UNCLASSIFIED

AD 419114 ,

DEFENSE DOCUMENTATION CENTER

FOR
SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA. VIRGINIA

UNCLASSIFIED



NOTICE: When govermment or other drawvings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement opermation, the U. 8.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnisghed, or in any way
supplied the said drewings, specifications, or other
data is not to be regarded dy implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to mamufacture, use or sell any
patented investien that may in any wy e selated



&

. -
- -

AIR UNIVERSITY
UNITED STATES AIR FORCE

L

- -

el
NS ——~

SCHOOL OF ENGINEERING

DD
WHONI-PATIIIION IR PSS BASE, OB i

;-
¥ i
e '7 ATl i
ORI i 33:‘) Ty
N

i
T— - - B3
T, 1

219114 [Zigr eon

PR -
N p— -

Ty

APWP-0-0CT 8 3,000



T RIS I o 0 e e w et o . PO

INVESTIGATION
OF RELIABILITY CHARACTERISTICS
OF SO0MB COMPLEX NBTVORKS
THESIS

GRR/EB/63-4 James Burst Stephenson
Kajor UsaA»

AP -WP-0O-OCT 63 3




SNVESSIGATION OF RELIABILITY CHARACTERISTICS
OF SCMB COMPLEX NROWORES

Lot Presemted to the Faculty of the School of Engineering of
| the Air Force Institute of Technology
Alr University
i in Partial Pulfillment of the
Requirements for the Degree of
Naster of lum

By
Jemes Hurst Stephenson, B.S. A.E.
Major USAF
Graduate fystems Reliability Emgineering
: ' Mgnst 1963

R R R

A £



GRB/BR/63-4
Preface

While the network reliability functions
encountered in textbooks are justifiably kept
simple, those encountered in practice are frequently
quite complex, Visualizing the many hours which
might be spent in duplication of effort by many
engineers and students laboriously developing
reliability functions for complex networks, I
thought that it might be useful to do this for a
few of the more common ones and make the results
available to all. To this end have I written this
thesis with the hope that the results contained
herein might prove useful to others in the area of
systems reliability.

I wish to express my gratitude for the
guidance and encouragement of Prof, T. L. Regulinski,
Ay faculty advisor for this study.

i1
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| Abstragt

Relieblility functions and a procedure are
developed by which maximum reliable parallel-series
and series-parallel networks may be designed. These
networks are composed of equal elements having open
and short circuit failure modes. Reliability
functions are developed for bridge and lattice networks
composed of unequal elements having a single failure
mode. These functions are given in two forms, one
suitable for substitution into more complex networks
and one suitable for desk calculation and computer
programming. Reliability functions are developed
for two, three, four, and five station polygonal
networks composed of equal paths with linélo failure
modes. Reliability improvement is showm as stations
are increased.
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I. Introduction

Network analysis is used today in many fields to
study the relationship and interdependence of functionally
connected elements. One of the many useful applications
of network analysis is in systems reliability
calculation, the use to which it is put in this thesis.

The purpose of this study was to develop
expressions for the reliability of some common types
of networks in terms of element reliability factors
and to establish procedures for their use in
calculating system, or network, reliability. A cursory
review of networks in general will reveal that there
are some configurations which are quite common and
for which general reliability expressions might be
useful. Those networks which were gelected for this
gtudy were the parallel-series, the gseries-parallel,
the bridge, the lattice, and four of the polygonal
class of networks.

While it is true that system reliability is
basically dependent upon the reliability of the elements
of which the system is composed, it ie frequently
possible, by judicious arrangement of the evailable
elements, to achieve a network relisbility greater
than the reliability of a single element or of any

other network configuration.
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Shannon and Moore have shown that it is possible
to construct reliable circuits from less reliable
elements and have developed reliability functions for
parallel-series and series-parallel circuits assuming
equal elements and single failure modes ( Ref 1:205 ),
ARINC Research Corporation Publication No. 123=7-196
includes the development of expressions for determining
the optimum reliability of series and parallel circuits
composed of equal elements having two failure modes
( Ref 5:12-29, 12-33 ). In chapter one of this study
are formulated equations with procedures for their
use in designing maximum reliability parallel-=geries
end series~parallel circuits composed of equal elements
having two possible modes of failure. Thus, the work
begun by Shannon and Moore and continued in the above
mentioned ARINC publication has been extended one step
further by this study.

