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ABSTRACT

An experimental method for the determination of the

elastic compliances of cylindrically aeolotropic plates has

been developed. It consists in subjecting a simply sup-

ported circular plate to a concentrated transverse load and

measuring deflections at appropriate locations. Substitu-

tion of the measured deflections into the solution of the

differential equation of flemure of the plate provides a set

of simultaneous algelraic equations for the determination of

the compliances. As an illustration of the method, the equi-

valent elastio compliances for a circular aluminum plate re-

I inforced with circular stiffeners of the same material were

determined. The results are presented in the form of Curves

and Tables.
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I NOMENCLATURE

rQz = cylindrical coordinates

CO 2Q = radial, tangential$ and shear strains

ar 60 P =T radial, tangential* and shear stresses

w -def'lection of the plate

S elastic compliances

'312 S 2 1

r EQ = Young's moduli f'or radial and tangential
directions

j V ,V = Poisson's ratios

G = shear rnodilus

C 11
16

1 2

~12

22

E-r VO EQ r

Dr bendin~g stiffn~esses about the 0 and r'1 Dr~D0 directions

-~torsional stiffness

-2-
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D r 2 ( 1 -v r v 0 )

1 2 ( 1 V G )

D 3

h - thialmiess of plate, or equivalent plate

[Drg = 2Dk + V0 Dr - 2k+VD

q = applied load per unit area of surface

7 P - concentrated force

Dr

I Dro

PIP q- roots of characteristic equation for the
asymetric loading solution (equation 8)

k- root of characteristic equation for m - 1

I. a -radius of plate

b -radius at which the concentrated load in
applied

W w deflection per unit loadIIr
w- deflection* at the centers quarter

c 1/it 1/2 point and half point of the plate

1. .3x,



A, B, C = constants defined by equation (15)

C Ci  = integration constants

an = constants in the Frobenius series

m=i indices in the Frobenius solution

I F = 2v2 c, +k2  V ranges from -. to +a

I = V4k2 - 2V2 (k2+a') v ranges from to + a

INTRODUCTION

In order to determine the elastic compliances of an aniso-

tropic material, it is necessary to conduct deformation experi-

ments on a portion of the material subjected to known surface

I loads and displacements. In particular, to determine the com-

pliances for thin sheets of circularly orthotropic material

it suffices to load with an eccentric concentrated force, a

j circular plate of the material supported along its edge. The

plate should be formed so that its radii are a system of prin-

cipal directions for stiffness and circles concentric with the

boundary of the plate are the orthogonal set of principal

directions of stiffness. Measurements of deflections normal

Ito the plate surface can be made at a suitable number of points5
appropriately located. The introduction of these measured de-

I flezti.ns into the theoretically determined equations for do-

z fleation enables one to determine the elastic compliances simply

by solving a set of simultaneous algebraic equations.

I.4-



I Although the theoretical solution for the circularly

I orthotropic plate with clamped boundary and subjected to an

eccentric concentrated force has been obtained by A. M. Sen

I Gupta [I], it is more convenient to perform the experiments

on a plate having so-called simply-supported or momentless

edge. A study of a satisfactory method of providing experi-

mentally a momentless edge, has been presented in the techni-

cal literature [2]. There the usefulness of the momentless

edge condition has been particularly emphasized. Consequent-

ly, it is desirable to have available the solution of the

plate equation which satisfies such a boundary condition.

I The solution has now been obtained and the results given in

the present paper. Also, a complete description of the ex-

I perimental procedure for determining the deflections caused

by a concentrated load along with a complete analysis of a

! * circularly stiffened circular plate is presented.

GOVERNING EQUATIONS AND METHOD OF ANALYSIS

Using the definition of cylindrical aeolotropy, and neg-

lecting the effect of az , the generalized Hooke's Law in

polar coordinates is as follows [3 ,4]:

j INumbers in brackets designate References at end of paper.

I
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where the 3, are the elastic compliances of the material

an 1 2 - 2 1

In terminology which is familiar in engineering the con-

stitutive equations may be restated as follows [4J:

r Er r-~

C Q-~ -O~~r (2)

Q

where Er E. are Young's moduli for the radial and tangen-

tial directions; v. ., the Poisson's ratios;

ErVO- E0 Vr and G the shear modulus.

Using the principles of plate theory for wmall deflections
an h rpsdsrs-tanlw tcnraiyb hw

that the differential equation for flexure is [3,4]:

an te roosd trssstai lwitca radlybes-w



Dr m+4 +

D0 ~ + - q(r,O) (3)

The differential equation was solved and the deflection

equation determined for the case of simple support on the edg.

