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FOREWORD

Recent ACIC activities in the field of analytic photogrammetry have
developed a requirement among technicians for knowledge of the
mathematical essentials of analytic aerotriangulation. This manual
is one of a series of manuals designed to provide the mathematical
knowledge required to understand current literature related to ACIC
activities (other manuals already printed include Technical
Memorandum TM-17, "Determinants and Matrices" and TM-16
"Functional Notation," prepared in the Research Division). The
material presented reoresents information relative to the geometric
basis for solution to the aerotriangulation problem, which is
fundamentally the projective relations between a point, a line, and
a plane in space.

There are six chapters in this manual. The first chapter gives a
geometric definition of the general aerotriangulation problem and
reviews some fundamental propositions from solid geometry which
are necessary for further study. Subsequent chapters deal with the
point in space, the line in space, the plane in space, and systems
of coordinates with matrix notation for transforming coordinates
from one reference system to another system. The transformation
from a space coordinate system to a geodetic coordinate system
based on a spheroidal earth is a specific consideration. The last
chapter deals with practical applications.

v



GEOMETRIC BASIS OF ANALYTIC AEROTRIANGULATION

1. INTRODUCTION

1.1 The General Problem.

The general purpose of analytic aerotriangulation is to establish ground positions
from the rectangular coordinates of objects recorded on photographs or photographic
plates. The aerotriangulation problem is basically the same as any other measuring prob-
lem -- precise measurement and the exact mathematical expression of the geometric rela-
tionships in the problem.

The following sections are introductory to any treatment of the analytic aerotri-
angulation problem. The entire analytical solution is based on a few theorems and con-
cepts from plane and solid analytical geometry. This manual is designed to assist the
reader in understanding the use of these concepts in the aerotriangulation problem.

The presentation emphasizes the projective relationships between a point and
plane in space, a line and plane in space, and planes in space. Even though these topics
are interrelated and could very well be included in one chapter, each topic (the point, the
line and the plane in space) is treated separately to show its individual application to the
problem. Only those derivations necessary to visualize the geometric concepts are dis-
cussed, including the transformation of coordinates in space and systems of coordinates.

1.2 Fundamental Definitions and Propositions. The following basic definitions and
propositions from solid geometry are essential to an understanding of the material in the
in the next four chapters:

a. The locus of a point is the path of the point when it moves according to some
definite law. In plane geometry, a locus is usually a straight line or a curve. In solid
geometry, a locus is usually a plane or a curved surface.

b. A straight line is the locus of a point in a plane always moving in a fixed
direction. Generally, a surface is the locus of a point in space which satisfies one given
condition. The locus of a point in space which satisfies two conditions is generally a
curve.

c. A ray is a line extending an infinite distance in one direction from a fixed
point.

d. A segment is a limited portion of a line.

e. A plane is determined by:

(1) A straight line and a point outside the line.

(2) Three points which are not on the same straight line.

(3) Two intersecting lines or two parallel lines.

f. The orthogonal projection of a point on a plane is the foot of a perpendicular
drawn from the point to the plane.



g. The projection of a line on a plane is the line containing the projections of all
points of the given line on the given plane.

h. Two planes are parallel if they never meet, however far they are extended.

i. One and only one plane parallel to the given plane can be drawn through a

point outside a plane.

j. All the perpendiculars to a given line at a point in the line lie in a plane perpen-

dicular to the line at that point.

k. Two planes are perpendicular if they form a right dihedral angle.

1. If a line is perpendicular to a plane, every plane containing the line is perpen-

dicular to the given plane.

m. Through a given line not perpendicular to a given plane, one plane and only

one plane can be drawn perpendicular to the given plane.
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2. THE POINT IN SPACE

2.1 Rectangular Coordinates in Space. The idea of rectangular coordinates as devel-
oped in plane analytical geometry may be extended to space by assuming three mutually
perpendicular planes intersecting in the lines XX', YY', and ZZ', Figure 1.

/1 /- xi I

X Plane

//

/ /

ZI

Figure 1

The planes XY, YZ and XZ are coordinate planes and their lines of intersection establish
the y-axis, z-axis and x-axis. The positive directions are indicated by the arrowheads and
the point of intersection is the origin. The eight sections of space separated by the coor-
dinate planes are called octants. Let P in Figure 2 be in the first octant: the octant
behind the first is numbered the second, the octant to the left of the second is the third,
and the octant in front of the third (and to the left of the first) is the fourth. By starting
with the octant directly below the first and proceeding in a similar manner, the fifth,
sixth, seventh and eighth octants, respectively, are obtained.
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The octant in which a point is located can be determined by the signs or direction
of its coordinate axes. The following table illustrates the classification of octants accord-
ing to the signs of the coordinate axes:

Octant x-axis y-axis z-axis

1st + + +

2nd + +

3rd +

4th + - +

5th + + -

6th +

7th

8th + -

//

C L/

,z X" I

xY
X 

N/

Figure 2

In Figure 2, three planes are drawn through the point P parallel to the three coor-
dinate planes and cutting the axes at A, B and C. The distances, OA = x, OB = y, and
OC = z are the rectangular coordinates of P. They are equal numerically to the perpendic-
ular distances from the coordinate planes and designated (x, y, z) or for a point in the
fourth octant (2, -3, 4).
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2.2 Equations of a Point in Space. Since three planes through the point P in Figure 2
are drawn parallel to the coordinate planes, which are mutually perpendicular, then

OA = LP, OB = MP and OC = NP. The lines LP, MP and NP are perpendicular to the

ZY, XZ and XY planes respectively. By letting LP = a, MP = b and NP = c, the three
equations

x = a, y = b, z = c (2-1)

are the equations of the point P. For the point N, in the XY plane, z = 0 and the equa-
tions of N are

x = a, y = b, z = 0 (2-2)

For the point A, on the x-axis, both y and z are zero, and the equations of A are

x = a, y = 0, z = 0 (2-3)

In every case, three equations are necessary to determine a point in three-dimensional
space.

2.3 Distance Between Two Points in Space.

/P -2, Y'2, z2)

X/~ 

0

x/

Figure 3
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Let P, and P 2 (Figure 3) be two points in space with coordinates xi, Yi, z1 and
X2, Y2, z2 respectively. By applying the Pythagorean theorem

(PD)2 = (P, A)2 + (AD)2 = (x 2 - x,) 2 + (Y2 - Y1 ) 2  (2-4)

and

(P1P 2)
2
= (PiD)2 + (DP2)2  (2-5)

where (DP2 )
2 = (z2 _ z1)2. By substituting the values of (P D)2 and (DP2 )2 in equation

(2-5) and denoting (P P2)
2 by d2, the distance between two points in space is determined

by the formula

d2 = (X2-X 1 )
2 + (y2 - yl) 2 + (z 2 - Z )2

d = V(x2 - x1 )
2 + (y2 -y,)

2 + (z2 - z,)
2  (2-6)

If P1 is the origin (0,0,0) and the coordinates of P2 are x,y,z, then

d = /(x- 0)2 +(y- 0)2 +(z- 0)2 or

d = V/x2 + -y2+ z2 (2-7)

2.4 Orthogonal Projection of a Point in Space. The orthogonal projection of a point
on a coordinate plane is the foot of the perpendicular from the point to the plane.