The other networks in this study are assumed
to be composed of unlike elements with a single
failure mode and the development of their reliability
expressions comprises chapters two, three, and four.
Appendix A consists of a proof of the Disjunctive
Expansion Theorem of Boolean Algebra.

The results of the study will prove useful in
both desk calculator and digital computer computation
of network reliability values and in development of
network reliability expressions for more complex
networks.
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Because of the differences between the elements
in the networks of chapter one and those in the
networks of chapters two, three, and four, the work
in those two areas is independent.
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il. Parallel-Series and Series-Parallel Networks

The first network to be considered is the
M x n parallel-series network which is shown in
ﬁg. 1.

‘ i 12f=--=— N

21 22 y&n

L.

d Mif 1&2—----@

Fig. |
M xn Parallel-Series Network

Each of the elements can fail open or short and the
conditions of network failure are that (a) all n
elements in at least one path fail short or (b) at
least one element in all M peths fails open.
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It is assumed that the probabilities of failure of
the elements are independent. The event of all

n elements in at least one path failing short will
be called event A and the event of at least one
element in all M paths failing open will be called
event B, The probabilities of an element's failing
short or open will be indicated by the symbols q"‘.l
and Ch“j respectively,

The joint probability of all the elements in
row 1 failing short, C).g » is thus given by the
product of the eleme~ t probabilities of short circuit
failure,

n
Qu= H qsij (1)

Subtracting C}g from 1 gives the probability that
at least one element in path 1 does not fail short;
ie., the reliability of the path with respect to the
short circuit mode of failure,

n

R.(= | - H qsi; (2)

From this, the joint probability that no path
has all eclements t0 fail short is

il

M n
R,= TT( "H%tj) (3)
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and finally, the probability of event A is seen to
be

P(A) = I- I-qu..,) (4)
For equal elements this expression becomes
M .
PA= 1 -[1-(q)] (5)
Considering now the open circuit mode of
failure, the probability that no element in path i

fails open, Rei , is equal to the product of the
probabilities of the element's not failing open.

Ra‘—'ﬁ.(l"qaj) 6)

The complement of this expression is the
probability that at least one element in row i fails
open,

"ﬁ(l-qoq) (7)

and so the probability of event B is given by

P(B) = ﬁ[l - ﬁ(l - q".l>:| (8)
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vhich, for equal elements becomes

PB)= [i-(1-qJ ]" (9)

Since the events A and B are mutually
exclusive, the unreliability of the network is
simply the cwa of the probabilities of events
A arnd .,

Q. = P(A) + 2(8) (10)
Q = 1- ft0-T )

' -
iel =l

t f{[l-ﬁ(!—qoij)] (v )

and the general expression for the parallel-series
network reliability will be given by the complement
of the last expression,

R. = | -Q, (12)

R = H0-Tlaw)
-Nl-10-q4)] 09

tzl >
It is not meaningful to speak of an optimum
number of elements for a network composed of a
number of Jifferent elements; however, for networks
composed of equal elements it is possible to
determine the number of elements which will
saxinize network reliability. For an equal element
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parallel-gseries network, Eq (13) becomes

Ry =[1-(ar]" = [1-(1-qr]" (14)

ror various given values of {s and q. optimum
values of n (the number of elements in series) have
been determined and graphed as shown in Fig. 2.

( Ref 5:12-30 ).

Since n, the optimum length of the network, has
been determined and is a constant for given values of
Qe and Qe , it is necessary only to find M, the
optimum width of the network. This may be done by
taking the derivative of R with respect to M and
equating it to zero.

e i Do) o

d . _ ¥
snoe 3% = 3 ina,

-ﬁ-%—: [l-(q,)”]Mln[l—(q‘)il
—[n—u-q.ﬂMln[t-u-q-)"] (e)
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Bquating the right side to zero and solving for M,

In[1 = (1-q4"]
'"{ln EXChE }

M pEen T
[1-C=-qJT

(17)

Attention i8 now directed to the m x N series-
parallel network shown in Fig. 3. This network, like

— - - —— —o

n

—--

m2

I 3 l
) S

Fig. 3
m x N Series-Paralle! Network
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the previously discussed parallel-series network,
is composed of elements which can fail in either
the open or short-circuit failure mode. It is
again assumed that the elements fall independently
with the conditions of network failure being (@)
at least one element in every unit fails short or
(b) every element in at least one unit fails open.
As before, (@) and (b) above will be referred to
a8 events A and I respectively.

