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ABSTRACT: The purpose of this study was to find solutions to
the heat-conduction equation in both one and two dimensions
when applied to a composite flat plate. The two-dimensional
model is that of two slabs with different thermal properties,
in good thermal contact with each other while being exposed to
the same boundary layer. The solution takes the form of
Fourier series which has been found to be orthogonal with
respect to a "weighting" function identical to the "weighting"
function found by Mayer in the one-dimensional analysis of a
composite slab. The Van Driest turbulent boundary-layer
theory has been applied to the one-dimensional problem to
determine the constant film coefficient boundary condition.
It has been found that for those values of the Fourier modulus
less than 0.1, a maximum error in surface temperature ratio of
8 percent may be expected while the temperature distribution
in general is unaffected for the case considered.
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INTRODUCTION

In recent years attention has been focused on the problems
associated with the extremely high temperatures encountered by
a vehicle during re-entry. A working knowledge of the nature
of the heat-convection problem is required by the engineer so
that the vehicle may be designed to function properly in such
a high-temperature environment. As a result, the rate of heat
transfer to the vehicle becomes an extremely important design
parameter. However, since the nature of all aerodynamic
heating problems is not yet fully understood, most engineers
must resort to experimental data for the prediction of the
various heating parameters.

Experimental data may be obtained by various methods, such
as, wind tunnel or shocktube tests. In both types of testing,
an attempt is made to simulate both the geometry and environment
the full scale vehicle might be expected to experience. The
heat-transfer parameters are then calculated from some knowledge
of the temperature history of the model.

One of the more popular models (fig. 1) used to obtain
experimental data is the smooth flat plate placed in the
direction of a high-temperature uniform flow in which the
pressure is constant. The temperature distribution in the
plate is then given by the theory of heat conduction, where the
boundary conditions at the surface exposed to the flow are
given by the various boundary-layer theories. Since this
provides one of the simplest of mathematical models it is
possible to study the nature of the phenomenon more accurately.

Normally, the heat-conduction problem may be considered to
be one dimensional with boundary conditions of varying degrees
of complexity. For relatively low rates of heat transfer or
short periods of heating (ref. (1)), the flat plate may be
considered to be a semi-infinite solid. This arises from the
fact that the total heat flux is not sufficient to penetrate
the plate during the period of the test. As the thickness of
the plate is reduced, the mathematical model must be changed to
that of a finite slab with various boundary conditions on the
rear surfaces. As a practical application, the temperature
distribution in a calorimeter gage (ref. (2)) is obtained when
this boundary condition is that of zero heat flux. When the
thickness of the plate is reduced still further, the temperature
may be considered constant. Utilizing this boundary condition,
the response of a thin film-resistance thermometer may be
obtained. Carslaw and Jaeger (ref. (3)) have described most of
these conditions and their corresponding solutions by various
methods in their text.

I
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The shocktube is often used to produce extremely high
rates of heat transfer because of its ability to generate
extremely high enthalpies and temperatures. Heat-transfer
rates may be obtained, as usual, by imbedding a calorimeter
gage in the flat plate exposed to the flow. However, due to
the extremely high pressures associated with this type of test,
severe problems are encountered in bonding and sealing the gage
into position. As a result, the gage must be made much thicker
than normal and the resulting area in thermal contact with the
bonding material becomes quite large. The heat flow in the
gage may become two dimensional depending on the thermal
properties of the bonding material. In order to determine the
temperature distribution in the gage the flat plate is assumed
to be formed by two dissimilar materials in good thermal contact
as shown in figure 1. Since both materials are exposed to the
same boundary layer and to each other, a solution to the heat-
conduction equation in two dimensions must be developed. With
this solution, the effect of the aerodynamic heating of a
composite flat plate may be calculated.

ONE-DIMENSIONAL NALYSIS

It has been mentioned in the preceding section that the
temperature distribution of a calorimeter gage may be calculated
from the theory of heat conduction in a slab of finite
thickness. If the flow of heat may be considered one dimen-
sional, the mathematical model used for this calculation is
shown in the following sketch.

