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Preface

In this report, I have presented a metnod for applying
gaseous film cooling to a rocket nozzle. Also, I have shown
how variations in coolant flow, velocity and angle of injection
affect engine performance and cooling effectiveness. By
experimentally demonstrating the advantages of a reacting coolant
gas, it is hoped that future investigators will find the results
and technique of velue in exploring other areas of rocket
propulsion.

The introduction and bibliography, I think, provice a fairly
complete coverage of cooling methods thus far developed and should
provide a good source of more advanced information for those
interested in the cooling problem.

I would like to express my gratitude to Lt P. Meyfarth for
his technical assistance in solving the celibration problems and
improving the instrumentation of the test facility. I am indebted
to Mr. J. Parks for nis efficient maintenance of the test equip-
ment and the many hours he willin;ly devoted to assist me in the
experimental work. iiy thanks also go to 1y advisor, Lt Colonel
Ww. McKenna, who provided timely support and suggestions for this
project; and finally, I woula like to express special thanks to my
wife, Sanacy, for ner ef%orts in editing and typing the original
draft and iher encourageuent and patience which led to the
coampletion of this work.

Donald J. Alser
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Abstract

The purpose of this investigation was to determine experi-
mentally the effect of film-cooling a rocket engine nozzle with
a reactant gas. Coolant quantities, injection velocities and
angles, and axial injection location were varied to determine the
conditions under which adequate film cooling could be achieved.

For various cooling schemes engine performance was evaluated
to determine coolant effects on engine performance, and nozzle
wall temperatures were measured to determine cooling effective-~
ness. The experimental data showing rocket performance efficiencies
(based upon equilibrium isentropic flow) and nozzle wall temperature
reductions are presented in tables and graphs.

Testing was conducted on a 100 pound thrust engine using gaseous
H2-02 bi-propellants and operating at a nominal chamber pressure of
300 psia. A self-impinging oxygen injection pattern was used in
conjunction with radial injection of hydrogen !hich also served to
film cool the combustion chamber.

Five basic coolant configurations consisting of three De Laval
type nozzles and three coolant chamber liners provided coolant
injection at the nozzle entrance and/or near the nozzle throat.
Decreasing the injection velocity resulted in increased wall
temperature reductions so that critical areas of the nozzle could

be adequately film cooled.
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Yor the range of mixture ratios from 1.5 to 6.5, coolant flow
ratios (with respect to total hydrogen flow) were varied from
.084 to .178 while hydrogen flow rates ranged from .126 lb/sec to
040 1b/sec. Thrust coefficients were near 100% of theoretical
performance; and characteristic velocity and specific impulse
efficiencies from 82% to 89% were obtained for the coolant
configurations where adequate film cooling was realized.

At a mixture ratio of 3.0, experimental regults showed average
wall temperature reductions of 30% from the nozzle entrance to a
point half-way through the nozzle divergent section, for tangential
coolant injection at the nozzle entrance and h5° radial injection
near the nozzle throat. At the same time, performauce loss was less
than 3%.

Engine performance loss was dependent only upon coolant flow rate
while wall temperature reductions were a function of coolant flow rate
and coolant injection location. For equal coolant flow rates, small
angles of injection resulted in practically no change in wall

temperatures from that of tangential coolant injection.
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AN EXPERIMENTAL INVESTIGATION OF NOZLLE
COOLING FOR A SMALL ROCKET ENGINE

I. Introduction

Advances in rocket engine development for space exploration
and missile weapon systems have created new environments of
extremely high teamperatures. The flame temperatures in combustion
chambers are on the order of SOOOOF and heat transfer rates as
high as 14 Btu/inz-sec have been observed. Associated with this
severe engineering environment is the containment and coatrol of
the hot combustion gases in a rocket nozzle to provide the
necessary propulsive thrust. In addition to adverse temperature
gradients and extremely high heat transfer rates near the throat,
the nozzle is subjected to high gas pressures and convective shear
forces, chemical corrosion and sometimes particle erosion. Thus,
the exposure of rocket eagine components to such an environment
will ultimately result in their destruction unless some fors of

thermal protection is provided.

Cooling Technigues
Several thermal protection techniques have been desizned and

tested which offer possible solutions to the heating problem.
Heat Sinks. Conductive heat sinks are an absorptive type

system whereby incident energy is stored in a large mass of
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material by sensible temperature rigse. This method is usually
not practical from a weight reguirement point of view.

Refractories. Materials capable of withstanding severe
temperatures have been developed and employed in nozzle throats
and combustion chambers. However, available refractories rapidly
fail ‘in the presence of high pressures and shear forces, and
therefore provide a relatively short service life.

Regenerative Cooling. Convective regenerative cooling is
another absorptive type cooling system. Heat is absorbed by the
exposed surface and conducted to a regulated flowing fluid,
thereby maintaining the surface at a temperature below the structural
failufe temperature of the material. This riethod is widely used
in liquid propellant systems since the fuel or oxidizer can often
function as the coolant prior to injection into the combustion
chamber. Regenerative cooling, which increases propellant pumping
requirements, is not time limited but is subject to the undesirable
characteristic of bubbling due to heating prior to iajection. In
addition, many prcpeliants do not have the capacity for absorbing
the required neat flux (Ref 3:447-462).

Transpiration Cooling. This coolin: technigue uses either a

regulated or passive mass transfer system. A gaseous or liquid
coolant is passed through a porous wall material with the injected -
mass flowing in a direction opposite to the inciaeat heat flow.

Energy absorption takes place through temperature rise, and

2
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sometimes, mass phase change. 5kin friction and surface neating

is reduced by the continual mixing of the coolant and not
combustive gases. Although this method has received iancreased
emphasis as a cooling scheme for the combustion chambers of

gaseous, plasma, and nuclear rocket engines, there has been only
limited usage to date. The limited use of transpiration cooling

is attributed to non-availability of high teaperature uniformly
porous materials, pore clogging by combustion products and residues,
susceptibility to local hot spots, and high coolant weight and

bulk requirements (Ref 14:36-40).

Ablative Cooling. (Ref 21:2-8) Ablation of a material is

another means of mass transfer cooling. 1Ihis method involves

the sacrificial erosion of plastic materials and can be employed
with both 1liquid and solid propellant rocket systems. Cooling

of the surface is accomplished when the hot gas stream heats tne
exposec material, thereby forming gases within the surface lejers.
The released gases then create a transpiration type cooling process.
At the same time, a charred insulative surface is formea which is
ultimately swept away by the ki-h sheer force gzas streanm.

Ablative coolinz is cesirable in taat tne materials utilized

are light weight, have a low thermal conauctivity (nigh thermal
insulation), and have the ability to accommodate intensive neating
without failure. Factors limiting tre use of ablative ccoling

are: a susceptibility to high zas stream suear force:, hign

1 e 0 RN
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temperature corrosion and a finite material service life under 30
seconds. Present applications of ablative cooling are found in
re-entry thermal shields and rocket nozzle skirts and throats.

Film Coolinz. Last of the mass transfer cooling methods being
investigated is that of film cooling. It is based on forcing a
coolant through a series of slots or perforations, and onto a wall
surface to form a thermal insulating layer between an exposed
surface and a hot gas stream. The insulating layer is formed
adjacent to the injection area and is carried downstream umtil it
evaporates and/or diffuses with the hot gas stream. In the case
of liquid film cooling, heat is transferred principally by means of
evaporation (Ref 8:301-302). With gaseous film cooling, heat trans-
fer occurs by means of sensible heat exchange. In both cases, the
film coolant serves to insulate and protect the hot surface from
excessive heating. Liquid film cooling has a decided advantage over
gaseous film cooling in that the density storage requirements are
less, and the utilization of the latent heat of evaporation of a
liquid significantly improves the cooling technique. Film cooling
has been successfully ana efficiently used in liquid propulsion sys-
tems and has good possibilities for future applications to solid
propellant rockets (Ref 14:29-36).

The previously described cooling techniques have all contributed
in the effort to solve the rocket heating problea and bhave aided the

developaent of more advanced rocket propulsion systems. However,
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it must be born in mind that no one method can always be described
as the beet. Thus, the rocket engineer is faced with the probles
of deciding which cooling scheme, or combination of schemes, is

the best to fulfill the mission requirement and, at the same time,

meet economical restraints.

