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Abstract

The ablation characteristics of a thick walled spherical shell
considering radial heat flow is investigated. The outer sur-
face of the shell is subjected to a time-dependent, point-
symmetric, radial heat input and the inner surface is insulated.
The meltéd material is assumed to be immediately removed upon

formation.

Two approximate solutions to the problem are developed and com=-
pared. The first method is an adoption of Citron's solution
[ll*which is based on the assumption that the temperature dis-
tribution through the thickness of the body may be expressed

in a Taylor series expansion about the melting surface at any
time. The second method employs the heat balance technique
suggested by Goodman [2] which satisfies the heat conduction
equation on the average,

Numerical calculations are performed for an aluminum sphere
having a 7=-3/4 inch outside diameter and a one-inch wall thick-
ness, subjected to a constant heat flux. Constant thermal
properties are assumed for these calculations,

*Numbers inside the square brackets refer to the References.
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Symbols

initial outside radius of spherical shell

inside radius of spherical shell

non-dimensional parameter; d;[a -5]
specific heat of material, a function of temperature
c(T
non-dimensional specific heat parameter; zé;ly
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s
temperature integral; § wudr '
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surface heat transfer coefficient

thermal conductivity of material, a functién of
temperature
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non-dimensional thermal conductivity parameter;

3

latent heat of fusion
(T [Ty = T4
L

non~dimensional parameter;

heat flux on the outer surface of body [for aerodynamic
heating Q(t) = h('l‘s -Tw)]

Q(t)

Q

non~dimensional heat flux parameter;
0
heat flux at t= Hn

radial distance o
outside radius of the spherical shell at any time

a ‘rs

a-=b

non-dimensional outside radius parameter;

time

melt time, time at which the melting temperature is
first reached on the outside surface (rw=a)

temperature (t> tm)

pre~melt temperature (titm)
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constant initial temperature of the body

melting tempefature of the material

stagnation temperature of the external flow field
outside surface temperature [for t2t , T = Tm]
temperature transformation; u= Tr(u°:=Tor)
non=dimensional space transformations r -b/rs -b

non-dimensional temperature parameter; T -Ti/Tm -Ty

non-dimensional surface heat transfer coefficient
[e(o'a ha/k]

thermal diffusivitys; k/pc

density . i

(T )[t-t_]

non-dimensional time parameter; 0 zm
(a =b)




Introduction

Upon re-entry the extremely high heat inputs have major effects
on the structural integrity of the space vehicle. The heat in-
puts are of such magnitude that the melting temperature of the
space vehicle may be reached on the outside surface., Melting of
the surface will then occur, and the aerodynamic shearing forces
will tend to remove this molten material from the original struc~
ture. This destructive process, which is generally termed ab-
lation, has been used quite successfully for beneficial purposes,
such as the heat shield design. This technique employs coating
the space vehicle with a shielding material. During re=entry
the ablation of this shielding material absorbs a great per-
centage of the heat input to the entire body and thereby protects
the load~carrying structure and interior of the vehicle from heat
damage. It is of importance to the designer to obtain an accu-
rate prediction of the amount of shielding material needed to ab-
Qorb a given heat input and to determine the corresponding tem~-
peratures and thermal stresses within the shield and back=up

structure.

The treatment of any problem in heat conduction involving more
than one space variable is a complicated procedure. With the in-
ctlusion of ablation of the outside surface, the problem becomes
non-linear, even in the simplest cases. For this reason, all the
available literature investigated treated problems in one space

variable.

The basic modern work on ablation was carried outin 1948 by
Landau [3] in which he set up the equations and boundary condi-
tions for ablation of a finite and semi~infinite slab and carried
out the solution for the semi-infinite slab under constant heat
input and thermal properties with the use of computing machinery.



It was assumed that the melted material was immediately removed

upon formation.

Lotkin [4] developed a numerical procedure for the solution of

an ablating finite slab., 1Immediate removal of the melt was as~-
sumed, as were a time-dependent heat flux, and temperature-
dependent thermal properties. Again high speed computing machines
were essential to the solution of the problem.

