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ABSTRACT

This study is concerned with the geocentric attitude stabilization of an earth
satellite. The system considered in this report utilizes differential gravity to
control the vehicle's orientation and gyroscopes to provide vehicle damping. Several
different gyroscope configurations that provide indirect gyroscope damping about
all three of tae vehicle axes are presented. For each of these configurations, the
equations governing the dynamics of the system are systematically developedinterms
of the attitude deviation angles and the parameters of the orbit. The expressions
for the steady state deviation angles and the torque which must be supplied by gyro-

scope torquers are also obtained.

The analytical procedure utilized considers the satellite vehicle to be composed
of a rigid body to which is affixed internal gyroscopes. The dynamics of an orbiting
rigid body are first obtained with the inclusion of the differential gravity torque.
This is followed by a development of the equations of dynamics of a gyroscope con-
strained in an arbitrary position within an orbiting body. The equations obtained for
the gyroscope and the rigid body are completely general in that they are valid for
an elliptical orbit. The resulting equations of a gyroscope and a rigid body are
combined to obtain both the statics and dynamics of an orbiting vehicle containing
internally mounted gyroscopes. This analysis is restricted to a circular orbit. To
obtain a better understanding of the mechanism of gyroscope damping, an analysis
of a simple configuration employing a gyroscope for damping purposes is also

included.
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Nomenclature
X, Y, 2 geocentric reference coordinate system.
i, j» k unit vectors along the X, Y, Z reference coordinate axes.
[ ]x, [ ]Y'[ ]z components along the X, Y, Z reference coordinate axes.
X

Y Zb body fixed coordinate system along the body principal axes.

b’ bl

iy jb’ kb unit vectors aleng the X body axes.

L]

b! Yb; Zb

[ }' components along the Xp» Yb' Zy body axes.
K .

'b' b' b
Xg, Yg’ z gyroscope fixed coordinate system along the gyroscope principal
axes.
ig' jg' kg unit vectors along the Xg, Yg' Zg gyroscope axes.

[ 1. [ ] E ] components along the X , Y Z gyroscope axes.
hs.. Jg' kg g’ g°7¢g

T total torque on the body.
T d total torque on the body less the differential gravity torque.
ng differential gravity torque on the body.
Te external torque applied to the body less the differential gravity torque.
Tg torque on the gyroscope
\
Ix S Iz polar moments of inertia of the body about the Xb. Yb' Zb axes
b Yb %b  of the body.
Ig polar moment of inertia of a symmetrical gyroscope.
Hr angular momentum of the gyroscope rotor.
Q angular velocity of the reference coordinate system with respect

to inertial space.

Wy angular velocity of the body with respect to inertial space.

wg angular velocity of the gyroscope with respect to inertial space.

Ox, e , ez set of Eulerian angles relating the reference coordinate system to
y the body coordinate system.

y b, b set of Fulerian angles relating the body coordinate system to the
gyroscope coordinate system.

]
[ ] ’ [ ] first and second derivatives with respect to time.
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Chapter I - INTRODUCTION

There are numerous applications which require a particular axis of a
satellite vehicle to be oriented in some specific direction. The need for space
vehicle attitude control and stabilization can only be appreciated when consideration
is given to the mission that the vehicle is to perform. For example, conversion of
solar energy to electrical energy will require solar energy gathering devices which
must, by necessity, be oriented toward the sun. Midcourse maneuvers requiring
the firing of rocket engines would also require vehicle attitude control to give the
proper direction to the thrust. As the satellite moves in orbit around the earth it might
be desired to obtain weather information or obtain surveillance information over
enemy territory. The latter applications require a camera to be so oriented that

its axis is aligned with the geocentric vertical of the earth.

The various sources of attitude disturbance torques for a vehicle orbiting the
earth are worthy of consideration. A brief discussion of disturbance torques is given

below:

a) Aerodynamic Torque

At an altitude of about 500 miles a very sparce atmosphere exists.
Nevertheless, the torque produced by aerodynamic drag can be significant. This
would be particularly true if the space vehicle was to employ large solar energy
collecting panels where the location of the center of aerodynamic pressure might not
coincide with the center of mass of the vehicle. The torque produced is a function of
the angle of attack of the vehicle and for a constant angle of attack and a circular

orbit, the torque produced will be constant.

At an altitude of about 500 miles, the dynamic pressure is approximately
6x10-5 dyne/ cmz. For a space vehicle employing flat solar energy collecting panels,
100 feet 2 in area, with a 2.5 inch offset of the center of aerodynamic pressure
from the mass center of the vehicle, a disturbance torque of approximately

56 dyne-cm. will result for the worst angle of attack.l

b) Solar Radiation Pressure

Solar radiation pressure is caused by the impact of photons with the
surface of the vehicle. As in the case of aerodynamic drag, torques produced can be
significant if large solar energy collecting panels are utilized and if the center of
solar radiation pressure does not coincide with the mass center of the vehicle. The

torque produced would be periodic; the period being the time of one orbital revolution.

2
For a satellite employing flat solar energy collecting panels, 100 feet

in area, with a 2.5 inch offset from the mass center, a torque of approximately

60 dyne-cm can be produced.1



(c)Earth's Magnetic Field

There are two primary sources of torque resulting from the interaction

with the earth's magnetic field. The first is produced by interaction with the current
loops and ferromagnetic material in the vehicle and the second is produced by eddy
currents set up by motion of electrically conducting parts of the vehicle relative to
the magnetic field. The latter becomes more prevalent as the angular velocity of the
vehicle increases. The torque produced depends heavily on the design, altitude and
latitude of the vehicle. If large current loops are avoided and nonmagnetic materials
are used whenever possible, the torque can be kept to the order of 10 dyne-cm. As

in the previous case, the torque produced is periodic-ll

(d) Internal Moving Parts

There is an angular momentum associated with every moving part in the
vehicle. The variation of angular velocity of tape recorder reels or any rotating
machinery causes a change of angular momentum with respect to inertial space. This

in turn produces a reaction torque which is exerted on the vehicle.

(e) Meteorite Impacts

Meteorite impacts will produce a torque on the vehicle. The magnitude
of this torque will vary in accordance with the kinetic energy of the meteorites and
the location of impact. The time average of the resultant torque is of statistical

nature.

(f) Gravity Gradient (Differential Gravity)
A pbrtion of the vehicle a small distance nearer thz earth than another

part will experience a slightly larger gravitational force. Depending on the vehicle
attitude and geometry, a resultant torque might be produced. The magnitude of this

torque will decrease as the altitude of the satellite is increased.

There are a number of basic methods which can be utilized to obtain attitude
control. These include:
(i) Mass Expulsion

This method utilizes familiar rocket principles for the generation of attitude

control torques. Reaction jets are provided and a propellant is stored within the
vehicle. This type of system is good for intermittant large angle corrections.

Applications of this system are limited since the propellant is exhaustable.

(ii) Momentum Exchange Within the Vehicle
This method utilizes the motion of internal parts to provide torques. Extern-

ally applied torques can be countered by changing the angular momentum of internally

mounted gyroscopes or inertia wheels.



(iii) Interaction with the Environment

This method utilizes prevailing environmental conditions to provide torques.
A classic example is the stablization of aircraft using atmospheric drag. Satellites
operating above an altitude of a few hundred miles do not experience enough atmos-
pheric drag to be utilized effectively as a means of stabilization. However, since
gravity gradient torques tend to align the axis of least inertia along the geocentric

vertical, it can effectively be utilized in controlling the orientation of the vehicle.

The system with which this report is concerned, utilizes gravity gradient
torques to control the vehicle's orientation and gyroscopes to provide vehicle
damping. Several different gyroscope configurations, utilizing single degree of
freedom gyroscopes are considered, and for these configurations the equations

governing the statics and dynamics of the system are systematically developed.

This report is subdivided in the following manner: In Chapter II the
dynamics of a rigid body orbiting the earth are developed in terms of the attitude
deviation angles and the parameters of the orbit. Chapter IIl presents a
simplified analysis of gyroscope damping. In Chapter IV, the dynamics of a gyro-
scope constrained within a satellite are developed; the equations are obtained in
terms of satellite attitude deviation angles, orbit parameters, and the gyroscope
precession angle. The equation of constraint, relating the gyroscope precession
angle to the satellite deviation angles is also developed. In Chapter V, steady state
requirements for an orbiting vehicle with internally mounted gyroscopes are
considered. The equations obtained in Chapters II, IV and V are combined in
Chapter VI to obtain the dynamics of an orbiting vehicle for various gyroscope

configurations.

1
See reference 14 .



Chapter II - SATELLITE ATTITUDE DYNAMICS

A) Reference Coordinate System

In order to develop 2 set of equations suitable for the dynamic analysis
of a given system, it is necessary to introduce a coordinate reference for that system.
For the problem of attitude control, it is necessary to define a coordinate reference
system from which attitude deviations can be measured. For geocentric attitude
control it is desirable for the reference coordinate gystem to be chosen coincident
with the desired orientation of the satellite. The desired orientation of the vehicle
is determined by the instantaneous geocentric vertical, therefore the reference
coordinate system is not fixed and will in general be a variable angular velocity
system. With this choice of reference coordinate system,it will be possible to
linearize the resulting equations for small angular deviations. (cos 8=1, sin 6=6).
Indeed, for large angular deviations these approximations cannot be made and the

resulting equations of motion will contain nonlinear trigonometric terms.

The reference coordinate system used {(which will be denoted by
X Y, Z) is shown for an arbitrary position in the crbit. (See Figure 2-1.) The Z axis
is taken along the instantaneous geocentric vertical positive outward. The X axis
is chosen tangential to the orbit and in the general direction of the orbital velocity of
the vehicle. The Y axis is chosen perpendicular to the plane of the orbit, in the
direction of the orbital momentum, such that a right-handed system is formed. This
system is both translating and rotating with respect to inertial space. It should be
noted that the X axis does not coincide with the direction of the velocity vector of the

vehicle for an elliptical orbit.

B) Body Coordinate System

It is also necessary to define a coordinate system which is fixed with
respect to the satellite and which is to be controlled to coincide with the reference
coordinate system. It is advantageous to choose the body fixed coordinate system
to coincide with the principal axes of the vehicle. This eliminates all product of
inertia terms and hence simplifies the differential equations of motion. (The inertia
tensor is then diagonal; see Appendix A). This choice of body fixed axes reduces the
generality of the results,since it now requires that the control axes be principal axes
of the body. Since most satellite vehicles have some sort of symmetry, this
reduction in generality is not serious. It is further assumed that the satellite is a
rigid body. This is not strictly true due to motion of its internal components (such
as tape recorders and gyroscopes). If the mass of such internal components is small

in comparison with the overall vehicle mass, then these effects can be neglected.
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It can therefore be assumed that the principal axes are fixed in the satellite. The
coordinate system formed by the body principal axes is denoted by Xb, Yb' and Zb .

C) The Eulerian Ar}g(les and Transformation Matrix

The body principal axes can be related to the reference coordinate system
by an array of Eulerian angles; ex. ey, Oz . These angles are defined by successive
rotations of the body axes through the angles Ox, Gy and ez about the xb' Yy 2y
body axes respectively which rotate the vehicle from its reference system into its
present position (see Fig. 2-2). These angles will be taken as positive when the
sense of the rotation is equivalent to that of a right-handed screw advancing in the
direction of the axis of rotation. Figure 2-2 shows the three successive rotations
and their corresponding transformation matrices. Viewing the position vectors as
column matrices, the transformation matrix gives the new coordinate system as the

product of the transformation matrix and the old coordinate system.

Xy X
Yy |= A 1Y (2.1)
z, . A

The overall transformation matrix relating the components of a vector in the

X Y Z system to the componets of the same vector in the Xy, Yb z, system is given by

A= (a)(A)(A) (2.2)
cos 6 cos b [sin 6 8in 6 cos 6 [-cos 6 sin 6 cos 0
Y z y x z x y z
+ cos ex sin 92] +sin Ox sin 0']
A =| - cos Gy sin 9l [— sin Ox sin Oy sin Oz [cos ex 8in 9, sin 9l (2.3)
+cos 6_cos ez] +sin 0_cos Ozﬂ
sin 6 -8in 0 cos 6 cos 0 cos O
y x y x Yy

The matrix multiplications are not commutative and therefore must be performed in
the order indicated. The physical significance of the non-commutability of the matrix
product,is that the order of the rotations cannot be interchanged and must be

performed as indicated.

If the deviation angles are small (sin 6 = 6, cos® = 1) the transformation

matrix (2. 3) bec omes

1 @ 6 +6 -6 +0 6
xy z y x z
A = -6z - Ox ey Oz +1 ey Oz +9x (2.4)
oy - & 1



Zb 2z
ex
ib 1 0 0
Y . .
- b 3 - 0 cos 6x sin Ox
3 -Y kb 0 -smxcosex
6, Ax
X,Xb
Zb P Z
y
ib cos Gy 0 -s8in@
r Iy = 0 1 0
K’ > Y, Yb kb 8in 8 0 cos 6
6 y y
y N g S
A
Gy y
X
xb
Z,Zb
B LA
b cos Oz sin ez 0
Y
:0 b jb - | -sin BZ cos Gz 0
z
Y k 0 0 1
b
A
A z
z
X X
b

Fig. 2-2 Eulerian Angles



Upon further agsuming that the product of two small angles can be neglected
compared to a single angle, one obtains

1 6 -8
4
-9 1 )
A= z X (2.5)
6 -6 1
Y x

D) Development of Equations of Motion of the Body

The equations of motion of a rigid body in three dimensional space is
given by Euler's equatiors. (A24, A25, A26). A derivation of these equations is

given in appendix A .

T, =1 &, +(I -1 )w, ®
i x, b, z y b, 7b
b b ' iy b b by kb (2.6)
T. =1 & + (I -1 )w w
U O T T 2.7)
T, =1, &, +(I -1 )w,
k" TR P Y %o Py P (2.8)
where I , I 1 are the moments of inertia about the Xb. Y., Z, principal axes
Xy Yy Zp b “b :
of the body.
9bi' ubj. wbk are the Xb' Yb’ Zb components of the angular velocity
b b Dot the body relative to inertial space.
T. , T T, arethe X, , Y. , Z_components of the torque taken about

b the mass center of the body.

In order to adapt Euler's equations to the problem of attitude control,
1t is necessary to express the angular velocities (wb YWy Wy ) and their derivatives
i h] k
b b b
(o, » @, , ®, ) in terms of the deviation angles (0 , 6 , 6 ) and the angular velocity
bi bj'b bkb x 'y z
b

of the reference system. The angular velocity of the body with respect to inertial space
is given as the vector sum of the angular velocity of the vehicle with respect to the

reference frame ard the angular velocity of the reference frame relative to inertial space.
oofigpEEEl = eu[rslssese ¢ o relgnnee[ipgrat @)
The angular velocity of the body relative to the reference framel is given by

f = é i +é j +é k
“’b/’fer:r’::“ xb T T2 (2. 10)
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The angular velocity of the reference frame with respect to inertial space is given by

“’ref/inertial = Qi +9 j+9 k (2. 11)
space x y z

where Qx, QY, Qz are the components of the angular velocity of the refercnce frame
with respect to inertial space along the X, Y, Z axes of the

reference system respectively,

Using the transformation matrix (2.5), the angular velocity of the reference system

can be expressed in terms of the body coordinates.

Q. -
i 1 e 6, a
Q = -6 1 0 (2.12)
ip z x QY
n.kb ey -8 1 Q,
© g = [nx + ezny - °sz]ib + [- e, +ny + exnz]jb
(2. 13)

+ [ey Q - exny +nz] ky
Addition of Equations (2.10) and {2.13), and separation into components yields the
following equations for the components of the angular velocities and their derivatives

along the body axes.

= . 14
wy. ex+nx+ezny eynz (2. 14)
1b .
Wy =6 +Q2 +60Q -6 Q (2. 15)
j Yy y X z zZ X
b
w _ 2 - ]
bkb =6 +0 + ey a_ -6 ny (2. 16)
. ¢ . v [} . -
w == +9 - - hd 7
bib 6_+0y zny te, ny ey 2, ey Q, (2.17)
(1) -'. . L] - _ . _ .
bjb =0 +Qy+ 60 +6 0 -6 0 -6 Q (2. 18)
=.' : 3] . 6 - > -é Q 2.19
wbk 6+, + Ynx+eynx exnY < ( )
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Substituting these results into Euler's equations (2.6, 2.7, 2.8) yields:

iy Xy, zy 2y vy z

+(1 -1)[ee+en +eerz+ee +6Q
2, Y, LYZ Yz xyy yyx zY

+ta 0 -60%+600 -660 -060Q (2. 20)
Yy 'z xy vyixy zZ 2z X z x 2

. . !
T, =1 (6 +2_+08 +6Q -0 0 -enz]
Q

2

+4000RQ -606Q z 2
Xz Xy Y2z X

+6 69 +060° -86°qQn
Xz z x z X Yy z
+eenn]
xyxz
T, =1 [6 +% -60 -68 +e +§a
i vb[v Yy zx z z
+(1-1)[éé+én-een+een+en
x. X z Yy x

b x'z x X'y
+nn-enn+enz+een+enn . (2.21)
x zz'y z'y z
- 9,8,9 +eenn-eén-enz Znn
x y yzz 'y
+een )
XYy vy z
ka=lzb[ -9,-00 80 +0 +8 x] \
+( -1 )[é'é +6Q -60Q +660 +60
Yo Xp LXY x'y X z X X x Y x

409 -00%+0600 +06 0 +6 0?2 (2.22)
x y z x X X% z

z vy zy
6200 +0660Q -06Q -600
z Xy xzyz Yyz YYZ
+eenn-eenz]
yz x'z xy =z

where T, » T., T are the components of torque about the center of gravity of the

iy Tk Tk

vehicle alonzy Xb. Yb and Z, respectively.

b
The above equations are valid under the following assumptions:

a) Inertia of internal moving parts of the body are negligible. -

This assumption is necessary to allow the system to be treated as a rigid body.

b) The fixed body axes coincide with the principal axes. -

This assumption made the enertia tensor diagonal (see eq. A.21).

c) Small angular deviations. -
This assumption is utilized in the derivation of the transformation matrix {2.5) .

