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ABSTRACT

This study is concernedwith the geocentric attitude stabilization of an earth

satellite. The system considered in this report utilizes differential gravity t:

control the vehicle's orientation and gyroscopes to provide vehicle damping. Several

different gyroscope configurations that provide indirect gyroscope damping about

all three of the vehicle axes are presented. For each of these configurations, the

equations governing the dynamics of the system are systematically developed interms

of the attitude deviation angles and the parameters of the orbit. The expressions

for the steady state deviation angles and the torque which must be supplied by gyro-

scope torquers are also obtained.

The analytical procedure utilized.,considers the satellite vehicle to be composed

of a rigid body to which is affixed internal gyroscopes. The dynamics of an orbiting

rigid body are first obtained with the inclusion of the differential gravity torque.

This is followed by a development of the equations of dynamics of a gyroscope con-

strained in an arbitrary position within an orbiting body. The equations obtained for

the gyroscope and the rigid body are completely general in that they are valid for

an elliptical orbit. The resulting equations of a gyroscope and a rigid body are

combined to obtain both the statics and dynamics of an orbiting vehicle containing
internally mounted gyroscopes. This analysis is restricted to a circular orbit. To

obtain a better understanding of the mechanism of gyroscope damping, an analysis

of a simple configuration employing a gyroscope for damping purposes is also

included.
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Nome nclatu re

X, Y, Z geocentric reference coordinate system.

i, j, k unit vectors along the X, Y, Z reference coordinate axes.

[ ]x,[ ] Y,[ ] components along the X, Y, Z reference coordinate axes.

Xbt Yb' Zb body fixed coordinate system along the body principal axes.

ib' jb' kb unit vectors along the Xb , Yb' Zb body axes.

[I ] b 1 kb components along the Xb, Yb# Zb body axes.

X I Y Z gyroscope fixed coordinate system along the gyroscope principal
X g g axes.

ig jg, k unit vectors along the Xg, Y , Z gyroscope axes.

, 1 components along the X, Y Z gyroscope axes.

g ' g iJk g g

T total torque on the body.

Td total torque on the body less the differential gravity torque.

Tdg differential gravity torque on the body.

Te external torque applied to the body less the differential gravity torque.

Tg torque on the gyroscope

I I I I I polar moments of inertia of the body about the Xbt Ybo Zb axes
xb Ib 'b of the body.

Ig polar moment of inertia of a symmetrical gyroscope.

H angular momentum of the gyroscope rotor.r

QI angular velocity of the reference coordinate system with respect
to inertial space.

W b angular velocity of the body with respect to inertial space.

W g angular velocity of the gyroscope with respect to inertial space.

0x , 0 , 0z  set of Eulerian angles relating the reference coordinate system to
Sy Z the body coordinate system.

+xO +y, *z set of Fulerian angles relating the body coordinate system to the

gyroscope coordinate system.

[1, [1 ] first and second derivatives with respect to time.



Page
Appendix A - Derivation of Euler's Equations 106

Appendix B - Derivation of Gyroscope Equations 110

Appendix C - Derivation of Gravity Gradient Torque 114

Reference



Chapter I - INTRODUCTION

There are numerous applications which require a particular axis of a

satellite vehicle to be oriented in some specific direction. The need for space

vehicle attitude control and stabilization can only be appreciated when consideration

is given to the mission that the vehicle is to perform. For example, conversion of

solar energy to electrical energy will require solar energy gathering devices which

must, by necessity, be oriented toward the sun. Midcourse maneuvers requiring

the firing of rocket engines would also require vehicle attitude control to give the

proper direction to the thrust. As the satellite moves in orbit around the earth it might

be desired to obtain weather information or obtain surveillance information over

enemy territory. The latter applications require a camera to be so oriented that

its axis is aligned with the geocentric vertical of the earth.

The various sources of attitude disturbance torques for a vehicle orbiting the

earth are worthy of consideration. A brief discussion of disturbance torques is given

below:

a) Aerodynamic Torque

At an altitude of about 500 miles a very sparce atmosphere exists.

Nevertheless, the torque produced by aerodynamic drag can be significant. This

would be particularly true if the space vehicle was to employ large solar energy

collecting panels where the location of the center of aerodynamic pressure might not

coincide with the center of mass of the vehicle. The torque produced is a function of

the angle of attack of the vehicle and for a constant angle of attack and a circular

orbit, the torque produced will be constant.

At an altitude of about 500 miles, the dynamic pressure is approximately
5 2

6x10 - dyne/cm . For a space vehicle employing flat solar energy collecting panels,

100 feet 2 in area, with a 2. 5 inch offset of the center of aerodynamic pressure

from the mass center of the vehicle, a disturbance torque of approximately

56 dyne-cm. will result for the worst angle of attack. 1

b) Solar Radiation Pressure

Solar radiation pressure is caused by the impact of photons with the

surface of the vehicle. As in the case of aerodynamic drag, torques produced can be

significant if large solar energy collecting panels are utilized, and if the center of

solar radiation pressure does not coincide with the mass center of the vehicle. The

torque produced would be periodic; the period being the time of one orbital revolution.

For a satellite employing flat solar energy collecting panels, 100 feet 2

in area, with a 2.5 inch offset from the mass center, a torque of approximately

60 dyne-cm can be produced.
1



(c) Earth's Magnetic Field

There are two primary sources of torque resulting from the interaction
with the earth's magnetic field. The first is produced by interaction with the current

loops and ferromagnetic material in the vehicle and the second is produced by eddy

currents set up by motion of electrically conducting parts of the vehicle relative to

the magnetic field. The latter becomes more prevalent as the angular velocity of the

vehicle increases. The torque produced depends heavily on the design, altitude and

latitude of the vehicle. If large current loops are avoided and nonmagnetic materials

are used whenever possible, the torque can be kept to the order of 10 dyne-cm. As

in the previous case, the torque produced is periodic. 1

(d) Internal Moving Parts

There is an angular momentum associated with every moving part in the

vehicle. The variation of angular velocity of tape recorder reels or any rotating
machinery causes a change of angular momentum with respect to inertial space. This

in turn produces a reaction torque which is exerted on the vehicle.

(e) Meteorite Impacts

Meteorite impacts will produce a torque on the vehicle. The magnitude

of this torque will vary in accordance with the kinetic energy of the meteorites and

the location of impact. The time average of the resultant torque is of statistical

nature.

(f) Gravity Gradient (Differential Gravity)
A portion of the vehicle a small distance nearer tha earth than another

part will experience a slightly larger gravitational force. Depending on the vehicle

attitude and geometry, a resultant torque might be produced. The magnitude of this

torque will decrease as the altitude of the satellite is increased.

There are a number of basic methods which can be utilized to obtain attitude

control. These include:

(i) Mass Expulsion

This method utilizes familiar rocket principles for the generation of attitude

control torques. Reaction jets are provided and a propellant is stored within the

vehicle. This type of system is good for intermittant large angle corrections.

Applications of this system are limited since the prppellant is exhaustable.

(ii) Momentum Exchange Within the Vehicle

This method utilizes the motion of internal parts to provide torques. Extern-

ally applied torques can be countered by changing the angular momentum of internally

mounted gyroscopes or inertia wheels.
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(iii) Interaction with the Environment

This method utilizes prevailing environmental conditions to provide torques.

A classic example is the stablization of aircraft using atmospheric drag. Satellites

operating above an altitude of a few hundred miles do not experience enough atmos-

pheric drag to be utilized effectively as a means of stabilization. However, since

gravity gradient torques tend to align the axis of least inertia along the geocentric

vertical, it can effectively be utilized in controlling the orientation of the vehicle.

