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FOREWORD

This final technical report was prepared by Northrop Norair, Hawthorne, Cali-
fornia on Contract AF 33(657)-8851 for the Aeronautical Research Laboratories,
Office of Aerospace Research, United States Air Force. The work reported herein was
accomplished on Task 7065-01, "Fluid Dynamics Facilities Research" of Project 7065,
"Aerospace Simulation Techniques Research' under the technical cognizance of
Lt Arthur Wennerstrom of the Fluid Dynamics Facilities Laboratory of ARL. Report
number NOR 63-59 has been assigned to this report for internal control,
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ABSTRACT

This report describes an IBM FORTRAN program for calculating supersonic flows
through curved channels. Included in the program are: 1) a second order
Belotserkovskii procedure for calculating the flow field around the forward part
of blunt blades, 2) a general method of characteristics procedure for calculating
supersonic flow fields, 3) automatic procedures for calculating interactions of
shocks of opposite families, shock interactions with a wall and with a vortex
sheet or slipstream, 4) a finite difference laminar boundary-layer procedure for
calculating viscous region of the flow, Three sample calculations as well as the
listing of the FORTRAN program are presented,
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LIST OF SYMBOLS
(BLUNT BODY SOLUTIONS)

SYMBOL DESCRIPTION
X,y Cartesian coordinates

r, 8 Polar coordinates

M Mach number

W, P, P Dimensionless speed, pressure, density

W wy Velocity components (x, y directions)

u, v Velocity components (r, 6 directions)

e=p/p ! Entropy function

v Stream function
y Adiabatic index
k (y-1)/2y
o Angle between tangent to shock wave and incident stream
€(9) Distance between body and shock measured along radius vector
t TV

1

271

T (1-w")
s puv
g 2kp + pv
H kp + puz
h TU

Other symbols are defined in the text. Velocities are made dimensionless in
terms of the maximum velocity, pressure and density in terms of corresponding
stagnation values,

viid



LIST OF SYMBOLS (Continued)

INDEXES

© Value in free stream
0 Value on body surface
1 Value behind shock

2 Value on half way line
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SYMBOL

O, O
()

R
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h, hz,h3
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(BOUNDARY LAYER EQUATIONS)
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metrical coefficients; El = -3-%- , 52 = %—% , 53 = %—zf where X, y, and z
curvilinear distance along &, n, and ¢ respectively
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total enthalpy

absolute static pressure

universal gas constant

boundary-layer internal absolute temperature

boundary-layer internal velocity components in &, n, { directions; i.e.,
the velocity components within the boundary layer

curvilinear distances along body surfaces in ¢, n, { directions

flow parameter, defined in Eq 6
coefficients of the differential equations (7) defined in Eq 13
geometrical length

Mach number

(¢

Prandtl number, P, = —2£
k
resultant velocity
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SYMBOL

uVv,w

LIST OF SYMBOLS (Continued)

DESCRIPTION

Reynolds number

absolute temperature (external)

boundary-layer external velocity components in &, n, ¢ directions; i.e.,
the velocity components appropriate to the inviscid flow field evaluated at
the outer edge of the boundary layer

boundary-layer thickness

thermal conductivity

boundary-layer internal density
boundary-layer internal absolute viscosity
boundary-layer external viscosity
curvilinear coordinates

singularity factor

shear coefficient

boundary-layer external density
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(APPENDICES)
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1__INTRODUCTION

The behavior of supersonic flow through cascade depends strongly on the complex
system of the shock wave and vortex sheet interactions which develop from the blade
leading edges during the turning process. The flow system in a supersonic inlet
channel must swallow the initial shocks generated by the leading edges of the blades.
The bow shocks will eventually interact and a vortex sheet (or slipstream) or new
shocks and/or expansion waves will be generated which will cause various combinations
of shock wave interactions further downstream (Figure 2). To determine the true
performances of a supersonic cascade, these interactions must be accurately calcu-
lated.

Near the two surfaces of the channel the flow is also complicated by the exist-
ence of the boundary layer. On the concave or compression side of the walls, the
strong positive pressure gradient can cause boundary layer separation which greatly
decreases the channel efficiency. Shock wave-boundary layer interaction occur when
shocks impinge on the blade surfaces, The sudden pressure rise across the shocks
can easily cause boundary layer separation or even boundary layer transition, Also,
the fact that the boundary layer displaces the inviscid flow field gives rise to
viscous-inviscid interaction effects.

Another problem arises from the fact that the velocity is discontinuous
across a vortex sheet. In actual flows, this velocity discontinuity is modified
by viscous mixing. The mixing problem, however, is beyond the scope of the
present report.