In order to specialize these equations for the problem of attitude control, it

is necessary to obtain an expression for the components of the reference system angular
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velocity (nx. ny. Qz)- If the earth were a perfect homogeneous sphere, and if the
only force acting on the satellite was the earth's gravity, the satellite orbit would be
an ellipse whose spatial plane and major axis would be fixed in inertial space. Under
these conditions, Qx and Qz would be zero and Qy v.vould be equal to the orbital
angular velocity (sometimes referred to as the pitch over rate) predicted by Kepler's
laws ofplanetary motion. There are several perturbations which act on the orbit and

change ﬂx, Qy and Qz from these idealized values. They are listed below:
a) The earth is not a perfect sphere but is closer to an oblate spheroid.
b) The earth is not homogeneous.
c) Atmospheric drag.
d) Gravitational attraction of the moon, sun and other planets.

e) Electromagnetic forces caused by the satellite' s motion through
the earth's magnetic field.

f) Collision with meteorites and other particles.

The changes in angular velocity produced by the perturbations discussed above
are several orders of magnitude less than the orbital angular velocity which is in the
order of 10'3 rad /sec. These perturbations therefore have a negligible effect in the
equations of motion when compared to terms containing 2 . As a result, Qx and
Qz are considered to be zero in the equations of motion. It is further assumed that
there is no time average force acting on the vehicle since such a force would cause the
plane of the orbit to become time varying.

Setting Qx =0 = Qz = f?z = 0 in the torque equations (2.20, 2.21, 2.22)

X
yield:
T, =1 [ +08 +en] (1 -1 )[ 6 +66 0
iy x L x zy z'y zy Yy Yy 2 Xy'y
(2.23)
+60a -0 0?]
Z x
T, =1 [b’ +9 1+ -1 )[éé -06 0
Iy Yyl ¥ Xy zy, X z X x y (2. 24)
+0 60 -0 @ nz]
x z'y
le‘ . .
ka=xzb[ z-exny-exny]uryb-xxb)[x SEEIN
(2.25)
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Further simplification of Eqs. (2.23), (2.24),(2.25) can be obtained if the
order of magnitude of the various terms is estimated.
1) Qy is taken to be 10'3 rad/sec. This corresponds roughly to a ninety
minute, 400 mile high circular orbit.
2) An estimate of the angular acceleration can be obtained from a simple example.
Consider a 1000 pound drum shaped satellite (see Fig. 2-3) which is 4 feet in length

and 4 feet in diameter

0=4

\

134
’Yb
i
8y
i I
Xp
Fig. 2-3 Drum Shaped Satellite
For a cylindrical satellite
2 2
I =1 =350°+3R% (2. 26)
x, =Yy, T T2
I = 1 mR? (2.27)
b 2

Where 1 , I
x

o and Iz are the polar moments of inertia about the Xb Yband Zb

axes of the body.

m is the mass of the satellite in slugs.
L is the length of the satellite in feet.
R is the radius of the satellite in feet.

Calculation of the moments of inertia yields:



13
(2. 28)

. . 2
1 =] =72.5 .1“‘ - ft,
» Y
I = 62.2 slug - ft.2 . (2. 29)
z

b

It will be assumed that a sinusoidal disturbance torque of amplitude

80 dyne - cm is applied to the vehicle with a radian frequency of ny (10'3 rad/ sec)

about its zb axis.
Tdk.b = 80 sin 10"t dyne-cm (2. 30)
Converting to ft. - lbs. yields:
Tq =5.9x 10‘6 sin 1073¢ £t - Ibs. (2.31)
Assume for the purpose of estimation that the elementary equation
Tq = Iz ez (2.32)
k, b
applies.
Therefore the angular acceleration is given by
T
P b _ -7 . -3 rad
b, =y— = 0.94 x 10 " sin 10 t—, (2.33)
zy sec

The maximum value of the angular acceleration about all the axes is seen to be about

(2. 34)

1077 rad/ sec’
- 10-7 rad

secC

An estimate of the angular velocities and angular deviations can be obtained

3

3)
by integration. Integrating to obtain the angular velocity and deviation, one obtains
b=-10%cos 103 (2. 35)

0=-10""sin10"3 (2. 36)

Therefore the estimate for the maximum value of the angular velocity will be

1074 rad/ sec. _
éx = éy = 62 = 107* rad/ sec (2.37)

and the estimate for the maximum value of the angular deviation will be 0.1 rad

6, =6, =0.1rad (2.38)
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The effect of damping on the vehicle will cause these values to be smaller than those

used for the estimations.

Substituting the estimated values into equations (2.23), (2.24) and (2.25)
and deleting the negligible terms, (a term will be considered negligible if it is at
least one order of magnitude smaller than the other terms), yields the final set of

equations of motion for a body in a general elliptical and planar orbit.

. 2 (2. 39)
T, =1 [é’x+ezs'zy+eyny]+(xz .1Y )[ézny- exny ]
b b ' b b (2. 40)
. ’ . 2
=1 [8 +2 1+ -1 éé-een+eén-eon]
TJb Yb[ Yy Y] (be zb) [x z XXy z 2y XzY
Foe . . 2
ka = Izb [ez -8, fzy- exny] + (be- be) [exny+ o, Qy ] (2.41)

E) Inclusion of the Gravity Gradient Torque
It is essential to understand that the left side of equations (2.39), (2.40) and
(2.41) represent the components of the total external torques applied to the body.

- -

L) romMTION OF STABLE £OURIORIM

DUNMBELL SATELLITE

70 CENTER OF EARTH

CARTH

Fig. 2-4 Mechanism of Differential Gravity Torque
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In general, the total external torquce applied to the vehicle is composed of disturbance
torques and control torques. It is advantageous to explicitly include the expressions
for the control torques so that the only torque appcaring on the left side of the

cquations are the true disturbance torques.

Differential gravity is a possible source of a control torque. The mechanism,
by which differential gravity can be utilized to provide a control torque, can be

qualitatively demonstrated with the aid of the following simple example:

Consider the dumbell shaped vehicle as shown in Fig. 2-4. The difference in
force acting at its emds will cause a small torque tending to align the longitudinal
axis of the vehicle along the geocentric vertical. As the satellite orbits the caith a
torque is thereby produced tending to keep the satellite so aligned. The positions of
stable and un-stable equilibrum are also shown in Fig. 2-4. It is of cardinal
importance to .rcalize that differential gravity alone can be used as a mechanism for
keeping an axis of the satellite aligned in the general direction of the earth. Without
damping however, the poles of the system will lie on the imaginary axis and thercfore

a disturbance torque will cause the vehicle to oscillate.

A derivation for the differential gravity torque, for a sufficiently general
body, is given in Appendix C. The results of the derivation are repeated herc for

convenience. For an elliptical orbit

3 8¢ Rcz
T, = —71i 6(I -1 )+j 6 (I. -1 ) (C22)
dg p03 [b Xz Yp b "y zy, Xy
and for a circular orbit
2
T, = 3Q i 0 (I -1 )Y+ 0 (I -1) (C23)
dg Yy [ b x Tz Y by zy, Xp

It is immediately seen from thesc equations that the component of the gravity gradient

torque about the Z axis of the body is zero. Therefore, differential gravity cannot

be used to prevent }()lrift about the beody axis. It is seen from either equation (C22)
or (C23) that differential gravity introduces a component of torque on both the Xpand
Y, axes of the body that is proportional to the displacement angle about that axis.
Since the behavior of the differential gravity torque on both the Xb and Y, axes are

similar, only the component along the Yb axis will be considered.
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Two situations are of interest:

.4
1) be<Izb (2.42)
2)1 <1 (2.43)
»  *p
Consider case (1)
2
T,, =+32°6 (|1 -1 (2.44)
a8&;, v %'z, ")

It is seen from equation (2.44) that the differential gravity torque is in the same
direction as the angular displacement. This clearly represents an unstable
configuration since once a disturbance torque produces a small angular displacement,

differential gravity will cause this angle to increase.

Now consider case (2)

' T, =-39%e | -1 | (2. 45)
X]| z

In this case differential gravity is in the opposite direction of the angular displace-
ment. Hence if a disturbance torque produces an angular displacement, differential
gravity will tend to restore the vehicle to its unperturbed position. For this configu-
ration, differential gravity inftroduces position feedback much in the same manner

as a body coupled to a spring. Therefore, it is of utmost importance that the moment
of inertia about the Zb axis of the body be less than the moments of inertia about

both the xb and Ybaxes of the body.

From equation (C 22) it is seen that the total external torque on the body is

given by 2
T T, + >8s Re o (I 1) (2.406)
= ——— - .
ib d, 3 Xz b4Y

a t—3— &l o) (2.47)

ka = 'I'dkb (2.48)

where T d is the total torque on the body less the differential gravity torque.
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Substituting equations (2.46), (2.47) and (2.48) into equations (2. 39), (2.40) and
(2.41), and bringing the differential gravity terms over to the right side of the
ruations yields:

T, =1 [ +6 0 +6a]+a1 -1)[6a
dib xb[x z'y 2 y] (zb yb)[z Yy
2 3gsRez (2. 49)
-6 (@ 4+—2_°¢
x 0y +— J
o]
T, =1 {é+s’7]+(1 -1 )6 & -6 60 +0 80
. Yp LY Yy x, Zy x z X x Yy z z Yy
b 2
2 38, Re (2.50)
x zy 3
p0
T, =1 [ﬁ-er‘z-én +@ -1 )b a +en? 2 51)
d'k.b zy L2 x 'y X y Yy Xp x y z y

The corresponding equations of motion for a circular orbit can be obtained

by setting 5)' = 0 and

2
3g_R
s & -.3q° (C.16)
3 Y
r)O
T, =1 [‘é +6 n]+(1 -1 )b o -46 0? (2.52)
d, x, Lx z 'y, b L2 Y x'y
» b
T, =1ybé +(Ib-1b,[éx éz- o 8 0 +ezezny
b (2.53)
-6 6 2%4+30 02]
x zy Yy
T, =1 [é’-én]+u -1 )69 +0 0l (2. 54)
d.kb zy Lz x'y Yp Xy x'y z'y

Equations (2.50) and (2.53) can again be simplified if order of magnitude approximations

are considered. Using the estimated values given in equations (2.37) and (2. 38) it

is seen that equation (2.50) simplifies to 2
" . 6 g R
T, =1 [e +n]+3(1x -Iz)_‘L_s3_e (2.55)
jb Yp LY Y. b b fo

and equation (2.53) simplies to

w 2
T =1 0 +3(1 2.56
0 = 8430, (2.56)

-1 )8 @
z,' Y
b

b b y
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It should be noted from equations (2.49), (2.51) and (2.55) that the

expressions for Td. and Tdkb are linear, cross coupled, time varying differential
i

equations that depenc:, on ex a;ld Gz and their derivatives but not on © and its
derivatives. Therefore, ex and 92 can be determined from the disterbance torques
about the Xy and Z, axis without involving the disturbance torque about the Yy axis.
Equation (2.55) is a linear, time varying differential equation that only involves ©
and its derivatives and does not depend upon the angular deviations about the other two

axes.

As an aid to obtaining an insight into equations (2.49), (2.51) and (2.55), they
are put into the following form, and from this form, a signal flow graph can be
easily constructed. (see Fig. 2-5 and Fig. 2-6)

T
d. (1 - 1) 2
* 1 - ¥4 Y »” 3g Re
6 =—=L .00 -6 -\ b "Migg_gl{aliZ8 _ ||2.57
LI 2y zoy T z'y x|y o 3
Xb xb o '
T
d. I -1 2
” Jb » (xb zb)egsRe
— -8 =2 oQ -3\ DB, —Y—T- (2.58)
y I y IY o
yb b 1 Q
Tdk (Iy' Ix)
° = biof 60 VB "Dlg g g q? (2.59)
z Xy x 'y I L=y z'y
Zp %p

Figure 2-5 relates the output angles ex and ez to the torques about the
Xb and Zb axes, and Fig. 2-6 relates ey to the torque about the Yb axis.

With reference to Fig. 2-5, paths Pl and P2 represent position feedback

terms due to the orbital angular velocity of the vehicle. If I > I and I > Iz )
v M Y %
the feedback produced by these paths will be such as to oppose a displacement

produced by a disturbance torque. Paths F’3 and P4 are also due to the orbital
angular velocity of the satallite about the earth. These paths introduce feedback
depending on the error rates (éx and éz) . Unfortunately these terms do not
introduce damping because they appear in the wrong equations. For an elliptical
orbit, the angular momentum of the vehicle becomes time varying. The derivative
of the orbital rate (6 ) gives rise to cross coupling between. the X, and Z, axes
as shown by paths PS and P,. With reference to both Figs. 2-5 and 2-6, paths P.7

6

and PB are seen to introduce position feedback on the Xb and Yb axes. These are



19

Apog 9Yy3 10 SoxXy

qQ

.cA|m|v"~

2Ula o
k-

q

31q10 TedndI[[d ue ut
Z bpue

q

X oy 103 ydein molg reudis g-z -3y

QQ

A




20

31910 TedndId ue ut
X 9y3 103 ydean mord 1eudrs 9-z -3r1d

Apog 2y} jo SIXY

q




21

the result of differential gravity and, as was previously shown, the feedback will be
negative about both axes if the moment of inertia of the body about its Zpaxis s
smaller than the moments of inertia about the other two axes. The corresponding
f.low graphs for a circular orbit can be obtained from Figs. 2-5 and 2-6 by <etting

QY equal to zero and

=0 °, (C.16)
y

It is seen from the flow graphs that position feedback terms, for a suitable

choice of the moments of inertia, (Iy > be > I ) canact as spring type restoring
b b
torques about each of the axes of the body. The effective spring constant, defined

as the ratio of restoring torque to angular displacement, is given below for each of

the axes.
K =1 -1 2 %% R°2 2.60
A (2.60)
(o]
2
K =3(, -1 ) Bs l;" (2.61)
y b % op
(o]
2
K g -1)8 (2.62)
z (be xb) y

It is of interest to obtain some appreciation. as to the order of magnitude of these
terms. Consider again the drum satellite of Fig.2-3. Assuming a circular orbit

and using the moments of inertia calculated for this satellite, yields:

.5 " ft.-1bs.
K = 4.1x10 e (2.63)
-3 -5  ft.-1bs.
K, = zK =3.11x10 L. -lbs (2.64)
K =0
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F) Solution of the Equations of Motion for a Circular Orbit

Introducing Laplace transform notation into equations (2.52), (2.54) and
(2.56) yields:

' 2
Tdib(s) = be[s ex(s) +s8 ez (s) Qy] + (Izb - be) [s 6,(s) Qy
2 (2.66)
-4 ex (s) Qy ]

— 2 - Z .
deb(s) = be 8 Oy () + 3(be Izb) GY (s) Qy (2.67)
Tdk (s) = Izb [52 6, (s) - 5 € (s) Qy] + (be - be)[s 6, (519

b ) (2.68)
+6 (s)Q ]
z Yy

Solving equations (2.66), (2.67) and (2. 68) one obtains:

2 2
T, ()1 +q -1 )0%|-T Q (I +1 -1
4 * [s 7y ) Y] dk.:)S) [s y U, oy Vb)]

ex(S) = (2.69)
2.2 2 [.2 21 [2 2
Q1 - 41 - .
s* ("b+ Izb be) +|;s be+ (be Izb)ﬂy] [s Izb+(lyb xxb) ny]
Td. (s)
o (s) = b (2.70)
y 821 4+3(I -1 )2
Yb * % Y

+1 -
z

2 2
T (s)[a be + 4(be - Izb) QY ] + Tdi(s)[s Qy (be . be)] o

6, (s)

2. [2 2]1[.2 2
850 (1 +1 -1 )+|s°1 +4(1 -1 )02 °l|s°L +(1 -1_)@
y ("b % Yb) [ X (Yb zb) y ][ Zy (Yb "b) Y]

In order to better understand the nature of the response of the body to
disturbance torques, several examples will be considered.
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Example No. 1

The moments of inertia about the Xb and Yb axes are equal and greater than
the moment of inertia about the Zy axis. An impulsive torque of strength § is
applied about the Xb axis and no torques are applied about the other two axes.

Impulsive torques are characteristic of meteorite impacts.

When appropriate substitutions are made in equation (2.69) one obtains for

6, (s)
1
L °
o, (s) = b (2.72)

(41 -31)

s2 +Q 2 b b
Y 1

*b

Since I >1
*» %

oscillate with a radian frequency of

the poles of ex(s) lie on the imaginary axis and the system will

(2.73)

If Ix <I  there will be a pole of Ox(s) in the right half plane and the angular

b %
deviation will increase with time. For I > Iz
b
L] .
Ox(t) =y—0— 8in wot u(t) {2.74)
X, ©
Clearly from equation (2.70)
0 (t)=0 2.5
y( ) ( )
From equation (2.71)
Q6 5
0 (s) = 3 yz = —
z sf{sc1 +0°@41 -31 )] e0 (41 -31 )
*» Y % % LA T
1 6 (2.76)
x

T2 2 -
o (4 be -3 Izb) [a be +a @ L, 3 Izb)]
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Therefore for 1 >1
X,z
5

-31 )
b %p

6,(t) = [1 - cos w t ]U(t) (2.77)

Q41
Yy x

From equation (2.74) it is seen that the angular deviation about the Xb axis is
oscillatory with zero mean, whereas from equation (2.77) it is seen that the deviation
about the Zb axis is also oscillatory but with a non-zero mean. The results of this

example are summarized in Fig. 2-7.

Example No. 2

The same satellite configuration as in Example 1 but now the impulsive torque
of strength § is applied about the Y

other two axes.

b axis and no torques are applied about the

Substitution into equations (2. 69) and (2.71)it is clearly seen that

6 (t) = () = 0 (2.78)

Substitution into equation (2. 70) yields for ey(s)

oy
Yy
0. (s) = b (2.79)
y (Ix - Iz )
s2 +3 b b Q 2
1 Yy
Yy
Therefore
0 (t) = sin w ;t U(t) (2. 80)
y ‘w,l
lyb
where
w, = 0 (2.81)

(observe that Wy < w, ).

