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THE AERODYNAMIC HEATING OF A COMPOSITE FLAT PLATE *

Prepared by:
James L. Rand

ABSTRACT: The purpose of this study was to find solutions to
the heat-conduction equation in both one and two dimensions
when applied to a composite flat plate. The two-dimenslonal
model 1is that of two slabs with different thermal properties,
in good thermal contact with each other while being exposed to
the same boundary layer. The solution takes the form of
Fourier serles which has been found to be orthogonal with
respect to a "weilghting" function identical to the "weighting"
function found by Mayer in the one-~dimensional analysis of a
composite slab. The Van Driest turbulent boundary-layer
theory has been applied to the one-dimensional problem to
determine the constant film coefficient boundary condition.

It has been found that for those values of the Fourler modulus
less than 0.1, a maximum error 1in surface temperature ratio of
8 percent may be expected while the temperature distribution
in general is unaffected for the case consldered.
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free-stream velocity
coordinate parallel to free stream
coordinate perpendicular to free stream
specific heat at constant pressure of gas
coefficlent of thermal conductivity of material
Biot modulus, h4/K
Mach number, ratio of velocity to the speed of sound
constant heat flux per unit area per unit time
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constant defined by equation (27a). Also, ratio of
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INTRODUCTION

In recent years attention has been focused on the problems
assoclated with the extremely high temperatures encountered by
a vehicle during re-entry. A working knowledge of the nature
of the heat-convection problem 18 required by the engineer so
that the vehicle may be designed to function properly in such
a8 high-temperature environment. As a result, the rate of heat
transfer to the vehicle becomes an extremely important design
parameter, However, since the nature of all aerodynamic
heating problems is not yet fully understood, most engineers
must resort to experimental data for the prediction of the
various heating parameters,

Experimental data may be obtained by various methods, such
as, wind tunnel or shocktube tests. In both types of testing,
an attempt 1s made to simulate both the geometry and environment
the full scale vehicle might be expected to experience. The
heat ~-transfer parameters are then calculated from some knowledge
of the temperature history of the model,.

One of the more popular models (fig. 1) used to obtain
experimental data 1is the smooth flat plate placed in the
direction of a high-temperature uniform flow in which the
pressure is constant. The temperature distribution in the
plate is then given by the theory of heat conduction, where the
boundary conditions at the surface exposed to the flow are
given by the various boundary-layer theories. Since this
provides one of the simplest of mathematical models it 1is
possible to study the nature of the phenomenon more accurately.

Normally, the heat-conduction problem may be considered to
be one dimensional with boundary conditions of varying degrees
of complexity. For relatively low rates of heat transfer or
short periods of heating (ref. (1)), the flat plate may be
considered to be a semi-infinite solid. This arises from the
fact that the total heat flux 1s not sufficient to penetrate
the plate during the period of the test. As the thickness of
the plate 18 reduced, the mathematical model must be changed to
that of a finite slab with various boundary conditions on the
rear surfaces., As a practical application, the temperature
distribution in a calorimeter gage (ref. (2)) is obtained when
this boundary condition 1s that of zero heat flux. When the
thickness of the plate is reduced still further, the temperature
may be considered constant. Utilizing this boundary condition,
the response of a thin film-resistance thermometer may be
obtained. Carslaw and Jaeger (ref. (3)) have described most of
these conditions and their corresponding solutions by various
methods in their text,
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The shocktube 1s often used to produce extremely high
rates of heat transfer because of its abllity to generate
extremely high enthalpies and temperatures. Heat-transfer
rates may be obtalned, as usual, by imbedding a calorimeter
gage in the flat plate exposed to the flow. However, due to
the extremely high pressures assoclated with this type of test,
severe problems are encountered in bonding and sealing the gage
into position. As a result, the gage must be made much thicker
than normal and the resulting area in thermal contact with the
bonding material becomes quite large. The heat flow in the
gage may become two dimensional depending on the thermal
properties of the bonding material. 1In order to determine the
temperature distribution in the gage the flat plate 1s assumed
to be formed by two dissimilar materials in good thermal contact
as shown in figure 1. Since both materials are exposed to the
same boundary layer and to each other, a solution to the heat-
conduction equation in two dimensions must be developed., With
this solution, the effect of the aerodynamic heating of a
composite flat plate may be calculated.