Cooling Method Undertaken

In considering the application of a cooling technique to a
rocket nozzle, transpiration and ablative cooling appear to offer
the most promising means for effective cooling and overall perforam-
ance optimization. However, an extensive program to evaluate abla-
tive nozzles has been conducted by the Aerojet-General Corporation
(Ref 25), and the non-availability of acceptable porous materials
to facilitate nozzle transpiration cooling dictated the use of
some other cooling scheme. Eckert suggested that film cooling be
used where cooling of a specific location is required, or where
average rather than maximum temperatures are important (Ref 9:210).
Therefore, the fila cooling scheme was undertaken as a possible
method for reducing average wall teaperatures throughout the no:zl‘
while decreasing the maximum-incurred temperatures at the nozzle
throat.

Several experimental investigations on ligquid film-cooled
noszles have been conducted by Boden, Zucrow and Graham, Morrell,
#elsh, Abramson, and Ferri. Some of the more important results are

suanariged:
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l. Film cooling can reduce iall heat transfer rates up to
85% (Ref 53305 and Ref 26:l).

2. Heat transfer rates are greatest at nozzle throats
(Rer 5:388).

3. Higher reduction in wall heat transfer rates is obtained
with organic coolants than with inorganic coolants due to gaseous
dissociation and wall coating characteristics (Ref 26:1).

4. Adequate nozzle cooling is obtaineu with coolant flow
rates from 5 to 15% of total mass flow rate (kef 17, ref 5:390,
and Ref 26:1).

5. High rocket efficiency is obtained at the low coolant
mass transfer rates (Ref 17 and Ref 163362).

6. Coolant injection near the nozzle throat requires the
least coolant flow rate to obtain the maximum local and total
cooling effect (Ref 5:3569 and Ref 2637).

7. Raaial coolant injection is least effective at the nozzle
entrance and most effective near the nozzle tnroat where the rate
of change of mainstream velocity ana heat transfer increases
rapidly \Ref 23 and Ref 5:359).

8. Tangential injection is the most effective metnod for
coolant injectior at any location (kef 26:1 anc Ref 5:389).

9. Effective liquid film attachment is obtaizned with
simple radial hole injectors so that a more complex means of

injection is unnecessary (Ref 163362).
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10. Critical injection velocity, defined as velocity above
which the coolant film begins to detach from the wall surface at
the point of iajection, is a determining factor in cooling
effectiveness (Ref 16:362, Ref 29:650, and Ref 12:2).

1l. Reacting coolants cause a lower decrease in rocket
performance than do non~reactants since a reacting coolant may
also function as an injected propellant (Ref 17, Ref 16:360,

Ref 1:7 and Ref 2637).

12. Film cooling can prevent hot gas stream deposits and
chemical reaction on the nozzle surface (Ref 163359).

13. Coolants made up of light elements are better than
those containing heavier elements since their sonic velocity is
higher and rocket performance is less effecied (Ref 12:1).

There has been some theoretical and experimental work per-
formed with gaseous film cooling but these investigations have
been confined to flow over a flat plate. Theoretical results of
Bckert and Livingood, with air as a filz coolant, show that cool-
ing effectiveness increases with the number of injection slots and
that, for equal maximum surface terperature and equal coolant flow
rate per slot, the slot spacing must increase in the downstream
direction (Ref 10). Papell and Trout, in their experiments, used
two appreciably different temperature levels of injected gaseous
coolants and observed that both the low-temperature and high-

temperature injections produced about the same wall temperature
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distributions beyond a short distsnce downstream of the point of
injection. They explainea that the coolant gas having the higher
temperature possesses higher injection velocity which tends to
improve the persistance of the cooling film (Ref 19).

Due to greater mixing between the mainstream and the coolant
jet, normal (radial) gaseous injectiorn has been recognized as much
inferior to tangential injection. Sevan, Chan, and Scesa observed
that the reduction in wall temperature effectiveness from tangen-
tial injection to normal injection amounted to 50% (Ref 22). Thus,
wall temperature reductions due to injection at an angle to the
main stream flow direction should be between the effects due to
normal injection and tangential injection. -

Analytical investigations by Eckert and schneider show that
light-weight gases of high thermal capacity are tne most promising
means for gaseous film cooling. They point out that helium inject-
ion is better for ease of application and is more effective than
air injection, but is less effective tcar ayarogen injection
since it sae higher ceansity anc lcwer tnermal capacity. Hydrogen
influences heat transfer by increaeirnz the boundary layer thickness
caused by injcction, anc providing a nign tnermal czpacity which
tends to markedly cecrease the .eat tra.sfer rate. In addition,
the low density at tre surface with hycrogen iujeciion over-shadows
poorer conductivity effects (kef 1i:3:).

In view of the lack of experimental work on gaseous film
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cooled nozzles, further study was deemed necessary to: (a)
determine the effects of gaseous film cooling omn overall rocket
performance, (b) correlate experimental heat transfer results to
analytical film cooling theories, and (c) obtain more insight into
liquid film cooling effects after vaporization. Thus, this invest-
igation was undertaken. It involves the modification of a small
gassous HZ-O2 rocket engine, designed originally by Ow (Ref 18), to
incorporate a film cooled nozzle employing gaseous hydrogen as a
reacting coolant. The design and evaluation of the filam cooled
nozzles is based upon the results obtained froam ligquid film cooled
nozzles and gaseous cooling over a flat plate (See Pages 5-8).

Ow designed the basic rocket engino.to investigate gaseous
film cooling of the combustion chamber. He was successful in his
efforts to cool the chamber walls and determined the optimuas cool~
‘ing configuration for the chambsr. However, Ow found it necessary
to cool the nozzle with exterior water flow. During the following
year Pickitt applied gaseous film cooling to the nozzle by modi-
fying the aft combustion chember liner for hydrogen injection
tancential to the noszle entrance (Ref 20). He was unsuccessful
in this attempt, as he encountered propellant surge problems which
caused & high mixture ratio, low coolant mass flow, and thus

resulted in nozzle failure.

IR E—————

For this study, in order to investigate the various possibilities

9
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for applying the film cooling technique, three noszzles comprising
five coolant configurations were used. Two coolant configurations
provided coolant injection at the nozzle entrance, a third config-
uration introduced the film coolant near the throat, and a fourth
configuration provided a combination of the first three methods.

A fifth configuration, which involved an uncooled nozzle, provided
a means for comparing the effects of the various coolant config-
urations on rocket engine performance and coolant efficiency.

Rocket engine evaluation is based upon a comparison of
performance pafametera (specific impulse, characteristic velocity
and thrust coefficient) versus mixture ratio and the reductiom of
specific impulse versus coolant flow ratio. The effectiveness of
gaseous film cooling is based upon a corparison of axial wall
temperature profiles as a function of mixture ratio and coolant
flow ratio.

The limitations imposed by using gaseous propellants and
coolant in this investigation shouid not in itself prevent the
general extrapolation of film cooling results to otner liquid
propellant rockets e¢ven tnough specific injector requirements
may differ.

In spite of the fact that rocket system optimigation has
stressed the use of liquids for propellants and coolants,

indications are that future rocket systexzs will continue to use

10
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high ‘energy fuels but in zaseous form, regaraless of the cost in
weight factor. This may be the case in small low-tnrust rockets
intenced for inaefinite use in stabilization and attitude control
of space vehicles. Also, the use of gaseous reacting coolants
would eliminate the need for an additional coolant system,
thereby partially offsetting the low density disadvantage.

The following sections of this study describe the aesign
and modifications of the basic rocket engine, instrumentation

and test procedures, data reduction, and evaluation.
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II. Rocket Eugine Design
and Modifications

The basic engine used im this investigation was designed
by Ow (Ref 18) following a design example given by Suttom
(Ref 243256). It was later modified by Pickitt in an attempt
to £ilm cool the rocket nozzle (Ref 20).

Ow selected the size of the rocket engine to provide a
" thrust of 100 pounds and a chamber pressure of 300 psia for an
ideal weight flow rate of .286 1b/sec and specific impulse of
350 seconds.

To be compatible with existing facilities, the engine was
designed to use gaseous hydrogen and gaseous oxygen as the
propellant combination.