This report describes a FORTRAN language computer program, developed for the
1BM 7090, for calculating inviscid and viscous flow fields within two-dimensional
supersonic curved channels. The channel surface leading edges can be either sharp
or blunted. The complete channel flow field is divided into three regions; each of
which is calculated by an independently developed numerical procedure. These pro-
cedures are chained together in the overall program to provide automatic calcula-
tion, These three regions are the blunt body, supersonic, and boundary layer flow
fields. The blunt body flow field, located ahead of a blunt leading edge is com-
puted by the second order Pelotserkovskii method (Reference 1), the supersonic
flow field is computed by the method of characteristics, (References 4, 5 and 6),
and the boundary layer or the viscous flow field is computed by a finite difference
procedure (References 2 & 3), Singularities that can be treated by the program
are: interactions of shocks of opposite family; vortex sheet; interactions of
shocks with a vortex sheet; the wall of the boundary layer; and viscous-inviscid
interaction effects which are directly related to the boundary displacement. It
is assumed that the inviscid flow field is supersonic throughout, except in the
blunt leading edge region.

Three sample calculations are presented. Mach 4 and Mach 6 cases were computed
for a sharp leading-edge channel, and a Mach 4 case was computed for a blunt leading-
edge channel,

I1 CHANNEL AND FLOW MODELS

The flow channels as formed by a cascade are shown in Figure 1, The blades or
the turning vanes being treated can have either sharp or blunt leading edges.
Typical design values initially given for studies are the incident angle «, turning
angle B, and the incident Mach number My . In the numerical calculation, the
channel and flow characteristics are defined on a cartesian coordinate system x and
y, where x is parallel and y is perpendicular to the incident flow direction.

1
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Figure 2 shows a schematic diagram of the channel flow model considered in
the present computer program in which it is assumed that the inviscid flow field
remains supersonic downstream of the leading edges. Two initial bow shocks will
be generated by the two leading edges, For the cases with blunt leading edges, a
blunt body procedure is required to calculate the initial portions of the bow
shocks along with a special procedure to calculate the two starting supersonic
characteristics. For sharp leading edges, the usual wedge flow solutions apply.
The bow shocks will eventually intersect as they extend downstream. At the
shock intersection point, a vortex sheet or slipstream will be created., When
the shocks impinge on the blade surfaces, they will be deflected again into the
flow field and interact with the vortex sheet. At the point of shock interaction
with a vortex sheet, a new expansion (Prandtl-Meyer fan) or a compression (shock)
wave will be created depending on the flow conditions.

When the inviscid fiow solution has been determined, the boundary layers
developed on the blade surfaces can be calculated. Shock wave-boundary layer
interactions are treated by spreading the pressure jump (or velocity discontinu-
ity) across the shock along the surface. The spreading distance is a function
of the local boundary layer thicknesses. Viscous-inviscid interaction effects
are treated by increasing the channel width locally by the boundary layer dis-
placement distribution,

IIT EQUATIONS AND NUMERICAL TECHNIQUE

Three basic numerical procedures are used in constructing the overall com-
puter program. These procedures are: the Belotserkovskii method for calculat-
ing flows around the blunt leading edges, the method of characteristics for
calculating supersonic flow fields, and a finite difference procedure for cal-
culating boundary layers. These methods and their equations are described: below,
Since the basic theory of the method of characteristics has been extensively
described in the literature (References 4, S, and 6), the basic inviscid flow
equations have not been included. The calculation procedures, however, are sum-
marized in the appendices. Since the methods described here have been described
previously in the literature, the symbols used in the equations are essentially
those of the originals. Since no attempt has been made to generalize the nomen-
clature, a list of symbols is given for each of the methods.

A. BLUNT BQDY S 10ONS

The flow about the blunted nose is determined by using the direct method
developed by Belotserkovskii (Reference 1), This method is based on a general
technique proposed by Dorodnitsyn (Reference 7) for solving a system of first
order partial differential equations of mixed type which have two independent
variables. The technique consists of reducing the partial differential equations
to ordinary differential equations in one independent variable by dpecifying the
variation of the unknowns with the other independent variable,

The ordinary differential equations which result are integrated numerically,
Most of the boundary conditions are given at the beginning of the range of integra-
tion but these must be supplemented by conditions that the solutions of one or
more of the equations shall pass smoothly from the elliptic (subsonic) to the
hyperbolic (supersonic) region. The conditions of smooth transition, together
with the other boundary conditions, determine solutions of all unknowns uniquely
(Reference 8).
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Since the nose of the body is a circular cylinder, polar coordinates with
the origin taken at the body geometric center are used., Figure 3 illustrates the
geometry of the problem. Dimensionless variables are used whereby length is re-
ferred to cylinder radius, velocities are referred to the limiting speed, and
pressure and density are referred to corresponding stagnation values in the free
stream.

