UNCLASSIFIED AD 419315

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA. VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or othervise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

×

ASD-TDR-63-647

7U,

-

AS

က ATERIAL DAMPING UNDER BIAXIAL TALOGED BY DDC STATE OF STRESS GENERATED BY COMBINED AXIAL AND INTERNAL 4 PRESSURE LOADINGS

64-5-

TECHNICAL DOCUMENTARY REPORT NO. ASD-TDR-63-647

JULY 1963

 \mathbb{C} Ó

AF MATERIALS LABORATORY **AERONAUTICAL SYSTEMS DIVISION AIR FORCE SYSTEMS COMMAND** WRIGHT-PATTERSON AIR FORCE BASE, OHIO

Project No. 7351, Task No. 735106

(Prepared under Contract No. AF 33(657)-7453 by the University of Minnesota, Minneapolis, Minn. T. J. Mentel and S. H. Chi, authors)

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified requesters may obtain copies of this report from the Defense Documentation Center (DDC), (formerly ASTIA), Arlington Hall Station, Arlington 12, Virginia.

This report has been released to the Office of Technical Services, U.S. Department of Commerce, Washington 25, D.C., for sale to the general public.

Copies of this report should not be returned to the Aeronautical Systems Division unless return is required by security considerations, contractual obligations, or notice on a specific document.

FOREWORD

This report was prepared by the University of Minnesota, Department of Aeronautics and Engineering Mechanics under USAF Contract No. AF 33(657)-7453. This contract was initiated under Project No. 7351, "Metallic Materials," Task No. 735106, "Behavior of Metals." The work was administered under the direction of the AF Materials Laboratory, Aeronautical Systems Division. Mr. J. P. Henderson was the project engineer.

The experimental work described in this report was carried out in the period February 1962 to September 1962.

The authors would like to thank Dr. B. J. Lazan for his advice concerning the experimental set-up and Mr. David L. Beste for his assistance in the reduction of the experimental results. Manuscript typing was by Miss Nancy Ahlbrecht.

ABSTRACT

A test machine has been constructed which measures material damping in thin-walled, cylindrical specimens subject to combined internal pressure and axial cyclic loading. The purpose of this machine is to allow the complete range of biaxial stress states to be developed, so that the individual damping effects of distortional and dilatational straining action might be clearly discerned. Experimental results on a series of manganese alloy specimens are found to display significant damping effect associated with dilatational straining.

This technical documentary report has been reviewed and is approved.

W. J. TRAPP Chief, Strength and Dynamics Branch Metals and Ceramics Division Air Force Materials Laboratory

TABLE OF CONTENTS

ç

Ŧ

÷

•

PAGE

I.	INTRODUCTION	1
II.	TEST APPARATUS	2
III.	CALIBRATION ACCURACY AND PRECISION OF	
	APPARATUS	3
IV.	SELECTION OF TEST MATERIAL	5
v.	THEORETICAL CONSIDERATIONS WITH RESPECT TO	
	DATA REDUCTION	6
VI.	EXPERIMENTAL RESULTS	9
VII.	DISCUSSION OF RESULTS AND CONCLUSIONS	10
VIII.	REFERENCES	12

LIST OF FIGURES

FIGURE		PAGE
1	Schematic of Test Apparatus	13 14
2	Overall Test Set-Up	15
3	Axial and Pressure Crank Geometries	16
4	Displacement Waveform Distortion	17
5	Strain Gage Disposition and Bridge Set-Ups	18
6	Geometry of Test Specimens	19
7	Comparison of Parameters for Depicting Energy Ratios	20
8	Basic Trend Curves for Material Damping	21
9	Alternate Presentation of Trend Curves	21
10	Typical Hysteresis Loops for $a = 1/8$ and $a = -\frac{1}{2}$	22
11	Typical Phase-Check Loops Corresponding to Figure 11	23
12	Stress History Check with Uniaxial Stress	24
13	Stress History Check with Biaxial Stress	24
14	Experimental Results, Specimen A	25
15	Experimental Results, Specimen A, Alternate Plot	26
16	Experimental Results, Specimen B	27
17	Experimental Results, Specimen C	28
18	Experimental Results, Specimen D	29
19	Experimental Results, Specimen E	30

•

I. INTRODUCTION

This paper describes an experimental study of cyclic miterial damping in thin-walled, cylindrical specimens of manganese copper alloy, subject to combined axial and internal pressure loading. The objective of this study is to determine precisely the importance of dilatational straining action in the production of material damping. Present experimental results of material damping, for structural metals under biaxial states of stress, indicate that only the distortional straining action is associated with detectable internal damping phenomena. This means that the specific damping of a structural metal, which we measure in inch pounds of energy dissipated per cubic inch of material per cycle of loading, can be correlated for different states of stress solely referring to the respective distortional straining amplitudes. This enables a simple similarity criterion to be written which identifies biaxial with uniaxial states of stress for a given material, which produce the same specific damping.