In this study, all nozzle cooling tests were performed on
the basic engine with the film cooled combustion chamber,

except as noted in the following paragraphs.

Oxygen Injectors
The original oxygen injector was of the self-impinging
type. It was designed for msximum momentum exchange witia the '
radially injected hydrogen and to impinge at a point near the
nossle entrance (See Figure 1 and Drawing 1B). Thae injector
consisted of a single ring of eight 1/16 inch diameter

injection holes.

12
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Pickitt designed a second injector which was a combination
showerhead and self-impinging type. This was s mcdification of the
original injector which added eight additional 1/16 inch diaseter
holes for axial injection. The purpose of this injector was to
decrease the oxygen momentum and incresse oxygen dispersion in
order to bring the flame front closer to the injector face, improve
mixing, and preveant hot spots in the nozzle. Pickitt found this
design necessary since he determined that one of the major causes
for burnout of his nozzle was due to the original injector not
providing the desired spray pattern. The modified injector geometry
is illustrated in Figure 1 and Drawing 2B.

In order to improve oxygen injection, two corrective steps were
taken. First, the original injector design was corrected to provide
closer tolerances in production. Second, the modified injector (mot
completed by Pickitt) was redesigﬁed and built. Then the completed
injectors were subjected to water tests to determine the soray
patterns. The results of these tesis are gnown in Figures 2 and 3.
The improved impingement and aiffusion seen in the spray pattern of
the modified injector is visibly apparent.

The oxygen injector used in this investigation was tne improved
version of the original injector. The requirement that cosbustion
chamber counfiguration remain constant for &all tests did not aliow

time to evaluate the perforzance of the moaified injector.

13
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Hdydrogen Injector
The original hydrogen injector was designed for raaial

injection. Seventy~two 1/16 inch diameter holes were spaced
circumferentially along the full length of the combustion chamber
in oraer to provide chamber film cooling as well as fuel
injection. The complete injector was made up of a forward and
aft chamber liner designeu to provide injection velocities near
;h Mach at a mixture ratio of about 1. This nydrogen injector,
which conforms to Cw's coufiguration B, is shown in Figure 6 and
Drawing 65S.

Some modifications to tue aft cnamber liner were necessary
to facilitate nozzle film cooling. Thereiore, to provide varicus
configurations f.r coolant injection three aft chamber liners
were desi.ned as follows:$

l. One liner was mace to provide sixteen, equally-spaced,
1/16 inch diameter noles, which were drilled in the rear of the
liner. These injector holes allowea 17.0% of tiae total nydrozen
flow to be airected tangeatial to tue nozzle entrance (convergent
section). Tuis liner is illustratea in Drawing 38, ana is shown
mated to tne¢ [orward cuamber liner (hyurowen injector) in' Fig.re 6.

2. A second liner was designea for sixteen 5/o4 inch diameter
injector holes, in a manner similar to the first. This liner
permittec 10.9% of tae total hyu.rogen flow to be uirected

tangential, or at an angle of 15 degrees, to tne nozzle enirance —

depending on tne convergent angle of the nosgzle.

14
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a fairly optimum angle for conical nozzles when considering wall
friction and radiasl component velocity losses (Ref 3:87-88).

The nozzles were designed with large convergent area ratios
(greater than 25) to permit very low mainstream velocities at the
nozzle entrance and to provide a value of L* greater than 100.
Static temperatures and pressures at the nozzle entrance would
then more closely approach isentropic stagnation values of the
combustion chamber and nozzle. In addition, by using values of
L* greater than 100, rocket engine performance parameters would
not tend to be a function of different engine geometries; in
effect, this ensured adequate residence time of the propellants
for complete combustion in the chamber (Ref 33102, 401-403).

All nozzles were designed to slightly overexpand the exhaust
gases. For a costant chamber pressure (300 psia), this would
result in a large exit pressure differential at the low mixture
ratios but would approach optimum expansion as the mixture ratio
was increased to higher values. See Figure 15. In any case, the
designed over-expansion would not cause separation or shock wave
interaction at the exit since the separation point for these
nozzles is at an exit pressure ratio (!;/P;) of about .4 (Ref 3:?7);

The original nozzle, Ow's configdration D, with an exit
expansion ratio € = 4.25, was available and designated nozzle A
for the purpose of testing (Figure 7). It had a convergent half-
angle of 45 degrees, with a short straight throat section, and a

constant wall thickness of 1/8 inches.
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A second nozzle, designed by Pickitt, was designated hosslo
B. For this nozzle, the throat section was roﬁnded 80 that the
diameter of the throat was equal to the throat raaius of curvature
(Ref 3:70). This ensured a more progressive velocity increase
than that of nozzle A. Nozzle B, with € = 4.41, had a convergent
half-angle of 45 degrees and a coustant wall tnickness of 3/16
inches. This nozzle is illustrated in Drawing 5B and Figure 7.

The third nozzle, designated nozzle C, was designed to
provide film cooling near the nozzle throat (Drawing 43 and
Figure 8). The half-angle of convergent was cnanged to 30 degrees
to provide a smoother transition of gas flow from chambar to
throat conditions. Also this convergent angle would por-iéwthc
use of chamber liners for 15 degree coolant injection at the
nozzle entrance. Nozzle C was designed with an exit expansion
area ratio € = 4.25 and a throat similar to nozzle B. The wall
thickness, however, was constant at 3/16 inches only from the
exit to the coolant section. This created some difficulty in
temperature measurement which will be discussed in the
instrumentation section.

The throat coolant section, of nozzle C, was located at an
area ratio A/At = 7.43., It cﬁnsiatod of twelve 3/64 inch diameter
holes, equally spaced circumferentially, to provide film coolant
injection at an angle of 45 Gegrees to mainstream flow direction.
The coolant section was connected to the aft combustion chamber

section by means of a short external line. See Figure 9.
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All nozzles were made of copper primarily because of its
high tnermal conductivity; This enabled rapid teusperature
stabilization ana small temperature gradients through the rozzle
wall., In adaition, the soft copper material facilitatea nozzle
instrumentation.

The varietion in nozzle geometry resulting from modifications
should not cause any major differences in performance parameters.
Zucrow pointed out that: correctly desizned conical nozzles witn
smooth polished interior surfaces have efficiencies between 96
and 98 percent; the exact geometry of counvergent sections is not
critical so that a smooth transitiou to tne throat is sufficient;
the taroat section need not oe well rounded ana can be short;
and that no measurable loess of thrust will result fro: a variation
of the nozzle convergect half-angle between 30 and 60 aegrees
(Ref 283375).

Initially. the nozzles were to be cooled externally with a
water spray systex. Then, if the film cooling schemes proved
successful, tne coolant water could be eliminated thereby
permitting heat transfer only to tce anbient atmosphere.

For easy reference, the design date for all nozzles is
sumuarized in Table I. Illustrations are proviaea in Figures

? and 8.
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Eropellant Feed fvstes

The propellant lines leading to the rocket engine were
modified to decrease runm condition transient time and pressure

loss. Pickitt found that the large volume in the hydrogen
manifold plus the extensive network of small tubing and coanectors
gave a hydrogen pressure drop fifty times larger than that of
oxygen. In addition, the transient time from hydrogen start
pressure to run pressure was about two seconds longer than that
for oxygen pressure. Pickitt indicated tnat these two factors
were primary causes of nozzle burnout since the propellant mass
flows surged to a high mixture ratio while only one percent
coolant mass flow was available (Ref 20:20-22).

As a result of Pickitt's observations, the hydrogen manifolding
was modified to provide larger diameter, but shorter length, feed
lines and to substantially reduce the number of elbows, tees,
and reducers. The results of a preliminary test showed that this
modification corrected the surge problem, so that the transient
time from start to run pressure was about the same for both

hydrogen and oxygen feed systems.

Coolant Co atio
With three noszles and three combustion chamber liners, a number

of possibilities existed for applying the film cooling technique.
The final combinations selected made up five basic coolant

configurations.
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Nozzle A was used with the two coolant chamber liners to
provide tangential injection at the noszle entrance for coolant
flow ratios w = .178 and W= .109. These coolant configurations
were designated A-A and A-B, respectively.