Since the development of the expression for
the optimum number of units, N, for the series-
parallel network is quite similar to that for the
parallel-series network it will be described sym-
bolically for the most parte.

m
' P(no element fails short in unit j) = U(I-q,ij) (la)
(£ 1]

P (at 1east one element shorts in unit j.= l-ﬁ:(l-qu;) (] 9)
(1]

N m |
o pA)= TT[i-T(1-q4)] (20)

J;| i

m
P(al1 in unit j fail open) = !'T i (21)
L]

[sa]
P.at least one in unit j does not fail open) = l—'n'q,‘i (22)

Y
P(at least one in all N units does not fail open)

= ﬁ l-ﬁoﬂ] - (23)

jn 1Y
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= | = TT(I TTq“,)

Jll =}

P(A) + P(B)
l—ﬁ(l Tqu.,)

and
P(B)
Therefore,
Qu =
Q =
and eince

R..=]T

=

becomes

+ TT[:I“TT(| OUX]

‘ll

u I - cl » then

[l T“q.a,-] - ﬁ [I -]:f( l -Qu'j)]

For an equal element network, Eq (27)

= [l—(q.)"]N-[l = ( \-qs)"']N

Again, to determine the number of units which
will result in maximum network reliability, the
derivative of R 1is taken with respect to N,

equated to zero, and solved for N, resulting in the
following equation,

(24)

(25)

(26)

(27)

(28)
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ln[l (i"%)}]_
_ In [l—(q.)"‘
-N - [ 1=(a)"]
[l-(l-q,)"‘

(29)

In

The determining factor in the choice between the
parallel-series or series-parallel network is the
relative magnitude of Qs and Qs . If q,)q. then
the elements should be connected in series.
Conversely, if q.>q, the parallel connection
should be used. Therefore, when Qe.>q, Eq (17) for
parallel-series networks must be used and when
q.>q, BEa (29 for series-parallel networks is the
correct equation,

In general, for given ., and q. netvork
reliability as a function of M or N would have the
form shown in Fig. 4. Clearly, since the curve is
continuous, rational values of M or N are possible
while only integral values of M are meaningful,

When the solution of Eq (17) or (29)
results in other than integral wvalues for M or N,
further computation is necessary. The integers on
either side of the non-integral value of M or N
must be substituted in Bq (|4 ) to determine the
maximum obtainable network reliability.

13 .
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M, N
Fig. 4

Functional Form of Network Reliability
As a Function of M or N

The following steps outline the procedure to
be used in applying the equations developed in this
chapter to determine the optimum dimeusicnc ©
parallel-series and series-parallel networks.

1. From given values of Qs and ¢e determine
vhether elements shculd be connected in
parallel or series.

a. Parallel if q.)q. .
be Series if Qe >
2+ Find optimum number of elements from Fig. 2.

14
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3. Substituting these values of {q¢ ,» G
and m or n in Eq (}7) or (29), solve for M or N.

4. Substitute the closest integers above and
below M or N into Eq (i4) or (28) and solve
for RN .

5¢ Maximum value of R,, obtained in step 4
above is the maximum obtainable reliability
using the given elements.

To illustrate the above procedure, suppose a
network is to be constructed of elements for which
Qe = «10 and q. = .0004., With these probabilities
of failure in the short and open failure modes
regspectively it is obvious that the elements should
be connected in series to maximize reliability, and
from Fige. 2 it is seen that the optimum number of
these elemente in geries is four.

