## UNCLASSIFIED

# AD 419156

### DEFENSE DOCUMENTATION CENTER

~

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA. VIRGINIA



### UNCLASSIFIED

## Best Available Copy

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implications or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

>,



156

#### INTERIM ENGINEERING REPORT

#### NO.1

#### INTEGRATED CIRCUIT STUDY

64-5

.

This report covers the period 1 June thru 31 August 1963

UNIVAC

DIVISION OF SPERRY RAND CORPORATION UNIVAC PARK, ST. PAUL 16, MINNESOTA

NAVY DEPARTMENT NObsr 89341

, ∧.∕ 1

!

× 2.

BUREAU OF SHIPS

September 1963

 $\overline{)}$ 

#### ABSTRACT

٢

This report describes the progress achieved in the integrated circuit study program for the CP-667 Computer.

Significant accomplishments were recorded in the following areas: selection of a circuit type and performance testing of existing available integrated circuits. .

ι

#### PART I

ŧ

#### Section 1

#### PURPOSE

This study is intended to compare monolithic integrated circuits, capable of performing in the CP-667 Computer, with the present hybrid (multiple chip) micro circuits per MIL-M-23700/1 thru 5.

Electrical performance, functional stability and reliability are to be evaluated.

#### Section 2

#### GENERAL FACTUAL DATA

#### IDENTIFICATION OF PERSONNEL

Ć.

| .

ŧ

...

-...

.

| PERSONNEL | JUNE<br>(160 Hrs.) | JULY<br>(200 Hrs.) | AUGUST<br>(160 Hrs.) |
|-----------|--------------------|--------------------|----------------------|
| Granberg  | 0                  | 5                  | 15                   |
| Janisch   | · 0                | 0                  | 38                   |
| Magnuson  | 0                  | Ō                  | 1                    |
| Schipp    | 0                  | Ō                  | 1 1                  |
| Sundem    | Ō                  | 6                  | 24                   |
| Wheeler   | Ì                  | Ō                  |                      |
| Wozniczka | 0                  | 24                 | 108                  |

The following list summarizes the personnel actively working on the project for each month during the period of this report:

#### Section 3

#### DETAILED FACTUAL DATA

#### SELECTION OF CIRCUITS

۱.

t

The logic circuitry of the CP-667 is made up of nine printed circuit card types described in Table I. The circuits on these cards are developed by interconnecting the hybrid (multiple chip) circuits of MIL-M-23700/1,2,3,4,5.

Integration of the hybrid circuits suggests the combination of the dicde gate and transistor gate in one package so as to provide for connection of the substrate to the most negative potential. A minimum number of integrated circuit types are desirable to keep the tooling and testing practical. The complexity of the circuitry in any one package is limited by the number of external connections. Table I provides a breakdown of three likely circuit groups employing ten external connections. The number of circuit packages required to duplicate a given card function is compared with the presently used hybrid packages. The use of external collector resistors, and performing the "or" function at the collectors were factors in this summary.

The optimum circuit group in terms of simplicity and versatility is the 3/3 and 2/4 input combination. This is particularly desirable in view of one vendor's suggestion that the basic chip could be made with 4 input diodes on each circuit enabling either package to be made from the same chip by merely changing the final connections to the terminals.

The specification for the procurement of a 3/3 integrated circuit is attached. Subminiature resistor packages are being investigated for use as collector resistors for these circuits. This provides an option of performing the "or" function at the collector and minimizes heat dissipation within the integrated circuit.

A complementary transistor logic gate utilizing a PNP/NPN combination on one integrated chip has recently been suggested as a possible substitute for the diode gates of MIL-M-23700/1 thru 4. This system could ideally permit logic (and/or functions) to be performed without inversion at the base of the inverter circuit (MIL-M-23700/5). This phase of the program requires more circuit research before specification and procurement can be initiated.

-3-

#### FRELIMINARY STUDIES

Ł.

ł

Westinghouse type 2201 integrated Diode Transistor Logic (DTL) circuits were tested in the circuit of Figure 1. The series string was driven by and loaded with a CP-667 hybrid circuit. Figure 2a shows waveforms at each node in this configuration when no collector resistors,  $R_c$ , were used with the 2201 circuits. Figure 2b illustrates the waveforms at the same nodes with 400 ohm collector resistors. Propagation times (measured from 10% of final voltage level of the input to 10% of the final voltage level of the output) through each of the stages are summarized below:

| NODE | R <sub>e</sub> = | = 00     | $R_c = 40$ | OO OHM   |
|------|------------------|----------|------------|----------|
| MCD2 | TURN ON          | TURN OFF | TURN ON    | TURN OFF |
| II   | 17 ns            | 17 ns    | 12 ns      | 8 ns     |
| III  | 46               | 16       | 16         | 26 ·     |
| IV   | 42               | 20       | 16         | 18       |
| V    | 40               | 12       | 15         | 20       |

It should be noted that this represents a best case condition since the fan-out was unity and nominal conditions existed. The waveshape of the present hybrid CP-667 circuit (Node I) has a much faster rise and fall time than that of the integrated 2201 circuits. This can be attributed to the absence of parasitics in the hybrid circuits and the higher power level of the circuit.