Nogzle B was used with all three chamber liners (ome without
cooling provisions). Similar to nozzle A, ana with identical
coolant flow ratios, two of the configurations enabled coolant
injection tangential to the nozzle entrance. These coolant
configurations were designated B-A and B~B, respectively. The
third chamber liner provided a coolant flow ratio w= 0, and
was designated configuration B-C. This configuration could then
be used as a standard for comparing the rocket performance and
cooling effectiveness of the other configurations.

Nogzle C was used with two of the chamber liners (A and C
of nozzle B) to provide coolant mass flow ratios w = .084 and

w = .176, and were designated coolant configurations C-D and
C-E, respectively. These configurations differed from those of
nozgzle A and B in that part of tue coolant flow was diverted to
the throat'cooling section. Thus, for configuration C-D all
coolant flow was injected near the throat, while for configuration
C~E part of the coolant flow was injectea near the throat and
part injected at an angle of 15 degrees to the nozvle entrance.

The five basic coolant coanfigurations, with pertinent data,

are illustrated in Table I.
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Ignition

Ignition was accomplished in the same manner as that used
by Ow (Ref 18:9); an initial hydrogen flow was ignited external
to the rocket nozzle by means of an electric arc. Then the
oxygen flow rate was increased until the flame flashed back
into the combustion chamber. The pre-selected run settings
were then electrically initiated to provide the desired rum
conditions. By using this ignition procedure, a fuel-rich
mixture ratio was ensured and the danger of premature nozzle or

combugtion chamber burnout was prevented.
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I1I. Instrumentation

The experimental work performed in this investigation was
conducted in the Rocket Test Facility of the Mechanical
Engineering Department.

The original design, construction, and calibration of the
test facility was completed in a joint project by Keller,

Macko and Pickitt. The results of their work were published in

the Facility Operation Manual (Ref 15). This manual provided

-equipment lists, operation checklists, a description of the test

facility, calibration procedures, and applicable wiring schematics.
in general, the Rocket Test Facility consisted of:

l. Two propellant manifolds for gaseous oxygen and gaseous
hydrogen, and a gaseous nitrogen manifold to provide a purge and
control systenm.:

2. Check valves, dome valves and solenoids for control of
mass flow rates and pressures.

3., Two Hershell veanturis, with associated pressure transducers
and thermocouples, for measurement of mass flow rates.

4. A test console to control and synchronize the test
sequence, and to provide a continuous means of observing important
measurements.

5. An oscillograph and visicorder for recording test noqucnc‘

data.
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6. Necessary piping, wiring, instrumentation, and
calibration equipment.

A detailed description of the above components is givin
in the Facility Operstiopn Manual.

‘ Thrust measurements were obtained using a constant stress,
cantilever mounted alumipum beam in a manner similar to that
given by Ow (Ref 18:10-11). A bridge of four active strain
guages was mounted on the engine thrust beam with two guages
balanced on either side of the beam. The thrust signal was
amplified and recorded on a visicorder where the trace
deflection would be proportional to the thrust.

Two pressure transducers were used to measure chamber and cool-
ant pressures. Chamber pressure was measured at the oxygen injector
face as shown in Figure 1. The signal was sent directly to the
visicorder and to the test console through a Microsen Electronic
Prossurc'Transnittcr. The coolant pressure was measured at the
aft chamber liner and the signal furnished to the visicorder.

Nozzles A and B were instrumented with six iron constantan
thermocouples, as illustrated in Figure 7 and Table I. The
thorgocouplos were spaced axially and circumferentially on the
surface of the noggle to furnish a profile of nozzle wall
temperatures for evaluation of coolant configuration effectiveness.

Nogzzle C was provided with nine iron constantan thersocouples

as shown in Drawing 7B and Figure 8; however, only three
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thermocouples were mounted oa the nozzie surface while six were
installed approximately 1/32 inch from the inside nozzle wall.
This installation method was required since the coolant section
would cause inaccurate wall surface temperatures for comparison
with those of other coolant configurations (nozzles A and B).

The two methods of mounting the thermocouples are shown in
Figure 10. The installation method for each type is described
below:

1. Surface Thermocouples. First, the leads of the
thermocouple were fused together, into a épherical bead, by means
of a jewelers torch. Then a small hole, the same size as the
thermocouple bead, was drilled in the wall to a point just below
the surface. After the thermocpuple was inserted, the hole was
closed with a punch. Finally, the thermocouple was sealed and
insulated with glyptal or furnace cement.

2. Inside Wall Thermocouples. A small hole was drilled in
the wall to within 1/32 inch of the inside surface. The
thermocouple leads were silver soldered to a short piece of small
copper tubing, which had the same diameter as the drilled hole.
Then the thermocouple, with cylinder, was inserted into the hole,
and pressed firmly into place with another piece of copper tubing.
Finally, the installation was sealed and insulated with glyptal
or furnace cement.

To provide a valid comparison of nozzle wall temperature

profiles, all thermocouples were located at the same respective
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area ratio of each noszle. In addition, the thermocouples for
each nozzle were spaced circumferentially in the same relative
position, and the nozzles were mounted to tihe combustion chamber
with the same orientation. Therefore, any error resulting froa
this type of thermocouple installation would be common to all

tests. A summary of thermocouple data is given in Table I.
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IV. Method of Evaluation

Engine Performance

The method of engine performance evaluation involves a
comparision of experimental rocket parameters with those
determined theoretically. The basic rocket performance
paramenters are defined below:

1. Characteristic velocity (C*), depends only on the
characteristics of the reaction used, and is a function of
chamber temperature (Tc) and molecular weight (M). It is
relatively independent of chamber pressure (Pc)' and indicates
the energy available after combustion.

2. Thrust coefficient (Cr). measufes the ability of the
.nozzle to convert the random thermal energy of gases in the
combustion chamber into linear momentum, and therefore, direated
thrust (F). Cp is nearly comstant for a given nozzle.

3. Specific impulse (Ia), combines the first two parameters
and is characteristic of overall rocket engine performance. It
implies a knowledge of the expansion pressure ratio (Pc/Pc) or
exit area ratio (€ ), and is usually computed for optimum
expansion (Pe = Pa)'

Theoretical values of specific impulse, characteristic
velocity and thrust coefficient were determined by a method quite
different from that used by Ow (Ref 18:12). bBriefly, Ow obtained

thermochemical data and isentropic flow functions from the
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experimental results of Bollinger and Edse (Ref 6). He first
determined an average isentropic coefficient (k) from the
isentropic equation, ka = constant, for each mixture ratio.

Then, pressure ratio (Pc/Pe) was found for the applicable area
ratio (Ae/At) and average k. Hence, exit velocity (Ve) and,
therefore, specific impulse (I‘) could be determined from the
nozgzle isentropic flow equation. Finally, (I,) was corrected to

~ account for non-optimum ex;ansion (Pe # Pa) by means of the thrust
equation. These steps were followed for each test condition
assuming average k, Tc and optimum expansion.

For this study theoretical values of I, C* and CF were
determined by aerothermochemical methods (considering the high
energy of the hydrogen-oxygen combination). These methoas accouat-
for dissociation phenomena and allow for different combustion
product characteristics in each section of the rocket engine.

For each mixture ratio, and assumed temperature and pressure,

the properties at a point are determined from equ:tions of
equilibrium constants and conservation of, mass. Computed properties,
iﬁ terms of enthalpy and entropy, are then applied to the perfect
gas law and energy equation to provide values of velocity and
specific impulse (Ref 3:130-188).

The results of these computations for the hydrogen-oxygen
systen are found in tables and Mollier diagrams published by

Jet Propulsion Laboratory (Ref 2:App A). This report includes
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data for liquid or gaseous injection of components under various
conditions of chamber pressure and temperature. In addition,
nozzle expansion properties are provided for equilibrium or
constant composition flow.

For the aerothermochemical method the assumptions made in
determining point properties are as follows$

l. There is complete combustion in the chamber.

2+ The combustion process is adiabatic at constant pressure.

3. The combustion producte are in equilibrium at the
entrance to the nozzle.

4. Expansion through the nozzle takes place isentropically.

5. The perfect gas law applies.

6. The convergent area ratio of the nozzle is of such a
value that the kinetic'energy of tﬁe gases in the chamber is
negligible (V,—=0).

