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FOREWORD"-.

This is an interim report prepared by the Graduate Aeronautical

Laboratories of the California Institute .,"Technology (GALCIT) for the"_

Aerospace Research Laboratories, Offi.e of Aerospace Research,-

United States Air Force under Contract Zo. AF 33(616)-8399, Task 7063-02,

.Structures Research at Elevated Temperaturee,. of Project No. 7063,

"Mechanics of Flight. This work is based upon analytical and experi- ,"

mental work accomplished from I January 1962 through 31 December 1962, *-

under the cognizance of Mr. Charles A. Davies and Lt. W. J. Anderson,.-

ARL Project Scientists. -

d.

It is a pleasure to acknowledge the assistance of Mr. Jon M. Kelly

in the experimental program and preparation of the report, and also that

of the Jet Propulsion Laboratory, California Institute of Technology, in

providing use of their facilities for specimen preparation. The notes

and data for this report are recorded in GALCIT File No. SM 63-6. 706-02
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ABSTRACIr

After reviewing present work in failure criteria for various

stress states, this report presents both an analytical and theoretical

study of triaxial failure of polymeric materials. The configuration

chosen for the investigation is a thin, circular, disk-like specimen -

that is bonded between rigid, cylindrical bars and pulled parallel to

its longitudinal axis.

Experimental observations are recorded as well as detailed

descriptions of testing techniques. An analytical description of the

triaxial stress state used to evaluate experimental results is deter-

$ mined by an approximate solution that satisfies equilibrium on the

average. The analysis is in good agreement with a numerical

analysis, but also includes a discussion of the effect of singular

stresses near the free boundary of the specimen. -

Using the minimum potential energy principle, a stability I

criterion for catastrophic fracture for spherical voids is made,

including details of local stresses and strains at the point of fracture,

for finite as well as infinitesimal strains. Preliminary correlations.--

of these results with more general failure theories including strain rate

and temperature effects for uniaxidal and biaxial stress states are

indicated. -
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1. 0 INTRODUCTION AND REVIEW OF RELATED RESEARCH

The general considerations underlying fracture in filled or

uinilled -ri-scoelastic materials were given by Williamsflt and

(1. 1) _Schapery , along with a description of the several types of tests

in process or under development by various investigators. Within the

reference of the well-known failure surface concept for either stress

or strain, it was pointed out that most experimental data had been

accumulated for conditions of uniaxial tension only, leaving the

failure behavior under multiaxial stressing conditions open to question.

Whereas there have been many studies for metal failure criteria, such

as the von Mises or octahedral stress association between uniaxial

and multiaxial failure, the similar connecting link for viscoelastic

materials is just recently being explored. Indeed, and as will be

discussed in more detail later, the failure space concept in terms of

the three orthogonal principal stresses which form a three-dimensional

space( U 2I U 3 ) allows for eight different combinations of stress

depending upon the octant in which the stress vector lies. Thus for a

general material it would be necessary to perform tests in all of the
4

octants corresponding to all possible tension and compression

combinations of the three stresses. While material considerations such

as isotropy can reduce the number of octants to be tested from eight
* 4

to a minimum of two if tensile failure is the same as compressive

failure, a proper application of the scientific method would require that

such implied assumptions be verified by experimentation in as many

multiaxial loading conditions as practicable.

. .. . . . .--C-
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The purpose of the investigation reported herein was to

study in particular the failure characteristics of an unfilled visco-

elastic material subjected to a triasial tension stress field, i.e.

the behavior in the Octant 1. using a round, thin disk or "poker-chip"

specimen. The discussion of the results is presented essentially in

two parts, the experimental and the analytical interpretation. Because

of the manner of testing, it was possible to observe certain aspects

of flaw formation which are also described and discussed briefly.

Generally speaking it was found that (1) near-hydrostatic tensile

stresses could be produced and observed in the urethane rubber

specimen, that (2) the experimental results could be interpreted

analytically, (3) that a fundamental distinction exists between micro-

scopic flaw initiation and overall fracture, and (4) that additional

work at several strain rates and temperatures is needed to complete

the association between triaxial and unLiaxial failure.

1. 1 The Concept of a Failure Surface in Stress or Strain Snace ""

In general, materials may be subjected to six stress components,

three normal and three shearingwhich can be resolved into three

principal stresses. On the other hand it is usually simplest to test

under one-dimensional conditions such as tension. It is legitimate to --

ask the question: Having measured the strength in one combination of

the three siresses (C" =-Fu 0 ;C =ut), can one then predict with-

out further tests the failure under some other, arbitrary, combination

r, , "~~~~~~~~~~.:.. -.. -... ,......., ...... ..... ... .... . . . ..- ... °. . .......... .. .. ... - . . . , - - - ..°.. ..• .° .'- .- ' .-- : .. . .-. "-° "- ,.. -. - "-.'.__. -... '...' . ... ., - ..... = .'.".' ... -:..% .- -. .- ' -..-.- -- .. .-.-- '...-'. .. ' .. .. ".-- - .--. -: - .'..:--.-.--.. - % ': '°. - --. ..- '..'.-'
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of the three stresses? Obviously, following a postulated failure

criterion, crucial experiments are required to prove or disprove

the criterion. Previous experience with metaL has indicated that

there is no universal criterion for all materials although considerable

progress has been made. Over the years several propobed theories

of failure have been advanced. Nadai enumerates, for example,

several different i.ilure criteria, primarily as used in the study of

metals, and it is worth restating them here. Each criterion defines

some particular functional of the stress field or strain field, the value

of which is to be determined empirically, because molecular theories . -

of strength are not advanced to the point of calculating such limits

theoretically. When the appropriate functional is exceeded, the associa-

ted yield, rupture, or fracture takes place. Seven such criteria are

listed below:

a) the maximum principal stress

b) the maximum principal strain

c) the maximum principal stress difference (or shear stress)

d) the maximum principal strain difference (or shear strain)

e) the maximum total strain energy

f) the maximum distortional strain energy

g) the maximum conserved distortional strain energy

Criteria (a) and (b) utilize the fact that the maximum stress

(strain) at any point in the material is the largest of the three principal

stresses (strains), Cy. T , C- (E1 , E E 3) at this point. In simple and

biaxial tensile fields, these functionals are identical with the yield or

ultimate stresbes and strains for these fields respectively.

---------------------------- ........................ ..... '........ ...... .. "..................-
,-" • .. ' -, - " -*,'- = -**"..' " - . -- - .. -; . ..'--'--. s ' ; ''.ff-- '' i.X: " 2, . 1. ;- :.- '
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o.4.

Criteria (c) and (d) stem from the observation that many

materials, particularly those which evince ductile fracture (some-

times known as shear fracture) do so along a pair of planes or a cone

lying in the direction of greatest shear. The maximum shear stress

has the value 1/2 (CF1 -OC-) and is obtained on a plane inclined 450 to

the direction of the principal normal stresses. This criterion is not

suitable for mathematical formulation since it is necessary to detarmine

first the maximum or minimum stresses (or strains).

An alternate criterion based on a mean value of the principal

(1.3)stress differences was proposed by von Mises . This takeb the

form

V-gT= V(gI-oF+w-y3+%- (1.1 1) q

andCT is termed the mean deviatoric stress. For both simple uniaxxa.
0

* tension and biaxial tension, CY0 is identical with the yield or fracture

stress. For pure shear on the other hand, the yield stress turns out to

be (3/ f3.

The mean deviatoric stress (or strain) has not been listed as a

separate criterion, because it is also proportional to the distortional

(1.4)energy criterion proposed by Huber and Hencky . They observe that

2 2 2 2
• _ _ - (1 .1. 2 )

d 64 12Y

This mean deviatoric stress is also 3/ r2 times a quantity known as

the octahedral shear stress. The total strain energy listed under (e) was

* .
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proposed by Baltrami and Haigh ( ' 5) It does not prove satisfactory g

since there is no correlation between behavior in pure shear and in

pure hydrostatic compression. The conserved distortional strain energy

refers to the energy stored in a viscoelastic or plastic material, i. e.

over and above the amount dissipated. The theory of application

of this criterion is still not in a satisfactory state.

The important point to note is that no universal fracture

criterion has been established, and that the success of a given fracture

hypothesis depends in large measure upon the material with which it

is associated. A

Becaus- of the many criteria for fracture, it is convenient to

have a method which permits the analyst to visualize their region of

possible application. Inasmuch as the three principal stresses are

orthogonal and participate in all stress theories of failure, one way of

presenting the criteria is in terms of principal stress space where the

magnitudes of (1,j C, and U13 are measured along the orthogonal axes

- to form octants. A similar approach could be adopted for strains. The

rupture of an uniaxial tensile specimen at the stress G would there-

fore correspond to a point on the CT' axis at the particular value U
3 3

Other combined loadings would in a similar manner correspond to other

. points on a rupture surface F(C1  C-, C"3 a constant, where the object

• of failure testing would be to perform experiments under all different

combinations of combined stresses in order to trace out the failure

,., surface in all octants. Presumably there would be many surfaces, each

* corresponding to a given strain rate for which the surface was obtained.

71



Then, having obtained such surfaces experimentally, the analyst would

proceed to check out various criteria in the different octants and the

one lying closest to the test surface would be the desired failure criterion.

It is convenient to tabulate the various possibilities in the TV

different octants. By simple permutation one has

Octant 1 2 3 Positive Stresses

I+ + + 3

KU+ + -2

[ - + 2

. IV + -1

7V - + +2

VI - + -1

KVII - - + 1

By virtue of equivalence of the three principal axes, it is noted that

there are four categories of octants characterized by the number of

stresses of the same sign. Thus octants I1, MI and V are similar, and

octants IV, VI, and VII are similar. This means that, for an isotropic

material, only four octants need to be tested. If in addition, it is

known that the compressive properties are the sae as the tensile

properties, then only 2 octants need be tested. On the other hand if the

material is anisotropic, or if anisotropy Is induced by virtue of straining,

then it will be necessary to check six octants for an orthotropic material,

and eight for a completely aeolotropic material.

0 1 1

.....................................
---------------------- -------------
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It is not the purpose to enter an extended discussion of the

various criteria at this time, especially as it is available else-
(1.1, 1.6)

where. On the other hand it is important to recognize how the triaxial

tests to be reported subsequently fit into the general scheme of deter-

mining failure criteria, and in particular the character of the failure

surface in Octant I.

1. 2 The Nature of Viscoelastic Behavior

The most important distinguishing characteristic of visco-

4elastic material is its time dependence. Metals can exhibit creep,

which is a time dependent deformation under load, and in a sense visco-

elastic deformation is much the same. The major difference between

the creep behavior of metals and polymers is recovery. Viscoelasticity

usually implies complete recovery, unless the polymer is non-crosslinked

such that there are no cross-ties between the molecular chains to

inhibit the flow. However with respect to fracture in elastomers, in

contrast to metals, it is n-cessary to extend the usual concept of brittle

and ductile failure. Ductile fracture in metals is characterized by

irrecoverable distortion and permanent set, analogous to the behavior of

an uncrosslinked polymer which also evinces unlimited, unrecoverable

flow. On the other hand crosslinked polymers, the type ordinarily employed

4 as engineering components, recover completely from even very large

straining although the strain at failure may reach several hundred percent

compared to elastic brittle failure in metals of only a few percent. We

4 shall therefore restrict the discussion to crosslinked polymers, and

shall use the term elastic fracture as the larr" strain analog of small

I

- _. . " -. - : ; .- .-_7.. . . _._. .. _ 1.-. ._._.... . ... ., . -.. -.- .., . . . . -:. .-. -._:.: . :
-. .: : -: -.--- c-- - <' -. . . ....--,:-:- -- -- :-:,- . -
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strain fracture customarily referred to as brittle. In either case,

however, the stress-strain relation is elastic, or potentially visco-

elastic, with the distinguishing feature being the strain magnitude at

failure. With this understanding therefore a propellant material might

have a brittle fracture below the glass temperature but an elastic

fracture above it. It still remains however to deduce which of the

various criteria is appropriate for predicting the fracture.

Before continuing, it is appropriate to define the terms elastomer

and polymer as used in this report. A polymer is a network of long

molecular chains which may or may not be tied together chemically.

An important characteristic of all long chain structures is the glass -=

transition temperature T above which polymers behave rubberlike,
g

and below which, glasslike. If the polymer chains are not tied together

chemically, the structure is termed a plastic - - a brittle plastic

below T and a rubbery plastic above T . The extent of the elastic
g g

deformation evinced prior to flow to rupture in the rubbery plastic is

markedly a function of interchain entanglement and therefore of chain

stiffness or structure.

If on the other hand the polymer chains are tied together chemically,

the structure is termed an elastomer or rubber - - a brittle rubber below

T and a rubbery rubber above T . The extent of the elastic deformation
g g

evinced prior to rupture in a rubbery rubber is markedly a function of

chain length between crosslinks, and is not markedly sensitive to chainI
structure. Both rubbers and plastics become increasingly viscoelastic

as the temperature is lowered with rubbers having lower glass transition

temperatures in general than plastics, and thus becoming viscoelastic

and then brittle in lower temperature ranges than plastics.

°• .. . .. ...- ...-. - - - . . ...-.. ... . . . ..... \ , . . . . -.-.- -. '.-.



1.2.1 Linear Viscoelastic Behavior "

Linear viscoelasticity, which is the type of behavior usually

assumed for analytical simplicity and is fortunately a sufficiendy close

approximation for most cases, implies that the time dependent stress

or strain response to a prescribed input force changes only in linear

proportion to the magnitude of the applied force, providing the time

variation of the force is unchanged.

Researchers have determined several important features of

linearly viscoelastic materials. It is first important to recognize

that viscoelasticity is intimately associated with the stress-strain

behavior - indeed it is the stress-strain behavior. Whereas in the

usual application of Hooke's law for metals, one writes that the

stress is proportional to strain, with the constant of proportionality

being the (time-independent) Young's modulus, one expects the constants

of proportionality for viscoelastic materials to be time and rate

dependent. The resulting stress-strain law can be cast into several

forms such as using the hereditary integral representation(1.7)

or perhaps more clearly for the present purposes in terms of spring and
(1.8) :

dashpot elements which have both a physical and thermodynamic basis -

In operational form one can write

[a +- + bm + +bj (1.2.)t n  a ~ bm Aim+ "1

where an, bm are constants, associated with the elastic spring and

viscous dashpot elements(1 " 1) which must be determined experimentally. --

For example if the material were strictly elastic and not time or rate

. .-,. . . . ., , , .. . .-" ". ." •. . .. ., , .. .. . .. .* - . -.._ , . ,, , ,. . . . .. ..
... -. : ,.. ,. . - . , ~ A W t ~ ~ ... , :,..- . ... ... ..:,. A,.,, S- , A.# .'. .- .... . - :. -o .az.



10 -
dependent, the ratio b /a would be exactly Young's modulus. The

J2 0

extension of this elasticity concept can be most easily seen by taking

Laplace transforms of the foregoing relation to give

rk pm
0n-

such that the analogy between the Laplace transformed stress and

strain and the physical elasticity variables is immediately recognized,

because the transform parameter p has become merely a parameter in

the pseudo-elastic stress-strain law. Viscoelastic stress analysis -.

therefore in principle amounts to solving an as:ociated elastic problem

in the Laplace transform variables (.- 9), and inverting the solution,

exactly or approximately 10, to obtain the physical stresses or

displacements.

The experimental determination of the a , b material constants
n m

is not the subject of this report, but suffice to say a material characteriza-

tion must be available before either a stress analysis or a strength

analysis can proceed. Techniques for converting test data into a

characterization form convenient for engineering use have been previously

(1. 10)
discussed by Schapery " I

S7N

. .r - " .. ....
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1. 2. 2 Time-Temperature Relation

In connection with the experimental data it is important to

note that a fortunate experimental association between strain rate,

or time, and temperature has been established 1 ll) In particular,

one has the so-called WLF relation

K I (T-T R  1.3

log a lo (t./tR)= I(T TR) (1.2.3)
10 1 -

where the near universal constants are K u 8.86 and K a 101.8 for
1 2

temperature expressed in degrees Centigrade. T R is a reference

temperature found to be approximately 50°C above the glass transition

temperature of the material. In the foregoing expression tT is the time

to observe some phenomenon at the temperature T, and tR is the

time to observe the same phenomenon at the reference temperature.