N YZ Plane

L

xz
Plane 0 _"_Y

Figure 4

In Figure 4, L is the orthogonal projection of the point P upon the XZ plane,
M is the orthogonal projection of P upon the XY plane, and N is the orthogonal projection
of P upon the YZ plane.
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3. THE LINE IN SPACE.

3.1 Projections of a Line Upon the Coordinate Planes. Two non-parallel planes in
in space will intersect in one and only one straight line. The projection of a line P1 P2
upon any one of the three coordinate planes is the line of intersection of the coordinate
plane with a plane containing the line P1 P2. The projection is the orthogonal projection
of the line P, P2 if the projecting plane is perpendicular to the coordinate plane (Fig-
ure 5).If the projecting plane is not perpendicular, the projection is oblique.

p2

1

X/ 

I

x#
Figure 5

3.2 Direction Numbers and Direction Cosines of a Line. Even though two lines in
space do not intersect, it is convenient to define the angle between them as the angle
between intersecting lines which are respectively parallel to them. Let O'P'Figure 6 be
any directed line in space, and OP be a line through the origin 0 which has the same
direction and is parallel to 0' Pt The angles a , p, and -y are angles which OP makes with
the coordinate axes. These are direction angles and their cosines are direction cosines

7



OPI

OPP (a,b, c)

B Y

a//

Figure 6

of the line OP. The latter will be denoted by w, o, and respectively. Let P be denoted
by the coordinates (a, b, c), then in the triangle OPA

A -=Cos a (3--t-1)

Similarly in triangles OBP and OCP respectively,

tL =  Cos b = 0 - - v = cos ? c _(3 2

Since OP is the diagonal of a parallelepiped whose edges are a, b and c,

OP= /a 2 +-b 2 +c 2 . (3-3)

8



By substituting the value of OP in Equations (3-1) and (3-2), the direction cosines can
be expressed as

A-cosa = a

+ Va2 + b2 + c2

p - cos f = b (3-4)
" Va2 + b2 + c 2

V =COSy = C

± Va2 + b2 + c2

By squaring each member of the latter equations and adding the results, the fundamental
formula of space trigonometry is obtained:

cos 2 ,+cos-P+Cosy =1. or X2+ U2 + v2 =1 (3-5)

The sum of the squares of the direction cosines of a line is equal to unity.

Any three numbers proportional to the direction cosines of a line are the direction
numbers of the line. By definition

Cosa cosa -cosy =r

a b c

If r represents the common value of the ratios, then,

cos a = ar, cos /3 = br, cos y = cr. (3-6)

Squaring, adding, and applying Equation (3-5)

r 2 (a2 + b2 
+ c 2 ) = 1, and

r= 1
+ \/a + 2 

Substituting this value for r in Equation (3-6), formulas for direction cosines (3-4) are
obtained. (The importance of this derivation is that any three numbers a, b, and c deter-
mine the direction of a line in space. This direction is the same as that of the line joining
the origin and the point (a, b, c) when the positive sign of the radical is chosen, other-
wise the direction is reversed.)

If one direction number is zero, the line is perpendicular to the corresponding axis
of the coordinates. If two are zero, it is parallel to the remaining axis. The following
considerations will guide the determination of signs for the radical in Equation (3-4):

a. If a line cuts the XY-plane, it will be directed upward or downward according
as cos y is positive or negative.

9



b. If a line is parallel to the XY-plane, cos -y = 0, and the line will be directed
in front or in the back of the ZX-plane according as cos a is positive or negative.

c. If a line is parallel to the x-axis, cos ft = cos -y = 0, and its positive direc-
tion will agree or disagree with that of the x-axis according as cos a = 1 or -1.

3.3 Equation of a Line in Space. In plane analytic geometry, the equation of a
straight line on the XY plane is:

Ax + By + C = 0, (3-7)

where A, B, and C are constants.

P\

Points of 
V

Intersections

Xf\

Figure 7

CLet the line PQ intersect the y-axis at the point y -- , and makes an angle 0 withB'

the x-axis such that

A Figure 7. (3-8)tan 0} = - - Fgre7
B'

Consider this same equation in three-dimensional space. The same relationship
between x and y holds with no limit on the z-coordinate. The locus of the equation is a
plane perpendicular to the XY coordinate plane and makes the angle 0 with the XZ coor-
dinate plane (Equation 3-8, and Figure 8).
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XOV/

Figure 8

The theorem from solid geometry which states that two non-parallel planes inter-
sect in a straight line leads to the conclusion that one form of the equations of a straight
line can be developed from any two of the three projections of the line on the coordinate
planes. Thus any two of the following three equations are the equations of a line in space:

Alx + Bly + C1 = 0

A2 x + B2z + C 2 = 0 (3-9)

A3 y + B3 z + C3 = 0

where A, B, and C are constants.
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I P2 (:21Y2' Z2
)

(xi, Y, OI- 
XY

Y

Figure 9

In Figure 9, let P and P2 be two known points on a line of known length d with
known direction cosines a, P, and ,. Let Q be a variable point with coordinates x, y, z.

Then
X-X 1 -Cosa,

d

Y - Yi = cosA, (3-10)
d

Z - Z1 = Cos'y ,
d

and by simple transformation

x = x1 + d cos a

y = yl +dcos A (3-11)

z = z I +dcos y,

The equations in (3-11) are the parametric form of the equations of a line in space.
solving Equations (3-11), for d and equating the results:

X-X i = Y - z-Z, (3-12)

cos a cos 3  cosy

which yields the symmetric form of the equations of a line in space. If a, b, and c are

12



direction numbers the symmetric form may be written in the form

x-x i = y-y 1 - z-z 1 , (3-13)

a b c

since direction numbers are proportional to the direction cosines.

The equation of the straight line passing through two known points P1 and P 2 is

x -Xi - Y -Yi = z - (3-14)
X2- X Y2 - YI z 2 -z

Since the denominators in Equation (3-14) are direction numbers, the two-point form fol-
lows directly from the symetric form.