An existing UNIVAC integrated logic circuit was wired in a series string driven by and driving a CP-667 hybrid circuit as shown in Figure 3. Figure 4 shows the waveforms at each node in the configuration. Propagation times (10% to 10% levels) for each node are shown below:

| NODE | TURN ON     | TURN OFF    |
|------|-------------|-------------|
| п    | 12 ns<br>33 | 30 ns<br>30 |

Again note that the waveshape of the CP-667 hybrid circuits was superior to that of the tested parts. This sharp rise time accounts for the fast turn on of Node II. This circuitry is slower than the 2201 circuitry when operated with a collector resistor.

Ĺ

ł

#### Section 4

#### CONCLUSIONS

.

The preliminary studies of two types of integrated circuits indicate that speeds in the range required for the CP-667 are possible from integrated circuits when operated at the same power level. The "or" function must be performed at the collector rather than the bases in order to minimize the base overdrive and subsequent increase in storage time. \$

· · ( '

• • •

PART II

## ·

.

#### PROGRAM FOR NEXT QUARTER

- 1. Procure hybrid circuits for comparison with integrated devices.
- 2. Arrange to procure from two manufacturers of integrated circuit samples of the 3/3 DTL circuit described in the attached specification.
- 3. Perform exploratory testing of the Complementary Transistor Logic Gate and prepare procurement specification for this circuit.
- 4. Procure samples of subminiature resistor package for use as collector resistors.
- 5. Establish an environmental test program designed to most efficiently determine modes of failure and degradation of characteristics.

1

PART III

(

.

;

.

.

.

SUPPLEMENTARY DATA

.

.

•••

-

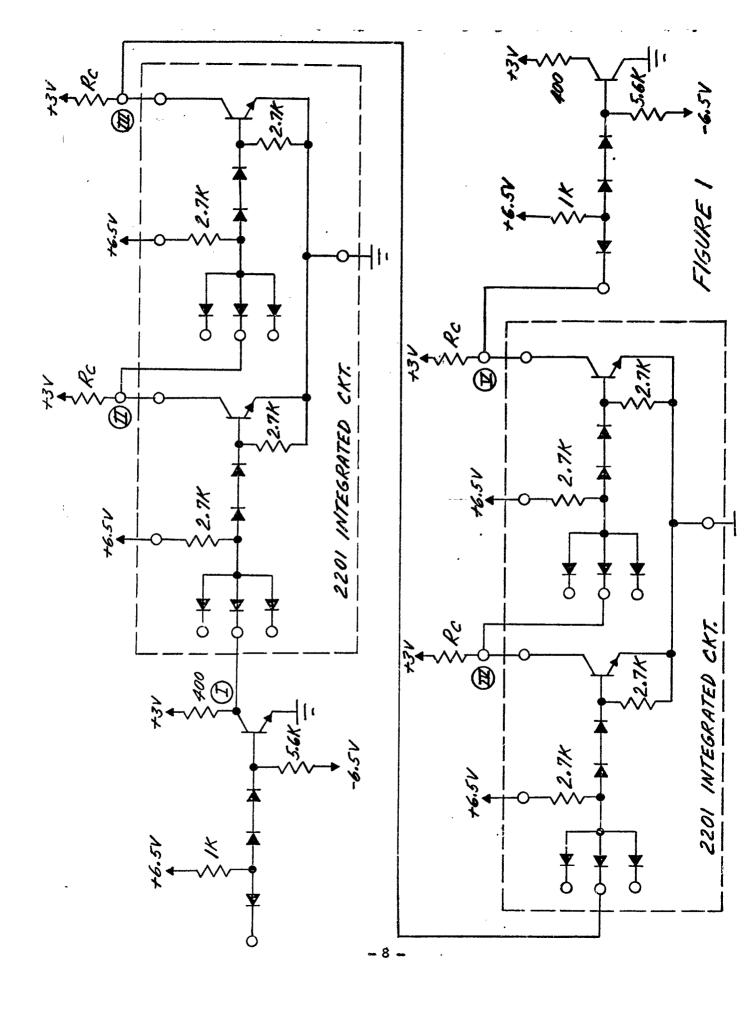
.