Thus if one measures the relaxation time under a given strain at one

temperature, its value at the same strain but at a different temperature

may be calculated directly from the WLF equation. Henca providing the

material obeys the semi-empirical law, which has been tentatively -

verified for the material used in our experiments, it is possible to

explore the viscoelastic behavior over a wide range of temperature

by a reasonable amount of experimentation at one temperature and

various imposed strains, or vica versa. While it remains to show

that this correlation will apply to failure strains under triaxial stress,

the fact that Smith (.12)has found such correlation for uniaxial tension

failure leads one to anticipate similar behavior in multiaxial stress

-!A

b,-.. , ," .-, -= ,':', .. .- ,-, - - '.".-. ..-... -.. , - - -' -. .. -'- . "- .. -- --- ': , -,' .r ,' ' .' . ,. -.. . ' -. . . - '- - " '' '
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fields. But again, as indicated in previous paragraphs, because

such association has not yet been established experimentally, it

would be profitable to do so.

a4-

1. 3 Failure Behavior in Uniaxial Tension

As discussed previously "  by far the largest accumulation

of data relates to fracture of a standard JANAF specimen (Figure 1. 1)

under simple uniaxial tension at different constant strain rates and

temperatures. One common testing machine is the Instron tester which

will impose constant crosshead motion through a range of speeds from

0. 02 to 20 inches per minute, over a temperature range between -100°F

0
and 160 F. The output of the machine is an automatically recorded

force-time trace to fracture (Figure 1. 2) which provides the basic
-.-

experimental information. Depending upon the magnitude of strain to

fracture, the data is converted into plots of nominal or true stress,

i.e. force divided by original or actual cross sectional area, versus

strain. The accuracy of the latter quantity is frequently open to

question because the elongation, or crosshead separation, is not

- distributed evenly over the specimen :ength and some "effective length"

must be selected. It is common practice to use an effective length of

2.7 inches for the JANAF specimen. It has been noted in an earlier (1.1)

* report however that Baldwin (1. 13) and Jones (1.14) have had

some success in using a square flat end, bonded specimen which reduces

the amount of flow near the grips and hence removes part of the gage

" length indeterminacy. Greensmith(1 15) has reported and reviewed

.

:-....., . ., . ..- ... . ... - , -. . . , - ,:,- , . '.. -.... .- .... - ........ .. . . . .,... _ .;. .,:
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another type of tensile test wherein ring or thin hoop specimens are

stretched over the two Instron supports. Except for a very small

length curved directly around the end supports, the entire (double length)

of the specimen is in tension. This type has the definite advantage of

keeping the gage length uncertainty to a minimum. It may also be noted

that the specimen is easy to test, although somewhat harder to prepare,

particularly for filled materials.

The uncertainty in the basic data emphasizes the desirability,

and near necessity, of developing local strain indicating device. for low

modulusz materials. Several improvements along these lines have been

or circle patterns distributed over the length. While some increase in

accuracy has been reported, the data serve also to indicate in many

cases a basic nonhomogeneity in strain distribution due to the filler

particles in the propellant.

Neglecting nevertheless these important experimental refinements

and working only with the reduced experinmental stress-strain data, one

turns next to the problem of organizing the extensive test information

for many temperatures and strain rates in useful form. Presuming

for the most part that maximum stress, m , and strain at maximum -_

stress, E are the more significant quantities Smith( has shown

for a wide variety of polymers that a very reasonable correlation of

4ultimate tensile properties can be obtained if the data are plotted against

the logarithm of the previously mentioned WLF parameter.

A set of his typical strain data is shown in Figure 1. 3 and

similar stress data in Figure 1.4 Note in the latter case that stress I

.- .%"
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has been normalized by a temperature ratio because polymer theory

predicts a linear increase of retractie. forces with absolute tempera- "Z

ture. Both sets of data were normalized using the temperature shift

factor, experimentally deduced from separately shifting (i) strain at -

ultimate stress data, (ii) maximum stress data, and (iii) modulus data,

and finding all three agreed if the near universal constants K U 8. 86.

Kz 3 101.6 and TR a 2690K were used.

Before passing on to a consideration of fracture under multi-axial

load conditions, it should be observed that the temperature shift cor-

relation is reasonably well founded experimentally but tnat the limited

strain rate capability of the Instron tester is not particularly well

suited for verifying the correlation over wide extremes. This may be

noted in Figure 1. 3 where the test data at va'ious temperatures barely

overlap. One would feel much more confident if, for example, the open

circle (160°F) data obtained over the 1/RaT range 5 to 8 could be

extended to lower values by increasing the strain rate, hence lower

I/RaT, at the same 160 0 F temperature. Bearing in mind however the

limitation of the tester, approximately 20 inches per minute cross head -

* motion maximum, it is impossible to fulfill this desire without changing

the specimen, which would not be particularly acceptable.

The obvious answer is to inquire if higher rate testers would be

* available. Several have been developed. One of these is the Allegheny

Instrument Company device ( 1 16) which is generally well known. Another

is one developed by E. I. DuPont de Nemours and described in a recent

(1. 17)p paper by Jones - Basically this latter machine, which achieves

-u " . o .- d,. - - . ° \ . . - , - - - .." . -o - . . . . .- - . . .- - .- . ..-.. .- .'.- .-. . - . .. . . - % ." " .
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high loading rates by means of a controlled explosion of smokeless

powder in the head, can strain JANAF specimens up to approximately

200, 000 inches per minute. While it is premature to generalize,

indications from this and other high speed tester work are that the

theoretical WLF shift factor for ultimate fracture of tensile JANAF

specimens is sufficiently valid for engineering purposes.

1. 4 Related Multi-Axial Testing

Inasmuch as the uniaxial testing procedures for simple JANAF

-* tension specimens are well known and data reduction techniques widely

disseminated, the subject has been rather shortly dismissed. On the

other hand, from a structural standpoint as distinguished from the

quality control objective, the important subject of the fracture behavior

of viscoelastic materials subjected to biaxial and triaxial loadings needs
* considerable amplification, but suffers from lack of experimental data.

At the present time, it is proposed to discuss some experiments in

this area with particular emphasis upon their suitability for viscoelastic

materials and due regard for testing equipment convenience.

1.4.1 Pressurized Tensile Tests

Perhaps one of the simplest extensions of the present uniaxial

tensile test using the Instron tester is to enclose the specimen in a leak

proof container filled with air or liquid maintained at an arbitrary

compressive pressure. Within the same criticisms of the basic test

with no external pressure, a triaxial tension-compression stress field

-." . . .o- ,- -

... ..'- •.,.-.., ..- ": -.-. . . ,-. . -. ,.-..,- ,.., ,.- -,-,., . ,- : o.,,_. -.-
*'- -- :e-. -°' " "" " " " " * " " '' - -- - - - - - - - - - - - - - - - - - ---- - - - - -- -. " " "- .'" '" '""" e.
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03 can be imposed. Suppose

that the geometry is as shown

on the sketch. Then the stress ii
ko and strain analysis for the

central portion of the specimen

subjected to the uniaxial tensile

a stress gives

F3 C32 ~K J a " c= 1- 2vJ (1.4.1)i

g = = ; E 1= E= t[ v +c1-zok (1.4.2) '.-

One would expect therefore an apparent uniaxial modulus for this tri-

axial field of

E = (1.4.3)a 1- 21k

where, because in the tests as described k is negative corresponding to a

compressive stress, the apparent modulus would be smaller than the

uniaxial modulus.

Some unpublished data of Kruse ( 1 .18) suggests that for a

filled material, the failure under these conditions agrees equally well

with failure data in uniaxial tension expressed either as octahedral

shearing stress or uniaxial ultimate tensile strain.

• .....

ill; " '- -



-17-

1. 4.2 Diametral Compression of a Dis ..

FitzgeraldP 19) has suggested that the disk type specimen

may also be used in an alternate manner to examine a mixed tension-

compression biaxial stress field. If a circular disk of uniform thick- .- A

ness, h, is loaded in dianetral compression by a load, P, the stresses

P at the center are of opposite

sign and equal to (1 .2 0)

. Gx- (080) (1.4.4)

P 0( (0 0) (1.4.5)"TIrbh.---

Furthermore the diaretral extension, Zu(b, 0) along the horizontal

(y a 0) plane is -" .

2u(bO) =E --. -1+ (1.4.6)

Providing there is not local failure at the point of load application, this

specimen has the advantage that the critical stresses occur at the

center and may be easily observed. Furthermore, measurements of

the horizontal extension permit an indirect check on the accuracy of -.

the foregoing formulas. Presumably as long as the extension stays

linear with the applied load, even though the deformations near the

point of application may be large, one would feel justified in using these

stress formulas based upon infinitesimal deformation theory. From the

standpoint of fracture, Fitzgerald has found'" 19) that the character of

failure at the center changes from tensile to shear depending upon the a

-" ..... .... -.. -. .. . .. .- -. -. ' .. - . .-.. .- ,..........,....-........-.. . . . .. - -. .- -. , . ., , .-.. . .....- .---- .~~~~~~~~~~~~~~~...-......• . ..-.-. ,..-...-........ ... _. ...... .- ,-- ..........-... .. ,



the temperature of the test. This latter point, of course, enphasizes

its potential significance as a sensitive test for determining a fracture

criterion.

Incidentally, it may be observed in passing that the range of

central stresses which can be imposed, i.e. J / (7 a -3 from the
V X

preceding equations, could be extended by the use of elliptical instead

of circular specimens, although at some expense in experimental

simplicity. The results of a combined theoretical and experimental

investigation using the elliptical specimens have been reported by

Brisbane. (1.21)

I. 4. 3 Torsion of Rod Specimens

Among the various types of mechanical testing, torsion stands

as particularly important. There are several reasons for this. First

of all, a cylindrical specimen subjected to a small angle of twist under-

goes pure shear; the applied torque is directly proportional to the

measured twist angle per unit length, the proportionality constant being

the shear modulus. Thus the torsion properties for small strain should

be independent of Poisson's ratio.
0

As the shear strain is increased, however, new effects enter the

picture. Finite elastic theory predicts a lengthening of the specimen

known as the Poynting effect.

It may be deduced that

(+ -1( a (1.4.7)
* 4

.... ......... . .... .. .......... .... . ... ..... ......... .. ...- - .. .. . ..,. .- ., ,-. ., , .. . ., .- . -, ,. , . . . .. ... . ... . . , .. .- .. . . .. . -
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where Ax R/o is the axial extension ratio

a, b are the inner, outer radius of the cylinder respectively

k is the angle of twist per unit length

One obtains the preceding relation by application of finite elastic

theory to the strain transformation defined by
rr

0=0 + kZ
z= Ud

where the bars refer to the deformed coordinates of material points.

The undetermined constant which enters into the theory because of the

incompressibility condition is determined by setting the -itegral of the

axial stres s over the end face equal to zero. Figure 1. 5 shows a plot

of i\ -1 vs k 2 , taken from recent data (1 on filled polyurethane.

Note the excellent straight line correlation in agreement with theory.
2 2-

The theoretical value of the slope is 1/8 in /rad , whereas the measured

2 2
value turns out to be 1/7 in /rad . Considering the assumptions made

in deriving the extension ratio X, the agreement is excellent. The

most important observation that can be deduced from this is that the

elastic properties of the binder predominate at least up to three percent --

shear strain. A similar type of verification is provided by the recent

K-(1.23)data of Bergen, Messersmith and Riviin on filled rubbers

On the other hand, indications are that the elongation will U

decrease as the twist is increased further. This is to be expected since

the pullaway of the binder from the filler will tend to convert the local

shear into local simple tension around the filler particles. What effect

K-..
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this will have upon fracture in torsion is not known. It is suspected

that the fracture criterion will not be as simple for a filled elastomer

as an unfilled one, therefore torsion should provide an excellent way

to check out the applicability of the distortion strain energy criterion.

Furthermore, torsion under superimposed hydrostatic pressure could

then be used to check out the importance of anisotropy.

1.4.4 Hollow Tube Tests

Providing a satisfactory strain measurement is available, the

behavior of an internally pressurized thin or thick walled cylinder up to

and including burst would yield fracture information under biaxial

tension, for zero axial stress, or with the added triaxiality depending

upon the nature of a finite longitudinal stress. This type of specimen

was first used with mixed success at the U. S. Naval Ordnance Test

Station~l 24) employing an oil for the pressurization. The major

difficulties aside from such obviafs ones as preventing leakage, are -

to obtain an accurate strain history and to measure the applied time

varying pressure. These tests can be used upon either thin or thick

walled cylinders, and with or without being enclosed in a case. In

some cases it will be more convenient to check out a thin case-bonded

design using externally mounted wire strain gages and inferring the

tube strains by working backward using the theoretical solution. For

most purposes however, the resultant case-to-grain stiffness is so high

that accuracy is poor.

It should also be mentioned that it is possible to extend the

ri' rod torsion tests mentioned in the preceding section to hollow cylinders,

" ..........................-..-,.'--....--,,.........'-'.-'-.,..-.--..-..."."..-"-. - "--:-" ."-..".....-" '1'..'-
.. . . ...- .. .- .- . .. . .. . .-.. ..._'_- . _ .- ,. ...-. ,.... .-.-...... ....... . . . . . ....-.. .-.-.... . . . ..-. ,..,., .. ....- ," -. '.,, -



preferably thin walled because of the relative accuracy with which

the theoretical solution is known. Another test variation using the

hollow tube is the possibility of using this geometry to examine the

effect of orthotropy of multi-layered cylinders. Some preliminary

analysis along these lineb was presented by Pister and was reported

in Reference 1. 1.

1. 4. 5 Crack Initiation in Sheet Material

A general review of fracture initiation and propagation in

viscoelastic materials has recently been presented by Williams

where one of the important conclusions was that it now appears

possible to understand the mechanics of tearing fracture. In much

" the same manner as the controlling mechanism of ductile or brittle

fracture in plastic distortion vs. surface tension, one finds that the

viscous dissipation of energy, not surface tension, is fundamental to

tearing in viscoelastic materials. Similar to experiments in metal .

fracture, it is found that experiments are most conveniently carried j

out in sheet specimens containing one or more initial cracks. A common

configuration for metal sheet specimens not yet used extensively for

viscoelastic media is the tensile strip containing a crack perpendicular to

L the load.* This test in conjunction with Griffith fracture theoryl" 26)

can be used to determine critical crack length, i.e., to find what size

or flaw a given material of specified thickness will sustain under a C

specified external stress before it becomes unstable and propagates

catastrophically. For catastrophic propagation of a brittle fracture

Griffith deduced that, for an internal crack of length Zb in an infinite

S* WSee ".G. Knauss, "Rupture Phenomena in Viscoelastic Materials,"
Ph. D. Dissertation, California Institute of Technology, June 1963.

F2 2.-*> -..............- ..
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sheet, the applied stress c must exceed C whereCIOcr

..4E T-

S(1.4.8)

where T is the characteristic surface tension of the material, pounds

-3
per inch. For glass T-' 10 pounds per inch.

Viscoelastic materials with their higher internal dissipation

are however not usually thought of as brittle materials except in the

glassy regions where the above relation might of course be expected

to apply. In a fundamental paper Rivlin and Thomas (1.27) proposed

an extension of the Griffith hypothesis for the rupture of rubber and

found it was possible to correlate the tearing, providing T was inter-

preted not necessarily as surface energy but merely as a "character-

istic energy"

K:v r= (1.4.9)
T- JA

where the internal strain energy at tearing is Vcr' the cross-sectional

area of the specimen is A a Zbh, and the energy changes are evaluated

or measured at a fixed length, i.e. clamped ends.

Their initial work was extended by various collaborators

1.33) who find that an energy criterion does seem to exist as measured

upon various geometries and loading conditions. The fact that T is

relatively constant, at a fixed strain rate, for various geometries is

encouraging. If one approximates their data analytically, it is found

that(1 .29) , for GR-S gum vulcanizate material,

2
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fI3.6T 0T sec at 90 0 C (1.4.10)

and

1.481T -40xl10 sec 4at .
TSOXO% ) at 25°C (1. 4.11) :..

where t is the time to failurejwhich reflects the strain rate sensitivity,
Z 7 2 2

and T is in ergs per cm . (10 ergs/cm b 60 in-lbs/in ).

They further observe that T can be approximated by the

relation (1. 29)

T% Wdd (1.4.12) r

where W is approximately the critical strain energy density for failure
d

as determined in an initially uncracked tensile specimen, Wd%/ (ZE),

and d is the apparent size of the flaw or the diameter of the crack or

razor blade cut at the crack point in the unloaded position. And finally,

Greensmith(I. 29) presents some data which suggests that Wd may be

approximated at 25°C by

S=5OOxio 5  t Sec (1.4.13) "

0r

so that dividing the values at 25 C, there results

d 0.03 cm. 0.01 in. (1.4.14)

W - "-. -
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which is of the order of the measurements also observed by Braden

and Gentl. 3 4 , 35). In principle then one may obtain the characteristic

tearing energy by measuring the energy density required to fail a tensile

specimen and reduce it by the diameter of the flaw.