7. The flow is steady, homogeneous, and one-aimensional.

Theoretical values of characteristic velocity, specific
dmpulse, and thrust coefficient were computed from data of kef 2:
App A, for gaseous injection of components at 300 psi chamber
pressure and expansion to 14.7 psia. These parameters were
plotted as a function of mixture ratio (MR) as shown in Figure l4.
Equilibrium flow was assumed for optimum expansion, and the
small variations in nozzle area ratios (§) and throat areas

(At) were neglected.
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Since specific impulse varies vith chamber pressure,
mixture ratio, exit velocity and exit pressure, it would be more
accurate to determine theoretical values of I., for each test

condition, from the thrust equation:
‘o
1.1' =P 1. - —i- (p. - p.) (1)

where § is a correction factér to account for 2-dimensional flow
in the conical divergent section of the nozzle, and Las a value of
+983 when the half-angle of the divergent (x) is 15° (Ref 3:87-88).
I, is computed for the test conditions of area expansion ratio (e),
chamber pressure (P;) and expansion pressure ratio (Pc/P;). The
second term in equation (1) accounts for overexpansion in the
noszle and is computed for each exit area (A.), exit pressure (P;).
atmospheric pressure (P.) and weight flow r;to of propellants (%).

A graphical analysis of equation (1), for each A, and the
assumed test conditions of % = .286 1b/se¢ and P = 144 peia, is
shown in Figure 16. Because exit pressure is a fuanction of mixture
ratio for a given-geometry overexpanded nozsle, optimum expansion
is approached as the mixture ratio is increased (See Figure 15).
Therefore, the plotted curves show that correetions to optimum
I.'enn be neglected and still maintain accuracy near one percent
in the operating range of mixture ratios. An analysis of equation
(1) for constant composition flow provided similar results. Ia

addition, actual flow conditions lie somewhere between constant
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composition and equilibrium flow (Ref 7:385), and the chamber
pressure varies somewhat from ideal (300 psia), so that a rigorous
computation for each test condition was not considered worthwhile.
Experimental values of characteristic velocity (0;) were
determined, for each test condition, from measured values of
chamber pressure (Pc), nozzle throat area (At), and total weight

flow rate (w)s

(2)

Q

»

]
o
. |;>
[+

where % = AR PR
Experimental values of specific impulse (Iax) were calculated

from the defining equation

F
Tex = 3 (3)

Thrust coefficient (Crx) for each test condition, was computed

F I
Cox = T = 08 (#)
ct x

from the equation

Performance comparison, for each coolant configuration, was
obtainoi by employing the quality factors given below:
() Characteriatié velocity quality factor (%), a measure
of combustion efficiency, is defined
c
n .= (5)

L ]
[ ]
Ca
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(2) Thrust coefficient quality factor (1), characteristic

of noszle efficiency, is given by
A= iR (6)

(3) Bpecific impulse quality factor (§), a measure of the
overall rocket engine-propellant combination, is defined
§ =78 = 7NA (7)
sT
Weight flow rates were computed from measured venturi

pressures and temperatures by applying the equation

¥ = 0.525 I‘ c

> /¢ )
T % VFPH1-%
1- g

from the ASME Fluid Meters Report (Ref 133 65). Tables of Ilow

e i st S

rate for oxygen and hydrogen were provided in the Facility Operatiopn

Mapua] (Ref 15). The validity of these tables was verifieu by
computing several arbitrary mass flows using a standard square-
edged orfice. Valucs were found in agreement to within one percent
accuracy.

For the computation of coolant flow rate (ii) incompressible
flow was assumed so that flow rates would be a function of area

only. Then the continuity egquation

*h = ‘f + ii (9)
becomes
A
ii = ‘h ( ‘-—i—i Py ‘f ) (10)

where ‘h is the total flow rate of hydrogen, A, is the coolant
31
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area, and Af is the fuel injection area. For this calculation
all hyarogen flow directed raaially into the combustion chamber
was considered fuel flow rate (Qf)'even though a small portiom
of the hydrogen provided chamber wall cooling as determined by
Ow (Ref 18:14). 1In addition, Ow found experimentally that
(23 = &)

i £
which was confirmed in this investigation. Therefore, equation
(10) should give a close approximation to Wj.

In applying equation (10) to nozzle C, the provision for
coolant injection near the throat section required an additiomal

assumption. An estimated calculation of mainstream static

pressure (P;), for coolant injection at i/Ay = 7.43, showed that .

where ry is the mainstream isentropic stagnation pressure. This
fact, coupled with a small pressure drop from the aft chamber liner
to the nozzle coolant section, resulted in the assumption
Pg= P,
Coolant injection velocities (Vj) were determined from the
Bernoulii incompressible flow equation

. o R Py
‘4 =V2€~ TO'-H' ( ;‘ -1) (11)

c

when AP/P <« .1, and from the compressible isentropic equation
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p ¥z
v, .-\/zgro-}}- e [(—é) - 1] (12)
when AP/P >,1, PYor the cases where low injection velocities
were obtained using equation (11), the measured pressure
differences approached the reaaing error so that computed velocities
could not be considered accurate. These values are marked with

a double asterisk in Table I1II.

Coolant Performance

The method of coolant cerformance evaluation involves the
comparison of nozzle wall temperature profiles with taose obtairned
from the uncooled nogzzle. This method was selected because present
analytical equations for determining wall temperatures ;ive only
ipprox¢nuto results. For example, Bartz, Colburn, Mayer, Sibulkin,
Greenfield, and long offer relationships for the nogzle local heat

transfer coefficient (h) in the form

T
Fux B2 2 ¢ () (Br)® (0)° (13)
w

which is similar to the pipe flow heat transfer relation.
Equation (13) ie generally used in conjunction with Newton's
equation, g = h (T-!'). and measured specific rate of heat flow
(q), to provide theoretical values of wall temperature (I').
However, these equations apply to coanvective/conductive heat transfer

only and assume the following conditions (Ref 4:49):

1., No gas or wall radiation.
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2+ No gaseous dissociation with subsequent recombination
near the wall.

3. No high freque.cy flow instabilities.

4, No combustion product deposits on the wall.

5. Complete combustion in the caamber.

Nelsh and Aitte mads a comparison of analytical and
experimental local uneat fluxes in a nozzle and found variations
in analytical estimatee from 45% below to 30% above those deter-
mined experimentally. They indicated that combustion and flow
non-uniforuities, resulting from propellant-iﬁjector flow
characteristics and combustion chamber configuration, were a
major factor in these deviations (Ref 27:14). Therefore, as a
result of these non-uniformities and assumptions, theoretical
determination of wall temperature profiles was not attempted.

Theoretical values of gas stream static temperatures that
could be used in this analysis were obtained from Ref 2: App A.
These values were piotted as a function of mixture ratio (MR) for
the combustion chamber, nozzle taoroat, and nozzle exit, as shown
in Figure 17. The main purpose of Figure 17, then, is to indicate
temperature magnitudes auna gradients that mignt be expected
within the nozzle.

Experimental values of wall temperature were determined for
each coolant configuration by measuring nozzle surface temperatures,

as discussed in Section III, Instrumentation. These values can be
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assumed tc closely approximate tne temperature of the nozzle
insice wall. For this assumption the high thermal conductivity
of copper and small wall thickness (t,) coupled with a low film
heat transfer coefficient of out-side air lead to a small
temperature gradient through the nozzle wall. This assumption
was confirmed with inside wall and surface thermocouples
installed at the entrance, throat, and exit of nosgzle C.
Differences in temperature through the wall we:e only 5 - 50°F
throughout the range of mixture ratios. Then, for all coolant
configurations th; wall temperature profiles could be compared

with those obtained for configuration B-C (no film cooling)

without introducing major errors in thermocouple installation
and testing conditions.