A computer technique for the solution of the slab problem under a
time-dependent heat input was developed by Ehrlich [5]. 1In this
case, however, the melted material was assumed to remain in con-
tact with the original body, necessitating satisfying the heat
conduction equation in both the melted and unmelted material.

Dewey, Schlesinger and Sashkin t6] developed a numerical solution
for a cylinder of finite thickness under radial heat input with
one moving boundary and variable thermal conductivity. A simple
mathematical model for aerodynamic ablation was developed by
Goodman [7], and Adams [8] discussed the important ablation para-
meters and the various solutions which have been obtained, and
compared these to experimental results. Excellent background
material for the entire heat conduction problem as well as some
specific solutions related to changes of phase can be found in
Carslaw and Jaeger [9].

In an attempt to arrive at solutions of the ablation problem
without the use of high-speed computing machinery, a few approxi-
mate techniques have been developed. Goodman [2] employed the
heat balance technique for the solution, in closed, analytical
form, of the ablating semi~infinite slab and compared these re-
sults with Landau's exact solution. Citron [1,10] developed two
techniques for the solution of the finite slab. One method [1]
was based on the assumption that the temperature distribution



through the thickness of the slab could be expressed in a Taylor
series expansion in space about the melting surface. This
yielded an ordinary, non-linear, differential equation in terms
of the melt depth as a function of time. The solution, which
must be obtained numerically, could be readily computed on a desk
calculator. Citron's second method [10] consisted of reducing
the ngn~linear, partial differential equation into two ordinary
differential equations, one linear and one non-linear, in terms
of a temperature function and the melt depth. The solution could
be obtained by successive approximations utilizing a desk calcu-
lator. Boley [11] cons}défed-still'another procedure for the
slab with immediate removal of the melt and constant thermal
properties, Ah ordinary integro-differential problem which can

" be solved numerically ‘or in series form for the exact solution of
the melting problem was developed. A solution for the semi-
infinite slab under constant heat input was obtained.

Interaction of the ablating material wiih'the external flow field
was also considered by certain investigators. When a material
ablates, the molten material, or the vaporized material in the
case of a subliming solid, or a mixture of vapor and liquid, is
injected from the body'iﬁto'the surroundings of the body. In the
case of re-entry, the injection is made. into the boundary layer
and this produces the added beneficial effect of reducing the
heat input to the body. Swann and South [12],:-Lew and Fanucci
[13]), Fleddermann and Hurwicz [14], and Sutton [15], include in-
vestigations of such phenoména.' In ﬁef. (i6], Economos includes
this factor in calculating ablation of semi-infinite slabs of
plastic materials, suqh as Lucite, and compares the results with

experimental data.

In this report, an attempt has been made to determine the solution
of the ablation problem for a thick walled hollow sphere, using



the Goodman [2] and Citron [1] techniques.

The two methods have been compared in an attempt to evaluate the

inherent attributes of each and to determine, if possible, which

method is more practical in actual application. It was assumed

that the outer surface of the sphere was
scribed point-symmetric, time-dependent,
that the inner surface of the sphere was
temperature distribution in the body was
the melting temperature of the material.

subjected to a pre-
radial heat flux and
insulated. The initial
constant and lower than
Thermal properties

were considered to be functions of temperature (for the Citron

method) and it was also assumed that the melted material was im-

mediately removed upon formation,

Numerical calculations of melt depth and temperature distribu-

tions as functions of time were carried out for an aluminum
sphere of 1" wall thickness and 7-3/4" outside diameter under

aerodynamic heat inputs corresponding to

hypersonic flow. Materi-

al properties were assumed constant for these calculations.



Theoretical Analysis

The problem treated is the ablation of a hollow sphere initially
at a uniform temperature (Ti) which is lower than the melt tem-
perature. It is assumed that the outer surface (r=a) is subjec~-
ted to a time-dependent, point-symmetric, radial heat input Q(t),
that the inner surface (r=b) is insulated, and that the material
has temperature-dependent thermal properties. The molten ma-
terial is assumed to be immediately removed so that the outer
boundary of the body is always considered to be at the melt tem~-
perature.