The simultaneous equations

x = mz + p, y = nz + q (3-15)

define a line as the intersections of its projecting planes on XZ and YZ. This is the
projection form of the equations of a line. Separately, each equation is the equation of a
projecting plane. The equations are identical to the point slope form of the equation of a
line on a plane, where m and n are slopes; i.e., tan 0, = m, tan 02 = n, and p and q are
intercepts. Solving for z and equating results

x-p = y-q - z (3-16)

m n 1

Comparison with the symmetric form shows that in the projection form the line passes
through (p, q, o) and m, n and 1 are direction numbers. Since m, n, and 1 are direction
numbers and proportional to the direction cosines, the relationship of the direction cosines
to the slopes of the projecting planes can be derived directly from the equations. Let k

be the constant of proportionality and,

mk = cos a, nk = cos fl, k = cos -y (3-17)

Squaring and adding

m2 k2 + n2 k2 +k 2 = k2(m 2 + n2 + 1)

= cos 2 a + cos 2 ft + cos 2  1 (3-18)

Solving for k

m2 +n 2 +1

(3-19)

1
k 1_/m 2 + n2 +1

13



Substituting this value of k in Equation (3-17)

m
COS a = /m 2 + n 2 + I

Cos/?= (3-20)
Vm+ n2 

+ 1

1
cos y =

/m 2 + n2 
+ 1

3.4 Condition for Intersection of Two Lines in Space.

Let

x = mz + p (.3-21)

y = nz + q (.3-22)

and x = m'z + p' (3-23)

y = n'z + q' (.3-24)

be the equations of any two lines in space. In general, these lines will not intersect,
since the coefficient m, n, p and q are entirely arbitrary. The four equations contain three
unknowns, x, y, z which are not always consistent, even though the lines in space do not
intersect, the respective projection will, unless they are parallel. By eliminating x in
Equations (3-21) and (3-23), and y in Equations (3-22) and (.3-24), then,

P -P (3-25)m -m'

and z = q-q (3-26)
n -n'

Equations (3-25) and (3-26) give the value of the z-coordinate of the point of intersection
of the xz- and yz- projections of the two lines. These values usually are unequal; how-
ever if the lines intersect, the values of z will be equal. Conversely, if the values are
equal, the lines intersect. The necessary, and sufficient condition that two lines in space
shall intersect is determined by equating (3-25) and (3-26), such that

P'-p = q' - q (3-27)
m -rm' n - n'

Equation (3-27) lives the condition for intersection and, at the same time, the
value of the z-coordinate of the point of intersection. To find the other coordinates,
substitute the value of z from (3-25) in (3-21) or (3-23) and from (3-26) in (3-22) or (3-24),
the resulting values will be,

14



x mp'- mIp (3-28)
m- mI

y nq - nq (3-29)
n -n'

As a numerical example of the material presented in this section, let

x = 3z-2 x=-7z+8

y = -4z +5 and y =z

then,

m =3, p =-2, n =-4, q =5

m, =-7, p, =8, n -1, q' =0

Substituting these values in (3-27),

8+2 0-5
3+7 -4-1

or 1 = 1

The example shows that the lines do intersect at the point where the z-coordinate is 1.
By substituting the value of 1 in either set of xz- and yz projection equations, x = 1 and
y = 1 and the two lines intersect at the point (1, 1, 1).

3.5 The Angle Between Two Lines.

0

xY

Figure 10
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Let 0B1 and OP, (see Figure 10) be two directed lines in space, such that

(OP 1 ) 2 = x1
2 +y1 2 +z 1

2

and (OP 2 ) 2 = X2
2  Y2 2 + z 2

2  (3-30)

also (- 1 P 2) 2 = (xI -x 2 )2 +(Y1 -Y2 )2 + (zI -z 2) 2.

Applying the Law of Cosines from Plane Trigonometry,

(P) [12 - (OP 1 )2 " (OP 2) 2 - 2 (OP 1) (OP 2 ) cos P O P 2  (3-31)

(OP1 )2 + (OP2 )2 -(P 1 P2 )2

where cos P1 0 P2  2 (3-32)
2 (GB1 ) (GB 2)

By substituting in (3-31) the values obtained in (3-30) and letting angle P, OP 2 be
represented by 0, then:

cos 0 = (X
2 + Y1Y2 + (.3-33)
(OPI ) (OP2)

From the definition discussed with direction cosines:

xI = OP1 COS al, y = OP cos/3 , = OP cost

and x2 = OP 2 COS a2, Y2 = OP 2 cos /32, Z 2 = OP 2 cos 72

Substituting these values in (3-33), the following formula is obtained for the angle between
two lines in terms of the direction cosines of the lines:

cosO = cosa 1 cosa 2 -cosf3 1 cos132-cos- 1 cos-/2

or COS9 = XI 2  . Ill112 + V 1 V 2

For parallel lines:

COS r = COS a2, COS / 1 = COS/3 2 , COS 7 1 = COS '12

or J' I 2, 1  = t2, V = 1'2

For perpendicular lines, 6 = 90' and cos 9 = 0

COSaI COSa 2  COS/
3
1 COS /1 2 -COS-tl COS' 2 = 0.

or X1 X 2 + I1M2 112 = 0.

16



4. THE PLANE IN SPACE

4.1 Definitions. A plane is defined as a surface such that a line connecting any two
points of it will lie wholly within the surface. A plane may be defined as the surface
generated by a line rotating about another line to which it is perpendicular. The rotating
line is called the generator and the fixed line, or axis, the director. A plane may be deter-
mined by three points (not on the same line), or by a line and an external point, or by two
intersecting or parallel lines.

4.2 Equations of a Plane.

4.2.1 Normal Form. The normal form of the equation of the plane is

x cos a + y cos P + z cos 7 = p

This important form gives the relationship between the coordinates of all points in a
plane in terms of the perpendicular distance from the origin to the plane, and the direction
cosines of this perpendicular. Figures Ila and 1lb.

In the diagram (Ila) the plane LMN represents the position of the plane in
one of the octants. The line OD is perpendicular to the plane and intersects the plane
at D. The length of the normal OD is denoted by p which is considered a positive quan-
tity. The angles a, p and -y are the direction angles of the plane director, p . When the
value of p and the direction cosines are known, the point D can be located, and the plane
is

N

Figure 11a
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CD

0 y

iIDOA = a

L BOD = /3
Z_ DOC

Figure lib

constructed as a plane through D and perpendicular to OD. P is any point in the plane
LMN, whose coordinates are x, y and z. The triangle POD is always a right triangle
regardless of what point in the plane is chosen as P.

If one of the direction angles is a right angle, p is perpendicular to one of
the coordinate axes and the plane is parallel to that axis. For example, if - = 90' the
equation becomes

x cos a + y cos = p

(the equation of a plane parallel to the Z-axis). If two of the direction angles are right
angles the equation reduces to the form

x cos a = p , y cos /3 = p , or z cos y = p.

If P3 and y are right angles,p coincides with the x-axis and the plane is perpendicular to
the x-axis.