The system with which this report is concerned, utilizes gravity gradient

torques to control the vehicle's orientation and gyroscopes to provide vehicle

damping. Several different gyroscope configurations, utilizing single degree of

freedom gyroscopes are considered, and for these configurations the equations

governing the statics and dynamics of the system are systematically developed.

This report is subdivided in the following manner: In Chapter II the

dynamics of a rigid body orbiting the earth are developed in terms of the attitude

deviation angles and the parameters of the orbit. Chapter III presents a

simplified analysis of gyroscope damping. In Chapter IV, the dynamics of a gyro-

scope constrained within a satellite are developed; the equations are obtained in

terms of satellite attitude deviation angles, orbit parameters, and the gyroscope

precession angle. The equation of constraint, relating the gyroscope precession

angle to the satellite deviation angles is also developed. In Chapter V, steady state

requirements for an orbiting vehicle with internally mounted gyroscopes are

considered. The equations obtained in Chapters II, IV and V are combined in

Chapter VI to obtain the dynamics of an orbiting vehicle for various gyroscope

configurations.

1
See reference 14 .
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Chapter II - SATELLITE ATTITUDE DYNAMICS

A) Reference Coordinate System

In order to develop a set of equations suitable for the dynamic analysis

of a given system, it is necessary to introduce a coordinate reference for that system.

For the problem of attitude control, it is necessary to define a coordinate reference

system from which attitude deviations can be measured. For geocentric attitude

control it is desirable for the reference coordinate system to be chosen coincident

with the desired orientation of the satellite. The desired orientation of the vehicle

is determined by the instantaneous geocentric vertical, therefore the reference

coordinate system is not fixed and will in general be a variable angular velocity

system. With this choice of reference coordinate systemit will be possible to

linearize the resulting equations for small angular deviations. (cos O= 1, sin 0=6).

Indeed, for large angular deviations these approximations cannot be made and the

resulting equations of motion will contain nonlinear trigonometric terms.

The reference coordinate system used (which will be denoted by

X .y, Z) is shown for an arbitrary position in the orbit. (See Figure 2-1.) The Z axis

is taken along the instantaneous geocentric vertical positive outward. The X axis

is chosen tangential to the orbit and in the general direction of the orbital velocity of

the vehicle. The Y axis is chosen perpendicular to the plane of the orbit, in the

direction of the orbital momentum, such that a right-handed system is formed. This

system is both translating and rotating with respect to inertial space. It should be

noted that the X axis does not coincide with the direction of the velocity vector of the

vehicle for an elliptical orbit.

B) Body Coordinate System

It is also necessary to define a coordinate system which is fixed with

respect to the satellite and which is to be controlled to coincide with the reference

coordinate system. It is advantageous to choose the body fixed coordinate system

to coincide with the principal axes of the vehicle. This eliminates all product of

inertia terms and hence simplifies the differential equations of motion. (The inertia

tensor is then diagonal; see Appendix A). This choice of body fixed axes reduces the

generality of the results,since it now requires that the control axes be principal axes

of the body. Since most satellite vehicles have some sort of symmetry, this

reduction in generality is not serious. It is further assumed that the satellite is a

rigid body. This is not strictly true due to motion of its internal components (such

as tape recorders and gyros-copes). If the mass of such internal components is small

in comparison with the overall vehicle mass, then these effects can be neglected.
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ORBIT OF VEHICLE

/ ' ---- SATELLITE

GEOCENTRIC/ VERTICLE
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DIRECTION

$POLAR AXIS OF EARTH
S

Fig. 2-1 Satellite Reference Coordinate System
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It can therefore be assumed that the principal axes are fixed in the satellite. The

coordinate system formed by the body principal axes is denoted by Xb , 'b' and Z•

C) The Eulerian Angles and Transformation Matrix

The body principal axes can be related to the reference coordinate system
by an array of Eulerian angles; Ox , 0 y, z These angles are defined by successive

rotations of the body axes through the angles 0 , 0y and Oz about the X b , Yb' Zb

body axes respectively which rotate the vehicle from its reference system into its

present position,(see Fig. 2-2). These angles will be taken as positive when the

sense of the rotation is equivalent to that of a right-handed screw advancing in the

direction of the axis of rotation. Figure 2-2 shows the three successive rotations

and their corresponding transformation matrices.. Viewing the position vectors as

column matrices, the transformation matrix gives the new coordinate system as the

product of the transformation matrix and the old coordinate system.

Yb A (2.1)

Zb  (Z)

The overall transformation matrix relating the components of a vector in the

X Y Z system to the cormponets of the same vector in the Xb yb Zb system is given by

A = (A ) (A y) (Ax) (2.2)

cos 6 cos 0 rsin 0 sin 0 cos 6 cos sin 0 cos 0
y z L y x z x y z

+cos 0 sin ] +sin 0 sin ]

A -Cos 9 sinO 0 z sin Oxsin 0 sinG [zIcoo 06 sin 0 sinG0 23

Con 0 corn e 1 + sin O0 coso 0

sin y - sin 0 coso ) coso coso
y x Y x y

The matrix multiplications are not commutative and therefore must be performed in

the order indicated. The physical significance of the non-commutability of the matrix

productlis that the order of the rotations cannot be interchanged and must be

performed as indicated.

If the deviation angles are small (sin 0 = 0, coso = 1) the transformation

matrix (2. 3) becomes

Sy z Y xAU6 
0 0 +1 0 + 0

-0 -e y z + 1 x Y/ Z (2.4)
ey / J
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Zb Z

exi
b  1 0 0

Y b jb - 0 cos 0 x sin 0 x

k 0 sin cos /

A xex

X, Xb

Zb Z

ee

Y Yb cs e 0 cs k

yb

A
y

x
Xb

ZZb

92

b cos 0 sin 0 0 (i\

e Y -sin l cos 0 0
P.Yk 0 0 1k

Yb

A z

ie

x
x b

Fig. 2-2 Eulerian Angles
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Upon further assuming that the product of two small angles can be neglected
compared to a single angle, one obtains

A=z I x (2.5)
0y -0 x

D) Development of Equations of Motion of the Body

The equations of motion of a rigid body in three dimensional space is
given by Euler' s equatiora. (A24, A25, A26). A derivation of these equations is

given in appendix A
T b = x i+ (Iz "Iy)Wtb. Wb

ib Zb Yb bb kb (2.6)

T. Iyb + (I b  b I b  tb3 b b 3b b b b kb (2.7)

Tkb b kb I Xb J'i 'b (2.8)
where I , I I are the moments of inertia about the Xb. Yb' Zb principal axes

Xb Yb 'b

of the body.
are the Xb Yb Zb components of the angular velocity

W bi '"' b k ethe b

b U bof the body relative to inertial space.

Tib, T. Tkb are the Xb- Yb' Zbcomponents of the torque taken about
b b' bthe mass center of the body.

In order to adapt Euler' s equations to the problem of attitude control,

it is necessary to express the angular velocities (wb" I b.' b k ) and their derivatives
1b Jb kb

b wb. ,) in terms of the deviation angles (0 , e z) and the angular velocity

'b Jb x
of the reference system. The angular velocity of the body with respect to inertial space

is given as the vector sum of the angular velocity of the vehicle with respect to the

reference frame and the angular velocity of the reference frame relative to inertial space.