The overall analysis can be divided into two separate investiga-
tions: i) the pre-melt analysis, and ii) the melt analysis.

i) Pre=-melt Analysis:

This analysis covers the time interval between the initial time
(t=0), when the body is at a constant initial temperature (Ti)’
and the melt time (t= tm), the time at which the melting tempera-
ture (Tm) of the material is first reached at the heated surface.
Attainment of this solution is necessary for the melt analysis,
for in order to continue the solution of tﬁe problem once melting
begins it is necessary to know the time (tm) when melting starts
and the temperature distribution through the thickness of the
body at this time.

Before melt temperature is reached on the outer surface of the
hollow sphere, the heat conduction equation is:

2T, 8T

1 93
pc 3t = ﬁg(krz'&?‘) i b<r<a (1)
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under the conditions:
a) To(r,0)= Ti

3T,
b) Q(t)= "('BT)
a

c) 912) =0 (2)
or b,t

s t

Many solutions of the pre-melt problem exist (see, e.g., Refs.
[9] and [17]), and thus in general the melt time and the corres-
ponding temperature distribution can be readily obtained.

ii) Melt Analysis:

When meltiﬁg begins it is assumed that the outer surface of the

sphere always remains at the melt temperature and that the melt

is immediately removed. The total heat input to the body is now
divided into two parts. One portion enters the solid while the

other accounts for the latent heat of fusion absorbed in the ab-
lation process.

The heat conduction equation is:

8L _ L 8 Y
PC Bt = T2 ar (KFTgr) 1 b <r<r(t) (3)

where rs(t) is the varying -outside radius of the sohere.

The ¢conditions are:

IR TR IR kgt < Te o s



a) T(r,tm) = To(rptm)
b) T(rg»t) = Ty
dr
9 alt) = k(r)EDH -
d) (91 , rsgt
ar b,t
e), rs(tm) = a (4)

An auxiliary condition can be imposed from a consideration of
continuity of heat input at time t= tm' From the pre-melt ana-
lysis the boundary condition on the heat input at ts= Hn from
Eq. (2b) is:

8T,
Q) = KT )G

and from the melt analysis the Boundary Condition from Eq. (4c)
is:e
dr

' s
- eL(g), -
rs(tm)"tm tm

aT
alt,) = k(1) (37)

Now, since rs(tm) = a, and T(r,tm)='ro(r,tm). then for continu=-
ity:

drs
Pgt-t =0 (%)
m

The solution of the problem, described by Eqs. (3), (4), and

(5)will now be treated by two different approximate numerical
techniques. '
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Method 1I:

In this approach, the technique utilized by Citron [1] for a slab
is applied to the spherical shell. Material properties are as-
sumed to be functions of temperature. The method consists of ap-
plying a transformation which allows the consideration of a body
of constant unit thickness at all times in lieu of a body of
varying thickness, and then e.pressing the temperature distribu-
tion at any time in this unit body by a Taylor series expansion
in space about the melting surface. i

For the spherical shell the transformation used is

r-b
Z = - (6)
rs b
so that at r= rs, Z=1
and at r=b , Z=0 .

Using this transformation along with the following non~-
dimensional parameters

w(Ty)(t =ty) a-r,
T = (2 -p)2 3 Rs(‘t) = TT%
T-Ty - Q(t)
8(Zyt) = T Q(t)e= (7)
vET T, * Q,
k(1) . (1)
k = k(T_) TS

where Qo is the heat input at the The heat conduction Equation
(3) becomes

VE i
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% ¢ c 0
976 c 266 c . a
822";(1 R) a'r*‘l;z(l R Ry 37
S, (8)
2(1'Rs) P_Q_Lsi_k_(”)
T b/a 3z - do ‘a3z
(1-R)Z + 72573
where ( ) denotes differentiation with respect to T, and the
conditions (4a to 4e) become
a) 6(zyt) = 6 (zy7) at <=0
b) 6(z,7) =1 at . z=1
oL Q Re
¢c) (33) =Q=-R)[5-—% (9)
az 1,7t s B* w*
06
d) (g3) =0
OsT

e) R_(0) =0
while Eq. (5), (E;in. = 0, becomes ﬁs(o) =0
‘m
and
* kK(Tp) [Ty =Ty
T Qqyla-p]
» STy -T14]
Moo= L

