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Abstract

The ablation characteristics of a thick walled spherical shell

considering radial heat flow is investigated. The outer sur-

face of the shell is subjected to a time-dependent, point-

symmetric, radial heat input and the inner surface is insulated.

The melted material is assumed to be immediately removed upon

formation.

Two approximate solutions to the problem are developed and com-

pared. The first method is an adoption of Citron's solution

[1*which is based on the assumption that the temperature dis-

tribution through the thickness of the body may be expressed

in a Taylor series expansion about the melting surface at any

time. The second method employs the heat balance technique

suggested by Goodman (2] which satisfies the heat conduction

equation on the average.

Numerical calculations are performed for an aluminum sphere

having a 7-3/4 inch outside diameter and a one-inch wall thick-

ness, subjected to a constant heat flux. Constant thermal

properties are assumed for these calculations.

Numbers inside the square brackets refer to the References.



Symbols

a initial outside radius of spherical shell

b inside radius of spherical shell

B non-dimensional parameter; k(Tm )ETm -Ti

c(T) specific heat of material, a function of temperature
c(T)

c non-dimensional specific heat parameter; c(T)

r M

G temperature integral; j u dr
b

h surface heat transfer coefficient

k(T) thermal conductivity of material, a function of
temperature

k(T)
non-dimensional thermal conductivity parameter; k(T)

k(Tm)

L latent heat of fusion

M non-dimensional parameter; c(Tm)[Tm -Ti)

L

Q(t) heat flux on the outer surface of body Efor aerodynamic
heating Q(t)= h(T. -T w)

Q(t)

non-dimensional heat flux parameter, Qo

Qo heat flux at t= tm

r radial distance

r S(t) outside radius of the spherical shell at any time
a -r

R non-dimensional outside radius parameter; a-b

t time

tm melt time, time at which the melting temperature is
first reached on the outside surface (r- a)

T(rt) temperature (t> t)- m

T0 (r,t) pre.-melt temperature (t< t M)

ii



Ti constant initial temperature of the body

Tm melting temperature of the material

T6  stagnation temperature of the external flow field

Tw  outside surface temperature [for tItm , Tw  Tm)

u(r,t) temperature transformation; u= fr(u = T r)

z non-dimensional space transformation; r -b/r -b

8(Z,r) non-dimensional t*emperature parameter; T -T ij/Tm -T

Co 0non-dimensional surface heat transfer coefficient
[a( 0 ha/k]

thermal diffusivity; k/pc

p density

non-dimensional time parameter;
(a -b)

2

iii



Introduction

Upon re-entry the extremely high heat inputs have major effects

on the structural integrity of the space vehicle. The heat in-

puts are of such magnitude that the melting temperature of the

space vehicle may be reached on the outside surface. Melting of

the surface will then occur, and the aerodynamic shearing forces

will tend to remove this molten material from the original struc-

ture. This destructive process, which is generally termed ab-

lation, has been used quite successfully for beneficial purposes,

such as the heat shield design. This technique employs coating

the space vehicle with a shielding material. During re-entry

the ablation of this shielding material absorbs a great per-

centage of the heat input to the entire body and thereby protects

the load-carrying structure and interior of the vehicle from heat

damage. It is of importance to the designer to obtain an accu-

rate prediction of the amount of shielding material needed to ab-

sorb a given heat input and to determine the corresponding tem-

peratures and thermal stresses within the shield and back-up

structure.

The treatment of any problem in heat conduction involving more

than one space variable is a complicated procedure. With the in-

clusion of ablation of the outside surface, the problem becomes

non-linear, even in the simplest cases. For this reason, all the

available literature investigated treated problems in one space

variable.

The basic modern work on ablation was carried outin 1948 by

Landau [3] in which he set up the equations and bound3ry condi-

tions for ablation of a finite and semi-infinite slab and carried

out the solution for the semi-infinite slab under constant heat

input and thermal properties with the use of computing machinery.
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It was assumed thdt the melted material was immediately removed

upon formation.

Lotkin [4] developed a numerical procedure for the solution of

an ablating finite slab. Immediate removal of the melt was as-

sumed, as were a time-dependent heat flux, and temperature-

dependent thermal properties. Again high speed computing machines

were essential to the solution of the problem.

A computer technique for the solution of the slab problem under a

time-dependent heat input was developed by Ehrlich 15]. In this

case, however, the melted material was assumed to remain in con-

tact with the original body, necessitating satisfying the heat

conduction equation in both the melted and unmelted material.

