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ABSTRACT

An experimental method for the determination of the
elastic compliances of cylindrically aeolotrople plates has
been developed. It conslsts in subjecting a simply sup-
ported circular plate to a concentrated transverse load and
measuring deflections at appropriate locations. Substitu-
tion of the measured deflections into the solution of the
differentlal equation of flexure of the piate provides a set
of simultaneous algzetraic equations for the determination of
the ¢ompllances., As an iliustration of the method, the equi-
valent elastic compilances for a circular aluminum plate re-
Inforced with circuliear stifferers of the same material were
determined. The results are presented in the form of Curvesv

and Tables.
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NOMENCLATURE

l r, 0, z = c¢ylindrical coordinates
: €p 2 €9 » YTno = radlal, tangential, and shear strains
f l Tp s Og s Trg = radial, tangentlal, and shear stresses
: l w = deflection of the plate
f l 811 = elastic compliances
E 842 = 8y

I E. Eq = Young'c modull for radial and tangentlal
L directions
% I Vr R VO = Poisson's ratios
. I G = shear modulus
? 1
: E, =
‘ 1' - 11

i 1

E =
. * 522
. . N
¢ = g

) 66

. v X - 812

i d S

i v =z - Slz
L ° S22
; Br Yo = B Y
Coge Dr R Db = Dbending stiffrnesses about the ¢ and r 3
L directions i
g ; Dk = torsional stiffness
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an’
12

thickness of plate, or equivalent plate
2Dk + v°D5 - egk + Vrnb

applied load per unit area of surface

concentrated force

roots of characteristic equation for the
asymmetric loading solution (equation 8)

root of characteristic equation for m= 1

radius of plate

radius at which the concentrated load is
applied

W

+

deflection per unit load

deflections at the center, quarter
point and half point of the plate
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A, B, C = constants defined by equation (15)

Cy = integration constants

a, = constants in the Frcbenlus series

m, = 1indices in the Frobenius solution

F = 2vg' + k2 v ranges from - to + e

G = V&k2 - 2V2(k2+o') V ranges from - to + e
INTRCDUCTION

In order to determine the elastic compliances of an aniso-
troplic material, 1t is necessary to conduct deformation experi-
ments on a portion of the material subjected to known surface
loads and displacements. In particular, to determine the com-
pllances for thin sheets of circularly orthotropic material
it suffices tc load with an eccentric concentrated force, a
circular plate of the material supported along its edge. The
plate should be formed so that its radil are a system of prin-
cipal directions for stiffness and circles concentric with the
boundary of the plate are the orthogonal set of principal
directions of stiffness. Measurements of deflections normal
to the plate surface can be made at a sultable number of points
appropriately located. The introduction of these measured de-
flections into the theoretically detgrmined equations for de-
fleztion enables one tc determine the elastic complianoés simply

by solving a set of simultaneous algebralc equations.

.
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Although the theoretical solution for the circularly

orthctropic plate with clamped boundgry and subjected to an
eccentric concentrated force has been obtained by A. M. Sen
Gupta [1]%, 1t 1s more convenient to perform the experiments
on a plate having éo-called gimply-supported or momentless
edge. A study of a satisfactory method of providing experi-
mentally a momentless edge, has been presented in the techni-
cal literature [2]. There the usefulness of the momentless
edge condltion has been particularly empﬁasized. Consequent-
ly, 1t 1s deslrable to have avallable the solution of the
plate equation which satisfies such a boundary condition.
The solution has now been obtalned and the results given in
the present paper. Also, a complete description of the ex-
perimental procedure for determining the deflections caused
by a concentrated load along with a complete analysis of a

circularly stiffened circular plate 1is presented.