It is now assumed that 6(Z,T) can be expressed as a Taylor
series expangion in space about the melting face z= 1. That is,
2

(z-1)2
ag) 2,) + eeee (10)

o(2i%) = 8(1,m) + (57 (2-1) A
' T 27 1,

e
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The first term and the coefficient of the second term are known
from conditions (9b'and 9¢c)

6(1.17)=
.80 ) Q F.*s
=) = (1-rR )5 - -]

The coefficient of the third term.can readily be found by evalu-
ating Eq. (8) at Z2=1. The'result is

2
a%e . 2,8 R . 2

(==) =(1=-r_) {[5 - —<](r, - ]
3z2'1, s {[B* n s l-Rs+r%L€7:

- o 2 -
Q R dk

- [ - J.] (— }
* dé 1,7

By successively differentiating.Eq. (8) with respect to 2,

2% a% a"e .

3 " a° ceey Ty can be obtained and these can be evalu-
0z 9z ) 8z :
ated at (l,7) to form the remaining n -2 coefficients of theé

Taylor series expansion.. The result is that an expression for
6(Zyt) is obtained’'containing 2z and Rs and its first K deriva-
tives when 2K or 2K+ 1 terms of the Taylor series are included.

Now if conditfon (9d), which is

(33 =0
92, «

is appliéd'to Eq. (19), then

2 3
a 0 o 1 :
) -( 2) +2l( 3) = ses b (11)
ly.'t 9Z7 1,7t 827 Lyt )

o d

o
y4

0 = (

o]
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2
8
and since (az 3 (;—%) } eeee 3§ (;—-) have all been ex~-
T A l)T z l"c

pressed in terms of Rs’ ﬁs’ etc., the final result is that a
non-linear, ordinary differential equation involving Rs and its
derivatives alone has been obtained. It should be noted that
this equation will always be linear in the highest order deri-
vative term (when more than three terms are used in the expan-
sion).

The series expansion of the temperature is terminated after 2K

or 2K + 1 terms, thus leading to a differential equation of kth
order. Thus in addition to the initial conditions R (O)-O.

and R (0)— 0, it is required to obtain K=-2 additional condi-
tions. These K -2 values, R (0), R (0) ceney R (0) are obtained .
by matching the initial temperature distribution eo(z 0) at K =2
points.

The following numerical procedure can be used for the solution
of the differential equation. For small <, Rs(T) can be expanded
in a Taylor series about g¢= 0:

. . 2 w3
R,(¢)=R_(0)+R_(0)r+R (0) gT* R (o) P

K .
where R‘(O) is obtained by satisfying Eq. (11).

. K=1
This can then be used to determine Rs(rl), R (o:l), ceee Rs(rl)

while Eq. (11) can then be used to determine Rs(Tl)’ The nu=
merical scheme then proceeds as follows:

R (7, +Aat) =R (7,) +acR (1,)

Rglry +8T) =R (7,)+aTR (1,)

sasaens

K=1 K=1 K
Ry(ty+ag)=R (ty) + a7 Rs(‘ti)
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K
and finally Rs(Tii-AT) can again be evaluateg from Eq. (11). This

procedure is continued until the entire solution is determined.

Method TII:s

A thorough investigation of the heat balance integral technique
for slabs is covered by Goodman [2]. Basically, the technique is
much the same as the momentum integral of fluid dynamics. The
heat conduction equation is satisfied on the average by integra-
ting it over the thickness of the body. A second-degree poly-
nomial temperature profile is then assumed and the three arbitrary
constants are evaluated from the boundary conditions. Substitu-
tion of tRis assumed profile into the integrated heat conduction
equation leads for the case of the sphere to a second order,
non-linear, ordinary differential equation in terms of the melt
radius rs(g), and its first and second derivatives. The solution
is easily obtained by numerical procedures.