Substituiing these values in Eq (17) and
solving for M,

In[1-Ci - 0004)*]
In[l-( 1*]
[|-(l)‘]
"MTi-(1- e8]

(30)

M_

M= I.72‘ (31)

15
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Since 1.72 series connected paths of four
elements each has no meaning, it must be decided
vhether to use one or two pathe. Solving Eq (14)
tor M= |,

Re=[i- (o.l)"]— Li-(1- 0-0004)‘:]
R, = 0.9983

and for M = 2,

R = [l - (o.l)‘]z- [a - (- o.ooo4)“:|2

R.=099979744

Thus 1t is seen that two parallel paths of four
elements each will provide the maximum reliebility
obtainable using the given elements in parallel-series

or series-~parallel networks.

16

(32)
(33)

(34)
(35)
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iI1l. The Bridge Network

The next network configuration to be considered
is the bridge network shown in Fig. 5. Sheannon and
Moore have developed the reliability function for this

c d

Fig. 5
Bridge Network

network under the assuwaption of equal elements which
fail independently of each other ( Ref 1:195 ). This
function is shown in Eq (%).

R.= 2r*+ 2r* = 5r*+ 2p¢ (36)

There are many ocecasions, however, when the
networks under consideration might be composed of
unlike elemente and for these occasions it was
thought useful to have more general expressions for
network reliability in terms

17
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of element reliability. The basic assumptions for

the following development are that the branch elements
fail independently and that there is a single failure
mode for each element.

An adaptation of the Disjunctive Expansion
Theorem of Boolean Algebra ( Ref 2:xix ) to circuit
analysis is used to develop the reliability expression
for this and subsequent networks. This theorem states
that every Boolean function, f( x" Xh REL T X ) ,
mey be written in the form:

£, %, %)= £ 0%, %)X V fo,%, - %)X, (37)

The assumption of a single mode of failure permits
the application of Boolean Algebra to this network
analysis.

In adapting this theorem to reliability
calculations of complex networks it may be stated as
follows: The reliability of a network is equal to the
reliability factor of any one single element of the
network times the reliability of the network with the
terminals of the element shorted, plus the unreliability
factor of the same element times the reliability of the
network with the terminals of the element open. Or,
expressed symboliocally,

Ru s r'[R"]r;.l + q, R' o (38)

vhere

R,. = Network reliability (39)
F. = Reliability factor of element K (40)

18
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Qx = Unreliabiiity factor of element K. (4‘)

[R“] ";' = Reliability of network if reliability

(42)

of element K is one.

[R. guo™ BO118DILLEY of network if reliability
of element K is zero. (4 3)

When practicel, it is helpful to sketch the
network in each step of the development of the
reliability expression. In order to simplify the
notation in the development of the network reliability
expression the following convention will be used,

Q = reliability factor of element a. (4 4)
@ = unreliability factor of element a. (4 5)

Applying the factoring theorem to the bridge
network of Pig. 5,

R, = c[{:_—:}] + & [{::d}] (46)

Since the reliability expressions for the
simplified circuits remaining in the brackets are
known, these ocan now be substituted for the oircuit

diagrams, 80 that
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R, = e[(1-3&)(1-bd)]
 + &[abecd-abed] (47)

and after expanding and grouping
R.= e[i-(ac+bd-abcd)]
+ &[ab+cd - abed] (48)

The expression in the firat bracket is the probability
that at least one element is good in each of the pairs
QC and bd , and that in the second bracket is the
probability that at least one of the pairs ab and cd
has both elements good. The two terms, then, are
oonditional probabilities, the first being the
probability that the network will be successful given
that the bridge element is good and the second being
the probability that the network will be successful
given that the bridge element is bad.

Since the two events for which the above are the
probabilities of occurrence are exhaustive and mutually
exclusive, Eq (48) is thus the reliability expression

for the bridge circuit of Pig. 5.
By rePlacing the element unreliability factors

with their 1's complements and expanding the

Tesulting expression the network reliability expressioa
oontaining only element reliadility factors can be
obleined, 7This yesult is shown in Bq WU8.
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R, = ab + cd + aed + ceb - abed
- abce - abde - acde

~ bcde + abede + abede (49)

While it is easily seen that the first four
terms in Eq (49) include all possible paths through
the bfidge circuit, it is not so apparent that the
last two terms eliminate any duplication which may
be contained in the first five. This fact can be
verified, however, by use of the Venn diagram
shown in Fige. 6. The circles, a,b,c,d, and e,
correspond to the events that the respective elements
are good and the small sub-areas which are involved
in the bridge circuit have been numbered from one
to thirteen simply for convenient reference. The
terms in Bq () therefore, represent various

combinations of the sub-areas of the Venn diagram
as follovws.