An important contribution to the study of material damping under biaxial states of stress was made by Robertson and Yorgiadis [1]*, who found that in order to produce the same specific damping, the amplitude of the shear stress in the biaxial stress case had to be between 0.48 and 0.60 of the amplitude of the normal stress in the uniaxial stress case. Their suggested value 1//3 implies that the expressions for the distortional strain energies, modified by the total neglect of the mean normal stress component, be equal in the two states. This introduces the notion of twodimensional distortional and dilatational strain as identified by the maximum shear and mean normal stress components respectively. A symbolic statement of this similarity condition is

$$\sigma_n = \sqrt{3} \tau_n$$

where σ_n is the normal stress amplitude in the uniaxial state and γ_n is the maximum shear stress amplitude in the biaxial state.

The foregoing criterion has subsequently been confirmed by several experimenters, but only under certain broad limits of experimental scatter. Furthermore, the test conditions have always been such that the distortional straining action was the dominant deformation process. The typical experimental test set-up has employed either a bar or a tubular specimen subjected to combined axial and torsional loading.

* Numbers in parentheses refer to references on page 12 . Manuscript released for publication April 1963 as an ASD Technical Documentary Report. It was conjectured by Mentel [2], that since in the case of plate vibrations, wherein dilatational straining generally accounts for a much larger share of the total straining action, it might also be found to be significant in material damping production. The implication of this conjecture is that the absence of damping effects due to dilatational straining observed of structural metals hitherto has been due to the restricted test set-ups and the masking effect of large experimental scatter.

The problem thus posed was the extension of the experimental test conditions to include those corresponding to plate vibrations. The first tests would be made with materials already well examined experimentally in the previous studies. If these proposed tests revealed a positive damping effect associated with dilatational straining, then a simple revision of the mathematical statement of the similarity condition for equal damping under uniaxial and biaxial stress states is [2]

$$\sigma_{n} = \sqrt{3 \tau_{m}^{2} + \lambda \sigma_{d}^{2}}$$
(1)

where σ_d is the "mean normal" stress in the biaxial stress state. If the principal stresses are given by σ_1 and σ_2 , then

$$\sigma_1 = \sigma_d + \tau_m, \quad \sigma_2 = \sigma_d - \tau_m. \quad (2)$$

The value of $\lambda = 0$ produces the Robertson-Yorgiadis criterion, and $\lambda = 1$ produces the distortional strain energy criterion wherein the three-dimensional elasticity description of distortional and dilatational straining action is applied. The experimental study described herein produces a value of $\lambda = 1.2$ for a manganese copper alloy.

II. TEST APPARATUS

A schematic of the internal pressure and axial loading system is shown in Figure 1. The hollow, cylindrical, test specimen A is joined to a similarly constructed axial load transducer B which employs electric strain gages about its circumference. The lower end of the test specimen is attached to a sliding rod C which in turn is attached by flexplate D to the lever E. The lever E is hinged by a flexural pivot F and driven at the other hand by the crank G. The crank is powered by an electric motor with variable speed control H. The usual speed of testing was from 1 to 5

cycles per second.

The pressure loading system is driven synchronously from G by the second crank mechanism J. The stepped hydraulic jack K acts as a cyclic pressure inducing device and is fitted with a spring L to prevent the load component arising from high mean pressure from being transmitted back through the pulley system G-J. The cyclic variation in the fluid pressure directly stresses specimen and the electric pressure transducer M. The instantaneous pressure is also indicated by the pressure gage N.

The operating procedure starts with the motorized hydraulic pump P which is used to purge the system of all entrapped air bubbles. The large reservoir tube was incorporated to aid in the air bleeding operation. Then, depending on the mean normal stress to be employed, the appropriate accumulator R was put on the line, and the entire system charged to the given mean pressure with pump K in the central position. The needle valve S was then fully closed, later to be cracked open just slightly such that gage T was able to monitor the mean pressure, while gage N still displayed the instantaneous pressure.

The primary function of the accumulator, of which two were employed in order to cover the test range of mean pressure, was to smooth the system charging process, and subsequently to compensate for leaks without need for recharging. Actual operating experience showed that for most conditions, leaks were no problem, and many tests could be run without having to reopen valve S.

Electrical signals from the strain gages on load transducer B, test specimen A and pressure transducer M were fed to the switch W, from which various combinations of readings could be selected to be plotted by the x-y plotter X. A photograph showing the overall view of the experimental set-up is shown in Figure 2.

III. CALIBRATION ACCURACY AND PRECISION OF APPARATUS

The ideal testing apparatus for this problem would subject the material specimen to axial and internal pressure loadings of perfect sinusoidal waveform applied exactly in phase. The actual test apparatus produced certain distortions in each of the waveforms with consequent phase distortion effects. Since these were inherent deviations of the apparatus, they will be evaluated first.