The fluid motion is governed by Bernoulli's equation, the equation of contin-
uity, an equation obtained by combining the radial momentum equation with continuity,
the condition of conservation of entropy along streamlines and the equation of state,
The equations may be written:

Continuity equation

) ot _ (3a.1)
T;(rh)+“-

Modified momentum in the r-direction

) 8
5 (tH) +5=-g=0 (3a.2)

In equations 3a.l and 3a.2

H = kp+pu2

8 = puv

g = kp+pv2

h = Tu

t =TV
Bernoulli's equation

p = pll- wd) (3a.3)

Conservation of entropy
¢ =pp? = o) (32.4)

where ¢ is the stream function defined below, and ¢ is a function of entropy.
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Stream function

e

The equation of continuity leads to the stream function defined by:

2y _
3% = -rou
(3a.5)
2y _
ar =PV
From Eqs (3a.3) and (3a.4):
T (32.6)
v &,
P = 1'?¢ L4
1
- T (3a.7)
p = Te
1
where: T=(l- wz) _7’—-!.
From Eq (3a.5), on any line:
g_g’_ o p(vg'rb' ru). (3a.8)
The speed of sound is determined from Bernoulli's equation:
¢ - yR-221.h, (3a.9)
The boundary conditions on the surface of the cylinder (r= ro =1)  are:
u=yY=0
and:
14 2 2
&y [r-1)\" 1 Vo . (r-1) (32.10)
" = - 202
%1 7+1) we? low 4y |.
The equation of the shock wave is:
r =r (6) = 1+¢€(0) (3a.11)

where €(6)1s the distance from the body surface to the shock wave along a line
¢ = constant,
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The conservation conditions across the shock wave lead to the following relations,
The velocity components behind the shock wave parallel and normal to the free stream
velocity vector are:

2 2 1
w, = W] 1 | sin“o -—— (3a.12)
x [ v+ ( M sin 0)}
1 1
W = W Bm 2 1 - .
y ® ? ( M“z sinzd) 3!

The radial and transverse velocity components are given by:

u, = wyslno - wxcoso

«
[
L

= W sin @ + wy cos g . (3a.13)

The pressure and density are given by:

y 2 . 2
w sin"o 2
p, = —g~ (1-.,2) r-T [ :-wr - ‘7'1)] (3a.14)

y - 1 o Tr
. ’ 1 w 2
p, =2t lew y-1 = (3a.15)
1 = y-T ( ”) 1+(1-w3)cot ag.
Since ¢ =p/p7 » one obtains:
y 2 4
4y (v (»-1) 1
where:
w 2 alnzc
W= _L._z_
l-w_ ,

The value of the stream function ¥ 1is determined from the condition of con-
tinuity across the shock wave. Thus:

1
Vav_ = w_ (1-wf)7:r(1+c)-mo. (3a.17)



From the geometric relationship on the shock wave, %l; =tano , one obtains
the equation for €(4).

&5 = - (1+e) cot (0+6) (3a.18)

The approximating system of equations is obtained as follows. Introduce the
new independent variable:

¢ = _r?-(%) (3a.19)

After changing independent varisbles from (r, 9) to(f. #) and integrating Eqs (3a.l)
and (3a.2) along a line @ = constant from ¢=Q to ¢= fi, one gets:

&
0 -

rihi'rt' ti+'3§' / etdé =0 (3a.20)

0

& 3

) -

rini-no-r;si+?é-/ ude-/ egdé. (3a.21)
o 0

To obtain the approximating system of ordinary differential equations, the layer
between the body and shock wave is divided into N equally spaced strips and the
integrals in Eqs (3a.20) and (3a.21) are evaluated on successive boundaries of these
strips. The unknown functions in the integrals are approximated by interpolation

polynomials of degree N in § taking the interpolation points to be the strip bound-
aries:
N

JOURED a (0)¢5, (3a.22)

where the coefficients ak(o) are linear functions of the values of f on the strip
boundaries,

Writing Eqs (3a,20) and (3a.21) along each of the N-1 intersediate lines,

N-i+1
‘i = N (Y andy on the shock wave and on the body are determined from
the boundary conditions), and taking Eq (3a.18) into account, one obtains an

approximating system of 4N-1 equations for the unknowns:
€ 0, Vop U, Vis 4'1. % 1=2 38, ...N).
In Reference 1 it was shown that the convergence of this method with increasing

N is extremsly rapid, so that N = 2 is sufficient for most purposes. This is termed
the ""second approximation” and is the one that is used here.

In the second spproximation, the system of equations {is:

%%— =-(1l+¢€)cot(o+9)



where:

where:

= F, (3a.23)

dv
ne = 50_ (3a.24)

(3a.25)
(3a.26)

dv2 i Ez

. Ez— (8a.27)

2
E, -2 -2 ek I
TS | T 2 cz 2
2

-1 2 2 2
Dp=37T - V2 51 W2

vy = ¢ () (3a.28)

Quantities appearing in Eqs (3a.18), (3a.23-3a,28) are given by:

F, = [Sx' - oy (vlz-ulz)]/Dl (32.29)
s =& (381-482)-—:— [H°+(1+¢)Hl-(2+¢) Hz] +8, -8y (3a.30)

L



and:

where:

and:

8, = [e'81+5H0-2(2+¢)H2-(1+€)H1]

o =t e+t (dty-t-3t) .2 [(1+e)h1-(2+e)h2:l
ty = ‘té‘ %“1"2’*( )"z'g

ty' =G gy -b

dlnwz-[dlnwl do dwl]

dv, deo d¢ / ~ds .
a/ (w- 251

ne W=
Tl=2cota 12_

(1+w) w-(—y‘;—l) I

+ 8y *%30

V2=¥

[e'sino +(1 +¢€)cos 0]