It is possible to arrive at their results for a flat sheet by an

alternate interpretation in terms of the characteristic average stress -

distance, 8, which is the distance from the crack tip beyond which the

classical elastic solution is valid. If the a" and a . are averagedx y

locally in the vicinity of the crack point, one can deduce an average -- .

local stress

-cJrv -(1.4. 15)

so that the factor (2b/ 8)1 / 7 is essentially a stress concentration factor.

Distortion strain energy is computed, taking account of the stress field

at the crack a7 - C" and a- 0, to find for a Poisson's ratio of one-half
x y z

so that using the value of and assuming incompressibility, the

critical strain energy density at failure in this specimen becomes

C72

Wd f~2b(1.4. 17)
2E 2E

But using the classic Griffith formula in the form

I 2
T=-- J"b

n 2
.•"""""
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one finds

T rw (1.4.18)
2d d.-

which of course is the same form as T Wdd but associates a character-

istic distance within the material , i. e. perhaps a molecular chain

bundle diameter, with failure.

It is also possible to show the connection with local radius of

curvature~l 37) by working with the general solution for the crack field

(1. 36) By integrating the elastic stress field to find the displacements,

one can compute in particular the displacements of the crack boundary

for the deformed, i.e. loaded, specimen. For the internally cracked

specimen the shape of the crack or hole is eliptcal 38) and the radius

of curvature at the sharp point of the crack, R, can be associated with

the applied stress as

2
CF..

R=4 b (Q)(1.4.19)

E~
and hence in terms of the average local stress, CT"

2R- d- 0  r) (1.4.20)

so that one has the further comparison

2 d t EaN
2 --w d ..-W

. . ..
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which would also agree with T =-W d if the local value of averaged

stress at the crack approached values of half the tensile modulus*.

It should be emphasized that these latter associations have been

made after utilizing the assumptions of infinitesimal elastic deforma-

tions for sheet specimens whereas the work of Rivlin et al. includes

large strain measurements on various geometries. Nevertheless it

is encouraging to see that the effects predicted by more sophisticated

stress analysis are not inconsistent with these other experiments and

analyses.

0

1.5 Biaxial Failure in Sheet Specimens

Failure experiments under biaxial tension, which contribute

data for the limiting planes of Octant I of the failure surface, can be

., most easily performed using a pressurized membrane. On the other

hand, even a thin membrane has finite thickness and hence in trying

to resist bending, particularly near the supporting edge, the specimen

m often tends to fracture under combined bending and stretching stresses

(1. 18, 1. 39)
Also the contribution to the stress field due to the

clamping pressure at the support, necessary to prevent the specimen

. from pulling out of the test fixture when the pressure is applied, tends

to make the correlation of analysis and experiment difficult. On the

other hand if the failure takes place near the center of the, say,

circular membrane specimen, incidentally usually implying rounding

off the support edges in order to induce failure away from the edge,

- * This type of assumption has been invoked by H. Neuber, Theory of

Notch Stresses, in estimating the maximum stress at a crack point
in metals.

0~
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useful data should result if the applied strain rate can be controlled.

S. 5. 1 The Homogeneous Biaxial Test
N .-

Another type of test, explored in a related GALCIT program

(I. 4C)
is one wherein equal biaxial tension has been imposed, without

normal pressure, by merely applying unifo m displacement around

the edges of a square sheet specimen whose sides are glued to wire

hooks approximately one half inch apart. The other ends of these

hooks are attached to small ball bearings which are supported, and are

allowed to elide on, twc V-shaped guides which can bc seen in

Figure 1. 6 . As the load is applied to the guides this arrangement

produces the homogeneous biaxial extensions described above. There

is of course always some non-homogeneous deformation of the specimen

near the edges; however, by painting square grids on the surface and

observing their deformation it was found that these edge effects

propagated only a small distance into the specimen. The biggest

problem with these tests is the premature fracture in the vicinity of

the hooks. This problem was eventually solved by changing the design

and spacing of the hooks.

1. 5. 2 The Strip Tension Test

A second biaxial, but not equal, tensile field specimen tested

* (1.40, 41)
at GALCIT consisted of a rectangular sheet specimen bonded

on its longer edges to steel plates which are then connected to the testing

machine grips, (Figure 1. 7) A tensile stress C" is applied perpen-

dicular to the longer edges of the specimen. The stress normal to the

. l[ , . . - .. ,-- ,. ".-,- . .- ..

* . ; . . . . .. . • . . . . . . . .',J l ' ' .. "*-"- . . , . -, ' " .- ,, ' .. . _-
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she-t, GU, is zero. Under these conditions a major portion of the
y 

.

specimen between the plates is subject to plane strain conditions

along most of its longer length, i.e. * 0, E a /E , C3

2(l- /E. Near the ends of course the conditions are not

plane strain; however the end effects can be reduced by increasing

the length of the specimen.

The first strip experiments performed were not very success-

ful in producing failure data since premature cracks were formed

near the ends of the specimen. This problem was subsequently

corrected by redesigning the plates, which were glued to specimens,

so as to have rounded-off corners instead of sharp ones. Further

improvement was obtained by designing "dog-bone" shape specimens
(1.42) These specimens have a low stress in the vicinity of the plates

and the failure always occurs in the center portion of the specimens.

A mold has now been made which enables casting a number of these

specimens simultaneously.

In all of these experiments the extension and the load were

measured on the Instron machine, the strain was then calculated by

assuming that the extension was uniformly distributed over the total

strained width of the specimens. The changes of thickness of the

specimens were measured by the micrometer device referred to above.

This device consisted of two micrometers, capable of reading to 10- 4

inches, fixed on an aluminum U-shaped bracket. The micrometers

were electrically isolated from the bracket and connected to opposite

terminals of a dry battery. The specimens were coated with a

c- conductive fluid and therefore when both micrometer spindles were

Ik



touching the specimen the electrical circuit was complete; this

permitted very accurate thickness readings.

1.5.3 Comparative Data -

The latter two tests have proven reasonably efficient for

assessing both the mechanical characterization and the failure

characteristics of several materials such as ( I . 4 0 , 41, 43)

a) SBR - 1500 rubber (1.75 o S)

b) SBR - 1500 rubber (3 o S)

c) Polyurethane foam rubber (47 9o voids by volume,

~40fA diam-ter)"

d) Natural rubber (2 9o sulphur)

e) Natural rubber (4 9 o sulphur)

f) CIS - 4

g) Paracril- B

h) Neoprene- GNA

i) Butyl - 217

The mechanical (stress-strain) characterization of the material

o involves the determination of the form of the strain energy function,

which procedure is discussed in reference (1.44). The evaluation of the

failure data and a determination of the failure criterion from the experi-

o mental data is described in reference (1.45). The first step in obtaining

(1.44).the form of the strain energy function is to assume the basic form
%3-

of this function which is completely defined up to certain unknown para-

meters. From this form of the energy function the stress-strain

relations are then calculated using finite elastic theory. The constitutive

: .
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laws thus obtained are then compared to the experimental data from

the uniaxial, biaxial and triaxial tests. This comparison enables the

evaluation of the unknown parameters in the assumed energy function.

The failure surface obtained from the experimental data is shown in

Figure 1.8 , which is taken directly from reference (L.45). It can

be seen from this figure how the failure surface is developed from

the four different types of tests. The uniaxial tests define the points

at which the failure surface intercepts the three stress axes and the

biaxial tests, both the strip and the homogeneous, define the lines

of intersections along the three stress planes. The data from the

triaxial tests produce points which define the actual shape of the

failure surface throughout the octant itself.

The procedure for carrying out the latter two kinds of biaxial

tests has been developed to high efficiency, and a large amount of

data has been obtained for the purpose of mechanical characterization

and for defining failure criteria for several materials.(1.46) Most of the

experiments however have been conducted at room temperatures and

slow loading rates. It remains, therefore, to extend this work over

a range of temperatures and loading rates. The Instron testing

machine including a temperature cabinet is now operational and thus

the complete test facility will permit experiments to be conducted in

0

the temperature range from -100 to + Z50 F.

1.6 Triaxial Tension Failure

It has previously been indicated that one of the important

combined stress fields was that of triaxial tension. Fracture under

C •ft .
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this loading condition, Octant I, would contribute heavily toward

determining the overall fracture surface. In particular if the material

could be considered as isotropic and homogeneous, thus probably

excluding filled materials, a definition of the failure surface in this C

octant would give one fourth of the information necessary for defining

the complete surface, because as shown earlier only four of the eight

octants would be independent.

The production of a tria--dal tension field is not easy unless

only small stresses are desired, in which case vacuum pressure

can be used. Usually however fracture stresses exceed 15 psi and

rJ

one must resort to more complicated means of producing the desired

triaxial condition. A commonly proposed method is that of a thin disk

cemented between two relatively rigid platens which are palled in

tension. The dimensions of the specimen give rise to its designation

as a "poker chip" test. As fortunately the material to be tested is

rather soft compared to easily available much harder platen materials*,

the softer disk sandwiched between the harder bars wiu be restrained,

because of its thinness, from its usual contraction perpendicular to the

load and hence generate a triaxial tension stress field.

The elementary analysis for this case may be made by assuming

the disk infinitely thin such that the external radius is sufficiently far

from the center to assume om only non-zero displacement, w, is in the

Xt axial direction. Under these conditions, one is led to deduce for

small deformations

SNote that it would not be practical to test steel for its triaxal tensile

behavior.

-V
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a" O- (1- 2 V)(1 +V)
E(-V) (1.6.1)

a V a E=E =0 (.6. z)
'- C= "2 -1-/ C 1 2

so that the apparent axial modulus becomes

Ea =EL -2( -I (1.6.3)

where it may be noted that for rubbery materials, which are character-

istically nearly incompressible, i. e., V a 1/2 , the triaxial tension

approaches hydrostatic with a consequent infinite apparent axial stiffness.

In the following sections, the results of GALCIT tests of a

viscoelastic rubber will be discussed in some detail, from first

the theoretical and then the analytical etandpoint. Before that however

it may be mentioned that similar exploratory tests, also using poker

-7*.- chip specimens, have been carried out for rubber foams 1 "4 3 ' 4 i) t

was tentatively established that the failure criterion was the mean

hydrostatic stress. Thus the first octant failure surface for the foam

in question would be a plane cutting the three principal stress axes at

the uniaxial failure stress, or more generally

4
4-o ._ --- V-6 4

c:ritical j'[%+ c2 ±3 (1.6.4)

q!
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It would be premature of course to assume that the same criterion

would hold in general, but in principle this example serves to -

illustrate the direction which further correlation will take for the .

Eolid viscoelastic rubber specimens now to be described.

!-
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Fig. 1. 3. Ultimate strain master curve (Landel and Smith
Jet Propulsion Laboratory, External Publication
No. 655, June 1959).
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2. 0 EXPERIMENTAL ANALYSIS OF THE TRIAXIAL

POKER-CHIP SPECIMEN

2. 1 Objectives of the Test

In the preceding sections of this report, an overall review

of the methods of failure analysis for viscoelastic materials has been

presented along with details relating to the basic research necessary

in formulating a sound theory. As was pointed ou an array of multi-

axial testing techniques is needed to establiah the desired failure

surface in stress or strain space. In particular, a large portion of

the surface to be defined requires a knowledge of failure under tri-

axial loading. Although there have been some very elaborate testing

machines designed which will apply loads in three directions, they do

not constitute a panacea of triaxial testing. There seems to be

considerable difficulty in actually running such tests and little, if

any, data has yet been published.

.. 1 Related Work From the Literature

The primary experimental effort reported in this section

pertains to a simple tensile-type test on a thin, circular disk poker-

chip specimen that is pulled parallel to its longitudinal axis to produce

the basic triaxial, tensile stress field described in 1. 6. Such a

configuration is not new, for it was used by Yerzley as early as 4

1937 as a technique for determining the integrity of rubber to metal

bonds. While his interest was solely in the bond strength and not in

the stress field produced in the rubber itself, his results seem to have .

-. V..-.- .-...... .- -... -............. .. . .....-., ..-. - ° . - --....- _..,: . . . . ,.,.,.-..
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prompted Gent and Lindley 2.3) to pursue a similar test on

carbon-filled rubber disks loaded in compression and tension.

2. 1.2 Advantages of the Poker-Chip Test

At GALCIT the poker-chip test has been used with several

modifications to those referenced above, to study the failure of

materials in triaxial tension. The test as a whole presents a good

manv obstacles to the researcher that are not easily solved, both

in the experimental and the analytical facets, but once these are

conquered, the inherent simplicities yield a valuable, useful triaxial

test. Because of its unique configuration, and the incompressibility

of the material, rubbery specimens, which usually have large

deformations during testing, are limited to relatively small strains

all of the way to failure. This provides an additional benefit in that

infinitesimal elasticity theory can be used in the analytical work

without introducing large errors. It will be shown later that by

measuring tensile modulus and an apparent modulus in the poker-chip

test, one can also obtain Poisson's ratio and bulk modulus directly.

So not only is the objective of the test one of failure study but also

mechanical properties can be a valuable by-product.

2. 2 Description of the Experimental Apparatus

0 A schematic of the experimental set-up is given in Figure 2. 1

where it can be seen that a major consideration of the test construction

has centered on visual observation of the specimen. By employing

6 Lucite cylinders as grips, the experimenter can view or photograph

;

-.. ... ., . - * :. - .. . .- ..... ,- . .: . _ . . . ..-... .-v* ... . ...-... ...-.-. .:.. . ..
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in full detail the history of failure via the mirrors set at 450 in the

* heads of the machine attachments. The experiments at GALCIT have

been performed primarily upon a transparent polyurethane. Thus one

can inspect the internal regions of the specimen and obtain a more

accurate definition of the failure process. This factor is particularly

significant in the study of fracture initiation where threshold conditions

are a principal interest.

'Variations of Experimental Set-Up.

More translucent materials, such as propellant binders, have

also been employed with success by introducing a bright light into

the optical system to illuminate the specimen internally and thus

facilitate later detailed comparisons of failure in unfilled and filled

systems.

Another option of this test arrangement is the ease with which
a.

photoelastic information can be obtained by introducin q polarizers,

analyzers, quarter-wave plates, and appropriate lie sources into

the system. Additional comments about this facet of L- test will

appear in subsequent sections.

Enumeration and Solution of EMperimental Difficulties.

We turn now to the details of preparing specimens, setting up
I

the experiment, and conducting a successful poker-chip test.

Invariably there are a multitude of bothersome practical difficulties

encountered that, though seemingly insignificant, can vitally effect the

S-. ... .. . .... , . . ., • . . .- . -
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outcome of the experiment. For this reason, several of the experi- p.

mental fine points should be mentioned.

2. 2. 1 Material Description

The usual specimen material used in this series of experiments 5

was a rather elastic (as opposed to viscous) polyurethane rubber

produced commercially as Solithane 113 by the Thiokol Chemical

Corporation. It can be characterized as a relatively brittle type

rubber, exhibiting at room temperature an elastic mode of failure.

(See section 1. 1) It possesses a tensile modulus of 500 - 600 psi at

a relaxation time of the order of one second in triaxial tension. It ...

was selected for study because of its excellent optical properties,

which permit close scrutiny of the failure process, and it also seems

to have failure modes similar to many filled materials. The raw

material is a pre-polymer, requiring a catalyst to free the chain ends

and start the polymerization process. The pre-polymer with catalyst C
must be cast into the desired shape and allowed to cure as polymeri-

zation continues to completion, which requires about an hour at 150°C

plus another two weeks in a desiccator at room temperature.

2. 2. 2 Casting Procedures

Some investigators have successfully cast polyurethane directly

on the Lucite testing grips; however, we elected to cast the specimen -

material into sheets first and then bond to the Lucite grips afterward.