ET= b[T-TAW]

6Y K
bY=

-0O \\ \ \ \ \ \ \

2
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The differential equation governing the flow of heat is given
by:

yT T = 0 0 < (1)1

Where T = T (y,t) is the temperature above the initial
temperature of the gage (i.e. T = 0 when t = o). At times
greater than zero, the temperature at the surface is governed
by the equation:

K :T + k[TA,, -T(,t) 0 o (2)

The flux is, therefore, proportional to the difference between
the surface temperature and some temperature determined by the
surrounding medium. The proportionality constant "h" is the
film coefficient of heat transfer which is assumed constant for
this analysis.

At the back surface the heat flux is assumed to be zero,
therefore:

)T 0 t> 0  (3)

Let us assume a solution of the form:

T(y,t) = 9(y)e -  + C (4)

Upon substitution into equation (1) we obtain a differential
equation in g(y) which has as its solution:

9(y) =A cos -X- + 13sN Y (5)

By combining equations (4) and (5) and applying the boundary
condition at y = 0, we see that:

8=0 (6)

3
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Upon applying the boundary condition at y = 1 we have, after
some rearrangement:

,tAN,8 - L = 0 (7)

and C-- Tw (8)

where ~ and L - , the Biot modulus

Then T(yt) =TAW *-IA, cos ? -y (9)
IWN I

where the gn's are the positive roots of equation (7), and
f-Nt/t'I , the Fourier modulus, a non-dimensional time.
The coefficients An must be determined from a Fourier analysis
of the series at time zero. Therefore:

A. cos .. Tt, o (10)

By Fourier analysis:

A" ~ blos --4 (11)

or finally: (12)AO -2TA a "4 A.,

This solution is a special case of the solution obtained by
Carslaw and Jaeger to the problem of the finite slab with
arbitrary-boundary conditions.

A more exact analysis of this problem is sometimes
achieved by taking into account the loss of heat at the back
surface. This is done by assuming a second dissimilar material
to be in good thermal contact with the back of the gage. At
the interface of the two materials both the temperature and
heat flux must be identical, therefore:

T X: T, (13)

4
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and _ T '

d K. (14)

The second material may then be thought of as a semi-infinite
solid or another finite slab as shown in the following sketch.

a h[T- TAW]

Y=2 2

Y-=O

y--o
-G - \ \\ \ \\ \ \ \ \ \\K - -+00

This problem has been treated by many authors since it is an
excellent mathematical model for a variety of engineering
problems. In most treatments of this problem the film
coefficient is again considered to be constant. Mayer
(ref. (4)) has obtained a solution by the methods of Fourier
analysis which is very useful for large values of time.
Wasserman (ref. (5)) and Campbell (ref. (6)) have obtained
solutions for small values of time for this problem.

If the heating rate or testing time is extremely short,
the surface temperature will not change appreciably and the
boundary condition given by equation (2) may be approximated
by:

K (15)

where Q, is the heat flux at time zero, and is considered to
be constant. Rose (ref. (2)) has used this boundary condition
and solved the problem by LaPlace transform methods to obtain
short-time solutions which normally do not have the convergence
problems associated with the Fourier analysis.

5
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TWO-DIMENSIONAL ANALYS IS

The one-dimensional solutions previously discussed are
excellent treatments of the heat-conduction problem when the
y-dimension is much smaller than the x-dimension. However,
when these dimensions are of the same order of magnitude, care
must be taken to consider any possible end effects.

Therefore, consider the composite flat-plate system Shown
in figure 1. If we restrict our problem to that of finding the
temperature distribution for small values of time, we may
consider at the back surface, the heat flux in the y-direction
to be everywhere zero and at the front surface the film coeffi-
cient to be constant. Then by considering the symmetry of the
system,the heat flux at the center of each element is zero, and
we may reduce our problem to that shown in the following sketch.

y

NY

REGION I REGION 2 K
K, , , c K ,P, C K

N K=y-o
II----2 xXb X2"--

The differential equations governing the flow of heat are given
by:

X--, t 0 (16a)

and ," -t Z -, 0 (16b)

6
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where T -(x.ytis the temperature above ambient and is initially
zero throughout.* The boundary conditions for this problem are
as follows:

In region one:

(o.yt) (17)

_T 1 =0 (18)

K. , IT... -T,,.J-'=0 (19)

In region two:

)T 0 (20)

01 , (21)

K2 -y I hT~,,,- TA,,, 0 (22)

And at the interface:

T, ",y,*) Tz (6,. y.,) (23)

T, b, 0

Seeking solutions by separation of variables let us assume
solutions of the form:

T,(.,) -jg ) -' )t + C, (25a)

*The coordinate system has been selected as shown in figure 8,

such that at xn-o, the heat flux is zero.