It is seen from equation (2.80) that the angular deviation about the Yb axis

is sinusoidal with zero mean. The result of this example is summarized in Fig. 2-8 .
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ANGULAR DEVIATION

3, (t)=0

Fig. 2-7 Responee to an Impulsive Torque of Strength & Applied about the Xb Axis

AXIS
)

8,1

6,m=8,h=0 -

ANGULAR DEVIATION

Fig. 2-8 Response to an Impulsive Torque of Strength & Applied About the Yb Axis
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Examplc No. 3
The same satellite configuration as in Example 1, but now an impulsive
axis and no torques are applied about

torque of strength & in applied about the Zb
the other two axes.

Substitution into equation (2.69) yields for ()x(s)

-9, 6 5
0 (s) = =
x srsZIx @1 -31 )] s (41 -31 )
: b Y *b “b | Yo % *b
s1 (2.82)
+ X
Q@1 -31 M1 +°@1 -31 )]
Yy % b b 7Y *b b |
[
Therefore
r
P (t) = 6 cos w_t - 1] Ult) (2.83)
x Q (41 -31 ) °
Yy X, 7y
Clearly frora equation (2.70)
G (t)=0 2.84
y(t) ( )
Substitution into equation (2.71) yields for 07(5)
r 1
6{521 +4(I. -1 )QZ] ‘I; 6
8 (s) = . b ™ " ¥ = b
= s2r [s21 441 -31 )97 (41 -31)
b *b *b Y 2\ " g2
y
be (2.85)
4(1_-1_)6 41 -1 )6
' Nb Zb Xb Zb
) ) T Bl
s21 (4L -31 ) 1 (41_- 31 ) | (41x -31, )
» *» % b b bl 2\ ™ "2
. . \ Ix Yo
Taking the inverse Laplace transform, one obtains L. b 4
r 14 Io-1 A
0 (t) = b sin o t 4P B ¢y (2. 86)
z 4 (o]
(41 - 31 ) w5 I
Xb I,b ,b y

It is seen from equation (2. R86) that when an impulsive torque is applied about the Zb

Differential gravity is not available to help stabilize the vehicle

axis drift occurs.
» the gyroscopic

about that axis. Furthermore, since it was assumed that Ix = Iy
b b
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action due to the orbital rate of the vehicle was not able to produce position feedback.

(see Fig. 2-5 and equation (2.62)). The results of this example are summarized in

Fig. 2«9 . If the moments of inertia of the vehicle were chosen such that
Iy > L > Iz , drift would not occur about any of the vehicles axes as a result of an
b b b

impulsive disturbance. Consider the following example. Chocse the moments of

inertia of the vehicle such that Iy >1 >1 and
b *» %

I +1 =1 (2.87)
X Zp Yp

(For example: Ix = %-IY, 1 = -;-I ) . Equations (2.69), (2.70) and (2.71) degenerate

z b4
to ) 2
Tdib (s)[s Izb + (be - be) 9 ]
6 (s) = - . (2.88)
x 81 +401 -1 )2 ][’ +@ -1 )921
*b Yop %p ¥ Z, Vb % Y
Ty (s)
j
0 (s) = — L . (2-89)
y s“I +3(I. -1 )0
Yb *» % Y
2 2
T, (s)}s“1 +4( -1 )
4, s[ Xy Yo % V] (2.90)
Gz(s)=

s +4(L -1 )2 °%7[s°1 +(1 -1 )0 °
*p Yo % Y 2, Yp X Y

It is apparent from these equations, that when the moments of inertia of the body
satisfy equation (2.87), the three axes of the body are completely uncoupled. i.e. a
disturbance applied about one axis will only produce a displacement about that axis

and none about the other axes. Also, it is seen that no drift will occur about any of

the axes due to an impulsive disturbance. The free response consists of the sum of
two sinusoids of different frequency. This is certainly an improvement over the drum-

shaped satellite discussed in Example 1, 2, and 3.

We have seen in this chapter that, with proper vehicle design, the impulsive
response of the system consists of only oscillatory terms. Since the system is linear,
if an arbitrary torque is applied, the output wili consist of terms of the same orm as

the input plus the terms of the impulsive response. Hence for impulse-like torques,
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low level step torques and sinusoidal torques, drift would never occur. If damping
devices are incorporated into the system, (this can be done passively) it should be
possible to remove the oscillatory components and keep the vehicle reasonably aligned
with the geocentric vertical. It is possible to utilize gyroscopes to provide damping.
In order to better understand how this can be effected, a simple analysis of

gyroscope damping will be presented in Chapter III.
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Chapter III - A SIMPLE ANALYSIS OF GYROSCOPE DAMPING

A) The Mechanism of Gyroscope Damping

The mechanism by which gyroscopic action can be utilized to provide
vehicle damping can be qualitatively explained as follows. When a disturbance torque
is applied to the vehicle, angular motion of the vehicle with respect to inertial space
will occur. This motion will cause relative motion between the gimbal of the gyroscope
and the body. If viscous damping at the gyroscope gimbal is provided (this can be
provided through electrical means) a damping term will couple into the equations of
motion of the body.

Vehicle damping can either be of direct or indirect nature. By indirect
damping, it is meant that vehicle rotation will produce precession of the gyroscope
which causes vehicle damping due to relative motion between the gyroscope and the
vehicle. If the vehicle rotation is about the precession axis of the gyroscope, direct
damping will occur. In this case the relative motion between the vehicle and the

gyroscope gimbal is brought about without the mechanism of gyroscope precession.

B) Analysis of a Simple Configuration Employing Indirect Gyroscope Damping

Indirect damping can be demonstrated with the following example.
Consider the geometry shown in Figure 3=1. In the geometry pictured,the body is
constrained to rotate with respect to inertial space only about its X axis and the
gyroscope is constrained to rotate relative to the body about the 2 axis of the body.
Consider a disturbance torque applied to the body about its X axis. This torque is

conntered by the inertia torque of the body, the spring torquesand the gyroscopic torque.

e »

Tg =1, 9x+K0x-egHrcos 9g (3.1)

Where Ix is the sum of the moments of inertia of the body and the gyroscope
about the X axis.

K is the spring constant

Hr is the angular momentum of the gyroscope rotor.
The torque on the gyroscope about the Z axis is given by:

’
Tg =-D& (3.2)

z
Where D is the damping coefficient between the body and the gyroscope gimbal.
This torque, (3.2), is countered by the inertia torque of the gyroscope and the

gyroscopic torque.
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SPRING (K)

ROTOR (Hr)

pS

g, — PRECESSION ANGLE
-y

1

/

B80DY
PRECESSION AXIS

/]

DAMPING (D)

Fig. 3-1 Configuration to Illustrate Indirect Gyroscope Damping
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T =-D6é =1 6 +6 H 8 .
g, . g % . rcosg (3.3)

where I is the moment of inertia of the gyroscope about the Z axis of the body.

Equations (3.1)(3. 3) can be linearized for small angular deviations.

Tg=1 8 +K6 -0 H (3.4)

-D6 =1 6 +6 H .
g g g x'r (3-5)

Introducing Laplace transform notation to these linearized equations yields:

Tyls) = 1 s%6 (s) +K 6 (s) - H_s 6 () (3. 6)
- Ds 6(s) = I, 2 6 (8) +H_ o 6 (s) (3.7)
Solving for ex(s) in equation (3.7) in terms of eg(s) yields:
-H
Gg(s) = ﬂ_ﬁ; e (s) (3.8)

Substituting into Equation (3. 6) yields:

2

T 4(5) [D +8 Ig] = 6 _(s) [s3Ix 1 +s°D I +s(KI +Hr2) + K D] (3.9)

The characteristic equation of the system is there{ore

2
2 (KI +H°) KD
6> 48Dy B T
I I I I1
g x 8 x g

=0 (3.10)

The stability of this system can be demonstrated by applying the Routh stability
criterion. Consider the following third order equation.

as3+bsz+cs+d=0 (3.11)

corresponding to this equation, the Routh array is

a c
b d
bc-ad
b
d

If the coefficients (a, b, c, d) of equation {3.11) are positive, a necessary and
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sufficient condition for stability is that
bc-ad>0 (3.12)
applying this condition to the characteristic equation (3. 10) yields:
2
- > .
IxD(KIg+Hr) IngKD 0 (3.13)

which simplifies to
I DH 2, 0 (3.14)
x r

which clearly is always satisfied. Hence stability of the system is assured.

Intuitively this is to be expected.

Since the characteristic equation (3. 10) has only real coefficients,

the set of roots can only be of two types, i.e.
1) three real roots
2) one real root and a pair of complex conjugate roots.

It is seen from the characteristic equation (3. 10) that the sum of the roots is given by:

- D
T br, by T - g (3.15)

2
where D is the damping coefficient g

1 is the moment of inertia of the gyroscope
8

I Ty Ty represent the roots of the equation
Since the imaginary parts of the complex conjugate roots cancel on
addition
_ D
Rfe(rl)+ Re (rz)+ Re(r3)— - T; (3.16)

where Re(r i) represents the real part of the ith root.

+ For a fixed gyroscope moment of inertia (IU) and for a fixed damping
coeffieient (D), the sum of the rral parts of the roots is constant. As K, the spring
constant, and H. the angular momentum of the rotor are varied, the roots of the
characteristic equation must migrate such that the sum of their real parts remains
constant. As some of the roots migrate toward the left, the others must move toward
the imaginary axis. This strongly suggests that optimum damping is attained, i.e.
steady state is attained in minimum time, when the real part of all the roots are equal.

This condition can occur in two ways.

i) a third order pole on the real axis (see Fig. 3-2)
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ii) a real pole and a pair of complex conjugate poles all with the same

real part. (see Fig. 3-3)

Im im
A
-
’* -»> Re -
pas _a’f Re
¥-—-—- e’
Fig. 3-2 Third Order Pole on the . Fig. 3-3 Real Pole and a Pair of
Real Axis Complex Poles

Consider case (i) where a third order pole on the real axis occurs.

For this case, the characteristic equation (3. 10) must reduce to the form

(s +u)3=0 (3.

Expanding, and equating to the expression for the characteristic equation (3.10),

yields:

2
D , (Klg+Hr) K D.

%+3vsz+30'25+0'3=33+1—. + ——I—I—!+r—I— (3
8 X B L
Equating coefficients of like order terms yields:
3o = £ (3.
8
KI +H

302 = ﬂ%— (3.

(3.

17)

.18)

19)

20)

21)



35
Solving for ¢, Hr and K yields:

¢ = 3% (3.22)
g
8Ix
Hr =D -2-7—I— (3-23)
g .
1_p°
K= —-—z— (3. 24)
271
)4
Clearly, for a fixed D and Ix these equations are parametricin I . For
a specified Ix and I, o, Hr and K can be plotted as a functionof D In order

to obtain an appreciation for the order of magnitude of o, H_ and K, graphs are
drawn as functions of D for a body whose moment of intertia is 27.7 slug-ft.

(«ee Fig. 3-4) . The moment of inertia of the gyroscope will be taken as one percent
of the moment of inertia of the whicle.(lg = 0.3 slug - ft. 7). In a satellite vehicle,it
is of utmost importance to keep the gyroscope as small as possible so that more data
gathering payload can be included. The range of D chosen is from 0.5 x 1073

to4.0x 1073 ft. -lb/ rad

e ° These values are typical of the damping attainable in a

gyroscope. It is seen from Fig. 34 that ¢ and Hr are linear functions of D,
whereas K varies with the square of D . In order to obtain an estimate of the
settling time of the syseem, it is necessary to look at its free response. The free
response of a system, which has a third order pole on the real axis, is of the form

t

2 -
Bt) = (K + Kt +Kyt')e ¢ (3.25)

It is clear that the term Koe"rt will decay to e'4 or 2%of its maximum value when
t =-; sec. (3.26)
The term K, te Tt il decay to ¢4 of its maximum value when
ot _ e
te™ = (3.27)
The solution of this equation yields:
¢ =8 gec. (3.28)
3
2 -ot -4 .
The term Kzt e will decay to e of its maximum value when

- 4 .
tZe ot _ 5 e 6 (3.29)

¢
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The solution of this equation yields:

t = =~ sec. (3. 30)

Qo

To see which term predominates,it is necesary to consider the transfer function of,
the system (3.9) . Since the system has a third order pole on the real axis, the transfer
function becomes

(D+s1)
0_(s) = ___S__Td(s) (3.31)
x LI (s+0) :

The free response of the system is given by its response to an impulse torque
(Tq(s) = 1) . For this torque
D+sl
6(s)= — & ____ (3.32)
x 3
I, Ig (s + u')

Taking the inverse Laplace transform

_1 -t
x x'g
For

D=2x lo-3.£t-1bs/ ::d

1, =03 slug-ft.

I =30 slug-ft.Z

x

' -3 6.2 -2.22x10° %, 2%
6, (t) = 33.3x10 e "2 B2X10 gy 4 74 1070272 22X 10 Hyqr)
.2.22x107 3¢

Clearly, the term 33. 31073t e
that the system damps in 6.9 time constants. In Fig. 3-5 the settling time is plotted

U(t) predominates, hence it will be assumed

as a function of the damping coefficient. The time is represented as a perccntage of a

90 minute orbit.

It will be instructive to sketch the root-loci of the system as a function
of the damping coefficient (D), the angular momentum of the rotor (Hr)' the spring
constant (K), and the moment of inertia of the gyroscope (Ig)' From Fig. 3-4 it is

seen that when Ix = 30, Ig = 0.3, a third order pole occurs on the real axis at

¢ = - 2.22)(10-3 when H = 10-9x10'3, K= 49.4x10-6 and D = 0.002 . In sketching
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the root-loci,each of the parameters will be in-turn varied While the remaining
parameters are held fixed at the values given above. Therefore,for each of the root-
loci, all the branches will coalesce at s = - 2.22x10"3

a) Root-locus as a function of the damping coefficient (D). (See Fig. 3-6) .

The characteristic equation (3. 10) can be factored into the form:

" 2
(s +vse)p[14 2028 tc)} _ (3. 35)
s(s2 +h)
!
where
1
a= /1 3.36
" (3.36)
KI +H_2
T
b =—jj—— (3- 37)
x g
- K
<= ¥r (3. 38)
x g
The roots of the characteristic equation (3. 10) are therefore seen to satisfy the
equation
D(a s2 +c)
__.____.__c- ="-1 ! (3. 39)
8(s +b)

The poles and zeros of the expression on the left side of equation (3. 39) are given by:

p, =0
_ ot _ K
Py Py = - jivb = T (3.40)
2, z;=tj/§=t%-§‘ (3.41)
) x
Substituting the chosen values yields:
P, =0
+ . -3 4
Py Py = - j(3.86x107°) (3.42)
2y 2, = 31,29 x 103) (3.43)

The root-locus can now be easily constructed.

At D = 0, the poles of the system, are as expected, on the imaginary
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41

axis, and the system is unstable. Maximum stability occurs when

D=2.0x 10'3 ft. lbs. . For this value of D, a third order pole exists on the
rad/sec.

real axis; the values of Hr' K, and I were chosen so that this would happen. As

D is increased beyond this value, the free response of the system deteriorates. It

should be noted that for very large D, two of the roots return to the imaginary axis.

This occurs because for a very large damping coefficient, relative motion between

the gyroscope gimbal and the body cannot occur and thus the system behaves

as a rigid body.

b) Root-locus as a function of the angular Momentum of the rotor (Hr) (see Fig. 3-47).

For this case the characteristic equation can be factored into the form:

2
3 2 cs Hr
(8" +as”" +b=+d) |1+ T v, =0 (3.44)
s"+as +bs+d
D
where a = (3.45)
g
_ K
b = T (3.46)
x
= A 4
€ = v (3.47)
x g
. KD
d = -IT (3.48)
x g
For the chosen values of D, Ig.,and K, the poles and zeros of the
expression
cs Hrz
(3.49)
5T+a sz +bs +d
become
zl = 0 (1 1.1')
py=-6.7x107
(3.51)

3

‘. -
Py p3=-J(l.29x10 )

It is noted from the root-locus plot (Fig. 3 -7) that the damped radian frequency

increases as Hr increases. This is to be expected since as can be seen from the
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characteristic equation (3. 10), the coefficient of the linear term is given by

k H2
B (3.52)
X X g

Therefore, Hr affects the system in the same manner as the spring term. Hence as
Hr increases, the system becomes "stiffer" and therefore the damped radian

frequency increases.

c) Root-locus as a function of the spring constant (K) (see Fig. 3-8).

For this case the characteristic equation (3. 10) can be factored into the

form:
(13+asz+bo) (1+ Kic s +4) ) (3.53)
s" +as +bs '
where a = '12 (3 54)
g
Hr2
b T (3.55)
x g
c = 11 : (3. 56)
X
D
d = T (3.57)
x g
For the chosen values of D, Ig and Hr' the poles and zeros of the
expression
3 K(c sz+ d) (3. 58)
s“+as +bs
become -3
2, = - 6.67 x 10 (3.59)
Py = 0
(3.61)

Py Py = - 3.34x 1003 45 (1.37x 1073

For large values of K, the characteristic equation (3.10) reduces to

3,2D, K,KD D (z x)
8"+ +s 4-!7 =[s +=\(s + \
TRk ( 13) & (3.61)
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For large K, the system will have a pole on the real axis at s = - -12 and will

. . . g
oscillate with a radian frequency of W, i/lz Hence as K is increased,the natural
x

radian frequency increases, and an undamped oscillatory mode is approached. This
is to be expected since as K is increased, the system becomes "stiffer" and

more energy is stored in the spring which will take longer to dissipate.
d) Root-locus as a function of moment of inertia of the gyroscope (Ig) (see Fig. 3+9)

For this case the characteristic equation (3. 10) can be factored into the

form:
3 1 a s2 +cs +d‘)
(s +bs) {1 +I— —_— (3.62)
g s(s” +b) -
where a = D (3.63)
K
b = 1— (3.64)
x
Hr2
¢ = — (3. 65)
x
KD
d = — (3. 66)
X
For the chosen values of D, H_ and K the poles and zeros of the
expression
1 a s2 +cs +d
r— (3.67)
g s8(s® +b)
become P, = 0
(3.68)
K 2 -3
Pp» Py = -j(l.29x10°7)
2y 2, = - 0.99x 1073 ¥;(0.82x1073) (3.69)
1" "2 )

When the moment of inertia of the gyroscope becomes very large,the characteristic
equation (3. 10) reduces to

s(s +I—) = 0 (3.70)
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Fig. 3-9 Root Locus as a Function of the Moment of Inertia of the Gyroscope
for Optimization with a Third Order Pole on the Real Axis
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The roots of this equation are

(3.71)

]

u

e

w

n

Ve

L SV
VS

Therefore, as I increases the damping of the system decreases because the
gyroscope precession rate becomesamall and relative motion between the gyroscope

gimbal and the body is curtailed.