2 ﬁ- u; vy sin2¢
D, —sz (1-w o
"M

2v

B |

v
1

G =7 [c—z("l ny -y ml"“l]
1

dw dw

_ x
ml -WY sin ¢ -—a-7 cos 6

n

(3a.31)

(3a.32)

(3a.33)

(3a.34)

(3a.35)

(3a.36)

(3a.37)

(3a.38)

(3a.39)

(3a.40)



¢.'lwx dw o
ny =-1—a-sin0-1—&[cosa (3a.41)

dw 2w
'd% = - ﬁ sin 20 (3a.42)
= cos 20 + _2_2_) a.
do= 3T ( M. sin“e

The integration of the above system is carried out numerically and begins at the
axis of symmetry ¢= 0, vhere ¢ =.7zr, v = vz = wz =0 while the values € (0) and 02(0)
are unknown, o :

Examination of the equations for v_and v, reveals that singular points exist
where: o 2

2

2u
2 y-l 2_ y-1 2 .
Vo --LM and wz -lﬂ"’ +_Tr+ H

that is,where the transverse velocity components on the body and on the mid-way line
become sonic. In order for a continuous solution to exist, one requires that:

EO =0 when D°=O

(3a.44)
Ez =0 when Dz =0,

Otherwise Vé and V'z become infinite at the singular points and the solution is
physically meaningless. Thus the two conditions of smoothness determine the proper
values of €(0)and Uy(0). Since one is dealing with a two point boundary value problem,
iteration must be ued to determine the correct values of €(0) and u,(0). Once this is
done the numerical integration is contimied a short distance into tHe supersonic region
where an initial value line is generated to start the characteristic procedure.

The initial value line is a set of 20 equally spaced points along a line ¢ =
constant between body and shock wave, Since only the flow quantities on the body,
mid-way line and shock are known from the solution, additional quantities in between
are obtained by fitting quadratics to u, v and ¢ ., All other flow properties may be
determined from these three,



B. METHOD OF CHARACTERISTICS

The supersonic inviscid flow field is solved by the method of characteristics,
with the calculation proceeding along left-running characteristics, Special treat-
ment i. required for singularities in the form of shocks and contact surfaces. In
the following discussion the characteristics and shocks will be labeled as follows:

Right running characteristics of the second family
Left running characteristic of the second family
O Lete running shock of the first family
© Left running characteristic of the first family
@ Rignt running characteristic of the first family

§ Left running shock of the second family

Starting Region For Pointed Blades

Initial values for the method of characteristics on pointed blades are obtained
from the solution for the flow on a two dimensional wedge. The shock angle at the
leading edge of the blade is determined by incident flow and leading edge angle.

The procedure then eaters a body point procedure and erects a right running char-
acteristic from the shock to the body. Using this body point a new shock point
is caléulated which is used to calculate a new field point. The order in which
the points are calculated is shown in the sketch below:

L]




;

Left running characteristics are built up until they intersect the shock wave,
In this way the inviscid flow field behind the bow shocks can be calculated up to the
point where the shock waves interact,

Starting Region For Blunt Blades

The determination of the subsonic flow region of blunt blades has been
described in the previous section. The Belotserkovskii solution can be used for
a short distance into the supersonic flow region to provide an initial value
line for the method of characteristics solution. The blunt body solution pro-
vides values at three points: at the shock, midway between the shock and body,
and at the body.  Twenty points are then generated on a straight line running
from the shock to the body using quadratic interpolation.

STARTING

INITIAL VALUE CHARACTERISTIC

SONIC LINE

The initial value line is chosen such that the minimum Mach number of the three
points from the Belotserkovskii solution is 1.1 The characteristics network is then
built up until a complete left running characteristic is formed, After this the
calculation proceeds as before until a shock interaction is reached,

Shock Interactions

a. Interactions Of Shocks Of Opposite Families

When two shocks of opposite family interact, two reflected shocks and a slipstream
are produced:

PRIMARY
oc % K
SHOCK REFLECTED SHOC

FLOW SLIPSTREAM

— - =7

PRIMARY

SHOCK REFLECTED SHOCX

"



The solution for the two reflected shocks must be iterated to determine a
common flow deflection angle ¢ behind each shock.