Before integrating the heat conduction equation (3), the follow~
ing transformation is made:

Let
. u=Tr

Equation (3) then becomes (assuming constant thermal properties)

8u 62\1
=== 3 b<g¢r<r (12)
t or2 s

e e o X

where ¢ = oo

and the conditions (4a to e) become



-13-

a) U(r,tm) = Uo(r’tm)
b) u(r _,t) = r T
K Au u(rg,t) drg
¢) a(t) = — (g - -plL— (13)
Te ﬁrrs,t g dt
du u(b,t)
9 (&) 7T b
byt
e) rs(tm) = a
drS
while the condition (jﬁr)t = 0 remains unchanged. The inte-
gration of Eq. (12) over the thickness of the body yields
2
T Te 2%
S s %%dr = xS ‘—Edr -
b b Ar
Upon letting:
T re
G=§ udr=.f{ Trdr
b b
it can readily be shown that
I drg [(au) 24y (14)
ryald - = «xL(7T - (7 .
dt m s dt Ar oot or b, t
The substitution of Eqs. (13byc and d) into Eq. (14) yields
dr xr dr
s s S
ST T T ol el ek T e T(Byt) . (19)

It is now assumed that the temperature T(r,t) can be expressed

at any time as a second order polynomial in (r -b)

dependent coefficients. That-is,

with time
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T=A+ B(r-b)+D(r-b)2 .

Using conditions (4b,c and d), A, By, and D can be determined.
The resulting temperature profile is

dr

i -
Q+pl
=1 - [t (x, - b) - {7—_-5]

m (16)

for rsib

Therefore, if the solution for r, can be found, the temperature
profile through the thickness of the body would be specified at
any time by Eq. (16). G and T(b,t) can now be evaluated from
Eq. (16) and the subsequent substitution into Eq. (15) yields

dr
d2rs Q drg (rs-b)(9rs+ 7b)—&§'+12x(3rs-b)
2 =~ Lo+ A 2 }oan
dt P (r,-=b)*(3r + 5b)

a second order, non-linear, ordinary differential equation for

rs(t).

The numerical procedure used here for the solution of Eq. (17)
follows that of Method I. For small (t —tm), rs(t) is expanded
in a Taylor series about t= t « The first two coefficients of
this series are dete mined from the conditions at t= t » and the
third coefficient (——":f')t t is obtained by evaluating Em (17)

at t=tg The remaining coefficients, (-—1F) ...(—-Tf)t_t
tn’ =tm
are obtained by successively differentiating Eq. (17) with
respect to t and evaluating the results at t= tm

dr
To determine rs(ti-fAt) and Tﬁf(ti-+At) the following numerical
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scheme is used:

drs
rs(ti+At)= T, (ti)"'At—dt (ti)
drs drs d2rs
—aT(ti+At)='w(ti)+At;-2-(ti)

2
d“r

and ——E?(ti+-At)is determined from Eq. (17).
dt
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Numerical Calculations

Calculations using both Methods I (Citron) and II (Goodman) are
performed for a one inch thick 7-3/4 inch outside diameter alu-
minum sphere under a constant radial heat flux* and average
constant thermal and physical properties (Tab.e I). Two values
of o (=ha/k=0.70, 1.10), the non-dimensional surface heat trans-
fer coefficient, and a stagnation temperature of 1850°R. are used
in the analysis. These values were chosen on the basis of typi-
cal heat inputs to re-entry vehicles,

The pre-melt solution for the temperature is obtained through the
use of the one-dimensional solutions in Ref. [17]. The outer
surface temperature-time histories as well as the times at which
melting first occurs are shown in Fig. 1. The corresponding
temperature distributions at the melt time are given in Fig. 2.
The melt analysis of Methods I and II are then used to proceed.