4.2.2 General Form. Every equation of the first degree can be written in the
form:

Ax+By-Cz +D = 0

and any equation of this form is which A, B, C are not all zero represents a plane. This
general equation of a plane is reduced to the normal form by the following rules:

Rule 1. Change all signs so that the absolute term of the given equation is
negative in the first member. (p is always considered positive).

Rule 2. Divide by the square root of the sum of the squares of the coefficients of
coefficients of x, y, z.

18



The normal form of the general equation is

( A, +BY+ Cz+D) 0
VA 2 + B 2+ C2

The value of the direction cosines of the plane director are:

A B
cosa = ' cos/3 = andIVA2 +B 2  C 2  V 2  B 27 C2

__ _ _ __ _ _D

cos 7 = T C Thevalueof p ±
V-= - 2 + B -2

The upper sign is to be used when the absolute term of the given general equation is
positive and the lower sign when it is negative.

Several special cases of the general equation are listed below:

Equation Conditions

A. + By + D = 0 -L xy plane z-axis

A. + C z + D = 0 -L xz plane y-axis

B + C; + D = 0 1 yz plane x-axis

A + D = 0 L x-axis yz plane

By + D = 0 L y-axis H xz plane

Cz + D = 0 -L z-axis 11 xy plane

4.2.3 Intercepts and Traces. The intercepts of the plane on the respective axes
are the distances from the origin, 0, to the point of intersection L, M, and N of the plane
with the coordinate axes x, y, z. The traces of the given plane are the lines in which a
plane intersects the coordinate planes. The lines LM, MN, and NL (Figure Ila) are the
traces of the i-'ane on the coordinate planes XY, YZ, and XZ.

The symmetric (intercept) form of the general equation is

x V z

D D D
A B C

D _D D
The intercepts on the x, v, z axes are A B and -- respectively.

The slope form of the general equation is:

A B D
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Hence, the general equation of the first degree represents a plane where the slopes of the
xz and yz projections of its plane director are A/C and B/C respectively and the intercept

D
on the z-axis is equal to - C. For example, in the plane 2x - 4y - 3z + 12 = 0 to obtain

the symmetric form, transpose the absolute term to the second member and divide by the

transposed absolute term to obtain - + - + - 1 ence, the intercepts are x = -6,
-6 3 4

y = 3, z = 4. The plane is shown in Figure 12.

In the same example, to obtain the slope form, divide the given equation by
the coefficient of z and obtain:

_
2 x+ 4y +z-4 = 0

3 3

The slopes of the xy and yz projections of its plane director are - 2/3 and 4/3 respec-
tively and the intercept on the z-axis is 4.

4 --

2

0 2Y

xi t

Figure 12

The plane 4x 5% - 20 = 0 (Figure 13) has the intercepts x = 5 and v = 4 but no inter-

cept on the z-axis because it is parallel to that axis. The traces are 4x -5y - 20 = 0,
x=5, y = 4.
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Figure 13

The symmetric or intercept form of the equation of a plane is the most use-
ful form to plot the position of the plane. The values of the intercept are established and
plotted on the respective axes. Connecting the ends of the intercepts gives the traces of
the plane. In the plane 2x - 4y - 3z + 12 = 0 the trace in the XY plane (z = 0) is
2x - 4y + 12 = 0. Similarly, the trace in the XZ plane is 2x - 3y + 12 = 0 and the trace
in the YZ plane is 4y + 3z - 12 =0. The slope form of the normal equation is

Cos a X cosfi p
Cos -Y COSy YCOS-Y

where the coefficients of x and y are the slopes of the plane director.

To change the general Equation 2x - 4y. - 3z + 12 = 0 to the normalI form,
apply Rule 1 and change all signs because the sign of the absolute term in the left mem-
ber is positive and obtain - 2x 4y + 3z - 12 = 0. To apply Rule 2, divide by

-(-2)' + 42 + 3 2 or N/729and get the desired normal form,

2 4 3 12
- \29 N 0 9- '9 -

so that

Cos 2 O 4 _ 3 adp 12

Thet= os symti -r inc pt for and ph eqaino lnei h otu
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4.3 Distance Between a Point and a Plane. The distance from any given plane to any
point in space is found by reducing the equation of the given plane to the normal form,
and substituting in the normal form the coordinates of the given point for x, y and z. The
resulting numerical quantity expresses the required distance (Figure 14). To find the dis-
tance of the point (-3, 4, -5) from the plane x + 2y - 3z + 8 = 0 reduce the equation of the
plane to normal form (Section 4.2.2.) and obtain

-x-2y+3z-8 -
V1i4

Substituting the coordinates of the given point x, y and z in the normal form obtain

+3 -8 - 15-8

distance = 28 or - 2 ViT

The result means that the actual distance from the given plane to the point is 2 \ 14 units
to the scale of the drawing and that the point is on the same side of the given plane as
the origin. If the given point and the origin are on opposite sides of the given plane, the
result is positive because p is considered a positive quantity.

In Figure 14, P (x', y', z') is any given point on plane L'M'N' which is parallel
to th- given plane LMN. The line OD = p is the normal to the given plane LMN from the
origin 0. The resulting line OD intersects the plane L'M'N' in D'. OD' = p'. The line
PK is the perpendicular distance from P to the given plane and the required distance from
the given plane to the point P.

KP = DD' = OD'-OD = p' - p



N'

/ \
/ N

/ \X1 , Z')

/\

D 
D'

//
/

x
Figure 14

Since the second plane L'M'N' passes through the given point P, (x', V' , z') its
coordinates satisfy its equation,

giving
X, Cosa +y' CCs' +COS-/ =p'.

Substituting this value of p' in KP = p' - p

KP = x' cos a + v'cos3 +z' cos - -p.

This equation is the same as the normal form of the equation of the given plane with the
coordinates x' y' and z' substituted for x, y, and z.
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4.4 Angles between Two Planes. The angle between two planes the .arme as the

angle between the directors of the two planes, Figure 15. The formula for finding the
angle 0 between the two planes whose general equations are

A, +By + + 1 = 0 and Alx + B,y + Cz + D = 0 is

C oAA + BB 1 + CC1

13A2 +B 2 + C2  A 2 .32 *(
1 

2

To find the angle between the tv,o planes - x + 7v 11 and 3x ly - 5z 10

substitute in the formula

(-1) (3) + (7) (4) " (0) (5) 25
Cos V3___ - o r

S1)2 + 72 +o2 0 32 42 5

and the angle is 60'.

xv

Figure 15

The angle between two planes is the same as the angle between the respective normals,
ODI and OD 2. The planes are not shown in the drawing.