The waveform distortion stems from the finite connecting rod length of the slider-crank mechanism, which was used, in different forms, in the axial and pressure crank loading devices. The geometries of these two devices are shown in Figure 3(a) and 3(b), from which the displacements x_a and x_b are easily found to be

÷.

$$x_a = c + r(1 - \cos \omega t) - \sqrt{c^2 - r^2 \sin^2 \omega t}$$
, (3)

$$x_{p} = -e + \sqrt{e^{2} + 2r(r+1)(1 - \cos \omega t)}$$
 (4)

The corresponding axial and transverse strains in the specimen are given by

$$\epsilon_1 = m x_a \ell^{-1} + K_1 x_p$$
, (5)

$$\epsilon_2 = - \vartheta m x_a \ell^{-1} + K_2 x_p$$
, (6)

where m accounts for the force multiplication of lever E, ℓ is the appropriate specimen length, and K_1 and K_2 account for the fluid pressure coupling between displacement x_p and the test specimen. Substituting the experimentally determined values of m, ℓ , K_1 and K_2 into equations (5), (6), we find

$$10^4 \epsilon_1 = 515 x_a + 1.89 x_p$$
, (7)

$$10^4 \epsilon_2 = -129 x_a + 6.61 x_p$$
, (8)

where for the values of c = 14.3, e = 25, and r = 1.0 (all in inches) equations (3) and (4) become

$$x_a = 15.3 - \cos \omega t - \sqrt{204.5 - \sin^2 \omega t}$$
, (9)

$$x_p = -25 + \sqrt{677 - 52 \cos \omega t}$$
 (10)

A plot of x_a versus t = 0 is shown in Figure 4, which illustrates the amount of waveform distortion present. The corresponding hysteresis loop, obtained by plotting e_1 vs. e_2 , produces a single line, which shows that no loop area is detectable at the level of precision to be used in the experimental measurements. The precision of the electric strain gage measuring system thus determined the accuracy of the final hysteresis loop.

The disposition of the strain gages on the dynamometer A in Figure 1 is shown in Figure 5. This dynamometer was used for sensing both the axial and pressure loading, with the separate, laboratory standard, pressure transducer M in Figure 1 being used only for calibration checking. The pressure gages were used for visual monitoring only.

The electrical circuitry associated with the transducer was such as to produce individual electric signals directly proportional to ϵ_1 and ϵ_2 [hence, σ_1 and σ_2]. This was achieved by incorporating shunt resistors R_p of 678 ohms [computed theoretically by assuming a Poisson's ration of 1/3 for the transducer material] across the 500 ohm strain gages R_1 and R_T in Figure 5.

In order to obtain the desired stresses in the specimen directly, the inside diameter of the specimens was matched to that of the dynamometer. The wall thickness of the specimen was 2.4% of its outside diameter, so that the state of stress was essentially biaxial with a minor third axes compression gradient due to the direct pressure loading. The dimensional detail of the test specimens is shown in Figure 6. The maximum internal pressure was 1000 psi, which produced 20,000 psi axial stress in the walls of the specimen. Hence, the distortional and dilatational strain energies, computed on the basis of a biaxial stress state $[\sigma_1, \sigma_2, \sigma_3 = 0]$,

were negligibly different from the correct values.

IV. SELECTION OF TEST MATERIAL

Since the objective of this study was concerned with the effects associated with dilatational straining action, it was expedient to eliminate as many as possible of the damping phenomena, nominally a part of the material damping process, but not directly pertinent to dilatational straining. In particular, this meant avoiding problems of stress history, stress amplitude [with reference to cyclic stress sensitivity limit], strain rate [with reference to frequency of loading], test temperature and metallurgical variations of the material.

The material selected for the test specimens was a manganese copper alloy, whose comparatively high damping properties had already been well established with the standard test set-ups, and which thus promised good accuracy of experimental results in the new study. For interest, some specimens were also fabricated from mild steel, but it was discovered that at the low levels of stress which were demanded by the aforementioned considerations

;

of stress history, etc., the test apparatus had insufficient precision to produce useful results. The manganese copper alloy, with its higher damping, was not observed to have any other unusual characteristics to set it apart from the general category of structural metals.

The manganese copper alloy was obtained in the form of 1 5/8" by 5" bars which were given a normalizing heat treatment by the manufacturer [CDC #780, Chicago Development Corporation, 5810 47th Avenue, Riverdale, Maryland]. The chemical composition and the mechanical properties of this alloy, stated by the manufacturer, were as follows:

Element	<u>Range</u> (% composition)
Manganese	78-82
Copper	18-22
Fatigue Strength	17 <u>,</u> 000 psi at 10 ⁸ cycles
Modulus of Elasticity	13.5 x 10 ⁶ psi
0.2% Yield Strength	24,000 psi

Machining and polishing procedures for the test specimens were the same as those described previously in Reference 3.

V. THEORETICAL CONSIDERATIONS WITH RESPECT TO DATA REDUCTION

The specific damping energy absorbed by a material subjected to cyclic, biaxial stress can be determined from the sum of the areas of the two principal stress-strain hysteresis loops. We denote this by

 $D(\sigma_1,\sigma_2) = \int \sigma_1 d\epsilon_1 + \int \sigma_2 d\epsilon_2 = D_1 + D_2$,

where σ_1 , σ_2 , and ϵ_1 , ϵ_2 are the principal stresses and strains respectively. If we let the measured areas of the two loops $\sigma_1 - \epsilon_1$ and $\sigma_2 - \epsilon_2$ be A_1 and A_2 respectively, we can write

 $D_1 = N_1 S_1 A_1$, $D_2 = N_2 S_2 A_2$,

where $N_1 N_2$ relate the recorder settings in micro-inches per inch of deflection along the strain axes, and $S_1 S_2$ relate the settings in psi per inch of deflection along the stress axes, for the individual hysteresis loops. The standard technique utilizing precision shunt resistors in the bridge circuits was used in determining the constants N_1 , N_2 , S_1 , S_2 .