ab = |+2+6+7+8+11 +12 (50)
cd = 3+448+9+10+11+13 (51)
abed = 8 +11 (52)
aed = 546+ 10+ (53)
ceb = 749+l (54)
abce = 7+11 (55
abde = ¢ +11 (56)
acde = |0+11 257;
bede = @+i1 58
= 1l (39)

abcde



e?

enn gram
of Unequal Element Bridge Network
Fig 6
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Writing Bq (49) in terms of these sub-aress

Ro= (1+2+6+7+8+11+12)

+(3+ 4 +8+9+10+11+13)
+(S5+6 +10+11) +(T+9+11)

~(8+i1) = (T+11)-(6+I1)
=~ (10411) =(9+11) + 11 + (1 (60)

Ro= 1+2+6+7+8+11+12+3 +4
+B+9+10 4+ H+I3 -B-U+5
+B+ W+ T+ F T8
.),(.‘.)a’-ﬂ-j-/y(-p),(i-y( (e1)

Re=1+42+3+444+5+6+T+8+9
+10+1L+12+13 (62)

and thus it is scen that there is no duplication
present in Eq (49).

Eq (49) is rather unwieldy for the computation
of reliability, either by hand or by computer
programming. Suitable grouping and factoring of
the terms will lead to Eq (63) which is the sum of
two terms minus their product. Egq (63) would ve
relatively simple to program for computer solution.

a3
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R.=a[b+ ed-bed]+ c[d+eb-deb]
- ac[b+ ed-bod] [d + eb - dekz-] (63)
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1¥Ys Ihe Lattice Network

The eight element lattice network,
frequently encountered in computer logic circuits,
is the next one to be considered. A drawing of
this type of network is shown in Fig. 7.

— Q —< b ‘ C —
9

Fig 7
Lattice Network

The basic assumptions in the development of
the reliability expression for this network are that
the elements fail independently and that each has only
one failure mode., The expression will be developed
first for a lattice composed of diode type elements;
that is, flow in the network is from left to right
only. Again, the factoring theorem may dbe used to get

25



GRB/BB/63=4

Ao B el o

While elements b and g might be good with element
Q bdad, as in the second term, they are useless under
the assumption of left to right flow only. They are
omitted, therefore, from the second term leaving it
in a form requiring no further simplification, of the

first term.
Continuing the simplification of the first term,

R, = ad {:]' +ad-[ N
va 23] (63)

All three brackets now contain circuits
composed of simple series and/or parallel arrangements
02 the elements and may be replaced with suitadle

algedbraic expressions. Thus
R, = ad[c(1-Bh)+f(1-&3)
-cf(1-Bh)(1- 8)]
+¢3[bc +fq - bch]
+8d[ che af-cefh] (e6)

26
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which is the general expression for the
reliability of a lattice network in terms of both
reliability and unreliability factors.

Replacing the unreliability factors with their
l's complements, expanding, and collecting terms
glives

R. = abc+ afg-abcfg +cdh +def
- cdefh - abecdh - adefq |
—-adcfgh + acdefgh — abcdef
+abcdefq +abcdefh |

+abcd fgh - abcdefgh (67)

By grouping and factoring the first three and

the second three terms, the two terms

a[bc+fg-befg] ana dch+ef- chef] axe

obtained. Noticing that elements Q and d are "in

parallel" in Fig. 6 and that the first of the

two terms just obtained is the reliability of the

lattice if element QA is good and that the second

is the reliability of the lattice if element d 1is

good, raises the question whether the last nine

terms might not be the result of the negative

product of the first two terms. If this were true ‘ .
we would have the simple parallel relationship
involving the sum of two expressions minus their
product. To establish whether or not this is the
case we take the negative product of the first two
terms, expand, and check the results against the

27
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last nine terms of Eq (67).