4.5 Parallel and Perpendicular Planes. Two planes whose ecquations are

Ax+By Cz-D = 0

A x+B'y- C'z -D'= 0

are parallel when and only when the coefficients of x. v and z are proportional.

that is A = = C

A' B' C'
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For example the two planes

2x +3y-z = 0

and 4x +6y-2z+8 = 0

are parallel because

2 3 1
4 6 2

Two planes are perpendicular when and only when the sum of the products of the
coefficients of x, y, and z is zero, that is

AA' +BB'+CC' = 0

For example the two planes

2x + 3y - z = 0

and 3x-y+3z+2 = 0

are perpendicular because

(2) (3) + (3) (-1) + (-1) (3) = 0

4.6 Special Planes. A plane whose equation has the form

Ax + By + D = 0 is perpendicular to the XY-plane

By + Cz + D = 0 is perpendicular to the YZ-plane

Ax + Cz + D = 0 is perpendicular to the ZX-plane.

That is, if one variable is lacking, the plane is perpendicular to the coordinate plane
correspunding to the two remaining variables.

A plane whose equation has the form

Ax + D = 0 is perpendicular to the axis of x

By + D = 0 is perpendicular to the axis of y

Cz + D = 0 is perpendicular to the axis of z.

That is, with only one variable, the plane is perpendicular to that axis. For example, the
plane Ax + D = 0 is perpendicular to both the XY-plane and ZX-plane, and hence is also
perpendicular to the line of their intersection.
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5. THE COORDINATE TRANSFORMATION IN SPACE AND SYSTEMS OF COORDINATES

5.1 Transformation of Rectangular Coordinates

5.1.1 Translation of the Axes. Given two parallel sets of coordinate axes, XYZ
system and X'Y'Z'system, Figure 16, with the point P common to both coordinate sys-
tems. The origin 0' of the X'Y'Z' system is the point (x., y., z.) of the XYZ system, and
the origin 0 of the XYZ system is the point (- x0, - yo, - z.) of the X'Y'Z'system. As in
plane analytical geometry, the following equations are obtained:

X, x -X o  X ,X + Xe

y' y - y y -y' + yo (5-1)
Z z -Z. o Z=Z +Z o

A P (x, y, z)
(x', y., z')

f

L Yo

X

Figure 16

If the expressions for x, y, and z in the second set are substituted in an
equation in x, y and z, the corresponding equation in x', y', z'is obtained. A transforma-
tion such as (5-1) is the translation of axes.

5.1.2 Rotation of Axes. Let the coordinates of a point P, referred to a set of
rectangular axes OX, OY, OZ, be x, y, z, and referred to another system OX', OY', OZ'
having the same origin, be x', v', z'. Let x' = OL', v' = L'%', z' = M'P (Figure 17); and
let the direction cosines of Ox', referred to Ox, Or, Oz, be A1  .i , , those of OY'be

2 , Y2 v2 , and OZ' be X3 I, , 3 , where
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}i =COS ai

c L =Cos fli

vi =cos-yi (i=1,2,3).

V A

/ / / 1

Figure 17

The projection of OP on the OX axis is x. The sum of the projections of OL',
L'M'nd MP isXx' + X~y +Xz. This follows from the theorem that the length of the

projection of a segment of a directed line on a second directed line is equal to the length
of the given segment multiplied by the cosine of the angle between the lines. The second
and third equations are obtained in a similar manner

X XI 2

y jI X' + t12 Y' + ( L3 Z

z\=i - iV V
Z '+V2 ' P 3//x"

where X. , , P, are the direction cosines of OX, GY, and OZ with respect to the OX'.
GY', and OZ' axes respectively. Project OP and OL =x, LNM = y and MP = z on OX', OY',
and OZ', then

" X + /A) I z

Z' X U vI tV z3 ' 3



The systems of equations (5-2) and (5-3) are expressed conveniently by the
following diagram

Xf yl ZI

x Al A,2 ,3

Y )A1  /2 X3

z P 2 3

5.2 Systems of Coordinates.

5.2.1 Polar or Spherical Coordinate Systems.

S

P

z

,

Figure 18

Let P' be an orthogonal projection of P on the XY-plane as shown in
Figure 20. The position of P is defii,ed by the distance r, the angle 0 = ZOP which the
line OP makes with the Z-axis, and the angle 0 (measured by the angle XOP') which the
plane through P and the Z-axis makes with the plane XOZ. The segment O.I is the x
distance along the OX-axis, ON the y distance along the OY-axis and OS the z distance
along the OZ-axis. The numbers r, 0, 0 are called the spherical coordinates of P; some
writers call them polar coordinates in space. The length r is the radius vector, the angle
0 is the co-latitude, and 0 is called the longitude.
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5.2.2 Transformation from Spherical Coordinates to Rectangular Coordinates and

Vice Versa.

If P = (x, y, z), then from Figure 18,

OP' = r cos (90 -) = r sin 0

In triangle OMP', x = OM = OP'cos 0 = r sin 0 cos 0.
In triangle ONP', y = ON = OP' sin 0 = r sin 0 sin 0.

In triangle OP'P, z = PP' = OP' cos , = r cos €, or for rectantular coor-
dinates

x = r sin 4 cos 0

y = r sin 4 sin 0

z = r cos 0

On solving for the spherical coordinates , 0, r in terms of the rectangular
coordinates x, y, z

r - V + y2 +z2 (Distance between two points
in space)

=arc cos z
x2 + y 2 + z 2

0 = arc tan x/y

5.2.3 Definition - Right-Handed-Rectangular Coordinate System.

iy

Figure 19
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The right-handed rectangular coordinate system derives its name from the
fact that a right threaded screw rotated through 90' from OX to OY will advance in the
positive Z direction, as illustrated in Figure 19. The system is right-handed if and only
if the rotation needed to turn the x-axis OX into the y-axis direction OY through an angle
XOY < 180 degrees would propel a right-handed screw toward the positive side of the
of the XY-plane associated with the positive Z axis OZ.

5.2.4. Geocentric Coordinate System. A right-handed systemn with its origin at
the center of the reference ellipsoid of the earth, the positive z axis in the direction of
geographic north pole, the x and y axes in the plane of the equator, the positive x axis
in the plane of the meridian through Greenwich, Figure 20.

5.2.5 Local Ground Coordinate System. A right-handed system with the x and
y axes in a plane tangent to the reference ellipsoid of the earth, the positive y axis in
the meridian plane through the origin and pointed to the North, the positive z axis pointed
toward the zenith and containing the exposure station, Figure 20.

Local Ground
L Survey System

Reference Y
Ellipsoid ' -

// Meridian / "

/ ~ ~Positive \

PGvn Geocentric
Latitude Y-Axis

Negative 
)Longitude \ Origin of. Geocentric System

J Positive

Positive
Geocentric

X-Axis

Figure 20
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5.3 Use of Matrix Notation in Coordinate Transformation.

