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If G is a (finite, undirected) graph, its line graph (also called

the interchange graph, and the adjoint graph) is the graph G whose

O vertices are the edges of G, with two vertices of G adjacent if the

L..J corresponding edges of G are adjacent. Let v be a projective plane

0 _ with n + I points on a line, and let G(w) be the bipartite graph whose

2 - -.P
VeTtiCes are the 2(n + n + 1) points and lines of w, with two vertices

adjacent if and only if One of the vertices is a point, the other is a

line, and the point is on the line. The graph we-he* study + (G(*)) M. "

For any graph G, let

l 1 if i and j are adjacent vertices
A) =A 0 otherwise'

A is called the adjacency matrix of G, and in recent years there have

been several investigations to determine to what extent a regular,

connected graph is determined by the characteristic roots of its j

adjacency matrix. In the case where G is a line graph, the following

+This research was supported in part by the Office of Naval Research under Contract No. Nant 3776(0),
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results have been obtained:

(i) if G is the line graph of the complete bipartite graph

on n + n vertices, and H is a regular connected graph on nz vertices

such that A(H) has the same characteristic roots as A(G), then

H a G unless n z 4, when there is exactly one exception [91.

(ii) if 0 is the line graph of the complete graph on n

vertices, and H is a regular connected graph on n(n - 1)/2 vertices,

such that A(H) has the same characteristic roots as A(G), then

H = C, unless n = 8. when there are exactly two exceptions ([ 1 , [21,

[31, [41, [5). [81).

In this paper, we shall prove that if H in a regular connected

graph on (n + 1) (n2 + n + 1) vertices such that A(H) has the same

characteristic roots as A((G(w) ) *), then H a (G(w 1 ) ) , where wI ome

projective plane of the same order as w. Thus the characteristic roots

of A((C(w)) ) do determine the class of graphs (G(w)) , but do not

distinguish between projective planes of the same order.

2. The Characteristic Roots of A((G(w)) *).

It is useful to first determine the characteristic roots of

A(G(w) ).

Lemma 1: A regular connected graph G on 2(n + n + 1)

vertices has as the distinct characteristic roots of A(d)

(2.1) (n + 1), - (n + 1), 14, -
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if and only if G = G(w), where ir is a projective plane of the

order n.

Proof: By definition, if G

(2. 2) A(G) = )

where B is a point-line incidence matrix of -. The characteristic

roots of (2. 2) are the singluar values of B and their negatives.

But the singular values of B ar, n + 1 and %[n ([71).

Conversely, assume A has (2.1) as its distinct characteristic

roots. Then ((61), if A = A(G), because G is bipartite, A is of the

form (2. 2), where B is a (0, 1) matrix with row and column sums equal

to n + 1, and BB T has all but one characteristic root equal to n. Hence

BB T - nI is a nonnegative integral symmetric matrix of rank one with

every diagonal entry equal to 1. This implies BB T - nI = 3; i. e., B

is the incidence matrix of a projective plane ir of order n.

Another derivation of lemma 1 is given in the thesis of

R. R. Singleton r101, in which it is proved that a regular connected graph

H of valence n + I and girth 6 has 2(n + n + 1) vertices if and only if

H = G(w).

Lemma 2: The distinct characteristic roots of A(G(r) ) are

(2.3) Zn, - 2, n-Itn.

Proof: Let A z A( (G(w)) ), B be the adjacency matrix

for G(r). Let K be the 2(n 2 + n + 1) by (n+ 1) (n2 + n +l) matrix
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whose rows correspond to the points and lines of w, and whose columns

correspond to the edges of (G(r)) ; i. e., each colum of K contains

two l's, corresponding to an incident point and line of w, the

remaining entry in the column being 0. Clearly,

KK T = (n+ 1) I + B, KTK= 21 + A .

The distinct characteristic roots of KK T and K TK are the same except

possibly for 0. But K TK is singular, since its rank is at most

2(n 2 + n + 1), while its order is (n + 1) (n Z + n + 1); KK T is singular,

since the sum of the rows of K corresponding to points of w minus

the sum of the rows of K corresponding to lines of w is the zero

vector. Thus the distinct eigenvalues of KK T and of K TK are the

same. Invoking (2. 1) then proves (2. 3).

3. Theorem

If 0 is a regular connected graph with no edges joining

a vertex to itself, if G has (n + 1) (n 4 n + 1) vertices and the

adjacency matrix of G has (2. 3) as its distinct eigenvalues, then

o a (G(w) , for some projective plane w of order n.

In the lemmas that follow, we assume that G satisfies the

hypothesis of the theorem, A = A(G), J is the matrix every entry

of which is 1.

Lemma 3: Let

(3.1) (x)= (x 3 - (2n-4) x 2 +(nZ - 7n+ 5) x+2 (n2 - 3n+l)).

then P(A) = 3.