Having evaluated D (σ_1 , σ_2), the next problem is to formulate a reduction which best examines for possible relevance of dilatational strain energy. We note that for the biaxial stress case

Distortional Strain Energy =
$$\overline{U} = \frac{1+3}{3E} \left[\sigma_1^2 + \sigma_2^2 - \sigma_1 \sigma_2 \right]$$
,

Dilatational Strain Energy = $\overline{U} = \frac{1-2\vartheta}{6E} \left[\sigma_1^2 + \sigma_2^2 + 2\sigma_1 \sigma_2 \right]$, from which we find the matic of the strain energies to be

from which we find the ratio of the strain energies to be

$$\frac{\overline{U}}{\overline{U}} = \frac{1-2\overline{v}}{2(1+\overline{v})} \cdot \frac{(a+1)^2}{a^2-a+1}$$

where $a = \sigma_1 / \sigma_2$. A plot of this result is shown in Figure ⁷(a), where we observe that the stress ratio a is not a convenient parameter for detecting the influence of U/U. An alternative parameter is σ_d / τ_m the ratio of the mean normal to maximum shear stress components, as defined by

$$\sigma_{\rm d} = \frac{\sigma_1 + \sigma_2}{2}$$
, $\tau_{\rm m} = \frac{\sigma_1 - \sigma_2}{2}$

,

In this case we find

$$\frac{\overline{U}}{\overline{U}} = \frac{1-2\overline{v}}{2(1+\overline{v})} \cdot \frac{4\beta^2}{\beta^2+3}$$

where $\beta = \sigma_d / \tau_m$. A plot of this parameter is shown in Figure 7(b), which is observed to give a simple rising curve for the

energy ratio, and is therefore suitable for our analysis. A third approach is to introduce the notion of effective dilatational and distortional stresses such that

$$\overline{\overline{U}} = \frac{1-2\overline{\vartheta}}{6E} \overline{\overline{\sigma}}^2$$

$$\overline{\overline{U}} = \frac{1+\overline{\vartheta}}{3E} \overline{\overline{\sigma}}^2$$

In this case

$$\frac{\overline{U}}{\overline{U}} = \frac{1-2\overline{v}}{2(1+\overline{v})} \left[\frac{\overline{\sigma}}{\overline{\sigma}}\right]^2$$

a plot of which is shown in Figure 7 (c). This latter description is also acceptable, and has the added advantage of covering the entire biaxial stress range in a finite region.

In all of the foregoing plots, we observe that the percentage of dilatational to distortional strain energy which occurs in the uniaxial stress case can be at most increased by a factor of 4 in going to the biaxial stress case. In the case of the manganese copper alloy used in the test specimens, Poisson's ratio equals 0.28, so that the maximum possible value of the energy ratio U/U turned out to be 0.69. Thus, in the biaxial stress case, the magnitude of the dilatational component of the strain energy still falls far short of the distortional component.

We choose the parameter $\overline{\sigma}$ / $\overline{\sigma}$ against which to compare the damping data. More generally, this means working with any two of $\overline{\sigma}$, $\overline{\sigma}$, or $\overline{\sigma}$ / $\overline{\sigma}$.

Several methods of non-dimensionalizing the energy dissipation D (σ_1 , σ_2) can be applied. In particular, if we choose $\overline{\sigma}$ and $\overline{\sigma}/\overline{\sigma}$ as the independent variables, we can write the ratio

where D (σ_n) represents the energy dissipation which would have been obtained under uniaxial stress conditions with some suitable stress amplitude σ_n . In a similar comparison of data, Whittier [4] chose to define σ_n as that stress which produced the same distortional energy, which says merely that $\sigma_n = \overline{\sigma}$. An alternative procedure is to use the Robertson-Yorgiadis criterion which says

$$\sigma_n = \sqrt{3} \tau_n = \sqrt{\sigma^2 - \frac{1}{4} \sigma^2}$$

where $T_{\rm m}$ is the maximum shear stress amplitude developed in the biaxial stress state. Actually, Robertson and Yorgiadis found that in the place of $\sqrt{3}$, experimental tests produced values ranging from 1.7 to 2.1. The theoretical basis of $\sqrt{3}$, as noted in the introduction, lies in the (arbitrary) neglect of all effects due to the mean normal stress component $\sigma_{\rm d}$. We will choose to work with the $\sigma_{\rm n}$ based on the distortional strain energy, so that we may anticipate plots of the type shown in Figure 8. Thus, if the experimental results follow along curve A, then this would show that the material damping was independent of dilatational straining action. Any slope to the curve, however, would establish a dependence, with curve B demonstrating additive damping effects and curve C a nullifying damping effect. On the other hand, if the material damping depended only on the dilatational straining action, then the data would fall along curve D whose exact position would depend on the individual material.