5.3.1 Definitions. A matrix is a rectangular array of numbers or functions (later
defined as elements) of the form:

al, a12 a13 .... aIn

a121 a22 a2 3  .... a2n

am I  am 2  .... amn

where m represents the number of rows in the array and n the number of columns. This
arrangement is defined here as matrix A. If m = n, the matrix is a square matrix. A
matrix of which all elements except the diagonal elements are equal to zero is called a
diagonal matrix:

a1. 0 0 .... 0

0 a22  0 .... 0

0 0 a33  . . . .

A unit matrix is a diagonal matrix whose diagonal elements are all l's, and a null matrix
is one in which all of the elements are equal to zero.

5.3.2 Addition and Subtraction. The sum or difference of two matrices is a new
matrix formed by adding or subtracting, -he elements which lie in corresponding positions,
such as

a - b a b .. a : - b 7

am .... amn bm .... bmn am bm . . .. amn bmn

or
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a1 -.- b .ab -b11  .... a -b~ ..
all .. .. aIn .. ." In a1. In In

am, .... am, bi ..... bmn amI -b .... a -bran

By using the letters A, B, and C respectively to represent the above matrices, these
operations can be written as

A+B-C or A-B=C

5.3.3 Multiplication of Matrices. The product of two matrices is defined as the
new matrix formed by multiplying the corresponding row elements of the first matrix by
the corresponding column elements of the second matrix and adding the results:

x

am, ..... am, bnl .... bnm

all b l + .... + aln b. al....a bIm + .... a i, bn -]

am, bl + . . .. ar bn,.... aml bI  + . . . amn bm,

or written in shorthand form

AxB = C

In order that matrix multiplication of A times B be possible, the matrices A and B must be
conformable, that is, the number of rows in A must equal the number of columns in B. If
A is of the size m by p, that is m rows and p columns, and B is p by n, then C is of size
m by n. To multiply a matrix A by a number k, each element in A must be multiplied by k,

or

Fall a12  a13al al2k al3ik

k ja 2l a 22  a2 j.)a 2lk a22k a23k1
a31 a 32  a33 j 31 k a 32k a3k
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5.3.4 Examples of Matrix Notation in Linear Transformation Equations. Matrix
notations are commonly used to represent linear transformation equations, involving
translation and rotation of coordinate axes. The following is a set of such equations with
matrix notation used in geodetic coordinate transformation. Numbers in parenthesis indi-
cate the size (mn) required for the matrices to be conformable:

(1) x = x'cosa -ysina

y = x' sina +ycos a

z = z'

Matrix Notations:

S sn a Cos y 

LJ0 1- - n or

(3x1) (3x3) (3xI)

by letter representation for each matrix

X = AX'

(2) P = P. + y' cos p + z' sin 6

Q = Q- y' sin p + z' cos 6

R = R.+x'

Matrix Notation:

P. 0 ~cos 6 sin 6 x

]= Q o -sin 6 cos 6 y

0 0 z or

(3x1) (3x1) (3x3) (3xl)

by letter representation for each matrix

P= P0 + AX'

(3) x'= (R - Ro)

y'= (P - P.) cos 6 - (Q -Q.) sin

z' (P - P.) sin + (Q - Q.) cos 6
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Matrix Notation:

Li oy' cos 0 - sin 0 0 Q.

Z1 in 0 cos 0 -R or

(3xl) (3x3) (3x1)

by letter representation for each matrix

x'= AP - AP.

(4) x = x' + Ak (x - xP) + 'k (y- yp) + D'kc

y = y' + Bk (x - xP) + B'k (y - yp) + E'kc

z = z'+ ck (x - x,) + c'k (y - yp) + F'kc

Matrix Notation:

= y' +k Bi]' E' B j or

Z C C'P or

(3xl) (3xl) (3x3) (3xl)

by letter representation for each matrix

x = x' + k

(5) Direction Cosines relative to XYZ System

X = A1I + X2y' + X3Z'

Y = L1,x' + A2y' + PIz'

Z = 1Ix,+ P2 y'+ v3 z

Matrix Notation:

D l 2 A3 H

(3x!) (3x3) (3x1) or by

letter representation for each matrix

X = Xx'.
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6. PRACTICAL APPLICATIONS

6.1 Introductory Statement. Many problems of analytical triangulation can be solved by
a series of coordinate transformations. Vector and matrix algebra have proved to be most
useful for this purpose when the work is to be done by electronic computers. This section
provides a useful introduction to the subject of coordinate transformation.

6.2 The Aerial Photograph. An aerial photograph is always considered to be tilted.
The observed rectangular coordinates of the image on a tilted photograph are called x,
y and z with z as the focal leng.h of the aerial camera. The photograph should be con-
sidered a diapositive with the x- and y- axes perpendicular lines defined on the photo-
graph by the images of the fiducial marks in the camera. The positive x- axis is the axis
which most closely coincides with the direction of the flight line. The y- and z- axes are
chosen to make a right-handed coordinate system. Thus the image-space x, y, z coordin-
nates of the nodal point are 0, 0, -f where f is the focal length of the lens.

In certain instances where the measurements are to be made on the emulsion side
of the original negative (as with glass plate negatives) the positive direction of the y-
axis should be reversed. The image space x, y, z coordinates of the nodal point for this
case are 0, 0,f.

6.3 Three Pairs of Conjugate Axes. In addition to the x,y,z coordinate system which
identifies the position of the image on an aerial photograph, an auxiliary system (x',y',z')
is introduced. The x',y',z' system has the same origin as the x,y,z system and differs
from it only in orientation. In this regard, the x'.y',z' axes are selected parallel to the
X,Y,Z axes of the local (geodetic or geocentric) ground coordinate system where + Z is
upward and X and Y form a right-handed system such that +X is East and +Y is North.
The angular orientation of one system with the other is completely specified by the angles
between three pairs of conjugate axes.

Zo

/

Figure 21

Two independent systems with a common origin
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Solid Analytic Geometry of the Aerial Photograph

Camera- 0

Photograph Perpendicular

Image 
Image Plane

Pon Ground Plane

Figure 22

Figure 22 shows a tilted aerial photograph with the images a, b, and c of three

ground objects A, B, and C. The ground objects can be regarded as control stations for
which the X- and Y- coordinates are known with respect to some oriented geographic sys-

tem, and the elevation Z is also known relative to a recognized horizontal plane such as
sea level. The geographic coordinates of the object A may be symbolized as XA, YA' and

ZA, and the same for the B and C. The perspective center 0 of the photograph is also
considered to have geographic coordinates X., Y., Zo0 in the same ground system. It is
convenient in most problems to regard 0 as the origin of the system of ground coordinates.

