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Abstract

A version of statistical theory is applied to the hydrogen

molecule-ion, with good results for the electronic energies of

the lowest attractive and repulsive states. For the former, a

binding energy of 0.085 a.u. is obtained with an internuclear

distance of 2.10 a.u., to be compared with 0.103 a.u. and 2.00

a.u. obtained from the exact solution of Schroedinger's equation.

The method employed involves the use of hydrogen atomic orbitals,

although when the latter refer to unbound states they are approxi-

mated by plane waves.
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1. Introduction

The first application of the Thomas-Fermi theory(1,2) to molecular systems

occurred soon after its introduction, when Hund (3 ) used it to approximate the

electron-density and the electric field in the nitrogen and fluorine molecules.

Since then, the original statistical theory of Thomas and Fermi has been em-

ployed to estimate the binding energy of molecular systems ( )• The numerical

results which have been obtained from the use of the original Thomas-Fermi

theory have been, at best, only in fair agreement with experimental values of

bond energies and bond distances; at worst, an absence of binding has been in-

dicated. Recently, the limitations of the Thomas-Fermi theory in this connec-

tion have been established by Teller(5 ). He has shown that this theory is

incapable, in terms of its original formulation, of yielding energetically

stable molecular systems. A similar conclusion is obtained for the version

of statistical theory known as Thomas-Fermi-Dirac theory, in which the effect

of electron exchange has been incorporated(6 ) into the original theory.

In the years following its introduction, the theory of Thomas and Fermi

has been subjected to a variety of other modifications(7). Of all of these,
S ( 8)

the one due to von Weizsacker" has produced what seems to provide the most

radical and most effective connection of the original theory with quantum

mechanics (9 ). With this modification, Gomb~s(lO) has obtained approximate

values for the binding energy and the bond length of the nitrogen molecule

which are in good agreement with the experimental values of these quantities.

From this result, a sufficiently quantum-mechanical version of statistical

theory appears to be essential for a realistic application to molecular sys-

tems.

An alternative to the von Weizsacker theory is one which is the formal

analogue of the Thomas-Fermi theory, but employs a basis of eigenfunctions of
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some suitable approximate Hamiltonian which is more closely related to the

physical system of interest rather than the basis of eigenfunctions of momentum

implicit in the original theory, Such a version has been shown to yield rela-

tively good results for the energy values and electron densities of helium-like

atoms The present paper is concerned with an application of this version

of statistical theory to approximate the binding energy of the simplest mole-

cular system -- the hydrogen molecule-ion. Because of the simplicity of this

system, the usual complications attending the determination of a self-consistent

field can be avoided. As a consequence, the inherent limitations of the theory

can be best assessed under the most stringent circumstances.

2. Formalism

In the interest of brevity, we shall simply sketch the formalism to be

(12)employed here . The properties of a single-particle (i.e., an electron,

since we tacitly suppose nuclei of infinite mass) can be determined from the

density matrices (representatives) of the system determined by

-( Z Jn*(x M - H) P,,(xW (2.1)

n-l

where x stands for the configurational and spin coordinates of the particle,

H is the Hamiltonian of the system, n is any complete, orthonormal set

of functions with the correct boundary conditions. Here, 1(y) is the

Heaviside unit function defined by

1, y> 0,
(2.2)

-0, y 0;

a convenient representation of the 9 -operator -- the spectral operator of H --

is



Y'+iOO

p dz ezM eZ, > O;(2-3)

the parameter XM, which plays the role of a "chemical potential per state''(12)

is chosen so that

Tr(M) = SdfM( , ) = M, a positive integer. (2.-)

With this normalization, M refers to the M lowest eigenstates of H.
(13 )

In terms of the eigenfunctions of H, I (x-I, the density matrices assume

the form originally introduced by Dirac(
6 )

,- n=l

= X n(x') ( ), (25)

n=1

so that for any arbitrary observable A, the quantity

M

<A M  =Tr(M A) = <0 < nI A 10n
~n=l

yields the sum of the expectation values of A for the M lowest eigenstates of

H. In particular, we see that

M

< )E;' = Tr(fMH) nZ En  (2.6)

" ^1 n=l

where E 2- E --- are the eigenvalues of the Hamiltonian. It can be

verified(lb) that Eq. (2.6) is obtainable from(Ia)

M M

<E M - S X(M) dM - f )TrfM d {Tr } (2.7)

0 0



which emphasizes the role played by N , noted earlier.