Wb ietial = [r4/e.ference + w reference/ inertial (2.9)bp ce b frame trame 1 space

The angular velocity of the body relative to the reference frame is given by

Wb/r e ference = b + ; jb + Oz kb (2.10)/frame ey J 0
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The angular velocity of the reference frame with respect to inertial space is given by

ref/inertial = £x i + Q j + O k (2.11)

/ space y

where £2 £2 , 2 are the components of the angular velocity of the referunce framex y z

with respect to inertial space along the X, Y, Z axes of the

reference system respectively,

Using the transformation matrix (2. 5), the angular velocity of the reference system

can be expressed in terms of the body coordinates.

Q = -0z 1 (E) (2. 12)

"kb ) e -O I ) O

W ref O£x+ z Qy y £0z] + z [x + y +Ox OzIb

(2. 13)
+ [0 yx - O y +z] kb

Addition of Equations (2.10) and (2.13), and separation into components yields the

following equations for the components of the angular velocities and their derivatives

along the body axes.

Wb. = Ox +Q2 + O 62 - 0 2 (2.14)

x x z y y z
1b  o

wb. = 6 +Q2 + O "2 - en Q (2.15)
Jb y y xz zx

Wb = 4 +£12 + £ 2 - e O (2.16)
k b  z z y x x y

xbb = 0 +1 + O a 0 n - 0 n - 0 yz yz (2.17)

Jb y y x z x z z x zX (2.18)

-6 b = o+ + + ;o -e -6n (2.19)bkb - z y x y x x y x y
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Substituting these results into Euler's equations (2.6, 2.7, 2. 8) yields:

T1=I [e ~+~ + ra - e f -o
ib xb z y z y y z yZ

(Iy zb Y [oYZ z x y y y y x z y

+n 0 -e n +e nn - eo n - e n (2.20)
y z x y y xy zz x z x z

+ee an -0 e n2 +e n + en 2 e 2 nn
x z x y y z x x zz x z x y z

+ x 0y X 1z]

TJb Yb y y z x z x x Z

+ U - z x Z+ x z xx y yxx+ z x

+nn -on + n2+ 2+0 n n (2.21)
x z x x y y x zzy z y z

_ee n 2+oe n - e -en 6e2 Qn
x z y yzx y yz z y z y x z

+ 0x 0y0n

Tkb Zj*L - Xe X - yxe

Sbx 6x y x x XX Yx
+no -e n2+e nn +e en +e n z  (2.22z)

x y z x x x zy y z y

-e no +eeon =06n -eon
z x y x Z y z yy z y yz

+%O e ne onn - eenoz

where T. , T. , T are the components of torque about the center of gravity of the
lb 3b k

vehicle alon', Yb and Zb respectively.

The above equations are valid under the following assumptions:

a) Inertia of internal moving parts of the body are negligible.-

This assumption is necessary to allow the system to be treated as a rigid body.

b) The fixed body axes coincide with the principal axes.

This assumption made the enertia tensor diagonal (see eq. A. 21)

c) Small angular deviations. -

This assumption is utilized in the derivatin of the transformation matrix (2. 5)

In order to specialize these equations for the problem of attitude control? It

is necessary to obtain an expression for the components of the reference system angular
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velocity (n x , y z) . If the earth were a perfect homogeneous sphere,, and if the
only force acting on the satellite was the earth's gravity, the satellite orbit would be
an ellipse whose spatial plane and major axis would be fixed in inertial space. Under
these conditions, (2 and f2 would be zero and 11 would be equal to the orbitalX zy

angular velocity (sometimes referred to as the pitch over rate) predicted by Kepler's
laws ofplanetarymotion. There are several perturbations which act on the orbit and
change x2 , t2 and (I from these idealized values. They are listed below:x y z

a) The earth is not a perfect sphere but is closer to an oblate spheroid.

b) The earth is not homogeneous.

c) Atmospheric drag.

d) Gravitational attraction of the moon, sun and other planets.

e) Electromagnetic forces caused by the satellite' s motion through
the earth's magnetic field.

f) Collision with meteorites and other particles.

The changes in angular velocity produced by the perturbations discussed above
are several orders of magnitude less than the orbital angular velocity which is in the

order of 10 - 3 rad/sec. These perturbations therefore have a negligible effect in the
equations of motion when compared to terms containing n2 . As a result, (2 andy x
[z are considered to be zero in the equations of motion. It is further assumed that
there is no time average force acting on the vehiclep since such a force would cause the

plane of the orbit to become time varying.

Setting (2 = h2 = Oz = 6 = 0 in the torque equations (2.20, 2.21, 2.22)Setn x x z z

yield:

b XbLxz y z y bz x y y

+ x y ] (Z.2 3)
zy x y

T. -- I0y +f+(II- [ee - 0 n
Jb Yly y x b  z b ) lxZ x x y (2.24)

z z y x zy2

Tk b = I b " z - fy - 6x fy] + I - b[ x 0 + 0 ( 2b b(-- xb) y xy (225

+ ( +0 E2 z
Z y y z YJ
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Further simplification of Eqs. (2. 23), (2. 24), (2. 25) can be obtained if the
order of magnitude of the various terms is estimated.

1) Qy is taken to be 10- 3 rad/sec. This corresponds roughly to a ninety

minute, 400 mile high circular orbit.

2) An estimate of the angular acceleration can be obtained from a simple example.
Consider a 1000 pound drum shaped satellite (see Fig. 2-3) which is 4 feet in length
and 4 feet in diameter

D=4'
Zb

Fig. 2-3 Drum Shaped Satellite

For a cylindrical satellite

xb Iy =m (12 + 3R2 (2.26)

r z -1 mR2  
(2.27)

b 2

Where Ixb yb and Iab are the polar moments of inertia about the Xb Yband Zb

axes of the body.

m is the mass of the satellite in slugs.

I is the length of the satellite in feet.

R is the radius of the satellite in feet.

Calculation of the moments of inertia yields:
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I a I =n7Z.5 slug - ft. 2 (2.2)
"b Yb

I = 62.2 slug - ft. 2 . (2-29)

It will be assumed that a sinusoidal disturbance torque of amplitude
80 dyne - cm is applied to the vehicle with a radian frequency of n0y (10 " 3 rad/ Ree)

about its Zb axis.

Tdkb = 80 sin 10- 3t dyne-crn (2.30)

Converting to ft. - lbs. yields:

Td k 5.9 x 10"6 sin 10 3t ft - lbs. (2. 31)

Assume for the purpose of estimation that the elementary equation

Td 1 = Iz b "z (2.32)

applies.

Therefore the angular acceleration is given by

dkb .7 3 rad

z = " -0.94 x 10 . sin 10 t- 2  (2.33)
z b  sec

The maximum value of the angular acceleration about all the axes is seen to be about

10
7 rad/sec

2

0 y = 10 . 7 rad2 (2.34)
y sec

3) An estimate of the angular velocities and angular deviations can be obtained

by integration. Integrating to obtain the angular velocity and deviation, one obtains

= - 10 . 4 cos 10-3t (2.35)

6 = - 10" 1 sin 10 3t (2.36)

Therefore the estimate for the maximum value of the angular velocity will be

10 - 4 rad/sec.

= = 0 0 4 rad/sec (2.37)x y z

and the estimate for the maximum value of the angular deviation will be 0. 1 rad

0 = = 0 = 0. 1 rad (2.38)x y z
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The effect of damping on the vehicle will cause these values to be smaller than those

used for the estimations.

Substituting the estimated values into equations (2. 23), (2. 24) and (2. 25)

and deleting the negligible terms, (a term will be considered negligible if it is at

least one order of magnitude smaller than the other terms), yields the final set of

equations of motion for a body in a general elliptical and planar orbit.