GOVERNING EQUATIONS AND METHOD OF ANALYSIS
Using the cdefinition of cylindrical aeoclotropy, and neg-
lecting the effect of g, s the generalized Hooke's Law in

polar coordinates is as follows [3,4]:

1Numbers ir. brackets designate References at end of paper.
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where the 8, are the elastic compliances of the material

Y

In terminology whica 1s familiar in engineering the con-

stitutive equations may be restated as follows :4]:

}

i 1

: & = E" (or - Vn U0)
¥ r

f

: 1

where Er ’ E° are Young's modull for the radial and tangen-
tlal directions; Vr ’ V° the Poisson's ratios;

E, VO = Eg Vr 3 and G the shear modulus.

Using the principles of plate theory for small deflections
and the proposed stress-strain law, it can readily be shown

that the differential equation for flexure is [3,4]:
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Do 32 2(D, + Do) 2 ax
-3 .3.;54. - -§§+§ a(r,®) (3)

r

The differential equation was solved and the deflection
equation determined for the case of simple support on the edge.

The results are:

w-Ro-b-ZRmcosmo b<rga (%)
boi )
where
2 2(1+v,) vk 1+k 1+k
Ry = meeniB. 1 & _kl &) )®) +
lHrDr(k -1) “1+k (k+V°) k Votk a a

+ E=1 ___..2.(2+k+v ) + S e (h)m‘. z)a- 2 (!)2(2)k'1}
k+l (k+v°) k+l ktVgy a Y k a r

(5)
1 2a 1(14V,) - (14V.=k,)b v
1 K -1 ) #
2wk, "D, {r 1 (a2 1o 1)(1+k1w°)
, 2wvg) 1. Ekl ak!r . s} )
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and where

p 2 « Arilraeal , wafoll
m y 2

(8)
qm2 - L:-ﬁ-—m*' ; 2 - m
| 4 2

The deflection equation in the case of & load in the
center is much simpler and is given as follows: '

i} 2 [(2+1i+v')(1-k)+(3-)2-
Yw(l- )Dr (1 + k){k + V.) a

2(1 + v,) k+l
(1 + x)(k + Ve) 'y
2 2+ k+V
- M
xS TR, )

This simplified form of the equation agrees with a result
already in the literature [4].

To determine the compliances for thin sheets of oylindri.
cally asolotropic material, one may ssymmetrically losd s
circular plate of such & ~aterial supported slong its edge.
Measurements of deflections normal to the plate surface oan
be made at a suitable number of points sppropriately located.
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"attached to a fixed supporting plate. In this manner the

The introduction of these measured deflestions into the equa-
tions for deflection enables one to determine the elastic
compliances simply by solving a set of simultaneous egquations
in the compliances. The compliances are physically detesmined
by the nature of the material and are independmnt of the

manner of loading and support.
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EXPERIMENTAL PROCEDURE

The experimental apparatus required for the purpose of
determining the elastic compliances is fortunately very simple
and reliable. It consists of a suitable support for the an-
isotropic plate under study and a method of loading. The
required point loading can be provided by means of a canti-
lever bar smoothly pinned at one erd and loaded at the other.
A movable fulerum for applying the load is attached at any
required point of the bar providing a concentrated load at
any desired location on the experimental plate. The apparatus
used in the present research is shown in Fig. 1. In that
drawing there is also shown the deflection gages which are

plate may be loaded continuously and the deflections acouw
rately measured at pre-determined points. It is desirable
always to obtain complete load deflection curves as shown in
Fig. 2.

«10-
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LOCATION OF EXPERIMENTALLY
DRTERMINED DEFLECTIONS
Although theoretically, it is possible to determine the

compliances by solving four simultaneous equations in the
deflection of a simply supported plate asymetrically loaded,
the computations become extremely lengthy and tedious as seen
from equations 1ike (7). On the other hand three of the
constants can be determined from the symmetric loading and
the fourth from the asymmetric.