Equations (2.4) and (2.7) involve the traces of the density matrices and

are thus invariant to the choice of basis employed for this evaluation. They

are exact. Moreover, in the approximation dealt with here, they will be used

to provide an estimate of the electronic energy of the system of interest.

Before considering any approximation, however, we examine the effect of

the symmetry of the system upon its density matrices. Since the Hamiltonian

of the system is left invariant as a consequence of the application of certain

symmetry operations, the density matrices, by Eq. (2.1), likewise must remain

invariant to their application. In particular, the inversion symmetry of the

hydrogen molecule-ion will be exploited to simplify the density matrices for

that system. In this case, we have the Hamiltonian, in atomic units, of

electronic motion (see Fig. 1)

H = - V P 1 1 (2.8)r2  r2  r3

Clearly, the Hamiltonian remains invariant as a result of the application of

the unitary transformation.9--- , where

r - -r o , (2.9)

corresponding to inversion through the mid-point on the internuclear axis.

Furthermore, since

1 I, (2.10)

the inversion operator also is Hermitian. Hence its eigenfunctions comprise

two distinct symmetry species: those which are symmetric (gerade) and those

which are antisymmetric (ungerade) with respect to the inversion operation.

BecauseZ9 and H commute, their simultaneous eigenfunctions possess the same

symmetry.
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In terms of such simultaneous eigenfunctions, we may construct two sorts

of density matrices. Their construction is facilitated by the introduction of

the orthogonal projections

(I.+ " (,  -C9 (2.11)

Since and H commute, we may obtain

" (M H -s() - Mx -H) S(. + S() "H) S(-

and, ultimately,

m(  , " (X', I 1  - (  ,  X , (212)

where, by Eqs. (2.1) and (2.9) and the introduction of the coordinates of

Fig. 1,

?M 60 1,( ± *o*(-r' ) - (\M HJ*f(.) ±_4'n J)I

(2.13)

The two classes of density matrices and (- are demonstrably orthogonal

and refer to the inversion-symmetric and inversion-antisymmetric states, re-

spectively, of the hydrogen molecule-ion. It is noteworthy that the resulting

basis functions here are of the Pauling type(15), but do not comprise an

orthonormal basis.

Analogous to Eqs. (2.h) and (2.7), we obtain
Zo <',n#O I )_ H) I 1n1ro)>

M(-) Tr(M()) - (r (2-1H)

n (_l~ A,

n-1
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E% TrQ9 M H) , 2E<=(-0 ' ro

n-l

( n=l
" n-l 0 e M n-

3. Quasi-classical Approximation -- Discrete States

The approximation to be considered here can be expressed simply as

-zH - -z(Ho V) . -zV -zo

e + e - e eH (3.1)

where

H0  = r (3.2)
2 2

and

V
V 3 - r (3 3)

This warrants taking 1 I n< or to be the complete orthonormal basis of

eigenfunctions of the hydrogen atom corresponding to one of the nuclei of the

hydrogen molecule-ion. With this identification, we find it convenient to

refer to nucleus -2 of Fig. 1 as the origin and obtain

H (ro) r H (2 E (r2 (3.4)^,o Pn( 0) ^1 n(2 no n(4

where En is an appropriate eigenvalue of the hydrogen atom. A corresponding

normalized eigenfunction is(1
6)

I n(ri2 ) -- Rn (r2) num (921 eiMO2/ - (3.5)

and

E n 0 - 2 (3.6)
2n
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(The azimuthal angle 02 measures rotation of the electron about the inter-

nuclear axis, but is not included in Fig. 1.) The effect of inversion of

the eigenfunctions can be seen to be

9 'n(-2) Rn(r 3 ) m 03)eim(02+'R)l

=(-l)" R nk(r 3 ) @U(93 
) eim02/ -

a *( -r •3) (3.7)

Combining these results with Eq. (2.3), we obtain

4( M-H) n(r) " ( + - I  +1 n) (3.8)

n(2n 3

The approximations to Eqs. (2.14) and (2.15) can now be effected. With Eq.