7
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and TZ(xz, y,t) f(x) 9( e-  t + (25b)

Substitution of these functions into equations (16) yield:

S, + 0 (26a)

and +0 (26b)

Since f(x) and g(y) are functions of different independent
variables, each part of equations (26) must equal a constant;
therefore:

(a say, and (27a)

and similarly "- say, and - : (27b)

then we obtain:

(X) A, cos Y -+ B, s y " (28)

and (y) E oS-t + D, cosjY (29)

and similar solutions for it~xl and qz (y) It is
apparent from equations (17) and (18) that B D1  0.Likewise, it may be seen that B - = O. irom equations (19)
and (22), we may conclude that 6 =6 2 = Taw, so that the time
dependent term can be canceled yielding:

K , -l9.h( + 2) 0 (19')

and K2 z- -jJ(,) = 0 (22')

Substituting equations (29) into (19') and (22') we obtain:

E.- L, os ,8j = 0 (30a)

8
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and Et[a SIN 0 - Lcoso-] 0 (30b)

Where L.s  is again the Biot modulus, the constants
E1 and E2 c &nnot equal zero lest the solution become one-
dimensional, therefore:

,d9 tom ,R - L,-x 0 (31a)

and a tAj c - L 2 = 0 (31b)

Let us now rewrite equations (25) with the help of (28) and
(29):

2
T,(xyt) =A cos +T. (32a)

T 2(xy, t)O CoS cos 0 7  +TA (32b)

From equations (23) and (24) we have:

A tosy oo= B Cos S cos T (23')

--A K- sim V os#6j:BK -1-Su.4 Cos a(- (4

Dividing (24') by (23') we obtain:

K, 6-tAy -'< - 1 tAj (33)

Prom equations (26) and (27) we may write:

[(), X )' 2 /Q
a [()61 I Pi ~ (34s)

We may now write our solution in its final form:

9
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T (x,Y, t) T + f AO cos r..-a'co,. (35a)

and T,(x,Vt)TAt i B..Cos i oCo (35b)

where the ats and,8,'s are the positive roots of equations (31),
and the mia'5 and 6..s are determined from the simultaneous
solution of equations (33) and (34). The A".'s may be
determined from (26a) and (27a) as:

X X[( A )L~ (36)

The coefficients of the series indicated in equations (35)
must be determined from a Fourier analysis of the entire
composite flat-plate system at time zero.

In order to expand the initial temperature into a Fourier
series, some orthogonality relation must be determined. It
has been shown in Appendix A that:

p(i, L Cos<, A Ioj dy 0 o (37)
0

,[IIDS CsQ Cs Cs?0 (7

Therefore, evaluating equation (35) at time zero, multiplying
by the orthogonal function, and integrating over the entire
composite-wall system we obtain:

.2A #b

-T. A"1f e. T(R ~ ~~.~t 3 8)
- '1 tg .4 -. q~~~ w Ir ii ~r'b'-

From equation (23') we may write:

co* Co A,.t (39)

10
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Substituting equation (39) into (38) yields the following:

TA-,4c,.. + /0SC (40)

(0S S,. #") r. C. C..=

where C,. [cos . oS / . 1 "d at (41)
0e

C.. [Co .. Cos 4.-±j'4,, (42)

D,. Co ,,,. .,,, . rd1  (43)

Dt0 -'' C. 06 JI~ (44)

Now performing the integration we have:

d.1 M~ Co~gari4/~) .C' (41')c,.=4'..--.

