interpretive system. 1In
other words, somehow the information must be made useful to the observer.
Such a procedure is a type of decoding,

One of the purposes of this research is to consider various
optimization criteria so as to determine which is best for the constrained
system under consideration. Once a system has been optimized, it is very
desirable to be able to evaluate it by comparing it to the theoretically
optimum system, In other wordes, it should be possible to determine the
optimum system performance without regard to any specific system configura-
tion. Once this is done, a precise system evaluation can then be made.
Such a procedure also has the valuable property that additional research
on the proposed system can be made to yield the maximum return for the
minimum cost. In other words, the effort can be adjusted so as to take
advantage of the law of diminishing returns, If the proposed system is
far from this theoretical optimum, additional effort is indicated, whereas
if the proposed system is near to the theoretical optimum, the additional
effort may not be worthwhilé. Furthermore, the systems evaluation
techniques to be proposed will be useful in the comparison of systems
on an absolute basis, so that if more than one system is under considera-

tion, the optimum system can be appropriately chosen.
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The most common optimization criterion used in system design,
particularly feed back systems desigzn, is minimization of mean square
(or integral square) error. The disadvantages of such a criterion are
well known, and include: the requirement of long time averaging, so that
the system is essentially optimized only for steaiy state performances;
excessive emphasis of large amplitude but srort time deviations of the
-.output signal from the mean of the desired signal, as well as other dis-
advantages. The principal advantage of this criterion is that it generally
leads to mathematically tractable expressions, where as related criteria
such as the minimization of aksolute error do not, When a system is subject
to stochastic disturbances such as noise, random load disturbances, etc.,
a commonly used criterion of goodness is the maximization of signal-to-
noise ratio at certain points in the system. OUther arbitrary criteria
which have been used incude srecification of some minimum liklihood of
loss of track in tracking systems, minimum probability of exceeding
thresholds on certain variables, certain statistical detection criteria,
etc., Let us ccnsider some of the disadvantares of these arbitrary criteria.
A disadvantage of the maximization of signal-tc-noise ratio criterion and
related criteria is that no constraint is put upon the amount of time
required to perform the desired maximization. For example, the signal-
to-noise ratio can be made to approach infinity by averaging (that is,
integrating) over arn infinite period of time. In the vast majority of
engineering systems, “owever, it is reguired that the system perform

optimally in a specified period of tine, or, more commonly, that the system




reach its optimum perfo:mance in the minirmum possible time. Thus the
question of a syster bandwidth, resconse tire, etc., is equally as

important as maximization of sisnzleto-noise rctio. The same disadvantaze
applies to any criterion such as minimization of mean sqjuare error which

has no time constraint included in it. A disadvantae of setting thresh-
olding limits and other arbitrary criteriz which put bounds uron system
behavior is that they are arbitrary, and tuerefore do not necessarily lead
to an optimum system in the sense that all errors are minimized. As an
example, consider the typical srecifications and eriteria set upon antenna
system design. It is common to specify somewhat arditrarily the beamwidth,
sidelobe level, antenna zain, resolution capability, and other vroperties
of the system. All these specifications ares actually somewrat crude attempts
to maximize the rate at which desired information is being acquired by the
antenna and processed by the system. A com:-on requirement is that the
beamwidth be as narrow as possible for the specified aperture. In a search-
ing radar, if there is a specified maximum scarch time, a narrow beam antenna
must search at a high angular rate in order to get adeguate coverage during
the specified frame time. It could very well be that the rate at which
information is being acquired would be improved by using & wider beam
antenna and searching at a slower rate, As another example, it is commonly
required that the sidelobes cf an antenna be small compared to the main
beam. In fact, it iz often stated that the ideal antenna should have no
sidelobes at all. In the case of zround marcinz, however, information is
gained through the sidelobes as well as throush the main beam, and if this

information could be so processed as to be made useful, the sidelobes might
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actually be desirable,

It is therefore concluded that the optimum optimization criterion for
any system is the maximization of the iﬁformation rate at the desired output,
This is a most general statement, but it is valid, since it is always possible
in principle to define just what information is desired from the system, It
then follows that that system which maximizes the desired information rate
will be the optimum one. If the maximization of information rate is to be
used as an optimization criterion, the optimization must take place subject
to the constraints which exist on the system, The most common of such
constraints is system cost. There are many types of cost functions:
dollar cost is just one of them, although most cost functions ultimately
have some sort of economic basis. Typical cost functions include size,
weight, power consumption, complexity of eguirment, etc. Realibility is
also of great practical importance. In general, the system must be optimized
subject to some upper bound on cost and lower dound on reliability. Since
reliability is related to complexity of eguirment, it can also often be
séecified as a cost functicn., Thus, the proposed optimization criterion
will be the maximization of information rate subject to some maximum cost

constraint where the cost constraint may include any or al.l of the preceding

specified functions.
2. SYSTEMS EVALUATICN

Note that the proposed criterion subject to constraints is well suited
to the comparison of or evaluation of systems. Clearly, two systems can be

readily compared as to their relative merit, or a single system can be




compared to the tl.eoretical optimum, The criterion can elso be used directly
for system optimization, excert that when tre system iz so optimized, the
information acquired is not necessarily in its most usactle form. The
example of the information availakl: in the sidelobes of an antenna system
illustrates this possibility., Also, the deternination of the tkeoretical
optimum for a certain class of systems does not necessarily mean that such
a system can be instrumented. The classical example of proolems of this
sort occurs in the problem of coding., Shannon has snown that even in a
noisy communication channel, it is possibie to encode a message source in
such a way that the information rate will approach the cr.annel capacity of
the system with the probability of error being nezligibly small. Thus one
need only determine the channel capacity of the system exclusive of the
source to determine the optimum rate at which information can theoretically
be transmitted. However, the tnheorem sajys trat it is '"possible to encode"
80 as to reach this theoretical maximum; it does not srecify what this
optimum code should be. As a matier of fact, a practical cocde which even

approaches the optimum has not as yet teen devised.

The aforementioned difficulties dc not affect trhe utility of the
criterion for system evaluat.cn ani compariscn., when the criterion is
used for system optimization, the rejuirsment of muximum utility can be
imposed as a constraint on the system. For example, a coansiraint which is
commonly imposed on most criteria is that of physical realizability, since
a system which is optimized witt.out such a coastraint may end up by being

not physically realizable and hence not useful. Another way around this
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difficulty is to specify the form of the sys.em to be used apriori,
leaving only certain parameters (such as the coefficients in the system
differential equation) undetermined. The system is then optimized by
maximizing the information rate with respect to the variable parameters
subject to whatever constraints are necessary. This approach also has the
advantage of initially specifying the order of the system differential

equation and hence the complexity of the system.

3. THE INFORMATION RATE CRITERICN

Information content or entropy is a concept trat deals with freedom
of choice. The greater the number of choices available, the greater the
entropy. In the case of a signal which can assume only certain discrete
levels, the entropy per sample point increases with the number of discrete
levels possible. Indeed, if the probability of each level occurring is
equally likely, then the entropy is simply the logarithm of the number of
possible levels., If it were not for the dis:urbing influence of noise, a
continuous signal would be capable of being quantized into an infinite
number of distinguishable levels, even if the overall range in signal
amplitude were finite., If the minimum distinguishable difference in levels
is set, and the dynamic range is finite, an urper bound on the entropy is
set, The maximum entropy is, therefore, a function of the minimum distin-
guishable interval where the latter is a function of the signal-toe-noise
ratio, It is very difficult to set any absolute criterion for resolutiorn,

For example, consider the resolution of two targzets by an antenna. Targets




commonly are said to be resolved if tuey are a half-beazwidt: {or more)
apart. But this designation is purely arbitrary and agsin depends on the
signal-to-noise ratio. 3Such a separation Tay be wholly inadequate for low
signal-to-noise ratios; conversely targets much closer tran this anzular
separation may be resolved at high siznal-to-noise ratios. ZRather tlan
attempt to spécify arpitrarily some minimum distinguishable iaterval or
difference in levels, a far more sophisticated approach would be to srecify
information content in te:ms of the probability distributions of signal
and noise in such a manner tiat the useful total entropy or information
rate is, in effect, a function of signzl-to-noise ratio. The total entrory
is related to not only the sigrnal-to-noise ratio but also the bandwidth and
time duration of the message. This can be seen from Shannon Sampling
theorem which states that the number of samples in the messicge is propor-
tional to the bandwidth-time product. The information rate is the total
entropy divided by the time duration of the message (provided the messsge
is quite long). Consequently the rate is proportional to :he bandwidth

of the siznzl and the signal-to-noise ratio. There is no absolute level

of distinguishability in such a definition. The information content and
rate simply improve as the siznal-to-noise ra:io improves ani/or the band-
widti. increases. The classical 3hannon comrunication system is rerresented
in Figure 1. In this system the nature of the source is assumed to be
known comgletely (that is, its statictics are known).. The encoder includes

the transmitter, the modulator, and wnateve: actual encoding scheme is

* It is true that when a sprecific message is transmitted i:s exact form is
known, however, one cannot design a system for thrat messaze alore, thus,
apriori the nature of any message transmitted by & xnown source can at best
be known statistically.




used precedingz transmission. The link is the actual transmission channel
between transmitter and receiver, The decoder fperforms the inverse
operation to that of the erncoder and includes the receiver and whatever

demodulating and decodins agpparatus is necessary. For the systems presently

under consideration, an apgrorriate representation wili be Figure,z.'

SOURCE ENCODER ¥ LINK DECODER || DESTINATION

Figure 1. Communications System

TARGET LINK SYSTEM

m

Figure 2. General System
In general, siznal and noise may appear on the input of a system, where the
link is essentially an adder, but, different from the classical communica-
tions system in Fizure 1, the noise may also be added in the system itself
as shown.

S. LINEAR INFORMATION THEORY

The information content, or entroyy, of a random time function x(t)
with a (continuous) amplitude provbability distribution p(x) is by

definition

®
H(x) = - J." pi(x) &n p(x) dx (1)
-®




The entropy i(x) is the ianformation contained in a sample of x at tize
t . Yor examgple, the entropy of a Ja.-s.a2n distribution with variance

32 and mean zero is given by

H==tn (2me02) (2)

L] [

This, incidently, is the maximum entrory per samrle of all continuous
distributions with a given variance, The infcrmation contained in the
total function x(t) , which is assumed to be of duration T , is found
from the joint entropy function

a® )

B(xlgxa.-u,xn) =z - e oee Jr:o p(xl.xz'--..xn)
n
tn plxpex et tyx ) no dx, (3)
i=1

where the subscripts denote the instants of *ime at which the samfples are
taken. If the time function has a finite frequency banliwidth B , 2TB
samples .vill completely represent the time function. It is imrortant to
recognize that a function of finite duration cannot have a Fourier transform

which extends over a finite domain, so that the sampling theorem

TB
x(t) = ) x(nt,) 2ip{2t -on) ()
n=-TB
1
to = 2—8- (5)

is only an approximation to the true x{(t); . This aprroximation is very
close when the function and its <ransform fall off without aubrupt discontin-

uities (e.3., the Gaussian function). =Zquation (4) therefore repra2sents a
12

Actually 2TB + 1 samples are needed, but 2TB «+ 1 o 273 for TB >>1 .

0=




function whose principal spectral energy lies in an audio sand of width
B . Note that if x(t) is of duration T , approximately gL = 28T

)
samples are needed to completely define tre function. If the samples

x(ti) = x, are statistically independent, Equation (3) becomes

a rm n n
Htotll = H(xl'xa,'.-'xn) = - ‘[ s ; ln[ ® p(xJ)Jizlp(xi) dxi

- QD - j:l
n ® n
-2 J" p(x,) n p(x,) dx, = 2 H(x,) (6)
=1 ~® 3=l

In this case, the total entropy can be found by adding the entropies at
each sample point. If p(x) 1is stationary in time, the entropy at each
sample point is the same, and the total entropy is simply the entropy per
sample times the total number of sample points. The successive samples
will be uncorrelated if tlre spectrum of the siznal is flat over the
specified bandwidth. Zero correlation implies statistical independence for
most distributions of interest, such as the Gaussian distribution.