Now consider case (il) where optimization is obtained with a real pole and
a pair of complex conjugate poles all with equal real parts. For this case, the

characteristic equation (3.10) must reduce to the form:

(s +0)(s +¢ -jmd)(s 4o +jwd)
(3.72)

53+3<rsz+(wn2+2¢2)s+a'wn2' 0

whern 2 _ 2 .0 (3.73)

Clearly o 2 cannot be made larger than unz putting an upper bound on the damping
coefficient that can be used in this type of optimization. Equating expression (3.72)

to the characteristic equation (3. 10) and comparing like order terms yields:

D
= 3.74
r 3¢ ( )
g
KI +H%=w %4202 (3.75)
r n
x g
o wnz=151'l (3.76)
x g
. 2 .
Solving for W, yields:
2 _3K
w U= .Tx_ (3.77)

It is noted from the above equations that three independent quantities must be specified.

K and I_ will be fixed, and H » 0, and w4 will be obtained as a function of D. As in the

previous case. the moment of inertia of the body plus gyroscope (I ) will be taken to be
30-slug-~ ft. and the moment of inertia of the gyroscope will be taken to be 1% of I or

0.3 slug-ft. 2 K will be chosen for convenience to be 10~ -5 ft. 1bs. Correspondmg to

o rad
this value of K, w 2. 6 (;:g) and the upper bound for D is
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0.9 x 1073 foc1bs: Using these values, H , ¢, and o

rad/sec.
of damping. (see Fig. 3 .10).

4 are plotted as a function

The free response of a system that has a pole on the real axis and a pair

of complex conjugate poles, is given by:

6t) = K, e " 4+ K, e cosw t +¢) (3.78)

The settling time of this system is clearly
(3.79)

In Fig. 3-11, the settling time is plotted as a function of damping coefficient as a
percentage of a 90 minute orbit. Comparing Fig. 3-1]1 with Rg. 3-5 one sees that
faster settling times can be obtained for the situation employing a pair of complev
poles. This is accomplished at the expense of permitting the system to ring while it

settles.

As was done previously, the root-loci of the system will be sketched as
a function of the damping coefficient (D), the angular momentum of the rotor ‘Hr)'
the spring constant (K) and the moment of inertia of the gyroscope (I ). From Fig.
3-10 it is seen that for Ix = 30, Ig =0.3, K= 410'5 the complex p;)les and the real
pole will have equal real parts when D= 5x 10", Hr = 3.41x 107°. 1Itis also-3
seen from Fig. 3-10 that corresponding to these parameter values, ¢ = :5.55 x 10
and w, = 0.835 x 10'3 . In sketching the root-lnci, each of the parameters will be

d
in-turn varied while the remaining parameters are held fixed atthe values given above.

a) Root-locus as a function of damping coefficient (D) (See Fig. 3.12).

The characteristic equation (3,10) can be factored into the form of

equation (3.35). Substituting the chosen parameters into equations(3.40) and (3.41)

yields:
Py =0 3.80
+ . -3 (3.80)
Py» P3 = - j(1.28 x 10 7)
2y 2z, = ¥ §(0.57 x 1077 (3.81)

At D = 0 the poles of the system are on the imaginary axis and the
system is unstable. As D becomes very large, two of the roots return to the
imaginary axis causing the free response of the system to deteriorate. As in the case

of optimization with a third «:-ier pole,the system begins to behave as a rigid body.
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4

D=5x10 4

Fig. 3-12 Root Locus as a Function of the Damping Coefficient for Optimization

with a Real Pole and a Pair of Complex Poles
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When D = 5x 10.4 all the roots of the characteristic equation have cqual real parts.
This is the approximate value of D where optimum damping occurs. An examination
of Fig. 3-10 indicates that the root-locus appears tangent to ¢ =~5.55 x 10'3 . In
actuality however, there is a range for D where all the roots of the characteristic
equation lie to the left of the line ¢ = - 5.55 x 10_3 . This can be shown in the
following manner: (s+ol) is substituted for s in equation {(3.10) thereby increasing

all the roots of the characteristic equation by j¢| . The resulting equation is:

s> + 5% (<301 +.IB) +s(50 % - Ll +wn2) - %)
g 8 é (3.82)

2 Duw
Do . n - 2
; e =0
FT e e,
g g
If for some range of D all the roots of this equation lie in the left-half plane, then for
that range of D, all the roots of the characteristic equation (3. 10) must lie to the left

of the line ¢ = -5.55 x 10_3 .

Applying the Routh test tc equation (3.82),it is seen that the values of D
which place the roots in the left-half plane must satisfy the inequality

21 D2 anz 10 «° 3 2
—;—Z-+D -TT;; -. . +12017 + 201 0 "> 0 (3.83)
g

If the left side of the above expression is set equal to zero, and the resulting

quacratic equation in D is solved, either

1) a pair of complex conjugate roots

2) two equal positive real roots

3) two distinct positive real roots
is obtained. The first case indicates that all of the roots of the characteristic
equation never exist simultaneously on or to the left of the line ¢ = -5.55 x 10'3 .
The second case indicates that for some value of D the complex pair of roots of the
characteristic equation lie on the line ¢ = - 5.55 x 10-3, and the real root lies either
on or to the left of the line. The third case indicates that there is some range of D
where all the roots of the characteristic equation lie to the left of the line
¢ = -5.55x 10-3 . For the equation under consideration, the two roots are indeed

positive and distinct.

2
D, = Ig(-%— + au1) (3. 84)

D, = 3o Ig (3.85)
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Hence it is assured that there is a range of D where a better settling time, than
predicted by the optimization procedure, is possible. From Fig.3-12 it is obvious that
the difference is slight and the optimization procedure will give very close to the best
possible settling time. The reason for the optimization procedure not yielding the
smallest settling time is that the procedure assumed that the sum of the roots remained
constant. This is not truye since the sum of the roots depends on D, and D is varying

(see equation 3.16)

b) Root-locus as a function of the angular momentum of the rotor (”r)' See
Fig. 3-13).

For this case the characteristic equation (3.10) can be factored into the
form of equation (3.44). Substituting the chosen parameters, equations (3.50) and
(3.51) become

z) = 0 (3.86)
3

p, = - 1.667 x 10

(3.87)

3

Py Py = L (0.575x 1077

As Hr is increased, the damped frequency of oscillation increases. The explanation
for this is identical to that given for the case of optimization with a third order pole

when the corresponding root locus was discussed.
c) Root-locus as a function of the spring constant (K), (see Fig. 3.-14).

For this case the characteristic equation (3. 10) can be factored into the
form of equation (3.53) . Substituting the chosen parameters, equations (3.59) and
(3.60) becomes

z, =-1.67 xlO'3

1 (3.88)

p,=0
(3.89)

Py Py = - 0.833x 1073 45 (0.77 x 1073

The analysis of the system, for large values of K is identical to that described for
the case of optimization with a third order pole when the corresponding root-locus

was discussed.
d)Root-locus as a function of gyroscope moment of inertia (Ig). (see Fig. 3-15)

For this case, the characteristic equation (3. 10) can be factored into the
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form of equation (3.62) . Substituting the chosen parameters, equations (3.68) and
(3.69) become

pp =0

(3.90)
Py Py = *5(0.577 x1073)
2 7, = - 0.387x107> ¥ (0.43x 1073 (3:91)

1 72

It is seen from Fig. 3-15 that there is a range of I where the response of the system
is better than that obtained by the optimization procedure. However, the optimization
procedure will yield a value which is reasonably close. The reason for the optimization
procedure not yielding the best result is that the sum of the roots depend on 1I_ and
therefore, for a varying Ig’ is not constant. (See equation (3.16)) . The analysis of
the system for large values of I  is identical to that described for the case of
optimization with a third order pole when the corresponding root-locus was discussed.
C) Analysis of a Simple Configuration Employing Direct Gyroscope Damping

Direct Damping can be demonstrated with the following example. Consider

the geometry shown in Fig. 3-16. In the geometry pictured, the body is constrained
to rotate, with a spring type restoring torque, about the z axis of the body. The
gyroscope is again constrained to precess relative to the body about the z axis.
Consider a disturbance torque applied to the body about its z axis. In this case one
obtains

Tg=1,6 +K§, +D(6_ - ég) (3.92)

d
where Iz is the moment of inertia of the body about

the 2z axis of the body

K is the spring constant

D is the coefficient of damping between the body
and the gyroscope gimbal.

The torque applied to the gyroscope is given by

D6 -€)=1 0 3.93
(6, g) e % ( )

where Ig is the moment of inertia of the gyroscope

ahout the z axis of the body.
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Introducing Laplace transform notation, one obtains
T (s)= I, s> 6(s) +K 0 (s) +Ds 0 (s) - Ds 6 (0) (3.94)
and Ds ez(s) -Ds Ug(s) = Ig sz Og(s) (3.95)
Solving these equations for ez(s) yields:
T, (s) [D +s Ig] = ez(s)[t3 L1 +s2D (I +1)+s I K+K D] (3-96)

Therefore the characteristic equation for a system employing direct damping is:

D(I_+1)

3 2 z sK . KD

s” 4+ 5 t—tyT1 = 0 (3.97)
z Iz g

s

8

Applying the Routh stability criterion yields as a necessary and sufficient condition
for stability
D(I +I1)KI -1 I KD>0 3.98
(I +L)KI -1 1 (3.98)

which reduces to

KDI >0
g

which is clearly always satisfied. Therefore the system is always stable. This was

intuitively expected.

As in the case of indirect damping, the characteristic equation (3.97)

has only real coefficients. Therefore, the set of roots can only be of two types, i e.

1) three real roots

2) one real root and a pair of complex conjugate roots.
The sum of the real part of the roots of equation (3.97) is given by:

D(I_+1)

Re(r))+ Re(r,) Re(r;) =- _Iijg_Z_ (3. 100§
For a given body (fixed Iz),and for a fixed D and Ig’ the sum of the real part of
the roots is constant. This strongly suggests that optimum damping can be obtained
through the same procedures used for indirect damping. It should be noted that the
angular momentum of the rotor (Hr) does not enter into the characteristic equation
(3.97), hence there are less parameters that can be adjusted to meet the required
constraints than for the case of indirect damping. It will be shown that neither of the

two optimization methods will yield any realizable results.
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Optimization with a third order pole on the real axis will be considered
first. The characteristic equation (3.97) must again reduce to the form of equation
(3.17). Therefore:

, DI +1.) fIE o, KD

+30'sz+3o'zs+w =s —151——

Equating coefficients yields:

o3 (3.101)

D(I +1 )
__IE_T__ {3.102)
g
2 K
3o = T (3.103)
z
3 KD
o= T (3.104)
z g
A solution to the above equation is only possible if
1 = 81 {3.105)
g z

Clearly, this is not a practical situation; optimization of this form is not attainable.

Now consider optimization with one real root and a pair of complex
conjugate roots. The characteristic equation (3.97must reduce to the form of
equation (3.72). Therefore:

D(I +1)
3 2 2 2 2_ 3.2 z
+38” (o +Z¢r)s+cun =8  +8 —igz—I;—
) {3.106)
sK KD
to— +
L LY
FEquating like order coefficients yields:
D(I, +1)
3¢ = 1T (3.107)
g 2z
T3
2 2_ K
w +20 = -I;- (3.108)
2 KD
z g
Combining equation (3.107) and (3.109) one obtains
2 3K
(I)n [ -m- (3. 110)

g 'z
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Substituting equation (3.110) into equation (3.108) yields:

K 3K _ 2
r-Tarc% (3.111)
z g z
Since o 2 must be greater than zero,
K o 3K
T (3.112)
z g z
or
>
Ig le (3.113)

As for the case of optimization with a third order pole on the real axis, optimization
with a real pole and a pair of complex conjugate polesrequires the moment of inertia
of the gyroscope to be larger than the moment of inertia of the vehicle itself. This is,

of course,not practical.

In order to obtain some appreciation as to the nature of direct damping,
root-loci of the system will be sketched as a function of the damping coefficient (D),
the spring constant (K) and the moment of inertia of the gyroscope (Ig)° The following

values will be chosen for the parameters:

_ -3 ft.-lbs.
D=2x10"  mape.
K=49.4x 10-6 ft. ~1bs/rad
Iz = 30 slug-ft.2

2
1 = 0.3 slug-ft.

These values correspond to those used for optimization of indirect damping with a

third order pole.
a) Root-locus as a function of damping coefficient (D). (See Fig. 3.17).

For this case the characteristic equation (3.97) can be factored into the

form:

2
(s> +b.)(1 +D(‘_’sz+.°_’) =0 (3.114)
s(s+b)
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where a = IG_T_Z . (3.115)
g 'z
. K
b = - (3.116)
z
. K
¢ = T (3.117)
z g
Substituting the chosen values, the poles and zeros of the expression
asz +c
—— (3.118)
s(s” +b)
become
+ . -3
2 2y = < (1.28 x 10 7) (3.119)
pp=0
(3.120)
. -3
P Py = ¥ (1.29x1077)

It is seen from }ig. 3-17 that very little damping is attainable. When indirect
damping was used, it was possible to obtain considerably more damping for the same
parameters. The reason for this is that in the indirect case, relative motion between
the gyroscope gimbal and the body was produced as a result of gyroscopic precession.
The velocity gain of the gyroscope, the ratio of precession velocity to input velocity,
is available to give a large relative velocity for a small input velocity. With direct
damping however, relative velocity between the gyroscope gimbal and the body is

the same as the input velocity, hence no velocity gain is present.
b) Root-locus as a function of the spring constant (K) (See Fig. 3-18)

For this case the characteristic equation (3.97) can be factored into

the form:
(s> +as?) (1 +5(b—sf—°—)) (3.121)
sz(s +a)
where
D(I_+1)
a = —B 2% (3.122)
Ll
b= (3.123)
z
¢ = 121_ (3.124)

zZ 8
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Substituting the chosen values, the poles and zeros of the expression

(bs + c)
el (3.125)
s (s +a)
become
z = - 667 x 10-3 (3.126)
P Pp=0
(3.127)

py= - 6.74x107

c) Root-locus as a function of the moment of inertia of the gyroscope (Ig)
(See Fig. 3-19).

For this case the characteristic equation (3.97) can be factored into the

form:
(33 + asz + cs) (3.128)
Substituting the chosen values, the poles and zeros of the expression
2 .
(bs_ +d) (3.129)
—_—
s(s +as +c)
become
20 2, = T (.29 1073) (3.130)
p;=0
1 (3.131)

+ . -3
Py» Py = -j(1.28x10 )

Comparing indirect damping with direct damping, it is seen that a much
higher damping coefficient is required to obtain a reasonable settling time for the
directly damped case. In a satellite vehicle employing a single gyroscope, whose
precession axis is along one of the body axes of the satellite, direct damping will
occur on one of the axes whereas indirect damping will occur on another. If the
damping coefficient is chosen to provide adequate damping for the directly damped
axis, the damping on the indirectly damped axis will be well beyond the optimum
point, hence poor settling time about that axis will be obtained. This suggests that
either the gyroscope precession axis be offset from the body axes or several gyro-
scopes be empioyed so that indirect damping can be provided about each of the axes

to be controlled.
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In order to analyze the dynamics of a satellite containing internally
mounted gyroscopes, it will be first necessary to analyze the dynamics of a
gyroscope mounted, in an arbitrary position, within an orbiting vehicle. This will

be accomplished in Chapter 1IV.

Im

Lo.n.z«:-mo's

J41.28x10 >

-.033x10°>

-J1.28 uo"”\_a(

-J1. 26x10°

Fig. 3-19 Root Locus as a Function of the Moment of Inertia of the Gyroscope for
Direct Damping



67

CHAPTER IV - GYROSCOPE DYNAMICS

It was noted in the examples at the end of Chapter II that an orbiting
vehicle would, at best, have only an oscillatory free response. Any practical .- hicle
must, of course, have damping which reduces disturbance oscillations in a reasonable
period of time. Since a conventional form of damping, atmospheric drag, present
in vehicles which travel in the atmosphere, is not available, some other means of
damping must be provided. It was noted in Chapter III that a gyroscope with a
damping fluid constraint may be used to provide this damping. In this chapter the
equations of motion of a gyroscope mounted within an orbiting vehicle will be developed
for an arbitrary orientation of the precession and spin axes relative to the coordinate

system of the vehicle. From this general derivation special cases will be cited.

A) The Gyroscope Equations for Symmetrical Design

The equations of motion of a gyroscope are developed in Appendix B of

this report. They are repeated here for convenience.