Consequently, several factors of importance relative to casting were r. I

uncovered:

~~~- ..-.--------- v----- ---.---.------------ ----.--- "-.-----"------ -- ,"------.----v.-vv--"
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(a) Mold releases containing silicon will leave enough

residue on the specimen to prevent the formation

of a good bond regardless of the cleaning agent used

to remove it.

(b) Polished brass, steel, Lucite, aluminum, Pyrex glass

and micarta were all successfully used as mold

materials, but polished aluminum was found to be

the most desirable when cost, weight, etc. were

all considered.

(c) Degassing the pre-polyner after it is mixed with the

catalyst considerably reduces the number of bubbles

produced in the casting, and tends to make the

finished product more nearly colorless.

(d) The surface quality of the cast sheet is directly

related to the surface quality of the mold, but as will

be discussed later, when the material is bonded to the

Lucite grips, the wetting property of the bonding

agent eradicates surface imperfections in the cast

sheet. Therefore the mold surface need be polished

Ir only to the degree necessary to allow the rubber to be

removed from the mold without requiring a mold

release.

Z. 2. 3 Size Considerations

The actual thickness dimension of t c.- sheet is dictated

by the individual material characteristics as well as the limitations

b,- ~~~~~~~.....,. ..-...... ............... -. ,,,.-.-.- ...........- ,.-..
[,- -, ,..- -,. ,' . -.- ,- . * i..- .' : .? '''.-'.''. - - .' '-: " ". "-. .-.'>.. '. -'. .-' .. .. -. .. . .. ' , .-.-'
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imposed by the testing apparatus. In an approximate analysis of

the stress field, to be discussed in detail later, it was found that

for materials with Poisson's ratio near 0.5, a diameter to thickness

aspect ratio, D/4 of approximately 200 to 1 is needed to obtain an

area of constant stress in the central portion of the poker-chip. This

peculiar situation results from the end effect, which is very strong

for incompressible materials as opposed to the usual expectations

from the St. Venant principle. Such an aspect ratio is not a practical

one because of load limitations on the testing machine, and an aspect

ratio of D/L u 20 was found to bc a reasonable compromise. In our

tests, D u 2 in.

Of course, there are other considerations which may dictate

particular values of the specimen diameter. For instance, if a

,filled system is used, the thickness must be adjusted so that the

particle size is not of the same order of magnitude. Such a condition

may require that poker-chips of the order of four or five inches bc

used to yield meaningful results.

2..4 Bonding Procedure0
A very critical facet of the experimental techniques of the

poker-chip test is the bonding procedure. Precautions must be taken

in order to produce a bond of sufficient strength that it will not allow

the specimen to tear away from the grips before an internal failure

iE produced. Fir t, after the poker-chips are roughly cut to size

from the cured sheets, they are cleaned with a cloth slightly dampened

j-.-.- - .- . ..-. .~ j . -. ..-. -. --...... t.. ... --. , -?-
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in methyl alcohol. If used sparingly, this procedure will produce

virtually no swelling in the rubber, but it is an absolutely essential

part of the bonding procedure. Second, the Lucite grips must be

roughened and properly cleaned before attaching the specimen. The

emery paper abrasive must not be a silicon compound or it will

rucin the surface for bonding. Aluminum Oxide paper was found to

work very nicely.

Third, Eastman 910 adhesive was applied to the grips, and the

specimen carefully laid between them so that the air bubbles could be

squeezed out under the periphery. A weight of 5 lbs or so was

needed to prevent the rubber from warping away from the Lucite.

Because some of the Eastman 910 is absorbed into the surface of the

specimen causing some differential contraction, the bonding agent is

.. always applied directly to the Lucite rather than to the rubber material.i.'.

Bonding is also a polymerization process and a 24 hour cure under the

weight is allowed. Fourth, the grips must be perfectly square and

flat, not only for a good bond, but also so that the test is free of bending

stresses which may arise from misalignment.

When the final assembly described above is complete, an0

observer can focus his attention on the inside of the specimen by viewing

through a perfectly transparent window produced by the wetting

phenomena of the Eastman 910 at the interfaces of Lucite and rubber.

-.

2. 3 Experimental Observations

In a previous report ( 2.4) descriptions were given of the phenomena

observed in the poker-chip test. The field remains seemingly

0
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undisturbed until at an average applied stress of 300 psi very small

internal bubbles pop into the field at random locations near the center

of the disk. After several have appeared in this region, more will

emerge at distances farther from the center as the load is increased.

Upon immediate release of the load, the bubbles flatten into penny-

shaped cracks with their planes generally parallel to the load direction.

These tiny voids grow into cracks that propagate along principal stress

trajectories and eventually hook-up to form large cracks. This behavior

is in contrast to the behavior of a very viscous material that was

tested a couple of times for comparison. In this case, the bubbles

formed as before, but they never did join up or run into cracks even

though the field was virtually filled with them. Also the energy release

associated with each bubble was greater for the viscous material because

a much more definite jump occurred in the stress strain record.

When the specimen is pulled far enough to be completely

separated, a very rough surface of failure is manifested, and each

bubble formation with its accompanying plane of failure can be studied

and analyzed. Figure 2. Za shows a typical surface.

2. 3. 1 Effects of Bending

If the grips are rotated or loaded antisymetrically in any

* degree, bending stresses will be superposed on the regular stress field.

When such is the case, a different mode of failure is observed.

From many tests of Solithane poker-chips with D/h a 20,

under the influence of bending there were several factors about the

h-s.. ,K-.:.-' - .-.: .,.-:- :.N .,..-, - . ..... ,... .. .... .- .-...- r .-. _-, -- . .:.. .- : o.-
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brittle fracture that were reproduced in virtually every test. The

fracture initiated at a point r/R i 0.40 to 0.41 in. in the form of a

penny-shaped crack that was inclined 450 to the mid-plane of the

poker-chip. As is typical of brittle fracture, the process was quite

rapid, and the penny-shaped crack bursts into the field from a small

nucleus that measures approximately 0. 01 in after the fracture

surface has been formed and the load has been released. The actual

nucleus from which the fracture grows is probably much smaller.

In addition the nucleus was not located at the mid-plane; rather, it

was often found to be well off of the centerline, but still in the material

and not at the interface. (See Figure 2.2b).

2. 3. 2 Crack Propagation in a Triaxial Field

The continuation of the disk-like rupture into a propagating

crack is much less rapid, and, as load is increased, the crack extends

from two extremes of the initially inclined disk and propagates along

a principal normal stress trajectory. (See Figure 2. 2 c). However,

it now is straightened up from the initial plane of 450 to 900 and0
enlargements have shown the front of the crack to be well up into the

specimen as pictured. As can be seen from the figure, below, the crack

front is quite blunt in this plane. However as seen from the figure
0

. . . - - - - . --- - .
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while looking down the axis of the poker-chip, the crack is very sharp.

The crack itself resembles a

wedge being pushed through

the material along a curved path.

SIf the specimen is0.1

subjected to large strains,

.01 Enough energy is stored that

even after one failure has

occurred, there is still enough

energy to produce another. The same process is repeated with the

second nucleation of failure being less catastrophic and smaller in size

but still on a 450 angle and still propagating along a principal stress

trajectory, see figure below.

2. 3.3 Related Application

Use of the Lucite bars has permitted direct observation of

the entire process in order to better describe the phenomena; however,

if the material were opaque, the initial part of the failure could be

detected from the blips in the stress-strain curve, see figure below.

There is enough energy released in each one of the catastrophic

bursts that a definite discontinuity is recorded on the chart.

Gent and Lindley (2. 2, and 2. 3) observed a
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similar phenomenon, but they also heard a popping noise as the

individual failures occurred.

It is felt particularly

desirable to make this complete

study on a transparent material

of this type, because it lends

itself to many means of observa- 4

tion. Understanding gained in

this way can then be applied to

other materials that cannot be

observed internally.

2.4 Related Experimental Observations

2.4. i Filled Systems

In an effort to progress from simple to the more complex

materials in understanding triaxial fracture, we have first concentrated

upon studying unfilled continuous systems, from which knowledge we

hope to proceed to the more complicated filled systems. Investigators

at North American Aviation, Rocketdyne Inc., have also been observing

triaxial failure of propellant by means of the poker-chip test. Figure

(Z. 5)2. 3 shows typical results obtained by Britton and Ratliff for some

of their filled polymers. It turns out that certain similarities exist

between the nature of their failures and those of the unfilled polyurethane !

when bending was known to occur.

(a) Initiation appears to originate away from the

center of the specimen,

---- --- o*
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(b) fracture occurs on a 450 plane, and

(c) propagation of the crack is along a principal

stress trajectory. -

Thus it would appear that a good deal of useful information concerning

the mechanism of failure in the filled systems can be ascertained

from the behavior of this brittle type of homogeneous, isotropic poly-

( 2 .5 )-
urethane. In addition Britton and Ratliff have determined the

failure stress of mixed bi-material combinations vs. reduced strain

rate, using the aT shift factor for uniaxial tension as reference.

Figure 2.4 shows their results, which indicates the possibilities of

such correlations of triaxial to uniaxial data. Continued effort in this

direction is indicated for the future.

2. 4. 2 Photoelastic Technique .

Another related experimental phenomenon worthy of comment

at this point is that photoelastic data can be recorded for later

comparison with the stress analysis. By passing a monochromatic

light beam through the systems and with the appropriate polarizing

apparatus, fringe patterns in the poker-chip can be observed(2 4 ).

Virtually no fringes are seen until fracture occurs, after which several

orders are observed. Thus far they have only been used qualitatively

for areas of high stress and comparison of fringe patterns around -

cracks in triaxial stress fields to those in plane sheets. No actual

calibration has yet been made to determine their value, although

future work along these lines is anticipated. In this connection, the

stress analysis given in the next section, which is expressed in terms .

S.- . .
.-..i;; ------'-;._ . ;':-. - - - - - - --- - - - ---- ----- - . . -- -; - - -" - - - - - - - --- - - -- -,- - ""- ". ."
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of average stresses through the thickness of the poker-chip, can

probably be related to the fringe patterns. This relation would be --

expected because birefringence is a two-dimensional effect, and the

presence of fringes in a three-dimensional streiis field will reflect _

an average retardation through the third (thickness) dimension. If

such a correlation can be effected, additional credence will be

given to the app.roximate stress analysis as well as the usefulness

of the fringes in defining local stresses.

N-4.

s-s -. .- .
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Close-uap of Test Specimen
and Microformers

Test Assembly. Schematic of Test

§ Assembly

Fig. 2. 1. Experimental Apparatus for Triaxial Tension Test.
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3. 0 THEORETIAL ANALYSIS OF THE

TRIAXIAL POKER-CHIP SPECIMEN ..

In this section various methods for the theoretical analysis

of the poker-chip specimen wil be discussed. First, the existing

solutions relating to this problem will be reviewed and secondly, a

new approximate solution will be developed.

3.1 Review of Related Solutions

The mathematical model of the poker-chip configuration,

Figure 3. 1, leads to a mixed boundary value problem that is almost

intractable from the standpoint of classical elastic theory. Like

many elastic problems of finite bodies with discontinuous boundary

conditions, the poker-chip configuration presents many mathematical

difficulties if an exact closed form solution is sought. However for

such problems non-closed forms of solution are possible and several

hav.e been used.

One of the first theoretical analyses relating to this problem

(3. 1)
was published by Pickett ) In this analysis a Fourier series -'.,

solution was used,where different series were assumed for the field

variables, and the coefficients of the terms in such series were evaluated

from the boundary conditions. Naturally the final solution was

essentially in terms of a doubly infinite serieswhich required a signifi-

cant amount of numerical work in order to obtain quantitative r4sults.

At the edges of the specimen the convergence of this solution is -:

extremely slow, and in fact it has not been fully established whether it

really exists. This problem of convergence at the corners is basic

-"- -,- - - - ---- - - -i.: - . +. ,.. .. ..+ >.... . .. ,. -.. . +.-+.+:. ..+ . _ + .. + .+ ,.,, + -
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and will arise in other methods which will be discussed. As will

be developed more fully in Section 3.3, discontinuities from stress

to displacement boundary conditions along the edges of the geometry

may lead to mathematically infinite stresses. This situation exists

for example at the right angled corner, where one surface is rigid

and tIe other surface is free of stress. When the stress singularity

does occur, and such singular behavior has not been explicitly built

into the form of the formal representation of the solution, convergence

and rate of convergence difficulties may be expected.

Gent and Lindley ( 3 .2 ) began with an intuitive approach for an

infinite slab and proposed a stress analysis,which can be shown

equivalent to minimizing the potential energy for an assamed incompress-

ible material. They then extended this line of reasoning to the circular

disk, and the apparent modulus*deduced from this analysis was compared

to a large amount of experimental data. Qualitatively there was good

agreement, although quantitative predictions with the theory were good

J only for a very small range of aspect ratios. Furthermore, since the

apparent modulus is essentially an average property, the corresponding

internal stresses needed for failure analysis could be significantly

different than the average value.

Energy methods have also been used. One of the first was a

complementary energy formulation in terms of the stresses used by

6(3.1 Williams, Blatz and Schapery In cylindrical coordinates

* Following Gent and Lindley, the apparent modulus is defined as the
average axial stress divided by the applied axial strain.

T
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:" 21/

=-21.-_ A(1-rn)hcoshZ (3.1. 1)r-.-_sr 11-z

2V n (3.1.2)

-=Y -lO)1r P-2A cosh z -c (3..3)-A [1 rjV2v2]/
z=- A r-r 2V sinh / z (3.1.4)

•r z

where the four constants C, p, n, and A were to be determined by

minimizing the complementary energy. On the other hand,a potential

energy formulation in terms of displacements has been proposed by

Francis and Cantey( 3 . 4) in which the radial and axial displacements

minimizing the energy were found to be of the form*

_ U=[1- (Z [k0 J, (fr) (3.1.5)

h) W J-,,T r)+ k Jari (3.1.6)

In both of these cases,however, the algebraic complexities involved in

- the computation were found to be rather formidable, particularly when

-- parametric variations of aspect ratio and material constants were
S

desired. Furthermore, as is fundamental with these particular energy

solutions, the complementary principle for stress approximation

*" * Not- that w=O at zuh. This solution is to be superimposed with the

-- constant strain solution.

"-

-.. .............. . . .
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usually yields poor displacements and, vice versa, the potential

energy principle for displacements does not satisfy stress equili-

brium. It will be shown later however that a combination of these

methods can yield good engineering accuracy.

As a prelude to studying the poker-chip specimen a potential

(3.3r- energy method was developed for two dimensional slab problems.

(3.2)