The foregoing conjecture suggest an alternative plot wherein we use the ratio

where $\sigma_n^* = \overline{\sigma}$. This is illustrated in Figure ⁹, wherein insensitivity to distortional straining would produce curve E while insensitivity to dilatational straining would produce curve F.

VI. EXPERIMENTAL RESULTS

The simultaneous loading of the specimen by two loading systems required continual checking to see that no phase discrepancy developed, which, of course, would produce false hysteresis loops. The technique employed was to monitor σ_1 versus σ_2 in all cases, in addition to the required hysteresis loops σ_1 versus ε_1 σ_2 versus ε_2 . If the plot of σ_1 versus σ_2 did not produce a

1.

straight line (loop of zero area), then the mechanical coupling between the axial and pressure loading cranks was adjusted until a straight line was produced. Elastic deformation of the loading system made such adjustment necessary for almost all changes of loading amplitudes, with the maximum adjustment reaching $\pm 10^{\circ}$ from the zero load, in phase position. Two typical sets of loops, including also a plot of ϵ_1 versus ϵ_2 , are shown in Figures 10 and 11.

The test range of σ_a and σ_t , the amplitudes of the axial and transverse cyclic components of stress, was limited at the lower end by the ability to determine the loop areas with a planimeter to within 10 to 15%, and at the high end by the onset of stress history effects. In the case of the manganese copper alloy test specimens, this meant that the mean pressure in the hydraulic loading system was kept in the range 600 to 700 psi with the minimum pressure falling to not less than 300 psi. The axial load was restricted to remain either negative or positive at all parts of the cycle and to produce a maximum 20,000 psi axial stress. At least one of the σ_1 or σ_2 had to be not less than 5000 psi in order to generate hysteresis loops of acceptable area. A typical check for the absence of stress history effects is shown in figure 12 for uniaxial tension, and in Figure 13 for a biaxial stress case.

The formal experimental test program was carried out on five specimens. Over 400 test runs were made on these specimens, hence we omit their numerical tabulation and present only the reduced results in the form of plots. In the case of specimen A, we show the two type of plots corresponding to Figures 8 and 9, in Figures 14 and 15. It is clear that the first of these plots is to be preferred, hence this presentation only is used for specimens B, C, D and E in Figures 16, 17, 18 and 19. The uniaxial damping data were determined (experimentally) individually for all specimens for the given reductions of data, an example of which has already been shown in Figure 12 in connection with stress history effects.

VII. DISCUSSION OF RESULTS AND CONCLUSIONS

The basic result of the tests reported herein is the observation that the experimental plots tend to favor the curve (b) in Figure 9. Considerable scatter of results, both test-to-test and specimen-to-specimen is evident, but this is usual, even for the carefully prepared specimens which were employed. The conclusion is therefore, that attention to the dilatational strain energy is necessary in considering material damping in the alloy tested. Except for very special materials, this has not been a generally accepted notion, at least for structural metals, although some recent work on the vibrations of circular plates has also indicated this [4]. This latter study, however, involved a highly non-uniform stress distribution, so that its quantitative interpretation was subject to substantial error. The present study, of course, has employed a uniform state of stress with full control over stress ratios, so that with the neglect of the small stress component through the wall thickness, the results are direct.

It is observed that if an attempt were made to fit the data in Figures 15, 17, 18, 19 and 20 with smooth curves, then the intersections at

would be at 1.0, 0.8, 1.1, 1.0 and 1.2 for the five specimens. All of these ordinates would be expected to be 1.0, but once again, apparently only the statistical answer satisfies the expected behavior.

Finally, we observe, that if the non-dimensionalization had been made with the Robertson-Yorgiadis criterion, then the positive slopes shown by the foregoing curves would have been greater. The significance of dilatational straining action on material damping therefore appears to be established, and this calls for a modification of the elementary, distortional energy criterion (based on maximum shear stress) for relating uniaxial with biaxial stress states which produce the same damping. The purpose of such criterion, of course, is to allow determination of material damping under any biaxial state of stress, given the value in one state. In particular, if we choose the modified criterion as given by Equation 1 and use a straight line description of the experimental results in Figure 15, and furthermore, note that the material damping for manganese copper alloys behaves like $\sigma_n^2 \cdot \tilde{n}$ in the uniaxial

case, we find that required value of λ is 1.2. If the material should behave primarily in accordance with the Robertson-Yorgiadis criterion, then the reformulation to account for dilatational straining would take the form

$$\sigma_{\mathbf{n}} = \sqrt{(3 - \lambda^{\dagger}) \tau_{\mathbf{n}}^2 + \lambda^{\dagger} \sigma_{\mathbf{d}}^2} ,$$

so that, under uniaxial stress conditions, wherein $\tau_m = \sigma_d$, the expression reverts to $\sigma_n = \sqrt{3} \tau_m$.