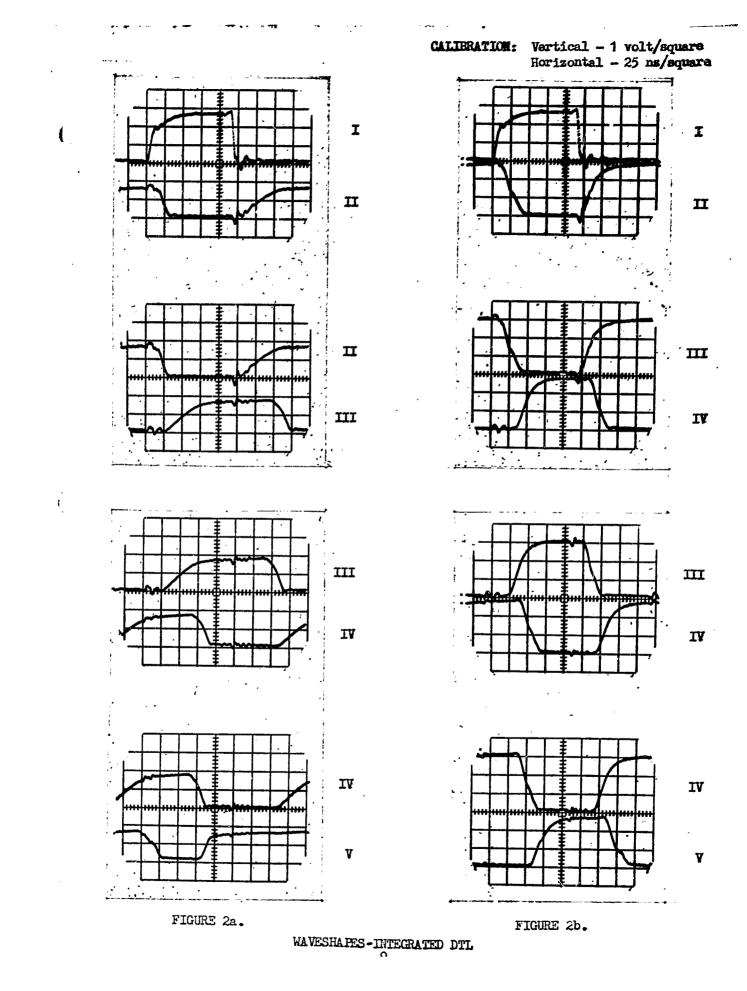
|                                                            |                           | P 3     | 2/4         | 0           | -                | ~                | 0              | 0           | ¢3               | 0           | 0                           | ō                     |                                                                    |
|------------------------------------------------------------|---------------------------|---------|-------------|-------------|------------------|------------------|----------------|-------------|------------------|-------------|-----------------------------|-----------------------|--------------------------------------------------------------------|
| NOI                                                        |                           | GROUP   | 3/3         | -4          | 6                | -                | ø              | e           |                  | s           | 80                          | 5                     |                                                                    |
| D FUNCT                                                    | ROURS                     |         | 2           |             |                  | 2                |                |             | જ્ય              |             |                             |                       | ]                                                                  |
| IDE CAR                                                    | RATED G                   | GROUP 2 | 3/3         |             | m                |                  |                |             |                  |             |                             | m                     |                                                                    |
| NOH DI UN                                                  | ROPOSED INTEGRATED CROUPS | ß       | 22/2        | 9           |                  |                  | 4              | e           |                  | 4           | 6                           | Q                     |                                                                    |
| NULTONNA WARD ALL IN THUR OF ANALY TRUNKING AND A UNCLUDED | ROR                       | GROUP 1 | 3/3 CIRCUIT | 4           | NOT<br>POSS IBLE | NOT<br>POSS IBLE | 6              | 3           | NOT<br>POSS IBLE | 'n          | to                          | s                     |                                                                    |
| . TLUDALD                                                  | PRESENT                   | CP-667  | (птинти)    | 2           | 4                | 4                | 4              | ŝ           | e                | 9           | రు                          | 4                     | TABLE I                                                            |
|                                                            | CARD FUNCTION             |         |             | 22/22/22/22 | 333/334          | 3/4/3/4          | 2222/2222/2222 | 2/2/2/2/2/1 | 8/8              | 22222/22222 | FF -<br>22228 120/22228 120 | FF -<br>33S 3C/33S 3C |                                                                    |
|                                                            | 667 MACHINE               |         |             | 143         | 127              | 138              | 155            | 349         | 111 <sup>1</sup> | 4           | 546                         | 4671                  | 72 of those for memory<br>Input reduced by one<br>At reduced spood |
|                                                            | CARD ASSEMBLY             |         | · ·         | 4224000     | 4224010          | 4224020          | 4224030        | 1224040     | 4224050          | 4224060     | 4224070                     | 4224080               | 1 72 of those<br>2 Input reduce<br>3 At reduced                    |

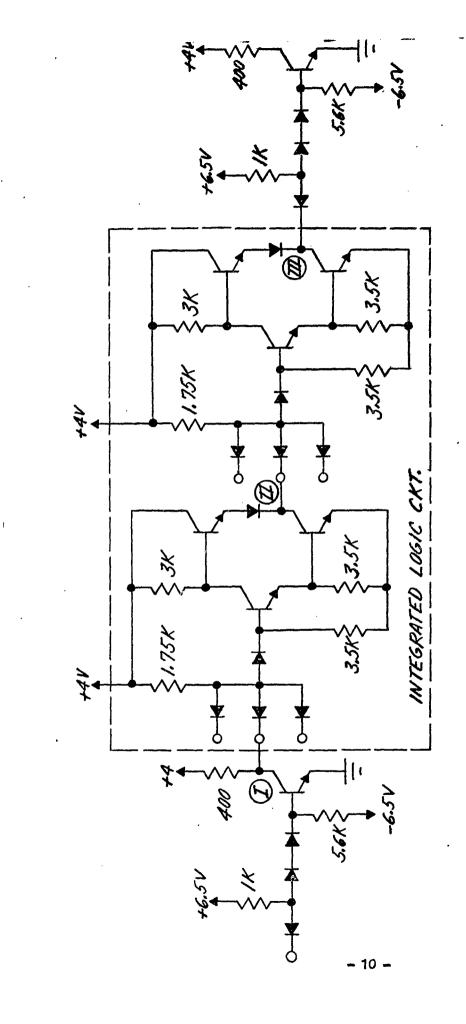
۱

ł

.