It made use of the careful measurements of Gent and Lindley in

which they determined the transverse displacements to be mainlythish analysisefurnished heansese udestandins o the cmpilete2-

parabolic functions of the longitudinal (axial) coordinate. Results of

this analysis furnished an increased understanding of the complete _

stress distribution, including the extent of the boundary influence on

the internal stresses. This solution, however, is not valid near the

corners of the slab. 4

Finally, a very recent numerical solution to the problem SC
has been obtained by Messner 13  In this analysis a finite difference."-

technique has been used, and the grid size has been progressively

reduced until two subsequent sizes produce no appreciable change in

the stress state over the portion of the specimen away from the
corners. The convergence at the corners has been found to be extremely

slow, and this is again due to the presence of stress singularities at

these points. This type of computer program offers great practical

advantages, since a solution can be obtained to any desired accuracy in

a short time. However it has the disadvantage that in order to perform

a parametric study, a separate calculation has to be performed for each

configuration. Nevertheless as the Messner solution approaches the g

-.-. . .. . . . . . . . . .

h ~ ~ - .- - ."-,
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exact one over most of the specimen, it affords an important basis .

against which to check the approximations.

3. 2 A New Approximate Solution

In this section a new approximate method is developed to

analyze both a thin, circular disk and a similarly loaded rectangular

slab in plane strain. A relatively simple potential energy approximation

is used, but to better satisfy the stress equilibrium balance, an integra-

tion of the axial equilibrium equation is incorporated. Also, the incom-

(3.2).
pressibility assumption made by Gent and Lindley is not invoked.

The slab analysis is first presented in order to evaluate the

approximate analysis method employed by comparing the results with

those obtained from the more accurate solutions of the variational

technique. In addition these results will be used as the motivation for
I

-: the simplifying assumptions made here in the approximate solution.

Such a comparison was mad; and good agreement was found with the

energy solution ( 3 .3), With this basis of correlation established,

similar approximations are made with more confidence for the poker- - -.

chip stresses and displacements.-.:..

Results of the analysis are given as curves,which can be used

to determine the local normal and shearing stresses at the initial point

of failure. Also a curve is given for the graphical determination of the

bulk modulus from measuring Young's modulus and apparent modulis. *

In the limit these results reduce to Gent and Lindley's(3.2-

solutions when the ratio of Young's modulus to bulk modulus is made

I

.......................................................-.u.,

................................................................................................. ,
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vanishingly small. However, there is considerable error for those

values of Poisson's ratio which are typical for rubter. The effect of

bending combined with pure extension is then examined by calculating

stresses in a slab in which the rigid grips are rotated. The

results of this calculation can be used, for example, to estimate the

amount of bending that is tolerable in the disk without altering signi-

ficantly the stress field due to pure extension.

Concluding remarks relate to application of the stress analysis

results when viscoelastic effects are significant, and to important
?.1

features of the solutions which are needed in fracture interpretation.

3. 2. 1 Stress Analysis of a Rectangular Slab

The slab geometry and notation is shown in Figure 3. la;

the slab is assumed to be infinitely long in the direction perpendicular

to the x-y plane and, consequently, will be in a state of plane strain.

The half-thickness is taken as unity for simplicity (but without loss of

generality) so that the aspect ratio is equal to the half-width, a.
-y: +

We suppose that the slab is bonded to rigid plates at y " - 1

and is loaded by increasing the thickness an amount ZE . Except for

" small aspect ratios, a reasonable assumption for the x-displacement,

U, is

u= -f(x)(1-y 2 ) (3.2.1)

6
in which f is a function of x only. Considering the y-displacement, v,

it is assumed that initially horizontal planes remain plane and

horizontal after loading, and that the normal strain in the y-direction

9

6' " ' - - " " " -" ''' - - - -" ' " -" " -"" -" " '' -" " " ' -" " " ' " ' - ' -" "-" .... :: . .''". ' -



4

-69-

is uniform, thus

v=Ey (3.2.2)

We should mention that in the earlier energy analysis 3)

the y-strain was not required to be uniform, never.heless,a linear . ..

displacement was found to be a very good approximation, except K

within one slab thickness from the free ends, regardless of aspect

ratio and Poisson's ratio. The x-displacement, u, given by equation

(3. 2. 1), however, has the same y-dependence as assumed with the

energy method. Furthermore, the y-dependence of displacements

(3. 2. 1) and (3. Z. 2) is identical with that assumed by Gent and Lindle 3 " 2)

However, they determined f by an incompressibility condition, which

condition will not be used in the following analysis. Indeed, it will

be seen that the incompressibility condition leads to considerable

error unless the parameter a.-VElK (E and K are the uwiaxial and

bulk moduli, respectively) is very small relative to unity.

The displacements (3. 2. 1) and (3. 2. 2) provide the normal

strains

ax : -x i ( 1 y )  (3. 2. 3a)

= Y y E (3.2. 3b)

and shear strain

-.- au
y+ x 2 fy (3. 2. 3c)

where we define f'-df/dx. Also, the relative volume change, z2, is

( 0 by assumption)

--. . -. . -_ - . - . .
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2
SEX + E -= - f'(1-y) (3. 2. 3d)

The function f will now be obtained from the requirement that

the y-integrated equilibrium equation for the x-direction vanishes,

namely
1

i x + d+ =0 (3.2.4)'-

2 X ,y

Symmetry considerations require that the normal x-stress, Cx, be

an even function of y, and that the shear stress, TY, be an odd -1

function of y. Thus, denoting the average Cx stress as
S

0. =- ' - dy (3.2.5) I

we have from equation (3.2.4),

I 0 (3.2.6)+x xy y=zl::::

Note that because of symmetry the integrated equilibrium equation for

the y-direction, "-r r
+ y dy=O (3.2.7)

is identically satisfied. .

The stresses in (3. 2. 6) are expressed in terms of f by using

the isotropic stress-strain equations and the strains (3. 2. 3)

-.7 ._7-

A°

* C
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,-.. .- ' - -. -.. ,.' .. .*.. . -.-., . ."-'. .- ..._ ._ .. . ... . . . . . -.. .. , .. ,



K--

-71-

.;., ,0+2PE dy=-- -If f' (3.z2. 8a) .

11 [ =
0

--- (3. 2. 8b)

Xand Mare the Lamt constants, which are related to the Young's

modulus, E, the bulk modulus, K and the Poisson's ratio V, as

follows

K-- 3  _ _ _

1 I (1v)(1- 2 ,,(3. 2. 9a)

9K
E

u. E (3. Z. 9b)-- .=..- 2(1 + v)2(--i-u
9gK

Also, it will be useful for later reference to record the following zc

relation

1 E+ :. V _ 1 E(3. Z. 90).-
2 6K

Substitution of stresses (3. 2. 8) into condition (3. 2. 6) yields

a differential equation for f.

f' f =0 (3.2. 10)

Since the shear stress (3. 2. 8b) must be an odd function of x, the

desired solution to (3. 2. 10) is

K..0,,o- , -.- -.. . .-+ ,- -.. +' . - . -.- . . .- .-. - --. . ,_ .. . . .- . -. _ , -

F~~~~~~~----",- - ------------.----- , -- , .--. .. : , . -- L ._ ..- -. - - -- .-. .. . . .- -. .
|' - "- , .,+ , '. '.- " - ' -. . '. . . +' + ' , _ ." _ ' - . -'-, - - - - " - " 't% t S + ," - .. t" - -+. p.p"• " -.+ - " + " - . - . . - . - . - . +
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f =A sinh x fm- (3. 2. Ila)

where we define

E
M=_ K 3(1-2z/) 1(3. 2. 1 lb)

X2t + E 2(1-)

and A is a constant determinud from the boundary condition Y (a)zO

giving

_ V E

2 1-v 1/' cosh al

or

3 1V E sinh x 11 3.2.1)2 1-1/ V- cosh a

(3.6)
Combining equations (3.2.3), (3.2. 12) and using the stress strain

relations, the following expressions are obtained for the displacements

- and stresses

U (sinh3x. (1.y 2 ) 1 .13a)
* 2 1-V ' cosha -i

v E y (3. z. 1 3b)

__- V [i2sh ~0- 2- (3. 2. 14a)

EE (1+V)(1-20 2 cosh a "W

0%"
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U_ rl ___[-v V 3 1/ Cosh X11(i..j (3.2. 14b)

.EE (1+V)(1-2V)L V 2 1-1/ cosh2T

T:TXy _ 3 1 sinh x.M (3. 2.14c

EE 2 (1*v)(1-v)/M- cosh a( 1"

The corresponding average stresses through the slab thickness are

- EEV _Coshx# 1
7X (l+-V)(1-2v)W cosh _r 1(3. Z. 15a)

EE [1- 1 (Cosh xofsl
= (1)+ )(1-2V) L-v cosh a I (3..lSb)

XY r (3. 2. 1c)

i'v

The average normal stresses (3. 2. 15a), (3. 2. 15b) and the shear stress

(3. 2. 14c) were previously compared to those obtained from the more

elaborate energy analysis ( For an aspect ratio a:2, the agree-

ment between the two methods was found to be excellent except near

the edges of the poker-chip where, because of the presence of the

stress singularity, both methods are in error. For the high aspect

ratio poker-chips, the energy method indicates that the non-average

stresses, C- and 9T are practically independent of the thickness
X y

coordinate y. This explains why the stresses can be well represented

by their average values across the thickness and therefore why the

present approximate analysis is successful.

,-- - . ,.. . . . . ... .' - .. , -. - - - -.. - ". , -..- -. , .- •, --- -- ,,," _ " .. .. .'..' .,.. . ... . .X< .' X . .. .. -.-.,- . . .". - . -.. ,.''. _ "-- "i_ ,.." . . ,.. . .", , -' .--. .. ... ....-a. . - . .4.. . ' . .',..', .. " '., .- .* - .. .. - ."
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Simplification of the Stress Expression. As a practical

matter of simplification, it can be shown that for V very nearly equal

to 1/2, typical of the experimental specimens, the following expressions

are very good approximations to the average stresses (3. 2. 15)

(TI"x _ _-- cosh x (3.2.16a)

.E E (1+ V( -2 V
FEE

E () ohcoshI[ (3.2. 16b): :-(IV)'-2) 1 )cosh a'-'"J'

and a similar approximate expression can be written for the shear

stress

_-(- sh x y (3.2.16c)

Limit-Check of the Solution. Finally we consider the limit

case V- 1/2 (E/K a 0) for which the stresses (3. 2.16) become

AX __21(3. 2. 17a)
EE 2

-'Y (X 4- (3. Z. 17b)
FE E E 3

=-- - y (3. 2. 17c)
_ FE

Stresses (3. 2. 1Ia) and (3. 2. 17c) are identical with those derived by

(3.2)
Gent aid Lindley for an incompressible slab.

0

'
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Sonie representative stress distributions calculated from

equations (3. 2. 16) and (3. 2. 17) are shown in Figures 3. 2 and 3. 3;

(3. 3)the energy solutions are not indicated since they cannot be

graphically distinguished from those in equations (3. 2.16), except

at Ixl- a. It is of interest to mention that the value of Poisson's

ratio of the rubber specimens employed in the poker-chip tests of

reference (3.3) is in the neighborhood of 0. 4975 V: O. 4995; thua,

the corresponding stresses are significantly different from those. 13.2z)
given by Gent and Lindley' 2)

On the basis of the excellent agreement between the slab

stresses claculated from the energy method of reference 3. 3, and

thcse calculated from the above simplified method, we shall now

apply the latter method to a circular disk.

3. 2. 2 Stress Analysis of a Circular Disk

Figure 3. lb shows a circular disk of radius (a) with its

axis in the z-direction, and the faces z I ± 1 bonded to rigid plates.

As in the slab problem, ws a-njume that the disk is loaded by

increasing the thickness by 2 E aad proceed to select two displace-
mer functi-us,which satisfy the boundary conditions on that part of

the boundary where displacements are prescribed. Note that the third

(circumferential) displacement, V , is identically zero by reasons of

symmetry. Such functions are admissible functions for use in the

Theorem of Minimum Potential Energy, although it should be recalled

* that the resultant minimization yields a result, in this case the

* function g (r), such that the equations of equilibrium are not satisfied

¢" - _ . - .. . -.- .- ,-. '--- - - -*- - -. " C-2.- . ".. ..' - . . - -'.- -.- -. . . o .
:.'':, .. . ,. -. ,.-.,.-:'...*''': , -"'' " -; .. ""; "" . - : -:......
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unless the solution actually is exact. The displacement functions
V

chosen are (compare reference 3.4)

u -(1- Z2)g(r) (3. 2. 18a)
'A

W=Ez (3. 2. 18b)

in the radial and thickness directions respectively. Note that the dis-

+
placement boundary conditions are satisfied at the surfaces z s - 1

and that g(r) is presently an unprescribed function of the radius. The

strains corresponding to these displacements are easily found to be

Er u 1 z. 2.19a)

U
E - = - ( - -) (3. 2. 19b)r r

z - (3.2.19c)

+= z 1- w -2gz (3. z. 19d)

from which the z-averaged stresses are found as V'-.,

,.-~o.0f d) E.9' (3. 2.Z 0a)
I ~2 ,2 g 4 g ::

if d =X(- -d )z-= ( (3. 2. ZOb)

cf (E gl -- +2-k

1 d z (3. 2. ZOc):T z ( z2 z 3 ,(---g 3 r .,.

Trz 2/ g z (3. Z. Z0d)

-.--.--- -
&: ;c-: :Cc>-:';:'J: - "

F.' " 
% - ' "

"'' * '' ' ''"" /''''. • " " '. ."-" "- 
"

"' " ", ,, 
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where g' -- dg/dr.

The function g is found from the condition that the z-integrated

equilibrium equation for the radial direction is to vanish, i. e.

d z=0 (3. 2. 21a)

or,

4--r -STr =0 (3.2.2lb);'.d r zr : ,

IZ=

Also, note that because of symmetry the integrated equilibrium

(3.6)
equation for the z-direction is satisfied identically, L

f. 7r- z + Z -I- d z =0 (3. 2. 22)

Substitution of stresses (3. 2. 20) into equation (3. 2. 21) yields
"F7

the differential equation for g, thus 7.W2,

91_ -4-M)g=O (3. Z. 23)I~ r ,

where M is the same definition as used previously in the slab problem,

viz. .

M- (1(-2) (3.2.24) -

X+2g 2 (1-) .ir
".4_ 'L

SI. ' '
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Since the deformation must be finite at the origin

g(r)= AI (rV-M) (3.2. 25)

where I 1 (r '? ) is a modified Bessel function of the first kind, of

order one. The constant A is found by using the boundary

condition that (a) u 0 from which it foUows thatr

2 (1 VF WI 0 (a VF ) -(1_21-) i ( *i*) (3.2.26)

0 a

Substitution of solutions (3. 2. 25) into stresses (3. Z. 20) using

(3. 2. 26) yields the following stresses:

Er )- 211 (rV ) fi3
F I1 1 (- rr ) /

L-- (aMt-

!'2".~~~r ( r o~Y - rYWM

.*1

1. +- (3 .2 c

EE E ,aqt(=L/) lP -(
.-_.;L a. . . . . .. . .: ... .. ,.- . Y .. W.- . - - .. - ,: . - . . . ... . . - - . . .
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Trz 3 Io KaWr)K(r~ ) (3. 2.27d)1 Z. 1,(aVv IM- ) z

which, it may be found, approaches a atate of tria-ial, hydrostatic tension

at the center in the case of an incompressible material.

We expect the stresses (3. 2. 27) to be good approximations for

0D-a' V-I/Z except for the singular stresses near the free-edge r z a.

While the validity of the slab stresses was restricted to a region at

least one thickness away from the free edges, the end-effects are

stronger in the disk, and consequently, it is reasonable to restrict the

above stresses to radii less than about one and one-half thicknesses

from the edge. r a-3. However, just as with the slab stresses,

when C/KC::I, these approximations should be quite good even closer

to the boundary.-7

Simplification of the Stress Expression. With this restriction

on the radius, equations(3. 2.2 7) can be very well approximated by the

expressions:

(3.2. 28a)

E L
'I. WAKE

.4-
C.- '.'-. .'s".- "- -."o . . .. . , .. . ,
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z .,3 lv [ ( r  ':

E+ 1 1fi
+r V0 Ki - (3. 2. 28b)

EE 1
E-E -YT § i J (3. 2. 28c)

It is to be noted that all the normal stresses are essentially equal when

Poisson's ratio is close to one-half. Furthermore, Figures 3.4 and

3. 5, illustrating stresses with a Z 20, show the extreme sensitivity

to such Poisson's ratios.

For later purposes relating to the analysis of possible failure

criteria, it will be convenient to record several of the stress combina-

tions i esulting from the simplified forms above.

Octahedral Shear Stress

S 3 -Y (3.2. 29a)

T[4f CJ1 42 (CT )) _

CT( ri CT ) (-02

-1 +" -- E_(3. z. z9b)

Distortional Energy

W3(1+l/T- Z O)"' ',
d t 6 E ( O c ) - - u c r_ _

L 1 1 +(O~OJ- 2 E 3. 2. 3Ga)

Ll C2 3 +((72 2'

Ko.
4 . . . = . . . , -. . .. -. . .. . - , =. . . . . . = . . _ . . . . . : , = - -. . . . _ :-
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E 1+ 1 - r~ (3. 2. 30b)

DilitationaI Energy

Wd,7 + (3. 2. 3 1a)
Wd18KL1 2

2

(3. 2. 32)

thrdil displacementj

u=-g1-(a I 
-

0 K

P. EVEV~[ 3 +V (3. 2)

3(1+Viij(2 2)1 011(

bemespeaexementaly xpdesiosIbl sedito to dede sthes bulk.8)

thord l ispviemfth ent vt oPisnsrtosoni iue36

-10j

(32.3

k(r -.
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Furthermore, as shown in Figure 3.6, this displacement may be very

large for nearly incompressible materials, even when the nominal

strain, E , is small. In the neighborhood of the radii for which the

radial displacement is not small relative to the disk thicknesses,

some error due to large strains will be introduced in the results of

the present linear analysis.

Aparent Modulus. Another quantity of experimental interest

is the apparent uniaxial modulus EA, defined as the ratio of the

average stress over the bonded surface CA' required to produce

the axial displacement w, to the nominal axial strain E viz.