(3.7), we obtain

Tr( PM(-)) 12 +rZ Irn+r )>
4.n=l ),=o m- ,, n 2n 2 r31 n2

n 2 + + p1n(r 2 ) " (3.9)
2n 3

Making use of the addition theorem for spherical harmonics ( 1 7 ) , one can obtain

=

and

m=-imWih ) (-Cos ita)l that E 02 -im(0 2 +rit)

With these relations it can be established that Eq. (2.l10 is approximated by
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00 n-I

H 2 R ) e+ J/ (rVr~ ( d + + 1) 1 R (r)
d IE WL 2=M 2n2  r3  nL2>

n-J. Y-'=o 4

+ (-I) <Rni(r 3)I P,(cos a)-a(X(±) + + l Rn(r 2 )>I , (3.10)

where use has been made of the relation Pe(-x) = (-1)2 P (x). In equivalent

terms, Eq. (2.15) is approximated by

00 n-i

<Ed ± .5 I S 12 <R.(r2) ( ) + I+r) Rn,(r2)

n=l Z=o n 2n 2  r3  2

t (-l) Rn(rr)i P(cos C)O1(.M(+ + _L + _L) Rn(r 2 )> }

rA 3 M ~2n 2 r3 Z2>

Sn-I

Sn-l -o (r 2)I 3 2n2

t (1) <(cos a) 1 + L) R (r
On 3 Pr3 -''X~ )+2.n 3 nL2>

(3.11)

Because of Eq. (2.2), the integrands in Eqs. (3.10) and (3.11) have non-zero

values in restricted regions of configuration space. In particular, such non-

zero values occur for

M()+ 12+ 1 /0
2n r

Hence, defining

kM = - M( ) > 0, (3.12)

we must restrict the various integrations to the region

0<r 1 (313)

2n2
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4. Approximation for the Continuum

The expressionsof the previous Section are formally incomplete transcrip-

tions of the results of Section 2. They include only the eigenfunctions of

negative energy of the hydrogen atom. To complete the transcription one re-

quires the inclusion of the eigenfunctions of the continuum of positive energy

values. Although these are well-known (1 8), they are extremely difficult to

handle in the present context. As a consequence, an additional approximation

will be made here in which the plane-wave basis of the original Thomas-Fermi

theory will be used for the continuum. Such usage can be justified only in an

asymptotic (E0 - + 0) sense, however. Even so, the use of the original

Thomas-Fermi density to approximate the continuum is bound to introduce errors

related to the poor values of the binding energy it yields for atoms. For this

reason, we have adapted a version of statistical theory (9) which has been shown

to yield improved results for atoms. In this theory, the density matrix of the

system is developed in a power series in Planck's constant and terms up to and

including h 2 are retained.

In essence, the adaptation consists in representing the unbound states of

the hydrogen atom centered at nucleus -2 by eigenfunctions of momentum and

their corresponding energy by their (asymptotic) kinetic energy. Compared to

Eqs. (3.5) - (3.6), we represent (for the continuum)

and

En P2/2. (4.2)

(These quantities are not expressed in atomic units.) In addition, we take

for the continuum(
1 9)



4jj p -r +2~~I( 1 _ - - p2/2

X,, M H) t "~2) =e ' 2  
(M + r3 p/m

Ad 3

+ Vv 2 V 2V "( +  "P212 )

+ A 2 .V)2V VV. ( V3r p2/2m)

8m2 (VV) 2 - (X + 1 p 2/2m) (43)

with

V

r3

With this approximation the continuum contribution to Eqs. (2.14) - (2.15) can

be evaluated. For this purpose, we note that the resulting approximation to

the first series of both Eqs. (2.1h) and (2.15), apart from a factor of 2,

then correspond to the expressions which are obtained for a hydrogen atom

centered about nucleus-3 in Fig. 1. These have been given in ref. (9) and

will only be summarized here. We obtain (in atomic units)

(1) 25/2 rl 2I2 - ' (4.4)M dr r -M)3/ 2

which can be evaluated in closed form, and

<E>) 1)  - 3M()M 23/2km rl(l2 M rl) - r(1-2M r)?, (45)

where ro < rI are both determined by the condition that

r(l - M r) = .. (h.6)

The approximation for the continuum contribution to the second series of

Eqs. (2.114) - (2.15) entails the multiplication of Eq. (h.3) by ep ' r3/r
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by Eq. (3.7), and an integration of the product over available momenta. This

has been carried out but, in the interest of brevity, the details will be

omitted. We have obtained

(2 00 k+1lk+

M ko) 2 d ~ ~ ( k e 12, (4-7
c()= k=o (2k+2)'. 3 k+l) d M 9k+2 ( Mk ,(47

where R is the internuclear distance (in atomic units). With the aid of

Eq. (2.7), we can obtain

>(2) . _M (2) _ + 4 M () ) (2)8
Cd4M c '(4)(e8

The continuum approximations to the normalization and energy are to be

halved and added to the discrete contribution according to Eqs. (2.14) and

(2.15). That is, we take

M( - +)  M+  M (i) +M(2)}Me + M2 (4.9)

and

< <E + > + •( (4.10)