ONE-DIMENSIONAL ANALYSIS

It has been mentioned in the preceding section that the
temperature distribution of a calorimeter gage may be calculated
from the theory of heat conduction in a slab of finite
thickness. If the flow of heat may be considered one dimen-
sional, the mathematical model used for this calculation is
shown in the following sketch,

-kl

___&iiii&tgttiiiL____
y=

y=0 _——
2.2 aninbeinl & W W W W W W W W W N N W >+
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The differential equation governing the flow of heat is given
by:

2
xg—;—%=0 o<y<£ (1)

Where T = T (y,t) 1s the temperature above the initial
temperature of the gage (i.e. T = O when t = o). At times
greater than zero, the temperature at the surface is governed
by the equation:

2T
3y

W h[Taw - T(L,8)] = 0 120 (2)

The flux is, therefore, proportional to the difference between
the surface temperature and some temperature determined by the
surrounding medium, The proportionality constant "h" 1s thre
£1lm coefficient of heat transfer which 18 assumed constant for
this analysis.

At the back surface the heat flux 1s assumed to be zero,
therefore:
T
l_ :O t>0 (3)
3Y ly.o
Let us assume a solution of the form:
2

T(y.t)=glye?t+C (4)

Upon substitution into equation (1) we obtain a differential
equation in g(y) which has as 2ts solution:

gly) =A cos %Z’L + Bsin xﬁyr (5)

By combining equations (4) and (5) and applying the boundary
condition at y = 0, we see that:

B-0 (6)
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Upon applying the boundary condition at y = 1 we have, after
some rearrangement:

Btawnpg -L=0 (7)

and C =‘1:w (8)

L
where ﬂ=%—7—<- and L= _K&’ the Biot modulus

2
Then  T(yt)=T,, + .2 A, cos é;—y e 4 ¢ (9)

where the fn's are the positive roots of equation (7), and
=*$/ ¢ | the Pourler modulus, a non-dimensional time,

The coefficients Ap must be determined from a Fourier analysils

of the series at time zero. Therefore:

Z A, cos == '8" = - Taw t=0 (10)

By Fourier analysis:

et o
jcosz ﬂu Ya/y

_ . SN 8,..
An = 2 Taw B.+3mB.e038,

This solution is a special case of the solution obtained by
Carslaw and Jaeger to the problem of the finite slab with
arbitrary-boundary conditions.

or finally: (12)

A more exact analysis of thls problem 1s sometimes
achieved by taking into account the 108s of heat at the back
surface. Thils 1s done by assuming a second dlssimllar material
to be in good thermal contact with the back of the gage. At
the interface of the two materials both the temperature and
heat flux must be identical, therefore:

T, =T, (13)
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and K, %J;-J =K, )};; (14)

The second material may then be thought of as a semi-infinite
solid or another finite slab as shown in the following sketch.

BN JE N N K K N K K A A I N
y=4,

y=2

y=0
s A N N N N | O NN N W W W

This problem has been treated by many authors since it 1s an
excellent mathematical model for a varlety of engineering
problems. In most breatments of this problem the film
coefficient 1s again considered to be constant. Mayer

(ref. (4)) has obtained a solution by the methods of Fourier
analysis which 1s very useful for large values of time.
Wasserman (ref. (5)) and Campbell (ref. (6)) have obtained
solutions for amall values of time for this problem.

If the heating rate or testing time 1s extremely short,
the surface temperature will not change appreciably and the
boundary condition given by equation %2) may be approximated
by:

-K 37 lyes Q, (15)

where @Q, 1s the heat flux at time zero, and is considered to
be constant. Rose (ref. (2)) has used this boundary condition
and solved the problem by LaPlace transform methods to obtain
short-time solutions which normally do not have the convergence
problems assoclated with the Fourler analysis.
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TWO-DIMENSIONAL ANALYSIS

The one-dimensional solutions previously discussed are
excellent treatments of the heat-conduction problem when the
y-dimension 18 much smaller than the x-dimension. However,
when these dimensions are of the same order of magnitude, care
must be taken to consider any possible end effects.