A good first approximation for this turning angle is the difference of the
two flow turning angles across the primary shocks., The angle ¢ is altered in
the iteration process until the pressures match across the two reflected shocks.
A similar procedure is used to calculate each point along the slipstream,

Conditions to be satisfied across the slipstream are that the pressure and

flow direction match across it, Discontinuities exist, however, in temperature,
velocity and stagnation pressure.

b, Shock Interactions With The Wall

The problem of calculating the interaction of a shock with a surface resembles
that of calculating the interaction of two shocks of opposite families in that the
surface corresponds to the slipstream. In the case of the interaction with a surface,
however, the stream direction after the reflection is determined by the wall. The
reflected shock is such that it matches the flow previously calculated downstream
of the impinging shock with the flow calculated along left running characteristics
after the refilected shock,

¢, Shock Interaction With A Slipstream

A shock interacting with a slipstream will produce a transmitted shock and a
reflected wave, either expansion or compression:

TRANSMITTED SHOCK

—r—
SLIPSTREAM /o
\
\
\
\
\
IMPINGING SHOCK ‘v. REFLECTED WAVE

As in the case of the interaction of shocks of opposite families, an initial slip-
stream direction is chosen which determines the angle (and strength) of the trans-
mitted shock, The first approximation to the slipstream direction is taken as the
flow direction after the impinging shock, The pressure matching condition is then
imposed, and the flow direction is altered until this condition is satisfied. The
flow direction immediately after the interaction point determines whether the re-
flected wave is an expansion or a compression.



Slipstream Calculation

The flow direction and the static pressure must he the same across a slipstream.
To calculate points along a slipstream, the flow direction must be iterated by apply-
ing the compatibility equations along the left running characteristics from both
sides,

SLIPSTREAM 7N
. W
RIGHT RUNNING )
CHARACTERISTICS LEFT RUNNING
CHARACTERISTIC3

C. BOUNDARY LAYER SOLUTIONS

Laminar boundary-layer solutions are obtained by a numerical method described
in References (2 & 3). 1In this method, an explicit finite-difference technique is
utilized to solve the exact boundary-layer equations for steady compressible flows.
It is applicable to any smooth surface with arbitrary boundary conditions (pressure
and temperature distributions, etc.).

Since the procedure used in this program was originally a general three-
dimensional program, the equations described here are the original boundary layer
equations in three dimensions. The equations in general curvilinear coordinates

€, 9 , § are:
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where { and 7 represent a two-dimensional orthogonal curvilinear dimensionless
coordinate system which is defined appropriately for the given body surface, and
§ is orthogonal to § and 7 and corresponds to the vertical distance. hy _ hg
and hq are the metrical coefficients in the § , # and { directions respective’ly.
For two dimensional flows, all properties, of course, are independent of the

7 coordinate.
The total enthalpy T in Eq (lc) can be eliminated by making use of the relation:
- =2 =2
l = u-v + (2)
—
Substituting this expression into (lc) and combining it with Eq (la), the
energy equation becomes
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The coordinate { 1is defined as:
: =(1-:u,)1/2 (8
V)

where U and U are the dimensional internal and external longitudinal velocity com-
ponents respectively. Therefore, § varies, O to 1, from the outer edge of the i

boundary layer to the surface of the body.
A shear coefficient ¢ is introduced, defined as:
¥ = o U __E
T T U} @
3
The equation of state:
P =ARTt (5)

is introduced to eliminate the density X, and the definition of { removes explicit
dependence onu . As a result, the system of Eqs (1) is reduced to a system of four

equations in the four unknowns Vv, t, ¢ and W,

1
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Here, A' * * * A18 are the boundary quantities that must be specified for the
boundary layer integration. They are completely determined by the external inviscid
flow conditions and the body surface geometry, They are evaluated in terms of the
inviscid flow velocity vector distribution and the metrical coefficients in the § and

% coordinates. Thus they are independent of the { coordinates,

The dimensional physical quantities in Eqs (1) are replaced by their dimensionless
equivalents which are defined as:
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Subscript "o denotes reference quantities. Upper case letters denote boundary
layer external quantities.



-to is an arbitrary reference length; R is the local Reynolds number defined as
DKIJ‘T".O A singularity factor E' is incorporated in the quantities associ-

ated with { , where by definition ¢* is identical to ¢ in a segment adjoining a

stagnation or sharp leading point or line and is any convenient positive constant or
function of § and n elsewhere.

Finally w 1is eliminated by substituting its expression from Eq (6a) into the
remainder of Eqs (6) yielding:
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B) *» ¢+ + B1g are differential coefficients defined as functions of the boundary

conditions (surface geometry and inviscid flow properties), the transport properties
of the fluid, and the non-dimensional quantities v, t, and ¢ :
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For two dimensional flows the crossflow velocity V, and crossflow gradients
d( )/an are equal to sero.