Information rate is defined as

H
R = 1im —2t2l )
T -0
where Htotal is the total entropy of thke signal x{(t) of duration T .

If the successive samples are independent and the process is stationary,

then, from Equation (6)

R = lin %21*3 H(x) = 2B H(x) (8)
T-®

«1ll-




Under these circumstances, tne inforrmution rate can ve thought of as the

et i

entropy per sample times the nuamber of samples per second.

The "useful entropy" at tre receiver is the received entropy H(y)
less the received conditional entropy H(y'x) where the distribution of
received signals y depends on the transmitted signal x . By definition,

@

H(y'x) = = J'_[ plxey) tn ply'x) dy dx (9)

-®
where p(x,y) is the joint distribution of x and y and p(y'!x) is

the conditional distribution of y given x . The useful entropy is then

B = H(y) - H(ylx) (10)

It can be shown that H(ylx) - 0, or Hu - H(y) when x is linearly
related to y and that H(ylx) = E(y) or H, = C when x and y are
independent. y will differ from x ©because of noise and distortion, so
that the useful entropy decresses with increasing noise. The concepts of
useful entropy and its time rate of chanze, called "inrnformation rate",
are very important. In this report, the system is said to be optimized
when these quantities are maximized on the output. t can be snown that
H(ylx) = H(N) if x is the sum of signal and noise (x= S + N) and
the signal and noise are independent and that H(y) = H(x) to within an
additive constant if y and x are linearly related. If x consisis
of the sum of independent signal S and noise N then the useful entropy

at the receiver is the signal-plus-noise entropy less the noise entropy,

or

ﬂu = HS+N - HN (11)

=ll2-




The useful information rate at the receiver is then

R = ZB(HS¢N - H) (12)

N

The maximum rate, or ''channel capacity' for a given average transmitter

power Pé and noise power PN is achieved when both the sisnal and

noise are Gaussian and independent. From Equation (2), Equation (12)

becomes
1
C=R, =283 {ln [Zne(Ps+PN)] - 4n (ZnePN)}
P,
.an<1+P—s (13)
N

where '"C" is the ''channel caracity". Equation (13) is one of the most
widely used (and misused) formulas in information theory. It is strictly
valid only when: (1) the siznal is Gaussian, (2) the noise is Gaussian and
additive to the siznal, (3) the ncise and signal are statistically independ-
ent, (4) all processes are stationary, and (5) the signal, noise, and
signal-plus-noise spectra are flat and limited to band B. Equation (13)
illustrates one of the advantages of the maximization of information rate
over the maximization of signal~to~noise ratio and related criteria. The
rate or channel capacity is clearly proportional to the signal-=to-noise
ratio but it is also proportional to the mcdulation baniwidth B. Thus,
maximizing the information rate maximizes the signal-to-ncise ratio

subject to a restraint on system mcdulation bandwidth or response time.
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Equation (13) is an example of the calculation of information rate.
In the work which follows, more complicated expressions will have to be
evaluated. The more complicated expressions arise because the restrictive
conditions mentioned following Equation (13) are no longer satisfied. One
of the principal complicating effects when information theory is applied

to system design is that of filtering.
5. EFFECT OF FILTERING ON ENTROPY

Even if the time samples are independent at the input to filter,
they will in general not be independent at the output, since filtering
produces a non-flat output spectrum. Only in the special case where the
filter attenuation characteristic is flat will the output time samples
resain independent. The joint entropy on the output is, therefore, no
longer the sum of the marginal entropies, and the entropy per degree of
freedom is difficult to find, It is possible to find the entropy for a
particular time sample, and if the output process is stationary (which
it will be only in the steady state) the entropy at each sample is the
same, The total entropy is not the sum of the entropies at each sample
point, however, since the successive sample values are not independent.
As an example of such a calculation, suppose x(t) is Gaussian with

mean zero, and spectral density and u(f) is the unit step function

G (£) = v [u(m) - u(r-s)] (14)

Let x(t) be the input to a linear filter whose transfer function is

T(f) . The output y(t) will also be Gaussian since a linear operation

-1b-




on a Gaussian variable yielis a Juaussian varieble. The output sgectral

density is
s.(0) =6 (0 1T (15)
Yy x

and the output variance is

2 r°® e 2 D 8
of - d{'o a,(£) af = I 3.(8) () ® af = L Ir(e)1° ar (16)

The variance of the input is

2 ra: B
Hol G (f) df = w_ '[o df = w B 17)

The difference between the inrut and output entropies is

2
[~
HGy) - 800 = § a0 (%) (18)
9x

Substituting Zguations (15) and (17) in Eguation (18),

B
H(y) = H(x) + % n [ z Jro (o) |2 df:] . (19)

Equation (19) is the entropry for a particular time sample. It is not the
average entrory per sampie excegpt for strecial cases and tius wiil not
yield the total entropy when multiplied by the number of samples. To h
find the average entropy per sample for an arbictrary filter, it is more
convenient to concider frejuency ra‘her tian :ime samplingz. The transforrma-

tion between frejuency and time sumrling roints Iis orthozonal, hence *he

«15-




Jacobian of the transforma-icn has the absolute value of unity. GSince

the difference between tne entropies of two variaocles related by a linear
transformation is simply th2 lozarithm of the absolute value of the

Jacobian, it follows that the jcint entropy and/or total entropy of the
function is the same whether expressed in terms of freguasncy or time samples.
The entropy per degree of freedom after frequency filtering can, therefore,
be calculated from the effect of frequency filters on frequency rather

than time samples. This zreatl; simplifies the calculation of the output
entropy, since the relationship oetween input (x) and output (y)

frequency samples is the simple product
Y(jw) = T(jw) X(jw) (20)

The frequency samples at the filter output are inderendent since multiplica-
tion of the input variables by a nonrandom function does not affect their
independence. If the frequency samples are stationary in frequency as well
as independent, the total eniropy can ve found by simply multiplying the
average entropy per samrle by the total number of samples. Although

X(jw) may be "stationary in frequeacy," Y(jw) is not in general. The
term '"'stationary in frequency'" means that the gprobability distribution of
amplitudes in the frequsncy domain is not a function of the origin in
frequency. Equation (26) can be used to generate a set of linear equations

relating Y and Xi . The successive samples are indevendent, so that

i
the total or joint entropy is tre sum of the entropies, and the entropy

per degree of freedom is this sum divided by 2TB.

16~




It can be shown that the joint entropy after filterinz is related
to the joint entropy tefore filtering by

8
. 2
STI SRS 1¢ S T R z tn |2(e)| (21)
i=]

H(Yl. YZ'

Note that the upper limit on the sum is TB rather tnan 2TB since of the
2TB independent samples needed to define the function, TB are associated
with the real part and TB with the imaginary part. Since the samples are

independent, the average entropy per sample is

TB
Bry = ookt Jor e ) ) iy
2TB 278
ial
B hu:)
H(X, )
-Z 7,1,%-* 5-,1',-5 Zln lT(fi)le (22)
i=l i=1

If TB >>» 1, the frequency samples are equally and closely spaced in the

band B. Let

1
af = 3 (23)
B
1 2
H(Y) = (H(X) + 5= T Z m ATCe ) 1° of
i=1
~ HOX) + % J‘B moTe) 12 ar (24)

o
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Equation (24) actually represents the average entropy per degree of
freedom on the output, where a '"degree of freedom' refers to either a
time sample or a frequency sample, since the averaze entrory per sample
is the same for both types of samples. It is interesting to compare
Equation (24) with Equation (19). 1In general, these two results are
different, since the log of the integral is not egual to the integral of
the log. In the special case where the filter characteristic is constant
across the band B the two are the same, however.

Note that the successive input time samples are independent if the

power spectral density of x(t) is constant over B. In other words,

G (1) = 2|F. [x(t) 3 u(f+B) = u(£-B)] (25)
x -El Txt]l:quf#B - u - 5

where 'o is a constant. This condition is sufficient to insure that

samples spaced to = gﬁ apart be uncorrelated. Likewise, the successive

input frequency samples are independent if the power spectral density of

X(f) 1is constant over T . In other words,

p-]
G (t) =3 | F,7 (01| = w Tulten) - u(e-)) (26)

I1f Equation (26) is satisfied by x(t) , the frequency samples spaced

fo = % apart are uncorrelated.

Let us now consider the case where the average power for X(f) per unit

time interval is constant but where the amplitudes of the frequency spectra

of both signal and noise are non-flat. Since successive frequency samples

-18-




are independent in this case, but the process is not stationary in

frequency, the total entropy wili be the sum of tre entropies contrib-
uted by infinitesimal frequency bands over the bandwidth B . If a non-
flat Gaussian signal S(f) is added to independent non-flat Gaussian

noise N(f) , the useful entropy at the output of the adder at a particular

frequency (X(fi) = S(fi) + N(fi)] will be

2
[+
1 5N

Hyy = B(X,) = H(X,)S,) = 3 /n (2— (27)

93 lss

where

2 2 T
°X1'Si = :’Ni = Gn(fi) 5 (28)
cz =G(r)2=l’6(r)+c(r )]2
X5 x "1 2 R T n i 2

where the carital letters refer to frequency samples and the lower case
letters to time samples. Gx(f). Gn(f). and Gy(f) are the frequency
spectral densities for the time functions x(t) = input, n(t) = noise,

and y(t) = output, respectively. Equation (27) becomes

1 Gs(fi)
Hu(xi) =3 in (1 + 6;??;7) (29)

To get the total useful entropy, the sum must be taken over the total

number of freauency sam:les, which is @2BT. Thus,

BT
H = H, = Z T (1 Ot (30)
u total ut 2 Gn(fi /
i=-BT
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Now let T approach infinity and A&f approach O in such a way that

TAf = 1 (31)

Now that we have an infinite number of samples of infinitesimal sevaration,

the sum will approach an integral as follows:

BT

G_(f.)
T 8'"]
Hie = 3 Z ‘"CI*GZL)/“
i2-BT ol
B oG (1)
T s 1N
-3 f-B in (1 + W/df (32)

The average entropy per frequency sample is then

H B G (£)
ut 1 8N
B AE NI CRw L @5}

Cbserve that if the signal and noise spectral densities are constants

given by
Gs(f) = S°
G (£) = N (34)

then equations (32) and (33) reduce to, resgectively,

B s S
TTFr : o - 4 —oN
HutsZJBln&l+N/df=B-En(l+N/ (35)
- ) [+)
s
1 o\
H =3 tn (1 " T (36)
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Equations (35) and (26) are the results wnich would have been obtained had
the spectra been flat tc vegin witn. Now consider the situation depicted
in Figure 3

Gs+n(t)

T(s) | N,

Figure 3, Signal and Noise Spectrum for Simple System

where T(s) 1is a linear filter. Let the signal, S , be Gaussian with
mean O and spectrum So over a bandwidth from -3g to Bg and let the
noise, N, be Gaussian with spectral jensity NO over the bandwidth

-BN to BN' where

Is51 < I8l (37)
The total entropy at x will be

Hut(X) = Ht(S+N) - Ht(N)

= B.T In fzme(asa+cN2)" - (BN - BS) Tin [2re o, ]

2
N

2
-3
2 S N
- ByT fn [2rea’]= B.T in (1 ey (38)
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where
= variance of a signal frequency samgple

2
%
GNZ = variance of a noise freguency samyrle

Notice that the useful entropy at x 1is exactly the same as if Bn = Bs .
Thus, so long as Equation (37) is satisfied, the useful information
contributed by the noise alone is O . This is in keeping with the con-
cept that the noise contributes no useful information. Now linear
filtering is a linear transformaztion on the f{requency samples, and the
useful entropy is invariant under linear transformation .. According to
Equation (38), the total entropy is independent of the noise bandwidth so
long as it is greater than or equal to the signal bandwidth. Thus, if
maximization of entrory is to be used as the ortimization eriterion to
determine the bandwidth of the tranzfer function T(s) (assumed to be a
square filter), there is no constraint on its tandwidth except that it be
greater than or equal to the srectral width of 8. This conclusion is a
direct cortradiction to the conclusiorn that would be drawn from the mean
square error criterion, which says that the transfer function spectral
width should be exactly equal to Bg so as to maximize the sisnal-to-noise
ratio at y . This is a very good illustration of the difference between
control and information theoretic concerts. The control argument says
make the average sijnal-to-noise ratio per fregquency sample as great as

possible and maximize the overall rower sirtnzl-to-noise ratio on the output.