The results are:

Iiw - %O+ R 1  Cos me b < r a (4~)

where

, Pa2  { 1 [.+v),il v +
4rDr(- I) +k (k+VQ) k VQ+ a a

I(2+k1c +V +~kc £ 2. 2 11
k+l (k+V,) k+l k+VO a I k a r

(5)
k k1+k,

2akl+ al b(+VCb, 0  b r I

( r r b 1 )(- 0 )

I bc
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I and where

I mml ,,)
1 4 2

4 4 2

The defl1eation equation In the *as* of a load In the

.center is much simpler and is given as follows

2(2 + k()( + -k) + 2

r ( + k + v .) a

2(l.. + veO k)I
I1 1 - - ( - 1 (9)

(1l+k) (k+ VS) a

w~a - 9"'0A(10)

14v(l14)Dr kc+ v

This simplified form of the equation agrees with a result

already In the literature [4]. 4

To determine the ompallanoes f or thla sehets of evrl aW

cally aeolotropic materials one sy* metv4QU4 be a-

circular plate of moh a r"%teal S e"Powt 410"g its 4p.

I Measu.ements of defleotio awms l to the pl)Ate ewrte W

be made at a suitable ==ber of poWl*t apprw toty laot...

I
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I The introduction of these measured deflections Into the eques

I tions for deflection enables one to dtermine the elastic
compliances simply by solving a set of simultaneous equatiolis

Iin the compliances. The compliances are physically detltine

by the nature or the material anid are independuit or the

I manner of loading and support.

EXPERINDIAL PROCZWRZ

it The eaperlaental apparatus required for the purpose of
determining the elastic omliances is fortunately very simple

and reliable. It consists of a suitable support for the an-

4 isotropic plate under study and a method of loading. The

required point loading can be provided by means of a o*anti.

F lever bar smoothly pinned at one end and loaded at the other.

A movable fulcrum for applying the load is attached at any

required point of the bar providing a concentrated load at

I.. any desired location on the experimental plate. The apparatus
used in the present research is shown in Fig. 1. In'that

I.. drawing there is also shown the deflection gages which are

iattached to a fixed supporting plate. In this manner the '
plate may be loaded continuously and the defleotions, Rccuo

rately measured at pre-detormined, points. It is desirable

always to obtain complete load deflection curves as shown In

~[ Fig. 2.



I ~~LOCATION OF3? 1tIA~

IAlthough theoretically, it is possible to determine the

00ompliances by solving four simultaneous Oqutioiis in the

deflection of a simply supported plate asyrmtrially loed&d,,

I the computations become extremely lengthy and tedious as seen

from equations Ilk* (7).. On the other hand three or the

I constanits can be determined from the symetric loading and

g the fourth from th7e asymmetric.

If one measures the deflections or the plate at three

I points, say the centers the quarter point and the half point,

I and substitutes the values into equations (9) and (10), one
obtains three equations in three unknowns:

I 2 2+lc+V 0

C P 1IT(144) Dr k.v,

I__- a2 . (2+c+v )(l1k) 2(+ k+

IP 4ir(l- 2)Dr (l+k)(kc4v,) 16 (lN4)(c.vg) 4~

r

2 2 2+k4 V-k (+e +

Dr - (11

I7 -7 777
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I0-1(-)[-~~ 1 1 1 + kc -8(4k

-W 2+k) 11 -3 +

=l2+4 [8W /.. 5 c(/2)k +[ ]~(134)k

I Equation (13) can be put in the quadratic form and its

solution is:

log,0  -]I

I 1osio 1/2

where

A 3W 4fW,/2IIw/ -7 W (15)
C 1/4WI/4
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Now since three of the elastic compliances have been

I determined, their values may be substituted into equation (4)

providing a single equation for the determination of the shear

I modulus. However, a much simpler equation for calculating the

I shear modulus may be developed. For this purpose, measure de-

flections at six points and substitute in equation (4) giving

six equations which may be added together giving a single re-

sultant equation whose solution gives the value of the shear

I modulus. In order to obtain simplification the six points in

question should be selected so that they are equidistant from

the center of the plate and occur in pairs on opposite ends

Aof diameters which are angularly disposed at r/4 , r/6 , and

ir/3 degrees from the reference diameter. It may be observed

Ithat the reference diameter is that on which the concentrated
[load is applied.

The angles mentioned above are obtained from the following:tS

+ w 2R + 2 Cos m I  (16)

where 0 2  (0 1 + )

tThe sum of three pairs of measurements as disposed in

iii equation (16) is:

6

II w " 6R + 2 m-os,6 M a(c° m0+csm03 +cs me5 )

* -13-i4f6
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I Now let the coefficient of R2  be set equal to Ze~'O.

IThat is:
co C020 + coos20+ cooa20 0 (18)

3 5

3A solution of equation (18) is

01 - /4 (19)

0 + alet 0 r7/3 and 0 r6(20)
3 057/ 357/

Substituting the values of the angles as calculated above

Iinto equation (17) gives:
6

Ii = - R4+21 -42 (21)

Equation (21) will be used to compute a' which gives

Dk the shear modulus. The locations of the deflection gages
1

jfor the present purpose are shown in Fig. 3.