T . = 1 + o y + y]+(Iz 0 jy 2 ]b b y (2.40)

Tb-- I[y y]+(I b - z [ -x o x x ay+ z 4 z0y - 0 x0 z y ]Tkb =zb + y (Iyb  xf2 + 0 il 2 (2. 41)

E) Inclusion of the Gravity Gradient Torque

It is essential to understand that the left side of equations (2. 39), (2.40) and

(2.41) represent the components of the total external torques applied to the body.

I i w pog.iIrm op ITpA.g 1guLWsUg

PULL 9ATILLIIE

UNgTAgLU

TO CINYIS OF 9ANT"

Fig. 2-4 Mechanism of Differential Gravity Torque



In general, the total external torque applied to the vehicle is composed of disturbance

torques and control torques. It is advantageous to explicitly include the expressions

for the control torques so that the only torque appearing on the left side of the

equations are the true disturbance torques.

Differential gravity is a possible source of a control torque. The mechanism,

by which differential gravity can he utilized to provide a control torque, can be

qualitatively demonstrated with the aid of the following simple example:

Consider the dumbell shaped vehicle as shown in Fig. 2-4. The difference in

force acting at its enis will cause a small torque tending to align the longitudinal

axis of the vehicle along the geocentric vertical. As the satellite orbits the eal'th a

torque is thereby produced tending to keep the btellite so aligned. The positions of

stable and un-stable equilibrium are also shown in Fig. 2-4. It is of cardinal

importance to ;ealize that differential gravity alone can be used as a mechanism for

keeping an axis of the satellite aligned in the general direction of the earth. Without

damping however, the poles of the system will lie on the imaginary axis and therefore

a disturbance torque will cause the vehicle to oscillate.

A derivation for the differential gravity torque, for a sufficiently general

body, is given in Appendix C. The results of the derivation are repeated here for

convenience. For an elliptical orbit

3 g R2 1
Tdg po3 [b x(Izb Iyb) + Jb ey (Iz I XbJ (C22)

and for a circular orbit

T dg = 3y 2 [ib 0x (Izb - y) + Jb (y (Izb- I)] (C23)

It is immediately seen from these equations that the component of the gravity gradient

torque about the Zb axis of the body is zero. Therefore, differential gravity cannot

be used to prevent drift about the Zbbody axis. It is seen from either equation (CZZ)

or (C23, that differential gravity introduces a component of torque on both the Xband

Yb axes of the body that is proportional to the displacement angle about that axis.

Since the behavior of the differential gravity torque on both the Xb and Yb axes are

similar, only the component along the Yb axis will be considered.
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Two situations are of interest:

1) 1 <I (2.42)
xb zb

2) 1 < I (2.43)zb xb

Consider case (I)

Tdg.= + 3 Q 2 "x1z XbI (2.44)
3b y'X~

I

It is seen from equation (2.44) that the differential gravity torque is in the same

direction as the angular displacement. This clearly represents an unstable

configuration since once a disturbance torque produces a small angular displacement,

differential gravity will cause this angle to increase.

Now consider case (2)

T 3 S2 2Gil1-Il1 (2.45)
dg.b y I zb xb(

In this case differential gravity is in the opposite direction of the angular displace-

ment. Hence if a disturbance torque produces an angular displacement, differential

gravity will tend to restore the vehicle to its unperturbed position. For this configu-

ration, differential gravity introduces position feedback much in the same manner

as a body coupled to a spring. Therefore, it is of utmost importance that the moment

of inertia about the Z6 axis of the body be less than the moments of inertia about

both the X band Y baxes of the body.

From equation (C 22) it is seen that the total external torque on the body is

given by 2
3 g Re2

b P0O ~

TJb = Td. + 3 y Zb- xb(2.47)
Jb Po

Tkb = Tdkb  (2.48)

where Td is the total torque on the body less the differential gravity torque.
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Substituting equations (2.46), (2.47) and (2.48) into equations (2. 39), (2.40) and
(2.41), and bringing the differential gravity terms over to the right side of the

-uations yields:

T d 1 =Ixb [6. +0. y + 6 . 0y] + (I zb- I Y
3g s R e (2.49)

p0

Td =+IF[+ +(I -Ib)[x -O 6 + e
bb Yb Y 

x x y z z y
- e 8 n (.5 ey0)

Tdb b x z6y °16 [ y +zy2] (2 91)

The corresponding equations of motion for a circular orbit can be obtained

by setting f) = 0 andY

3g s  R e22_ = 3 11 (C.16)

P3 Y

Td I-x [ p + (Izxy] +(I - Iy z.b y 4 0x l21 (2.52)d b b b Y

T d Ib yb Y+(I - z -x x y z z y (2.53)

e 0xz 2 +3 0 yfl21
T~~~~~ dO b[z-6x y Iyb Ib [n y +O 1(.4

Equations (2.50) and (2.53) can again be simplified ii order of magnitude approximations
a re considered. Using the estimated values given in equations (2. 37) and (2. 38) it

is seen that equation (2. 50) simplifies to 2

TdJb = I 0Yb +6y] + - I sP e (2.55)

and equation (2. 53) simplies to

T -d= IY 0 + 3(1xb - Izb ) ) y 2 (2.56)b by Kb y
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It should be noted from equations (2. 49), (2. 51) and (2. 55) that the
expressions for Td. and Td are linear, cross coupled, time varying differential

1b
equations that depend on 6 and C and their derivatives but not on 0 and itsx z y
derivatives. Therefore, 0 and 0 can be determined from the distur.bance torquesx z
about the Xb and Zb axis without involving the disturbance torque about the Yb axis.
Equation (2.55) is a linear, time varying differential equation that only involves 0

y
and its derivatives and does not depend upon the angular deviations about the other two
axes.

As an aid to obtaining an insight into equations (2.49), (2.51) and (2.55), they
are put into the following form, and from this form, a signal flow graph can be
easily constructed. (see Fig. 2-5 and Fig. 2-6)

Td. e- ~ (~ y). 3gsRe 2\)
Ib 0 Jzb I(Y

I z Y _ ) b" - (2.57)

xb "Y yP 0

. Tdjb x b z b)y gsRe 2

6 1 - -b - 3 - 3  (2.8)
Iyb  IYb  '

z Id 6 Xiy +x j2 ( + Oz 0 e(21 (2.59)
zb zb

Figure 2-5 relates the output angles 0 and 0 to the torques about thex Z
Xb and Zb axes, and Fig. 2-6 relates 6 to the torque about the Yb axis.Y

With reference to Fig. 2-5, paths PI and P2 represent position feedback
terms due to the orbital angular velocity of the vehicle. If I Yb > I and I > I b

the feedback produced by these paths will be such as to oppose a displacement
produced by a disturbance torque. Paths P3 and P 4 are also due to the orbital
angular velocity of the satallite about the earth. These paths introduce feedback
depending on the error rates {6x and z) . Unfortunately these terms do not
introduce damping because they appear in the wrong equations. For an elliptical
orbit, the angular momentum of the vehicle becomes time varying. The derivative
of the orbital rate (0 y) gives rise to cross coupling between, the Xb and Zb axes
as shown by paths P5 and P 6 . With reference to both Figs. 2-5 and 2-6, paths P 7
and P8 are seen to introduce position feedback on the Xb and Yb axes. These are
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the result of differential gravity and, as was previously shown, the feedback will be

negative about both axes if the moment of inertia of the body about its Zbaxis is

smaller than the moments of inertia about the other two axes. The corres ponding
flow graphs for a circular orbit can be obtained from Figs. 2-'5 and 2-6 by "etting

( equal to zero and
Y

2
gs Re 2 2

PO-3 S2 y (C. 16)

It is seen from the flow graphs that position feedback terms, for a suitable
choice of the moments of inertia, (I > I > I zb) can act as spring type restoring

torques about each of the axes of the body. The effective spring constant, defined

as the ratio of restoring torque to angular displacement, is given below for each of

the axes.