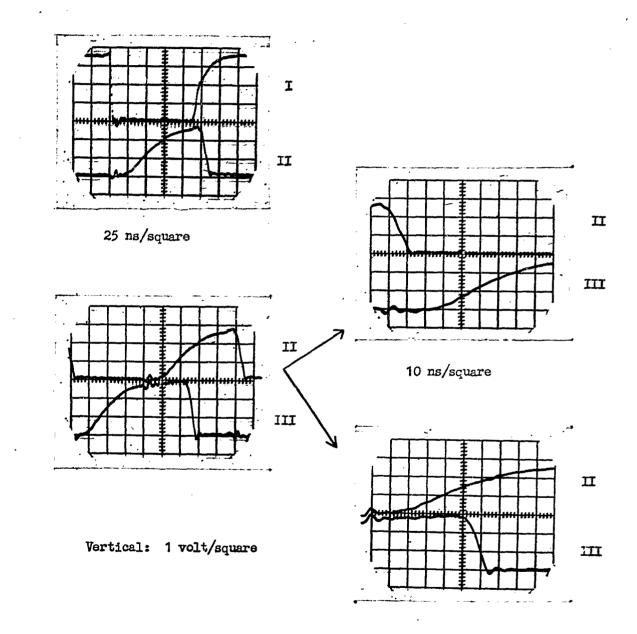

•


.


- 4 -

.

-----








(

FIGURE 3



t

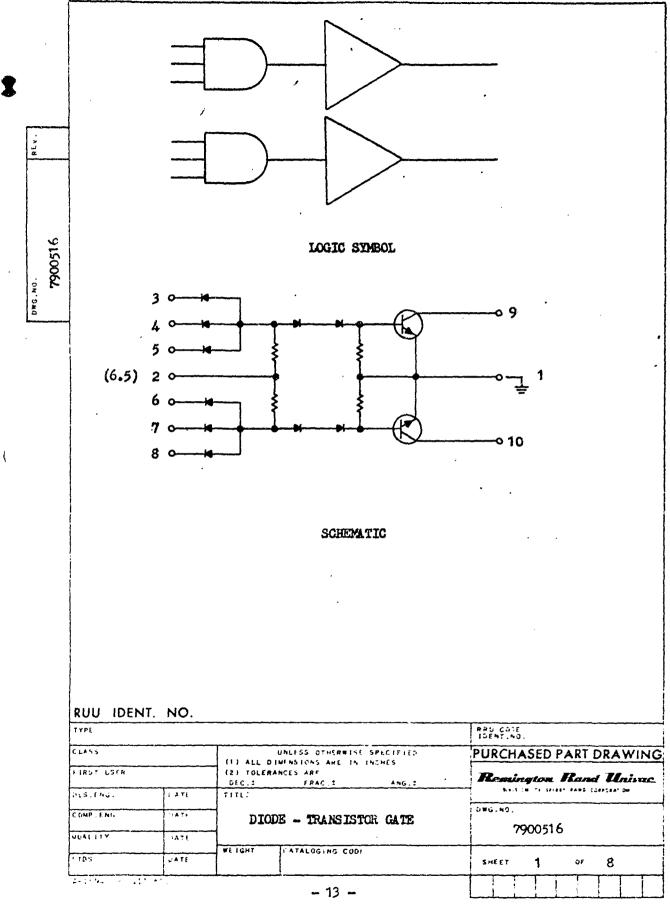
FIGURE 4. WAVESHAPES - INTEGRATED LOGIC CIRCUIT