Therefore, consider the composite flat-plate system shown
in figure 1. If we restrict our problem to that of finding the
temperature distribution for small values of time, we may
consider at the back surface, the heat flux in the y-direction
to be everywhere gero and at the front surface the film coeffi-
cient to be constant. Then by considering the symmetry of the
system,the heat flux at the center of each element is zero, and
we may reduce our problem to that shown in the following sketoh.

y
A

bt
ha—
hp—
onp—
——

y=2 ¢ ¢ ¢ 4

N
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<
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The differential equations governing the flow of heat are given
by:

2 2
R L. (16a)
2 2
and LA )-);Pi + x,%‘; - %: 0 (16b)
2
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where _r=_ﬁLy¢)18 the temperature above amblent and 1s initially
zero throughout.®* The boundary conditions for this problem are
as follows:

In region one:

T
ax. (°.y,t) - (17)
AT,
-~ = 0 18
3Y lin 0, ¢) (18)
T,
L5 - Tawl|=0 19
K, 3y (x.,l.i; h[_ﬁ(x.,!,t) Ta ] (19)
In region two:
3T,
2Ll -p (20)
Xy ‘(O.V,t)
%——r’l = (21)
Y (Xg,0,4)
3T, -
Kz')‘f(x“‘l“* h[—,:u""ﬁ -TA“]- 0 (22)

And at the interface:

T (ay.+) = T2 Cb.y. ) (23)
RN -y 2
K' ¥x, a.y,f) - Kz 3 Xy (b,y't) (21‘)

Seeking solutions by separation of variables let us assume
solutions of the form:

Nt
T (x.y¢) =Sitngiyye " " +C, (25a)

#The coordinate system has been selected as shown in figure 8,
such that at x,=0, the heat flux 1s zero.

7
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Vit

and -T;(x,,y,t) = §,(x) 9: (y) e + C: (25b)

Substitution of these functions into equations (16) yield:
'S'," 9 )\z
Fra =0 (262)
5, 9, A\ _

and 3 et g =0 (26b)

Since f(x) and g(y) are functions of different independent
variables, each part of equations (26) must equal a constant;
therefore:

" ¥ 2 . 2
%:: —(—5-) say, and —%‘— = - (-jé-) (27a)
" . !
and similarly -;3=—(%) say, and -%—‘ z - %)z (27v)
k) T
then we obtain:
— X X
§.(xy= A, cos Y—q—-f-B,sm\(-a- (28)
and g.ly)= E,cosﬁ%*D.cos ,5% (29)

and similar solutions for f.(x) and g,.ly). It 1s_

apparent from equations (17) and (18) that B

Likewise, 1t may be seen that B, = D %rom equations (19)
and (22), we may conclude that = Taw, 80 that the time
dependent term can be canceled yielding

K, 52| +ha(n) =0 (19")
and Ky §2| +hg (0 =0 (22"

Substituting equations (29) into (19') and (22') we obtain:

E.[,gSw,B - L, cos ,8] =0 (30a)
8
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and Ez[a siwax - L, costx]= 0 (30b)

hR
Where L,= ~w 18 again the Biot modulus, the constants
E; and Ep cannot equal zero lest the solution become one-
dimensional, therefore:

B tan B - L, : 0 (31a)
and dtava - L,=0 (31b)

%et)ua now rewrite equations (25) with the help of (28) and
29):

2

Tixy.t) =Acos y % cos B2 e To Tau (32a)
2

‘Tz(x,y,t) =B cos § "E‘ cos a(% C-A t*’ Tau (32p)

From equations (23) and (24) we have:
Acos ¥ cosBF = Beos§ cos - (23')
AK g swycos BY -BK,Fsw§ cosal  (28)
Dividing (24') by (23') we obtain:
K.ibytamy =-K,a § tan $ (33)
Prom equations (26) and (27) we may write:
x [+ &) = % [+ ()] (34)

We may now write our solution in its final form:
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T: (X.y.t) = TAw + Az:”z-:. AMD‘ cos "M»_Xa_‘cosﬂmx e‘A:ut (353)

and  T(x,y,t) = Taw 5S¢ B... cosd -% cosa(..-}eA «t  (35p)

Mmal Ny

where the a,s and 8.'s are the positive roots of equations (31),
and the \'.....s and s,.... s are determined from the simultaneous
solution of equations (33) and (34). The A® , 's may be
determined from (26a) and (27a) as:

SR A

The coefficients of the series indicated in equations (35)
must be determined from a Fourler analysis of the entire
composite flat-plate system at time zero.