L]
F.M. Reza, An Introduction to Informa‘icn Theory, McGraw=ilill, 1961, p. 277.
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The information theoretic arpproacn says thset it is unnecessary to 2o tnis
-= that all that is required is that the total information be passed.
Thus, although the averase signal-to-noise ratio per frequency sample is
smaller the larger BN gets relative to Bs + the larger the number of
samples, so that the total averamge information remains the same. The
fact is that the information is in a more usable form if Bs = BN . But
the information is indeed available if condition 37 is satisfied. It
also specifies what tha: maximum availacle useful information is. It
will be shown in later reports that tne condition of noise at the output
of the filter does cause an interaction between the transfer function
T(s) and the output, or receiver, noise. Under these circumstances, the
useful entropy is indeed a function of the transfer function T(s) .
Information theoretic concepts may be applied to the optimization

of feedback and servo system desisn. A general servo system block diagram

d(t)
Gc (s) |— Gy(s) ’(*/\ pc

appears as

ri=r+n

H(s) |& +

ny t)

Figure 4, Typical Servo Block Diagram
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where d(t) is load disturbance, nl(t) is measurement noise or internal
amplifier noise, n 1is noise at the input to the servo and r is the
desired input signal. rp=r+n is the total input sicnal. c(t) is
the servo output. Internal sources of noise such as d(t) and nl(t)
affect the output information rate at ¢ in such a way that the servo
transfer function is related to d(t) and nl(t) . The output entropy

or rate is dependent on the servo transfer function in this case, and the
system may be optimized by maximizing the ocutput rate as a function of the
variable parameters in the servo transfer function. The open loop transfer
functions are Gc(S) s the series compensator, Gl(s) s, the plant, and
H(s) , the shunt compensator. In the case where d(t) and nl(t) are O,
however, the ocutput entropy of ¢ 1is independent of the servo function
and is simply equal to the input entropy at ry . If the servo is to be
optimized with signal and noise only on the input and no constraints on
the system, the optimization by the mecan sjuare error criterion is the

Wiener problem. Let us replace the servo in Figure 4 by the simpler

structure in Figure 5.

KG (s) » c

ry=r+n

Figure 5. Simplified Servo Block Diagram
The error is defined as

KGrl
€ mr-c =r - 7= r-Ftl (39)
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where

KG
F = 1750 (40)
ro=r+n (41)

The spectral density for the complex variable s is defined as

g(s) = lim 2 LS)%(—S—) (42)

T a0
where F'(s) = F(-s) and where the bar or overscore denotes an ensemble
average. The corresponding spectral density in the real frequency variable

w 1is defined as

G(f) = lim 2 fF(jw)'z where - L ct <2 (43)
T 2= =2
T
From Equation (3G), the spectral density for ¢ is
= 1] - LI,
gec grr SR ¢rlrl ¢rlrF ¢rrlF (44)

The optimum closed loop transfer function can be found by satisfyingz the

following equation

3¢g€ =X, = F§ - g (4s)
) 2 | riry rr
where xl is analytic in the left half plane and on the imaginary axis.
Let
' 4
SO ¢r1r1 = ¢rr * gnn * grn * ¢nx' ( 6)
«25-




and

R (47)
then
FZZ' - ¢rlr = Xy 48)

F by definition must have poles and zeroes only in the left half plane or
on the imaginary axis since it is to be a stable closed loop transfer
function. Z by definition has left half plane poles and zeroes only,

so that Z' has right nalf rlane poles znd zeroes only. ¢r1r may have
both left and right half tlane poles and zerces, but may be expanded into

a partial fraction expansion such that

[ = (g )+ (g ) (49)

rlr rlr ++ rlr -

where

(grlr)¢+ has poles in tée LHF only

(grlr)-— has poles in the RHF only

Rewriting Equation (48) so that terms having left half plane poles only
are on the left half side of the equation and terms having right half plane

poles only are on the rizsht half side of the equation, we hLave

rl rr
FZ - (gz' oy ® Xl + T>"‘ (50)
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The only way that both sides of Equation (50) can be ejual to each other
is if they are equal to a constant and it turns out that constant must be

equal to zero. It therefore follows ti.at the scolution for F is

1 rr
Fe2 (G—z-—L e

Equation (51) yields the optimum closed loop transfer function for
minimizing the mean square error, and when this function in Equation (51)

is substituted back into Equation (44), the least mean square error results.
The condition for physical realizability of the transfer function has been
inherently included in this development.

Unfortunately, the foregoins procedure does not seem to ve feasible
for the technique of maximization of information rate with respect to the
variable parameters of the system. For one thins, the variable parameters
of the system are unxnown in the Wiener problem and are specified only
after the optimization has taken place, In the second place, the information
rate criterion involves the bandwidth ¢f the system, in this case, the closed
loop bandwidth of the servo, which is specified only if the form of the
transfer function is knowr, but is unspecified in the Wiener problem. It
therefore follows that the optimization must taxe rlace after the closed
loop transfer function and the open loop transfer function have veen
specified as to form. This procedure has the advantage that th: complexity
of the system can be specified by specifyin; the order of the differential
equation describing the system before the optimization takes place., From

Equation (39), the mean square error can then be written as
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(r+n)-L-KG—n-=Ar-Fn (52)

c = KG
1+KG 1+KG 1+KG

S G (f) = M(J«»)I2 G (1) + 'F(jw)'z G (f) (53)

since the signal ana noise are independent. The mean square error is then

2 ®
= [ 6,1 ar (54)
o
and this mean square error is then minimized with respect to the variable
parameters of the system by taking partial derivatives of the mean square
error with respect to those parameters and setting them equal to zero.
This procedure yields the optimum set of parameters in the mean square
sense,

For the Wiener problem, the total useful entropy and useful rate on
the output of the servo are the same as that on the input, since the closed
loop serveo is simply the equivalent of a linear transfer function. Therefore,
this procedure does not yield any way of optimizinz the closed loop transfer
function in an information theoretic sense. It will now be proposed to
define the minimization of the useful entropy of the error as the optimiza-
tion criterion rather than the maximization of the useful entropy of the
output in order to get an information theoretic criterion which is closer
in both form and concept to the mean square error criterion, The minimiza-
tion of the information content or rate of the error criterion is, to the
best of our knowledge, completely new, The following argument srows that

it can be justified on fundamental grounds. The proposed criterion is
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similar to the mean square error criterion and leads to similar results
when the probability distribution is Gaussian. The criterion, wihich is the

minimization of the useful entropy

Hu(e) = H(e) - H(elr) = H(r) - iil(rle) (55)

is particularly useful when used with nonlinear systems, since a non-
linearity results in a non-Gaussian distribution even when the input is

a Gaussian distribution. A probabilistic criterion, sucr as that in
Equation (55), takes into account differences between the signal and the
noise in moments higher than the second, and trereby produces improved
discrimination over that which would be provided by tre mean syuare error

criterion alone, The error is defined as
€ = r-c (56)

Ideally the error should go to zero so that r =c¢ . The correlation

between tne error and tne siznzl input (all means assumed zero) is then
er = ré - rc (57)
In the ideal situation where € = O ,

er =2 -2 =0 (58)

Thus if € and r are uncorrelated and the distribution is such that

they are inderendent,
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H(e|r) = H(e) (59)

H = H(e) - H(e'r) = H(e) - H(e) = O (60)

Equation (60) leads one to the logical conclusion that the system will be
optimized if the useful entropy of the error is minimized. It is also
interestiny to observe that the servo error must be simply the noise on
the input in the ideal situation when & in Equation (56) is zero. The

"servo error' is defined as

esr -casr+n-c (61)

1

Ideally, € =r -c = 0O and
e an (62)

The basic conclusions in Equations (5€) through (62) do not take into
account the physical realizability constraints. Wwhen this constraint is
taken into account, the mean square error criterion yields a Wiener filter,
wWhen a servo is optimized in the wiener sense, the servo error is white

®
noise . This conclusion is illustrated in the following example (refer

A2

to Figure 5): Let Q!rr: 53 and ¢nn=1
o +a

L]
R. £. Kalman, A New Acovroach to Linear Filterinz and rrediction Froblems,
Trans. of the ASME, March 1960, rage 42, item m.




Then

R 2.2 -
g 22 = 2220, Jq’b wiere b2 = a2¢n‘
rlrl 2 2 z
D +& W *a
e+b
sS+a
F = 1 (EEE) _ 823 AZ(-s+a) N I 2] L
Z 2 "+r 7 s+b \(ws+a)(s+b)(=3+0)/++ = (a-b)(s+b) = =~ ~ 1+
But e = :2- = r (1-F) and ¢ =g (1-F)Y(1-F') = ¢ (1-F-F'+FF"')
1+Y 1 ee rir) riri !
2
2 s+b =
(a+b)(s+b) =A" a+b
LELELAR 27 {a+b)(s+b) - s+b
2 2 2 2
5 22 - 2% P o A
g - g 'l-F, - w2+ 5 5 i*b - a+b
€g rir1 w +a w +b w +az
But b - Aa _ ba + b2-A2 _ be + a2 = H
a+b a+b - a+b -
e ¢ee SR ¢nn

or the servo error sprectrum 1s white noise, and in
srectrum as the ingput noise.

Note that Zquation (53) imrlies that

r-c¢ llr (the symbol ll means '"is

cur or

oo er; = f(r~¢)en] {ren) = n(r+n) =nr «

a2l =

tris case, has the same

indezendent of")

7

(63)

Thus, the correlation function relatin: the input sl nal plus noise and the

servo error at the same instant of time is found %o be simply the mean noise
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power. This agrees with the conclusion in Egquation (62). Equation (63)
suggests that the criterion in Equation (55) will lead to a result similar
to that found for Wiener optimization when the physical realizability
constraint is included. A necessary and sufficient condition that the
error be minimum in the Wiener sense is that the signal and the error be
orthogonal to (i.e., independent of) each other.. Zut, as has been pointed
out, this is exactly the condition asked for in the proposed criterion,

that is, that
H(rle) = H(elr) = O (64)

Returning to the problem of minimizing the information content in the error
defined in Equation (52), let Gc(f) be the spectral density of the error
and Gc'r(t) be the spectral density of the error conditioned on r .

Then from Equation (32), the total useful entropy is

B G_(f)
H, = g J;an (ﬁszKTTa)df (65)

——
—_—

providing the input signal and noise are Gaussian and independent and the
system is linear. Since r 1is indeperdent of n , the conditional mean

of € given r |1is

clr = ar (66)

e € = Elx‘ = - Fn (67)
and

G (0 = IFGIZ 6 (0) (68)
* ibia
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where the mean of the noise 'is assumed to be zero. The total entropy in
Equation (57), where Ge(S) is defined in Equation (53) and Ge!r(f) is
defined in Equation (68), is then maximized with respect to the variable
parameters in the transfer functions by taking the appropriate partial
derivatives.