|                   | ſ    | <u> </u> |   | 1 | 963 |   |   |   |   |          |          |   |   | 196 | 4 |   |   |   |   |
|-------------------|------|----------|---|---|-----|---|---|---|---|----------|----------|---|---|-----|---|---|---|---|---|
| <b>†</b>          |      | J        | J | A | S   | 0 | N | D | J | F        | M        | A | M | J   | J | A | S | 0 | N |
| T. Hybrid         | VL   |          | ŀ | _ | _   |   |   |   |   |          |          |   |   |     |   |   |   |   |   |
|                   | · PP | I        |   |   |     |   |   | _ |   |          |          |   |   |     |   |   |   |   |   |
|                   | TC   |          |   |   |     |   |   |   |   |          |          |   |   |     |   |   |   |   |   |
|                   | FT   |          |   |   |     |   |   | _ |   |          |          |   |   |     |   |   |   |   |   |
|                   | ET   |          |   |   |     |   |   |   |   | =        | -        | ł |   |     |   |   |   |   |   |
|                   | FA   |          |   |   |     |   |   |   |   |          |          |   |   |     |   |   |   |   |   |
| 2. Integrated DIL | PI   | Τ        |   |   |     |   |   |   |   |          |          |   |   |     |   |   |   |   |   |
| -                 | VL   |          |   |   |     | _ |   |   |   |          |          |   |   |     |   | [ |   |   |   |
| · · ·             | SP   |          |   |   |     | _ |   |   |   |          |          |   |   |     |   | [ |   |   |   |
|                   | PP   |          |   |   |     | 1 | _ |   | = |          |          |   |   |     |   |   |   |   |   |
|                   | TC   |          |   |   |     |   |   |   |   |          |          |   |   |     |   |   |   |   |   |
|                   | FT   |          |   |   |     |   |   |   | = |          |          |   |   |     |   |   |   |   |   |
|                   | ET   |          |   |   |     |   |   |   |   | <b>—</b> | <u> </u> |   |   |     |   |   |   |   |   |
| · .               | FA   |          |   |   |     |   |   |   |   |          |          |   |   |     |   |   |   |   |   |
| A. New Circuits   | PI   |          |   |   |     |   |   |   |   |          |          |   |   |     |   |   |   |   |   |
| •                 | . VL |          |   |   |     |   |   |   |   |          |          |   |   |     |   |   |   |   |   |
|                   | SP   | 1        |   |   |     |   |   |   |   |          |          |   |   |     |   |   |   |   |   |
|                   | PP   |          |   |   |     |   |   |   |   |          |          |   |   |     |   |   |   |   |   |
|                   | TC   |          |   |   |     |   |   |   |   |          |          |   |   |     |   |   |   |   |   |
|                   | F    |          |   |   |     |   |   |   |   | <u> </u> |          |   |   |     |   |   |   |   |   |
|                   | ET   |          |   |   |     |   |   |   |   |          |          |   |   |     |   |   |   |   |   |
|                   | FA   |          |   |   |     |   |   |   |   |          |          | - |   |     |   |   |   |   |   |
| 4. Reports        | R    | 1        |   |   |     |   |   |   |   |          |          |   |   |     |   |   |   |   |   |

#### LEGEND

- PI Preliminary Investigation
- VL Vendor Liaison
- SP Specification Preparation PP Procurement

.

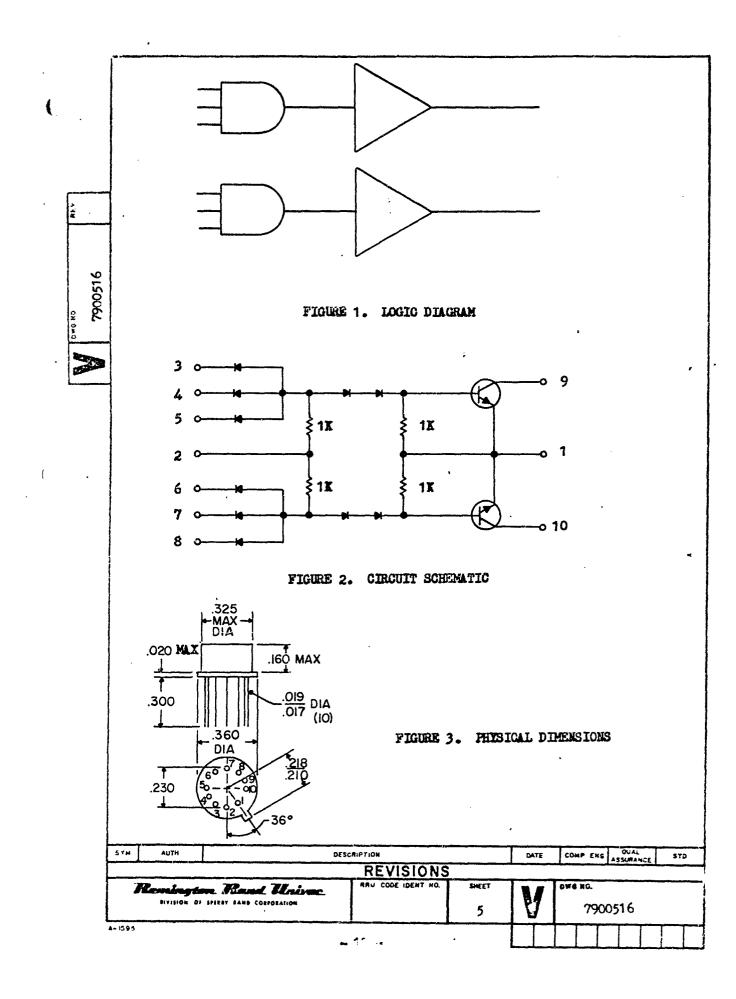

. . . . ....