Dim S~as~~I~m(421)
Dip,. .a , a .,. s,3 Im - (43')

Finally, the temperature is obtained by substituting equation
(36) into (35) to obtain:

TXy,):T( ,,A,..cos r. co.- (351a)

where is again the Fourier modulus.
The coefficients Am n are obtained from equation (40) after

some rearrangement as:
11
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AMN-- T + X

t" a .j L5)

One possible method of determining the validity of this
solution is to allow the material properties in region two to
approach the material properties in region one. When this is
done the composite flat plate behaves as a single slab and the
above solution should reduce to the one-dimensional solution
previously obtained.

It can be seen from equations (31) that if Lr = L2 , then
cyn = Om. Applying this condition to equation (341 we see that
bir =a. However, since a and b may take on any values,

5 &- 0. Substituting these values into equations (35'a) and

5weobtain:
- y -/'

T (x, yt) =T.. A., c .T Y (46)

and A. =_T1, x ,,,1 . X[T] (47)B-+ S/,o . ,ooS,.

whioh is in fact the one-dimensional solution previously
obtained.

DETERMINATION OF EIGENVALUES

The temperature distribution in a composite flat plate is
a function of x, y, and t and is obtained by evaluating the
double Fourier series derived in the preceeding section. The
indexing scheme is based on the real, positive roots of the
transcendental equations (31). These equations have been
studied in great detail by a number of authors. Carslaw and
Jaeger (ref. (3)), for example, have tabulated the first
6 roots of these equations for a wide range of values of the
Blot modulus, "L".

However, in order to evaluate equations (351a), a third
index, 1, must be employed since the simultaneous solution of
equations (33) and (34) does not yield unique values for Ua
or ., For the purpose of illustration, these equations have
been presented in figure 2, assuming the physical constants of

12
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the composite system to be known. Using only the first root of
(31a) and the first 6 roots of (31b), equation (34) has been
evaluated and is presented as the family of curves represented
by solid lines. Equation (33) is presented as the family of
curves represented by the broken lines. The intersection of
these two families represents the simultaneous solution of these
equations. It is obvious that any number of values may be
obtained for 'Go and .o which will satisfy these equations.
Therefore, it is necessary, when evaluating equations (35a) and
(45), to introduce a third indexing scheme in order to distinguish
between the intersections of each of the solid curves shown in
figure 2.

HEAT TRANSFER THROUGH THE BOUNDARY LAYER

As has been previously mentioned, the temperature
distribution through a flat plate is dependent primarily on the
film coefficient of heat transfer. In fact, it is common
practice to deduce this coefficient by measurement of the
temperature distribution; therefore, some information as to the
character of this parameter should be reviewed.

Heat transfer to the flat plate is caused by the presence
of a boundary layer which was first reported by Prandtl (ref. (7))
in 1904 and today has become the most important branch of the
fluid dynamics of viscous flow (ref. (8)). Many researchers
have considered this phenomenon; in fact, Eckert (ref. (9))
cites 439 separate contributions to the heating problem alone.
We will restrict our consideration to the "turbulent" boundary
layer since this produces the most severe-heating conditions
during high-speed flight. The presence of this boundary layer
produces a shearing force at the surface of the flat plate
given by:

'r S (48)

where ae is the coefficient of visccsity at the surface.

A coefficient of friction is then defined on the basis of

this quantity and the free-stream conditions as:

2 T.

S(49)

13
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The heat flux at the surface is given by the theory of
heat conduction as:

q K. ) (50)

Finally the film coefficient is defined in terms of the
heat flux as:

6 " (51)

0 (T. -T.)
where TA%.=T.(,+-n-M.)and Tj is a recovery factor. This is
essentially the temperature the surface might be expected to
attain when ineulated.

It has been reported (ref. (10)) that the Van Driest tur-
bulent boundary-layer theory (ref. (11)) for a flat plate
predicts local wall friction coefficients which agree well with
experimental data. Therefore, this theory will be used as an
illustration of the dependence of the film coefficient on
various aerodynamic parameters. Assuming a Prandtl number of
unity, Van Driest has derived, along with others, that the heat
transfer at the wall may be related to the shearing force as
follows:

T"' (52)
,,a.