Dewey, Schlesinger and Sashkin [6] developed a numerical solution

for a cylinder of finite thickness under radial heat input with

one moving boundary and variable thermal conductivity. A simple

mathematical model for aerodynamic ablation was developed by

Goodman [7], and Adams [8) discussed the important ablation para-

meters and the various solutions which have been obtained, and

compared these to experimental results. Excellent background

material for the entire heat conduction problem as well as some

specific solutions related to changes of phase can be found in

Car.slaw and Jaeger [9].

In an attempt to arrive at solutions of the ablation problem

without the use of high-speed computing machinery, a few approxi-

mate techniques have been developed. Goodman £2] employed the

heat balance technique for the solution, in closed, analytical

form, of the ablating semi-infinite slab and compared these re-

sults with Landau's exact solution. Citron [1,1O] developed two

techniques for the solution of the finite slab. One method [1)

was based on the assumption that the temperature distribution
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through the thickness of the slab could be expressed in a Taylor

series expansion in space about the melting surface. This

yielded an ordinary, non-linear, differential equation in terms

of the melt depth as a function of time. The solution, which

must be obtained numerically, could be readily computed on a desk

calculator. Citron's second method [10] consisted of reducing

the ngn-linear, partial differential equation into two ordinary

differential equations, one linear and one non-linear, in terms

of a temperature function and the melt depth. The solution could

be obtained by successive approximations utilizing a desk calcu-

lator. Boley [11] considered-still another procedure for the

slab with immediate removal of the melt and constant thermAl

properties. An ordinary integro-differehtial problem which can

be solved numerically or in series form for the exact solution of

the melting problem was developed. A solution for the semi-

infinite slab under constant heat input was obtainea.

Interaction of the ablating material with the external flow field
was also considered by certain investigators. When a material

ablates, the molten material, or the vapoiized material in the

case of a subliming solid, or a mixture of vapor and liquid, is

injected from the body into'the surroundings of the body. In the

case of re-entry, the injection is made into the bodndary layer

and this produces the added beneficial effect of reducing the

heat input to the body. Swann and South [12],'Lew and Fanucci

[13), Fleddermann and Hurwicz [14], and Sutton [15), include in-
vestigations of such phenomena. In Ref. [i6], Economos includes

this factor in calculating ablation of semi-infinite slabs of

plastic materials, sOch as Lucite, and compares the results with

experimental data.

In 1his report, an attempt has been made to determine the solution
of the ablation problem for a thick walled hollow sphere, using
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the Goodman [2] and Citron [1] techniques.

The two methods have been compared in an attempt to evaluate the

inherent attributes of each and to determine, if possible, which

method is more practical in actual application. It was assumed

that the outer surface of the sphere was subjected to a pre-

scribed point-symmetric, time-dependent, radial heat flux and

that the inner surface of the sphere was insulated. The initial

temperature distribution in the body was constant and lower than

the melting temperature of the material. Thermal properties

were considered to be functions of temperature (for the Citron

method) and it was also assumed that the melted material was im-

mediately removed upon formation.

Numerical calculations of melt depth and temperature distribu-

tions as functions of time were carried out for an aluminum

sphere of 1" wall thickness and 7-3/4" outside diameter under

aerodynamic heat inputs corresponding to hypersonic flow. Materi-

al properties were assumed constant for these calculations.



Theoretical Analysis

The problem treated is the ablation of a hollow sphere initially

at a uniform temperature (Ti) which is lower than the melt tem-

perature. It is assumed that the outer surface (r= a) is subjec-

ted to a time-dependent, point-symmetric, radial heat input Q(t),

that the inner surface (r= b) is insulated, and that the material

has temperature-dependent thermal properties. The molten ma-

terial is assumed to be immediately removed so that the outer

boundary of the body is always considered to be at the melt tem-

perature.

The overall analysis can be divided into two separate investiga-

tionst i) the pre-melt analysis, and ii) the melt analysis.

i) Pre-melt Analysis,

This analysis covers the time interval between the initial time

(t = 0), when the body is at a constant initial temperature (Ti),

and the melt time (tz tm ), the time at which the melting tempera-

ture (T m) of the material is first reached at the heated surface.
Attainment of this solution Is necessary for the melt analysis,

for in order to continue the solution of the problem once melting

begins it is necessary to know the time (t m ) when melting starts

and the temperature distribution through the thickness of the

body at this time.

Before melt temperature is reached on the outer surface of the

hollow sphere, the heat conduction equation iss

O 8 (kr 2r 8T b < r (1)at " - r28r 8
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under the conditions:

a) T 0 (r,O)= Ti

8To
b) Q(t) k( r )

C) no- Z. 0 (2)
8 bat

Many solutions of the pre-melt problem exist (see, e.g.9 Refs.