Kx = I Y ) [Iy2 + sRe] (2.60)

g 2

K M 3(1 - 1 ) R e (2.61)y Xb zb p0
3

Kz (,iy II )y (2.62)
Z (J b xb y

It is of interest to obtain some appreciat-ion. as to the order of magnitude of these

terms. Consider again the drum satellite of Fig. 2-3. Assuming a circular orbit
and using the moments of inertia calculated for this satellite, yields;

= 4 .11 x 10 - 5 ft. -lbs. (2.63)Kx ra-(263

K= 3Kx = 3.11x10 5  ft.-lbsy x ra (2.64)

K =0z
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F) Solution of the Equations of Motion for a Circular Orbit

Introducing Laplace transform notation into equations (2. 52), (2. 54) and

(2.56) yields:

T d . { s ) = I x b [ 8 2 x )  + 8 ( s ) y + b - b ) y

- 4 2 ' (2.66)

Td. (s) = I s 2 0 (s) + 3(1 - 1 0 (s) 12 2 (2.67)
db Yb Y Xb zb Y Y

Tdkb (s) = zb Is2 0z (s)-s x (s) Qy1 + (Iyb - Ixb)a 0x (s)r2 y

+6 ( 72 (2.68)
+ z(s)Q yz]( 8

Solving equations (2.66), (2.67) and (Z. 68) one obtains:

Td (s) [s2 iZb+(Yb - Ixb ) y 11 -Td k(s) 1 y (Ixb1 Zb - Yb

0 (s) = (2.69)

2 ( + Ib )2 .21 + - I 4(1 - Iz ) n 2]1 2 (Iy - Ix ) 0 2

b Xj b Yb L b Yb zb YJL b ~b b Yj

Td. (s)

0 (s) d jb (2.70)
Y s2 ly b + 3(1xb - Izb ) n y2

e (s) = b b  . (2.71)
z s 2 n'y 2  (Ix b b I )2 + [s 2 Ix b 4 (Iy b- Iz ) b 2) [.2 Izb ( I y I 2 y 21

In order to better understand the nature of the response of the body to

disturbance torques, several examples will be considered.
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Example No. 1

The moments of inertia about the Xb and Yb axes are equal and greater than

ti-e moment of inertia about the Zb axis. An impulsive torque of strength 6 is

applied about thL Xb axis and no torques are applied about the other two axes.

Impulsive torques are characteristic of meteorite impacts.

When appropriate substitutions are made in equation (2. 69) one obtains for

Sx(s)

26
I

xb b

F4 2b zb (273

0 1

xb

Since I > Izb the poles of 0x(S lie on the imaginary axis and the system will

deviation will increase with time. For I > I 'xb zb

0 y

xbx

Ie re w be a7 p l of 1 (s I n th r g h l p a an th angu
6

8(t) =60(2.75)

yX

Z ays4 +fb- 3 I"s -3! + s2(1 (4 -31b)



24

Therefore for I > Ixb zb

6z(t) ([1 - 3 1 cos Wot ]U(t) (2.77)

b b

From equation (2.74) it is seen that the angular deviation about the Xb axis is
oscillatory with zero mean, whereas from equation (2. 77) it is seen that the deviation
about the Zb axis is also oscillatory but with a non-zero mean. The results of this
example are summarized in Fig. 2-7.

Example No. 2

The same satellite configuration as in Example I but now the impulsive torque
of strength 6 is applied about the Yb axis and no torques are applied about the

other two axes.

Substitution into equations (2. 69) and (2.7 1)jit is clearly seen that

0(t) 6 z(t) = 0 (2.78)

Substitution into equat,,,n (2. 70) yields for 6 (s)

1
T1-" 6

y (s) Yb (2.79)

2 Ixb - I z2 Zb
5+3 2

y
Yb

The refore

Sy(t) -.- 6 sin w It U(t) (2.80)
y ib

whe re

1 - zb (2.81)
Yb

(observe that w 1 < 0° ).

It is seen from equation (Z. 80) that the angular deviation about the Yb axis
is sinusoidal with zero mean. The result of this example is summarized in Fig. 2-8
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w
Ct

4 TIME
JI

Fig. 2-7 Response to an Impulsive Torque of Strength 6 Applied about the X b Axis

AXIS

> GX~9(t) z)0

w1
TIME

Fig. 2-8 Response to an Impulsive Torque of Strength 6 Applied About the Y bAxis
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Example No. 3

The same satellite configuration as in Example 1, but now an impulsive

torque of strength 6 in applied about the Zb axis and no torques are applied about

the other two axes.

Substitution into equation (2. 69) yields for OX (s)
Ox(S)

Sb 4y Xb zb )] (x4b 3 b

s 1 b J (2.82)
sI 6

+ X

y (4 xb sb xb +y (4 Xb Zbj

Therefore

t 6os Wt - 1] U(t) (2.83)
X 2 (4 - 3 1.)

Clearly frora equation (2. 70)

C (t)= 0 (2.84)

Substitution into equation (2.71) yields for 0 (s)

F 2 2] 66 I xs I + 4(1x I Zb
bs)  =b _ _ _ _

S2 Is s2 b [ s I2 b4 (4 1 x - 3  1  z b ) i2 YZ ] 2 + (4 x b -3 1I z) 2

I y (2.85)xb

4(1 X I )6 4(1- Iz)6

52 14i1 - 3 1 -1

S bb zb) Ib(Ib zb I b2 b b s -b zb 2
I I ,I

Taking the inverse Laplace transform, one obtains L- xb
r (41 -/ Ib 7

Sz (41 6in w ~0 t b bi t. U(t) (2.86)

(41xb - '1b L W bz -

It is seen from equation (2. (,) that when an impulsive torque is applied about the Zb

axis drift occurs. Differential gravity is not available to help stabilize the vehicle

about that axis. Furthermore, since it was assumed that I = I , the gyroscopicx b Yb
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action due to the orbital rate of the vehicle was not able to produce position feedback.

(see Fig. 2-5 and equation (2.62)). The results of this example are summarized in

Fig. 2"9 • If the moments of inertia of the vehicle were chosen such that

I > I > I , drift would not occur about any of the vehicle's axes as a result of anYb xb zb

inpulsive disturbance. Consider the following example. Choose the moments of

inertia of the vehicle such that ly b > I > I and

I xb+ I b I (2.87)

(For example: 1x = 1 'y, I = 1 1 1)• Equations (2.69), (2.70) and (2. 71) degenerate

to

Td (s)Is2 [z bI + (I - Ixb) 2 1y,
() [(s) \ (

Ix + 4(l -I-
I biZb yb xb y

Td. (s)

s Ib +( ib  z (2.89)

s b +3 1 b IZ b )

T d  (s) s 2 Ixb +4 (1 - I 2]d b  LIb zb) (2.9g0)

0 z(s)= [SZI xb +4(yb- I zb ) Q y ][ s 2 l  
b  + (I yb  - I xb 2 ZI

It is apparent from these equations, that when the moments of inertia of the body

satisfy equation (2.87), the three axes of the body are completely uncoupled. i.e. a

disturbance applied about one axis will only produce a displacement about that axis

and none about the other axes. Also, it is seen that no drift will occur about any of

the axes due to an impulsive disturbance. The free response consists of the sum of

two sinusoids of different frequency. This is certainly an improvement over the drum-

shaped satellite discussed in Example 1, 2, and 3.