It is illustrative to illustrate the mean square error approach and
the maximization of the useful entrcpy of error approach with a simple
example. Let G(s) be 1 in Figure 5 so that we are trying to optimize
a simple positioning servo, K 1is then the parameter to be varied to yield

the optimum., First concider the mean square error approach,

X 1
F = ﬁ A= 3K (69)
— —_ -~ 3273
€2 = Aarz + anz = 5—15-53 (70)
(1+K)
2 (1410° - 2kn® - (22ekPn®)a(14K) _
X -

(1+Kin
or

(1+K) Kn2 = r° + K°n°

(?1)

l.. K=

Erol ™l

According to Equation (71), the mean square error is minimized when the
servo gain is equal to the power signal to noise ratio. Let us now proceed
to do this same problem by the minimization of total information or informa-

tion rate of the error criterion.
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°2=_ ca = Aarz + l"zu2 (72)

05‘ = (¢ - clr) an (73)
2 22
. : A r
..H“t.a'x‘zn<;_+az)=3'rzn(1+ 2:5) (74)
el
Let _
2
2 r
n2
The information rate is then
H 2
ut ) &
R =2 szn<1+K2> (76)

Assume that Equation (69) holds only over the servo bandwidt: and that the

closed loop servo bandwidth increases linearly with gain K . This is very

nearly the case in practice. The rate in Equation (76) then becomes

or

or

2
R = fK n C1+11<3> where B = f K (77)
£ K 2
3R __o -ZK Pl
& ZCK—§/+f°zn(1+K2/-o
1+
KZ
2
£n<1+ g =
2,2
For K large, fn (1.L2>,,IE 2r
K K K +y
,'3
r
Kays= n:—z (78)

TR




Notice the close similarity between solutions in Equations (71) and (78).
This example illustrates the similarity between the two approaches and
suggests that the two approaches can be expected to yield similar results.
In the forthcoming period, research will continue along lines of investiga-
tion into various optimization criteria. 1In particular, the approaches
investigated during the past period will be considered further. Both the
criteria of maximization of information rate at the output and the minimiza-
tion of information rate at the error will be considered for more complicated
systens, particularly those involving noise entering at points other than

at the input. So far only the unconstrained or swiener case has been
considered. Extension of the information rate maximization criterion to
constrained cases will also be considered. Ultimately it is hoped to
develop an extensive optimization of information rate treory analagous to

’

that presently existing for the mean square error criterion.
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PART II.

ESTIMATION AND OPTIMIZATION CF NONLINEAR DYNAMIC
SYSTEM PARAMETERS BY REGRESSION ANALYSIS METHODS

1, INTRODUCTION

Modern theories of control are generally based upon an assumption
that an accurate quantitative model for the object being controlled is
available. There are many practical situations in which this is not the
case. In such circumstances, it becomes necessary to devise a computational
procedure which will permit the inference of a mathematical description for
the controlled object from records of input and output. This problem has
been attacked with considerable vigor and substantial success by a large
number of investigators for the important but restrictive class of systems
possessing the properties of linearity and time invariance {1, 2, 3, 4] 1.

In comparison to the linear problem, little progress has been made
toward a practical solution of the more general problem of "identification
of nonlinear dynamic systems 2. wWhile a very broad theory for nonlinear
systems has been advanced by N. #iener, certain rather serious computational
difficulties inherent in his formulation have retarded the application of
this theory to real physical systems [6, 7, 8). The difficulties encountered
in attempting to make use of the Wiener theory seem to arise from the very
generality of his approach. Wiener assumes at the outset that a state of

complete ignorance exists concerning the nature of the object to be identified.
This is rarely the case when real physical devices are under consideration.

In a great many situations, basic physical theories permit the construction

lln this document, superscript numbers refer to footnotes, while bracketed
numbers correspond to the list of references collected at the end of the text.

aThe term, "identification'', appears to have been coined by L., A. Zadeh to
describe processes which seek to infer a mathematic description for a dynamic
system from input and output data [5].
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of a parametric model of finite dimensionality for the system under investiga-

tion and it is only the numerical values of parameters which remain unknown.

.

A simple example of a parametric model is provided by the equation
for the motion of a damped vendulum, Straightforward summation of moments

yields the egquation
10 = - Mgl 8in © - BO (1)
which can be normalized to

c2°6 + clé +8in @ = 0 2)

The determinaticn of <, and <y along with two initial conditions
completely identifies this system 3. A more intriguing example for which
a parametric model exists can be obtained by considering the equations
describing the atmospheric re-entry of a ballistic vehicle. In this case,
nonlinear trajectory prediction becomes possible if the important vehicle

parameters can be obtuained in a sufficiently short period of time. Cther

situations in which parametric models exist are not hard to imagzine.

When an appropriate parametric model for an unknown system has been
established, then, if the system is to be identified by a process of parameter
estimation, it becomes necessary to state an explicit criterion for the
adjustment of the model to match the data. A criterion wkich has been

widely utilized in linear problems is the integral-squared error function

3 In the discussion to follow, a set of such coefficients and initial
conditiong will be called a'‘parameter vector' and will be denoted by the

symbol, ¢ .
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evaluated over some interval of operation. Specifically, let y(t;?)
represent the theoretical or model resronse for a specified set of parameters,
¢ . Then if the trie parameter vector is indicated by 30 + the observed
response will generally consist of the theoretical response plus an error

term; i.e., if yo(t) is the experimentally observed system output, then
yo(t) = y(t;co) + e(t) (3)

where ¢(t) represents an error function. This error may be due either to
measurement error, noise internally generated in the system under study,
imperfections in the assumed model, or possibly a combination of these and

other effects. In any event, the integral squared error function is given

by
- T -
BGiy,) = | [yo(t) -y Foae (4)
) o
A "least squares' estimate of the true parameter vector, Eo sy can be
obtained by finding a vector, 3‘ s such that

min - —~
: ¢(c;y°) = ¢(ce;y°) (5)

Estimation of nonlinear system parameters according to this criterion forms
the basis for the research to be reported in the following discussion. The
inference of mathematical models from experimental data based on such estima-

tion will be referred to as the '"parameter space method".

Most of the remainder of this study is concerned with the development
an explicit computational technique for the achievement of the desired least

squares estimation of nonlinear system parameters. The particular procedure




to be described is derived from tne metncds employed in classical statistics
for the estimation of linear syst;h parareters; i.e., from the subject of
"linear regression analysis" [9]. However, before continuing the discussion
of computational procedures, it is wortnwhile to note that the problem of
parameter estimation is very closely related to the problem of parameter
optimization. If, for example, the desired response of a network and the
form (possibly nonlinear) of the network are both specified in advance, then
adjustment of the network parameters to obtain an approximation to the desired
response which is '"best" in a mean square sense is essentially the same
problem as the estimation of unknown system parameters [10]. While the
discussion to follow will use terminology consistent with parameter estima-
tion, the results obtained translate very simply into parameter optimization

problems.

2. LINEAR REGRESSION ANALYSIS

2.1 Least Squares Estimation and Normal Zquations

In the preceding introduction, a parameter space characterization of
dynamic systems was proposed. It was suggested that a very general method
for estimating unknown parameter vectors could be based upon the minimization
of an integral-squared error function defined over the parameter space. In
classiéal statistics, a very similar problem is treated under the heading
of "regression analysis'". In regression analysis it is assumed that a finite
number of measured values of a variable, say y(ti;go). are available. It
is further assumed trat there are raniom errors included in the experimental

values for y ; i.e., the variable actually measured is

-39-




y

0y y(tiszo) + e i = 142,3 *+* N (6)

The objective of regression analysis is then to determine a vector, Ze ’
which estimates the true parameter vector, :o’ by making use of the
theoreticel response function, y(t;g) « This estimation is conventionally

accomplished by the minimization of sum squared error; i.e., if

N
AEHT,) = ) [yg,-y(t;iE))° )
ial
then
min - -t - -
s G(c;yo) a G(ce;yo) (8)

where ;o is an N dimensional vector compocsed of the N time samples of

’O(t) . ”

The minimization of integral squared error discussed in the above
introduction may be cast in the form of regression analysis by approximating

the integral by a sum, That is,

#Giy ) = j; [y (t) - y(£)1° at

N
- Z Ly () - y(ti)]‘2 at
il
N
T 2
RN (9)

i=l

Since the N time samples of either y, or y may be regarded as N

dimensional column vectors, then, except for a scale factor, ¥ is just

«40=




an inner product. Because minimization of @ is unaffected by a constant

scale factor, it will be assumed in all that follows that T/N = 1 . This

being the case, if an error column vector is defined by

e ;0 - ; (10)
then
’(:3;0) ~ P (11)

where the prime denotes a transpose h. In the remainder of this investigation,
# will be redefined so that equation (1ll) is exact; i.e., least sqguares
estimation will be based upon the sum-squared error rather than the integral-

squared error function.

When the theoretical response function, y(t;?). depends linearly upon
the parameter vector, I} s the minimization of sum-squared error is partic-
ularly simple. In such circumstances, the N dimensional vector of samples

of y can be written

}’O-A’c‘°+: (12)

where A is an NxM matrix of coefficients and € is a random error

5

vector ©, The function & may be written in this case as
-y = - - .. -
ﬂ(c.yo) = (yo-Ac) (yo-Ac)

- g

=e e (13)

b

Note that there are two sources of error vhich_contribute to @. There is.,
first of all, the difference between _y and y, which results from the fact
-y -

c A Coe Segondiy. the random error, ¢ , causes @ to be greater than zero
even when ¢ = ¢5 .

> The elements of A are usually known or measured values of independent
variables or functions of independent variables. A constant term may be
included in this equation by choosing one column of A such that every
element is equal to one.

-bla




which is a positive definite quadratic form in the coordinates of the trial
parameter vector, 3 . The unique minimum value of @ nay be found, there-

fore, by equating to zero all of the partial derivatives of @ with respect

to the components of c s i.e.

o lee

—! - -V -, ! -
P =33, - YA = (ac) ¥ + (4ae) (40)

-tee -t g -t v (llb)
=YY = 2c A ¥, + ¢ A Ac
80
-;!; =% = - aA'}’o + 2A'AC (15)
and
() o~ by
§g =-2Ay +2hAc, =0 (16)

¥|c=c
e
This equation reduces to the standard "normal equation" for least squares
estimation [9]:

- Y
A = Ay, (17)
Assuming A is of full rank, this relationship may be inverted to give

- [ -1 11— -1 L b
ce-[AA] Ay, =5 A'y, (18)

The parameter vector provided by equation (18) is thus the '"least squares

6

estimate' of the true parameter vector, :o .

6

If the number of time samples of y(t) is exactly equal to the number_ of
unknown_parameters, then A 1is a square matrix, In this case, [aAtal=ta’ =
A" so ¢ = Ay ; i.e, least squares analysis reduces to simple simulta-
neous solution of linear egquations.

-




There are several reasons why equation (18) provides a very desirable
estimate of 30 « To begin with, since the matrix A is an array of known
coefficients (possibly values of known time functions), 3; is computed by
means of a simple linear transformation applied to the data vector, ;; o
The linearity of this relationship results solely from the fact that the
criterion function, & , is quadratic in the parameter vector, . If any
other criterion were chosen, differentiation would lead to a nonlinear
relationship between Ze and th? data vector. So far as the computational

aspects of parameter estimation are concerned, this is the strongest reason

for choosing a squared error criterion.

From a statistical point of view, equation (18) is a optimum estimator
in two senses. First of all, providing only that the random measurement

error, € s has the progerties

E(z) = 0

EGE )01 (19)

.

where I 1is a unit matrix, it follows from the Gauss-Markoff theorem that
equation (18) provides the minimum variance unbiased linear estimator of the
true parameter vector, P [9]. Secondly, if in addition to possessing these
properties, © is also a Gaussian random variable, then the value for ¢

specified by equation (18) is, moreover, a maximum likelihood estimate of

-
[ .

]

2.2 An Example of Parameter Estimation by Linear Regression Analysis

Suppose that an oscillating system is known to be governed by the

equation
Y+ 02’ a0 (20)
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The parameter vector for this equation is

.c‘ - J"{G}

y(0) (21)

The solution to equation (20) is given by

y(tic)e y(0) cos wt +.légl sin wt (22)

while this equation is nonlinear in w , it is linear in the unknown initial
conditions. If additional information exists so that it is known that

W=, then the coefficient matrix, A , appearing in equation (12) is

given by
cos w_ t L gin w_ t
o'l w o1l
o
1
cos w°t2 ;: sin wota
A= . : (23)

1
cos "otn - sin w_t

. on
and the parameter vector ¢ is reduced to
- y(0)
e =
. y(0) (24)
=hla




Since the sine and cosine functions are linearly independent, A is of
full rank (unless all rows of A are identical) and equation (18) may be

used to compute estimates of Eo from sample values for y .