[9] and [17]), and thus in general the melt time and the corres-
ponding temperature distribution can be readily obtained.

ii) Melt Analysis

When melting begins it is assumed that the outer surface of the

sphere always remains at the melt temperature and that the melt

is immediately removed. The total heat Input to the body is now

divided into two parts. One portion enters the solid while the

other accounts for the latent heat of fusion absorbed in the ab-

lation process.

The heat conduction equation is:

8T 1 a 2 8T

pc (kr -) b<r<r st (3)

where r s(t) is the varying outside radlus of the sohere.

The Conditions are:

I3
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a) T(r,tm) = To(r,tm)

b) T(rs,t) = Tm

c) Q(t) = k(T)(T) - pLdr
rtt

8TS
d) (LT 08r b,t

), r s(tm ) = a (4)

An auxiliarycondition can be imposed from a consideration of

continuity of heat input at time t= tm . From the pre-melt ana-

lysis the boundary condition on the heat input at tztm from

Eq. (2b) is:

Q(tm)= k(T X Tar  t
m m 8ra 9tm

and from the melt analysis the Boundary Condition from Eq. (4c)

is:

T drs
Q(tm) k(Tm ) Fr) - pL (-d-3) •m rs(tm)tmt

Now, since r s(t ) = a, and T(rtm )T (r,t m), then for continu-

ity:

drs(- -- r-- 0 (50)
t

The solution of the problem, described by Eqs. (3), (4), and

(5),will now be treated by two different approximate numerical

techniques.



Method It

In this approach, the technique utilized by Citron (1] for a slab

is applied to the spherical shell. Material properties are as-

sumed to be functions of temperature. The method consists of ap-

plying a transformation which allows the consideration of a body

of constant unit thickness at al times in lieu of a body of

varying thickness, and then expressing the temperature distribu-

tion at any time in this unit body by a Taylor series expansion

in space about the melting surface.

For the spherical shell the transformation used is

r -b
z_ - (6)r -b

so that at r= r ,t Z-- I

and at r= b , Z= 0

Using this transformation along with the following non-

dimensional parameters

w(Tm)(t -t m )  a - r.

(a-b) 2  R sP) a-b

T -T. 
Q

e(Z, ) = Tm -T i 7 (0)o (7t)

- k(T) c(T)k a - c -
k(T M) c c(T m )

where Q is the heat input at tm. The heat conduction Equation

(3) becomes
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2 2 e c1z _ 1 +-Z( -Rs) rs
(8)

2(l -R s ) 2 dk 02

b/a 8Z -0 T8Z
(1 -Rs)Z + 1 -b/a k

where ( ) denotes differentiation with respect to T, and the

conditions (4a to 4e) become

a) e(z, r) = 0 (z, ) at t = 0

b) e(z, ) = I at . Z = 1

c) 80 - -;(9)
(' (1 -R s)[ B M

d) 0

0 ,

e) Rs(0) =0

dr s

while Eq. (5), (d") =0, becomes R (0) = 0
t S

m

and

. _k(Tm)[Tm -Ti)
B = Qo[a -b]

M C(Tm)[Tm -Ti ]
L

It is now assumed that O(Z,) can be expressed as a Taylor

series expansion in space about the melting face Z= 1. That is,

(80e) (z -1.) 2

e(ze) = e(, ) + (8e) (z- 1) + (l21 + .... (10)
8, 1,-r 8 z2 21
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The first term and the coefficient of the second term are known

from conditions (9b'and 9c)

=s
80, =-

8' s B M

The coefficient of the third term.can readily be found by evalu-

ating Eq. (8) at Z= 1. The'result is

2 2 Rs 2

8z21TB M 6 1 -R +/

8Z l~r B M l- 1-b/

6 dk
B M 1,

By successively differentiating-Eq. (8) with respect to Z,

a3e 84e ane
, - , ... ,,, can be obtained and these can be evalu-aZ 3 9az 4  az n

ated at (1,T) to form the remaining n -2 coefficients of thlb

Taylor series-expansion. The result is that an expression for

e(Z,r) is obtained'containing Z and R and its first K deriva-
tives when 2K or 2K+ 1 terms of the Taylor series are included.

Now if condition (9d), which is

=0

is applied to Eq. (1p), then

8. (2e) 3e)
( lr aZ 2 1 az 3 m,



- 11 -

and since () 1 (22) , . have all been ex-8z Z2 i,'r 6Zn 1,O

pressed in terms of R5 , s , etc., the final result is that a

non-linear, ordinary differential equation involving Rs and its

derivatives alone has been obtained. It should be noted that

this equation will always be linear in the highest order deri-

vative term (when more than three terms are used in the expan-

sion).