In the three dimensional procedure, each boundary layer segment is replaced by a
lattice of points with constant spacings &, b, ¢ and integer indices i, j, k in the
§s» 7, { directions respectively. In Eqs (7a), (7b), and (7¢), first order deriva-
tives appear with respect to all three coordinates, §{ , g, and { ; second order
derivatives appear only with respect to the { coordinate. 1In the central difference
approximation, the first derivative difference equations are written as:
zs_z] anl ]
[o‘ L1,k Za ( )i+l,j,k ( )1- 1,j,k (8a)
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The errors introduced in this approximation are of the order of:
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in Eqs (8a), (8b), and (8c) respectively, In a similar manner, the second derivative
difference equation is written as:
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The errors introduced in the approximation are of the order of:
2 4
¢ o ()
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This form of difference equation however, is usually numerically unstable for the
parabolic type of equation (References 3, 9, 10). It was found in Reference 3 that
numerical stability can be obtained if the second derivative difference Eq (10a) is
rewritten as:

2
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The errors introduced in this approximation are of the order of:
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The requirement for this approximation, therefore, is that:
ac<<e, (12a)
Other conditions which must also be satisfied in this procedure are:
(1) a, b, ¢ are small in general (12pb)
(2) a<<b (12¢)

(3) ahlvi<bh (12d)

2 U

Equations (7a), (7b), and (7c) therefore, can be written in the difference form
by substituting Eqs (8a), (8b), (8c), and (10b) for the respective differentials,
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where { has been replaced by ck, and:
(g = iy g ¢ )i-1,j,k
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The numerical integration procedure is followed by a '‘leap-frogging" technique
as described in Reference 3,

1ip

P

k+1 a.)
k in the above sketch. The forward derivatlvel'ﬂ}" 1,1,k
j,k are calculated by Eqs (13a), (13b) and (13c) using values
from the five nearest ne{ghboring points shown on the ith and (i-1)th planes, The
value of the new point ( )1+1,j,k in the (i+1)th plane is calculated from the

)

Consider the point Pi,

in the { direction at Py !

relation:
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In this procedure, therefore, if the indices i, j, k start from 0,0,0, the for-
ward derivatives are calculated from Eqs (13a), (13b), and (13c) when (i+j+k) is odd,
and the values are calculated by Eq (14) when (i+j+k) is even, .

IV PROGRAM CONSTRUCTION

This program contains ten chains for the various phases of computation, Figure 18
is an overall diagram showing the linkage of the system, The functions of each chain
are as follows:

CHAIN 1

Chain I reads in the first data card which contains a blade type indicator; free
stream Mach number, pressure, and temperature; and the specific heat ratio . These
data are stored on tape 2 for use by the entire program., If a blunt leading edge
case is indicated, Chain VII is immediately called to calculate the flow field ahead
of the blunt noses, 1f a sharp leading edge case is indicated, the wedge program is
used to determine three initial field points for each surface as shown in the follow-
ing sketch,

Upper Blade

Lower Blade

The calculation of these points are controlled by Subroutine WEDGE. The first
point (1) is calculated by Subroutine SHKl, and the other two Points (2) and (3) are
calculated by a special shock-body subroutine (Subroutine SHOCK)., The procedure of
calculation used in these routines are described in Appendix A,

The blade geometry data are then read from cards, and the surface data are
fitted with a series of cubics using Subroutines CURFIT and CUBIC. The coefficients
of these fitted equations are stored on tape 2 for later use in the program.

CHAIN VII:

Chain VII calculates the flow about a cylindrical body of unit radius by a 2nd
order Belotserkovskii procedure, This chain determines the data along an initial
value line in a radial direction from the body center of curvature to the shock.
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CHAIN VII1

This chain uses the initial value line obtained in Chain VII and calculates a

complete left running characteristic from body to shock, as shown in the following
sketch,

Starting Characteristic

Initial Value
Line

The calculation starts at the shock, Characteristic I is first calculated, then II,
etc., until a complete characteristic from the body to the shock is obtained, This
starting characteristic can be used for the upper and lower blade surfaces by proper
data transformation,

The blade geometry data are then read from cards, The starting characteristics
just calculated are dimensionalized with the given body leading edge radius. The
blade geometry data are then curve fitted, merging smoothly to the cylindrical blunt
leading edge sections. The coefficients of the body description equations are stored
on tape 2 for later use in the program,

CHAIN 11

This chain calculates the flow field of the upper and lower blade surfaces using
the starting characteristics calculated in Chain I or Chain VIII, and continuing until
the two bow shocks ~ross (Figure 2),

CHAIN IIT:

Chain 111 calculates the interaction of shocks of opposite families. The loca-
tion of the interaction point is calculated by a curve fit method for intersecting
two curves (Subroutine MEET),

The properties behind each shock are calculated by Subroutine SHK1, and the slip-

stream deflection and the properties behind each of the reflected shocks are calcu-
lated by an {teration procedure which is discussed in Appendix A,



Next, the first extensions of the reflected shock waves and slipstream are cal-
culated, The sketch below shows the points being calculated in this chain.

Reflected Shocks

-

_;.-.—"{

e~ Bow Shocks Slipstream

CHAIN 1IV:

This chain controls the remaining characteristic calculation, which includes the
slipstream, shock-body interactions, and shock-slipstream interactions,

CHAIN V:

This chain reads the characteristic data from tapes 3 and 4 and calculates the
surface velocity vs surface distance data. These data are then written on tape 9
for the boundary layer calculation,

CHAIN X:

Chain X is the boundary layer input program which calculates the "A" coefficients
from the surface velocity data. These coefficients are the input data for the
boundary layer integration program.