~ad[ be +£g-befg| [ chaef - cenf ]

= - adl}cch + bcef- beccehf
+cfgh + effq - ceffgh
- bcchh - bceff'g
+ bcceffgh] (e8)

Since the letters representing the network elements
stand for the events that the elements are good, we can
apply the idempotent law of Boolean Algebra ( Ref 2:xiii)
to the above expression to eliminate the double factors
vhich appear in some of the terms. Continuing the
expansion,

-ad [bc +fg- bcfg] [ch +ef — cef h]

= -ad[bch + bcef-bcefh
+ cfgh + efq - cefgh
- befgh - bcefq
+ beefgh (69)

= -abcdh - abcdef +abcdefh
= acdfgh - adefq + acdefgh
+ abcdfgh + abcdefg
- abcdefgh | (70)
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Thes® are identically the last nine terms of Bq(67)
vhich may now be written

Ru=a[be+ fg-befg]
+d[ch+ ef - ce'F\n]
-ad [bc-e--Fg - bch] [ch*cf- cc‘fh] (71)

Bq (71) will be much easier to use in calculating
reliabilities than Eq (67), either by desk calculator
or computer program.

Sometimes the elements or branches in a network
permit flow in eithexr direction, so the restriction
of one-way flow imposed upon the network elements in
the development of Eq (67) is now lifted for the
following development. Again applying the factoring
theorem to the network of Fig. 7,

oo L2 o2

Because of the assumption of two-way flow,
elements b and q in the second bracket cannot now
be disregarded. The circuit can, however, be
drawn as element d in series with a bridge cirocuit.

-~ 5}

a9
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With the reliability expression for the bridge
circuit now available no further simplifiocation of
this circuit is necessary.

Continuing,
e ] R e

+ad {:EE:} (73)

Bq (72) has now been reduced to the point where
algebraic expressions may be substituted for all the
eircuits in the brackets. Eq (73) is, in fact, the
same as Eq (65) with the two parallel-series circuits
of Bq (65) bridged by the elements miseing in those
tvo terms.

In using the bridge network reliability
expression developed in Chapter III it is helpful to
oconstruct a table of corresponding terms.

b b h ——
T || Lt

b h

a

b c c
c 9 e
d £ f
e he in,
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Substituting the corresponding terms into Lq (T8)
the expression

[bc +¥g + befh + cegh - befg ~bcegh
- bcefh - befgh — cefgh
+ becefah + bce-th]

is obtained for the first bridge and

[hc-l- ef + bfgh + bceg -cefh
-bcegh - befgh — befgh
- bcefq + bce-th-i- bcefgh]

is obtained for the second bridge. Eq (73) may now
be written

Re= ad[c(1-hB}F(1-23)
- ef(1-RB)-25)]
+ad [bc +fg + befh + cegh - befq
~bcegh - bcefh ~ befgh
-cefgh + bcefgh + bccfgh]
+ 5d--[hc +ef+bfgh +bceg -cefin

- bcegh - befgh —befgh
- beefg + beefgh + beafgh | (74)

3
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After replacing the unreliability factors with their
1's complements, expanding, and collecting terms,
the following expression for the reliability of the

lattice network in terms of element reliability factors
is obtained.

R.= abc+ afg + cdh +def — abedh

~abefg -~ adefg —cdefh
+ abefh +acegh + bedeq + bdfgh
— abcdef - abcdeg - abcefh
- abcegh - abdefh - abdfgh
— abefgh - acdegh - acdfgh
~acefgh - bcdefg — becdegh
~ bcd4gh - bde ‘th +2 a.bcde#a
+2abcdefh +2 abcdegh +2abecd fgh
+ 2 abcafgh +2abdefgh+2 acdefgh
+2 bedefgh — 5o.bcde‘93h (75)

While Eq (75) is in the simplest possible
expanded form it is still somewhat unwieldy. In order
to facilitate its use in desk calculator computations,
it should be noted that certain combinations of factors
appear throughout the expression, and that by tabulating
the values of these recurring combinations initially,
these combination factor values can be used repeatedly
ainimiging the total required multiplications. The
combinations abc and fgh , for example, appear in
shirteen of the terms, and de appears im eighteen.