2.3 Orthogonalization in Linear Regression Analysis
When the columns of A are chosen to be orthogonal to each other,

then the matrix
L}
SwAA (25)

is a diagonal matrix.

22

S = (26)

NN

In such circumstances, equation (17) consists of an uncoupled set of linear
equations. If the columns of A are further adjusted by a change of scale
so that they are orthonormal, then the normal equation is itself a solution
for Ee since S become: a unit matrix and equation (17) therefore reduces
to

Se -IE.-c -AS'. (27)
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Inversion of S is thereby avoided. This may be of considerable practical
value when the dimensionality of ¢ (and consequently, of 3) is large. If

A is thougnt of as a row vector with orthonormal column vector elements

A= (21| IZ. O O XH) (28)

then, from equation (27) the ktb component of the vector E. is given

o ~ A S'.ca = (R 'y'o') (29)

That is, the components of 2. are just scalar products of the columns of

A with the observed output variable.

The example matrix specified by equation (23) is easily orthogonalized
by a proper choice of sampling times, ti « Unfortunately, most coefficient
matrices are not ortnogonalized so simply. However, when modern digital
computers are used to solve the normal equations, the time required to inveré
the matrix S is not likely to be significant until the dimensionality of c

becomes quite large 7.

3. NONLINEAR REGRESSICN ANALYSIS

3.1 Nonlinear Analysis and the Need for Iterative Methods
while linear regression analysis produces estimators with many desirable

characteristics, the assumption of linearity with respect to all parameters is

? Exactly what constitutes a '"large'" matrix will derend upon the particular
computer used. However, matrices up to tenth order will certainly be
handled with ease by almost any computer.
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seldom supportable in practical circumstances. Even in extrémely simple
systems such as the one exemplified by equation (20), it will usually be
found that the dependence of solutions on some parameters will be very

nonlinear. Thus, for example, if it is assumed in equation (20) that

is alsc to be estimated from data, equation (22) shows that the connection

between w and y can scarcely be approximated by a linear relationship
(except for very small variations in w). This illustration is typical

rather than exceptional. Consequently, it is necessary to consider

minimization of error functions which are not quadratic in the parameter

space.

The location of minima for arbitrary surfaces by automatic computa-
tional procedures is a subject which has received considerable attention in
recent years, The matnematical treatment of such techniques is usually
labeled "mathematical programming" [11]. 1In the language of mathematical
programming, the sum-squared error function of regression analysis is called

a "criterion" or "objective" function [11,12].

In problems treated by mathematical grogramming, it is usually
required that the minimization of criterion functions be carried out in
some bounded subspace of the parameter space which is specified by a set of
constraint equations. Wwhen both the criterion function and the constraint
"equations are linear, tihe minimum is unique and may be located in a straight-
forward way by application of the techniques of "linear programming".

Related metliods have been developed for quadratic criterion functions [117.
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For general nonlinear problems, only iterative methods exist. Furthermore,
there may well be more than one minimum associated w~ith a nonlinear criterion
function so that it becomes necessary to examine the local minima to find

the lowest or absolute minimum. The research reported in this document

deals entirely with the problem of determination of local minima for non-
linear criterion functions in unconstrained parameter spaces. Subsequent
reports will deal with the solution of computational problems arising from

the consideration of multiple minima and constraint equations.

3.2 Parameter Estimation by Iterative Linear Regression ‘inalysis

If has been suggested, occasionally, tnat nonlinear parameter estima-
tion problems may be solved by iterative aprlication of linear least sguares
regression analysis [10,13,1&]. This approach differs from the more general
techniques of nonlinear programming in the respect that it is restricted to
situations where the criterion function is a sume-squared error function
computed from data and the response of an assumed parametric model. when
such a model exists, then assuminz that the model response, y(t;c),
possesses first partial derivatives with respect to each component of the
parameter vector, c. » these derivatives may be used to fit an approximating
quadratic surface to ¢(2;3°). Let X be the NXM matrix of partial deriv-

atives given by

8

The elements of X have sometimes been referred to as "parameter influence
coefficients" [15]. A computational metnod for obtaining these coefficients
will be presented later in this discussion.

48~
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ay(tl) ay(tl) L. ay(tl)

%y o< ey
X = g (30)
ay(ty) o 3y(ty)
L ey .7
Then an approximation to the response vector ;(El + 4c) can be

constructed by truncating the Taylor series for } to obtain
;(El + Ac) = y(:l) + X&c (31)

-
Associated with this arproximation to y 1is an approximate criterion

function:

A e - - - :'-o -
¢(Ac;c1,y°) = (y, - y) (y, - ¥) (32)
Utilizing equation (10), this may be written as

-

A . - ', -
F(8c) ='(e = Xic) (e - Xac)

-t -t - ! LY -

=ee-¢Xic -8 Xe+ & X X3

- = - ! Ve -t -
. a(cl;yo) - 28c X e + Ac Sic (33)




This expression is a quadratic form in B¢ analogous to equation (14},
The associated normal equation for tre minimizing value of B¢ is obtained
by differentiating with respect to i and equating the derivative to

zero:

ol

'g— I--2X0+255'c1-

- Ac (34)

The minimizing value of & is tren given by

By = sXx's (35)

This result may be written in a more meaningful form by noting that

Bep-Z| 2720 (36)
3c 3¢ 3¢
c = cl
so that
- 1l =l 2% - o
Bey = - 587 WE) =B (37)

The value for Ac provided by equation (37) can be used to obtain a new

—
value for ¢

3-3 +& (38)

which may then be used as a basis for further iteration. This procedure
has been called "Gauss -~ Newton' iteration [14]. As in linear regression

analysis, the normal equation for iteration (equation (34)) is linear




(and therefore solvaole by matrix inversion) only because the criterion

function @ is quadratic in Ac .

Since the validity of equation (37) rests upon an assumption of
linearity, there is no reason, apriori, to suppose that iterafive applica=-
tion of this result. to the estimation of the parameters of a nonlinear
system will produce a convergent sequence of estimating vectors. Indeed,
while this method has been used with some success in certain problems
[10,13}, it may well fail to converge in other circumstances. Necessary
and sufficient conditions for convergence and other aspects of stability

are discussed later in this report.

33 Determination of Solution Partial [erivatives

In order to make use of the techniques of nonlinear regression
analysis, it‘is necessary to compute partial derivatives of the solution
to the assumed system differential equation with respect to each unknown
parameter. These derivatives can be obtained approximately by perturbing
the parameters one at a time and arproximating derivatives by finite

differences; i.e.

ayi ’(ti; cl’cz‘o..o-, il' + ch'..cM)-y(ti; cl'cz.-..‘ cj'--o-.cM)

B T—— oy

X
13 p =

J

(39)
Precise determination of derivatives in tris manner is limited by round-off
error in digital computation and by noise in analog computation. These

difficulties may be avoided by differentiating the assumed differential

equation with respect to the parameters to obtain the "parameter influence
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equations" [15). The solution to these differentiol equations then yields
the desired partial derivatives as functions of time.
The system governed by eguation (20) provides a convenient basis

for the illustration of the parameter influence method.

Let
- ay(e) - dy(t)
xl(t) 3, ™ (40)

Then, differentiating equation (20) with respect to w :

-£L¢2my+w291-0 (41)

3wat? 3¢
Assuming continuity of the appropriate partial derivatives, the order of

differentiation can be reversed yielding:

_Lzél,,wzn._amy 42)
at”™ dw

This equation may be written
%, + oox, = - 2wy (43)
1 1

which is a linear inhomogeneous equation in Xy . The initial conditions

for this equation are obtained f{rom

11(0) = élé%l =0 (L&)

s ay(0)
x,(0) -3% '%;‘ -0

Equations (43) and (44) taken together uniquely specify xl(t) g
Ordinarily, the forcing functien y in equation (43) would be

obtained by simultaneous computer solution of equations (43) and (20).
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However, in this particular case, y can be obtained analytically and is

given by equation (22). Thus, the equation to be solved for X is
¥ + wx) = - 2uy(0) cos wt - 25(0) sin ut (45)

The solution to this differential equation with the initial conditions given

by equation (44) is
xl(t) s - [ty(o) + iﬁ%l} sin wt + t l&gl cos wt (46)
")

as may be verified by substitution. Since equation (46) represents the
partial derivatives of the solution with respect to the parameter ¢y at
all values of time, the coefficients X5q of the matrix X are obtained

from the relation

X,y ® xl(ti) i=1l, 2, *** N 47)

i1

The validity of equation (46) may be ascertained by direct differen-
tiation of the system response function, equation (20). This, of course,
represents the conventional method for obtaining partial derivatives of
an analytic function. However, while this operation is easier for a human
being than solving a differential equation, quite the converse is true of
an electronic computer. The purpose of the parameter influence equations
therefore, is to provide a method for determininz partial derivatives which
is well suited to computer rather than human implementation. Further
illustrations of parameter influence equations and their computational

solution are furnished by the examples provided later in this rervort.

«53-




3.4 Stability and Convergence Properties of Jauss-MNewton Iteration
3.4.1 Local Stability in the Absence of Measurement Error

An ideal iteration scheme for fitting theoretical response curves
to data should not only be convergent, but should also have the property
that as a minimizing value for the parameter vector is approached, the
ratio of the computed parameter error to the true error tends to unity
for each parameter. That is, if :e is vector such that ¢(3e) is

locally minimum, and ac is the parameter change vector computed at the

i
ith stage of iteration, then it is desirable that

lin ac,

—— . T (48)
i - - -

€1 - Co

where I is a unit matrix. An iteration procedure which has this property
will be termed "asymptotically efficient'; obviously it is also locally

convergent. An equivalent statement to equation (48) is
ak .- (49)
3¢

When experimental conditions are such that the response function,
Yo can be measured with entirely negligible error and, moreover, the
parametric model for the process producing the data points is exact,
then :o will itself be a minimizing value for ¢ . Moreover, in such

circumstances

SE) =73, - ¥y ) =0 (50)




80

-l e

#(c iy,) =es=0 (51)

It turns out that, under these conditions, Gauss-Newton iteration is not
only stable at c = Eo s but it is also asymptotically efficient. More
precisely, if Ei denotes the parameter-changf vector computed at T = 31
by equation (37), then the following theorem states a set of conditions

sufficient to ensure the asymptotic efficiency of the iteration:

Theorem 1:

Suppose that the sum squared error function, #(3), takes on the
value zero at ¢ = Eo . Then, if y(tzz) and its first partial deriv-
atives possess a uniformly convergent Taylor series in an e-neighborhood

-

of Co * it follows that

ég I (52)
ac - -
3 ¢ =c,
Proof:
Let &c denote the true parameter error; i.e.
8 =¢ - c (53)
Then for ’6:' <€
2=
Se) s v be + L 2 _ 23
yle) = Y, + Xéc + 3 3, Bcj L. bc, 6cj + 0(6c”)
i,J c=c
(s54)
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The notation 0(523) indicates a remainder consisting of cubic and higher

terms in &§& . Now, from the definition of Z , equation (11)
- -o)'—o ..)
galy, -5y, -7
s0 substituting from equation (5&)
’ F
g8 X'x & + o85>
Differentiatins this expression, ,
- v 2
M = 2X X 8¢ + 0(&°)
Now from equation (37)
1 . -1 -
ﬁ--g[xixi W(ci)

s80

|!‘i = - [x;xi]’l X' x 6&1 - %[x;xij'lo(&:i)

However, under the ccatinuity and full rank assumptions regarding X ,

X, =X + 0(&e)

so equation (58) reduces to
e 21 .
p'.-[xx] Tx'x & + 0(82)
and consequently

3B N L P B LV
a?' [xx] X X 1

- -
c-co

(55)

(56)

(57)

(58)

(59)

(60)

(61)




3.4.2 Necessary and Sufficient Conditions for Stability in the General Case
In real problems of system identification it is not to be expected

that @(c) can be forced to zero for any © . Therefore, it is important

to determine necessary and sufficient conditions for the convergence of the

Gauss-Newton procedure in the zeneral case

"2 g@5,) >0 (62)
c

Toward this end, let 39 be a value of ¢ which locally minimizes @ and
let ;; be the response vector associated with this parameter vector. Then

a matrix D , of second partial derivatives may be defined at C = Ee as 9

2
- - --o (Y
D [;ac 3. Yo =Y J YL . (63)
i 773 c =c
e
Another matrix, Q , may be defined from D as
A - -
Q-EXXJ%_~D=SID (64)

c
e
Utilizing this definition, the following theorem provides the desired

conditions for local stability of the Gauss-Newton procedure.