We have seen in this chapter that, with proper vehicle design, the impulsive

response of the system consists of only oscillatory terms. Since the system is linear,

if an arbitrary torque is applied, the output will consist of terms of the same form as

the input plus the terms of the impulsive response. Hence for impulse-like torques,
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low level step torques and sinusoidal torques, drift would never occur. If damping

devices are incorporated into the system, (this can be done passively) it should be

possible to remove the oscillatory components and keep the vehicle reasonably aligned

with the geocentric vertical.. It is possible to utilize gyroscopes to provide damping.

In order to better ttnderstand how this can be effected, a simple analysis of

gyroscope damping will be presented in Chapter III.
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Chapter III - A SIMPLE ANALYSIS OF GYROSCOPE DAMPING

A) The Mechanism of Gyroscope Damping

The mechanism by which gyroscopic action can be utilized to provide
vehicle damping can be qualitatively explained as follows. When a disturbance torque
is applied to the vehicle, angular motion of the vehicle with respect to inertial space
will occur. This motion will cause relative motion between the gimbal of the gyroscope
and the body. If viscous damping at the gyroscope gimbal is provided (this can be
provided through electrical means) a damping term will couple into the equations of

motion of the body.

Vehicle damping can either be of direct or indirect nature. By indirect
damping, it is meant that vehicle rotation will produce precession of the gyroscope
which causes vehicle damping due to relative motion between the gyroscope and the
vehicle. If the vehicle rotation is about the precession axis of the gyroscope, direct
damping will occur. In this case the relative motion between the vehicle and the
gyroscope gimbal is brought about without the mechanism of gyroscope precession.

B) Analysis of a Simple Configuration Employing Indirect Gyroscope Damping
Indirect damping can be demonstrated with the following example.

Consider the geometry shown in Figure 3-1. In the geometry picturedsthe body is
constrained to rotate with respect to inertial space only about its X axis and the
gyroscope is constrained to rotate relative to the body about the Z axis of the body.
Consider a disturbance torque applied to the body about its X axis. This torque is
countered by the inertia torque of the body, the spring torque,and the gyroscopic torque.

%0

Td = 1x0 +K - H coso (3.1)d x x x g r g 31

Where Ix is the sum of the moments of inertia of the body and the gyroscope

about the X axis.

K is the spring constant

H r is the angular momentum of the gyroscope rotor.

The torque on the gyroscope about the Z axis is given by:

T g DO (3.2)

Where D is the damping coefficient between the body and the gyroscope gimbal.
This torque, (3.2), is countered by the inertia torque of the gyroscope and the
gyroscopic torque.
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Fig. 3-1 Configuration to mustrate Indirect Gyroscope Damping
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T -D6 = Ig +0 x Hr cos g (3.3)
g g g x r g

where Ig is the moment of inertia of the gyroscope about the Z axis of the body.

Equations (3. 1)43. 3) can be linearized for small angular deviations.

T= I +K - ; H (3.4)
d x x x g r

-DO = I 0 +6 H (3.5)g g g x r

Introducing Laplace transform notation to these linearized equations yields:

Td(sl = Ix s 8x(s) +K ex(s) - Hr s g (s) (3.6)

- Ds 6g(S) = g s2 ag(S) + Hr s 6xlS) (3.7)

Solving for Ex(s ) in equation (3.7) in terms of 0 (s) yields:

-H
g D + s Ox(s) (3.8)

g

Substituting into Equation (3.6) yields:

Td(s) [D + a Ig] = [,3x g + s Dx +s(KI +H Z) +K D] (3.9)

The characteristic equation of the system is therefore

3 sZD+s(K I +H) KD
+- =0 (3.10)

I I I I Ig x g x g

The stability of this system can be demonstrated by applying the Routh stability

criterion. Consider the following third order equation.
3 s2(.]]

as +bs +cs+ d =0 (3.11)

corresponding to this equation, the Routh array is

a c

b d

bc-ad

b

d

If the coefficients (a, b, c, d) of equation (3.11) are positive, a necessary and
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sufficient condition for stability is that

b c - a d> 0 (4. 121

applying this condition to the characteristic equation (3. 10) yields:

ID(K 1 +H r2 1 x  K D> 0 (3. 1 3)

which simplifies to

I DH 2>0 (3.14)

which clearly is always satisfied. Hence stability of the system is assured.

Intuitively this is to be expected.

Since the characteristic equation (3. 10) has only real coefficients,

the set of roots can only be of two types, i.e.

I) three real roots

2) one real root and a pair of complex conjugate roots.

It is seen from the characteristic equation (3. 10) that the sum of the roots is given by:

rl +r 2 +r 3  D (3.15)

where D is the damping coefficient g

I is the moment of inertia of the gyroscope
g
rip r 2 , r3 represent the roots of the equation

Since the imaginary parts of the complex conjugate roots cancel on

addition

Re(r )+ Re (r2 )+ Re(r 3 )= - (3.16)
g

where Re(.i) represents the real part of the ith root.

For a fixed gyroscope moment of inertia (I and for a fixed damping

coeffieient (D), the sum of the r-eal parts of the roots is constant. As K, the spring

constant, and H r , the angular momentum of the rotor are varied, the roots of the

(haracteristic equation must migrate such that the sum of their real parts remains

constant. As some of the roots migrate toward the left, the others must move toward

the imaginary axis. This strongly suggests that optimum damping is attained, i.e.

steady state is attained in minimum time, when the real part of all the roots are equal.

This condition can occur in two ways.

i) a third order pole on the real axis (see Fig. 3-2)
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ii) a real pole and a pair of complex conjugate poles all with the same

real part. (see Fig. 3-3)

Im Im

+JWd

--0"

M-R ReUTT -0'

Fig. 3-2 Third Order Pole on the Fig. 3-3 Real Pole and a Pair of

Real Axis Complex Poles

Consider case (i) where a third order pole on the real axis occurs.

For this case, the characteriqtic equation (3. 10) must reduce to the form

3
(s +o) = 0 (3.17)

Expanding, and equating to the expression for the characteristic equation (3. 10),

yields:

s 2  2 3 3 D 2 (KIg Hr2 KD(s 3+ 3v s + 3a. 2 s +. = s + T" + ( g + sr + T= (3. 18)

g x g x g

Equating coefficients of like order terms yields:

D (3. 19)

T-
3 II r (3.20)

x g

3 KD
=TT (3.21)

x g
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Solving for T, H and K yields:r
a D (3.22)

g

H r = - g (3. 23)

I D
2

K = X (3.24)
27 I

Clearly, for a fixed D and I these equations are parametric in I . Forx g

a specified I and g , a, , H and K can be plotted as a function of D In orderx t r

to obtain an appreciation for the order of magnitude of a, H and K , graphs arer2
drawn as functions of D for a body whose moment of intertia is 27.7 slug-ft. 2

('ee Fig. 3 A) . The moment of inertia of the gyroscope will be taken as one percent

of the moment of inertia of thewlicle. (Ig = 0.3 slug - ft. Z). In a satellite vehiclejit

is of utmost importance to keep the gyroscope as small as possible so that more data

gathering payload can be included. The range of D chosen is from 0. 5 x 103
-3 bi tad

to 4. 0 x 10-3 ft. -lb / " ' -. These values are typical of the damping attainable in a

gyroscope. It is seen from Fig. 3"4 that a and H r are linear functions of D,

whereas K varies with the square of D - In order to obtain an estimate of the

settling time of the syslenit is necessary to look at its free response. The free

response of a system, which has a third order pole on the real axis, is of the form