CHAIN XI:
Chain XI is the boundary layer integration program which calculates properties

across the boundary layer (velocity, temperature and shear profiles). From these
properties, the boundary layer thickness and skin friction, etc., are calculated.



V__SAMPLE RESULTS AND DISCUSSION

Three sample cases have been calculated, The flow in a sharp leading-edge
channel was calculated for incident flows of Mach 4 and Mach 6 while only a
Mach 4 case was calculated for a blunt leading-edge channel. The calculated
flow geometry for these three cases are shown in Figures 4, 5, and 6, For the
two sharp leading-edge cases, inviscid flow fields were calculated up to and
including the shock-slipstream interaction point, For the blunt leading-edge
case, however, the calculation could not be carried as far, due to the fact that
adjacent characteristics overlapped, which indicates that envelope shocks are
being formed in this region, As yet an envelope shock routine has not been
developed, The reason for the envelope shock formation is due, of course, to
the particular channel geometry selected. These results show that an envelope
shock subroutine is needed to complete the present type of flow field calculation,

The sharp leading-edge geometry selected for calculation has 20° and 15°
leading-edge angles on the lower and upper surfaces, respectively. The initial
shock strength, therefore, is higher on the lower surface. Also, because the
flow along the lower surface is being compressed while the flow along the upper
surface is being expanded, the lower shock strength will be even stronger at the
shock interaction point, When two shocks of different strengths interact, the
resulting flow is deflected toward the side generating the weaker shock, For
the Mach 4 and Mach 6 cases, the flow deflection angle was found to be about 7°
and 80, respectively., The general flow pattern for the two cases are similar
except that at the point of shock-slipstream interaction, a compression wave was
created for the Mach 4 case, while for the Mach 6 case, an expansion wave was
created, These waves were found to be extremely weak and can be neglected in
the downstream flow field calculation. Although the calculations have not been
carried fartherdownstream, the shock shapes indicated that interaction of shocks
of the same family is likely to occur only slightly downstream of the last com-
putations, This is due to the fact that the deflected shocks from the upper
surface extend much farther downstream than those of the lower surface.

Because the flows are being expanded near the upper surface and the flows
are being compressed near the lower surface, large pressure gradients exist
across the channel during the turning process, Figures 7 to 10 show the pressure
and Mach number distribution along the upper and lower surfaces for the two sharp
leading edge cases, and Figure 11 shows the pressure variation across the channel
at various longitudinal stations for the M=6 cas= only.

A blunt leading-edge radius of 1.0 was selected for the blunt leading-edge
channel geometry., The incident angle « for this channel is about 13,750
(Figure 6), For the selected body shape, the flow has turned to an angle of
approximately 30° before two adjacent characteristics overlapped.

The laminar boundary layers were calculated for the two sharp leading-edge
cases, The boundary layer displacement thickness distributions are plotted in
Figures 12 and 13, (note that the vertical scale has been highly magnified). The
calculations show that for both cases the boundary layer on the lower surfaces
had separated at about the same longitudinal station - X = 10,0 for the Mach 4
case and X = 10,65 for the Mach 6 case. These boundary layer separation points
are also indicated in Figures 4, 5, 3 and 8. Separation occurs at the point
where the shear, which is proportional to the velocity derivative du'/ds' at
the wall, becomes zero, Some velocity and shear profiles along the lower rurfaces
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are plotted in Figures 14 to 17, The separation points indicated on the pressure
distribution curves in Figures 7 and 8 show that the boundary layer separates even
with a very weak adverse pressure gradient. This indicates that in order to main-
tain a non-separated boundary layer, the pressure gradient must be kept small,

To do this, however, a very long channel is required in order to obtain a reason-
ably high flow turning angle., A more practical solution which should be investi-
gated in the future, is to use boundary layer suction so that the wall shear
values can be controlled externally.

In view of the results obtained with this program, the following conclusions
can be drawn:

1, To calculate the complete internal inviscid flow field with turning,
two additional IBM subroutines are needed; (a) envelope shock, and
(b) interactions of shocks of the same family,

2. Boundary laver on the compression surface can be easily separated by
the adverse pressure gradient, Boundary layer suction may be needed to
maintain an attached boundary layer.
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APPENDIX A

SHOCK POINT CALCULATION

Two major shock subroutines are used for most of the shock point calculations,
One is for an oblique shock calculation which is used to initiate a shock wave at a
point of discontinuity in flow direction. The other is for a general field shock cal-
culation which is used to extend a shock from a previously calculated shock segment,
There are special cases, however, such as the shock-boundary interaction and shock-
slipstream interaction, where modifications of these two basic methods must be made.
The two major shock routines are described in detail in this appendix and the differ-

ences for the special cases are outlined.
OBLIQUE SHOCK ROUTINE

In the following, quantities ahead of and behind the shock will be denoted by a
subscript plus or minus sign, respectively.