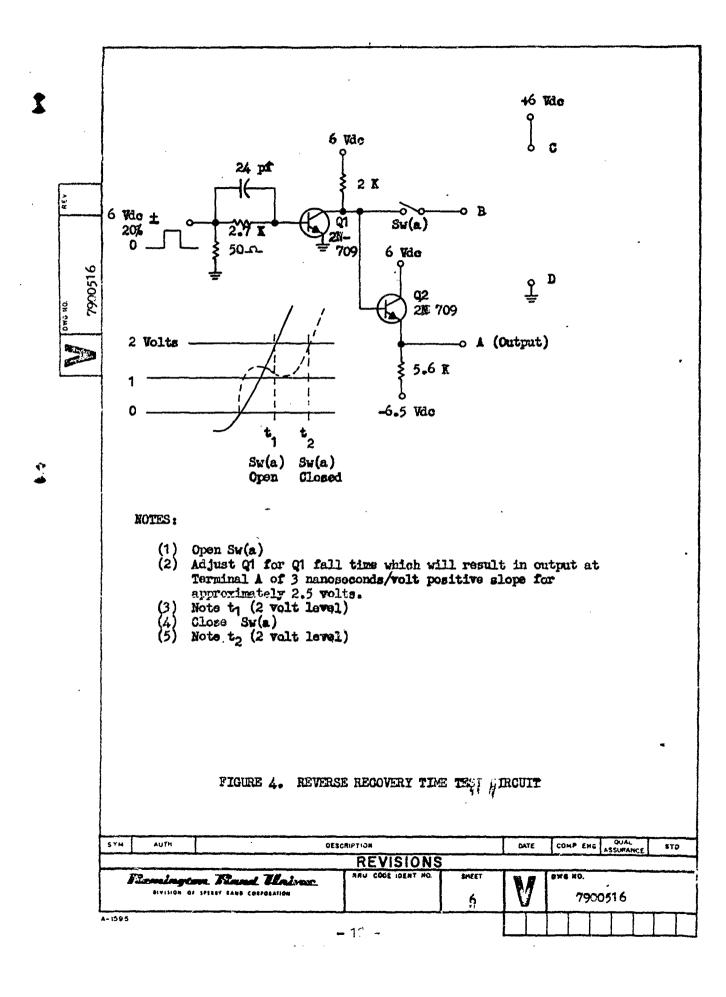
- - ----

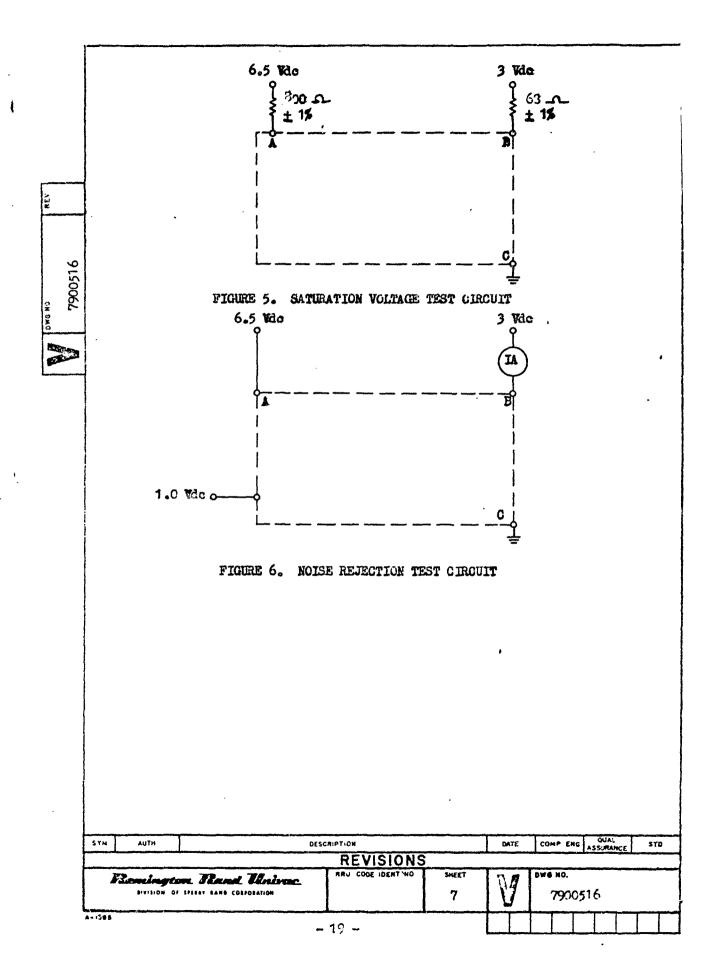
- TC Test Circuits
- FT Functional Test

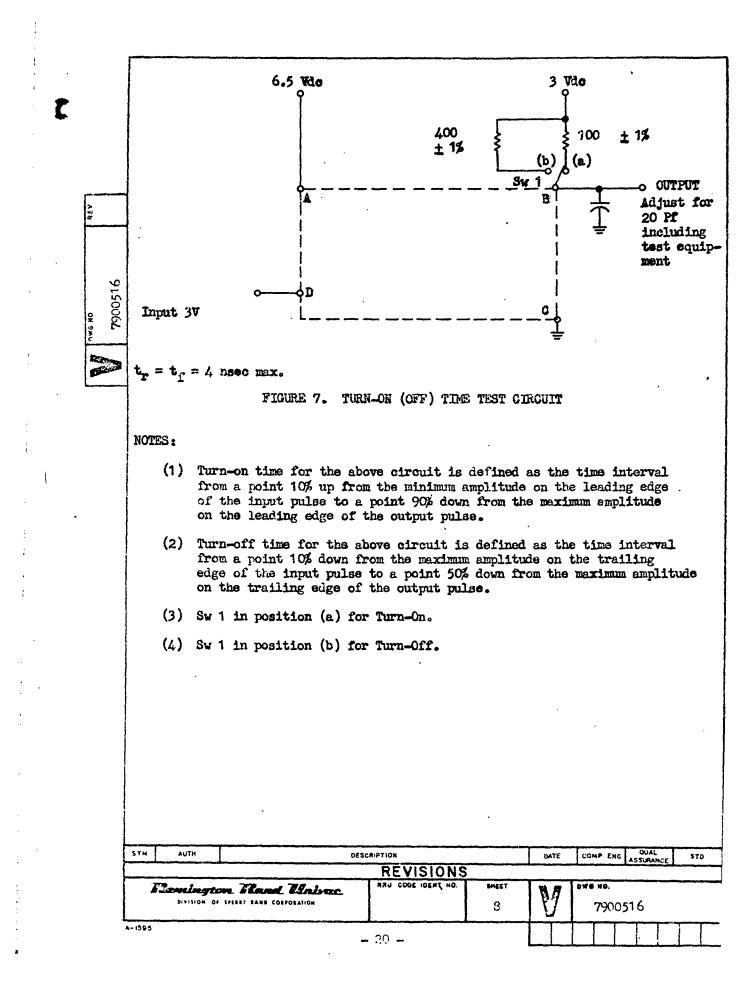
. .

- FI Functional lest
  ET Environmental Test
  FA Failure Analysis
  R Reports
  Work Schedule Complete
- = Work Schedule Proposed





|                        |        |                    |                             |          |                         |             |                  | •                      |
|------------------------|--------|--------------------|-----------------------------|----------|-------------------------|-------------|------------------|------------------------|
| (                      | •      |                    |                             |          |                         |             |                  |                        |
|                        | :      |                    |                             |          |                         |             |                  |                        |
| . KE                   | :      |                    |                             |          |                         |             |                  |                        |
|                        | l      |                    |                             |          |                         |             |                  |                        |
| ка.<br>7900516         | 1      |                    |                             |          |                         |             |                  |                        |
| оње на.<br><b>79</b> 0 |        |                    |                             |          |                         | -           |                  |                        |
|                        | i      |                    |                             | •        |                         |             |                  | ,                      |
| -                      | 1      |                    |                             |          |                         |             |                  | ,                      |
|                        | ł      | -                  |                             |          |                         |             |                  |                        |
|                        | i<br>L |                    |                             |          |                         |             |                  |                        |