T =I w +{I -1 Jw -H w (B-9)
8 Xg B %y Yo B & T g
g g g g g
Ty, = ﬁr +1 t:>g HI -1 e w. (B.10)
i j i By
g ‘ g Jg g g lg ¢
T =1 o +(I -I Jo +H B. 1l
8 24 ( Vg xg) ng r wgi ( )
g g g g g
where Xg. Yg' Zg are the principal axes of the gyroscope (see Fig. B:l)
Tg ’ Tg ’ Tg are the components of torque on the gyroscope along
1g jg kg the X, Y, and Z axes of the gyroscope respectively
Ix , Iy ) Iz are the polar moments of inertia of the gvros «ape along the
g g B X, Y and Z axes of the gyroscope

w oW w_ are the com)gonents of the angular velocity vl the gimbal
B, 8, & alongthe X, Y and Z axes of the gyroscope with respect to

Jg g inertial space

Hr is the angular momentum of the rotor

These equations are simi’ar to Euler's equations of motion except that the
angular momentum of the gyroscope rotor introduces some additional terms The
angular momentum of the rotor will normally be held constant through the -e of an
appropriate speed control system. Therefore I:lr can be taken to be zero. The
equations reduce to a particularly simple form if symmetrical design of the gyroscope

is assumed. (Ix = IY = Iz = Ig)- In order to facilitate the analysis, symmetrically
g g g
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designed gyroscopes will be used throughout this report. It is anticipated that this
restriction will not cause a significant loss in generality. Making the appropriate
substitutions, equations (B.9), (B.10) and (B.1ll) become

T =14 -H 4.1
g; g B rog (4-1)
g g [4
T =1 (4.2)
g g
T =1 & +H 4.3
8y g By rog; ( )
g g g

It is further assumed that the body, to which the gyroscope is affixed, is reasonably
aligned with the reference coordinate system so that the equations developed for

small angular deviations in Chapter II can be applied.

B) The Transformation Matrix Relating Body and Gyroscope Coodinates

In the derivation to follow in Section C,the gyroscope will be assumed
mounted at an arbitrary position within the vehicle. The coordinate system of the
gyroscope will be denoted by ig' jg and kg where i is along the precession axis
of the gyroscope, j_ 1is along the angular momentum of the rotor and k_ is chosen
to form a right handed coordinate system. (See Fig. B-1). The gyroscope coordinate
axes can be related to the body coordinate axes through an appropriate array of
Eulerian angles. This procedure is similar to that used in Chapter II, (Section C),
where a transformation matrix, relating the body coordinate axes to the reference
coordinate axes was obtained. Though the transformation matrix, (2.3) can be
applied to the present situation, it will not represent an intelligent choice. It is
advantageous to choose the set of Eulerian angles so that the location of the precession
axis fixes two of the Eulerian angles, and precession of the gyroscope causes only the
third Eulerian angle to vary. Examination of equation (2. 3) reveals that if the trans-
formation matrix, developed to relate the body coordinate axes to the reference coor-
dinate axes, is used to relate the gyroscope coordinate axes to the body coordinate
axes, precession of the gyroscope will in general cause all three Eulerian angles to
change. Precession of the gyroscope represents a rotation about the i_ axis of the
gyroscope; it would therefore be wise to perform this rotation last. The Eulerian
angles that will be used will be denoted by ¢y, ¢, and b - These angles are defined
by successive rotations of the gyroscope axes in the order ¢Y, cbz, ‘bx which rotate
the gyroscope axes from coincidence with the body axes into its actual position. (See
Fig. 4-1). These angles will b'e taken as positive when the sense of rotation is

equivalent to that of a right handed screw advancing in the direction of the axis of
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Fig. 4-1 Transformation Matrix Relating Gyroscope and Body Axes
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rotation. Fig. 4-1 shows the three successive rotations and their corresponding
transformation matrices. The overall transformation matrix relating the components
of a vector in body coordinates to the components of the same vector in gyroscope

coordinates is given by

1J<g jb 4.4
kg | = A k, (4-4)
1 ib
where
A= (A)(A) (Ay) (4.5)
and
. (4.6
cos o cos ¢z cos ¢x sin ¢y sin ¢z - cos ¢x cos ¢y 8in ¢i
+ sin ¢x cos ¢y + sin 4>x sin ¢Y
A - sin ¢ _cos ¢, - sin ¢_ sin ¢Y sin ¢, sin ¢, cos ‘y sin ¢,
+ cos ¢x cos ¢Y + cos cbx sin tby
sin ¢z - 8in (by cos ¢z cos cby cos d’z

As for the transformation matrix relating the body and reference coordinates, matrix
multiplication is not commutative and must be performed in the order indicated. This
again signifies that the order in which the rotations are performed is of utmost
importance. It should be noted that the first two rotations, through the angles cby
and ¢z , determine the location of the precession axis of the gyroscope. Precession

of the gyroscope, merely changes the remaining Eulerian angle ¢x .

C) The General Gyroscope Equations

The angular velocity of the gyroscope with respect to inertial space is the

vector sum of the angular velocity of the gyroscope with respect to the body and the

angular velocity of the body with respect to inertial space.
ial = tial
o5/ = ©uf vosy * “voay/'BpEE (4.7
The anguar velocity of the body with respect to inertial space, in terms of body
coordinates, is given as
(4.8)

Op/1 = “p Bty Gyt Ky
i, - J k
b b b
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where

wbi = CX+(;Z szy (4.9)
b

w., = 6 +9 4.10
b, y Yy (4-10)
b

wbk = (,Z- 0x Qy (4.11)
b

These equations were obtained from equations {2,14), (2.15) and (2.16) by setting
Qx = Qz = 0. Using the vector transformation matrix, derived in the previous section,
(equation 4.6), one can express the components of the angular velocity of the body

with respect to inertial space in terms of gyroscope coordinates. The resulting
equation then becomes

= i tow .] .
ofy T et T w2
£ g g

where

= sin¢_ (éy +Q) - sin ¢ cos b, (8, - Oy a,)

©y, (4.13)
g
4 cos ¢Y cos &, (6, + 6, Qy)
wbj = cos ¢x cos daz (G‘y +Qy) + (cos d)x sin ¢Y sin d)z (4.14)
B  4sin b, cos d:'y) (0z - € Qy) + (- cos b cos d)y sin ¢,
i i [+ € Q
+sin d’x sin ¢y) ((x (z y)
wbk = - sin ¢.x cos ¢z (éy +Qy) + (cos ¢x cos rby (4.15)
g - sin ‘bx sin ¢y sin cbz) (COz - Gx Qy) + (cos d)x sin ¢y

+sin ¢ cos d)y sin d)z) (o + Gz Qy)

Since the gyroscope is constrained to rotate, relative to the vehicle, about its pre-
cession axis (ig) , the angular velocity of the gyroscope gimbal with respect to the

body can be expressed as

wg/b = o iy (4.16)
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Therefore, from equation (4.7), the angular velocity of the gyroscope gimbal with
respect to inertial space is given by

w _[inertial = « i 4w i tw k (4.17)
g/ space gi g gj g gk g
g g g
where
wg = wb. +¢x (4-18)
i i
g g
ng = ubj . (4.19)
g g
W = (4. 20)
Bk By
g g

Differentiating the components of equation (4.17) with respect to time, yields the
components of the angular acceleration of the gyroscope gimbal with respect to
inertial space in terms of gyroscope coordinates. It should be noted that the location
of the precession axis is fixed for a given gyroscope orientation, therefore ¢ and
d’z are fixed constants and the only Eulerian angle that will vary in time is cbx

(This angle will vary as the gyroscope precesses).

¢ o . o (4 .
wgi = sin ¢z (OY +9y) - 8in ¢Y cos ¢z (6z - ex Qy - €x Qy)

g v e - (4.21)
+ cos ¢ycos ‘bz (Ox + Oz Qy + (-)z Qy) + dax

Gy = -b sing cos (éy +9.) +cos ¢, cos ¢z(é'y+dy)
+(- %, sing sing sing, +h cos o cos 4 G- ) (4.22)
+(cos ¢, sin ¢ _sin +sin4 cos ¢ )(8,-0.0 - a)

+ (b, sin &, cos ¢_sin g, +4, cos ¢ sin 6 O+ ¢ D)

+ (- cos ¢ cos rby sin d;z + sin ¢x sin ¢y)(0x+ Gzﬂy-ﬂv ozﬂy)

= -¢ cos ¢ cos (9y +ﬂy) - sin ¢_cos ¢, (9y +.Qy)
g +(- &x sin ¢_ cos ¢y - J’x cos ¢x sin ¢Y sin ¢z)(9z- Ox ﬂy)

+ (cos ¢x cos ¢Y - sin d’x sin d’y sin ¢z)(5z- ex ﬁy - éx Qy)“_ 23)

+(- é»x sin ¢_ sin ¢y + J’x cos ¢_ cos ¢Y sin ¢_)(6, + €, Qy)

4+ (cos L sin ¢Y 4+ sin ¢x cos ¢y sin ¢z) (Ox + 6z ﬂy + Gz Qy)
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Substituting equations (4.18), (4.19), (4.20), (4.21), (4.22) and (4.23) into equations
(4.1), (4.2), and (4.3) yields for the components of torque on the gyroscope gimbal
along the gyroscope axes

o . o : . 4.24
Ty =1 [sin¢ (6 +8) - sing cos §, (6, - € % -6 a) (4.24)

g +cos¢ coscb(e +6 Qy+0 Q)+<b]
+H {smcb ccs¢ (6 +Q)-(cos¢ cos¢ -sm¢ sm¢ szn(b)

(ez - ex Qy) - (cos ¢x sin (by + 8in ¢x cos ¢y sin ¢z)(Elx+£zQy)]

= I [- 4'>x sin ¢ _cos ¢z‘éy+ny)+°°s b, cos ¢, (b'yﬂiy) (4.25)
€ 4(-¢ sins sin ¢ sin ¢, +é cos ¢_ cos¢)(6-0 2.)
+{cos ¢ sing sing +sins cos¢)(9 -9 ny-e 2)
+(¢ sin ¢_cos ¢_sin ¢, +¢_cos é_ 81n¢)(0 +6,0.)
4 (- cos ¢_ cos ¢, sin ¢, +sin ¢_sin "’y)(°x+°z Qy+ez ny)]
Ty = L [-d con g cos ¢_ (e #9) - sin g cos §,(T +4) (*-26)
g8 - (6 sing cos ¢ +¢ cos ¢ sin ¢ sm¢)(c-o 2)
+(cos ¢_ cos ¢y - sin ¢, sin ¢ sm¢)(6 eny-e 2)
+(-¢ xsmd) sin ¢, +é cos ¢, cos ¢ sm¢)(e+esz)
*(cos o sing +sing cos ¢_sin 4, )(e +6 9y+n Q )]
+H ‘[sm¢ (0 +R.) - sin o cos §, (6 -6 9,
+cos ¢ cos ¢, (e +0 n)+¢]
It is now necessary to express the component : of torque on the gyroscope

gimbal in terms of the body coordinate axes. This is accomplished by utilizing the
inverse transformation of equation (4. 6)
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cos ¢x cos ¢z - sin ¢x cos ¢z sin ‘bz
cos b sin ¢y sin ¢z - 8in ¢x sin ¢Y sin ¢z - sin ¢Y cos ¢z
1 + 8in ¢x cos ¢y 4+ cos ¢x cos ¢y
A =
~ cos ‘bx cos ¢y sin ¢z sin d’x cos ¢y sin ¢z cos (by cos ¢z
+ sin ¢x 8in ¢y + cos cbx sin ¢Y
(4.27)
Utilizing the inverse matrix,
T T
g; Gj
b g
T T
g - g
ky | = | A7t kg (4.28)
T T
&, &

expanding and performing algebraic simplifications, one obtains for the components

of torque on the gyroscope gimbal along the body coordinate axes

T =1[-$sin¢ cos b (6 +Q2)+(6 +6 @ +6 ) (4. em
g x y z'y Yy x z'y z'y

+( cos ¢y cos d)z d;x) - .;bx sin ¢z (éz - Bx Qy)]
+ Hr [(sin ¢x cos ¢Y + cos ¢x sin ¢y sin ¢z)(éy +Qy)
- cos ¢x cos ¢z (éz - Gx Qy) + {cos ¢x sin ¢Y +

sin ¢x cos ¢y sin ¢z) &x]

'rgj = Ig',[('dy + s"zy) +sing & +é_cos b cos &, (6, - 0 2,) (4.30)
b 4§ sing cong, (b 4o, ny)] +H_[ (sin ¢_sin 8
- cos ¢x cos ¢y sin ¢z)(ez - ex Qy) - (sin ¢x cos ¢y

+ cos '¢x sin ¢y 8in ¢z)(éx + 9z Qy) - d;x sin ¢x cos dvz)]
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. (4. 31)

T =1[-{5 cos b cosd (C +Q)+(0 -0 0 -( Q)
B, g x y 20y Uy 2T x Ty x Ty

-sind cos & rb +<‘> sind_ (( +( Q)]

Ay zZ X x Y 'x z'y
+ Hr [cos (bx cos :bz ((.x + OZ Qy) + (cos cbx cos ¢y
- sin 6 sin d)y sin <hz) ¢x + (- sin b, sin ¢

+ cos é’x cos (by sin :bz)(cy + Qy)]

The equacion of constraint relating the gyroscope precession angle (<bx)
to the body angular deviations (ex, Ey and 07) can be obtained from the fact that the

component of torque on the gyroscope gimbal along the X axis of the gyroscope is
given by

Tgi = -D d>x + Tc (4.32)

g

where D represents the damping coefficient

Tc represents a control torque applied to the gyroscope.

Equating the right side of equation (4. 32) to the component of torque on the gyroscope

along the ig direction (equation 4.24) yields for the equation of constraint

_ ; - . H : . (4. 33)
D d»x + TC Ig [sm d)z (()y +Qy) - sin d)y cos :bz

(- s‘zy - & Q) +cos & _cos &, (€ + , s‘zy G )+ ;x ]
+ Hr [sin (bx cos daz (éy +Qy) - (cos (bx cos d»y - sin d»x

sin cby sin daz)((..z - (;x Qy) - {cos d)x sin day + 8in ¢x cos d)y

sin & ) ((_+ ¢ Qy)]

Equations (4.29), (4.30), {4.31) and (4. 33) are completely general. For
appropriate values of & and & the equations for any desired orientation of the
precession axis can be obtained. In Section D, the equations for several different

gyroscope configurations will be tabulatedsthough by no means will this list be
exhaustive.

D) The Gyroscope Equations for Particular Configurations
Although the gyroscope equations (4.29), (4.30), (4.31) and (4.33) are
completely generalsit will be convenient to reduce the gyroscope equations for some-

what more restrictive configurations. Several of the more important configurations
arc listed below.
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1) The gyroscope precession axis is located in the Xb Y, plane. (see Fig. 4-2)

For this configuration, ¢ = 0° and the location of the Precession axis

is determined by ¢z . ¢x » of course, determines the location of the spin axis.

Setting ¢ = 0%in equations (4.29), (4.30) and (4. 31) yields the equations for the

components of torque on the gyroscope when the precession axis is located arbitrarily
in the Xb Yb plane

-
n

, . . D - (4. 34
Ig[ex+ezny+ezny+cos ¢, b - b sing (6, exny)] )
b +H_ [sin ¢x(ey+ny) - cos ¢_cos ¢_(6 - exny)

+ sin ¢’x sin ¢z &ax ]

!
"

Yo s P+ 5 4.35

L [ey +Q +sind, b +é, cos b, (6, - 6, ny)] ( )
. - - : e

+H, [- cos ¢ 8in (bz(cz E)x Qy) s ¢x (ex + z QY)

- tj')x sin ¢x cos ¢z ]

(4. 36)

H
it

-4 6 +Q)+6 -6 0 -6 0
81 g [- b con 6, (0 40 40 -0 0 xy
+¢sin ¢ (6_+6, Qy)] +H_ [cos b co8 b, (6, +€ Q)

+ cos ¢x d”x + cos ¢x sin cbz (BY +Qy)]

Setting ¢y = 0° in equation (4. 33) yields the equation of constraint.

) - .o é M 4- 37)
D¢ +T, IgL51n¢z(y+Qy) (
. ( * * N
toos ¢ (6 40 Q +6 9)+ ¢x]
: : - 6 -0
+ Hr [s1n ¢x cos ¢z (Gy + Qy) cos d)x { 2 o Qy)

- sin L sin ¢z (éx + Oz Qy)]
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Fig. 4-2 Gyroscope precession axis in the Xb Yb plane
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Fig. 4-3 Gyroscope precession axis in the Xb Zb plane
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2) The gyroscope precession axis is located in the Xb Zb plane. (see Fig.4+#3)

For this configuration d’z = 0o and the location of the precession axis is
determined by ¢y - Setting ¢z = 0% in equations (4.29), (4.30) and (4. 31) yields

the equations for the components of torque on the gyroscope when the precession axis
is located arbitrarily in the Xy Zb plane.