5 Computation

The evaluation of Eqs. (4.9) and (4.10) were carried out numerically as

follows. For the integrals in Eqs. (3.10) and (3.11), the integrand could be

expressed in terms of Bessel functions, following Coulson (20 ) , and reduced to

radi al integrations on r3 • These integrals were evaluated analytically and

expressed in terms of the upper limit given by Eq. (3.13) ( 2 1 ) . Different in-

tegrals arising from the use of different wave functions are related by a

common value of k M. Hence the upper limits of their respective ranges of



13

integration are simply determined and depend, for a given value of M, only

upon the principal quantum number of the wave function. The procedure followed

consisted in choosing a value of 4M' evaluating the appropriate upper bounds

and substituting into the analytical expressions for the integrals. Actually,

the discrete contribution was limited to states for which n < 3. (Estimates of

the contribution to the normalization were made for n = 4 which led us to be-

lieve that their contribution was less than 0.02.)

For a fixed value of -M' the quantities in Eqs. (4.b) - (4.8) were

evaluated and combined according to Eqs. (4.9) - (4.10).

These computations were carried out for a fixed value of the internuclear

distance, R, until successive trial values of -M gave a value of unity (±0.005)

for the normalization integral.

The procedure was repeated for different values of the internuclear dis-

tance.

6. Results

The results which have been obtained are exhibited compactly in Figs.

(2) - (5). The approximations inherent in the truncation of the discrete

contribution and the plane-wave representation of the continuum contribution

warrant no more elaborate presentation. Nevertheless, from Figs. (2) and (3)
+

the computed values for the potential energy of the H2 molecule, in both the

ground gerade and ungerade states, are in good agreement with those obtained

(22)from the solution of the relevant Schroedinger's equation . For the bound

state, a binding energy of 0.085 a.u. and an equilibrium distance of 2.10 a.u.

have been obtained; these compare favorably with the quantum values of 0.103

a.u. and 2.00 a.u., respectively.



In Figs. (4) and (5) are presented the contributions to the normalization

(of unity) made by the various states. The indications are that an important

continuum contribution is always present for the range of internuclear dis-

tances used in these computations. Moreover, its importance increases for

large internuclear distances, becoming equal in value to the discrete con-

tribution when the internuclear distance becomes indefinitely large.

Although the results which have been obtained suggest that a sufficiently

quantum-mechanical version of statistical theory can yield results for mole-

cular binding energies and bond distances which are in good agreement with

those obtained from precise calculations, the method described in this paper

holds little promise of extension to polyelectronic molecules. In the absence

of any self-consistent field approximations, the resulting integrals will be

even more complicated than those of the present paper. The latter involve

integrations over finite regions of configuration space of one electron; in

polyelectronic molecules the corresponding regions for each electron will be

correlated with those of the others, rendering an analytical evaluation of

the pertinent integrals impractical, if not impossible.



15

References

1. L. H. Thomas, Proc. Camb. Phil. Soc., 23, 542 (1957).

2. E. Fermi, Z. Phys., 48, 73 (1928).

3. F. Hund, Z. Phys., 77, 12 (1932).

4. See, for example, N. H. March, Advances in Physics, Vol. 6 (1957), where

numerous references are cited.

5. E. Teller, Rev. Mod. Phys., 34, 627 (1962).

6. P. A. M. Dirac, Proc. Camb. Phil. Soc., 26, 376 (1930).

7. See, for example, P. Gombas, Die Statistische Theorie des Atoms und Ihre

Anwendungen (Springer, Vienna, 1949), where these are described in detail.

8. C. F. von Weizs~cker, Z. Phys., 96, 431 (1935).

9. One such connection is given in S. Golden, Phys. Rev., 105, 604 (1957);
this correction has been evaluated by R. A. Berg and L. Willets, Proc.

Phys. Soc. (London), A68, 229 (1955).

10. P. Gombas, Acta Phys. Hung., _9, 461 (1959).

11. S. Golden, Phys. Rev., 107, 1283 (1957).

12. S. Golden, Rev. Mod. Phys., 32, 322 (1960).

13. We are tacitly supposing that the energy spectrum is non-degenerate

(apart from spin). This is apt to be fulfilled for ground states, our

main interest here.