Figure 23 illustrates the geometric relationship between a spatial object A, a
photographic image B as recorded on an image plane, and a camera station C. In the

illustration the camera station (C) is the center of projection of a three dimensional space

object (A) on a two dimensional image plane (B) and the points A, B and C are considered

to be on a straight line.
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A The Object (Point)

C /

0Y

~~Ground Datum

Figure 23

6.4 The Three (Euler) Rotation Angles ,, 0 and K. The angles w, 0 and K are
defined by three successivp rotations of the initial set of coordinates x,y,z into an aux-
iliary set of coordinates x',y',z'. The positive direction of the rotations is considered
counterclockwise about the positive direction of the area.

The first rotation, omega (w), or x- tilt is about the x-axis (primary axis) con-
sidered counterclockwise positive as viewed from the plus end of the x- axis (Rosenfield
considers the rotation clockwise as viewed from the origin which is physically identical).
Omega (w) is the dihedral angle between the photo perpendicular and the XZ plane. That
component of tilt which is measured around the x- axis is called roll. Positive roll occurs
when the right wing of the aircraft is lowered in flight.

The second rotation (Figure 24), phi (0), or y- tilt is about the inclined y- axis
(secondary axis). Phi (0) is the dihedral angle between the photo perpendicular and the
ZY plane. That component of tilt which is measured around the y- axes is called pitch.
Positive pitch occurs when the nose of the aircraft is lowered during flight.

The third rotation, Kappa (K), or swing is the rotation about the twice rotated z'
axis (tertiary axis) which is the perpendicular lens axis or the z- axis of the photograph.
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zw . P (Image point)

Figure 24 The - rotation

x= OM- OQ-MQ

= OQ - RM'
z - MP=MR+RP

= QM'+ RP
OQ = OM' cos = xcos

QMt = OM' sinQ = XMsin4

RP = M'P cos = zcos 4

RM'= M'P sin p =Z, sin4

xo0 = X Cos -z0 ,sin

Yo -= Ywo 4)

zw = x., sin + z,, cos 0

Put in matrix form, the last three equations are:

xw Cs 4 0 - sin q W

1 0 ] y

sin (p 0 cos 40w
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The matrix form for the omega and kappa rotations are derived in the same way. These
angles can most conveniently be obtained in terms of the three direction cosines of each
of the three axes of one system in terms of the other. The nine cosines are sometimes
spoken of as the vectorial elements of space orientation.

6.5 Matrix Form of Rotation Formulae--Direction Cosines. The rotation formula can
readily be expressed in matrix form. (See Figure 24.)

The matrix for the primary rotation through the angle omega (W) about the x-axis
is

A (t) = cos W sin to

- sin w cos w

This rotation generates a set of coordinates which is then transformed into another set
by the secondary rotation through the angle phi () about the y- axis.

The matrix for the secondary rotation about the new position of the y- axis is

FCos ( 0 -sin (

A ()= 0 1 0

Lsin 4 0 cos j

This rotation generates another set of coordinates which is then transformed into still
another set by the tertiary rotation through the angle kappa (K) about the z-axis. The
matrix for the tertiary rotation about the new position of the z- axis is

FcosK sinK 01
A W = -inoK cosK 0

The three successive rotations must, of course, correspond to a single orthogonal
transformation. Since the sub-matrices (Aw, AO, AK) refer to a counter-clockwise rotation
of a coordinate system the sequential matrix multiplication to form a single matrix must
be clockwise. (AK, AO, A&)) as follows:

cosK sinK 0] [CosP 0 -sin 4 0 0]

sin K cos K 0 0 1 0 L cos &) sin

0 0 1 sin4 0 cos0 -sin w cos
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Applying the rule of matrix multiplication the following nine elements or direction cosines

are obtained:

Fcos -pcos K Icos w sin K +sin wsinp cos K Isinw sin K-cosw sin4p cosK]

-cos.p sin K I cosw cosK-sinwsin4, sin K Isin w cos K +cos w sinp sinK

sinp I -sin w cos qp cos to cos (P

6.6 Equations Relating the Two Systems (x, y, z and x', y', z') of Rectangular Coordi-
nates and the Nine Direction Cosines. The relations between the nine direction cosines
and two sets of rectangular spatial coordinates (x, y, z and x', y', z') can be tabulated

conveniently in the following conventional manner:

xf yI ZI

X all a 12 a13

y a21 a22 a23 (6.1)

z a 31 a32 a33

Exactly the same information is given by conventional vector notation:

x all a 12  a,][ x]

= a 2 1 a 22 a 23  y' (6.2)

L a 31 a 3 2  a 33 L ZJ

The inverse notation is also useful:

X1 all aa21  l x

yl = [a 12  a 2 2 a 3 2 jy

_aL a a23  a33_l

Many forms are used in mathematical literature to represent an algebraic matrix.
In this text am, represents a matrix having mn elements, arranged in m rows and n col-

umns. As explained in section 5.3 the first subscript indicates the row in which each
element is located while the second subscript indicates the column in which it is located.
According to this notation, the element a 23 will be placed in the second row of the third

column of its matrix. The range of the subscripts determining the number of rows and col-
umns defines the type or order of a matrix.
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The elements in Equation 6.2 expressed in terms of the direction cosines as given on the

top of page 40 are as follows:

all = cos 0 cos K

a 1 2 = cos w sin K + sin w, sin 4A cos K

a1 3 = sin w sin K-cosw sin o cosK

a 21 = -cos 0 sin K

a 22 = COS wo COS K - sin w sin 0 sin K

a 23 = sin w cos K + cos w sin 0 sin K

a 31 = sin

a 32 = - sin w cos -

a 33 = cos W cos

The Perspective Transformation

igin (perspective center)(X., Yo, Z.)

ZI

ZZ -Z X1\hage (x ,y, zi)

Plane of Photograph

.-Object

(X, Y, Z)

Ground Datum-,N

Figure 25

In this x' y, z'- coordinate system the image plane is considered parallel to the
XY-plane. It is evident from the similar triangles in the figure that

(X - Xo)(Z - Z.) = xt/z from which x, - (X - Xo)Zl/(Z - Z)

Similarly, by visualizing the YZ-plane,

(Y - Yo)/(Z - Zo) = y'/z' from which y' - (Y - Yo)z'/(Z - Zo)
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By algebraic identity

(Z - Zo)/(Z - Z.) = z'/z' from which z' = (Z - Zo)z'/(Z - Zo)

By substituting these values for x', y' and z' in Equation 6.2 and dividing the expression
for x and y by that for z we obtain the following basic projective transformation equations:

x (X - Xo)a,, + (Y - Yo)a 12 + (Z - Zo)al3

z (X - Xo)a 31 + (Y - Yo)a 32 + (Z - Zoa33

(6.3)
y (X - Xo)a 21 + (Y - Yo)a 22 + (Z - Zo)a 23

z (X - Xo)a 31 + (Y - Yo)a 32 + (Z - Zo)a33

where X,Y,Z are the coordinates of an object on the ground, X., Yo,Zo are the coordinates
of the camera station in the same system and x,y,z are the image-coordinates in which
z = - f the camera focal length. Equation 6.3 expresses the condition that the photographic
image, the ground object, and the camera lens point are colinear. Equation 6.3 is transcen-
dental and, in the most general case, all twelve terms are considered as unknowns. Con-
sequently a form of Newton's method is used to solve them. This is an iterative method
based on initial approximations which are quite easily obtained for all the unknowns. The
first approximation of Phi (,) and Omega (w) is always zero. Kappa (K) can be measured
with a protractor on a stapled mosaic or a photo-index. The flying height Z is known. The

X and Y can be measured with sufficient accuracy for the problem from a photo-index.
After these substitutions are made, the computation makes all the other corrections by
successive approximations. Usually three iterations are required.