. o2
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The form of Eq (75) is especially ill-suited
for a minimum statement computer program. To
provide a form nf the lattice network reliability
expression which will permit a minimum statement
program of orderly sequential arithmetic operations
to be written, the nonplanar circuit of Fig. 7 is
first transformed into a planar one by duplicating
some of the elements ( Ref 4:60,68 ). Fig. 8 is a
drawisz of the resulting planar circuit.

o
b
o hef —
B £
-9
ehc — .
] bgf
h
—d g
e
f

Fig. 8
Planar Equivalent of Lattice Network
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The twenty~two element planar network of Fig. 8
is the logical equivalent of the eight element non-
planar network of Fig. 7, and in this form the elements
are seen to have pyramided parallel relationships.
The reliability expression for the network of PFig. 8
is given by

Ru= a[b(c+efh - cefh)
+g(f+ceh - cefh)
- bg(c +efh-cefh)(f+cen-cefh)]

+ d | e(f+bcg ~ befg)
+h(c+bfg-befq)
-eh(f+bcg- bcfg)(c-u-bfg-bch)]
_qd[b(c+ efh- cefh)

+g(f+ceh-cefh)
_bg(c-‘-efh-cefh)(f-c-cch-ccfh):l
X| e(f+bcq - befqg
+h(c+ bfg - locfq)
-eh(f+bcg- bch)(c‘.-r- bfg- bcfg )J (7e)

- 34
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Proof that the networks Fig. 7 and Fig. 8 and the
network reliability expressions of Eq (75) and Eq (76)
are equivalent is given by the fact that if Eq (76) is
expanded..Eq (75) is obtained identically.

At first glance Eq (76) may not appear to be
less formidable than Eq (75). However, the last large
term is simply the negative product of the first two
smaller ones, and within the brackets of the first
two terms the larger third term is again the negative
product of the first two smaller ones, each of which
contains the sum of two terms and their negative
product. The ability of the digital computer to
perform an arithmetic operation and store the result
for later use in other arithmetic operations will
permit Bq (76) to be programmed with relatively few
statements.
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In this chapter the reliability of a polygonal
class of networks will bve investigated. These
networks will consist of two or more vertices or
stations each connected with all the others by direct
paths along which information may flow, the stations
being designated by numbers and the paths by letters.
The reliability of any path will be the probability
of successful transmission of information between
the two stations eonnected by the path while the
reliability of the network will be the probability
of successful transmission of information between any
two stations in the network by any sequence of paths.
It is assumed that the paths fail independently of
each other with a single failure mode.

The first case is the trivial one of two
stations vith one oconneoting path and is mentioned
only because it will be compared with the other net-
works. The network reliability is, of course, the path
reliability.

The three staticn network has three paths as
shown in PFig. 9.8« 8Since the use of flow graphs
will de very helpful in the large networks, their use .
vill be introduced at this time. The flow graph
dopicting the flow of information from station one to .
station three is shown in Pige 9.b,

e v RS
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A,
o

Trianqle’ Network

(%

a .
=
b

ig. 9
Triangle Network Flowgraph

Network reliability for transmitting information
from station one to station three is thus seen to be

Ry, = ¢ +ab-abc

the subscriptthree referring to the number of stations

in the network. For convenience at this time
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it will be assumed that the paths have equal
reliabilities, r, so that

Ry= reri-r - (18)

for the three atation network.

The network drawing and a flow graph of the four
station network between stations one and two are
shown in Fig. 10.a and 10.b, respectively. From the
flow graph in Fige. 10,b, the network circult may be
drawvn as shown in Fige. 10.c, a direct path in parsllel
with a bridge circuit. Making use of Eq (30, Shannon's
and Moore's equal element bridge reliability function
( Ref 13195 ), the four station network reliability
funotion can be written as

Re=r+2r'+2r*-5r*+2r°
~r(2r‘+2r'-5r*+2r') (79)

which reduces to

Ru,= re2r-7re+7r*- 2r° (80)

The pentagonal network, flow graph and circuit
diagrem are shown in Fig. ll.a, 1ll.b, and ll.c,
respectively., The upper portion of the circuit
diagram is seen to be nonplanar and so the disjunctive
ezpansion theorem must dbe used to simplify this part of
the eirouis.
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et

c

O+ 4@ O
a

¢ Square Network Circuit Diagram

Fig. 10
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b. Pentagonal Network Flowagraph