Then based on Prandtl's mixing-length theory and knowledge of
certain limiting conditions, Van Driest obtained his final
equation for heat transfer through a turbulent-boundary layer
in terms of the local coefficient of friction:

A . B/ZAA w " ' -x2 " [(, - +]

o.4 1 + , i. - 0.76 log,"

where A!= ''' M..('.,); and --
Therefore, the above equation allows the coefficient of friction
and therefore the film coefficient of heat transfer to be
computed for iny arbitrary wall-temperature ratio, Reynolds
number and free-stream Mach number.

14
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It should be noted that the analyses in the preceding
sections were based on the assumption that the film coefficient
of heat transfer remains constant during the period of
investigation. However, it has been shown that this coefficient
is a function of not only the aerodynamic parameters of Mach
number and Reynolds number but also the surface temperature of
the flat plate. Therefore, great care must be taken in using
this type of analysis.

In order to see what effect this restriction might have on
the results of the preceding section, the boundary-layer theory
must be incorporated with the heat-conduction analysis.
Therefore, let us consider equations (9) and (12) and apply the
results obtained by Van Driest in equation (53). Assuming a
Mach number of unity equation (53) has been evaluated and is
presented in figure 3 with Reynolds number as the parameter.
Then by assuming a Reynolds number and free-stream temperature,
the film coefficient has been evaluated (refs. (12) and (13))
and is presented in figure 4 for wall-temperature ratios less
than unity. This is the case of the "highly cooled" boundary
layer and gives rise to the most severe-heating rates. The
film coefficient based on the initial wall-temperature ratio
may then be obtained directly from figure 4 and the temperature
distribution through the flat plate obtained by evaluating equa-
tions (9) and (12).

Assuming the plate to be initially at room temperature, the
temperature distribution has been calculated for various values
of the Fourier modulus and is presented in figure 5 as the family
of curves represented by broken lines. It can be seen that
significant changes in the wall temperature and therefore film
coefficient occur even for relatively small values of the
Fourier modulus. In an effort to see what effect these changes
might have, the boundary layer was assumed to react instanta-
neously to these changes in wall temperature. It has been
reported (ref. (14)) that this assumption will give satisfactory
results. Equations (9) and (12) have been re-evaluated by
allowing the film coefficient to change as the surface
temperature of the plate increases. This scheme produces the
temperature distribution shown in figure 5 as the family of
curves represented by solid lines. Repeating this procedure
does little to increase the accuracy of the calculation as can
be seen in figure 6.

DISCUSSION OF RESULTS AND CONCLUSIONS

In the preceding section we have discussed the effect of a
variable surface temperature on the temperature distribution in

15
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the one-dimensional case. When considering the composite flat
plate it is possible not only for the surface temperatures of
the two materials to change at different rates due to the
difference in thermal properties, but the character of the
boundary layer itself may change. Regardless of the cause of
the change in film coefficient of heat transfer, the effect in
the two-dimensional case may be found in the same manner as in
the one-dimensional case. It can be seen from equations (31)
that a change in "h" has the same effect as a change in the
thermal conductivity which alters the Blot modulus and thereby
changes the roots of the transcendental equation. It is
possible to apply the iterative scheme previously described to
the two-dimensional solution to determine this effect; however,
a simplified one-dimensional analysis based on the maximum Blot
modulus is sufficient to determine the maximum error.

In conclusion it may be said that for the one-dimensional
case considered, a maximum error in temperature ratio of less
than 8 percent may be expected for Fourier moduli less than 0.1
and less than 6 percent for a modulus of 0.03, by assuming the
film coefficient of heat transfer constant and equal to its
initial value. This error is apparent only at the surface of
the plate and the temperature distribution is essentially
unchanged. The various parameters assumed in this report
correspond to typical flow conditions attainable in a
reflected shocktube and therefore represent extremely severe-
heating conditions. Assuming the physical dimensions and
properties of a typical calorimeter gage, the Fourier modulus
of 0.03 would correspond to a time of approximately 300
microseconds which is well within the range of current
measuring instruments. In wind-tunnel tests much lower free-
stream temperatures are present and, therefore, it is conceivable
that the constant film-coefficient condition may be used for
even larger values of the Fourier modulus. In reality, the
calculated temperatures will always be slightly greater than
the actual temperatures and will therefore lead to a conservative
design analysis.