VIII. REFERENCES

- 1. Robertson, J. M. and Yorgiadis, A. J., "Internal Friction in Engineering Materials," Journal of Applied Mechanics, Vol. 13, 1946.
- Mentel, T. J., "Vibrational Energy Dissipation at Structural Support Junctions," Section 4 of, "Structural Damping," Edited by J. E. Ruzicka, ASME, 1959.
- 3. Lazan, B. J., "A Study with New Equipment of the Effects of Fatigue Stress on the Damping Capacity and Elasticity of Mild Steel," <u>Transactions</u> ASME, Vol. 4, 1950.
- 4. Whittier, J. S., "Phenomenological Theories of Hysteretic Material Damping with Application to the Vibrations of Circular Plates," ASD Technical Report 61-264, November 1961.

2

.

1

LEGEND FOR FIGURE I

A	Test specimen
В	Load transducer
С	Vertical guide
D	Axial load transfer lever
E, D	Flexible couplings
G, J	Axial load and internal pressure cranks
н	Speed control
К	Pressure loading jack
L	Mean load relief spring
м	Precision pressure transducer
N, T	Pressure gages
P	Hydraulic pump
Q	Reservoir
R	Hydraulic pressure accumulators
S	Needle valve
W	Switch box
X	X-Y plotter

!

.

Figure 2. - Overall Test Set-Up

Figure 3. - Axial and Pressure Crank Geometries 16

.

5

I

R_L — Longitudinal gage R_T — Transverse gage R_P — Precision resistor

Figure 5. - Strain Gage Disposition and Bridge Set-Ups

Figure 7. - Comparison of Parameters for Depicting Energy Ratios

,

Figure 8. - Basic Trend Curves for Material Damping

۰.

23

ł

25

Figure 18. - Experimental Results, Specimen D

•

1. Beteriel despite 2. Bedation Prop- 3. Biarial stress benying sypress 1. Disrial stress benying sypress 11. Contract No. 11. Contract No. 11	•
Arronutical System Division. A Materials Laboratory, Maala and Cornelos Division. Pright-Philonen AT, Guio. Pright-Material AT, Guio. Pright-Material AT, Guio. Prist Maal report. Ally 63. Nop. LOADTES. Final report And Reference material damping in this-mailed. Sylladrical pressure and anial cyclic leading. Laborator and this making is to allow the complete reage of Marial and dilathical maping offect: of distortional and dilathical	struining sotion might be classly discorrad. Reportantly specianan over found to display accessibly specianan over found to display significant damping effect associated with dilatetional struining.
1. Meteriel dempine 2. Medanical prop- artics 3. Biarial atrees 4. Biarial atrees 5. Biarial atrees 6. March 795106 11. Contract Do. 11. Antific atrees 11. Contract Do. 11. Contract Do. 11. Contract Do. 11. Contract Do. 11. Antific atrees 11. Contract Do. 11. Antific atrees 11. Antific atre	₽
Arrownutical System Division, AP Matricla Laboratory, Maula and Corredce Division. Wight-Roburns AP, Calo. Wight-Roburns AP, Calo. Wight-Roburns AP, Calo. Marker Division AP, Calo. Marker Division AP, Calo. Marker Division AP, Calo. Marker Division. A police. Loburns. Phal report. All GJ. 2009. Loburns. Phal report. All GJ. 2009. Market Constructed Mich. Calo. 2009. Market Construct and All Calo. 2009. Market Construct and Mich. 2	structurer cotion alght be clarriy discorrad. Reperiquent remains an excise of mag- acco sillor speciment are four to display significant dempine effect associated vith dilatetional structure.

•

·

.

ŧ١

	 			. .
utical Systeme Division, AF Wheriels tory, Metris and Ceremics Division, - Patterna APP, Ohio.	 Weteriel dempine Mechanical prop- erties birites 	Peronvutior1 Systeme Division, AF Wateriels Laboratory, Metals and Ceraics Division. Wright-Detterson AFB, Obio.	1. Meteriel (2. Mechanica erties	benping
. MELTIMOJONY, MARFILL UNFILD DIAILAR OF STRESS ORMENTED BY DE AILA AND INTERAL PRESSURE USS. Final report, July 63, 30pp. USS. Final report, July 63, 30pp. Uselsreified Report	J. Biayial stress 4. Biayial stress demtrik appratus I. MrSC Project 7351. Task 735106 11. Contract 30.	The second secon	4. Bisvial et al. Bisvial et al. Bisvial et al. Bisvial et al. Al. Bisvial et al.	Provide 1991
<pre># machine has been constructed which res m terial damping in thim-walled. fricel specimons subject to combined all presents sud axial cyclic loading. and presents sud axial cyclic loading. argoes of this machine is to sllow the set range of bisizel stress to the set range of bisizel stress to the set of distortional and dilatational</pre>	III. University of Minnesote, Min- meepolis, Minn. IV. T. J. Watel S. H. Chi V. Meal fr Off VI. In ASTIA collec- tion	A test machine has been constructed which mereures arterial damping in thin-walled, criindrical specimens subject to combined internal pressure and axial cyclic loading. The purpose of this machine is to allow the complete range of blaziel stress states to be developed, so that the individual damping effects of distortional and dilatational	III. University Minnesote mespolits. IV. T. J. Went V. Aval fr Chi V. Aval fr Chi VI. In ASTIA	tel
(ever) diag retion might be clearly discermed. meatel results as a series of mage- liey specimens are found to display ficant demping effect associated with bioonl streining.	€ 	<pre>(ever)</pre>		- #

: . .