The series expansion of the temperature is terminated after 2K

or 2K + 1 terms, thus leading to a differential equation of Kth

order. Thus in addition to the initial conditions R (O)= 0,

and R (0)= 0, it is required to obtain K -2 additional condi-
5 K-l

tions. These K -2 values, Rs (0), R S(O) ...., R (0) are obtained

by matching the initial temperature distribution e0 (Z,O) at K -2

points.

The following numerical procedure can be used for the solution

of the differential equation. For small , Rs (,r) can be expanded

in a Taylor series about T= O

2 .. 3Rs(,r):R (0)+Rs(O)'r+R (0) 1- R(O)_
9 s sS 21 +  3!1 ..

K
where R (0) is obtained by satisfying Eq. (11).

K-i

This can then be used to determine Rs('rl), R 1), .... Rs( I)

while Eq. (11) can then be used to determine Rs( s). The nu-

merical scheme then proceeds as follows:

Rs(vi + ): R s ( i) + ARs(i)

K-1 K-I K

Rs(,i + A r) = R (,i)+ Rs(,i
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K
and finally Rs(Ti+AT) can again be evaluate from Eq. (Ii). This

procedure is continued until the entire solution is determined.

Method II:

A thorough investigation of the heat balance integral technique

for slabs is covered by Goodman [2]. Basically, the technique is

much the same as the momentum integral of fluid dynamics. The

heat conduction equation is satisfied on the average by integra-

ting it over the thickness of the body. A second-degree poly-

nomial temperature profile is then assumed and the three arbitrary

constants are evaluated from the boundary conditions. Substitu-

tion of t~is assumed profile into the integrated heat conduction

equation leads for the case of the sphere to a second order,

non-linear, ordinary differential equation in terms of the melt

radius r (t), and its first and second derivatives. The solution

is easily obtained by numerical procedures.

Befere integrating the heat conduction equation (3), the folow-

ing transformation is made:

Let

u = Tr

Equation (3) then becomes (assuming constant thermal properties)

O" 82u ; < r < rs (12)
8r 2  r

k
where c = -

and the conditions (4a to e) become
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a) u(r,tm) - Uo(r,tm)

b) u(r ,t) = rs Tm

c) Q(t) = k s(!r u r ]-pldr (13)
r r ,t s

Lu _-u(bt)
d) rb,t b

e) r s(tm) = a

drwhile the condition (-') = 0 remains unchanged. The inte-

gration of Eq. (12) over t e thickness of the body yields

S dr = b r dr2

b Ttb 2

Upon letting:

r r
G s u dr =.S Tr dr

b b

it can readily be shown that

dG _ dru _ (= ) (14)dt Tmrs dt 8r Err)r t 8 bt

The substitution of Eqs. (13b,c and d) into Eq. (14) yields

drs  ir[ drsdt dm t k [+pL--+wTm-(T(b't) (1)

It is now assumed that the temperature T(r,t) can be expressed

at any time as a second order polynomial in (r -b) with time

dependent coefficients. That'is,
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T=A+ B(r -b)+ D(r -b) 2

Usinq conditions (4b,c and d), A, B, and D can be determined.

The resulting temperature profile is

drs
T=Tm-[ 2k )C(rs  (r-b)2

2k b (r -b) (16)

for r b

Therefore, if the solution for rs can be found, the temperature

profile through the thickness of the body would be specified at

any time by Eq. (16). G and T(b,t) can now be evaluated from

Eq. (16) and the subsequent substitution into Eq. .(15) yields

dr

d 2 rs Q drs  (r -b)(9rs+ 7b) + 121c(3r, -b)
[ (17)

dt2  (r -b) 2(3r + 5b)s s

a second order, non-linear, ordinary differential equation for

rS(t).

The numerical procedure used here for the solution of Eq. (17)

follows that of Method I. For small (t -t m), r s(t) is expanded

in a Taylor series about t= tm . The first two coefficients of

this series are deteimined from the conditions at t= tm, and the

third coefficient ( is obtained by evaluating E%. (17)
d t=tm 3

m d r d r5
at tm The remaining coefficients, (-+_)_ m N )t "

dt ttm dt tm
are obtained by successively differentiating Eq. (17) with
respect to t and evaluating the results at t= tm.