AN APPLICATION OF THE METHD FOR THE CASE
OF A CIRCULAR PLATE WITH CIRCULAR STIFFENMR

In order to illustrate the method developed in the present

Ijpaper a circular plate with circular stiffeners was investi-

gated. A sectioned view of the experimental plate Is shown iz

IFg 4.4



It is obvious that if the stiffening rings were to be

I kept constant in cross-section, the rigidity of the plate

would increase as we approach the center. Therefore, to make

the stiffened plate approximately homogeneous# i.e. to have

j the rigidities independent of the radius and the angle, the

size of the ribs should be reduced as the center is approached.

'I This car, be achieved either by changing the width or depth of

the rib or both. In the test plate of this experiment, the

width of the rib was kept constant and the depth reduced ac-

cording to an equation derived by Dr. Noritaka Ando while he

was associated with Rensselaer Polytechnic Institute as a

post-doctoral scientist.

j Furthermore, the ribs were cut gradually and deflections

measured after every cut until a smooth curve of the deflec-

tions was obtained. With the last cut the depth of the ribs

reached the theoretically calculated values. The depth of

£the stiffeners at the center of the plate and at the support

j were kept at zero and one half inch respectively. With this

geometric configuration the plate was considered close enough

I to being homogeneous. A cross-section of the test plate thus

formed is shown in Fig. 5.

A curve using cylindrical aeolotropic theory was fitted

to the experimental data. Table 1 shows a wide range of

j j theoretical deflections based on assumed values for k v. ,

! -5
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I and D . It appears that the following constants give the

I best fit

k - 1.50 V -0.5

Dr - l. 1 5 X 10 4 ' - 1.50

and the corresponding elastic compliances in terms of S

II are:

h3/Sl. - 12.27 x 104

ii h3/ 27.6o x lo4

I h/s 12  -55.20 x 0

h3/S66 - 6.90 x 104

[ where h is the thickness of the equivalent cylindrically

aeolotropic plate. It is not necessary to compute the value

! of h , since it does not enter explicitly in the equations

for the deflection of the plate.

Fca.purpose of comparison the elastic constants of the

experimental plate are compared with those of two Isotropic ;J]

plates as shown in Table.2.

Plates A and C are fictitious plates. They are

assumed to be of uniform thickness and from aluminum with the

I following prope*rties

I1 -16"
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sE - Young's modulus - 10.5 i 10" psi

IIv - Poisson's ratio w1/3
G - shear modulus M 3.94 x 106 psi

Thickness of these plates are assumed to be:

Lf Thickness of plate A - 0.2!8 in.

Thickness of plate C - 0.718 in.

Plate B is the stiffened plate under study. Obviously

the compliances for plate B should lie between those for

plate A and plate C. The reason for this is that the thick-

I ness of plate A. is the same as that for plate B without

stiffeners, and the thickness of plate C is the same as the

gross thickness of plate B including the stiffeners.

I DISCUSSION AND CONCLUSIONS
As a result of the research reported in the present paper

it is concluded that the proposed method is satisfactory for

determining the elastic compliances of homogeneous cylindri-

cally aeolotropic circular plates. The method may be used as

well for circular plates with circular stiffeners as for uni-
formly thick plates of aeolotropic material.

It Is further considered that the method, although based

on the use of a single experimental plates provides results

which may be as useful as those obtained by one of the authors

[5] for orthogonally stiffened rectangular plates. Because

"-4
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I the latter method utilizes two rectangular plates for the

flexural rigidities and a single square plate for the shear

rigidity it does possess some advantage in ease of application

j and reliability in determination of the compliances. The

reason is that it provides independent means for determination

of each of the flevural rigidities, as well as an independent

means for determination of the shear rigidity,

It cannot be overemphasized that the condition of homo-

geneity for the stif:'ened-plates. must be treated with special

j care and the stiffeners propcrtior.ed to provide such a con-

dition. Parther study of' thisa aspect of the probl.ez is sug-

ge ste d.

IIt is desirable in the futur'e to have experiments per-
formed on plates which have actual stiffeners as close as

II possible to the center of the plate. in the present investi-

gation it was arbitrarily predeterm-'ned to fix the size of

the outermost stiffener- and th-,-en reduce the size as the center

was approached so that the innermo3: stiffener was of negli-

gible ~ ~ T 3ie-h euto his procedure is to overemphasize

'Ithe isotropic nature of the re~icn around the c~enter of the

plate. Such a condition of localized isotropy has been dis-ii0
cussed by Carrier L1

IFurther researon, should also include stifferned plates
I which more Intensively conr.t the flexural rigidities in.

the two principal. directions
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Table 2

[Elastic Compliances for Cylindrically Aeolotropic. Plates

Plate h3- x 10 22 +3 -44 63

A~ 10~8 -326 10,8 10O

B ~ ~ 1 1227 -552 2.6 T6.9

C 388.65 -1165.95 388.65 145.75

-26
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