In order to expand the initial temperature into a Fourler
series, some orthogonality relation must be determined. It
has been shown in Appendix A that:

a
g 'c,[cos Y....-g"'cos B,.;}][cos Y, e @ cosﬂpﬂjdxdy +

00

b
;; s Sontieosa][ros by oo g ldedy 10 (D)

0
Therefore, evaluating equation (35) at time zero, multiplying
by the orthogonal function, and integrating over the entire
composite-wall system we obtain: "
Lo

SSA.. pc [cos K.w 2 COS 5"‘2 } dx dy+ ﬂB:,ﬁc [coss .3 cosd,.‘ IJY

= '-Ku“ Ane {,C.[c 0“.:2' Cosﬂni']dl JY '-I;-'“B..., ﬁc,}osl b Cﬂl,‘%y(%)

From equation (23') we may write:

Bun =

v
€oS Ve cosf.m

A.. (39)

cos 8.- cos o, 1!

10
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Substituting equation (39) into (38) ylelds the following:

c0s Yn |2
Anu[P. c: c'n» + <Cos § e ) Fz cz Ctnn] =
- TA“ [LP.‘C. D'h»+(_&°:—;‘-ij') rt. Cz C!mn (uo)
where C:.... = §§ [cos \(N—: cos B,%]sz aly (41)
Comn® 3\ [cos § X cos B Y] dudy (42)
Di..= ‘S.x:[cos‘(m“% cos B“%]dxdr (43)
2b
Dima® .§ {tos 8,,.—:' cos 8,%—] Jx.{y (44)

Now performing the integration we have:

C’nn = 4_::!:-2. {[ nf:’”gn cn,é’_//f.d#.s/u r‘“ cn;f,,.,]/ (ul l)

b “+ S cos !
Cz.~=4‘j .gﬁ.o:mﬂ_cos/_]“m S Lw S.HJ} (42°*)

D, = 24 310 Yoo 14 B (431)
Dz...,:?B—f—- SN S.... s I ﬁ,,, (441)

Finally, the temperature is obtained by substituting equation
(36) into (35) to obtain:

2 PR
@® i - (—r-“)*ﬂn tl
T(x.y,t)fﬂwggA,.cos "...—:‘Cos,e_—}e[ * ] (35'a)
where T - Zf , 18 again the Pourier modulus.

The coefficients Ay , are obtained from equation (40) after
some rearrangement as:

11
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4 sin B,
AMN = T law X
6.\ + sw,@m coslg,‘

S Vs +{P;czb‘°'--)+,4u S COs ¥pma

7. C,Q8mn (45)
, A C2b 8., \/tos ¥, \} (
(Km» * Sw qu tos Yun)."(o, c'za ‘:) 35S ‘:H){S_,-fsm S__cos s-u)

One possible method of determining the validity of this
solution 1s to allow the material properties in region two to
approach the material properties in region one, When this 1s
done the composite flat plate behaves as a single slab and the
above solution should reduce to the one-dimensional solution
previously obtained.

It can be seen from equations (31) that 1if = Ly, then
9n =Am. Applying this condition to equation (33} we 8ee that
by =a§, However, since a and b may take on any values,

I = §{= 0, Substituting these values into equations (35'a) and
(45) we obtain:

T(X.Y,t)""'TAu *é A,w cos/ﬂ”% e-/' E (46)
- 4+ siv B 1 "
and A Taw B+ A, oos,@,] X[z] (47)

which is in fact the one-dimensional solution previously
obtained.

DETERMINATION OF EIGENVALUES

The temperature distribution in a composite flat plate is
a function of x, y, and t and 18 obtained by evaluating the
double Pourier series derived in the preceeding section. The
indexing scheme 18 based on the real, positive roots of the
transcendental equations (31). These equations have been
studied in great detail by a number of authors. Carslaw and
Jaeger (ref. (3)), for example, have tabulated the first
6 roots of these equations for a wide range of values of the
Biot modulus, "L".