Suppose that y(t;¢) and its first partial derivatives possess a
uniformly convergent Taylor series in an e-neighborhood of 2. in parameter

space. Assume also that the matrix X is of full rank in tris neighborhood.

2 The elements of this matrix may be obtained by solving the arpropriate
parameter influence equations.
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Then if 21

and the initial parameter vector, < + is chosen so that

1

F:‘l-z.|<c°,o<s°<c (65)

it follows that there exists an £, for which

Heozi.3 (66)
i —m

for any ¢, satisfying equation (65) if and only if all of the eigenvalues

of the matrix Q are less than one in absolute value.

Proof:
As before, let §c stand for the true parameter error measured from

the minimizing vector
S, =c, -¢ (67)

Then an equivalent statement to equation (66) is

lim sai -3 (68)
i~ @

Now for |8 < ¢

FGE) =7 + xB + 3 ——3-2-;— sc, bc, + 0(8e>) (69)
€l =y * °’zz 3, ac €1 °j
1,3

- -
J [+ c

so, making use of this expansion

~58-
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-

#=G, -G, -

- - V- - - - !
(ro - y,) (yo - ye) - 20y, - ye) xé&c

- - . 33.
(yo = y.) Z —Laci acj Gci GCJ
. 1,
+ 8 x'x8e + 0(83) (70)

- - L
Referring to equation (36) and notinz also that (yo - ye) is a constant

vector which may be taken inside of the differentiation operation, the

expression for @ reduces to

g=pC)+ WE) & + & (s-D) & +0(&) (71)

Since :e is, by definition, a minimum,

WE) =0 . (72)
and @ simplifies still further to

g« #C) + Be(s - D) 8 + O(&) (73)
Now, utilizing the Gauss-Newton iteration equation

B --3stw (74)

where Si denotes an evaluation of the matrix S at Zi « 3ecause of the

assumptions regarding y and X , this equation may be rewritten

B - - -3- s7l P . o(8e) W (75)




From equation (73)

P = 2(s - D) & + 0(82) (76)
80
B o=-st(s-D) & +o(&d
= (-1I+571p)& +0(8e?) (77)
Now
Sl "o v By =C v By =T ¢ By 0T (78)
80 ’
&:hl = 67:1 + Ei (79)
-8, -1 &, +s7iD&, v 0(&d)
=s7ID&, + o) = Q &, + 0(6eD) (80)

By choosing €, sufficiently small, the guadratic term in this expressicn

may be made as small as desired in comparison to the linear term. It follows,

therefore, that for Iézll <e,

~d=1 = 2
e, = § 5&1 + O(Gci_l)

i
and consequently
lim lim _i-l &~ lim =
e 1 = 10 @ By v g Ofeey

=60~

(81)

2
1) =0 (82)




if and only if

lim 4
jop ¥ = [0] (83)

This situation inﬂxuén pfevailg&if and only if all eigenvalues of Q are
less than one in absolute value. This completes the proof. >

The following additional inferences may be made from this theorem:
Corollary I:

If D= (0] , then the Gauss-Newton procedure not only converges,
but it is also asymptotically efficient. This condition is satisfied, for
example, when the response function derends linearily upon the parameters.
It is also satisfied whenA ye corresponds exactly to yo; i.e. whep no
measurement error is present and Ee = 30 . Thus, Theorem 1 is a special

case of Theorem 2.

Corolla, II:

If the second derivatives of ; are computed and

b d - . 32‘
D, = (yo -y (ci)) —Y—ac v

' (84)
1 ¥sk g,

then providing the second partials of ; are continuous in '5&' <e€e ,

the adjusted Gauss-Newton iteration equation given by

- - =
Aci =a, = (si - Di) 7¢(ci) (85)

will always converge locally and will be asymptotically efficient,
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3.4.3 Convergence with Scale Factor Adjustment

When a criterion function and its partial derivatives are continuous
in an g-neighborhood of a point, 31 s in parameter space, then if 5&(21)
differs from zero it is always possible to reduce @(c) by proceeding in
parameter space along the negative gradient for a sufficiently small distance.
Equation (37) shows that Gauss-Newton iteration is based upon a linearly
transformed step along the gradient. This linear transformation will, in
general, induce both a magnitude and an angle change in 5@ and (as shown
by the preceding theorem) may well fail to produce a convergent estimator
of the true parameter vector, Eo . It is relevant, therefore, to consider
the possibility of stabilizing Gauss-Newton iteration in such circumstances
by reducing 3 by an appropriate scale factor whenever the basic procedure
fails to converge. The crucial question involved in the implementation of
such a scheme relates to the angle which exists between the gradient vector
and the Gauss-Newton correction vector, 3 . Specifically, since the gradient
vector is normal to the contour lines of @ , motion along 3 for a suffi-
ciently small distance will result in a decrease in @ providing only that
the angle between B and ‘5a is obtuse; i.e., providingz that the scalar
product of E and 5ﬁ is negative. The following lemma expresses this
statement more precisely and srhows that the angle condition is always

satisfied.

Lemma 1:
Consider a rezion, R, in parameter space such that the matrix X

is of full rank everywhere in R . Assume, furthermore, that about every
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point in R there exists an e-neighborhood in which a uniformly convergent
Taylor series may be constructed for the criterion function, #(¢) . Then for

any point in R such that () A 0

L 243+ ) - ¥B<o (86)
dn n = 0

Locally, # is represented at any point in R by

@ + M) =2@) « BN+ 0o(rD) (87)
80

&g;l = ;g'a + O(n) (88)
and

g W =W | (89)

Mliq.0

Now from equation (37)

%--aga-ax.xa (w)
80
B 2B XX =-208) ) --2 12 <o (91)

-

However, since X is of full rank, [XB| # O unless ? =0 . Furithermore,

- - o
since M £ O , equation (90) shows that B £ 0 so the inequality in equation
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(91) must be strict; i.e.

-t

BWMa--2 1B <o (92)
This completes the proof.

Lemma 1 provides the basis for the following basic convergence theorem

for the modified Gauss-Newton procedure 10.

Theorem 3:

Assume that the conditions of Lemma 1 are satisfied. Suppose that the
region R 1is in addition convex and has the further properties that the
criterion function, @(c) , is concave in R and possesses a minimum at an
interior point, G, » of R. Let § be the infimm of ¢ assumed on the

boundary of R and let c denote the parameter vector obtained at the

i
. ith stage of iteration. Then for any initial point, 31 s interior to R

such that
gE) <o (93)

it is possible to choose a seaquence of points

€y "Cc+ M B , O<N <2 (o)
such that

im g -, (95)
10

A related theorem involving more restrictions on R has been proved by
H, O. Hartley [14]. Hartley refers to the Gauss-Newton iteration procedure
with scale factor adjustment as the "modified Gauss-Newton Method",
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Proof:

From equation (87), @ is represented locally at every point in R

by

gGE + M8) = #C) + B W + o(nD) (96)
Now due to the concavity of ¢ , if zi £ 30 » then 5@ A0 and

B 7¢(é’i) =k <0 (97)

80 there exists an ni at every stage of iteration such that when Zi’l

is chosen according to equation (94), then 31*1 is interior to R and

B(G,,)) = #GC, + B <) (98)

Since @ is bounded from below by Q(Ee) and ¢(Bi) forms a monotone
decreasing sequence for the 31 so chosen, it follows that

lim -

gl SRR IC (99)
The concavity of # in R then guarantees that the sequence in parameter
space also converges; i.e.

ii“m g, - ¢, (100)

3.4.,4 Discussion and Conclusions
Theorem 1 can be utilized in circumstances where no real physical
measurements are to be made, It is applicable, for example, in situations

where a differential equation is to be determined whose solution is a given

-65-




analytic or computed function [10]. Since tris theorem relates to local
stability only, it may be necessary to employ a scale factor reducing
algorithm in the initiai stages of an iteration in order to achieve a
convergent sequence of parameter vectors. The existence of such an algo=-
rithm is guaranteed by Theorem 3. It does not appear that Theorem 1 is
of any significance in parameter estimation problems involving real physical
measurements since errors are inevitably present in such data.

Theorem 2 provides necessary and sufficient conditions for the Gauss-
Newton iteration to be locally stable without scale factor adjustment in the
case where the minimum of @ is greater than zero. As a practical computa-
tional matter, it is unlikely that any eigenvalues of the matrix Q will be
close to unity. More likely, either all values will be considerably less
than one or else at least one will be considerably larger than one. Thus
one would expect that unmodified Gauss-Newton iteration will either converge
very rapidly in the later stages of iteration or else it will sharply diverge.
In any event, computation of D for the purpose of establishing convergence
does not seem worthwhile. The number of differential equations to be solved
to obtain the elements of D increases alarmingly with an increase in the
dimensionality of ¢ . It is much easier to simply compute ¢(Ei + Ei) at
each step to see if an improvement results than to investigate stability by
determining D and its eigenvalues.

The above remarks also apply to the modified Gauss-Newton equation of
Corollary II. A simple search along the vector : may be carried out

with less labor than is involved in evaluating D at each stage.
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The net conclusions to be drawn from the stability theorems
developed in this section may be stated in terms of the following
computation policy:

l. If the Gauss-Newton parameter change vector, 3 s+ provides a

i
reduction in the sum-squared error functions, ¢(3;;°) , at the i-th

stage of iteration, use ¢, , =¢c, + Bi .

2. If this is not so, then determine ¢ by searching along

i+1
31 for a locally minimum value of ¢ .,

The implementation of this policy in terms of a complete computational
algorithm for unconstrained nonlinear regression analysis is presented later

in this report.

4, STATISTICAL PROPERTIES CF NONLINEAR

LEAST SQUARZS PARAMETER ESTIMATES

L1 Linearized Estimation of the Variability of Parameter Zstimates

The preceding investigation of the stability properties of iterated
linear least squares regression analysis shows that it is possible to devise
a computational algorithm which will ensure convergence of a sequence of
parameter estimating vectors to a vector, 30 » which locally minimizes the
sum-squared error function, #(c) . This vector may fail to accurately
estimate the true parameter vector, 30 s for two reasons. First of all,
it is possible that the iteration process will converge to a local minimum

of @(C) which is not the minimum associated with ¢ = 30 . The detection
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and correction of this type of error is a very difficult problem whose
treatment has been reserved for a later revort. Secondly, even if the
computational procedure converges to the proper minimum of ¢(3), measure-
ment and other errors will prevent computer generated solutions from fitting
the data exactly. Consequently, there will remain a residual statistical
error in the estimation of the unknown system parameters. Estimation of the
magnitude of this type of error by analytic procedures is extremely difficult
when the systems involved are nonlinear and the errors are large. Quite often,
error estimates can be obtained only by recourse to statistical methods
involving many repetitions of the same physical experiment. However, if it
can be assumed that 3. is quite close to Eo + then an asymptotic error
estimate may be obtained by linearizing the relationship between measurement

errors and estimation errors.

In order to obtain the desired error estimate, assume that ;(E,)
can be represented by a uniformly convergent Taylor series expansion abocut
Eo « Denote the difference between the estimated and true parameter vector
by e ; 1.e.