If one measures the deflections of the plate at three
points, say the center, the quarter point and the half point,
and substitutes the values into equations (9) and (10), one

obtains three equations in three unknownss

W = :’-c- = :na-'f- 2+k+v9
c P 4r(1+k)°D, kv

- Y S R (2tk#vo)(1-k) 5 2(14%) B
VAT T (), - () (keVg) 16 (Lek)kevg)

-:Mﬁ-, 2 | (2+k+9i')(l~k) 1. 2(A1fvn) Alﬂ-l
Y1/2 P u-r(Jf\?)Dr[ (1+x) (1+v) * 4 (1+km*,) (2

)

Solving equations above for B& ’ VO » and k obtain:
2 2+k+VY

% e e ()

9
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Vo = - (2+k) + ——— ZAtKIA = BOANT]
-15(1-k)[-:7£i 1] +1+k - 8(1/m)K

e
or ' (12)
Vo = - (2+k) + L - o
-4(1-1{)[—_&1% -1+ 1+ k- 41/)K
¢
and

- Wy gt B e B = (8 - ToSH1(2/2)5 4 (30 - By ] (17008
(13)

Equation (13) can be put in the quadratic form and its

solution is:

[-B:‘\/aewmc

logyg = -]

1ogyq 1/2

where
A = 3Wc - 4"1/2

B o= 8y, - T.5W, (15)

C = - W1/2 + 4Wi/h - 3Wc

K
B
L&
o
A
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Now since three of the elastic compliances have been
determined, their values may be substituted into equation (4)
providing a single equation for the determination of the shear
modulus., However, a'much simpler equation for calculating the
shear modulus may be developed. For this purpose, measure de-
flections at six points and substitute in equation (4) giving
81x equations which may be added together giving a single re-
sultant egquation whose sclution glves the vaiue of the shear
mcdulus. In order to oktain simplification the six points in
question should be selected so that they are equidistant from
the center of the plate and occur in pairs on opposite ends
of diameters which are angularly disposed at w/4 , v/6 , and
/3 degrees from the reference diameter. It may be observed
that the reference diameter i1s that on which the concentrated

load 1s applled.

The angles mentioned above are obtained from the following:
(]
w°1 + wge = 2R, + 2 Z R, cos mo, (16)
ms2, 4,6

where @, = (01 +7) .

The sum of three pairs of measurements as disposed in

equation (16) 1s:
6 -
221 W°1 = Gho + 2 Z %(cos m61+cos m03 +cos mOs)
m=2, 4,6
(17)

<13~




Now let the coefficient of 32 be set equal to zero.
That 1is:

cos 20, + cos 203 + cos 205 = 0 (18)

A solution of equation (18) is

O3 + 05 =w/2 let O3 =%/3 and Og=7/6 (20)

Substituting the values of the angles as calculated above
into equation (17) gives:

6
121 W, = 6Ry - 4R, + 2R)y = 4Rog + ... (21)
L3

Equation (21) will be used to compute o' which gives
Dk the shear modulus. The locations of the deflection gages
1 .

for the present purpose are shown in Fig. 3.

AN APPLICATION OF THE METHOD FOR THE CASE
OF A CIRCULAR PLATE WITH CIRCULAR STIFFENERS

In order to 1llustrate the method developed in the present
paper a circular plate with circular stiffeners was iavesti-
gated. A sectioned view of the experimental plate 1s shown in
Fig. 4.
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It 1s obvious that if the stiffening rings were to be
kept constant in cross-section, the rigidity of the plate
would increase as we approach the center. Therefore, to make
the stiffened plate approximately homogeneous, 1l.e. to have
the rigidities independent of the radius and the angle, the
size of the ribs should be reduced as the center is approached.
This can be achieved either by changing the width or depth of
the rib or both. In the test plate of this experiment, the
width of the rib was kept constant and the depth reduced ac--
cording to an equation derived by Dr. Noritaka Ando while he
was associated with Rensselaer Polytechnic Institute as a

post-doctoral scilentist.