However, in order to evaluate equations (35'a), a third
index, 1, must be employed since the simultaneous solution of
equations (33) and (34) does not yield unique values for Vmw
or §... For the purpose of illustration, these equations have
been presented in figure 2, assuming the physical constants of

12
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the composite system to be known. Using only the first root of
(31a) and the first 6 roots of (31b), equation (34) has been
evaluated and 18 presented as the family of curves represented
by solid lines. Equation (33) is presented as the family of
curves represented by the broken lines. The intersection of
these two familles represents the simultaneous solution of these
equations, It 1s obvious that any number of values may be
obtained for Yas 8nd $.. which will satisfy these equations.
Therefore, it i8s necessary, when evaluating equations (35a) and
(45), to introduce a third indexing scheme in order to distinguish
between the intersections of each of the so0lid curves shown in
figure 2,

HEAT TRANSFER THROUGH THE BOUNDARY LAYER

As has been previously mentioned, the temperature
distribution through a flat plate is dependent primarily on the
film coefficient of heat transfer. In fact, it 1s common
practice to deduce this coefficient by measurement of the
temperature distributlion; therefore, some information as to the
character of this parameter should be reviewed.

Heat transfer to the flat plate is caused by the presence
of a boundary layer which was first reported by Prandtl (ref. (7))
in 1904 and today has become the most important branch of the
fluid dynamics of viscous flow (ref. (8)?. Many researchers
have considered this phenomenon; in fact, Eckert (ref. (9))
cites 439 separate contributions to the heating problem alone.
We will restrict our consideration to the "turbulent"” boundary
layer since this produces the most severe-heating conditions
during high-speed flight. The presence of this boundary layer
produces a shearing force at the surface of the flat plate
given by:

_ v
P (48)

where «, 18 the coefficient of visccsity at the surface.

A coefficient of friction is then defined on the basis of
this quantity and the free-stream conditions as:

2T,
C’ =

' & U,z (49)

13
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The heat flux at the surface is given by the theory of
heat conduction as:

q, = Kw"§; (50)

Finally the film coefficient is defined in terms of the
heat flux as:

R T (51)
(TM—-’:I)

Y-l
where 1;“=QT;(p+nL§J%;9and is a recovery factor. This is
essentially the temperature the surface might be expected to
attain when insulated,

It has been reported (ref. (10)) that the Van Driest tur-
bulent boundary-layer theory [ref. (11)) for a flat plate
predicts local wall friction coefficients which agree well with
experimental data. Therefore, this theory will be used as an
1llustration of the dependence of the film coefficlent on
various aerodynamic parameters. Assuming a Prandtl number of
unity, Van Driest has derived, along with others, that the heat
transfer at the wall may be related to the shearing force as
follows:

h = ____c;;r., (52)

Then based on Prandtl's mixing-length theory and knowledge of
certain limiting conditions, Van Driest obtained his final
equation for heat transfer through a turbulent-boundary layer
in terms of the local coefficient of frisction:

0.242(q T“)'f L A-%a . B/2a
= N o +SIN =gl —
T )

0.41 + log, Racs, - 0.76 log, == oo
- - 2
where A'= %M.t (T94.) ; anda B=(1+ ‘TM-);E -1
Therefore, the above equation allows the coefficient of friction
and therefore the film coefficient of heat transfer to be
computed for any arbitrary wall-temperature ratio, Reynolds
number and free-stream Mach number.

(53)

14
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It should be noted that the analyses in the preceding
sections were based on the assumptilon that the film coefficient
of heat transfer remains constant during the period of
investigation, However, it has been shown that this coefficient
is a function of not only the aerodynamic parameters of Mach
number and Reynolds number buv also the surface temperature of
the flat plate. Therefore, great care must be taken in using
this type of analysis.

In order to see what effect this restriction might have on
the results of the preceding section, the boundary-layer theory
must be 1ncorporated with the heat-conduction analysis.
Therefore, let us consider equations (9) and (12) and apply the
results obtained by Van Driest in equation (53). Assuming a
Mach number of unity equation (53) has been evaluated and is
presented in figure 3 with Reynolds number as the parameter,
Then by assuming a Reynolds number and free-stream temperature,
the film coefficient has been evaluated (refs. (12) and (13))
and is presented in figure 4 for wall-temperature ratios less
than unity. This 1is the case of the "highly cooled" boundary
layer and gives rise to the most severe-heating rates. The
film coefficient based on the initial wall-temperature ratio
may then be obtained directly from figure 4 and the temperature
distribution through the flat plate obtained by evaluating equa-
tions (9) and (12).