Finally, the coolant configuration providing the greatest
local and overall wall temperature decrease for the least coolant
flow rate and loss in engine performance would be considered

the optimum.
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V. Discussion and Results

Test Procedure

A series of tests were made for each nozzle/coolant
configuration by varying the propellant pressures, and therefore,
mixture ratio for each test. The five basic coolant
configurations comprising three nozzles and three chamber liners
were used to provide various coolant flow ratios (W). Two series
of tests were made with each nozzle, A and B, for tangential coolant
injection at the nozzle entrance (w= .178 and .109). Two test
" sequences were made with nozzle C, for k5° coolznt injection
upstream of the throat (w= .084), and for a combination of
throat injection and 15° coolant injection at the nozgle entrance
(W= .176). A final test series was made with nozzle B in the
uncooled condition to provide a basis for comparison. Mixture
ratios ranged from 1.5 to 6.5 while total hydrogen flow rates
and coolant flow rates varied from .126 1lb/sec to .04LO 1lb/sec,
and .022 lb/sec to .004 lb/sec, respectively. Visicorder data
was evaluated immediately after each test to ?nsure the
attainment of the desirec coaditions of chamber pressure (300
psia) and mixture ratio. Also, the rocket engine was inspected
for damage to components, sizne of discoloration and oxidation,
ana change of critical dimensions. Discrepancies detected were

corrected prior to the followiug test.
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Cajibration Procsdurs

Calibration of pressure channels was accomplished using ampiitior
precision resistors and checked by loading pressure transducers and
calibrated pressure guages simultaneously. The linearity of the
transducers and recorder galvanometers produced a trace deflection
'vhich was proportionsal to the calibration load, thereby providing a
calibration factor. This calibration factor, when applied to trace
deflections obtained during a test, would then yield corrected pressure
readings.

The thrust channel was calibrated in a manner similar to that of
the pressure channels. In this case, the thrust beam was loaded with
known weights and the output from the strain guages was sent through
the amplifier system to the recorder. This calibration was performed
without propellant flow to the engine. However, a check was made for
developed thrust due to propellant flow alone under prevailing con-
ditions that occurred during the toqts. The maximum thrust thus ob-
tained was less than + .3 pounds. Therefore, this small variable error,
caused by propellant flow in the feed lines, was neglected in the thrust
calculations.

Temperature channel calibration was accomplished using a potentio-
meter in conjunction with a variable ro;istor bank and a specially
devised calibration circuit. A known voltage correspoanding to the
thermocouple temperature equivalent was impressed on the thermocouple
circuit, thereby providing a trace deflection on the recorder. No

load and balance conditions were furnished by the special calibration
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circuit. The variable resistors were used to establish circuit
critical damping conditions for the recorder galvonometers. The
trace deflections then provided calibration curves which could be
used to determine thermocouple temperatures for each test.

After completion of each test series, load calibration of all
data channels was reaccomplished. In adaition, recalibration was
accomplished whenever & channel component was changed or when
experimental data showed unaccountable trends. Differences between
initial calibration curves ana those obtained after each test series
where within ¢+ .02 inch trace deflection, which is the attainable
. reading accuracy. Corresponding data errors for a ¢ .02 inch trace
deflection are: + 2 psia for pressures, + 5°P for temperatures,

+ «5% for thrust, + 1.5% for mass flow rates, + 2.0% Ig* 2 3.5% c; ’

and + 3.5% Cp_.

General Discussion
Experimental data for each test series is presented in Table II,
Engine Performance Summary, and Table 1II, Coolant Perforuance
Summary. A typical data test run is shown in Figures 35 and 36.
All data listed was used in the experimental evaluation, except as
noted under each coolant configuration. Tests 1l-3 were not listed
since buraing occurred entirely outside of the nozzle and equilib-
rium chamber conditions were never reached. This problem was
corrected by using larger oxyzen start pressures to maintain com~

bustion in the chamber when shifting from start to ruan conditions.
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Tests 4~-6 of 10 second duration were conducted for rocket engine
shakedown and to evaluate the nozzle water cooling system. Tests
4 anq 5 proved successful in demonstrating overall rocket engine
operation, but the water cooling system froze durinrz test 6 due to
a 20°F ambient temperature. An indirect result of these tests

was that the film cooling configuration effectively decreased
nozzle wall temperature s0 that the water cooling scheme could be
eliminated. Another result was that steady state engine operation
and wall temperature stabilization occurred in about 3 seconds.
Experimental data for tests 7, &, 50 and 53 was not obtained
because of a jammed oscillograph or visicorder, as indicated in
Table II.

For some of the initial tests with nozzles A and B, an
instability problem was eicountereu in that steady state engine
operation could not be achieved at the low mixture ratios (high
hydrogen flow rates). This instability was eventually traced to
the hydrogen supply manifold. Although the hydrogen supply
pressure available was 1200-1300 psia, and only 500-600 psia run
pressure was requirea, the use of 2 hydrogen bottles was
insufficient to fulfill volume/mass flow requirements. By placing
10 or more hydrogen bottles or the supply manifold, steady state
conditions were obtained is less than 3 secouds for all mixture
ratios. In adaition, better utilization was mede of available gas

bupplies since the pressure differential between availavle and
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required hydroyen run pressures could be reduced to about 100
psia and still allow stable engine operation.

Several temperature ana injection velocity discrepancies
are notea in Taole II. As explaineu in Section IV, the coolant
injection velocities marked with a double asterisk are inaccu-
rate due to a small injection precsure differential. However,
these velocities can be definiutely categorized in the low velocity
class for coolant effect analysis. Various terperature points,
indicated under "Remarks", were not obtained because of faulty
thermocouple installation or an oscillograph channel malfunction.
Since all temperature data was proviaded by the oscillograpnh, some
delay was encountered in correcting temperature channel discrepancies
due to lagz tixe for development of oscillograph film. This is
evideut in the series of migsing data points for a particular
thermocouple channel.

Table III also shows several non-steauy temperature readings,
indicated by a single asterisk. These temperatures occurred at
a mixture ratio near five for tne coolaut coufigurations and at a
mixture ratio of four for tne uncooled configuration. In bota cases,
the temperatures were increasing at a mocerate rate. ixcept for
the non-steady temperature points usea to evaluate counfiguration
B-C (né cooling) these temperatures were not used in the cooling
effect analysis. Nevertheless, the non-steady temperatures of
cooled configurations providea an estimate of higher mixture ratios

attainable without nozzle failure.
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a mixture ratio near five for tne coolaut coufigurations and at a
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effect analysis. Nevertheless, the non~steady temperatures of
cooled configurations providea an estimate of higher mixture ratios

attainable without nozzle failure.
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In order to ensure a valid comparieon of nozzle wall temperatures,
similarity of test operation conditions was maintained in addition
to the thermocouple installation similarities previous described in
Section IV. All engine test times were restrictec to 4.5 ¢+ .7 sec,
and measured from the initiation of run settings to purge shutdown.
Also, initial wall temperatures and ambient conditions of air
velocity and temperature were spproximately the same for each test.
These conditions of similarity are particularly important where
non~-steady temperature occurred. Even so, the manner of thermocouple
installation, the impossibility of reproducing identical engine
operating conditions for each configuration and mixture ratio and
the variation of test times created some errors in the coolant
configuratiou comparisqne. nowever, it -is felt that the sum of these
errors was not significant so that experimental results should
provide a reasonably accurate evaluation of performance.

Burnout of nozzle A occurred during test 26, for coolant
configuration A-B (W= .109). The burnout was first aetected by
a gradual fall-off of chamver pressure. Subsequent inspection
showed that melted copper had started to flow from the convergent
section near the throat, as shown in Figure ll. A throat
temperature of 1760°F wae recorcea at the test run time of 4.3
seconds. The falure of this nozzle did not necessarily signify film
cooling ineffectiveness since this test was mace ucaer the non-steady
operating conditions previously discussed. Tne rapia decrease of

hyarogen flow rate (increasing MR) resulted in a aecreasing coolant
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flow rate while mainstream static temperature was rapialy
increasing. Therefore, the performance data of this test was used
only in estimating the mixture ratio (6.49) anc associated failure
conditions. A airect result of this test was the inadequacy of

the film cooling scheme to provide requirea coolant flow rate at
the high mixture ratios.

) Nozzle B in the uncooled configuration (3-C) sustained a

throat burnout during test 71, similar to that of nozzle A (See
Figure 12). For this test (MR = 4.17) equilibrium chamber
coanditions were reachea, but nozzle wall temperatures were rapidly
increasing at the time of burnout (4.9 sec). Tne highest wall
temperature recorded was l?80°F at the nozzle throat.® This nozzle
wall temperature profile was used to evaluate coolant performance
since the effect of a comperison with coolant configuration profiles
would give conservative results.