Method I:

A six term Taylor series expansion for 6(Zyt) is assumed. The
substitution of this expansion into Eq. (11) yields a non-
linear, ordinary, differential equation containing up to the
third order time derivati&is of Rs’ It should be noted that the
highest order derivative (Rs) appears linearly in this equation.
As previously mentioned, this necessitates the matching of
6(Z,0) with the pre-melt solution (at £=0) at K -2 points. 1In
this case, therefore, only one match point is necessary. The
point chosen is at"fhe insulatga surface (r=>b). This enables

the evaluation of Rs(O). while RS(O) is found from Eq. (11). The

*Since the surface temperature is assumed to remain at melt tem-
perature during the melt analysis, a constant heat flux corres=-
ponds to steady=-state aerodynamic heating during melting.
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numerical procedure previously discussed is then used to obtain

R, as a function of x. Figures 3 and 4 illustrate the values of
melt depth versus time. It should be noted that the soég:ion

for rs(t) rapidly approaches a steady statey that is, gt P-
proaches a constant value. This is not unexpected since at

t=tp,s the pre-melt analysis yields a temperature profile through
the thickness which is almost at the constant melt temperature.
Therefore, from the boundary condition on the heat input [Eq. (4¢)],

drs
Q—’-pL dt 9

and since in this analysis it is assumed Q= constant,

drs

3t -—)'-Sf ;} a constant .

This condition is indeed rapidly approached as shown in Figs. 3
and 4.

The Taylor series expansion Eq. (10) can now be used to determine
6(Zyt) versus Z for a specific ¢. Figs. 5 and 6 show temperature
profiles for times greater than the melt time, while Fig. 2 pre-
sents the results at the melt time,

Method II:

The numerical procedure previously discussed is applied to Eq.
(17). The resulting numerical values for the melt depth are pre-
sented in Figs. 3 and 4. Equation (16) is then used to calculate
the temperature profiles at the melt time (Fig. 2) and at times
greater than the melt time (Figs. 5 and 6).
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Conclusions

The purpose of this report was to obtain the one-dimensional
ablation characteristics of a hollow sphere by adapting the
Taylor series expansion technique (Method I) originally devel-
oped for a slab by Citron [1], and also by using Goodman's [2]
heat balance technique (Method II). Because of the relative
simplicity of the numerical procedures of Method II, it was
deemed appropriate to obtain solutions using this heat balance
technique and to compare these to the more exact solutions de-
termined from Method I. '

A six~term Taylor series expansion was used in Method I. It
was necessary to include this number of terms in order to ap-
proximate the temperature profile at the melt time with suf-
ficient accuracy. A quadratic temperature profile for all time
was used in Method II and the comparison indicates that the
predicted profile is in good agreement with both the exact pre-
melt solution and the solution obtained from Method I (Fig. 2).

In obtaining a solution by using Method I (six-term expansion),
however, it was necessary to use the insulated surface tempera-
ture at the melt time. Hence, the exact solution for the tem-
perature profile is approximated more closely by Method I than
by Method II (Fig. 2). This also accounts for the differences
between the temperature profiles shown in Figs. 5 and 6.

The melt depths predicted by both methods, however, are in ex-
cellent agreement (Figs. 3 and 4). Furthermore, as shown in
Figs. 3 and 4, the rate of ablation rapidly approaches a con-
stant value., This is not surprising since, as shown in Figs.
2, 5 and 6, a constant temperature distribution is also rapidly
approached. :

P — . " - .
LA T it T zar ok <1 i R it o HAE RO IR B RIS 2 5
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In conclusion, it is clearly seen that the numerically simpler
technique (Method II) can be applied to the ablating sphere and
yields results which are quite close to those obta;ned using the
more complex technique (Method I). Both of these methods pre-
dict ablation profiles which are almost identical. It is appar-
ent that future investigations should include both the two-
dimensional effects and the effects of variation of the material
thermal properties with temperature.

Y
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TABLE I

Average Thermal and Physical Properties
of 356-T6 Cast Aluminum Alloy

B
c 0.245 2?
lb™R
k 0.33 —Bg-”—I-N;-
ft“ sec R
BTU
L 128 b
)
Tm 1590 R
s 2
in
¥ 0.0951 sec
lb
P 170 —=
£13
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