The above equations are too involved to be solved for each of the six parameters
in the direct manner and a subroutine computer program is required.

In Equation (6.1) a11 , a 12 and a13 denote the direction cosines between the
image-space x- axis and the object-space X Y Z axis respectively. The three direction

cosines of the y- axis in the X Y Z system are a 21 , a 22 and a23 and similarly for the z-
axis. The three direction cosines of the X- axis in the x y z system of coordinates are
also all, a 21 and a 31 and similarly for the other axis.

all is the cosine of the angle between the X- and x- axes, a22 is the cosine of
the angle between the Y- and y- axes, and a 33 is the cosine of the angle between the Z-
and z- axes. Incidentally a33 is the cosine of the tilt angle because the z- axis is the
photo perpendicular and the Z- axis is the plumb line.

The nine direction cosines of the matrix are not totally independent values. The
sum )f the squares of the elements of any row or any column of the matrix equals one.
The sum of the products of corresponding elements of any two columns or any two rows
is zero, or more specifically,

all a 21 + a 12 a 2 2 + a 1 3 a 2 3 = 0.

The value of the determinant of the matrix is either + 1 or - 1.
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The elements of the matrix are the elements of a linear orthogonal transformation
because they enable the computation of the coordinates of a point in either system from
the given coordinates of the same point in the other system. If x, y and z are known for a
point, and if the nine elements of the matrix are known then

X =xa 1 +ya2l +za 31

or if X, Y and Z are known for a point, and if the nine elements of the matrix are known
then

X = Xall + Ya 12 + Za 13

6.7 Inverse Case -- Object Space Coordinate System in Terms of the Image Space
Coordinate System. The matrix expression in Equation 6.2 has been developed for the
condition wherein the image-space coordinate system is expressed in terms of the object-
space coordinate system. The coordinates x, y and z can always be measured in the image
coordinate system. If the inverse case is desired, the object-space coordinate system in
terms of the image-space coordinate system, the final orientation matrix must be inverted.
The matrix can be inverted directly by transposition of its elements since, for an orthog-
onal matrix, the inverse is equal to its transpose. The inverse form can also be developed
by inversion of each of the individual rotational submatrices which would necessitate
inverting the order of matrix multiplication.

6.8 Relation Between the Photographic Coordinate System (Exposure Station) and
the Geocentric Coordinate System (Local Survey). The following Equations relate the two
coordinate systems:

x a,, a 12 a 13 X

Y = 21 a 22 a 23 • (6.4)

z a 31 a 32 a 33

where x y z are photo coordinates X Y Z are geocentric coor 'inates

X = longitude (positive in value east from Greenwich)

= latitude (positive in value north of the equator)

and where al = sin A

a 12 = cosA

a 13 = 0

a2 1 =- sin4 cosX

a22 = sin sin A

a 23 = Cos

a 31 =cos cosX

a 32 =- cos 0 sin X

a 33 = sinq,
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In the geocentric coordinate system, the Z axis is toward the north pole, the +X
and +Y axis lie in the plane of the equator with the +X axis in the meridian plane through
Greenwich. Therefore, the cosine of X is minus for longitudes of +900 to +1800 and lati-
tude of 0' to +900. Consider A negative in the western hemisphere. Formulas for this
transformation are derived by rotating and translating modified geocentric coordinates.
The classical geocentric coordinates are:

X = (N +h) cos sinx

Y = (N + h) cos¢ cosA

Z = [N(1 - e2 ) + h] sin,

where 0 and X are the latitude and longitude of any point, h is the elevation, and
N is the length of the normal through 0 , X.

Resection in photogrammetry is defined as the determination of the six fundament-
tal parameters w , .,, K, X., Yo, Z. of a single photograph from the given positions and
elevations of at least three non-colinear points imaged on the photograph. The X, Y,
Z-coordinates in Equation (6.4) are in the form required for resection. The final adjusted
X, Y, Z's need to be transformed back to latitudes, longitudes and elevations. For this
the following foimulae are needed:

tan X = X/Y

tan . = Z/(X2 + y'2

Z = (N + h) sin .

h = (X/cos 0 sin X) - N or

h = (Y/cos p cos X) - N (use the equation with the

larger function involving
X)

6.9 Orientation. Since orientation is most important in this analytic system, the
following brief review of the orientation phase is included.

The orientation phase can be divided into interior orientation and exterior orien-
tation. Exterior orientation can be further subdivided into relative orientation and abso-
lute orientation.

Interior orientation imposes two requirements:
(1) the principal distance of the diapositive must equal the principal distance of the pro-
jector, which is the length of the perpendicular from the interior perspective center of the
projection lens to the plane of the diapositive; and
(2) this perpendicular must intersect the plane of the diapositive at the principal point of
the photograph. This is the operation known as centering the diapositive.

Relative orientation is defined as the determination of the three angular and two
linear parameters that specify the attitude and position of the photograph (camera station)
with respect to another (overlapping) one that shows a sufficiently large common area.
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Relative orientation is perhaps the most important item in this analytic system: it
embodies all the basic mathematics that is peculiar to the system, is utilized again later
in resection and the block adjustment, and requires the second-largest computer effort.
It is in relative orientation that the principles of projective geometry are applied. A clas-
sic geometric rotation of the axes in three dimensions is needed in relative orientation to
express the attitude of one photograph to another. Instead of using the three angles
between the respective axes as in analytic geometry, a system of three sequential rota-
tions is used, the primary one w about a horizontal x-axis, the secondary one 0 about the
once rotated y-axis, and the tertiary one K about the camera axis.

Absolute orientation is the orientation with reference to a vertical and a horizon-
tal datum. Absolute orientation procedure comprises three operations: (1) bringing the
model to the proper size, or scaling the model; (2) leveling or horizontalizing the model;
and (3) positioning the model with reference to the horizontal datum.
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