Furthermore, the ribs were cut gradually and deflections
measured after every cut until a smooth curve of the deflec-
tions was obtained. With the last cut the depth of the ribs
reached the theoretically calculated values. The depth of
the stiffeners at the center of the plate and at the support
were kept at zero and one half inch respectively. With this
geometric configuration the plate was considered close enough
to being homogeneous. A cross-section of the test plate thus

formed is shown in Fig. 5.

A curve using cylindrical aeclotropic theory was fitted
to the experimental data. Table 1 shows a wide range of
theoretical deflections based on assumed values for Xk , Vo

“15’
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and DE . It appeuﬁs that the following constants give the
best fit

k = 1.5 V° = 0.5

m

D, = 1.15 x 10 ¢! = 1.5

and the corresponding elastic compliances in terms of 813

are:

n3/s), = 12.27 x 10"

3 4
h /S22 = 27.60 x 10

n

h3/312 -55.20 x 10

6.90 x 10"

h>/Sgs

where h 1s the thickness of the equivalent cylindrically
aeolotropic plate. It 1s not necessary to compute the value
of h , since it does not enter explicitly in the equations
for the deflection of the plate.

For.purpose of comparison the elastic constants of the
experimental plate are compared with those of two isotropic
plates as shown in Table 2.

Plates A and C are fictitious plates. They are
assumed to be of uniform thickness and from aluminum with the
following properties:

16
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E = Young's modulus = 10.5:106 psi
vV = Poisson's ratic = 1/3

G = shear modulus = 3.94 x lo6

psi

Thickness of these piates are assumed to be:

Thickness of plate A = 0.218 in.
Thickness of plate C = 0.718 in.

Plate B 1s the stiffened plate under study. Obviously
the compliances for plate B should lie between those for
plate A and plate C. The reason for this is that the thick-
ness of plate A 1s the same as that for plate B without
stiffeners, and the thickness of plate C 1is the same as the
gross thickness of plate B including the stiffeners.

DISCUSSION AND CONCLUSIONS
As a result of the research reported 1in the present paper
it 1s concluded that the proposed method is satisfactory for' 1
determining the elastic compliances of homogeneous cylindri— |
cally aeolotropic circuler plates. The method may be used as
well for circular plates with circular stiffeners as for uni-

formly thick plates of aeolotropic material.

It is further considered that the method, although based
on the use of a single experimental plate, provides results
which may be as useful as those obtained by one of the authors

[5] for orthogonally stiffened rectangular plates. Because

- 17“
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the latter method utilizes two rectangular plates for the
flexural rigidities and a single square plate for the shear
riglidity 1t does possess szome advantage in ease of application
and rellabllity in determination of the compliances. The
reascn 1s that it prcvides independent means for determination
of each of the flexural rigldities, as well as an independent

means for determiration of the shear rigldity.

It cannot be overemphasized that the conditicn of homo-
geneity for the stiffened plates.must'be treated with special
care and tne stiffeners propcrticried tc provide such a cone-
dition. Further study of tnls aspect of the problem 1s sug-

gested.

It 1s desirable Iin the future to have experiments per-
fcrmed on plates which have zetual stiffeners zs close as
possible to the center of the piate. In the presen: investi-
gaticn it was arbitrarily predetermired to fix the size of
the outermost stiffener and then reduce the size as the center
was approached s¢ that the innermos: stiffener was of negli.
gible size. The resulr of this procecure 1s tc cveremphasize
the 1sotropic nature cf the regicn around the center cf the

plate. Such a conditicn of localized isctrepy has been dise-

cussed by Carrier [3].

Further researzn should alsc include stiffered plates
which more Intensively centrast the flexural rigidities in

the two principzl diracticns.
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Table 2
Elastic Compliances for Cylindrically Aeolotropic Plates

SRt AR

Plate 3‘% x 107" -5% x 107* %3-2- x 107 3’56- x 107%
R 10.88 - 32.64 10.88 .08
B 12.27 - 55.20 27.60 6.90
o 388.65 -1165.95 388.65 145.75
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