Assuming the plate to be 1nitlally at room temperature, the
temperature distribution has been calculated for various values
of the Fourlier modulus and 1is presented in figure 5 as the family
of curves represented by broken lines. It can be seen that
significant changes in the wall temperature and therefore film
coefficient occur even for relatively small values of the
Fourier modulus. In an effort to see what effect these changes
might have, the boundary layer was assumed to react instanta-
neously to these changes in wall temperature, It has been
reported (ref. (14)) that this assumption will give satisfactory
results. Equations (9) and (12) have been re-evaluated by
allowing the film coefficient to change as the surface
temperature of the plate increases. This scheme produces the
temperature distribution shown in figure 5 as the family of
curves represented by solid lines. Repeating this procedure
does little to increase the accuracy of the calculation as can
be seen in figure 6,

DISCUSSION OF RESULTS AND CONCLUSIONS

In the preceding section we have discussed the effect of a
variable surface temperature on the temperature distribution in

15



NOLTR 63-163

the one-dimensional case. When considering the composite flat
plate i1t 18 possible not only for the surface temperatures of
the two materials to change at different rates due to the
difference in thermal properties, but the character of the
boundary layer itself may change. Regardless of the cause of
the change in film coefficlient of heat transfer, the effect in
the two-dimensional case may be found in the same manner as 1in
the one-dimensional case. It can be seen from equations (31)
that a change in "h" has the same effect as a change in the
thermal conductivity which alters the Biot modulus and thereby
changes the roots of the transcendental equation. It is
possible to apply the iterative scheme previously described to
the two-dimensional solution to determine this effect; however,
a simplified one-dimensional analysis based on the maximum Biot
modulus 18 sufficlient to determine the maximum error.

In conclusion it may be said that for the one-dimensional
case considered, a maximum error 1in temperature ratio of less
than 8 percent may be expected for Fourier moduli less than 0.1
and less than 6 percent for a modulus of 0.03, by assuming the
f1ilm coefficient of heat transfer constant and equal to its
initial value, This error 1s apparent only at the surface of
the plate and the temperature distribution 18 essentlally
unchanged. The various parameters assumed in this report
correspond to typical flow conditions attainable in a
reflected shocktube and therefore represent extremely severe-
heating conditions. Assuming the physical dimensions and
properties of a typical calorimeter gage, the Fourier modulus
of 0,03 would correspond to a time of approximately 300
microseconds which 18 well within the range of current
measuring instruments. In wind-tunnel tests much lower free-
stream temperatures are present and, therefore, it 1s conceivable
that the constant film-coefficient condition may be used for
even larger values of the Fourier modulus. In reality, the
calculated temperatures will always be slightly greater than
the actual temperatures and will therefore lead to a conservative
design analysis.

The equations derived in this report for the temperature
distribution in a flat plate in both one and two dimensions
have employed a Fourier analysis to determine the coefficients
of an infinite series. For small values of the Fourier
modulus, these series tend to converge quite slowly, making
hand calculations very impractical. However, the solutions
presented here could be incorporated into a machine program for
the reduction of experimental data or prediction of heat-
transfer parameters,
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APPENDIX A

AN ORTHOGONALITY REILATION

The decisive property of a set of functions which makes
it possible to determine one by one the coefficlents in the
assumed expansion is that the integral of the product of any
two distinct members of the set taken over the appropriate
interval 1s zero. The set of functlions 1s then said to be
orthogonal (ref. (3)). It may be seen that the functions,
J...(xy) described by equations (35), are not themselves ortho-
gonal.

fang 9,.(v) = An. cos Yo, 'é cosf,, Iy_ (A-1a)
(xy) =
LVM Y £, z X y
2maX) G, Ly) ® Buaw cos §. b ¢os Oug (A-1b)

Therefore, in order to perform the indicated Fourler analysis
we must obtain the orthogonal functions ¢, (%y) assoclated
with the composite flat-plate system, Let us assume that the
set of functions{,,,(x,y) are orthogonal with respect to some
"weighting" function and let us assume further that function
to be a constant:

¢'-,,= C.f,m“(X) GIM(V) (A-2a)

¢un(x'y) =
®s,., = Ce o0 (¥ 9.,y (A-2b)