& = E‘e = 80 (101)
Then
¥ ) = y(c ) + x(c ) 5 + 32 _L“i ol boy bey ¢ o(&”) (102)
1'3 j cC = co o
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Now, the data vector, -";o + i5 given by equation (3) as ;o = ;(;o) + e

. -
so the residual error vector, e , may be written

o
I S N _1 3 rtd
e=y, ~y=¢ x&e 5 z #5"—3 bc, GCJ + 0(8c”) (103)
143

-t - o

t=s - ? Vs 1] ] -
Faeeoe=ccec-28c Xe + 8¢ X Xbc

2 '
- Z Cbc aac P y) éci 6c:j + 0(&:3)
1,3 +4

mce-28'x'T+ 82 (3-D) 5 + 0(8e) (104)

where S and D have the same significance as before. Assuming that term-

wise differentiation of the series for @ is permissible,

- "o
W - ‘-‘g = —"ZL = - 2x'8 + 2(s-D)6c + 0(8&D) (105)
dc  d(&c)
Since Ee is a minimizing value for @ , this expression must equal zero

and therefore, to a first order of approximation

’
X&=(s-D) & (106)
or
- '*
fe = (s - DL x'E
Typically, € will be a random variable with zero mean. In such
circumstances
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E(&) = (5-D)"Y X'E(E) = 5-0071 x'0 - © (107)
and the covariance matrix for 6c is given by
[cov 68] = E{8t fe } = E{(s-D)"* x'tl(s-00~ x'E] )
= (5-D)7Y x'[eov 2] X (s-D)"F  (108)
It is a common occurrence in experimental situations to find that
(cov 2] = o°T (109)
when this is the case

[cov 63] = 02(s-D)" x'x(s-p)~1

« o (5-D)7 s(s-p)~t (110)

If, furthermore, D = [0] , (as in linear rezression analysis, for example),

then the covariance matrix reduces still further to

2.=1..-1 2.-1

[cov &8] = 0°s™s8™" = oS (111)

which is a standard result in linear statistical theory [16].

b2 Relationship of Length of Record to Parameter Estimation Accuracy
It is a general characteristic of estimation problems that sccuracy

may be increased by considerinz more data points. When the estimation

problem involves determination of dynamic system parameters, this means

that it should be possible to increase the reliability of parameter estimates




by observing the system for a longer period of time. In situations where
the system under observation is known to be linear in the unknown parameters,
it is possible to obtain quantitative relationships linking estimation
accuracy to the amount of data available in a relatively straightforward
fashion [17]. However, when the system is nonlinear, determination of such
relationships becomes very difficult.

wWhile the relationship between observation time and estimation
accuracy may very well be unattainable by analytic methods in the general
nonlinear case, under certain simplifying assumptions, an asymptotic error
theory can be constructed. In order to arrive at such a theory, it is
necessary to modify the parameter estimation equation slightly to avoid
the possibility of the S matrix becoming singular in the limit. The

estimation formula given by eguation (37) may be rewritten as

E.%Ns'l:;g,%(

-1 =
g s)°1 3 g (112)

&

and in a similar fashion, equation (110) can be expressed as

- 2 -1 -1
{cov &8c] = %r (% - 3) % (% - g) (113)

With the covariance matrix for &c written in this form, it becomes
possible to consider its benavior as the number of samples, N , approaches
infinity.

Assume for the moment that the matrices S/N and D/N have limiting

values as N approaches infinity. Specifically let
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lim

S
N N° L/
lim D
o N " u (114)

Then, providing that the limiting operations can be interchanged with the

algebraic operations, it follows that

linm
N —aD

-1

Ncov 88] = 62 [V - Ul tv (Vv - uJ (115)

This equation reveals that the magnitude of the elements of the covariance
matrix vary inversely with the number of samples; this is a familiar fact
in linear statistics [18].

The existence of the assumed limit matrices may be related to the
behavior of the solution partial derivatives, Referring to the definition
of the matrix of partial derivatives, X , (equation (30)) it can be seen

that this matrix may be written as a row vector

- -

o0 S (116)

X = (X X5 M

-

whose elements are the colummn vectors, X Tach Xi is in turn given by

i .
ay(tl)
3¢y

ay(tz)

N (117)

el
(]
[ ] L) . . g

ay(tN)
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t
Since the matrix 5 is defined as S = X X, this notation permits the
elements, S s 0f S to be written as

i)

s“ - X, x.1 | (118)

That is, the elements of S are just the scalar products of the appropriate
columns of the matrix X . The elements of the normalized matrix, V , are

in turn given by

lim
'ij = Neo -—i-ﬁ—‘l (119)

When i = j , this expression reduces to

N
1im X
I z = .0y, (120)
. k=1
i.e. Vi is just the mean square value of the partial derivative

By/aci. Consequently

A 20 (121)

when it exists. l!oreover, unless the partial derivative, ay/éci s, tends

toward zero as t becomes arbitrarily large, the inequality is strict; i.e.

Ay >0 (122)

when 1 # j , the situation is somewhat different. Since the partial
derivatives involved may be either positive or negative, the terms in the sum
' N
lim X
Z Lin—x‘—‘l -y (123)

Y13 ¥ New
k=l
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may have either positive or negative signs and nothing can be said about the

It is, in fact, quite possible that xij may egual

do not individually tend to zero.

sign of ‘13 .
zero even though Xi and X

J
The asymptotic behavior of the matrix D may likewise be related to

the characteristics of certain vectors. Referring to equation (63)

2
3 - --4 Ly
D= [aci acJ (’o ’e) y]z ~ 3
.

The vector ;o - ;e is the residual error between the data and the best
fit generated in the estimation process. It is therefore a constant vector
which may be factored out. Making use of this fact, the elements of the

vector U may be written

N 2
1im 1 3%y(t,)
Ui;j = e z i {[yo(tk) - ye(tk)] ?c?&:} (124)
k=1

The convergence of the matrix D/N to the limit matrix U is thus contingent
upon the existence of an average cross product between- the two terms of
equation (124). As in the case of the off diagonal elements of the V matrix,
every element of U may be positive, negative, or zero.

There is one circumstance of particular interest in relation to the
above results. If it should hapren that the vectors ;i behave as if they

were samples of uncorrelated random variables, tten, in the limit, S/N

must become the dizgonal matrix

11
. A :
Va . . . (125)
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and Bay/aci Bcj are likewise uncorrelated for

every 1 and J , then U must tend to a zero matrix. When thLis occurs,

If the vectors ;o - ;’

equation (115) reduces to

lim - 2.1
N Nlcov &c] = oV (126)
or
E{6c2) - LZ- . 127)
1 N X
and
r:(tsci ch] -0, i / 3 (128)

5. AN AUTOMATIC COMPUTATIONAL ALGORITHM FOR PARAMETER
IDENTIFICATION BY NONLINEAR REZGRESSION ANALYSIS

5.1 Stopping Rules

To provide & fully automatic bacis for the determination of minima of
a criterion function, it is necessary to provide a stopping rule for the
jteration sequence, [5;} « That is, the iteration cycle must be subjected
to a supervisory procedure which determines that further refinement of the
estimate of the true parameter vector, Eo s is not justified. Such a
stopping rule may be based, for example, on a percentage change in either
the parameter space or the criterion function itself. Let

-, -

dc, A .
d = i i (129)

c -t -

€3 ¢4

and

IGY - 9Gy,)

(130)
% 9’(31)
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be the normalized differences between :wo successive computations measured
in terms of the parameter estimates and criterion function respectively.
Then an appropriate stopping rule is:

l. Stop if dc < ec

2. Stop if dg < cg
The choice of the values of ec and :g must be made in advance by the
human experimenter. Since dc and dg may behave quite differently, the
initial values for these two quantities may require adjustment during the
course of an experiment. Wwhile this particular stopping rule is somewhat
arbitrary, it is essential in every case that some criterioan for halting
computation be rrovided since otherwise the computer will continue to
calculate new values of < indefinitely even though the practical value

of greater precision may be entirely negligible.

5.2 Stabilization of the Iteration by Binary Search
In the discussion of the significance of the convergence theorems, a

specific computational policy was proposed. This policy involved stabiliza-

tion of the iteration procedure by surerimposinz a scale factor search routine

onto the basic Gauss-Newton iteration scheme. A very simple type of search
may be obtained by simprly reducing the parameter change vector by a factor

of two repeatedly until a value of the criterion function is obtained such

that:

tw

l. @ 1is less than the starting value.

2. @ 1= locally minimized (with respect to the binary search along E).
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Figure 1 is a flow diagram for a computer program to achieve the
desired stabilization. This diagram also includes a "stability" test for
the function y(t;c) for the purpose of assuring that the magnitude of
the computed variables does not exceed the range of the computer arithmetic
registers. The equations written in the boxes of Figure 1 represent
difference or '"up-dating" relationships as is conventional in such diazrams.
The sequence of orerations is always to be taken from top to bottom in each
box.

It is certainly possible to devise more sophisticated search procedures
than the one shown on Figure 1. More efficient techniques are currently
being developed and will provide the basis for future reports. However,
binary search has been found to be entirely satisfactory for the purpose

of experimentally verifying the theoretical results obtained in this study.

S5¢3 Flow Diagram for the Complete Algorithm

All of the preceding dJdiscussion is summarized in the flow diagram
displayed as Figure 2. This diagram has been coded in the Fortran compiling
language and utilized to produce the experimental results presented later in
this report. The numbers appearing at various points of Figures 1 and 2
refer to statement numbers from the Fortran program. Wwhile the program
itself has not been included as part of this document, copies of both the

Fortran decks and a listing of these decks are available upon request.
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S.k Equations for the Inference of Fendulum Parameters
The experimental part of this study is concerned with the estimation

of parameters for the pendulum equatiom (2)

°2° + clé +s5in0 =0

In conformity with the notation established for regression analysis, this

may be rewritten as
céy + cl§ +8iny =0 (131)

The parameter vector, ¢ , is therefore given by

2 =
c [
e 2 . 2 (132)
€5 y(0)
<, ;(01

and elements of the parameter influence matrix, X , consist of the partial
derivatives
day(t.)
X = i
iJ acJ

These partial derivatives are obtainable from the appropriate parameter

influence equations. For example, differentiating equation (131l) with

respect to ¢y yields

3%; (céy + cl§ + sin y) = S%I O=0 (133)
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or

3 2 :
> ay2+c 3y oéxocosy—ax--o (134)

1
1 at Bcl at  at Bcl

Assuming that the order of differentiation may be interchanged, this last

equation may be written

€,X) + 6 1X) + X COB ¥ = -y (135)

Repeating these steps with respect to each component of ¢ results in the

set of equations

c:z'x'2 + cl;‘?_ +x, cos y = - Y (136)
6.X, + C,X, + X, COS ¥ = O (137)

273 173 3

c X, + cl;(k +x, cosy=0 (138)

The initial conditions necessary for the solution of these equations are

given by

C 2 (0) =0 5 (0) x> 2L (0) = 2L (0) .

xl(O) 3] (0) =0 ; x,(0) 3 3¢, (0) 3, (0) =0 (139)
s 2L (0) =0 ; 5.00) = 2L (0) =

xa(o) acz (0) =0 ; xz(o) a°2 (0) =0 (140)

8 2 = a. -
x5(0) = 355 (0) = 15 %,(0) = 5 (0) = 0 (141)
x,(0) = <BL- (0) = 0 ; x,(0) = —2X— (0) = 1 (142)
3y(0) 3y(0)

This completes the set of equations required for regression asnalysis. The
matrix X may be calculated for an initial parameter vector estimate,

= :1 s by simultaneously solving equation (131) with equations (135)
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thru (138) subject to the above initial conditions. «quantitative results
obtained by carrying out this procedure are presented in the next section

of this report.