14. Strictly speaking, the integral should be understood as a Stieltje's

integral when M assumes only integral values.

15. L. Pauling, Chem., 5, 173 (1928). These functions are, of course, generi-

cally related to the Heitler-London functions for the hydrogen molecule;

see, for example, W. Heitler and F. London, Z. Physik., 4, 455 (1927).

16. We emphasize that the present section is restricted to the eigenfunctions

of the discrete spectrum but formally is applicable to the continuum.

The discrete functions are found in L. Pauling and E. B. Wilson, Jr.,

Introduction to Quantum Mechanics (McGraw-Hill, New York, 1935), p. 138.

17. See, for example, L. D. Landau and E. M. Lifshitz, Quantum Mechanics

(Addison-Wesley, Reading, 1958), pp. 87 and 494.

18. See, for example, reference (17), p. 418.

19. The result which follows is readily obtained from reference (9) by taking

the limit of the expressions developed there as T -- 0.



16

20. C. A. Coulson, Proc. Camb. Phil. Soc., 33, 104 (1937).

21. In the interest of brevity, and because they are rather special to the
present problem, these integrals are not presented here.

22. See, for example, D. R. Bates, K. Ledsham and A. L. Steward, Phil. Trans.
Roy. Soc., 246, 215 (1953).



TECHNICAL REPORT DISTRIBUTION LIST

CONTRACTOR BRANDEIS UNIVERSITY NR NO. 051-362

CONTRACT NUMBER Nonr 1677(01)

NO. COPIES NO. COPIES

Commanding Officer U.S. Army Natick Laboratories
Office of Naval Research Branch Office Clothing & Organic Materials Division
230 N. Michigan Avenue Natick, Massachusetts
Chicago 1, Illinois (1) Attn: Associate Director (1)

Commanding Officer Harry Diamond Laboratories
Office of Naval Research Branch Office Washington 25, D.C.
207 West 24th Street Attn: Library (1)
New York 11, New York (1)

Office, Chief of Research & Development
Commanding Officer Department of the Army
Office of Naval Research Branch Office Washington 25, D. C.
1030 East Green Street Attn: Physical Sciences Division (1)
Pasadena 1, California (1).

Chief, Bureau of Ships
Commanding Officer Department of the Navy
Office of Naval Research Branch Office Washington 25, D. C.
Box 39, Navy No. 100, F.P.O. Attn: Code 342A (2)
New York, New York (7)

Technical Library, DLI-3
Director, Naval Research Laboratory Bureau of Naval Weapons
Washington 25, D.C. Department of the Navy
Attn: Technical Information Washington 25, D.C. (4)

Officer (6)
Chemistry Division (2) Defense Documentation Center

Cameron Station
Chief of Naval Research Alexandria, Virginia (20)
Department of the Navy
Washington 25, D. C. Commanding Officer
Attn: Code 425 (2) U.S. Army Electronics Research and

Development Laboratory
DDR&E Attn: SELRA/DR
Technical Library Fort Monmouth, New Jersey 07703 (1)
Room 3C-128, The Pentagon
Washington 25, D.C. (1) Naval Radiological Defense Laboratory

San Francisco 24, California
Department of the Army Attn: Technical Library (1)
Supply & Maintenance Command
Maintenance Readiness Division Naval Ordnance Test Station
Washington 25, D.C. China Lake, California
Attn: Technical Director (1) Attn: Head, Chemistry Division (1)



TECHNICAL REPORT DISTRIBUTION LIST Page 2

CONTRACTOR BRANDEIS UNIVERSITY NR NO. 051-362

CONTRACT NUMBER Nonr 1677(01)

NO. COPIES NO. COPIES

Commanding Officer Dr. J. T. Vanderslice
Army Research Office Institute of Molecular Physics
Box CM, Duke Station University of Maryland
Durham, North Carolina College Park, Maryland (1)
Attn: CRD-AA-IP (1)

Dr. Harrison Shull
Atomic Energy Commission Department of Chemistry
Division of Research Indiana University
Chemistry Programs Bloomington, Indiana (1)
Washington 25, D. C. (1)

Dr. G. B. Kistiakowsky
Atomic Energy Commission Department of Chemistry
Division of Technical Information Harvard University

Extension Cambridge 38, Massachusetts (1)
Post Office Box 62
Oak Ridge, Tennessee (1) Dr. D. F. Hornig