To determine r (ti +at) and dr, (t + At) the following numerical
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scheme is used:

dr

dt2 dt

dr 
dr

5  
(

and d-r-(t + At) is determined from Eq. (17).
dt2 1
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Numetical Calculations

Calculations using both Methods I (Citron) and II (Goodman) are

performed for a one inch thick 7-3/4 inch outside diameter alu-

minum sphere under a constant radial heat flux and average

constant thermal and physical properties (Table I). Two values

of a (=ha/k=0.70, 1.10), the non-dimensional surface heat trans-

fer coefficient, and a stagnation temperature of 1850°R, are used

in the analysis. These values were chosen on the basis of typi-

cal heat inputs to re-entry vehicles.

The pro-melt solution for the temperature is obtained through the

use of the one-dimensional solutions in Ref. [17]. The outer

surface temperature-time histories as well as the times at which

melting first occurs are shown in Fig. 1. The corresponding

temperature distributions at the melt time are given in Fig. 2.

The melt analysis of Methods I and II are then used to proceed.

Method Is

A six term Taylor series expansion for e(Z, ) is assumed. The

substitution of this expansion into Eq. (11) yields a non-

linear, ordinary, differential equation containing up to the

third order time derivatives of Rs . It should be noted that the

highest order derivative (R s ) appears linearly in this equation.

As previously mentioned, this necessitates the matching of

e(z,o) with the pre-melt solution (at r= 0) at K -2 points. In

this case, therefore, only one match point is necessary. The

point chosen is at the insulated surface (r= b). This enables

the evaluation of Rs (0), while Rs (0) is found from Eq. (11). The

Since the surface temperature is assumed to remain at melt tem-
perature during the melt analysis, a constant heat flux corres-
ponds to steady-state aerodynamic heating during melting.
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numerical procedure previously discussed is then used to obtain

R as a function of r. Figures 3 and 4 illustrate the values of

melt depth versus time. It should be noted that the solution
drs

for r s(t) rapidly approaches a steady state; that is, d ap-

proaches a constant value. This is not unexpected since at

t= tm , the pre-melt analysis yields a temperature profile through

the thickness which is almost at the constant melt temperature.

Therefore, from the boundary condition on the heat input [Eq. (4c)],

dr---pL -d-

and since in this analysis it is assumed Q= constant,

drs 5
- - ; a constant

dt pL

This condition is indeed rapidly approached as shown in Figs. 3

and 4.

The Taylor series expansion Eq. (10) can now be used to determine

e(z,T) versus Z for a specific r. Figs. 5 and 6 show temperature

profiles for times greater than the melt time, while Fig. 2 pre-

sents the results at the melt time.

Method II:

The numerical procedure previously discussed is applied to Eq.

(17). The resulting numerical values for the melt depth are pre-

sented in Figs. 3 and 4. Equation (16) is then used to calculate

the temperature profiles at the melt time (Fig. 2) and at times

greater than the melt time (Figs. 5 and 6).
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Conclusions

The purpose of this report was to obtain the one-dimensional

ablation characteristics of a hollow sphere by adapting the

Taylor series expansion technique (Method I) originally devel-

oped for a slab by Citron [1], and also by using Goodman's [2)

heat balance technique (Method II). Because of the relative

simplicity of the numerical procedures of Method II, it was

deemed appropriate to obtain solutions using this heat balance

technique and to compare these to the more exact solutions de-

termined from Method I.

A six-term Taylor series expansion was used in Method I. It

was necessary to include this number of terms in order to ap-

proximate the temperature profile at the melt time with suf-

ficient accuracy. A quadratic temperature profile for all time

was used in Method II and the comparison indicates that the

predicted profile is in good agreement with both the exact pre-

melt solution and the solution obtained from Method I (Fig. 2).

In obtaining a solution by using Method I (six-term expansion),

however, it was necessary to use the insulated surface tempera-

ture at the melt time. Hence, the exact solution for the tem-

perature profile is approximated more closely by Method I than

by Method II (Fig. 2). This also accounts for the differences

between the temperature profiles shown in Figs. 5 and 6.

The melt depths predicted by both methods, however, are in ex-

cellent agreement (Figs. 3 and 4). Furthermore, as shown in

Figs. 3 and 4, the rate of ablation rapidly approaches a con-

stant value. This is not surprising since, as shown in Figs.

2, 5 and 6, a constant temperature distribution is also rapidly

approached.
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In conclusion, It is clearly seen that the numerically simpler

technique (Method II) can be applied to the ablating sphere and

yields results which are quite close to those obtained using the

more complex technique (Method I). Both of these methods pre-

dict ablation profiles which are almost identical. It is appar-

ent that future investigations should include both the two-

dimensional effects and the effects of variation of the material

thermal properties with temperature.
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Average Thermal and Physical Properties
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