Two test series consisting of 28 test runs were made with no
apparent difficulties using nozzle C (coolant configurations C-D
and C~E). For these tests the effects of film cooling were
particularly noticabtle in the throat section of the nozzlie. From
the location of injected coolant in the convergent section to a point
half-way through the aivergent section the insice wali surface
remaired a bright copper color while otner portions of the nozzle

surface were coated with dark aevosits. The lack of the dark

*The meltins temperature of coprer is 19810? at standard conditions.
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deposits in the film cooled area was attributed to toe coolant
effect of preventiny such formations while providing a thermal
insulating boundary layer. Additionally, the lignt-colofed area
showed the extent of the cooling film layer prior to diffusion

into the main gas stream. The film cooling effects are snowr in
Figure 13 but are barely discernible due to poor photographic
lighting. The film coolant stains indicate that tae hole spaciric |
is at a maximum for auequate cooling in the throat area. Therefore,
an increase iu hole spacing woﬁld lead to only partial film cooling
coverage.

The effects of film cooling in the combustion chazver are
illustrated in Figure 4. Here, tne aiscoloration arouna the fuel
injector holes show that this film coolines schexe is at a minicum
acceptable level for the nigher hydrogen flow rates (higin injection
velocities).

Some questions may arise as to the manner of determinin: mixture
ratio in this investigation. 1t should oe noted that all hydrogen
injected radially into the combustion chamber was consiaerea fuel

flow rate (if). for computing mixture ratio (MR = iolif), while

hydrogen flow that eatered the nozzle by tangential or k5° raaial
injection was considered coolant flow rate kii). dHowever, it is
likely that some portion of tne injected coolant diffused
immediately into the main gas stream, especially near the nozzle

entrance, where it probably reacted with the oxygen to slightly
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alter the mixture ratio, ana therefore, tneoretical data. This would
result in a fuel-rich mixture ratio, particularly in tue neigkborhood
of the wall, and increase tne possibilities of recombiaation (energy
release). For the extreme condition, if all hycrogen flow (wg + i)
had been considered as fuel flow in the mixture ratio calculation,
the experimental mixture ratios would have been lower than those
shown in the data tableas by 8» for coufiguration C-D, 11% for
configurations A-B and B-B, and 17% for confizurations A-A, B-A

and C~: (the maximum at the low mixture ratios). Nevertheless,

it was felt that the act.al case was much closer to the assumed
conditions of no coolant react;on s0 that only small aeviations
would result at tre low mixture ratios and practically no variations

would occur in the high mixture ratio range.

Experimental Performance

For each test condition characteristic velocity, specifié impulse
and thrust coefficient were computed from the data presented in
Table 1l. These experimental values ware compared with tneoretical
values (Figure 14) and expressed as tne quality factors M, A , and
£ . The results were then plotted to provice thne curves of
Figures 18-26.

For noszzle A (coolant injection at tne entrance) the
characteristic velocity performance level 7 was zbout 83% for
w = ,109 and 81% for wa=a .178 at the lower mixture ratios

(Figure 18). The increase in performance with increasing mixture
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ratio was attributed to the decreasing cooling flow rate (it)
which resulted in improved combustion. 8ince the thrust coefficiemt
quality factor, A , for this nozzle was near 99% (Figure 24),
combustion inefficiencies were the major factors affecting the
specific impulse performance level, as shown in ¥Figure 21. Here,
the performance quality factor £ , was on the order of 82% for

W = ,109 ana 80% for w = .178. The similarity of the 77 and §
curves should be notedes The decrease in performance level for the
higher coolant flow ratio was only about 2%. The small decrease
indicated that the low overall performance level of 83% must be a
result of some factor other tham coolant flow. This fact became
apparent in the experimental evaluation of nozzle B.

The performance results for nogzzle B are shown in Figures 19,

22 and 25. For this nozzle (coolant injection at the entrance)
coolant flow ratios were identical to that of nozzle A, but the
mixture ratio range was extended to lower values; in addition, engine
performance with no cooling was evaluated. The results again show
the dependency of cheracterietic velocity and specific impulse on
coolant flow ratio. Especially ncticable is tne fall-off in the
perforrance curves at the lower mixture ratios wnere coolant flow
rates were greatest. However, a portion of this performance fall-off
is probably due to the manner in which mixture ratio was cosmputed;
considering hydrogen reaction near the nogzle entrance at the

high coolant flow rates with subsequent change in mixture ratio.
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This would cause a leftward shift in the performance curves
(c%y I, and Cp) at the low mixture ratios and result in a emaller
decrease in performance efficiencies (71 , £ , and A ) below a
mixture ratio of about 2.5.

Performance efficiencies of nozzle B were about 2% higher than
those of nozzle A. This higher performance efficiency arises
mainly from improved nozzle design which increased the thrust
coefficient quality factor to the 100% level (See Figure 24 and 25).

Figure 19 provides another important result concerning combustion
efficiency. The characteristic velocity quality factor, for'th.
uncooled configuration (B-C) was at a performance level of about 87%.
This revealed that 13% of the performance loss associated with the
;oolant configurations was caused by combustion inefficiencies in
the combustion chamber, separate from those due to nozzle coolant
injection. These combustion inefficiencies were explained by Ow in
his analysis of the film cooled combustion chamber (Ref 1§6:20). Ow
found that the radial method of fuel injection plus tne fact that a
portion of the injected fuel also provided some film cooling effects,
led to maximum combustion efficiencies near 83%. Therefore, these
effects were reflected in the coolant configuration performance levels
of this investigation.

Nozzle C performance results are shown in Figures 20, 23 aad 26.
The coolant coasfigurations for coolant injcction near the noszle
throat (C-D) as well as coolant injection at voth nozszle throat and

entrance (C-D) demonstrated performance levels and curve shapes
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similar to those of nozzles A and B. However, A for nozzle C was
about 1% higher than that of nozzle B. The slightly higher thrust
coefficient most likely resulted from the difference in expansion
area ratios for the two nozzles since all other geometry factors and
test conditions were equal. Thus, the expansion area ratio for
nozzle C, being closer to optimum thoroughout the mixture ratio
range, enabled somewnat higher performance efficiencies.

8ince specific impulse is dependent upon characteristic velocity
and thrust coefficient, the loss in overall performance is best
represented by this pasrameter. Therefore, the specific impulse of
each coolant configuration was compared with that of the uncooled
configuration and the resulting difference plotted as a function of
coolant flow ratio. See Figure 27. A mixture ratio of three was
selected since experimental and theoretical results have proved this
mixture ratio to be near the optimum for the 52-02 systes. The
performance loss curves clearly indicate that specific impulse
decreases with increasing coolant flow ratio. However, in all cases
the performance loss was relatively low, a maximum of 3.5% for
W = .187 (nozszle B). This result points out the advantage of using
reactive coolants. Also, it was observed (Figure 27) that cooling
configurations C-D and C-E provided tne desired larger coolant flow
ratios for the least reduction in performaunce, about 1% and 2.5%
respectively. This can be explained by noting that the thrust
coefficient of nozzle B was sbout 2% higher than that of nozzle A and

1% ilower than that of nozzle C. 8ince comparisons were based on the
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uncooled nozzle B, nozzle A and C thrust efficiencies were reflected
in the performance loss curves. In additiou, higher performance
appears to be dependent upon injection location, although not
eignificantly. This possibly accounts for the 1% difference in
curves for coolant injection at the nozzle entrance (coolant con-
figurations B-B), and coolant injection near the rnozzle throat
(coolant configuration C-D). 8ee also Figures 19 and 20. Finally,
it should be noted that the performance loss curves of Figure 27
represent coolant flow ratios based on total hydrogen flow rates,
ii/ih, which are somewhat higher than those based on total propellant
flow rates, Gi/i. The ii/v scale was provided to show this relatiom-
ship. The latter flow ratio percentages are approximately 6% for
coolant configurations a-A, B-A, and C-E, 4% for coolant configurations
A-B and B~B, and 3% for coolant configuration C~D.