Tgib = Ig[ - fbx sin ¢ (8 +$fy) t8 v a4 (.zz 9 +cos 4 ¢x] (4. 38)
+ Hr l in ¢x cos (by (Gy +Qy) - cos & (Cz - Bx Qy) + cos ¢x sind)yfbx]
T =19+n+ cos e-en +é_sing (€ +6 9
gjb g [ Y ¢ ¢Y ( x Y) d, ¢ z Y)](4’ 39)
+ Hr [sm (b sin ¢ ( - ex Qy) - sin ¢x cos ¢y (6x+ Bzﬂy)
- ¢x sin ¢x ]
¢ . N (4. 40)
T = cos 9+$2 +9-69-69-s o
5 " [- o cos e (6 +a) y y - sin o b |
b +H[cos¢ (9 +9 9)+cos¢ cos¢ ¢ -smo sind (6+Q)]
Setting d’z = 0% in equation (4.33) yields the equation of constraint

'D$X+Tc=Ig&:sind’y(ﬁz-exﬁy-éxny) @ a1
+cos & (é'x'+ 6,0 +6,0)+ o] +H, [sin 6, (éy +42)
- cos é_cos ¢‘$éz - ex Qy) - cos ¢x sin ¢Y (éx +e Qy)]
3) The gyroscope precession axis is located in the Yb zb plane. (See Fig. 4-+4)
For this configuration ¢ = 90° and the location of the precession axis
is determined by ¢ Setting 4) = 90° in equations (4.29), (4.30) and (4. 31) yields

the equations for the components of torque on the gyroscope when the precession axis

is located arbitrarily in the Yb b plane.

e Q e, Q +6 a d gmz)

= 9 - (‘ Q

'rgi L [ ¢ cos & (6 + )+ +e,n +6, ¢ sin ¢ Y)}
b +H [coacb sm¢ (9 +Q)-coa¢ cos¢ (0 -0 Q)+cos¢x;b;‘]

ng = Is[ 6, +0 siné & + &x cos ¢ (6 +6, ny)]+ Hr[sin o l0,-¢ )

-cos ¢ sing (8 +6 a) - é,x sin ¢_ cos ¢z] (4.43)
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Fig. 4-4 Gyroscope precession axis in the Yb Zb plane
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Fig. 4-5 Gyroscope precession axis along the Xp axis
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_ o N L4 o . . . ’ (4- 44)
Ty [ez -0, -89 -coso b +é sing (B +6 ny)]
b

+ Hr [cos d’x cos tbz (éx + ez Qy) - sin b, sin b, n§>x-sind>x(‘9y +Qy)]f

‘Setting ¢y = 90° in equation (4.33) yields the equation of constraint.
. “ . " ., (4.45)
- = i - - Q -
Dé +T =1 [sm 4, (6, +9) -cos ¢ (6, -0.9 -6 0)
", . . . - M
+ ¢x] +H_ [sm b cos d, (6 +Q ) +sin¢ sing (6, -0 0)
- cos ¢, (8 +6 ny)]
4) The gyroscope precession axis is located along Xpe (See Fig. 445)

Although the set of equations for this configuration can be obtained from
the general equations (4.29), (4.30) and (4. 31) by setting ¢y = ¢z = 09 they can also
be obtained as a special case of (1) by sdtting $, = ®Psince, in that case. ¢y was

already taken to be zero. At any rate, the resulting equations are

_ e . . . . , (4. 46)
'rgLD =1 [ex +6,0 +6 0 +¢XJ +H_ [ cos & (6, -8 )
+ si 6 +9)
sin ¢, (6 +2)
(4. 47)
= >0 [ . I d _ R . . 9 L] h
. ng Ig[ey +ny +é (6 ex"y)] H_ [sm o (6 + 2 +¢x)]
b

, H{ (4. 48)
Tgkb = Ig [- b, (eY +ny) +9 - 9x ny - exny]+ '+ [-cos o (8 + ezny+ ¢x)1
Setting ¢_= ¢, = 0° in equation (4. 33) or setting ¢, = 0° in equation (4.37) , yields

z
the equation of constraint.

o ) i .. .
Dé +T, ru[‘+ezszy+ezny+¢x]

+H_ [sin ¢ (&, + 2.) - cos ¢ (6, -0 "y)]

(1. 49)

5) The precession axis of the gyroscope is along the Y, axis. (See Fig. 4-6)

As in (4), the set of equations for this configuration can be obtained by

setting ¢y = 0° and ¢z = 90° in the general equations (4.29), (4.30), and (4. 31) or
as a special case of (1) by setting $, = 90°. Either way, the resulting equations

are (4.50)
Tgib = Igf So+0,n 48 0 -4 (5, -0 a)+H [sin¢x(9y+ o, +4,)]
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{ o0 I3 o I .
T =1 [ +Q_+ -H 6 -6 0
g. glvy' 'y ¢X] r[°°s Oy (6, - B 1y) 4.51
Jp . . (4.51)
+sing (6 +0 ny)]
X3 * . I" . E
Tgk = Ig[ 6,08 -6.a +e (B 40 ny)] (4.52)
b

+ Hr [cos ¢x (é’x + éy +Qy)]

Setting ¢y = 0° and ¢z = 90° in equation (4.33) or setting ¢, = 90 °in equation

(4. 37) yields the equation of constraint.
-D¢X+TC=Ig[0y+ﬂy+¢x] ' (4.53)
- H [cos o (6 - Q) +sin o, (6, +0, Qy)]

6) The gyroscope precession axis is along the Zb axis. (See Fig. 4-7)
The set of equations for this configuration can be obtained from the
general equations (4.29), (4.30) and (4.31) by setting cby = - 90° and ¢, = ¢,
or as a special case of (2) by setting ¢y -90° since ¢z is already zero. Atany

rate, the resulting equations are

Tgib = Ig[&,x (éy +Qy) + ex + ez ﬂy + ez Qy] (4.54)
- Hr[ cos ¢, (éz -8 Qy + ;bx)]
ngb = Ig [Oy + Qy - (i)x((g;l-ezlﬂy)]- Hr Ein ¢x (Oz - ex Qy + ¢x)J (4.55)

T = Igﬂ 6,- 0.8 - e’f a +¢x—] +H_ [._;os 4, (6,40, 5) (4:56)

gkb .
+sin ¢ (6 +Qy)i]

Setting ¢y =
(4.41) yields the rquation of constraint.

-90° and ¢z = 0° in equation (4. 33) or setting 4>Y = -90° in equation

69+$;,
-~

-D¢X+Tc=1gl[ez-exny- 9y (4.57)

+H_ [sin b, (éy H_?}_’) tcos ¢ (6 +6, ny)]

With the equations for a gyroscope and the equations developed in
Chapter II for a rigid body, it is now possible to obtain the equations of motion for
a vehicle containing any configuration of gyroscopes. In order to intelligently choose
a configuration, it is necessary to first consider the nature of the steady state

response. This is the subject matter of Chapter V .
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CHAPTER V - STEADY STATE REQUIREMENTS FOR AN ORBITING VEHICLE

Consider a vehicle in orbit of the earth that contains internally mounted
gyroscopes for damping purposes. If no disturbance torques are applied, steady
state wiil eventually be attained. If the vehicle's orbit is circular, and the gyroscope
configuration is chosen such that the resultant torque exerted by.' the gyroscopes on
the body at steady state is zero, the body coordinate system will become aligned with
the reference coordinate system; the body will then have an angular velocity of Qy jb .
If the orbit is elliptical, and the gyroscope configuration is chosen such that no resul-
tant torque is exerted on the body at steady state, ex, Bz and their derivatives will
vanish but Gy and its derivatives will not vanish. This is because an elliptical orbit
requires the vehicle to have a variable angular acceleration. Since the restoring
torques are produced through the mechanism of differential gravity and gyro=copic
cross-coupling of the vehicle's orbital rate, it is necessary that an angular deviation
appear about the Yb axis. It should be noted that a vehicle in an elliptical orbit can
never attain complete alignment with the reference coordinate system. If a less
restrictive gyroscope configuration is employed, the gyroscopes will, at steady state,
exert a torque on the vehicle. In order to counter this torque, steady state will be
reached with the body axes offset from the reference coordinate system, so that
counterbalancing differential gravity and gyroscopic cross coupling torques are
produced. Therefore, in steady state, the best that can be expected is that

/

9x=9x= ez=ez=0 (5.1)

6, %0 eyfo 6, 40 ey#o ey#o (5.2)

Even though, for an arbitrary gyroscope configuration, an offset will occur from the
reference coordinate system, the offset can be determined in advance, permitting
the orientation of data gathering -equipment to be adjusted to compensate for the
angular error. It is therefore anticipated that permitting the vehicle to have a small
offset from the reference coordinate system will not produce any serious problems.
At steady state, it is also necessary for all of the gyroscopes in the configuration to
be at rest with respect to the body; that is, the angular velocity and acceleration of

each gyroscope gimbal with respect to the body be zero. Therefore,

$,= 6 =0 (5. 3)

for each gyroscope in the configuration at steady state. The desired orientation of
each gyroscope at steady state will, of course, depend on the vehicle design. The
question immediately arises as to the nature of the torque that must be supplied to

each gyroscope to maintain it at rest in its desired orientation at steady state, and
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_ how this torque will be supplied.

A) The General Steady State Torque Equations
When a gyroscope is mounted within an orbiting vehicle, it is subjected to

an angular velocity and acceleration due to the vehicle's orbital rate. If the gyro-
scope is at rest with respect to the body, the angular velocity and acceleration of the
gyroscope gimbal with respect to inertial space, is the same as the angular velocity
and acceleration of the body with respect to inertial space. For a vehicle with an
arbitrary gyroscope configuration at steady state in an elliptical orbit, the angular
velocity and acceleration of the body with respect to inertial space can be obtained

from equations (2.14) through (2.19) by setting

ex=ex=ez= z=('2x=ﬂz=0 (5. 4)

= =6 Q i + 9 +2 )5 -6 Q k(5.5
wb/l.s. wg/I.S. 2 Ty o+ (& +8) Gy - 0,9 kg, (5:5)
. . . . I

wb/l.s.= wg/LS. =0 QY i+ (0y +ﬂy) Jy - 8, S'Zy ky {5.6)

The components of the torque on the gyroscope, necessary to produce this angular
velocity and acceleration at steady state, can be obtained along the gyroscope axes
from equations (4.24), (4.25) (4.26) and along the body axes from equations (4.29),
(4. 30), (4. 31) by setting

é:é“ré: =0 (5.7)

The required components oftarque on the gyroscope along the gyroscope axes are
(X [ e

T =1 i 0 +Q )+ si 0 N 5.8

. g [sm ¢z ( v Y) sin ¢y cos cbz e My ( )

+ (cos ¢y cos ¢.z Gz Qy] + Hr l[sm b, cos b (BY + ﬂy),

+ (cos d’x cos (by - 8in b, si.n_ ¢y sin ¢z) Gx Qy - {cos ¢, sin ¢Y

+ sin ¢, cos ¢y sin ¢ ) 6, Qy]‘

ng = Ig [cos ¢x cos ¢z (b.)r.+ ﬁy) - (cos ¢x sin ¢y sin ¢z (5.9)
g + sin ¢x cos ¢y) Gx Qy - (cos ¢x cos (by sin ¢z
- sin ¢, sin g ) O, hy]
Tgk = Ig [- sin $, cos ¢z (6y +ﬂ¥) - (cos ¢, cos ¢y (5.10)
€ . sin b, 8in ¢ _sin ¢ ) 0 B +(cos ¢ sin

+ sin ¢x cos ¢Y sin ¢z) ez Qy +H_ [sin 4;% (Oy-l- QY) 7
+ sin ¢y co8 &, O Qy + cos ¢Y cos ¢, 6, Qy]
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and along the body axes are

Tgib = IS 'ez éy +H [(sin ¢, cos ¢y +cos ¢_sin ¢Y ein ¢ ) (5-11)
(9Y +ﬂy) + cos cbx cos & ex 0})]
ngb = Ig (OY +Qy) +H_ [(cos d)x cos ¢y sin ¢, (5.12)

- sin oy sin ¢v) Gx ﬂy - (sin ¢x cos ¢Y +cos ¢ sin ¢y

sin ¢, ) 6, Qy]

Tgk = . Ig Ox Qy +H [cos $ cos ¢, 6 ny + (cos ¢, cos ¢y sin ¢ (5.13)
- sin ¢_sin ¢_)6_ +Q )]
- ¢, sin & NO. .Y)]
B) Specialization for several restrictive cases.
It is advantageous to specialize these equations for somewhat more restric-

tive conditions.

1) Consider a satellite in an elliptical orbit with a gyroscope configuration
chosen such that the components of the resultant torque exerted by the gyroscopes on
the body along the Xb and Zb axes are zero. In steady state, the components of
torque on each gyroscope in the configuration can be obtained along the gyroscope
axes from equations (5.8), (5.9), (5.10) and along the body axes from equations
(5.11), (5.12), (5.13) by setting

6. =96 =0 (5.14)
The required components of torque on the gyroscope along the gyroscope axes are

Tgi = Ig sin ¢z (0y +ﬂy) + Hr sin ¢x cos ¢z (9y +Qy) (5.15)

4
ng = Ig cos ¢x cos ¢z (BY +ﬂy) (5.16)
g
Tgk = -1 sing cosd, (8 +0)+H sing, (éy+ny) (5.17)
g
and along the body axes are , (5.18)
Tgib = Hr (sin ¢, cos ¢y +cos ¢ sin ¢y 8in 4»2)(9y + ﬂy)
T =1 (6 +4 5.19
5, 8 6y +84) (5-19)
T = Hr (cos $, cos ¢Y sin ¢z - 8in ¢x sin¢y)(6y+ﬂy) {5.20)

%
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2) Consider a satellite in a circular orbit with a completely arbitrary gyroscope
configuration employed. In steady state a resultant torque will, in general, be
exerted on the body by the gyroscopes. Therefore, ex. Oy and ez will, in general
not be zero. In steady state, the components of torque on each gyroscope in the
configuration can be obtained along the gyroscope axes from equations (5.8), (5.9)
(5.10) and along the body axes from equations (5.11), (5.12), {5.13) by setting

8 =206 =0 =0 (5.21)
Yoy y

The components of the torque on the gyroscope required along the gyroscope axes are

Tgi = Hr[sm , cos ¢z ﬂy + (cos é, cos ¢y - 8in ¢ _sin ¢Y sin (bz) 0 ﬂy
- {cos d’x sin ¢y +8in ¢x cos ¢Y 8in ¢z) ez Qy]’ (5.22)
T =0 5.23
g ( )
g
Tgk = H_ [sm ¢y cos ¢ 6 ny + cos ¢y cos ¢, 6, Qy +sin ¢, Qy] (5.24)
g !

and along the body axes are

Tgib =H_ [(sin ¢, cos ¢y +cos ¢ sin ¢y sin ¢ ) Qy (5. 25)
tcos ¢ cos ¢ o, ﬂy]
T, =H, [(cos 4, cos & sin ¢, - sino, sin¢ )6, Q.
b | (5.26)
- (sin ¢_cos ¢y +cos ¢_sin ¢y sin ¢ ) 6, Qy}
Tgk = Hr [cos ¢’x cos 4)2 ez ﬂy + (cos rbx cos ¢y 8in ¢,
b (5.27)

- sin ¢x sin ¢y) ﬂy]

3) Consider a satellite in a circular orbit with a gyroscope configuration chosen
such that no resultant torque is exerted by the gyroscopes on the body at steady state.
The equations for this case can be obtained from the general equations (5.8) through
(5. 13) by setting

8 =8 =6 =0 =6 =0 =0 (5. 28)
x 'y z 'y 'y 'y
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The required components of the torque on the gyroscope along the gyroscope axes are

Tgi = H sin¢ cos ¢, ﬂy (5.29)
g

T =0 5.30

g ( )
g

T = H si Q 5.31

g , 8in ¢z y ( )
g

and along the body axes are

'1‘gi = Hr (sin ¢x cos ¢y + cos ¢x sin ¢Y sin ¢z) S'Zy (5. 32)
b

T =0 .33

. (5.33)
b

Tgkb = H_ (cos ¢ _cos ¢y sin ¢_ - sin ¢ _sin ¢y) Qy (5. 34)

For a circular orbit, and steady state, an equivalent form for the torque

on each gyroscope in a configuration, is, of course, given by

Ty = @y x H, (5. 35)

The resultant torque on all the gyroscopes for a circular orbit at steady state, is
therefore given by

Z(ny}{r):nyZHr (5. 36)

The resultant torque on the body is the negative of the resultant torque on the gyro -
scopes. Therefore, at steady state, the resultant mrque on the body will be zero,
when either Z H = 0 (the Hrvectars form a closed polygon) or the Z Hr 18 along

Q
M

At steady state, it is necessary for the required to que, predicted by the
equations, to be present on each of the gyroscopes of the configuration. Since none
of the gyroscopes are constrained about their precession axes, it will be necessary
to utilize a gyroscope torquer to furnish the ig component of the torque for each
gyroscope for which this component is not zero. For a circular orbit, the required

torque will be a constant. For an elliptical ,rbit, it will be necessary to supply a time
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varying torque which will undoubtedly require the use of programmed digital equip-
ment. It would be interesting to consider what would happen if gyroscope torquers-
are not utilized. For a circular orbit, the precession angle of each gyroscope in
the configuration, and the body angular deviations, will adjust themselves so thai the
resultant torque on the body will be zero. If desired, the values of the precession
angles and body deviation angles can be obtained by first setting equation (5.22) equal
to zero to obtain a relation between the precession angle and the body deviation angles,
and then equating the negative of the resultant torque applied to the gyroscopes (the
resultant torque is obtained by summing equations (5.25), (5.26), (5.27) for each
gyroscope in the configuration ) to the torque on the body, equations (2.52), (2.54),

(2.56) after setting all the derivatives equal to zero.

YT =-( -1 )46 9?f (5.37)
g Zp, Yp XY
b

-5T, =30 -1 )6 9?f (5. 38)
gjb Xp b Y Y

YT = (L -1 )0 a? (5. 39)
gkb Yb X 2zY

If the orbit is elliptical, the gyroscope will never reach a state of rest with respect
to the body. Therefore, energy will be constantly dissipated due to gyroscope

damping. The only sources of this energy are the kinetic and potential energy of the
satellite. Invariably, as time progresses, the orbital parameters will therefore be

altered. .
C) Choice of a Gyroscope Configuration

Consider briefly the problem of choosing a gyroscope configuration for a

vehicle in a circular orbit. The configuration must, of course, be chosen to provide
damping about all vehicle axes. (This aspect of the problem will be considered in
detail in Chapter VI.) If possible, the gyroscope configuration should be chosen so
that no resultant torque is exerted on the body due to the gyroscopes at steady state.
If this cannot be achieved, it will be necessary to determine the steady state offset
angles from equations (5.37), (5.38), and (5.39). (The precession angle of each
gyroscope is specified by the configuration.) The torque which the torquer must
supply to each gyroscope, is given by the ig component of the torque on the
gyroscope.

Torquer = 'rgi (5. 40)

8
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It is also necessary for each gyroscope in a configuration to be in a state of stable
equilibrium. The nature of the equilibrium can be easily established ior cach
gyroscope by substituting the value of ¢x specified by the design into the derivative
of equation (5.22) with respect to ¢x .