•

.

•

1. Martal dauptur 2. Machanical prop- certial atrees 3. Statial atrees 4. Blarial atrees 4. Blarial atrees 4. Blarial atrees 4. Blarial atrees 4. Blarial atrees 1. All 33(657)-7455 11. Controvity of 11. Controvity of 11. Controvity of 11. All 33(657)-7455 11. Controvity of 11. All 33(657)-7455 11. Controvity of 11. All 33(657)-7455 11. All 33(657)-7455 12. All 33(657)-7455 13. All 33(657)-7455 14. All 33(657)-7455 15. All 34(7) 15.	·
Arrowutical Systeme Mariaton, A Materials Laboratory, Maula and Caradica Materials Marght-Philores AD, Ohlo. Pho M. Albrind, AD IFFRAM, PARSON Mark JIAML, AD IFFRAM, PARSON DOMING ATA, AD IFFRAM, PARSON DOMING ATA, AD IFFRAM, PARSON DOMING ATA, AD IFFRAM, PARSON DOMING ATA, AD IFFRAM, PARSON LOUDIDS. Final report, AU, 63. JOP. Land Hills., bables, b refs., Declarified Report Land Hills., bables, b refs., A test modian has been constructed which and the marker of this median is to allow the complete reaction added and ather to allow the organized results and anyles in diletriles 1 Areas a developed, or that individed anylis officient and the addiant and the addiant and the addiant addiant and the addiant	
1. Buterial despise 2. Machanical prop- sertian 3. Starial stress b. Machanical stress bengring spread bengring spread 1. Controot 79516 11. Controot 79516 1	
Arrowntical System Division. A Matriala Laboratory. Muola and Corrates Division. Mathematical System Information Division. Mathematical System Information Division. Mathematical Systems IN. Chilo. Mathematical Systems A. Chilo. Mathematical Division Construction Mathematical Longress. Final respect. Ally 63. 2099. Larl 1130a. Mathematical Mathematical Longress. Final respect. Ally 63. 2099. Larl 1130a. Mathematical Mathematical Commission Final respect. Ally 63. 2099. Larl 1130a. Mathematical Mathematical Commission Final respectation and the Mathematical Commission Final Resolution for the commission Longress. Final respectation and the Mathematical Commission Final Resolution for the commission Laboration Final Resolution for the commission of distribution and the finity final complex for the commission and the classify discordinal fiberial resolution and the classify discordinal constituent review and the classify discordinal fiberial resolution and the classify discordinal fiberial resolution and the classify discordinal constituents reviewed and the classify discordinal distribution and the classified distribution.	

•

..............

...............

.

•

•

•

Aeronautical Systems Division, AP Materiele Laboratory, Matele and Carraics Division,	1. Meteriel demping 2. Mechanicel prop-	Aeronautical Systeme Nation, AF Wateriels Laboratory, Netels and Corraics Division.	1. Meteriel demping 2. Mechanical prop-
Wright-Pattoren APS, Chio. Byt No. ASD-TIR-63-647. NATERIAL DANTING UNDER DIANIAL STATE OF STRESS CENTRATED BY	erties 3. Blayiel stress 4. Blayiel stress	Tright-Petterson AFB, Ohio. Ppt Ho. ASD-TIM-63-647. NATERIAL DANFIND UNDER BIAXIAL STATE OF STRESS GENERATED BY	erties 3. Biaxiel atress 4. Biaxial atress
COMBINED AILAL AND INTERNAL PRESSURE LOADINES. Pinal report, July 63. JOpp. Jaci illus., tables, & refs.,	dempine appenduus I. APSC Project 7351. Taak 735106	COMBINED AXIAL AND INTERAL PRESSURE LOADINES. Final report, July 63, 30pp. incl illue., tables, & refs.,	dempine appritue I. AFSC Project 7351, Task 735106
Unclassified Report A test machine has been constructed which	<pre>II. Contract No. AP 33(657)-7453 III. University of</pre>	Unclarsified Report A test machine has been constructed which	II. Contract Mo. AF 33(657)-7453 III. University of
merences miterial despine in thim-welled. Cylindrice: specimens subject to combined intermed pressure and exist cyclic londing. The purpose of this mething is to allow the	Minnesote, Min- meepolis, Minn. IV. T. J. Mentel S. H. Chi	mercures arterial dempine in thin-welled, cylindrical specimens andject to combined internal pressure and stal cyclic loading. The purpose of this machine is to allow the	Minneeote, Mia- meepolis, Mian. IV. T. J. Mentel S. H. Chi
complete range of blaziel etrees states to be developed, so that the individual demping effects of distortional and dilatational	V. Aval fr OTS VI. In ASTIA collec- tion	complete rence of blariel stress states to be developed, so that the individual deping effects of distortional and dilatational	V. Aval fr OTS VI. In ASTIA collec- tion
	* 		4
straining ection might be clearly discerned. Experimental results on a series of magn- more alloy specimens are found to display significant demping effect associated with dilatetional streining.		streining sction might be clearly discorned. Experimental results on a series of mage- ness slipy systemens are found to display significent damping effect associated with dilatetional streining.	
			\$

.