6. EXPERIMENTAL RESULTS

6.1 Terminal Convergence Without Measurement Noise

In order to illustrate the behavior predicted by Theorem 1, the
program illustrated in Figure 2 was executed using noise-free data
generated by the computer. The data was produced by numerical solution

of the pendulum equation using the parameter vector

«5
- 1.0
e (143)
G 1.569
0

The resulting response function, y(t;go). is shown on Figure 3 as
the curve labeled 'true response''. The data vector, ;o' required
for parameter estimation was obtained by using the ten equally spaced
samples of y(t;zo) shown on the figure as "accurate data points".
The initial guess for the parameter vector used to start the
iteration was taken as
51

1.01
(144)

[J
[

1.57
.01
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These values were deliberately chosen to be very ciose to the true
parameters so that only the terminal convergence properties of unmodified
Gauss-Newton iteration would be displayed. The stopping criterion used

for this experiment was

This very stringent criterion was satisfied after only two unmodified
Gauss-Newton iteration cycles. The sum-squared error was reduced from

a value of 1.85 x 102 to a value of 1,09 x 10713 by the two steps taken
in parameter space. Table 1 shows the sequence of values generated by
the computer for the parameter vector, ¢ . These results strongly

support the conclusions of Theorem 1.

TABLE 1

RESULTS OF GAUSS-NEWTON ITERATION USING EXACT DATA

Variable Starting Value First Iteration Second Iteration True Value
€, 0,51000000 0.50013945 0,50000021 0, 50000000
€, 1,.0100000 0.99966252 1.0000002 1.0000000
c3 1,5700000 1.5690003 1.5690004 1.,5690000
c 0.01000000 0.00007233 0.00000068 0.00000000
3 1.853 x 10~ 4428 x 1077 1.086 x 10713 0
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6.2 Stabilization of Gauss-Newton Iteration by Binary Scale Factor
Ad justment

According to Lemma 1, binary scale factor adjustment should always
produce a monotonically decreasing sequence of values for the sumesquared
error function, @ . To demonstrate this property, a computer experiment
was conducted utilizi;g the modified Gauss-Newton iteration technique
illustrated in Figure 2. The 'accurate data" vector computed to produce
Table 1 was also used in this experiment. However, the parameter vector
selected as the starting point for the iteration was intentionally chosen
to be quite far from the true parameter vector so that searching would be
required.

Table 2 summarizes the results obtained from 60 iteration cycles.
The variable N appearing in this table refers to the number of times
the computer reduced the parameter change vector, E s+ by a factor of two
while searching for a local minimum within each cycle. Large values for
N indicate that the unmodified Gauss-Newton procedure is very unstable
at that point.

This example agrees with theory in the resgpect that a lower value
for @ was obtained at every stage. It also shows that while convergence
does occur in the sequence of values for @ , successive values for P
may vary quite erratically. It must be emphasized however, that the
starting value for ¢ which produced this data was grossly in error
and was deliberately chosen to illustrate this type of behavior. Later

examples will show that the modified Gauss-Newton procedure works quite
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SEQUENCE OF PARAMETER VALUES OBTAINED USING GAUSS-NEWTON

TABLE 2

ITERATION STABILIZED BY BINARY SCALE FACTOR ADJUSTMENT

T ol i T o

It’:;abt.j;?n € <, c3 <, ] N

0 1.000 2,000 3,0000 1.000 360.3 -

1 0.093 - 5.188 4,582 1.241 212.4 3

2 0.129 - 9,877 3,643 1.141 163.8 3

3 0.329 - 73.41 0.4556 0.1078 2,422 o]

4 - 0,948 - 19.96 0.4733 0.1223 1.819 8

5 - 0.4k9 < 16.53 0,u4784 0.1269 1.816 10

6 - 0,016 - 13.79 0.L4834 0.1313 1.813 10

? 0.192 - 12.61 0.4858 0.1335 1.811 11

8 0.386 - 11.55 0.4882 0.1356 1.809 1

9 0.568 - 10.57 0.4905 0.1377 1.807 11

10 6.249 18.55 0.5641 0.2018 1.619 3

11 11.91 31.69 0.6667 0.3057 1.563 6

12 18.09 Liy 74 0.7209 0.3642 1.541 7

13 23.51 55.87 0.7490 0.3955 1.529 8

14 21.49 72.08 0.7776 0.4280 1.519 8

15 37.71 84,61 0.7922 0.44438 1.513 9

20 105.1 219.0 0.8517 0.5152 1.494 10

25 2L3.0 493.1 0.8747 0.5430 1.488 11

- 30 S3.6  1072. 0.8853 0.5559 1.485 13

40 1772. 3531, 0.8909 0.5628 1.483 14

60 1213, 2237. 0.9330 0.6143 1,421 14

True 0.500 1.000 1.5690 0.0000 0.0000 -
Values
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well, even with noisy data, when more reasonable starting points are
provided.
It was not determined whether or not the sequence of values listed

in Table 2 would eventually converge to the true parameter values or to

some secondary minimum in pararteter srace. Jince the parameter estimation
procedure was unconstrained in this experiment, the possibility even
exists that the sequence in c might grow without bound and fail to
converge altogether even though @ were to approach a limiting value.
.The experiment was discontinued after 60 iterations because the cost of
computer time seemed to exceed the value of the information which would

probably be obtained from further computer runs.

The poor terminal behavior of the iteration rrocedure in this case
is explained in part by a consideration of the angle existing between the

Gauss-Newton parameter change vector, 8 , and the gradient of @ . At

iteration number 60, the values obtained for these two vectors were

1.108 x 10° - 1.159 x 10~
- 2.033 x 10° - 6.286 x 10~
B = W =

4,027 - 1.849

The cosine of the angle existing between these vectors may be obtained

by normalizing the scalar produce; i.e.

con © = TE;%-' ~=-2.2 x 1077 (145)
pilwn
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This result shows that the angle between the contour lines of @ and
the B vector is only about 2 x 10~7 radians; i.e., P points “"down-
hill" only very slightly. As a consequence, @ is reduced only when
B is diminished by a very large scale factor (213 for the optimum step

in this case).

6.3 Convergence with Measurement Noise,

To simulate measurement errors, ten uncorrelated samples of a
unit variance, zero mean Gaussian random process were generated by the
digital computer. These errors were then scaled to several different
levels and added to the data points of Figure 3. The resulting noisy
response data is plotted on this figure for a scale factor, ¢ , equal to
one-tenth 11; Figure 3 also shows the response fitted to these data points
by the computer.

Table 3 summarizes the results obtained by using different values
of g in this experiment. The variable M in the table stands for the

number cycles of iteration required to satisfy the error criterion

The starting vector used in each case was as given by equation (14k4).
The iteration converged without scale factor adjustment for values of
o less than o = b, For =~ = ,4 and .5 , the modified iteration

procedure converged but the computer sometimes found it necessary to

. Since the basic process sampled by the computer possesses a unit

variance, the scale factor, 7 , is just the standard deviation of
the scaled process.
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reduce B by a factor of two. The drastic scale factor adjustment

encountered in the computation leading to Table 2 did not occur im this
experiment since the starting parameter vector was reasonably close to
the final minimizing vector. The apparently anomalous behavior of the
variable M for ¢ = .4 and .5 is caused by the fact that the rarameter

adjusting steps are more effective when the search algorithm is evoked.

TABLE 3

PARAMETER ESTIMATES OBTAINED FROM NOISY DATA

g < <, c3 <, "]

.0  .50000021 1.0000002 1.5690004 .00000068 1.085 x 10713, 2

oL L4682 9542 - 1.653 06502 .0568 6
2 4502 9265 1.782 05652 «2290 11
3 4387 9064 1.945 - .0092 .5180 23
R +4319 8905 2.143 - 1371 .9240 11
.5 k289 .8766 2,380 - .3369 1.4470 10
True
Values

« SO000000 1.00000000 1,5690000 . 00000000 0 -

This experiment shows that very large errors may exist in data
points without upsetting the convergence of the modified Gauss-Newton

procedure when the iteration is started sufficiently close to the final

value.
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6.4 Effect of Length of Kecord on Estimation Accuracy

The linearized error thneory developed in section 4,1 requires that
the matrix of second partial derivatives, D , be computed. As has been
pointed out, this i1s a formidable task in all but the very simplest of
situations. However, as the previous experiment shows, the convergence
of the unmodified Gauss=-Newton procedure turns out to be quite rapid
even in the presence of modest amounts of noise (o < .1). This being the
case, the results of Theorem 1 and 2 seem to indicate that the matrix D
is probably quite insignificant in comparison to the regression matrix, S.
when this is in fact true, the linearized estimate of the variability of

parameter estimates is given by equation (111)

(cov 6c] = e

To check the applicability of eguation (111), a total of thirty statistical
experiments were conducted. A data vector was —“enerated for each experiment
by producing a Gaussian error vector from a random number generation routine
and adding this to the standard correct solution to the system equation.

The parameter vector used to generate tlre basic solution was

- 1.00
c_ = (146)
° 1.00
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The thirty computer runs were broxen into three grours of ten each with
the data points collected over 10 seconds of simulated oreration in the
first group, 30 seconds in the second group and 100 seconds in the thrird
group. Samples were taken at one second intervals in every case and
uncorrelated Gaussian noise with <~ = .1 was added to each set of data
points,

Table 4 summarizes the results of this experiment, The theoretical
standard deviations appearing in trnis table were computed using the
approximate formula given by equation (111). The experimental standard
deviations represent the observed r.m.s. deviation of the sample values

from the true value for each parameter.

TABLE L4

EFFECT OF LENGTH OF RECORD ON ESTIMATION ACCURACY

Number of Average Theoretical Experimental
Parameter Response True Value Experimental Standard Standard

Samples Value Deviation Deviation
S 10 0,0500 0,0534 .0355 .0407
<, 10 1.0000 1.0095 .0391 .0268
Cy 10 1,0000 1.0422 .1181 1424
Cy 10 0.,0000 0.0529 .1028 .1138
¢ 30 0,0500 0.0516 ,00868 .00350
c 30 1.0000 0.9995 .01028 00741
c} 30 1,0000 1.0071 L0674 0469
LR 30 0,0000 0.0174 0633 .0340
<, 100 0,0500 0.0493 .00375 .00279
€, 100 -1,0000 0.9995 .00L4O .00378
c} 100 1.0000 0.9777 L0487 0436
e, 100 0,0000 0.0183 0520 .0U53
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The agreement between the theoretical and observed quantities in
this table appears to support the analysis carried out in this report.
The Gauss-Newton iteration procedure converged without searching for
every one of the thirty computer runs., The rms error in parameter
estimation seems to decrease roughly in proportion to the square root
of the number of samples, as predicted by theory. The experimental
standard deviations are well predicted by equation (111) in every case.
This result lends credence to the hypothesis that the D matrix may
commonly be ignored in computing rough error estimates in situations

where the unmodified Gauss-Newton procedure converges.
7. SUMMARY AND CONCLUSIONS

This study shows that the methods of linear regression analysis
may be extended to cover the estimation of parameters for nonlinear
dynamic systems. The minimization of the sum squared error criterion
function may be accomplished by treating the nonlinear problem as a
succession of linear problems. The local linearization required can
be achieved by solving the auxiliary parameter influence differential
equations. .The necessary and sufficient conditions for the convergence
of this process involve the eigenvalues of a particular matrix of first
and second order partial derivatives of the nonlinear system response
with respect to the unknown parameters.

A complete parameter estimation algorithm possessing universal

stability may be constructed by adding an automatic scale factor
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adjusting feature to the iterested linear estimation procedure. This
algorithm produces not only parameter estimates, but also an approximate
evaluation of the accuracy of the estimates. The results obtained by
utilizing this method in experiments involving the resionse of a pendulum
are entirely in agreement with theory and establish iterated linear
regression analysis as a practical tool for the identification of non-
linear dynamic systems.,

Certain problems remain unresolved. While it always converges, the
modified Gauss-Newton or iterated linear regression method is really
effective only when initial parameter estimates are not grossly in error.,
Alternative procedures are needed for situations in which good initial
eatimates-are not available., The problem of constrained parameter
estimation has not been treated. The possible existence of multiple
minima of the criterion function has likewise been ignored. All of these
problems ;ill be mgde the subject of further research and reports will

be submitted whenever significant progress has been made.
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