(s 41)
. H_ [cos ¢, cos b ny - (sin ¢, cos ¢Y tcos ¢_sin ¢, sin ¢z)exrzy
g -
- (cos b, cos d)y sing - sin 6 _sin d>y) 6 n ]

z'y

If equation (5.41) is positive, a state of stable equilibrium exists. If equation (5.41)
is negative, a state of unstable equilibrium exists. The explanation for this test is
as follows: Equation (5-41) is the derivative of the torque required to maintain the
gyroscope at any specified position at steady state. If the derivative is positive, at
the specifiéd position, a positive angular displacement of the gyroscope will require
a larger torque than is being supplied to maintain the new position. A negative
angular displacement will require a smaller torque than is being supplied to maintain
the displacement. Hence,in either case, a resultant torque will be establiched such
that the gyroscope will return to its original position. If the derivative .s negative,
a positive angular displa: rment will require a smaller torque than is being supplied,
and a negative angular displacement will require a larger torque than is being
supplied. In either case, the resultant torque will be established such that the

gyroscope will continue to move in the direction displaced.

In order to obtain a better understanding of the principles involved, an
example will be considered. Consider the configuration shown in Fig 4-% where a
single gyroscope is mounted with its precession axis along the Xb axis of the vehicle,
The satellite design requires the spin axis of the gyroscope to be at an angle ¢x with
the Yb axis. It will be assumed for convenience that the satellite is in a circular
orbit. It is immediately apparent that if ¢x is not zero, steady state will be estab-
lished with the body cffset from the reference coordinate system. If the vehicle was
aligned with the reference coordinate system at steady state, the angular momentum
vector Hr » will not be along 2 . The angular offset, at steady state. can be
obtained by setting ¢y = ¢, = 0 in equations (5.25), (5.26) and (5.27) and substituting

in equations (5.37), (5.38) and (5. 39)
2 (5.42)
- i + ] = - - 40 Q
H_(sin ¢_0N cos ¢ Q) (1 I )

2
i =3 -1 )e Q (5.43)
H_ sin ¢ 9_ Q (be z ) y Yy
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2
- 2 =(I -1 6 Q 5.44
H cos ¢ 0% (yb xb) ARLY ( )
[

Solution of these equations, yields the ofiset angles of the vehicle at steady state.

H siné
0 = L x (5. 45)
x (I. -1 )42 -cos ¢ H
2y Xy, y x ' r
If
Hr cos ¢x - (be - be) Qy #0 (5.46)
then
6y= Bz=0 (5.47)

If the left side of equation (5.46) is equal to zero, Gy and Oz are indeterminate.
The torque which must be supplied by the gyroscope torquer is given by

Ttorquer = Hr Qy (cos ¢x ex + sin ¢x) (5.48)

If a gyroscope torquer is not utilized, steady state will be established with ¢x =0

and the vehicle aligned with the reference coordinate axes.

If another gyroscope is added to the configuration of Fig. 4-5 so that the
configuration of Fig. 62, with $, = 0 results, steady state will be established with
the vehicle axes aligned with the reference coordinate axes, since for this
configuration, the resultant angular momentum vector, at steady state, is along
Q . This configuration is known as a "V" configuration and will be discussed
further in Chapter VI.

In Chapter VI, the results of Chapters II, IV and V will be combined to
obtain the equations describing the dynamics of an orbiting vehicle with internally
mounted gyroscopes. Several configurations will be considered that provide
damping about all of the vehicle axes. For simplicity, the treatment will be

restricted to vehicles in a circular orbit.
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CHAPTER VI - THE DYNAMICS OF AN ORBITING VEHICLE WITH INTERNALLY
MOUNTED GYROSCOPES FOR A CIRCULAR ORBIT

The dynamics of an orbiting vehicle in a circular orbit with internally
mounted gyroscopes will be developed for several gyroscope configurations. There
is no contention that the configurations chosen for presentation are, in any sense,
optimal; they are presented to illustrate the principles involved. The gyroscope
configurations chosen for analysis, will provide indirect damping about all three
of the vehicle axes. It was noted in Chapter III that a smaller settling time could be
obtained through the utilization of indirect damping than with direct damping. It is
for this reason that all the configurations presented are chosen to provide indirect
damping. In fact, if direct damping was desireable, it would be merely necessary
to construct the vehicle in two parts, coupled viscously, since the mechanism of
gyroscope precession is not involved. It has been shown in the literature, and should
be expected from the results of Chapter III of this report, that direct vehicle damping

will result in excessive settling time.

The dynamics of an orbiting vehicle with internally mounted gyroscopes

can be developed by combining the results obtained in Chapter II for an orbiting rigid
body and the results obtained in Chapter IV for a gyroscope under various constraints.
The torque exerted on the body is equal to the vector sum of the external disturbance
torques (exclusive of the differential gravity torque) exerted on the body and the
torques exerted by the gyroscopes on the body. For a symmetrically designed gyro-
scope, there is no differential gravity torque on the gyroscope, hence the torque
exerted by the gyroscope on the body is the negative of the torque exerted on the

gyroscope.

N
T =Tyt L T, (6.1)
n=1 n
where T_ 1is the external torque applied to the body less the differential

gravity torque.
T4 is the total torque on the body less the differential gravity torque.

T _ is the torque on the nth gyroscope of the configuration.

A) Analysis of a Configuration Employing Gyroscopes with Precession axes

along xb and Zb .

Fig. 6~1 shows a configuration employing two gyroscopes which will
provide damping about all vehicle axes. One of the gyroscopes is oriented with

its precession axis along the Zy axis(precessibnangle denoted by &, ) and the other
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Fig. 6-1 Configuration Employing Gyroscopes with Preccssion
Axes Along Xy and Zy
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with its precession axis along the X axis, {precession angle denoted by tbx ) If
2

gyroscope torquers are not utilized for both gyroscopes, at steady state, the body
will be aligned with the reference coordinate axes and the steady state values of

¢ and ¢_ , ¢ and ¢ » will be zero. For such a condition, indirect
X, x x x,
o
damping will not be attainable about the Yb axis. To obtain indirect damping about
the Yy axis, it is necessary that at least one of the steady state gyroscope precession
angles, ¢x or ¢x » be non~zero. In general, for arbitrary values of ¢x and
1 2 1

o o o
d’x indirect damping about the Xb axis is provided by the Zb oriented gyroscope,

2
o

indirect damping about the Yb axis is provided by both the Xb and Zb oriented
gyroscopes, and indirect damping is provided about the Zb axis by the Xb oriented

gyroscope. For arbitrary values of ¢x and d’x ; a gyroscope torquer will be
2

o o
required for each gyroscope.

The angular deviations of the vehicle as a function of ¢x and ¢x at

10 20

steady state can be calculated from equations (5.25), (5.26), (5.27), (5.37), (5.38)
and (5.39). Solution of these equations yields:

Hr sin ¢x2
o, = o (6.2)
41 -1 Q -H os 4+ cos
(s (zb yb) v e ¢"1 c ¢xz)
() o
- -Hr sin ¢x1
o, = 9 (6.3)
o I -1 Q + H {cos + cos
1, -1, )9 +H (cos o %, )
() o

Hr(am ¢xz 9z° - 8in ¢xl BXO)

6 = ° ° (6.4)
Yo (. -1 )@
*» "p Y

The torque which each gyroscope torquer must supply can be determined from
equation (5.40). For the xb oriented gyroscope, the torque required is obtained from

equation (5.22) with ¢y = ¢z =0.

Ttorquerx = Hr ﬂy(nin ¢xz + cos ¢x2 ex ) (6.5)
o o
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For the Zb oriented yroscope, the torque required is obtained from equation (5.22)
. __an® _
with d’y =-90" and $, = 0.

Ttorquer =H, ﬂy(sm b tcoso, 6 ) (6.6)
z 1 1 o
o o
where Ox and ez are obtained from equations (6.2) and (6.3)
o o
The values of b and ¢x' must, of course, be chosen so that the

1
o o

gyroscopes, at steady state, are in a state of stable equilibrium. To check the nature
of the equilibrium it is merely necessary to substitute the steady state deviation
angles (equations (6.2), (6.3), (6.4)) into equation (5.41) for each gyroscope and

examine the sign.

For stability

. 2
Hr 8in ¢x1
"cos 6+ o >0 (6.7)
) (I. -1 )Q +H (cos ¢ +cos ¢ )
o Y, X Y r x x5
o o
. 2
Hr sin ¢xz
cos ¢x - o >0 (6.8)
2 41 -1 Q2 - H (cos + cos
o U 7, yb) y - Byl ¢xlo co ¢xzo)

The dynamic performance of the vehicle with internally mounted gyroscopes
can be obtained from the body equations for a circular orbit (2.52), (2.54), (2.56),
from the equations of an xb oriented gyroscope (4.46), (4.47), (4.48), from the
equations of a Zb oriented gyroscope (4.54), (4.55), (4.56) and from equation (6.1).

The resulting equations are:

v . . 2
Teib (be +2 Ig) (ex + Gz ﬂy) + (Izb - be) (Oz Qy -4 Bx Qy ) (6.9)

+ 1g [d,"z + ¢"1 (Qy +ny) ] +H [sin ¢x2 (ey + Qy)

= (cos ¢x1 + cos ¢x2) (éz - ex ny) - .;xl cos ¢x1
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.0 2 [ .
T =( +21)6 +3(I_ -1 )6 0° + 6 -6 0
Uy P21 0t 0,0 vy [¢x2( 2 % %) (6.10)
-¢x1 (Bx~l*9z Qy)ﬂ-l—lr [sin ¢xl (Oz- exﬂy)+sin ¢x2(9x+(fz Qy)
+é_ sind_ +é. siné ]
X X1 *2 *2
ae ¢ v d
T =( +21)(6 -6 Q)+(I -1 )(6. 02 +6 Q 6.11
ekb (zb g)(z Oy (Yb xb)(x v+ 8,8, (6.11)

+1 [¢x1 -4, (6 +ny)] +H_ [4’*2 cos ¢_

+oin g, (éy +2,) + (cos ¢"1 + cos ¢x2) (éx +0, ny)}

2

The equation of constraint for the Xb oriented gyroscope, relating ¢x to the body
2
deviation angles, can be obtained from equation (4.49), where Tc is equal to

Ttorque T, given by equation (6.5)

. - 4 0 .
Ttorquer = Dd)x + Ig (6x + Oz Qy + ¢x )+ Hr [sm ¢x (0‘/ +ﬂy)
x 2 2 2
. (6. 12)
- cos ¢xz (Gz - Bx Qy)]

The equation of constraint for the Zb oriented gyroscope can be obtained from

equation (4.57) where Tc is equalto T given by equation (6. 6)

torquer
q z

Ttorquer7

4 o o (14 " »”
= D¢x1 + I8 (Sz - ex Qy + ¢xl) + Hr{sm b, (()y +0)

. (6.13)
+ cos ¢xl (ex + ez Qy)]

The equations developed in this section characterize the steady state and
dynamic performance of an orbiting vehicle for the configuration of Fig. 6+l for
arbitrary ¢x and ¢x . Since the equations are nonlinear, the dynamic performance

o zo
of a vehicle containing this configuration can best be analyzed using an analoy or
digital simulation. It will be necessary to choose values of ¢x , ¢x and find a
L o
suitable vehicle geometry so that both adequate settling time is attained and the
vehicle angular deviations at steady state are small. Indeed, for large angular
deviations, the approximations made in Chapter II will probably invalidate the

results.
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Fig. 6-2 "V" Configuration in the X, Y, Plane

b
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B) Analysis of a "V" configuration in the )ga_Yb plane. .

Fig. 6~2 shows two gyroscopes with their precession axes in the Xb Yb
plane forming a "V" configuration. This configuration will provide indirect damping
about all three of the vehicle axes. At steady state, one of the gyroscopes will have
its spin axis above the Xb Yb plane by an angle 'bx . This gyroscope will, for
convenience, be referred to as "gyro I". The othexkgyroscope will, at steady state,

have its spin axis below the Xb Yb plane by an angle ¢x . This gyroscope will
1

for convenience, be referred to as "gyro II". The precession angle of gyro I will
be denoted by bx and the precession angle of gyro II will be denoted by ¢x . At
steady state 2

¢"1 = ¢x1 (6.14)
[o]
- o
¢"z = 360° - 4”‘1 (6.15)
o

The angular deviations of the vehicle as a function of ¢x at steady state
can be calculated from equations (5.25), (5.26), (5.27), (5.37), (5.38) and (5. 39).
Hr cos ¢x cos ¢z ex = Z(Iz - Iy ) ex ny (6.16)

1o o b b o

.« 2H_cosé_ sind 6 =3(L -1 )6 Q (6.17)
b o xlo z Xo zb Xb yO y

2 H (cos ¢x1 cos ¢ 6 +cos¢  sin ¢z)

o ° 1, (6.18)
= (I -1 Yo @
* Yp % Y

Solution of these equations yields the offset angles of the vehicle at steady state.

2 Hr cos ¢x1 sin ¢z
2] = - ° (6-19)
Zo (I -1 )Q:4+2H _cos¢_ cos ¢
Yo X Y r x) z
o
If '
n cos ¢x1 cos ¢, - zuzb - be) Q £0 (6.20)
o
then 6 =8 =0 (6.21)
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If the 12ft side of equation (6.20) is equal to zero, Ox and € are indeterminate.
o o
Note, that if cbz =0, ez will also be zero and hence, at steady state, the vehicle
o
will be perfectly aligned with the reference coordinate axes.

The torque which each gyroscope torquer must supply can be determined
from equation (5.40). For gyro I, the torque required is obtained from equation

(5.22) with ¢ = 0. (6. 22)
= i - 8i i [¢]
Ttorquer Hrﬂy (sin ¢x cos ¢z 4+ cos ¢xl Ox sing ~ sing zo)

o 1

I
o o o

For gyro II, the torque required is obtained from equation (5.22) with ¢y = 0 and

$ = 360° - ¢
x, X
° ° (6.23)
T =H Q (cos 6 -sin cos + 8in sin 6 )
torquern r y( d’xl L ¢x1 c"z ¢x1 ¢z 24
o o o
Since Ox =0
o
TtorquerI = H_ Qy sin ¢xl {cos ¢z - sin ¢_ Ozo) (6.24)
o
T =H Q siné (sin¢_6_ =~ cos ¢_) (6.25)
torquexh ry xlo z zo z

where 6  is obtained from equation (6.19).
o

The value of ¢x must, of course, be chosen so that both gyroscopes,

1
o

at steady state, are in a state of stable equilibrium. To check the nature of the
equilibrium,it is merely necessary to substitute the steady state deviation angles
(6.19) and (6.21) into equation (5.41) for each gyroscope and examine the sign. For
stability of both gyroscopes
ZHr coszcbxl sin2¢z
cos ¢ cos $, + ° >0 (6.26)

lo (be- Ix )Qy + ZHr cos ¢x1 cos ¢z
(o)

b

If the precession axes of the gyroscopes are along xb(d’z = 0), the condition for
stability reduces to

cos ¢_ >0 (6.27)

1
o
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Clearly,the gyroscopes will be in a state of stable equilibrium when

- 90"<¢x < +90°

1
o

(6. 28)

The dynamic performance of the vehicle with internally mounted gyroscopes
can be obtained from the body equations for a circular orbit (2.52), (2.54), (2.56),
from the equations for a gyroscope whose precession axis is in the X

b Yb plane
(4. 34), (4.35), (4.36) and from equation (6.1).

The resulting equations are:

o . . Z
= 6 0 -1 )(6 a -40 @
T, T 42O 40, 8) 40, y) (0% - 40,95

lb . ' ¢ v . .
* IE [cos d)z (¢x1 + ¢xz) - s d)z (ez B ex Qy) (¢x1 + ¢xz)]
+H_ [(éy + Qy) (sin ¢xl+ sin ¢’)Z. cos ¢z (e’ - 9x Qy) (cos ¢xl+coc ¢xz)

+ sin ¢z (:;xl sin cbxl + d;xz sin ¢x2)]

(6. 29)

-
n

. Z . - o
0 +3 -1 6 N + 6.30
o= v Eesu cr s afirfens GrE ) 630
I b

cos ¢, (6 - 6 Qy) (¢xl + ¢xz)] - Hr‘[cos ¢, (¢xlsin ¢x1+¢xzsin¢xz)

+

+s8in¢ (6, - 6 ny) (cos 4’x1+°°5 ¢,xz)+(éx+ ezﬂy)(sin 4”‘1 + 8in ¢xz)

.u.-]
n

2

e ) v _ L4 ) 31
1, + Zlg) (6, - 6 ny) + (1y be) (e, ny +e, ny ) (6-31)

b
+ 1g sin ¢ (6x +e ny) (¢xl + ¢x2) - cos 4>z(ey+ny)(¢xl + d»xz):l
+ Hr (;xl cos ¢x1 + J)xz cos ¢xz +cos ¢ (éx + Oz ﬂy)(cos ¢x1+cos¢ )

+ 8in <bz (éy + ﬂy) (cos ¢x1 + cos ¢x2)]'

The equation of constraint for gyro I, relating its precession angle to the body

deviation angles, can be obtained from equation (4. 37), where T _ is equal to

Ttorquerl given in equation (6.24)
Ttorquerl = D¢xl + Ig [By sin ¢+ cos ¢, (9x +6, Qy) +é J (6. 32)

+ Hr_[sin ¢xl cos ¢z (6y +Qy) - cos ¢x1 (9z -6 Q)

- sin¢_ sin¢_ (6 +0 ny)]’
1
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The equation of constraint for gyro Il is identical with that for gyro I {(equation (6.32))

with - replaced by d’x and Ttorquer replaced by T .
1 2 I II

Although the development’ for the "V" configuration in this section was

torquer

for equal and opposite displacement angles from the Xb Yb plane, the development
could have been easily extended to the case where the displacement angles are
arbitrary. Infact, an extension to a "V" configuration, where *he precession axes
lie on any line relative to the body coordinate system, can be easily accomplished
from the equations developed in Chapters II, IV and V in a manner similar to that

used in this section.

C) A Configuration Employing a Single Gyroscope to Provide Three Axis

Vehicle Damping .