The equations derived in this report for the temperature
distribution in a flat plate in both one and two dimensions
have employed a Fourier analysis to determine the coefficients
of an infinite series. For small values of the Fourier
modulus, these series tend to converge quite slowly, making
hand calculations very impractical. However, the solutions
presented here could be incorporated into a machine program for
the reduction of experimental data or prediction of heat-
transfer parameters.
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APPENDIX A

AN ORTHOGONALITY RELATION

The decisive property of a set of functions which makes
it possible to determine one by one the coefficients in the
assumed expansion is that the integral of the product of any
two distinct members of the set taken over the appropriate
interval is zero. The set of functions is then said to be
orthogonal (ref. (3)). It may be seen that the functions,
V.iJxy) described by equations (35), are not themselves ortho-
gonal.

9 A,, cos y (A-la)

X y
yx) ', Y) 0 cos V. oS (A-lb)

Therefore, in order to perform the indicated Fourier analysis
we must obtain the orthogonal functions 0.,mxy) associated
with the composite flat-plate system. Let us assume that the
set of functions(#{,,xy) are orthogonal with respect to some
"weighting" function and let us assume further that function
to be a constant:

', = C f, . () . y ( A-2a )

oftow ('Y) =

(.x "- h,,= Ct Zf.,(X sy) (A-2b)

To prove the orthogonality of the S:

dS ~ ~ .( ~ J, ~JK4= (A-3)
S 0o0 f

MW. * P4
Since the 4..s satisfy equations (26), so must the *.. 5
and 4)s , therefore:

N- 0 (A-4a)

A-1
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X +  0 (A-4b)

Now let us multiply equation (A-4a) by w and equation (A-4b)
by 0. and subtract to obtain:

(x'--- ,,)(*-. ,, = -. t. - /- t-3. -47q(AS

Integrating equation (A-5) we have, after expanding the right
h a n d s i d e : P 1

(x.:.-xA,)( ,. ,, a's =4, '- -

S on.. +-~ 4/ ' ' zg" + -€"'

of equation (A-6) we substitute from equations (A-2) to obtain:

~ -i-' -(A-7)

partial integration yields:C~, P~~ Pfp 4fmu9 %

.. 1.
JX* • o

' ' )1- f- (A-)

Reallintg our boundary conditions:

X (A-9)

A-2
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y:. y = 0 (A-1)

5 -w ,/~ (A-Ila)

, = L (t) (A-11b)

Therefore, the only contribution to the integral is at x = a:

Pi- 
_ -L 4 y (A-12a)

Likewise, from the second integral on the right hand side of

(A-6) we may obtain:

A 
Jf

Xx fb% 0 1  - f2,() (A12b)
' a 4x X:6 i-

At the interface:

,a) and (A-13)

,,. = (A-4)

Also f (%) ' " and (A-13a)

K - ... (A-14a)
J, Ix.+ IX

Now substituting equations (A-13) into (A-12a) we obtain:

Now £~ 4y (A-15)

Now adding (A-15) to (A-12b) we obtain:

SP'A-

0

A -3
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Since we would like this integral to be identically zero
everywhere, let us assume:

( - = 0 (A-17)

o r _ _, K ,

We may conclude that:

K , = (A-18a)

and (A-18b)

Which are the same functions obtained by Mayer (ref. (4)) for
the one-dimensional composite slab problem. Substituting the
appropriate values for C1 and C2 into equation (A-16) we see
that this integral is everywhere zero. Therefore, from
equation (A-6) we have:

-0 =(A-19)
S

But ,.1 -- ) i MI, #p"

Therefore equation (A-3) has been satisfied and the
orthogonality of the functions described by equations (A-2) has
been established. In order to determine the coefficients of
the expansion J.-, we should multiply equation (A-l) by C 'P
and integrate over the region of interest to obtain:

S S

A-4
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