To prove the orthogonality of the ¢_n's:

da Lb
“¢,..¢, ds ={e.. . dxiy +§S b 0, didy = 0 (a-3)

oo
o m# rq '

Since the {,..s satisfy equations (26), so must the ¢,.'s
and @P, , therefore:

> 9. ¥,
x——ix—z—~+7< \67: \...,43....— (A-4a)
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E 2. Y/
3 Y o+ x—v”]- + Npg bpg =0 (A-4b)

Now let us multiply equation (A-l4a) by ¢P9 and equation (A-4b)
by ¢,, and subtract to obtain:

7¢ -
(Amw “Hpg) b, B,,) = kh(%x ”") 4,”(;)4’(‘*)3;,) (4-3)

Integrating equation (A-5) we have, after expanding the right
hand side: 2

(x:.—x:,)ﬂ§¢._¢ R =ﬂ {4’(&;71 * %‘9 )

B‘¢cn,¢ B &-ﬂ é l.f )1¢'P7) -
¢'P?( NE ?JX J/ + j {¢z. '+ BY"

) ¢'nu
¢‘P9( ax* _c—).% e dy (4-6)

Considering iust the first integration on the right hand side
of equation (A-6) we substitute from equations (A-2) to obtain:

J X8
L Jlf’ J‘ ‘ d *'a.- J’t
§§(x,c,){f..,s._[s., Sleg,, Ltel, g fy e B Rm,
(a-7)

partial integration ylelds:

r2a L
dfiea dfimal
( cl ){f'nv fipq —Tx-_} g 3.“1,',(" +
J ‘ L vy:£ Q
04 B -4, 1’—57—}’ ([ fima 0y 4% (4-8)

Recalling our boundary conditions:

Jfl‘p)l_ Jfapq
dx | dx

{
o

(a-9)

l:o

A-2
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dj.. dy.
JY Yo Jy Yto
iﬁ.'_»:__l =_h 9., (L) (A-11a)
dy v K
d3. h
dd.p_ = — (V) (A-11b
e W I )
Therefore, the only contribution to the integral is at x = a:
g |
Jfl J'fl
2 pe - LY -
7(,6, ég..‘ga‘,{f'.,(“) dx ‘ca flp‘(ﬂr) ‘__—J‘ JX:G} Jy (A 128)

Likewise, from the second integral on the right hand side of
(A-6) we may obtain:

|
3 Jf‘ A ma
X,CIISz,, 3;.‘{&;_‘_‘(5) dxnej‘ - f2,,(b) "j‘ LJJY (A-12b)

At the interface:

f...(a) g, =fbdg, , and (A-13)
men R Jf‘m:n

Kig.. =7, }x:a— Ke 92, =7 /xas (A-14)

Also fioalary,, = $uiPa, and (A-13a)
anpq J{lﬁ,

= - _ =14
K 3- dx Ix . 2 ﬂxq ix b (A-1 a)
Now substituting equations (A-13) into (A-12a) we obtain:
v}
06 a i 2, W58 S| Wy )
| Xty

Now adding (A-15) to (A-12b) we obtain:

) §
Ss..g.,{f,,,,(b) i:—‘xﬁ-’m- f1pqt® 77 Jj"'/ g(x €=, (2 )Jy (A-16)

A-3
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Since we would like this integral to be identically zero
everywhere, let us assume:

x, ¢, - x,c,‘%‘ =0 (A-17)
or ek _x Ko
Ce¥ T N K,

We may conclude that:

C, /;K"' = [P ¢, (A-18a)

and C, = /-_;—‘-

Which are the same functions obtained by Mayer (ref. (4)) for
the one-dimensional composite slab problem. Substituting the
appropriate values for C; and C» into equation (A-16) we see
that this integral 1s everywhere zero. Therefore, from
equation (A-6) we have:

N (A-18b)

(N3 ) 66, ds =0 (A-19)
| ]
But X:,. ol )\:, f me > pg

Therefore equation (A-3) has been satisfied and the
orthogonality of the functions described by equations (A-2) has
been established. In order to determine the coefficients of
the expansion (.., we should multiply equation (A-1) by C 4;,
and integrate over the region of interest to obtain:

0 mo # pq

(cu 0,45 = (0.0, ds =
s S C‘SSS w:w ds e P9

A-4
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