Fig. 6-3 shows a configuration employing a single, one degree of freedom,
gyroscope whose precession axis is located in the Xb Zb plane. This configuration
will provide damping about all three of the vehicle axes. Since only one gyroscope
is used, no subscripting is necessary therefore, the gyroscope precession angle will
be denoted merely by ¢x' and the value of the gyroscope preceesion angle at steady

state will be denoted by ¢x
o

The angular deviations of the vehicle as a function of b, at steady state
can be calculated from equations (5.25), (5.26) and (5.27) with ¢z = 0 and from
equations (5.37), (5.38) and (5.39). Solution of these equations yields:

”r sin ¢x cos ¢

o, = ° (6.33)
o 4(1z )Qy - Hr cos dsx

-1

b b o
Hr sin (bx sin ¢

0 = ° (6. 34)

o (be - Ix )QY + Hr cos ¢x

b o

H 8in ¢  (sind 6 +cos ¢ 6 )
r x y x Y z
0. = ° ° i (6.35)

e
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SPIN AXIS

PRECESSION
AXIS

Xp

Fig. 6-3 Configuration Employing a Simple Gyroscope
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The torque which the gyroscope torquer must supply can be obtained from

equation (5.22) with ¢z = 0 and from equation (5.40) 6. 36
(6.36)

Ttorquer =H_ Qy (sin ¢x° + cos ¢x° cos ¢Y 6x° - cos (b"o

sin¢_6 )
y 2z,
where ex and ez are oltained from equations (6. 33) and (6. 34)
o o

The value of ¢x must, of course, be chosen so that the gyroscope, at

o
steady state. is in a state of stable equilibrium. To check the nature of the equilibrium

it is merely necessary to substitute the steady state deviation angles (equations
(6.33), (6.34), (6.35) into equation (5.41) and examine the sign. For stability

cos ¢ cos ¢z - 8in ¢x cos ¢y fo sin ¢x sin ¢y Oz >0 (6.37)
o o (<] o o

The dynamic performance of the vehicle can be obtained from the body

equations for a circular orbit (2.52), (2.54), (2.56), from the equations for a gyroscope

constrained to rotate in the Xb Zb plane (4. 38), (4.39), (4.40) and equation (6.1) .

The resulting equations are:

- e L4 v 2
T, = (be +1) (8 +6 )6, - 46 af) (6. 38)

Q)+ -
2
lb b

1
Yb
+Q i +H (; Q )si

y) sin ¢y] r [( y + y)sm d’x cos ¢y

zy
+ Ig [d:x cos ¢y - ¢x (9y
- cos ¢ (Oz - Bx Qy - ¢x sin ¢y)

(6.139)

2 e .
+ Ig"d)x [(ez - Gx Qy) cos ¢Y

T, =(, +1)6 +3(L -1 )6 Q
Ot (xb zb)yv

b
+(6 4o ny)] +H_sin¢_ [(ez - 6,9 )sing - b -0+ 0,2 )cos ¢il

o ’ ¢
T = . . 2 (6.40)
ekb (1zb +1)(6, - 6 a)+ (be be) (6,2 +o af
- Ig[[d)x (GY +ﬂy) cos ¢y teo, sin ¢y]- Hr.[(ey +ﬂy) sin ¢, sin ¢y

- cos ¢x (E;x + Gz Qy + ;x cos ¢y)]
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The equation of contraint relating the gyroscope precession angle to body
deviation angles can be obtained from equation (4.4l) where Tc is equal to

Ttorquer given by equation (6. 36)

Tt°rquer = Do, + IS [cos d>Y (6, + 6, ny) - #in ¢Y (6, - & Qy) . ¢x] (6.41)
4 ’
. H i ]
+ Hr;[sm ¢, { Y + ﬂy) cos ¢x cos ¢Y (ez 0, Qy)
- cos ¢x 8in d)y (9x + ez ny)]

The procedure involved for developing the equations describing the statics
and dynamics of an orbiting vebicle for an arbitrary configuration should be clear
from the examples that have been presented. The equations developed in Chapters
II, IV and V can be used to analyze any configuration in a circular orbit. Further-
more, many of the equations can be applied to a vehicle in an elliptical orbit
Chapter VII will summarize the results thus far obtained and will indicate the areas

in which further study is warranted.
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Chapter VII - CONCLUSION

The analyses given in this report are valid if the following assumptions

are satisfied:

1. Attitude deviations are small so that the equations of motion for the body can

be linearized.

2. With the exception of the internally mounted gyroscopes, the satellite comprises

a rigid body with no moving internal parts.
3. Control is desired about the principal axes of the vehicle.

4. The earth is assumed to be a homogeneous sphere, and therefore the gravitational

field is inverse square.
5. All gyroscopes are assumed symmetric.

It is further assumed in the latter part of Chapter V and Chapter VI that the vrbit 18

circular.
With the above assumptions the following has been accomplished:

1. The equations of motion of a rigid body in an elliptical orbit were obtained with

the inclusion of the gravity gradient torque.

2. An analysis of a simple configuration employing gyroscope damping was
considered to furnish an insight into the mechanism of gyroscope damping and its

properties.

3. The equations of a symmetrical one degree of freedom gyroscope mounted in an
arbitrary position within the vehicle in an elliptical orbit were obtained and several

specialized cases were cited.

4. The steady state requirements for an orbiting vehicle containing internailv
mounted gyroscopes were considered. In the latter part of this analysis the velicle'«

orbit was assumed circular.

5. The equations of motion for a vehicle containing internally mounted gyroscopes

were obtained for several gyroscope configurations for a circular orbit.

There are several areas of investigation that have been neglected in this
work and should be the topic of future study in this field.

1. The effects of large angular deviations should be considered since at the time

of insertion of the vehicle into ite orbit large angular deviations will invariably occur.
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2. The effects of an non-spherical, non-homogeneous earth should be considered.

3. The effects of moving internal component. should be investigated. The
acceleration and deceleration of internally moving parts (such as tape recorders)
will produce reaction torques on the vehicle. Motion of components may als» cause
the moments of inertia and location of the vehicle's principal axes to become time
varying.

4. The analysis should be extended to include non-symmetrically designed

gyroscopes.

5. A computer study of several gyroscope configurations is essential to obtain

both an optimum vehicle geometry and optimum gyroscope configuration.
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APPENDIX A

Derivation of Euler's Equations

For any system of particles, the angular momentum of that system about
any point in space (see Figure A:l) °

™ panticLE

SYSTEM OF
PARTICLES

Fig. A-1 System of Particles

is given by

n
h=.E r,xm, Vv, (A.1)
i=1
where m, is the mass of the ith particle

r. is the radius vector from the point about which the angular momentum

is to be obtained to the ith particle.

v. is the velocity of the ith particle relative to the point about which

the angular momentum of the system is to be obtained.

This definition is meaningful regardless of whether the reference point be fixed or

translating with respect to inertial space.

The case where the system of particles comprises a rigid body, and the point
about which the angular momentum is to be obtained is the mass center of the body, is
of particular interest. For this case, the velocity of an arbitrary (ith) particle is

given by

V.= wXxr, (A.2)
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where w is the angular velocity of the rigid body with respect to inertial space
th

T, is the radius vector from the mass cente. to the i~ particle.
Substituting into the general equation for the angular momentum, (A.1l) one obtains for

the angular momentum about the mass center

n
Y .3
hc.g- i=211 roxm, (w x ri) (A.3)

Using the vector identitiy for a triple cross product

Ax (BxC)= B(A.C) - C(A.B) (A-4)
one obtains

r;xm, (w x ri) = m, [‘“iz' r (w. ri)J (A.5)

Resolving r, and w into a system of rectangular coordinates

r; = xidyj+zk (A.6)
w =wi1,+wj_]+wkk {(A.7)
and performing the indicated operations, one obtains
hc.g. =hi1 +hj_]+hkk (A.8)
where
hi=Aui-ij'ka (A.9)
hj=-Hwi+Bwj~Fuk (A.10)
hk=-Gwi-ij+ka (A.11)

Equations (A.9), (A.10) and (A.11) can be expressed in matrix notation by representing

the angular momentum vector and the angular velocity vector as column matrices

h, A - H -G w
/ 1 1
h. . . _
j = H B F wJ (A.12)
R -G -F c/\ “k

The first term on the right side of the equation is referred to as the inertia tensor.
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Where A= Lm (y?+2f) (A.13)
B = E m, (x2 + zz) (A.14)
C = Z m, (xZ +y2) (A.15)

are the polar moments of

inertia about the i, jand k axes respectively

and
H = Zmi xy (A.16)
G = )mxw (A.17)
F = E m, yz (A.18)

are the products of inertia in

the i-j, .i-k, and j-k planes respectively.
If i, jand k are body fixed vectors, the components of the inertia tensor are < onstant-

It is shown in any text of classical mechanics that the torque exerted on a hody
about its center of gravity is equal to the rate of change of its angular momentum about

its center of gravity as seen from inertial space.

Tc.g. = hC-8° (A-19)
where 6h
n = —%B 4uxh (A.20)
c.g 5t Coge
whe re

6/6t denotes a partial differentiation in which the

i-j-k vectors are held fixed,

w 18 the angular velocity of the i-j-k coordinate
system with respect to inertial space (which need not
not be that of the body).

It can also be shown in advanced books of classical mechanics that there exists
at least nne set of axes for which the product of inertia terms (H, G, F) vamish. Such
axes are known as principal axes. For the principal axes, the inertia tensor is

diagonal.

0
0 B 0 (A.21)
C
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It will be assumed that the i-j-k vectors are fixed in the body and coincide with the

principal axes.

Therefore

-
[}

’ . M . ' .ZZ
Awil +Bwj_J+ka:k (A )

and

) ’ ’
= Aw,i+Buw.j +kak
c-g 1 ) . (A.23)
+wx[Am.1+Bw.J+Cw k]
w i. j k

Expanding and equating (A.23) component wise to the torque yields the following

equations:
T, = Awi+(C-B)ijk (A.24)
Tj = B“’j+(A'c)“i“’1’c (A.25)
.
'I‘k = ka+(B -A)«oi wj (A. 26)

These are Euler's equations.
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APPENDIX B

Derivation of Gyroscope Equatiéns.

A gyroscope consists of two basic components. An inertia wheel or rotor
which rotates at a high speed and a gimbal to which the rotor is mounted and which
permits angular motion of the rotor with respect to inertial space. (Refer to Fig. B-1).

The torque on the rotor and gimbal which comprise the gyroscope, about the
center of gravity of the gyroscope is given by the time derivative of its angular momen-

tum about its center of gravity with respect to inertial space.

d
T = h (B.1)
gC-g. dt gOo ge

The angular momentum of the gyroscope can be considered to be composed of two
parts. One due to the angular velocity of the rotor and the other due to the angular
velocity of the gimbal . The component ofangular momentum due to the angular velo-
city of the gimbal,' is computed by co;:sidering the rotor to be stationary.

= (B 2)
hgc =2 i Salhs DY I + Z'i X ™M Vilgimbal plus
‘8- roto stationary rotor
Now
Er.xm.v. = H_j (B. 3)
! Hrotor rg -
= .4
Hr Jr Cr (B-4)
where Jr represents the polar moment of inertia of the rotor about its axis
of rotation.
W, is the angular velocity of the rotor about its axis of rotation.
= i ; (B.5)
Erix m, v, gimbal plus = Agwi 18 +Bg ©; Jg+Cg O kg
stationary rotor g g g
As was done in deriving Euler's equations in Appendix A
d 5h
= h B.6
c.g-
where
w Tw.i 4w, j +tw, k (B.7)
i k
g % B .lg g g g€

is the angular velocity of the gimbal axes with respect

to inertial space.
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kq (INPUT AXIS)

?9

GIMBAL

ROTOR 0 > AT
" (SPIN AXIS) 9

DAMPER

ig(OUTPUT OR PRECESSION AXIS)

Fig. B-1 Single Degree of Freedom Gyroscope
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Therefore

. . . L
a't'hg =Agwi 1g+(Hr+Bguj),1g+c w, ¥k (B.8)

c. g g g 8 kgE
i [(C -Blw. w, -H mk]+j EA -C e, Wy J
gl B 8 gk rik g [T T8 i Tk

+ k [(B -A)w, w, +H w. ‘]
. i i
B & B Tg Jg T i

Grouping terms and equating component wise to the torque one obtains

¢
T = A w, +{C_-Blw., w, ~-H w (B.9})
i k r k
gi 4 g g g Jg g g
g
Tg. = Hr + B8 wj + (Ag - Cg) ©, Wy (B.10)
Jg g g g
T =C. w, +(B -A)w, w, +H_o (B. 11)
k r i
B, 8 kg & € g g .

Examination of these equations reveals that the torque on the gyroscope is
composed of two parts. The first part is given by

T = A ., +(C_-B . B.12
g 8 (C s)“’J8 kg (B-12)
g
ng = Bg mjg + (Ag - Cg) wig mkg (B.13)
g
T =C w, +(B -A)w, o, (B.14)
k
skg g k. g e i g
and the second part is given by
Tg- = . Hr Wy (B.15)
1g g
T =H (B.16
gj r )
g
T =H_uw, (B.17)
8 ri
g 8

The first part is seen to be a restatement of Euler's Equations, (A.24), (A.25), (A.26).

It describes the rigid body dynamics that do not depend upon the angular momentum
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of the rotor. The second part of the equation, which is known as the gyroscopic
torque , is provided by the angular momentum of the rotor. If the angular velocity of
the rotor is assumed to be constant (Hr = 0) , the equation of gyroscopic torque takes a

particularly simple form. Namely

T = wxH ' (B.18)
g r
where w is the angular velocity of the gimbal’ with respect to nertial
space.
H is the angular momentum of the rotor.

r

This form of the equation is extensively used in the literature,
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o APPENDIX C
Derivation of the Gtavity Gradient Torque.

Consider a rigid system of particles in orbit around the earth. (See Fig. C*1).

The force on the ith particle .s given by

P
- .
= - = .
w;= m; 8; P €1
Where
m, is the mass of the ith particle
g; is the acceleration due to gravity at the position of the ith
particle,
i)‘ is the vector displacement from the center of the earth to the
ith particle.
Now g, Rez
g;*° — (C-2)
]
where g, is the acceleration due to gravity at the surface of the
earth.
Re is the mean radius of the earth.
Substituting eq. (C.2) into eq. (C.1) yields:
Rez -le
Hi=-mig =5 b (C-3)

The torque exerted on the system of particles about its center of gravity due to the
earth's geavitational field, is given by

n
o™ L

i=

x W, (C.4)

- 1
1 -
where T dg is the gravity gradient torque on the body (differential gravity
= torque)
r. is the vector displacement from the center of gravity to the

ith particle.

Substituting eq. (C.3) into eq. (C.4) yields:
n

1=

] m,
ld' = -8g, Re 'El -9_131 (;l xm) (C.5)
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CENTER OF GRAVITY OF
SYSTEM OF PART:.JLES

CENTER OF EARTH

Fig. C-1 An Arbitrary Shaped Orbiting Vchicle
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From Fig.(C+l) it is seen that
£i=P°}.E+£i (C.b)
where
is the distance from the center of the earth to the mass center of

the system of particles.

is a unit vector outward along the geocentric vertical.

k
Now 3
p. 3= (p..p) 2 (C.7)
i —1 i
Substituting eq. (C.6) and simplifying yields:
3
3 3 Zer; g1y P02
p,- =p. 1] ¥ | o (C.8)
Since
"i
7 <<l (C.9)
o
3
-3 . -3 2ker, |72
Py R Py | t——, (C.10)
o
Expanding in a power series and taking only the first terms yields:
/ 3k.r,
-3 -3 = =1
P A2 0, [1- 5 (C.11)

Substituting eq. (C.6) and (C.11) into eq. (C.5) and expanding the vector product yields
2 n (C.12)

2 n
g R 3g_ R
T, =2 % kx ), mr, +—2_ ) m (r,xk){r;k)
__dg p2 = jop -t o 3 i1 i=i -Li_
o )
But n
Y mr =0 (C.13)
i=1 1 md
Therefore

defines the center of mass of the system.

LA
:dg T —— & m, (E'i x k) (L.lf) (C.14)

’o3
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For a circular orbit

(C.15)

where

g, is the acceleration due to gravity at the mass center.

Therefore

—_— =0 (C.16)

Substituting eq. (C.16) into equation (C.14) yields for a circular orbit.

n
2
= > ok .17
Ti 3Q ; 1mi(r.xk)(ri ) (C.17)

Let Xb. Yb and Zb be the coordinate system formed by the body principal axes,
with corresponding unit vectors ib' jb and kb . Let X, Yand Z be the reference
coordinate system with corresponding unit vectors i, jand k . (Refer to Chapter II
sections A and B.) The set of Eulerian angles relating the body coordinate system

to the reference coordinate system is denoted by 9x. Gy and ez . The transformation
matrix relating the two coordinate systems is given in equation (2.5) . (Refer to

Chapter II, section C)

Expressing the vector r in terms of body coordinates yields:
I Nl tVpdp t B Ky (C-18)

Using the transformation matrix (2.5) yields:

E =-0yxb+6x3b+kb {(C.19)
Substituting equations (C.19) and (C.18) into eq. (C.14) yields:
2
3___g3 Re 3 j 20
Edg: N iz;,lmi [lb(yb-exzb)+_]b(-xb-9yzb) (C.20)
o

+kb (ex Xy + Oy yb)] [-By Xy + Ox Yb + zb:l
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Expanding eq. (C.20) and noting that the product of inertia terms vanish (zee

eqs. (A.16), (A.17), (A.18) yields:

2
3g R n
s e 3 . 2 2 . 2 2
-2 -

iéll m; [‘b % Ty - 2y 43 0 (X5-2.0)
{C.21)

']: =
—dg 3
—_ ‘ Po

2 2, |
<l»l<b ex ey (yb - X )]
The kb component will be neglected since it involves the product of two small

angles. Substituting eqs. (A.13), (A.14) and (A.15) into eq. (C.21) yields the final
result for the gravity gradient torque-'

385R2

—2 e [ib o 0, - 1)+, 8 a, - be)] (C.22)

T =
=d
—t e,

Substituting eq. (C.16) into eq. (C.22), one obtains the corresponding equation for a

circular orbit.

- 3qa 2[ . Y ’
Teg = 39, [1b O (L, 1, )ty 6 0, Ix.b)] (C.23)
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