The oblique shock routine calculates a shock angle w from a given wedge or flow
deflection angle § . With a known incident Mach number M,and the fluid specific
heat ratio ¥ , w and § are related through

A-1

(r+ n M 2 1]

cotd = tanw[ 5
2(M+ sin‘“w-1)

Eq. A-1 is a transcedental equation in w , and an iterative solution must be
used. Using the Newton {iteration procedure, @ is calculated by

6-4

i i i
“b1T Yt Te A-2

“i



Where subscript i denotes the ith cycle of iteration, and

2
2 )
dé _ 2cos” d M+ cos 2w+ 1 .
do M “(Y+ cos2w)+2 sinzw
+
A-3
2 2
(M+ sin2w- 2 cotw) M+ 8in2 w
M+ 2()'+ cos 2w) + 2

Here w44y represents a new approximation to the shock angle. To start the
calculation, the first approximation to the shock angle is taken to be the incident
Mach angle, i.e,,

1/2
w_ = ta.n'1 1 A-4

o M+!-l

The general oblique shock calculation procedure can be summarized as follows:

1. Assume a shock angle wo (Eq. A-4)

2. Calculate a §; by Eq. A-l

3. Check the accuracy by comparing &; with § . l&-—&il > 1073
is generally considered as satisfactory.

4, When the accuracy check is satisfied, the solution is converged; otherwise,
a new shock angle wy4) is computed (Eq. A-2).

5. Go back to Step (2) and repeat the calculatfon until convergence occurs in
Step (4).

Equation A-1 contains two roots in @ ; one corresponds to a weak shock solution,
and the other corresponds to a strong shock solution. Only the weak shock solution
has meaning here, For a given set of My and ¥ , the desired root of Eq. A-1 will
be in the range

W, bw < “max .

Where Wpgx is the shock wave angle for which M_ = 1,0, Similarly, $max is the
deflection angle corresponding to Wpgy.

2
1M, “8in(2w ) - 2cot(w__)
5 =tanl| —t, —max max , A
M+ [7+ cos(zmmax)] +2

a



where 4

w -1 §(7+1)M+2-3-‘I+ .
max 4™,

Yo+1) o+ 1)M+4-z(3-7)Mj: (v+ 9)]f A%

It is necessary therefore,to first calculate § max to make certain that
8 < Smgx+ Also, since d§/dw approaches infinity at O may , ddg/duyg
in Eq. A-2 is arbitrarily restricted to a maximum value of 1.0 during iteration.

With @ calculated, flow properties immediately behind the shock can be deter-
mined directly. These properties are:

1. Static pressure

2 .2

2YM_ “sin” o- (7- 1) A-8
P_ = P+ Y+1
2, Total pressure r 14
(7+1)M+2+sin2¢o -1
R_=R, T
(r- l)M# sin“o+2
" AT
i L"]
x ?+1 ’-
27M+!sin w- (7-1)
3. Mach number -
-1
R 4 A-8
2 2 -
wtesh ) o

GENERAL F1ELD SHOCK CALCULATION

The general field shock routine calculates extensions of an existing shock wave,
The flow field immediately ahead of the shock can be either uniform or non-uniform,
The shock wave calculated in a uniform field is a bow wave and the shock wave calcu-
lated in a non-uniform field is a secondary wave.



Right Running Characteristics
Ahead of the Shock

Laft Running
Characteristics

Right Running Characteristic

Shock Wave Behind the Shock

In the sketch above, a shock wave segment is to be inserted from 1 to 3, A
double iteration procedure is required to calculate the shock engle «w and the flow
direction @ at 3. The general iteration procedure is as follows:

First assume a linear extension of the shock wave at Point 1 to approximate
the location of Point 3, which lies between 3A and 3B. Then by interpolation,
using the data at 3A and 3B, and the oblique shock relation, the incident and
the transmitted shock properties at 3 can be determined. The results are then
checked with the compatibility equation along a right running characteristic
from 3 to 4, Point 4 is also an interpolated point, which in this case lies
between Points 1 and 2.

The calculation for both cases (bow or secondary wave) is similar except that
for the case of the bow wave, the locations of Points 3A and 3B have not been pre-
viously established, but the flow properties are known (free stream conditions).
So, for the case of the bow wave, Points 3A and 3B are determined by

- 8 -
st-x3--2-cos( "3A)
Y3A=Y3+-§sin(-u3A)
8 A-9
st = x3 + 3 cos( - "3A)
Yoo =Y, & sin(-nq,)
3B 3* 77 3A
where
af a1 ]2
u = tan
3A MZ-I
™)

Wb



w4 and (0 4)3 are related by the equation
Y3-Y,

Y;—_—x; = tan(wt 0+)'I',T

Yy can be eliminated by writing
-Y
Ty - W (0e i) 35

so that

Ysa- Yy X tan(6, to) g - X5 tanl6: w) szp
tan(6, + w)m-tan(Otﬂ)m y

X3=

A-10

Eq. A-10 related X3 and (9,)3 for an assumed w3 . Since all incident shock
properties at 3 are interpolated, it is convenient to calculate the ratio RRl =
(X3 - X3A)/ (