Proof: It has been shown [6] that the adjacency matrix

of a regular connected graph of valence d on N vertices, with

distinct eigenvalues d, cil "'" a, satisfies P(B) = J, where

P(x) z N YJ (x - ci)/n (d - a1 ). From (2. 3), we then calculate (3.1).
i i
Lemma 4: If two vertices of G are adjacent, then there

are exactly n - I vertices of G adjacent to both. If two vertices

of G are not adjacent, then there are no vertices or exactly one

vertex adjacent to both.

Proof: Let i be any vertex of G. Then i has valence

2n, so there are 2n vertices jl, "'', J2n such that a.. = 1,
lJt

t =l ... , 2n. We first show that

(3.2) Z: (A 2)iJt = Zn ( n - 1).

t lt

This follows from (3. 1); for the left side of (3. 2) is (A 3)ii, and by

(3.1), (A3)ii = 2(J)ii + (2n- 4) (A2)ii - (n - 7n +5) A..- " 2 (n z - 3n+ 1).

But Jii = 1, (A )ii = 2n, A.. = 0, and (3.2) follows.

Next, consider the matrix

2
(3.3) B = A - 2n1 - (n -I) A

We shall show that every entry of B in 0 or 1. Certainly

every entry is an integer. Let i be any row of B. From the fact

2 zthat Z (A )ij = (2n) , we infer that

(3.4) Xb = 2nz

j lJ
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We next evaluate Z b.. 2 (B 2) W v
We • = We have from (3. 3)j Ii

(3.5) B 2 = A4 - 2(n - 1) A3 + (n 2 - 6n + 1) A2 + 4n (n - 1) A + 4n I.

2 3Further, I . I, A a 0, Ai = 2n, A.. z 2n (n- 1) from (3.2). To

evaluate (A 4)I, we use (3.1), with P(A) a J, and obtain A P(A) a AJ =

2n J. Since A P(A) is a fourth degree polynomial in A, we can evaluate

(A 4 )ii = 4n- 2n (n 2 - 7n + 5) + 2n(n- ) (2n - 4).

Putting these expressions in (3. 5), we obtain

2 2 2
(3.6) (B ).. Z b. 2n

1 ~j ij

From (3. 5) and (3. 6) we infer that each of the integers b..

is 0 or 1. Recalling the definition of B in (3. 3), this proves the

second sentence of the lemma. To prove the first sentence, note

from (3. 2) and (3. 3) that 2: b = 0. Since each b.. is 0 or 1, each
t i t

b.. = 0. By (3. 3), this proves the first sentence of the lemma.
Lemma 5: G contains 2(n 2 + n + 1) cliques C, , ...

C2(n 2 + n + 1) with the following properties:

(3.7) Each C contains exactly n + I vertices

(3.8) Each vertex of G is contained in exactly two C.

(3.9) Each pair of adjacent vertices of G is contained in

exactly one Ci.
Proof: The set of cliques C will consist of all cliques with

n + I vertices, which establishes (3. 7). To prove (3. 9). let I and
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j be adjacent vertices of G. Let k and f each be adjacent to both

i and j. If k and I were not adjacent, we would have a violation

of the second sentence of lemma 4. Hence, the n - I vertices adjacent

to both i and j (by the first sentence of lemma 4) are adjacent to

each other. These vertices, together with i and j are the unique

clique with n + I vertices containing i and J.

Let T be the total number of (n + 1) - cliques, and let us

count the number of incidences of cliques with pairs of vertices

contained in the clique. This is

T y + 2n (n + 1) (n + n +),

for the right hand side is the total number of pairs of adjacent

vertices. This equation yields T = 2 (n2 + n + 1). Thus all that

remains to be proven is (3. 8). Since the valence of each vertex i is

Zn, there must be at least two (n + 1) - cliques containing i. If

these two cliques did not contain all vertices adjacent to i, there

would have to be some vertex j A i in both cliques, violating (3.9).

We are now ready to prove the theorem. Let G be the

graph whose vertices are the (n + 1) - cliques of G. Two vertices

of G are adjacent if the corresponding cliques of G have a common

vertex. It follows from lemma 5 that G is a regular connected

graph of valence n + 1, and that G = G . We will be finished if we
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prove that G G(w). Let L be the vertex-edge incidence matrix of

0, and let A be the adjacency matrix of G. Assume A has

distinct characteristic roots n + 1, al' "" " oft Since

T - T
LL = (n+l) I + A, LTL z 2I+ A,

and (except possibly for 0) the distinct characteristic roots of LL T and

L TL are the same, it follows by the same reasoning as in Lemma 2 that

the distinct characteristic roots (with the possible exception of -2) of A are

(3.10) Zn, n- I + Ot.

Comparing (3.10) with (2. 3), we see that, if -2 is of the form n - I+ cl

then A has the same distinct characteristic roots as the adjacency

matrix for G(w), and (by the "only if" part of lemma 1) we are finished.

Therefore, assume otherwise, so that (comparing (3. 10) with (2. 3))

we find that the distinct characteristic roots of A are

n,+I, ti.n.

Since 0 is regular and connected, we can, as in lemma 3, use the

theorem of [6] to assert that

Z (A - nI)=

But since A is a (0, 1) matrix, this is absurd.
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