Q -(2)—3g
b

F——(s}h} e

© . ®—d-
i

c.Pentagonal Network Circuit Diagqram
Fig 11

®

L
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The circuit diagrams in Eq (83) can now be replaced
with algebraic expressions to obtzin, for equal paths,
q being the path unreliability izctor,

Ry = r[G-qh01-a]+ rala-aM01-q7)]
+rat r+ (=@ -)-rX(I-gXI -q)]
+rq[(1-g"1-q%]
+rqe[F% (1-g) (- - FU-g)(1-q)]
+Q[r‘+2r‘+2r'-5 r‘+2rt

-r*(2r*+2r'-5 r‘+2r~')] (64)
Regrouping and factoring
Ry = [r+2rq] [0 -qi-q")]
r2rg[r+(1-g901-q) - rrU-giX1-q)]
+q‘[_r“+2r‘+2r'-5r"+_2 r |
-r(2r*+ 2r*-5r*+ Zr')J (85)

which gives, after expanding and collecting texms,
R"z 3r*+6r*-9r -36r*+ 9|rt

-84r’+ 36r* ~-€r? (66)

The reliability of the pemtagomal network is then
given by

Riy= re3r*+3r*-15r*-27r%+i127r¢
-7 r’+120r*-42r*+6r" (87)_

.42
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The complexity of polygonal networks of more than
five vertices is such that the time required to
solve them by the forgoing methods mekes an
alternate method desirable. While it is beyond the
scope of this study, the technique of computer
simuletion should prove fruitful in this regard.

To compare the reliabilities of the polygonal
networks, an element reliability factor of r = .9
vas uced and the results are shown in Fig. 12. As
oan be seen, network reliability increased as more
stations are added and rapidly approaches unity.

Network Reliability Function Ry : reo.s
R““- r , 0.”

Ry, =r+r'-r’ Ho.gslo

0——0
- 2 _ .
E R"“”z"”:.r_z,.. (09978480

R,,. =r+3r*+3r*-i15r
- 27r5+127r*-175r|09097048
+i120r*-42r°+6r"

Fig. 12
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Yi. Smmary and Jonglusions

The purpose of this thesis was to develop
. reliability functions for the parallel-series,
series-parallel, bridge, lattice, and polygonal networks
and to formulate procedures for the use of these functions.
The functions for the parallel-series and series-
parallel networks were developed assuming equal elements
having the open and short-circuit failure modes. The
functions are expressed in terms of network dimensions
and permit designing a maximum reliability network for
given elements. The procedure for their use in
designing maximum reliability networks is given also.
The reliability functions for the bridge and
lattice networks were developed for networks oomposed
of unequal elements having a single failure mode. The
reduced form of these functional expressions may be
used for substitution into more complex network functions
and the unreduced forms can be used in reliability
ealoulations or computer programming.
, The reliability fumctions of the first five of
the polygonal class of networks were formulated for
equal path reliadbilities and network reliabilities
calculated for r = 9. It was seen that highly reliable
notvqu- can be realised dy interconnecting the stations
a8 vas doas for the pelygomsl networks.
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It is recommended for further study that a
simulation program be written for a gmneral
polygonal network of n vertices. It is also
recommended that computer subroutines oxr short
programe be written which will use the developed
bridge and lattice reliability functions for
computing network reliability.

.45
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Appendix A

Disjunctive Expansion heorem of Boolean Algebra

The reliability of a redundant network is
equal to the reliability factor of any one single
element of the network times the reliability of the
network with the terminal of the element shorted,
plus the unreliability factor of the same element
times che reliability of the net with the terminals
of the element open.

R.=n [R..] o [R.] . (86)

Proof:

Let R, = Reliability of a net expressible in
eanonical form. '

Canonical form = the sum of all possible
favorable probabilities from the canonical equationt
Canonical equation = all permutations of network
elements.

Let b*q = the sum of those terms containing V.

H. = the sum of those terms containing Q.

then

Ha = reHs (89)
H, = q.H. (90)

Ha+H, = nHs + quH, (91)

0
i

. 47
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et V= |

[R"] el = H‘
B (92)

[R“] W H.
(93)

Substitut
i
ng Bqs ®2) and (9 int
o Eq OI)

R.=n [R.
Rl.+ra[R]. @

jnehs-nqu. Q.t.D.

or V=0