|                        | ł      |                    |                             |          |                         |             |                  |                        |
|                        | i.     |                    |                             |          |                         |             |                  |                        |
|                        |        |                    |                             |          |                         |             |                  |                        |
|                        | I.     | APPLICABLE         | SPECIFICATIONS              |          |                         |             |                  |                        |
|                        | l      |                    | 3700 (Navy)                 |          |                         |             |                  |                        |
|                        | II.    | CONSTRUCTIO        | IN AND DIMENSIONS           | \$       | (As shown in            | ı Figu      | re 3)            |                        |
|                        | III.   |                    | CHARACTERISTICS             | ۇ        | (As shown in            | ı Table     | ə I)             |                        |
|                        | ·      | <u>Maximum Rat</u> | T                           | <u> </u> | r                       | <del></del> |                  | 1                      |
|                        | P      | ) (Iotal)          | Device Operat<br>Above 25°C | ing      | R1 or R2<br>Dissipation |             | sistor<br>rating | Temperature<br>Range   |
|                        |        | 200 m.             | 1.3 ms/°C                   |          | 100 mm                  | 0.6         | 67 <u>≖</u> µ/°C | -65 to +175°C          |
|                        | IV.    | QUALITY ASS        | URANCE HOVISION             | CRIPTION |                         |             | CATE             | COMP ENG ASSURANCE STO |
|                        |        |                    |                             | RE       | VISIONS                 |             |                  |                        |
|                        | K      | anoule grane M     | and Elsiver                 |          |                         | SHEET       | N/               | рже но.<br>7900516     |