Department of Chemistry
Commanding Officer Princeton University
U. S. Army Chemical Research and Princeton, New Jersey (1)

Development Laboratories
Attn: Librarian Dr. H. P. Broida
Edgewood Arsenal, Maryland (1) Department of Physics

University of California
Commanding Officer Santa Barbara, California (1)
ONR Branch Office
495 Summer Street Dr. S. H. Bauer
Boston 10, Massachusetts (2) Department of Chemistry

Cornell University
Dr. Virginia Griffing Ithaca, New York (1)
Department of Chemistry
Catholic University of America Mr. W. M. Lee, Director
Washington, D. C. (1) Contract Research Department

Pennsalt Chemicals Corporation
Dr. J. 0. Hirschfelder 900 First Avenue
Naval Research Laboratory King of Prussia, Pennsylvania (2)
University of Wisconsin
Madison 6, Wisconsin (1) Dr. E. B. Wilson, Jr.

Department of Chemistry
Dr. R. G. Brewer Harvard University
Department of Chemistry Cambridge 38, Massachusetts (1)
University of California
Los Angeles, California (1)



TECHNICAL REPORT DISTRIBUTION LIST Page 3

CONTRACTOR BRANDEIS UNIVERSITY NR NO. 051-362

CONTRACT NUMBER Nonr 1677 (01)

NO. COPIES NO. COPIES

Dr. Henry Eyring Commanding Officer
Graduate School ONR Branch Office
University of Utah Box 39 Navy No. 100 Fleet Post Office
Salt Lake City, Utah (1) New York, New York (7)

FOR TRANSMITTAL TO:
Dr. B. L. Crawford, Jr.
Department of Chemistry Dr. N. H. March
University of Minnesota Department of Physics
Minneapolis, Minnesota (1) Sheffield University

Sheffield, England
Dr. J. H. Goldstein
Department of Chemistry Dr. H. C. Longuet-Higgins
Emory University Department of Theoretical Chemistry
Emory, Georgia (1) Cambridge University

Cambridge, England
Dr. J. C. Slater
Department of Physics Dr. D. ter Haar
Massachusetts Institute of Technology Clarendon Laboratory
Cambridge 39, Massachusetts (1) Oxford University

Oxford, England
Dr. R. S. Mulliken
Department of Physics Dr. C. A. Coulson
University of Chicago Mathematical Institute
Chicago 37, Illinois (1) Oxford University

Oxford, England
Dr. Martin L. Sage
Department of Chemistry Dr. D. R. Bates
University of Oregon Department of Applied Mathematics
Eugene, Oregon (1) The Queen's University of Belfast

Belfast, N. Ireland
Dr. I. Amdur
Department of Chemistry Dr. W. A. Bingel
Massachusetts Institute of Technology Max-Planck Institute for Physics
Cambridge 39, Massachusetts (1) and Astrophysics

Aumeisterstrasse 6, Munich, Germany
Dr. B. G. Anex
Department of Chemistry Madame R. Herman
Yale University Observatoire de Paris
New Haven, Connecticut (1) Section d'Astrophysique

Meudon (S.-et-O.), France



/
/

\ /~~----

I



-0.5
AN71SYMMETRIC GROUND, STitE.

**STATISTICAL
-0.6 *

-7QUANTUA#

-0.8

-0.

SYMMETRIC GROUND STATE

-1.01

QUNU

-13

ELECTRONIC ENERGY OP H+

.L4

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.
INTERNUCLEAR DISTANCE v ATOMIC UNITS



.12-

.10

STATI STICAL

.08 QUANTUM

.06 -I~

ANTISYMMETRIC

.04 GROUND STATE

=02

0

00

-04- SYMMETRIC.

GROUND STATE

.06- STWISTICAL

,~0S QUANTUM

POTENTIAL' ENERGY OF +

1.0 2.0 3.0 4.0 &.0 6.0 7.0 so
INTERNUCLEAR DISTANCE* ATOMIC UNITS



.

.70

.6L
z
0

.4-

SYMMETRIC ORBITAL CONTRIBUTION

SYMMETRIC GROUND STATE

.0. 1___ _a___ _a_ __ _a _

10 .0 3.0 4.0 8.0 6.0 7.0 6.0

INTERNUCLEARt DISTANCE, A.U.



1.0

COTIUU

.8

.0.

.1 ANTISYMME DITCERUN ATE