E __z - - 1r (3.2. 34)

A E TraE

Upon substitution of 0- , equation. (3. 2. 27c), into (3. 2. 34) we find

z:~ LKA 2 11(aYM)],.-'
E 1+2 \E/[ aVMIo(av;T) J

"V (a( + z.j (a) ' -%
: 2 Ia (a a A,.-

This apparent modulus can be conveniently employed for

determination of the bulk modulus of nearly incompressible materials.

Namely, given an aspect ratio a , and experimentally measured

modulus EAl the modulus ratio E/K can be deduced from a graph of

equation (3. 2. 35) , such as shown in Figure 3. 7. It is observed that

-..-.--- ,4".4, -" , ." - . , . , . , "
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EA/Ea2 depends on only the parameter aE/K-hfor a 530. The

accuracy of apparent modulus (3. 2. 35) is expected to be good, even

for small aspect ratios. This follows from the fact that it is an

average property, and therefore should not be sensitive to error in

stress near the periphery*. Furthermore, EA has the correct limiting

.6 value of E for a a 0.

Limit-Check of the Solution. The incompressible limit case

( V 1/2 ) solutions are readily found from equations (3. 2. 27),

(3. 2. 33) and (3. 2. 35) to be

arc2L r (3. 2. 3a): -- - -- (a2-r2) . .
E EEE 4

Oz 2 2 (3. 2. 36b)
E E

"Tr z rz
S 2 (3. 2. 36c)

where it may be noted that for a large aspect ratio, the condition (r=O) :f

tria-xial hydrostatic tension is achieved. Further,

O u-- E r (1-Z) (3.2.36d)
4

EA a1+ 3- 3. 36e)

E8

* The effect of sirgular stresses at the edge can be estimated,
see section 3.3.

-... -_-.., .. -... :. . 2... .. .- :.2 _ .-. v'-.: . - - - .%.% X .. -.- . .- -. - . . - . - : . -. _

-" -j j "- " - -.. . & "- A C-" % .. . ' ' '- " .. -. t.'-. - -...- " .. ." - ..- .-.- . ..-
-, MAWW-U------ -.-- --
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(3.2

which are identical with those obtained by Gent and Lindley ( " 2)

Representative behavior of stresses (3. 2. 36b) and (3. 2. 36c), and

displacement (3.2. 36d), is shown in Figures 3.4 - 3.6 and is denoted

by 1 1/2. The apparent modulus (3. 2. 36e) was modified by Gent

(3.2)
and Lindley to approximately account for the additional strain due

to dilatation. By adding the displacement obtained from the incompress-

ible analysis to a displacement due to dilatational deformation they

obtain

1 11
+ -. A (3. Z. 37)EA  K E (1..8+:"

which can be written as

E A

Ea+Ir(3.2.38)

Equation (3. 2. 38) is shown as the dashed line in Figure 3.7. For the

range of the end-effect parameter shown, it is seen that its use in t

predicting bulk modulus from apparent modulus data can lead to

significant error.

Finally, it is interesting to present the stresses at the center

of the specimen where the triaxial tension stresses exist. Using
4 equation (3. 2. 27) one finds

r 3)1.(-/ (0) 1 (3.2. 39a)

E E EE + °(alf-)- ?M aY"/ j
0~
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Qz (0)- (Tr(°) +1p - 2LRP.. ;.~1- (3.2z. 39b)
EEC EE 1+ V (1-z4Ij0aYFD)-o-2L/fldpM)] (.2.3b

aYPf

For the case where the aspect ratio of the poker-chip becom-'s very

large, that is, aVS?-c , the above expression can be written in the

forrn

%(O) -bo 3 Z K[ (1-T)21Tali?

EE EE 1+/ E -exp aYl-F J (3. Z.40a)

V%%EE EE2 1 l'' (3. 2. 4Db)
E E EL 2(i-V)exp aYM-j

The stresses represented by the equations (3.2.40) have been evaluated

and plotted against the aspect ratio a in the Figure 3.8. In calculating

these results it was assumed that 1/= 0. 4989 which is the value of the

Poissczs ratio for poker-chip material in the present program. One

may note also that, independent of the material properties, if the aspect
ratio is vanishingly small, then (1r() = C- 0 (0) = 0 and CT = EE

which is the proper solution for a uniaxial tension specimen.

Comparison of Results with Finite Difference Solution. It is

interesting to compare the stress distributions obtained from the

approximate solution of this section with the numerical results of

S%

• .-" . - * -• - . % --. . .. . -. ..
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of reference 3. 5. Using equations (3. 2.28) the three average normal

stresses and the shear stress have been computed for the case a = 10

and L&s 0.4 and 0. 5 which are configurations analyzed in reference 3. 5.

The results of this calculation for the axial stress (7. are shown in

Figure 3. 9,where the stress obtained from the two methods of solution

are compared. It can be seen from these results that, although the

analytical method predicts only the average normal stress Uz , the

two methods agree very closely except at the edge of the poker-chip.

At the edges both methods are not accurate because of the presence

of the singularity. The agreement for the other three stresses is

equally good.

3. 2. 3 Comparative Potential Energy Analysis for the Circular Disk

In the previous section, an analysis was presented which

satisfied the displacement boundary conditions, and the z-averaged

equilibrium equations and stress boundary conditions. As such the

solution was expected to be a judicious compromise between a best

deformation (minimum potential energy) and best stress (minimum

complementary energy) approximation. It is informative to incuire at

this point what type solution would result if the potential energy were

minimized, particularly as the deformation functions chosen earlier,

i. e. (3. 2. 18), are admissible functions for application of this theorem.

As it will be convenient for later purposes, use the dimensional

forms, viz.

ur(rz). -(z ) 1 g(r)
- w(z)= (woIhv)z

where hV is the half-thickness of the specimen.

0. ............................... 
......... '" 

." " "" -i- . ,"
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In the absence of body forces and with zero applied stress . [
p.. 1- o

on the stress prescribed boundary r a a, the Minimum Potential

Energy Theorem(3.13) requires that the potential energy

Sh
2 E2 2 --

+C+E Er+S + Ez+ dz rdr.Zn (3.2.41)

be a minimum with respect to the variation of functionals involved

in the double integral. Using the expressions for strains (3. 2. 19) in

(3. 'il) and performing the variation by standard techniques, one

finds the governing differential equation to be - b" -

g"(r)+-}g'(r)-- +  g(r}-r o (3. Z.42)

where

5 1-21/ 1

and the boundary condition, assuming finite deformation at r a 0.

§ g(a) 5 (3. Z. 4 3)
gi} -4 a 4 1- v (' '--...

I.I

The appropriate solution of (3. 2.42) is

g(r)= Avo( r Y-M-v) ""'"-..-

o -. i -

Ik i i"'"iri.. . K.. T' ... . ... .. -"" "1 ..... .. -i- i i i9
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where to satisfy (3.2.43)

A a (3.2. 44) .
4 V(1-zWaYP Ijarv)-O-2v)1. (arM'

The basic similarity with (3.2. 23), the z-averaged method, is

very evident. For h 1, a 5;6 ratio for M :M is obtained in the
V V

governing equation and nearly the same ratio is found for A :A. In C
v

the latter the ratio is not precisely 5 : 6 because A is a function of

M. Nevertheless a qualitative idea of the difference in the two and

indirectly a bound on the average error can be obtained by observing

from the differential equation that

2_ (3.Z. 45)
M 6 h2

such that if h a f-16 a 0. 912 then the governing equations for a

minimum energy solution of h v O. 912, or a a 1.088 corresponds to
v V

a z-averaged stress solution in a specimen of thickness h x I and

aspect ratio, a. Of course, if values of M and A from (3. 2.42)

v v

and (3. 2.44) are used in the basic solution instead of M and A from

(3. 2. 24) and (3. Z. 26), then the results for the minimum potential energy

solution can be immediately reproduced.

Because one Ls generally interested in the stress state at failure,

and hence stresses that satisfy equilibrium of stress at least in

- .---. 't/: :< ::V t x'. rw%***> -- - -
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some sense - here taken as the z-average - it is recommended

that the results from the previous section be used for fracture analysis.

3.c2.4 The Effect of Bending

We consider now some extensions of the approximate analysis

into some related areas of importance. The approximate method

(Sections 3. 2. 1 and 3. 2. 2) is applied here in order to calculate stresses

and displacements due to pure rotation of the grips. Only the rectan-

gular slab is considered since its solution is obtained much more

readily than the solution for bending of the disk, and the relative -

a
effects of combined bending and stretching should be indicative of the -

behavior of the circular disk. The solutions for pure extension are

combined with the bending results and few cases are examined. -:

Displacement Expressions. The displacements due to grip

rotation, shown in Figure 3. ic, are assumed as

u=-h (x)(1 - y2 ) (3.2. 46a)

V=Eby (3. Z.-46b)

where 2 E his the displacement between the grips at the boundary x a.

Stress Expression. Applying the integral condition (3. 2. 6) j
+ a

and boundary condition a- 0 at x. - a , we obtain the following
x

stresses:

-T / sinhxV fM
2E( K b Ja (3. .47)

Ebll E)La sinh ai

* 4:-
-.- - .. ty -- 1

"" ' - -"-"- ."- . . . . ... . ..'.. " .. . .... -..- .'.".. . .. - * *" _ , .",""- "'''..'- .-. ' .-. " . - .. "'. . " .-p.% .. "". -"",. • .

+' .- • " ." .' :.-. '-- .--a - - -- "-.-.-- -.-. '-'-' .-- - - - - . '. ' ..-.. - _. ... +..:- -,. -..- i.- .-. '..-... . ..... '. .- '.\.,'. .- . .
.' :.++ .- +-=g..J A 'ta-.+" . -, - + + + |- -. * -*| • | .. . . - . a * - 1
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a--

-90-. .5

-- +1/ (3.-2.4 7b)
E E 1+v ak3 3 ' sinh a Vm--
E -T - :

-('-E (3 K cosh xYM? 1
E - + E" 'MLs inh aYM{ a Y (3. z. 47c)

where all symbols have been defined in section 3. 2. 1. It is easy to

show that these stresses are exact when a--co amd V/112, or when

1-'5 0. Also for the same reasons as given in section 3. 2. 1 these

bending solutions can be well approximated by .

-X 1E 3 1/ N K rX Sinh xVf
E"\ E a sinh1a/J (3. 2. 48a) -

-_~ Eb X sinh 
..,1

S[ -- 4- - -(3. 2.48b)
E E +V si nh aV-J";--'

T Krcosh x 1K
-EbC EI af a y(3. 2.48c)

where 0 1 2 1' I1; IA x a - Z.

The total stresses due to extension and bending are readily -

obtained by adding solutions (3. 2.48) and (3. 2. 15). For example, when

1/  1/2 we find

*

* .- - - - - - -.- .* - - .. - 5 ..- .- -. --

:'-" .'., ' -. --.* --- - '-* .* .-; -.-*--...'..---..--.. -v -.r :.. .'-- .-'.. '-. -- --.- -..- . ---- o '. , ..' -..... '- "-. -- - ---:. --.' ;
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E E 2k 3 a) (3. E.

and

[xlxx 2 
", (3. 2."49b)

E C a 2 E a +a Y ] .4a

Results. Some representative results are plotted in Figures 3. 10

and 3. 11 for various amounts of bending strain E , relative to the

extension strain, C . It is seen that for Poisson's ratio close to 1/Z ,

the maximum norm.al stress, CF , is not significantly affected by

bending if C b/E 1/; howrtver, the location of the maximum is

more sensitive to Poisson's ratio and tends to move towards the

periphery with decreasing Poisson's ratio. Also, when Vw 0 and with

extension and bending, (T becomes

y(T E b X .""

. ry_ Cb- x 3 0 .51

E+ l±Ea (3.2.50)ii EE E a ''''

so that the maximum is at the boundary x u a.

3. 3 The Effect of Corner Stress Singularities -- '

The methods of solution for the stresses in a poker-chip, which

have been discussed in Sections 3.1 and 3. Z, are not able to predict

the conditions at the edges where a discontinuity in the boundary exists.

The reason for this is the presence of stress singularities, which give

ji rise to rapid changes in the stresses,and consequently, the above methods

%%Z
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converge extremely slowly, or not at all,at these singular points,

Therefore this high stress region has to be investigated by a different

method which is capable of predicting the stress state in the singular

regions. Such a method will be discussed in the present sectionwhere

the nature of the stress singularities in the poker-chip will be obtained. A
The conditions existing at the edge of the boundary of the

poker-chip are represented by Figure 3. IZ. Material I in this figure

represents the grips to which the poker-chip specimen is bonded and

the Material 2 represents a portion of the specimen near tht edge.

Material I extends over 180 degrees and the Material 2 over 90 degrees.

This situation corresponds to the case when the grips have a larger•-

diameter than the specimen and therefore they overlap the latter.

The analysis of the stress in this situation ia based on a'n

analytical method developed by Williams(3.?) (38. This method ]
pertains to the analysis of stresses in wedge bodies both under plane

stress and plane strain conditions. This analysis was originally

developed for homogeneous materials, but in reference 3.9 it was -

extended to the case of bi-rnaterial configuratio-Is. In reference 3. 11 it '

was shown* that che stress singularities in bodies of revolution, under

axisyrnmetric loading, are the same as in wedges under plane strain

conditions, and therefore the analysis of reference 3. 9 can be extended I
to the case of a poker-chip, that is to the configurations of Figure 3. 12.

Recently it was discovered that J. N. Goodier has presented a
different proof of the same fact, see reference 3. 1Z. 0

F,: -- -: -:, " " - -: -- -.,. -.. -'" . ...... ''/ , ; , .: .-:' ." ,".. "-----" .-:,,, --. .-, '. '-
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3.3. 1 Analysis of the Poker-Chip Configuration

The method of solution developed in references 3. 7. 3. 8 and

3.9 will be reviewed here for completeness. A str, ss function

X r, Y). which satisfies the biharmonic equation

V 4 x =() (3.3.1)

is takcen in the form

X(r,g4=r"' R(%)=--r ' [a sin (A+),+ b cos (A+ 1W#

- -+c sin (),-1- d-cs cos(--l)w] (3.3.2)

The poiar coordinate system r , S& is shown in Figure 3. 12 , where

tie constats A, a, b, c, and d are at present unknown. Each material

will possess a separate stress function and subscripts I and 2 will be

used to denote the quantities belonging to Materials I and 2 respectively.

The boundary conditions for the present configurations are as

. follows:

at V./i 0; the normal stress 74,, the tangential stress TK the radial displacement u , and the tangential displacement
rr

u are continuous across the material interface,

and at yin - r/Z and St" w the surfaces are free of stresses and

therefore OCj and Tr are zero.

The stresses and displacements in the case of plane strain are

(: ""related to the stress function F as follows (3 " 1

* ThisX is to be distinguished from its pervious designation as Lame's
constant.

-,-., . . . -.-b-. - . -,.. . . ,.o. ' . " - , - -.. . " - .- - . .: - - - - - . --.
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* 2...'07 ~IDf~LI1iWTi (3.3. 3)
r r r2  L r r IIi~/

-gX~~ (3. 3.4)

r r rs'r?~L (3.3.5) -

U (+ 1 )-F-)+A410V)cs(A-1W"/-d csi(A-1)Pj (3. 3.67)

21

In the above expressions fJ. is the shear modulus, and I/ is the

Poisson's ratio. 'The primes denote differentiation with respect to /4

Using the interface conditions at u0 anda the equations

(3. 3. 2), (3. 3. 4), (3. 3. 5), (3. 3. 6) and (3. 3. 7) the following four

algebraic equations result,__

b1-4-d 1 =b--d 2  
(3.3.8)

2 2

401-0c =4 k(1-)c +-(k-1 Xla(7) (3.3.10)
* 1 1 21 2 2) C1) 24.A 1]

4(1-l-')d =4K(1-V )d2-(k-1)(A- 1)lb + d2] (.31

S'7



-95-

where the subscriptb I and 2 denote quantities belonging to material

M1 and M respectively.
2

In the same way the boundary conditions at ./ 4 - 2i lead to

the following two equations

-a COS J bsin - c cos -- d (sin 0 3.3.12)2 2 2 2 2 2 2 2

-a 2 lkel) sinXT+ b2 (X+1) cos XTr

-f c (-1)sin d--d -) cos f3-0

and two more equations are obtained from the conditions at =

al sinA Tr+b 1 co sX'T+ 5 s in)5nXw+d c os X'mT=o (3.3.14)

-a(Xt 1)cos kT-ib ,+1) sin XlT
(3. 3. 15)

-c,(A-1)cos MTr+d A-I) sin krr=O
i1

the quantity k introduced in the above equations is defined as the ratio

of the moduli of the two materials, i.e. k = / 1 I$ 2 . The parameter

X does no require a subscript since it is common to the stress

functions in both materials in order that r-stress variations match.

The equations (3. 3. 8) to (3. 3. 15) are eight homogeneous

N algebraic equations in the unknowns a i , a2 ... d I , d . A non-trivial1 2
solution to these constants exists if the determinant of their coefficients

6.: is equal to zero. After necessary algebraic manipulation the determinant

can be written in the following form,

U

..', -. -.. -. -.', ".."-.. .-. ,.:,.'.- .,'.. -.. -...,-. .-.' :..: .:..'. -. ,..- -.. . . . .. . ..- ,-,. .-.. . .-.. .. ,. .".-'.,..-,.-.. . . . . . . . . .,. .-.-



si -r -r-2,8si

sin2  -1 X ( 22- 4 M+ si- 2 sin2 X 0 j3-3..
+ ($+f32 -XoL2a? k2X ,asin2X-rr-X2 =-0 (3.3.16) .:T

where -,
(k-i)

1- Z4
]Equation (3. 3. 16) is the characteristic equation whose solutions define

the parameter X which in turn defines the stress distribution for the

particular configuration considered. The solutions for X can be real :.-

or complex. In order that a stress singularity may exist and the

dizplacements be bounded at r z 0 it is necessary that a solution exists

for equation (3. 3. 16) such that the real part of A satisfies the condition . q
Lh0

o c Xc 1 . "m--1:

Special Situation of the Nearly-Rigid Grip. In the case of the
r -

poker-chip experiment the grips, Material 1, are always constructed

from a material whose elastic modulus is much higher than that of the

poker-chip, Material 2. Therefore the ratio of the shear moduli k in .- '

always very large compared to unity and in fact for the poker-chip

experiments described in Sec Zon 2,k was approximately equal to 500. --

It is therefore of practical interest to investigate the characteristic

equation (3. 16) for the case k Z '1.

characteristic equation (33. 16) can be written in powers