ł

1

•

•

•

•

·

1. Miterial Complex 2. Machanical prop- critics critics 3. Sintial stress Anyria opportunes binyria opportunes 1. And Project 7351. 11. Cantersty of 11. Cantersty of	
Arronautical Systeme Division, AF Materials Laboratory, Mbula and Carrados Division. Wight-Datereen AFR. Calo. Wight Division AFR. Calo. Wight Division AFR. Calo. Wight Division AFR. Calo. Wight Division AFR. Calo. Machanical Division AFR. Condition I and the Parts of Condition isol 111as. Mani report. Miry 63. 30pp. LoADTHRS. Final report. Miry 63. 30pp. isol 111as. Mani report. Miry 63. 30pp. Machanical Marylar I and Grand Wich meres meterial damping in this-mallad. Sylincrical presence and south of the individual dumping offects of distortional and dilatational effects of distortional and dilatational	straining action might be clarrly discorrad. Experimental results as a series of angu- mess slipy speciment are found to display significant dauging effect associated with dilateitional straining.
1. Material Amplian 2. Medianis Prop- ertia 3. Biorial stress 3. Biorial stress 4. Biorial stress 4. Piscial stress 5. Biorial stress 1. JPC Project 7351. 11. University of 11. University of 1	
Arrowutical System Division. A Materiels Laboratory. Mult and Corrados Division. Fight-Potterean AP. Calo. Fight-Potterean AP. Calo. Fight S. MCLTR-60-604. WIERILL DARFIE UNING S. TANI TROPIC STRESS COMMERCIED FF Commisso AITLA AD TROPICAL STRESS COMMERCIED FF Commisso AITLA AD TROPICAL MANY 63. 3099- isal 111au. Mali report. Auly 64. 4000- isal 111au. Mali report. Auly 64. 4000- isal 111au. Mali report. Auly 64. 4000- isal 111au. 4000- isal 1111au. 4000- isal 111au. 4000- isal 111au. 4000- is	streitaing sction might be clanrity discorrand. Experimental receipes as a series of mag- mess slipy specimens are found to display significant denging offect associated with diletational streining.

1

and the second reads

ALC ALCOLOGICAL

			 	Φ-
alai-otta Bi -ototany anatang laatinganat		- Heronaution) Smatewe Division 40 Watewiste		
Tatianud a "notatata" ananata' Tantona vi	Studies Telles at		Stilduen feiles au	_
Laboratory . Matels and Certaics Division.	2. Mechanical prop-	Laboratory , metals and certelce Livision,	2. mechanical prop-	-
Wight-Petterson AP. Ohio.	ertles	Vright-Patterson APB, Ohio.	ertles	
The No. ASD-TUR-63-647. NATEPIAL DANPING	3. Binyiel stress	BPt No. ASD-TIM-63-647. NATERIAL DAMPING	3. Biaxiel stress	
UNDER BIAVIAL STATE OF STRESS CENTER ATED BY	4. Bieriel stress	UNDER BIAXIAL STATE OF STRESS GENERATED BY	4. Dieriel atress	-
COMPUTED ATTAL AND THIRDRAY, PROCEEDE	demine anne ve tue	COMBINED AXIAL AND THTERNAL PRESSURE	damine annerating	_
Indiana and a survey and a survey and a survey of the surv	T APSC Perfect 7361	LOADTHES Finel report. July 63. 30m.	T. ATSC Protect 7251	
		the filte tables & were		
nacreizzitezer	11. CORTECT NO.	ALADAY DATIESTICAL AND ALADAL	TT. CONCLUCT MAL	
	(C.n(20)(C. 1)		(C-1-(1.Co)(C 14	
A test muchine has been constructed which	III. University of	A test machine has been constructed which	III. University of	
mentures wrteriel damping in thin-welled,	Minnesote, Ma-	messures meterial damping in thin-walled,	Minnesote . Min-	
cylindricel specimens subject to combined	aerolis, Mina.	cylindricel specimens subject to combined	Beepolis, Winn.	
intersal transme and arial cuelic loading.	TV T I Montel	internel pressure and exial cyclic loading.	TV. T. J. Mentel	-
The memory of this mobiles is to allow the		The merose of this methine is to allow the		
and hote and the second state to the second state and		compate ware of histing atoms about the		
	TT IT THAT IT AT	I he dered and an thet the tast data to the	TT TA ACTA ACTA	
Series of the series of the second of the se	ALL IN ASTLA COLLECT	Stides retuined to best the lighter the sectors	AT: TH VALLE CULLEC-	_
Tunotauterio de Tenotatotato in tatte	8013	THEORY ATTO JEE THEORY IN TO TATATIA	100	_
				_
		(4
	• 		+ 	. حد
straining ection might be clearly discerned.		streining ection might be clearly discerned.		
Experimental results on a series of magn-		Experimental results on a series of magn-		
sess alloy speciments are found to display		nese alloy specimens are found to display		
significat despire effect associated with		alguificent damping effect associated with		
			-	-
		-		_
			-	
			-	_
			-	
				-
			-	_
			-	_
		An under all of the	_	_
			9 	¢
		-	•	

, ,