O(t) = (K0 +KI t 2 t) e-a t (3.25)
-4

It is clear that the term K eat will decay to e or 2 %of its maximum value when0

4
t = sec. (3.26)

The term K1 te -t will decay to e"4 of its maximum value when

-= e (3.27)

The solution of this equation yields:

t sec. (3.28)

S-art -4
The term K2 t e will decay to e of its maximum value when

2 -0r t 4 -6= -e e (3.29)
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The solution of this equation yields:

t= sec. (3. 30)0*

To see which term predominatesit is necesary to consider the transfer function of.

the system (3.9) . Since the system has a third order pole on the real axisj the transfer

function becomes

(D + s 1
ex(S) _ s -I) Td(s) (3.31)

Ig (s +a)3

The free response of the system is given by its response to an impulse torque

(Td(s) = 1) • For this torque

D +sI
0 (s) ix -g (s 9--0. (3.32)

Taking the inverse Laplace transform

6x(t) = rte " ' t U(t) +D - ort U(t) (3.33)
x xg

For D 2 x 10 3 ft-lbs rad

I = 0.3 slug-ft.
2

g

I = 30 slug-ft.
2

3(t) = 33. 3xl -te 2 .2
2x lO -3 t  7 2 -2.22xlO 

3t (3.34)
0 () 3 .3xOt-.U(t) + 74x 10- t e "2  U(t)

-3-2.22xlO-3tut

Clearly,,the term 33.3x103 t e U(t) predominates, hence it will be assumed

that the system damps in 6.9 time constants. In Fig. 3-5 the settling time is plotted

as a function of the damping coefficient. The time is represented as a pert entage of a

90 minute orbit.

It will be instructive to sketch the root-loci of the system as a function

of the damping coefficient (D), the angular momentum of the rotor (Hr), the spring

constant (K), and the moment of inertia of the gyroscope (I ). From Fig. 3-4 it is

seen that when I = 30, I = 0. 3, a third order pole occurs on the real axis at
x g

a= - 2.22x10 " when H = 10.9x10 " 3
, K = 49.4x10 "  and D = 0.002 • In sketching

r
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the root-loci~each of the parameters will be in-turn varied while the remaining

parameters are held fixed at the values given above. Thereforefor each of the root-

loci, all the branches will coalesce at s = - 2. 22x10 "3

a) Root-locus as a function of the damping coefficient (D). (See Fig. 3-6)

The characteristic equation (3. 10) can be factored into the form:

(s3 +bs),(, +D(a 2 +c) = 0 (3.35)
s (62 +~)

where

a /I (3. 36)

KI H
g

b =, I 1 (3.37)

x g

c = 'K (3.38)
I r
x g

The roots of the characteristic equation (3. 10) are therefore seen to satisfy the

equation

D(a s 2 + c) = (3. 39)

s(s 2 + b)

The poles and zeros of the expression on the left side of equation (3.39) are given by:

p1 = 0 + J

P29 P3 = t j /' = -  (3.40)
x xg

Z1 + Z = = (3.41)

Substituting the chosen values yields:

p1 = 0

P2 ' P 3 = j (3.86 x 10 3 ) (3.42)

z1' z 2 = -j (1.29 x 10 3 ) (3.43)

The root-locus can now be easily constructed.

At D = 0, the poles of the system, are as expected, on the imaginary
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axis, and the system is unstable. Maximum stability occurs when

D 2.0 x 10"3 ft. lbs. For this value of D , a third order pole exists on thera d/s ec.•

real axis; the values of H , K, and I were chosen so that this would happen. Asr g
D is increased beyond this value, the free response of the system deteriorates. It

should be noted that for very large D, two of the roots return to the imaginary axis.

This occurs because for a very large damping coefficient, relative motion between

the gyroscope gimbal and the body cannot occur and thus the system behaves

as a rigid body.

b) Root-locus as a function of the angular Momentum of the rotor (H r) (see Fig. 3.-7).

For this case the characteristic equation can be factored into the form:

(s +as +b q +d) I + 3 s r =0 (3.44)Is 3  a s +b d) + a s +b s + d

D

where a = - (3.45)
g

K (3.46)bI=-
x

c 1 (3.47)
x g

d = KD (3.48)
x g

For the chosen values of D, I ,and K, the poles and zeros of the

expression

csH 
2
r (3.49)

s +a s +b s+d

become
zI =-0 ( .'.*)
Z1

P1 = -6.7 x 10.3  (3.51)
= -3

P 2 . P 3  2 t j (1.29 x 10
- 3

It is noted from the root-locus plot (Fig. 3 -7) that the damped radian frequency

increases as H r increases. This is to be expected since as can be seen from the
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characteristic equation (3. 10), the coefficient of the linear term is given by

K + Hr (3. 52)
x x g

Therefore, H affects the system in the same manner as the spring term. Hence as
H r increases, the system becomes "stiffer" and therefore the damped radian

frequency increases.

c) Root-locus as a function of the spring constant (K) (see Fig. 3-8).

For this case the characteristic equation (3. 10) can be factored into the

form:

(a3 + K(c a +d) (
e +as bs (3.53)

D

where a - T (3 54)
g

H
2

b r (3 55)
x g

c 1 (3.56)
x

d = D (3.57)
x g

For the chosen values of D, Ig and H , the poles and zeros of the
expression

K(c s + d) (3.58)

3+a s Z +b s

become
z I = - 6.67 x 10- 3  

(3.59)

p1 = 0 (3.61)

P2' P3 = " 3.34 x 10- 3 + j (1.37 x 10- 3)

For large values of K the characteristic equation (3. 10) reduces to
3 2 D K K D = 8 D) (2 +K\

-- ++ +I
g I x g 9 g (3.61)
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For large K, the system will have a pole on the real axis at s D- - and will
9

oscillate with a radian frequency of w K Hence as K is increased,the natural
x

radian frequency increases, and an undamped oscillatory mode is approached. This

is to be expected since as K is increased, the system becomes " stiffer" and

more energy is stored in the spring which will take longer to dissipate.

d) Root-locus as a function of moment of inertia of the gyroscope (I ) (see Fig. 3.9)

For this case the characteristic equation (3. 10) can be factored into the

form:

(s +b s) a +cT_ (3.62)

where a = D (3.63)

b K (3.64)

x

H
2

r
C x r (3.65)c

x

d K D (3.66)
x

For the chosen values of D, H r and K the poles and zeros of the

expression

1 as +cs+d (3.67)
g s(s 2 + b)

become Pl = 0
(3.68)

P2 # P 3  = "j (1.29 x 10 "3)

Zip z - 0.99x 10- 3 +j (0.82 x 10- ) (3.69)

When the moment of inertia of the gyroscope becomes very largethe characteristic

equation (3. 10) reduces to

+ 2K) = 0 (3.70)

X
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The roots of this equation are

= 0, jK (3.71)
1=/ x

Therefore, as I increases the damping of the system decreases because the
ggyroscope precession rate becomes small and relative motion between the gyroscope

gimbal and the body is curtailed.

Now consider case (ij) where optimization is obtained with a real pole and

a pair of complex conjugate poles all with equal real parts. For this case, the

characteristic equation (3. 10) must reduce to the form:

(s +a)(s + a - j Wd)(s + a- j + j d) =

(3.72)
3 2 2 2 2.

s + 3rs +(W +2o- )s 0-t

whe rW 2 2 2 (3.73)
on to +o-(3d

2 2
Clearly a cannot be made larger than w n putting an upper bound on the damping

coefficient that can be used in this type of optimization. Equating expression (3. 72)

to the characteristic equation (3. 10) and comparing like order terms yields:

D- = 3o" (3.74)

2= 2 n 2 (3.75)
I I H n

x g

2 K D (3.76)
n = IF

x g
2

Solving for wn yields:

2 3 K (3.77)
n ="= x

It is noted from the above equations that three independent quantities must be specified.