IThe

*" k-

L. -
L~~~~~4l id' dV i-.---d -- - - - - i--:----
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+ si n + E sir r rsi 
+AF sin- 

rT

2 22.
Si,±-g Fs r'-r X oo3.3 17

where:

A~ 4(1-V'2 2
i1 

1- j)

r A- 4(1_ 2 (1_V) 2 :

1)21 - V ) '( 1 -,.

20 1(1- -
Eu2(1-Vz)

14-1-

F 2 2

p.

4 (1- )2 - V

.1Since k is large compared to unity the first approximation to equationf

(3.3. 17) is obtained by considering the k term only, that is

sin Ar==o (3.3.19)

7 ..:>.-.:K ::.; .

- .-..- 

-

(3.3.17 is oban d.yc nsd rn the k,- te mo* h ti..
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or

A sin2A + B 0 (3.3. 20)
2

The solutions to equation (3. 3. 19) are all real, and they are

Ot,-, ... etc. Since >4 0 leads to a trivial solution for the

stress function ,rr, $4), it is obvious that the above solutions for

cannot produce singularity. Equation (3. 3. 20) can be written in the

form

(3.3.21)
2-4V- 3- 4 V

It can easily be checked that there are real solutions to equation (3. 3. 21)

for 0 1 , these solutions have been evaluated for different

values of U and are presented in Figure 3. 13. The second approxi-

mation to equation (3. 3. 17) is obtained by retaining both the k and k

terms. This will modify the real solutions obtained for equation (3. 3.21)

by a small amount; the new solution is written

. A + " 3 where: Xis obtained from equation (3. 3. 21).

By neglecting second order terms of 8 it can easily be shown that

12 siR F( 5- 6V1- 6 8 +4(1- )
2 2 A 0

4 ( 6 - s i(3 .3 . 2 2 )

7r sin rC os (4V2- 3 ) 2  0
t Is.. . . .

"2 2

. . o-. . . . . . . . . .

. A. - - -. ... V
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Values obtained for S from equation (3. 3. 22) are plotted in
-.

Figure 3. 14 for different combinations of I/ and V It can be
1 2

seen that for k >Z I the value of A0 is only changed very slightly

by retaining the k term in the characteristic equation.

Investigation of Complex Roots. The next question to be answered

is whether there are complex solutions to equation (3. 3. 21) which

will also lead to stress singularities. It can be investigated as follows:

the complex number A Tr/Z is written as

2
* Introducing this into equation (3. 3.21), we define a function of complex

% variable f Ir/2) as follows: 2

Oa 2 _ 4J1

-- 11-x-Y 2  -COs2xcosh 2y
2 34VW 2 'TC3-4V)
4-4 -s2 2xsn

34)6x (3.3.23)1+" '-i T2 xy2 + sin 2X sinh 2y (..3

If complex values of A exist which will produce singularities then

equation (3. 3. 23) has to have a solution whose real part satisfies the
4

condition 0 CZ X c:/Z. To examine the existence of such a solution it

has been found very convenient to make use of the following complex

variable theorem.

If f(p) is a function of a complex variable p and in a 7

certain region f(p) has r zeros and s poles, then as the

vector p moves around the periphery of this region in

e.g. Introduction to Complex Variables and Applications by
R. V. Churchll. McGraw-Hill, New York, 1948.

4
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the clockwise direction, the vector representing

f(p) performs r-s clockwise revolutions. .. t
4. -4

The above theorem is now applied to the function defined by

equation (3. 3.23). As the complex variable Xw/2 moves around the "

periphery of an infinite strip defined by 0-. Re Xw/2cw/Z, shown

in Figure 3. 15, then the complex function represented by the
equation (3.3.23) generates the curve shown in Figure 3.15. In the--4

curves of these two figures the numbered points correspond. It can q

be seen from Figure 3. 16 that as the tip of the vector, joining the

curve to the origin, moves along the curve in the direction shown by

the arrows then the vector performs one complete clockwise revolution.

Since it can easily be checked that the complex function f ( X v/ 2)

possesses no poles,therefore, by the above theorem of complex variables,

f( /2) has one zero, that is one solution, which lies in the infinite

strip of Figure 3.15. Furthermore it has already been established

that there is one real solution in this region so that it easily folLows

that there cannot be any complex solutions.

Conclusions. It has thus been determined that a stress singularity

exists at the upper and lower peripheries of the poker-chip and that

the order of this singularity is given by (1- X) where X can be obtained -
for different values of Poisson's ratio from Figure 3. 13. Naturally

the question aiises as to why fracture has not been observed experi-

mentally at the edge of the poker-chip. One very plausible explanation

of this is that there are very high strains in the vicinity of the singularity. - -"

which make the classical elastic theory invalid and produce finite

!1
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rather than infinite stresses. Such a reduction of the stresses by

. the finite deformation is obviously sufficient to preclude fracture

in this region, although additional quantitative analysis is required.

3.3.2 Matching of the Field and Singular Stresses

In the discussion of the different methods of analysis of

the poker-chip in Sections 3. 1 and 3. 2, it was pointed out that these

methods fail to predict the stress distribution in the vicinity of the

corners. In view of the results of the previous section it is clear

that the reason for this is the presence of stress singularities. In

the vicinity of such singularities, the poker-chip solutions previously

S described possess extremely slow or no convergence and thus

they do not predict the actual stress conditions. Qmeqiently the question

arises as to what is the stress distribution in the vicinity of the

singularities. It has been shown in references 3. 9 and 3. 10, that,

for wedge bodies, if the nature of the stress singularity is known then

the stress distribution can be obtained in its vicinity*. The stress

distribution obtained in this way is not, however, completely defined

since the expressions for all the stresses contain a common unknown

multiplying constant. To evaluate this unknown constant it is necessary

6 to have a solution for the s&resses away from the region of the singul-

arity and match the stresses obtained from both of the solutions

along some internal surface in the body. Such matching will determine

S the unknown multiplying constant.

In the case of the poker-chip a similar approach can be taken.

From the previous section the nature of the stress singularities is

Good accuracy has also been obtained using the multiplicative principle
and satisfying force equilibrium. See M. L. Williams, J. Aero. Sci.
19, 9, 1952, p. 615.

.7:
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known,and therefore the stress distribution in the vicinity of the

corners can be evaluated. The unknown constant can be obtained by

the matching of the stresses as described above. This approach will

now be ilustrated by obtaining the stress distribution for the poker- A'.

chip specimens analyzed by finite difference technique in reference

3.5.

From the singularity analysis of the previous section and the

results of reference 3. 11, the expressions for the stresses on the

interface of the poker-chip and the grips can be obtained,and the

results are

For Poisson's ratio V, 0.4

C)7= - I""-C 35 (3.3.24) e

(a-rp
0.66 ""

ar=%F C 0).66 (3.3.25)

,__.___A

C 0.396 (3.3.26)(a-r)o.35

and for 1/-= 0.5

S-- - adfr 7 .45 (3.3.27)

: :-::
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In the above equations the nomenclature of Section 3. 2 has been used.

The coefficient C is the unknown multiplying constant which has to

be determined by the stress matching. This has been doneand the

results obtained by matching the stresses in equations (3. 3.24) to

(3. 3. 28) to the interface stresses from reference 3. 5 are shown in

Figures 3. 17 and 3.18.

The point at which the stresses should be matched is to some -

extent arbitrary and depends on the individual judgment of the

analyst; however the quality of matching is indicated by the smooth- '

ness through the transition region. The point of matching in Figures

3. 17 and 3. 18 has been chosen to be at r- 0.98 and the corresponding

values of the coefficient C are:

for V/- 0.4 C 0 10.0

for /z 0.5 C = 22.3

It is obvious from Figures 3.17 and 3. 18 that for the case V z 0.4 

the stresses are matched closely and for the case V- 0. 5 the

matching is also good with the exception of the shear stress. Any

error in the matching could be attributed to the fact that in the region

r/a x 0.98 the results of reference 3. 5 are only approximate.

The procedure of matching two different stress fields near a

singularity cannot only be used for defining the stress state in a poker-

chipbut it also provides a useful criterion for determining when,

in a finite difference technique, a sufficiently suitable g Ad size has

been chosen. Obviously if a systematic reduction of the grid size

'K leads to a stress state which is predicted by the singularity analysis,

-'I

- -...- ~ ~ ~ ~ ~~ -. . . . . . . . . . . . . ...- 
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then this indicates that a sufficiently fine grid has been achieved,.'".

and the numerical cculation can be terminated. Without the.

<:isingularity analysis there has really been no way of knowing when to V'

.5

:".....2terminate a numerical technique in the neighborhood of a stress ."

._'.~

singularity, and the cut off point has always been chosen rather - .

arbitrarily. *

3.3. 3 Viscoelastic Effects on Tri-axial Failure

In the poker-chip tests the failure phenomena was observed

to be strongly dependent on the rate of loading of the specimens. This

indicates strong viscoelastic effects, and in view of this an extension

of the elastic solutions of this report to include time dependent

material behavior will be the next important theoretical phase of

the present investigation. This subject will be discussed in detail in

the subsequent progress reports; however, a brief comment is in -

order at this stage.

Under sufficiently high strain rates or low temperatures(3. 15)

most polymers exhibit viscoelastic effects. Given the viscoelastic

(3. 14)properties, one can use approximate inversion methods to

calculate time-dependent stresses and displacements, for arbitrarily

* applied strain or load history, from numerical values of the elastic ,

solutions. A consequence of one method is that under applied, time-

wise step-loading of displacements, described in refer 2nce 3.14, a

viscoelastic response is often approximately equal to the elastic

solution, in which elastic moduli are replaced by corresponding visco-

.(3. 14)elastic relaxation moduli (  
. Assuming that such an approximation

* An expedient way of conducting a numerical solution would be to insert
9 the singular terms into the analytical formulation, and then proceed to

compute the residual (non-singular) solution which would of course converge.

- -. .- . - -. ---.. ..-.- . .. - .-- '.. . ..-

I .:- .. " : -- .- : : -:.'--:-.i- : :- :.: -.: .. - " - -'.'-':.- ' ".'-..". '-.%: .,-'.-- - . "- .- ,," Y,.'"--P - .-.
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is vALid, we can readily determine the effect of viscoelasticity on the

slab or disk response. For example, substitution of the uniaxial

relaxation modulus into the apparent disk modulus, equation (3. 2. 35),

and assuming that bulk modulus is elastic and constant, immediately

provides an approximate representation of the apparent relaxation

modulus. In order to illustrate the relative sensitivity of the disk's

apparent modulus and uniaxial modulus to viscoelastic effects, we

have shown one particular case in Figure 3. 19. If it is assumed that

the bulk modulus is essentially constant, it is clear from the graph

that a small, or practically unobservable, change in the uniaxial

relaxation modulus can often lead to a large change in the apparent

modulus. This conclusion extends, of course, to the local stresses

and implies that for a given time-scale, viscoelastic effects in the

poker-chip or slab will often be much larger than obtained in simple

uniaxial tension. Such a conclusion has an important bearing on the

problem of obtaining a triaxial failure criterion with the poker-chip

test.

...

e- z- W. - - -.-. . . 2

.- ~~4 .. 'A- - . . . . . . . . . . . . . - , Z...
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Fig. 3. 1. Geometry and Notation Used in Slab and Disk Stress Analyses
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4.0 FRACTURE INITIATIO14 FROM INITIAL SPHERICAL FLAWS

4. 1 Introduction and Background Information

Since the conditions under which fracture in initiated are so

important in engineering applications, it is necessary to understand

them thoroughly. Even if one is mainly concerned with the mechanics

of crack propagation. the initiation phase or triggering phenomenon

is still an important consideration. It is appropriate, therefore, to

use the theoretical description of the stress field in Section 3. 0 in

order to study the problem of flaw initiation and to postulate possible

threshhold conditions.

Since the failures that we have observed emerge as sudden,

catastrophic bursts in which a spherical void appears, one would suspect

the existence of initial "residual" voids which grow under applied load

until they reach a critical void size at which this burst occurs. We - -:

shall therefore postulate the presence of an initial void and idealize

it as a spherical cavity of initial radius a imbedded in the center of
0 0

a spherical medium of initial radius b as shown in the sketch below.

a- -

a,, "

-7 U71

"/r- .

. .-.-.-- -,- - - - - -



The outside of the medium will be assumed to be subject to a __

' unifoim hydrostatic tensile stress, p. Since these cavities will

be considered to be small in comparison to the dimensions of the

specimen, we will eventually approximate the problem as a spherical

cavity in an infinite medium. This will be done in the subsequent

analysis by making the ratio of the radii b /a to be very large

2" : compared to unity. In this limit the surface stress p acting at ::.

infinity will be assumed to be the local field stress in the poker-chip

specimen. The above assumptions also imply that the voids are

sufficiently small and isolated so as to have little interaction with

each other. This assumption is therefore similar to the dominant

flaw concept often invoked in brittle fracture.

When an external pressure is applied, the internal cavity size

will increase in such a way that the energy balance between the

applied work and the internally stored strain energy will be preserved.

On the other hand, one can inquire for conditions under which it is

possible for this energy balance to be achieved in an alternate way.

In particular, one can visualize increased cavity area arising from

the creation, at fracture, of additional surface, which phenomenon

requires an incremental increase in surface energy. In the ensuing

analysis, failure of the cavity will be associated with incremental

energy transfers at some constant critical stress PC between applied

work, internal strain energy, and surface energy. Considerations 'A

similar to those used by Griffith(4 1) will be employed, but in ",

addition finite strains will be permitted because of our desired -

application to rubbery incompressible media. -.

,:~ ~ ~ ~ ~ ~ ~~~~~- .- ,. -- :,,------ -.-. , --. :--- - --- - - --- '- - - :--- -"----.: " "i -".--- -..-- '-
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4.2 Determinad.on of the Critical Pressure

To examine this critical condition a small change S a0 in the

00original radius a. is assumedand the failure condition is specified by : '-

the following energy balance equation

(External work) = e(Surface energy) + S (Strain energy) (4.2. 1)

where in the above equation ( is to be interpreted as the variation

with respect to ao under condition of constant applied stress.

The deformed internal and external radii are respectively a and b,

corresponding to two stretch ratios and defined as followsaa b

a --- (4.2.2)

-bo b :'2

In the present analysis it will be assumed that the medium in question

-is incompressible and therefore the volume will be conserved during

elastic deformation. This relates X to X by the following relation
b(

a -1) b (4.2.4)

from which

4-

b t- a '., .

4% j-.

- - ".
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It may be noted that for the configuration with which we are concerned,

one has alboCZ='l and also a X /b z a/boc 1, so that wea a o 0

have, approximately

3
X2 -+(4. Z. sa)

2. 2 -ao ( .3 )
b% 34( 0$$gai) (4. 2. 5b)

The potential energy U of the external load p is equal to the total

load acting on the external boundary of the medium times the displace-

ment of that boundary. Therefore

U1 = 4,Tbp (b-b o )

- 47rp b0 b (4. z. 6)

or using (4. 2. 5)

4 T 3 '-
U -' - -P a o (a - 4 . Z . 7/) : _

PSP

The internal strain energy in the material, U2, is equal to total work

done by the external surface force p during the deformation, assuming

no new fracture surface is created. To calculate this energy, the

relation between the external load and deformation is required, and this

depends on the constitutive laws of the material. For the purpose of the

present analysis,it is assumed that the material is Neo-Hookean, so that :

-a

.-
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it can be characterized by a strain energy function of the form

w- ---- (I ) - (4.2.8)

where in this expression E is the tensile modulus as measured at

small strains and I is the first strain invariant

1 2 ± (4.2.9)-I~~ 3 ,-

written for this spherical configuration in terms of the local principal