Nozzle wall temperatures for the entrance, throat and exit were
plotted as a function of mixture ratio in Figures 28, 29, and 30,
respectively. These figures show that wall temperature increases
with increasing mixture ratio (increasing mainstream static tempera-
ture), but at a level dependent upon the coolant flow ratio. Kote
that the wall temperature curves in Figure 28 for coolant configuration
B-A (tangential injection) and C-E (15 degree angle of injection ) are
nearly identical. The small difference in wall temperature arises
mainly from different coolant mass flows for each case, recalling
that part of the coolant flow (about 1/3 for configuration C-E) was

injected near the nozzle throat. Apparently, coolamt injection at
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small angles to u;notrou flow, as compared with tangential
injection, has little effect on wall temperature for the same
coolant flow rate.

The slopes of the curves in Figures 28 and 29 demonstrate the
influence of injection velocity on wall tesperature; since coolant
injection area was constant, injection velocity decreased with
increasing mixture ratio (decreasing hydrogen flow rate). JNo
velocity influence was noted until a mixture ratio of about three
was reached where injection velocities approached 800 ft/sec. Then,
the wall temperature remained nearly constant until a mixture
ratio of about four was reached, although sainstream static
temperature and wall temperature of the uncooled noszle (B-C) were
reapidly increasing at’ tiu- mixture ratio. BEvideamtly, injection
velocities below 800 ft/sec improve the stability of the coolast
film due to decreasing diffusion into the main gas streas. Absolute
wall temperatures were much lower than expected, as indicated by
uncooled configuration B-C. These lower temperatures apparently
arise from lower mainstream gas temperatures and are attributed to
the 85% combustion efficiencies previously discussed.

Nozzle wall temperature profiles for mixture ratios 2.0, 3.0,
and 4.0 are provided im Figures 31-33. These profiles were plotted
a8 a function of area ratio rather than axial distance since axial
distance varied for each noszle while ares ratio, where temperature
was measured, remained constant. The wall temperatures are seen to

be proportional to the quantity of coolamt injected. Also, it should
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be observed that wall temperature continually increasea with
distance from the point of coolant injection. This brings out

the fact that a constant wall temperature is not possible using

a gaseous film coolant. The slopes of these temperature profiles,
as compared with the uncooled nozzle (configuration B~C), .
demonstrated the persistance and extent cf the film coolant with
distance from the point of injection, i.e., coolant injection at
the nozzle entrance had little affect on wall temperature at the
nozzle throat, whereas coolant injection near the nozzle throat
considerably lowered the throat wall temperature. However, the
difference in wall temperature levels was not as great as might

be expected. This evidently resulted from the lower coolant flow
rate near the throat and the fact that the coolant was injected
at hso to the mainstream flow direction, rather than tangentially.
Even 80, the decrease in throat wall temperature emphasizes the
importance of renewing the gaseous coolant film at various locations
slong the nozzle.

The influence of injection velocity was again noted in the wall
temperature profiles of Figures 31 and 33. Here, the coolant
effects were greatest at the higher mixture ratio where coolant
injection velocities were lowest.

Cooling effectiveness of the various coolant configurations is
summariged in Figure 34, for a mixture ratio of 3.0. This analysis
was derived from a cozmparison of wall temperatures for each coolant

configuration with those of the uncooled nozzle. Wall temperature
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*feliictions at the noszle entrance were about 38% for 15° and
tangential injection (coolant configurations C-E and B-A), while
a decrease of 28% was noted at the noszle throat for 45° injection
(coolant configurations C-D and C-E). Practically no reductions
occurred at the nozzle exit for any of the coolant configurations.
Ip addition, it was observed that coolant configuration C-E, with
coolant injection at both nozzle entrance and throat, provided the
Iargelt overall wall temperature reductions throughout the nozzle.

In the final analysis reference is made to Figures 27 and 34
which show the effects of coolant flow ratio om engine performance
and cooling effectiveness. It is apparent, that coolant
configurations C-E (W = .176) for coolant injection at the nogzle
entrance and throat provided the best cooling method for the least
loss in engine performance. For a performanse loss near 3% this
cooling scheme reduced average wall temperatures about 30% from
the nozzle entrance to a point past the nogzle throat. In additionm,
some wall temperature reductions were realizec in the latter unalf
of the nozzle divergent section (approximately 10%).

Because of the assuaptions imposed on performance calculations
and the manner of determining cooling effectiveness discussed in
other sections of this study, the values given above shouid bde
considered conservative estimates. Also, it is felt that film
cooling configuration C-E can be consiaerably improvea to provide
wall temperature reductions grester than 4O% witaout additional

loss in perforzance (no increase in coolant flow rate). This could
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be accomplished by reducing the k5° raaial injection angle to a
point nearer the tansential direction, decreasing the spacing of
injection holes, and maintaining injection velocities below 800
ft/sec. Nevertheless, coolant configuration C~E fulfills the
cooling requirements estavlishea for this study, i.e., to
effectively and efficiently reduce the wall temperature throughout
the nozzle, especially in the most critical area—the noszle

throat.
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Vi. Conclusions

l. A small rocket engine nozzle can be effectively film~
cooled with a gaseous coolant.

2. Rocket engine overall performance is only slightly affected
by the injection of a reacting coolant gas in the nozzle.

3. Cooling effectiveness increases proportional to the
coolant flow rate.

4, Engine performance is relatively independent of coolant
injection location for equal coolant flow rates, but is dependent
upon the coolant quantities injected.

5. Tangential coolant injection at the noszle wall is the
most effective means of establishing a gaseous cooling film,

6. Coolant injection near the nozzle throat provides tne
greatest cecrease in throat wall teaperatures.

7. Good cooling effectiveness and nigh rocket engine
perforunance can be obtainea over a wide range of mixture ratios.

8. Low injection velocities at the nozzle entrance increase
cooling effectiveness.

9. Overall nozzle cooling is improved by increasing the

number of axial coolant injection locations.

52



[ ——

GAE/ME/63~1

VII. Recommendationg

It is recommended that:

1. Further work be conducted to optimige the gaseous film
cooling technique. This could be accomplished by providing
additional coolant injection locations in the convergent and
divergent sections of the nozzle.

2. WHork be performed to investigate optimum coolant flow
rates, injection velocities, and injection hole spacing at a
constant mixture ratio.

3. The wall temperature data provided in Table I1II be
analysea to determine nozzle heat transfer coefficients aand fluxes
for the H2-02 system. Subsequently ;a comparison with theoretical
heat transfer equations could be made and an applicable equation
fitted to the experimental data. Such an analysis woula pe of
value in predicting futurc.heat transfer rates.

4, The engine be modified to investigate gaseous transpiration
cooling in the combustion chamoer.

In adaition, efforts should be maace to improve comoustion
efficiencies. The modified impingin./snowerhead oxy.emn injector
was not evaluated but an investigation of this part could possibly
leaa to improved engine performance. Also, unfinished spare
injectors are availacle to permit investigation of other types

of injection.
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Original impinging injector Impinging/showerhead injector

Figure 1 = Oxygen Injectors and Assembly
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Modfied injector
% Figure 2 - Oxygen Injector Water Spray Tests
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t -- Inpinging/showerhead Oxygen Injector

Figure 3 ~ Water Spray Te
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Liner used with coolant configurations A-B, B~B and C-B.
(Taken after completion of test 61)

Liner used with coolant coafigurationa A=A and B-A.
(Taken after completion of test 41)
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v
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H
H

Figure 4 - Hydrogen Injestor Aft Chamber Liners
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Liner used with uncooled configuration B=-C,
(Taken after completion of test 71)

Figure 5 - Hydrogen Injector Aft Chamber liner
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Figure 6 - Assembled Chamber Liners Showing
Fuel and Coolant Injectors.
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Divergent section -= Nozzle A

Figure 7 - Nozzles A and B
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Figure 8 ~ Nozzle C with Coolant Section
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Figure 9 - Assembled Rocket Engiue om Thrust Stand
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INSIDE WALL TYPE
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SURFACE TYIPE

atmosphere
thermocouple
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thermocouple wires
copper wall

combustion gases — 3.

Figure 10 - Thermocouple Installations
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Figure 11 - Nozzle A, Burnout. Throat Melted
During Test 26
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Figure 12 - Nozzle B, Burnout. Throat Melted
During Test 71
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Figure 13 - Nozzle C, Cooling Effects. Taken After
Completion of Test 99
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