|   |          | . 8                 |                     | nAdc<br>mAdc<br>mAdc<br>mAdc                                                                       | uAdc<br>uAdc                                                                                                  | 0980                                                                                             | Và c<br>Và c                                                                                                             |
|---|----------|---------------------|---------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| ١ |          | • STIND             |                     |                                                                                                    | 33                                                                                                            | ä<br>                                                                                            |                                                                                                                          |
|   |          | LIDUTS              |                     | 2 4 4 5<br>4 4 4 0<br>4 4 4 0                                                                      | 00                                                                                                            | 15                                                                                               | 0.35<br>0.35                                                                                                             |
|   | -        | NET NEW             |                     | ~~~~<br>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                          |                                                                                                               | ·····                                                                                            |                                                                                                                          |
|   |          | TOEXIS              |                     | I2-3 thru 8<br>I1-9<br>I10<br>I2-1                                                                 | 13 thru 8-2<br>1-2                                                                                            | रू<br>।<br>न                                                                                     | V9-1 (Sat)<br>V10-1 (Sat)                                                                                                |
|   | TABLE I. | SHECIFIC COLDITIONS |                     | $V_{2-3}$ thru $B = 6.5$ Vdc<br>$V_{1-5}$ = 4.5 Vdc<br>$V_{1-10}$ = 4.5 Vdc<br>$V_{2-1}$ = 6.5 Vdc | $\mathbf{V}_{1}^{2} \text{ thru } \mathbf{B}_{-2} = 4.5 \text{ Vac}$ $\mathbf{V}_{1-2}^{2} = 4.5 \text{ Vac}$ | See Figure 4<br>Connect 2 to C<br>Connect 1 to D<br>Alternately connect 3, 4, 5,<br>6, 7, 8 to B | See Figure 5<br>Connect 1 to C<br>Connect 2 to A<br>Connect 3 thru 8 to +2.4 Wic<br>Alternately connect 9 and 10<br>to B |
|   |          | LSEI                | Visual & Mechanical | Forward Current                                                                                    | Raverse Current                                                                                               | Diode Effective Speed                                                                            | Eaturation Voltago<br>(Requires effective<br>hrg Min = 40)                                                               |
| · | 3-14     | UTH                 | -                   | ર્સ                                                                                                | DESCRIPTION                                                                                                   | 4                                                                                                | DATE COMP ENG JUAL                                                                                                       |
| 4 |          |                     |                     | AND UPPERSON                                                                                       |                                                                                                               | VISIONS                                                                                          | ET DW6 NO.                                                                                                               |
|   | A 159.5  |                     |                     |                                                                                                    | <br>- 15 -                                                                                                    |                                                                                                  |                                                                                                                          |


and a second s ------

|         |                  |        | SLIM             | uàdo                                                                              |      | ukdo                                                                     |                                                                            |                                   | naec            | 0001               | ngec            | D86C                             |
|---------|------------------|--------|------------------|-----------------------------------------------------------------------------------|------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------|-----------------|--------------------|-----------------|----------------------------------|
| (       |                  | S      | MAX              | 100                                                                               |      | 100                                                                      |                                                                            |                                   | X               | ম                  | 25              | 52                               |
| REN     |                  | SLIDUT | NUN              | 1                                                                                 |      | 1                                                                        |                                                                            |                                   |                 |                    |                 |                                  |
| 7900516 |                  |        | STRUCL           | I-9-1                                                                             |      | Flori                                                                    |                                                                            |                                   | to<br>Ga        | , <del>, ,</del> 5 | JJO1            | torr                             |
| 87      | (                |        |                  | S                                                                                 |      | 80                                                                       |                                                                            | £9                                | 6               | 10                 |                 |                                  |
| (       | TABLE I. (Cont.) |        | SHULTURE OLITOTA | See Figure 6<br>Connect 1 to 0<br>2 to 4A<br>9 to 4B<br>Alternately connect 3, 4, |      | Connset 1 to C<br>2 to A<br>10 to B<br>Alternstely contact 6, 7,<br>to D | rre 7<br>1 to C<br>2 to +A<br>).o.                                         | CRD                               | 6, 7, 8 &<br>10 | 3,4,5 & 9          | Ð               | Except R <sub>c</sub> = 400 0hms |
|         |                  | CT.NT  | Intae            | See Figure 6<br>Connect 1 to 0<br>2 to 4A<br>9 to 4B<br>Alternately conn          | to D | Connect 1 to C<br>2 to A<br>10 to B<br>Alternstely con<br>to D           | See Figure 7<br>Connect 1 to C<br>Connect 2 to $+1$<br>$R_{c} = 100 \dots$ | Alternately<br>Supply Input<br>to | m 410           | 836                | Ав Ароче        | Except ]                         |
|         |                  |        |                  | o. Noise Rejection                                                                |      |                                                                          | /. Turn-On This                                                            | ·                                 | ,               |                    | . Turn-Off This |                                  |
|         | 57M              | J      | 1<br>UTH         |                                                                                   |      |                                                                          | REVISION                                                                   |                                   | CATE            | COMP ENG           | 80              | NCE STO                          |
|         |                  | 3      |                  | yton Ram                                                                          |      | UNLUNCEC.                                                                |                                                                            | 4                                 | M               | 1                  | 0516            | 1-1-1-1-                         |