extension ratios

X1=X ;X 2=Xe X3X9 (4.2.10)

where conditions of symmetry require A A The Neo-Hookean:9:4.
material assumption inmplies incompressibility, i. e.

_2X X =1 or X Xe 1 (4.7.11)

X1 X2 X3 r0--

so that, upon substitution into (4. 2. 8),

W= [2 + (4. 2. 8a)

Using this constitutive law one may deduce the relation between the

radial pressure applied at infinity and the corresponding extension

'-. .

.:. ,-... -_.., ,-..-..-.. -,? :-- .:--------------------------------------......................................-.....................".- '.~~-- " '--------- -- -- -.--.-- - -. ,. .. . -- . ,' "• . "" .LT .,,-.. .-. ,,."
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ratio, at the surface of the cavity, Aa (see references 4.2 and 4.3)
%a

"p J5 i] (4.2.12)

A6

which for small strains gives the appropriate limit value

4E,-

P +x E 4 E =(4. 2. 1Za)e 3

Therefore the strain energy stored in the medium is

"-,~ P 4-IT b A'. da (4.2. 13)
U2 = ab b (..3

!- 1

Using relations (4. 2. 5) and (4. 2. 12), (4. 2. 13) can be written, assuming

a/b 4<< 1, as
0

3
U2  7rbc (4.2.14)

a 0

carrying out the integration gives

u= -2 -IrEa2 (4.2.15)

The surface energy of the cavity U3 is

L3= 4TrPaT (4.2.16)

* where T is the surface energy per unit area. Physically the quantity

:71
Y- ---"'... .. .. Z 4
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T, which was first introduced for crack problems by Griffith 1)

can be interpreted as the energy required to perform the necessary

molecular bond breaking in order to produce a unit area of new

surface.

Using the criterion for the fracture of the cavity, equation

(4. 2. 1), can now be written as

8CU1 =" & (U 2 -8 (U 3 ) (4.2.17)

where obviously the fact was used that the small change in work done

by external force is equal to the change in its strain energy.

Substituting into equation (4. 2. 17) from (4. 2.7), (4. 2. 15) and (4. 2.16)

and recalling that the variation is carried out at constant pressure

with respect to the unfractured radius a , it follows that
0

[ pa3( X-)] 2 T4rrg'] (4.2.18)

+ [iEa 3 -2X +r 3 "j

;"-From equation (4. 2. 12) it can easily be seen that p is a rnonotonically '-a-24

varying function of Xa and therefore the above variation under the

condition of constant pressure implies that X is also constant. There-

fore varying (4.2.18) with respect to ao gives

O[Pa 3 E 4-1-2T-+a°  - 2 X&' - %2"-i Xa 3 )"-"
Xa (4.2. 19)

N. ..

N

9,,i., ,...* Vt .
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which in addition to the trivial solution a 0 gives a defining

equation for a critical pressure p . Upon substituting for p from.

(4. 2. 12) and defining a new material parameter -

Sk- 6T (4.2.20)E a0

equation (4. 2. 19) can be rewritten as follows

6 3 4 1 . %

I.-V

The above equation defines the critical extension ratio for a given .

value of the parameter k. The corresponding critical load pc is

related to the critical cavity extension ratio, b ky (4. Z. 12).

4.3 Critical Flaw Sizes

Solutions to equations (4. 2.21) will now be investigated. In ",-

general this equation can only be solved numerically, which has been

carried out with the results presented in Figure 4. 1, where the

critical extension ratio .ac and the critical external load 6 p c/5E

are plotted against the parameter k on a semi-log scale. For the two

extreme ranges of k, that is for k-<-= I and k , approximate

analytic expressions can be obtained for the critical extension ratio

and the load.

Criticality for Larger Cavities 1-I). In this range where

the surface tension is relatively small or the voids reasonably large, -.

'. - .

t=
Ii - -.. , , , .., .. .- - ....., , ? , , ... : .- . -. ., - - . . . . . . ..-. . . . -. -• .-.., - . .. -.
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it may be verified that equation (4. 2. 21) can be closely satisfied

by Xa 1. To determine this root, write[',"-"i by ac .,.

Xac 1 -+-E (4.3.1)

where E 3cl. Upon substituting (4. 3. 1) into (4. 2. 21) and neglecting

3
terms of order E or higher it follows that *

-- k T (4.3. 2)

from which

' Xac 1 ' (4.3.3)

The associated value of the critical pressure, using (4. 2. iZ), is

PC 3 3 -a T(4.3.4)
0

which is valid for infinitesimal strains.

One may first observe that this expression has the familiar

form of the Griffith critical stress, wherein the radius a plays the0

part of the half crack length, c in an infinite sheet. For reference,

"' this latter situation gives

2 'T IC (4.3.5)

so that the numerical factor on the critical pressure differs by only

50 percent, reflecting the curvature and biaxial stress field at the

flaw. Note further that it is possible to obtain an excellent estimate

of the importance of small vs. large strain theory by examining

--.', '- .' - . ; - .. , - ",- ."r ." -" .'.-,,: . .. -. 4-. 4. ... --. -- "-------.~ ,'.- b. -.. '. "-% .... - . - -"-. - - -- , . '
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the departure of the actual extension ratio from the infinitesimal

estimate*, (4. 3. 3)

Criticality for Smaller Cavities (k >>I). At the other end

of the scale, where the surface tension is large compared to the

modulus or there exist very small flaws, it is also possible to obtain

the approximate root of (4. 2. 21) as

6T (4.3.6)

and the corresponding expression for the critical load is

(4.3.7)

The error in equation (4.3. 7) is 2.5 percent at k- 50 and it decreases

as k increases.

Remembering that k a 6TjEao the above results indicate
i0

an interesting point. For a given value of E/6T it can be seen from

equation (4.3.6) that as the initlal radius a decreases, the critical
0

extension ratio A increasesand it becomes infinite for vanishingly
ac

small cavity radius, although at a finite critical applied pressure of

5E/6. It can be noted that the high stretch ratios obtained for small

voids at fracture confirms the need for finite elastic theory for such

geometries.

* In the more general case of a compressible material the direct
calculation of the critical applied stress for a spherical cavity in an
infinite medium can be readily calculated using infinitesimal theory.
The result is 4 3/2 ET

V T +1+6(1-2V) ao

.- " ...- '- o -• , , -.,"- ..-- -- .- - . -- - . .:-y.-' .-. . -" " .-;\'-, - . -, -. -.-- --,.-,-,, , , - .- --.-<---.
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In conclusion, it is important to note that the above

asymptotic approximations are valid on either end of a 6-decade

band, 10 6T/Ea c! 3  as can be readily seen in Figure 4. 1.

For the intermediate transition region the values of critical applied

pressure and associated cavity strain may be obtained from the curve.

4.4 Preliminary Remarks on a Triaxial Failure Criterion

It has been shown that in an incompressible material of

modulus E and surface energy T there exists a potential critical

field stress p at which a small internal cavity of radius a° may growc
in size. Because the relation between the field stress and the stress

and strain state at the cavity has also been determined, a knowledge

of the local conditions at the point of fracture is available to examine

the validity of various theories of failure, such as those enumerated

in the first section.

At the cavity, the significant quantities are radial and tangential

strains

Circumferential strains X-Na

Radial strain (4. 2. 11)
r

and using the constitutive law (4. .8a), one can find the expression

for the circumferential stress (Te at the cavity surface

E [ ..

Since at the condition of failure the critical extension X is related to
a

P and the parameter j-T/E ° , as shown in Figure 4. 1, equation

(4. 4. 1) can be used to relate the circumferential stress at failure to

* ~~- - - - - - - -* - *

- .----.-
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the same quantities. This has been done and the results are shown ; C

in Figure 4. 1. For the two limiting values of k the circumferential

stress can be explicitly related to PC and k.

For k- l, Xa 1

and therefore from equation (4. 4. 1)

EY k -- (4.4. Z).. ¥ a o

and using relation (4. 3.4) it follows

V a= 3 (4.4.3)

This last result can easily be verified from classical elastic theory.

For k>: "> 1,

A=k

and therefore from equation (4.4. 1)

2T
e 8~ (4.4.4)

Using the relation (4. 3. 7) and combining with (4. 4. 4) it follows

PC' 
*N-

C- " (4.4.5) g

or inversely

S. . ...... . . . . . . . .



I Jk
* - "iw 1r -.. .i.s 

m
- ,u **.-r- , -. '°

P -140-

_ (16/75) (- - ~(4 . 4 . 6 ) " , '

5E)

The asymptotic expressions are also shown in Figure 4. 1.

In the experimental phase, mechanical property measurements

on one variety of Solithane 113 prepared at its particular curing time

and temperature gave a uniaxial tensile modulus of 510 psi and an

apparent modulus during the poker-chip test of approximately 17, 500 psi.

Using the results of the theoretical analysis for this ratio SalE / 34. 3,

with an aspect ratio a - 20, one finds from Figure 3.7 that

a E 1. 65, for which the associated mechanical properties are

K x 73, 500 psi ; V 0.4989

With this value of Poisson's ratio we see from Figure 3.4 that the

normal stresses are maximum and are virtually constant out to

r/a - 0.2 or for our specimens ( a x I in) r O 0. 2 in. Thus within a

central ring of 0.4 in. diameter, random, initial failures would se

(4.5)
expected to occur, as they have been observed to do. However,

if there is bending in the test, Figure 3. 9 indicates that failure should

not initiate in the central region, but rather somewhere in the neighbor- 6,-

I

hood of r = 0.4 in., depending upon the relative amount of bending

present. This position of initial failure has also been observed.

For the same material formulation, the applied stress, (TA , at

failure for many tests was of the order of 300 psi. (By (r, stress is

meant the applied load divided by the area of the poker-chip as if it

were a uniaxial tensile bar.) From Figure 3. 1'% we find that near the

center of the specimen the maximum local field stress is 1. 89 4. .

I2

. . _ - . . . . . . . . - . . . . , °°°- .- - *.-.X.7 - - .. ° -- --_. .--.-..... ".. -. .. . ..-- . .-. - -.- . . ...... . . . . . . . '-..•.' . .. -..-.- ' '-.-.
;..'- -''- ..-""'.- .. ." .:' -' - °- '-_ --" - .-' i ". -"" ""- " " "." 

°
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Thus p (1. 89) (300) s 566 psi and therefore using the value of

E = 510 psi given above it follows that for our specimen, approximately

1.332 (4.4.7)

However according to the elastic failure analysis presented previously

the value of the parameter 6p /5E should not exceed unity. In view

of the observed strong dependence of failure of poker-chip specimens

on rates of loading it is quite possible that this discrepancy is due to

viscoelastic effects in the vicinity of the voids. These viscoelastic

* effects will not be discussed in the present report since, as indicated 4

in Section 3. 3. 3, they are being further investigated and the results

will be presented in subsequent reports.

Comparative Failure Criteria. Having made some investigations

into the localized stress and strain state at the point of failure, we now -

proceed to examine on a global scale the applicability of the various

failure criteria outlined in Section 1.1. Our basis of computation will

be the field stress in the poker-chip and the true stress in the uniaxial

test specimen. The typical failure stresses in the poker-chip have been

tabulated above on the basis of the approximate analysis, and the

ultimate strength in uniaxial tension was measured on ring specimens as

outlined in Section 1. 3 at a corresponding strain rate and temperature -

as the poker-chip. Numerical values given are for room temperature

and 0. 2 in/min strain rate in both uniaxial and triaxial tests.

-4 4-
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(1) Maximum iincipal Stress - Qualitatively the experimental

results yield support to the maximum principal stress theory,

where for equal tria-dal tension tne failure stress (C f) is

given by
2 2 2

f k, 2 3
where ai is uniaxial failure stress and it is found to be

300 psi for our material. Therefore

C-f U 520 psi

This compares favorably with the average failure stress in

- poker-chips of 560 psi.

(2) Maximum Principal Strain. From expressions (3. 2. 19)

(3. 2. 25) and (3. 2. 26) the strains at failure may be calculated,

and for r =4.0 and V 0.4989, we have

Er =0.725E, E0=0. 7 2 5 E Ez =E

Experimental results yielded failures at values of

S* .01; thus, the field strains are the order of infinitesimal

theory in the poker-chip. In contrast to this, the strains in

uniaxial tension are 0. 60 to 0. 75, which eliminates mamumn

principal strain as the failure criterion, since it would

require the strains in the poker-chip to be larger than

those in the unia-ial case.

(3) Maximum Principal Stress Difference. In the limit of

incompressible materials and infinite aspect ratio, there is

no principal stress difference, which indicates that shearing

stress is not an important factor in the failure if these

t1
-------------------
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limit conditions are approached in any substantial degree

in the laboratory. To illustrate that this is not the

criterion which is valid, we compare values from

(3.2.28)
aF=02 =1. 02 C

Thus A (- = .0 3  11. 32 psi, where for uniaxial

tension, A a" = 300 psi and there is no failure~~~~max ,"i"=

cor relation.

(4) Maximum Principal Strain Difference. Similar remarks to

those made for maximum principal stress difference can be

made here. The strain in the uniaxial specimen is much

larger than in the poker-chip and this discrepancy is

further magnified when differences are taken. It is..._

therefore appropriate to delete maximum principal strain

difference as a possible criterion.

(5) Maximum Total Strain Ener. By equating the tal strain A
energy in a uniaidal tensile specimen to that of poker-

K chip, we find from (3. 2. 32)

.- ( _)2 1+_ 222
3 3" 1 2 3-.32

where (T is ultimate strength in uniaxial tension.
u

For Solithane we find,

o, =13% 1
which does not conform to observed results and can be

eliminated as a failure criterion.

• - -.--- --.--
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(6) Maximum Distortional Strain Energy. The maximum distor-

tional strain-energy criterion (1. 1. 1) can be quickly checked

for the poker-chip test by assuming

cr ~ ( cro o-==c c=ca3 -2 2

where C 2 WC 1 +b C uC
2--1

and E is small compared to 1. Substituting in (1. 1. 1) and

neglecting quantities of order E 
4

E
1+ c_ (4.4.8)

L~~~ -_ 1, ."_

Expanding the radical in a binomial series, and neglecting .

terms of order E

cr C=r -1 +ii
Substituting the appropriate values for C and E

,C 2= (4.4.9) : ::
('" (CI - 2

From equation (3. 2. 28) for failure at a typical radial location .-

o ,= tO2C C. =.I C=1-02

which predicts the failure stress in the poker-chip to be "-

much too high. On the basis of preliminary results, we A

can dispose of all of the criteria except maximum principal

stress. More than likely some more general surface will
* 4

be required to specify the failure for general stress state and -

work is already in progress to accurately define the failure

surface at room temperature and fully relaxed strain

conditions. In addition, it is planned that a complete

9. -.- .--



- 145- ..._

relation ship between uniaxial tension and triaxial

tension be obtained for a wide range of temperature

and strain rates.

In discussing comparative failure, it is important to recognize

that there are two important considerations: (1) the overall three

dimensional stress field with tleir association to the various failure

theories, and (2) the interpretation of failure as a local, flaw instability, '

phenomenon. In this latter situation further study is also needed,

especially in comparing for example results obtained from tests on

sheet materials with those in the poker-chip. At this time our

preliminary correlations are not deemed sufficiently conclusive to

report.

& t--
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E

ACTUAL VALUE

---- SYMPTOTIC VALUE I

- 3 -

x M~E3
Xa5E

7 1.0 2I

EI

6 0.8 1- Ar

5 0.60-

4 0.4

5E 519~

3 0.2

2 0

1a
-2 -1 0 1 2 3

log k 'og 6
E a

Fig. 4. 1. Critical Conditions for Instability of an Initial Spherical
Cavity.
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5.0 CONCLUSIONS

While the work reviewed in this report in effect reports

current reiults in a continuing study, it is worth emphasizing that

several specific points have been established.

1. There has been little work in determining multiaxial

failure criterion for viscoeastic material as a function of
I

stral. rate and temperature.

2. The triaxial poker-chip specimen can be a satisfactory

tool for determining fracture under triaxial tensile stress.

3. A relatively simple stress analysis of the poker-chip

configuration has been presented. The results are internally -.-

consistent and agree well with a more precise and extensive

numerical analysis; moreover, in conjunction with the singular

stress evaluation which is valid near the edges, a quantitative

assessment of the state of stress throughout the entire geometry

can be obtained.

4. A multiaxial failure criterion has not yet been fully

established for the material tested; however with further experi-

mental data, this will soon be possible.

5. An instability criterion for the catastrophic growth of

small spherical flaws has been obtained. It is important to note

that this criterion includes large as well as small strain effects,

and as such can be applied to any initial void size.

, ::!.;.
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