K and I will be fixed, arid H r, (r, and w d will be obtained as a function of D. As in the
previous case, the moment of inertia of the body plus gyroscope (I ) will be taken to be

2 x
30-slug-ft. and the moment of inertia of the gyroscope will be taken to be 1% of I or2x

0. 3 slug-ft. 2 K will be chosen for convenience to be 10-5 ft. lbs.. Corresponding to
2 0-6 rad) 2  radthis value of K, wn 1 (;-c and the upper bound for D is
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0.9 x 0 - ft.-lbs. UighsvleHa
sc Using these values, H a-, and d are plotted as a functionrad/sec. r

of damping. (see Fig. 3 -10).

The free response of a system that has a pole on the real axis and a pair

of complex conjugate poles, is given by:

O(t) = KI e - T t +K 2 e " t Cos(W dt + (3.78)

The settling time of this system is clearly

ts = 4 (3.79)
T

In Fig. 3-11, the settling time is plotted as a function of damping coefficient as a

percentage of a 90 minute orbit. Comparing Fig. 3-11 with N~g. 3-5 one sees that

faster settling times can be obtained for the situation employing a pair of cornple"

poles. This is accomplished at the expense of permitting the system to ring while it

settles.

As was done previously, the root-loci of the system will be sketched as

a function of the damping coefficient (D), the angular momentum of the rotor (Hr),

the spring constant (K) and the moment of inertia of the gyroscope (I ). From Fig.

3.-10 it is seen that for I = 30, I = 0.3, K = 10 -  the complex poles and the realx g 304
pole will have equal real parts when D = 5 x 10 , H = 3.41 x 10 . It is alsor

seen from Fig. 3-10 that corresponding to these parameter valuesa= .5.55 x 10

and w = 0.835 x 10 - . In sketching the root-lori, Pch of the parameters willbe
in-turn varied while the remaining parameters are held fixed at the values given above.

a) Root-locus as a function of dampitig coefficient (D) (See Fig. 312) .

The characteristic equation (3.10) can be factored into the form of

equation (3.35). Substituting the chosen parameters into equations(3. 4 0) and (3.41)

yields:

= + (3.80)
P 2 ' P3 = j(1.Z8x 10 - )

z 1 , z 2 = tj(O. 5 7 x 10 - 3) (3.81)

At D = 0 the poles of the system are on the imaginary axis and the

system is unstable. As D becomes very large, two of the roots return to the

imaginary axis causing the free response of the system to deteriorate. As in the case

of optimization with a third .. er polethe system begins to behave as a rigid body.
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When D = 5 x 10 4 all the roots of the characteristic equation have oqual real parts.
This is the approximate value of D where optimum damping occurs. An examination

of Fig. 3 -10 indicates that the root-locus appears tangent to a =-5. 5 ' x 10-3 . In
actuality however, there is a range for D where all the roots of the characteristic

equation lie to the left of the line (r- - 5.55 x 10 3 
. This can be shown in the

following manner: (s4-1) is substituted for s in equation (3. 10) thereby increasing

all the roots of the characteristic equation by Ial - The result".ng equation is:

3+-,
S3 + s 2(71I + +s(5-' 2 T +w2

2 n (3.82)

+ DIoin 2 = 0

g g

If for some range of D all the roots of this equation lie in the left-half plane, then for

that range of D, all the roots of the characteristic equation (3. 10) must lie to the left
-3of the line a = -5.55 x 10- .

Applying the Routh test to equation (3. 82),it is seen that the values of D

which place the roots in the left-half plane must satisfy the inequality

2br D 2  2 Wn 10( 2 32+ +D,-- n +.a3 + 12w+o t"n > 0 (3.83)---1 I _g2)Y--- I

If the left side of the above expression is set equal to zero, and the resulting

quauratic equation in D is solved, either

1) a pair of complex conjugate roots

2) two equal positive real roots

3) two distinct positive real roots

is obtained. The first case indicates that all of the roots of the characteristic

equation never exist simultaneously on or to the left of the line a = -5.55 x 10-3

The second case indicates that for some value of D the complex pair of roots of the

characteristic equation lie on the line a- = - 5.55 x 10- 3, and the real root lie- either

on or to the left of the line. The third case indicates that there is some range of D

where all the roots of the characteristic equation lie to the left of the line

a- = - 5.55 x 10 3 . For the equation under consideration, the two roots are indeed

positive and distinct.

D1  Ig( + (3.84)

D 2 =i Ig (3.85)
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Hence it is assured that there is a range of D where a better settling time, than

predicted by the optimization procedure, is possible. From Fig. 3-.12 it is obvious that

the difference is slight and the optimization procedure will give very close to the best

possible settling time. The reason for the optimization procedure not yielding the

smallest settling time is that the procedure assumed that the sum of the roots remained

constant. This is not true 'since the sum of the roots depends on D , and D is varying

(see equation 3. 16)

b) Root-locus as a function of the angular momentum of the rotor (Ir). See

Fig. 3-13).

For this case the characteristic equation (3. 10) can be factored into the

form of equation (3.44). Substituting the chosen parameters, equations (3. r0) and

(3. 51) become

z I = 0 (3.86)

p1 = - 1.667 x 10 - 3 (387)

+ -3)
P 2 ' P 3 = - j (0.575 x 10-

As H is increased, the damped frequency of oscillation increases. The explanationr
for this is identical to that given for the case of optimization with a third order pole

when the corresponding root locus was discussed.

c) Root-locus as a function of the spring constant (K), (see Fig. 3.-14).

For this case the characteristic equation (3. 10) can be factored into the

form of equation (3. 53) • Substituting the chosen parameters, equations (3.59) and

(3.60) becomes

z 1 =-1.67 x 10 - 3  (3.88)

(3.89)P'' P3 = 0.833 x 10 - 3 +j (0.77 x 10 "3 )

The analysis of the system, for large values of K is identical to that described for

the case of optimization with a third order pole when the corresponding root-locus

was discussed.
d)Root-lcxus as a function of gyroscope moment of inertia (I ). (see Fig. 3-15)

For this case, the characteristic equation (3. 10) can be factored into the
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form of equation (3. 62) . Substituting the chosen parameters, equations (3. 68) and

(3.69) become

Pi = 0 (3.90)
= -3

P 2 ' P 3  
+ j (0. 577 x 10

- 3

zi, z 2  - 0.387 x 10 - 3 +j (0.43 x 10 - 3) (3.91)

It is seen from Fig. 3-15 that there is a range of I where the response of the system
g

is better than that obtained by the optimization procedure. However, the optimization

procedure will yield a value which is reasonably close. The reason for the optimization

procedure not yielding the best result is that the sum of the roots depend on I andg
therefore, for a varying I , is not constant. (See equation (3.16)) - The analysis ofg
the system for large values of I is identical to that described for the case ofg
optimization with a third order pole when the corresponding root-locus was discussed.

C) Analysis of a Simple Configuration Employing Direct Gyroscope Damping

Direct Damping can be demonstrated with the following example. Consider

the geometry shown in Fig. 3-16. In the geometry pictured, the body is constrained

to rotate, with a spring type restoring torque, about the z axis of the body. The

gyroscope is again constrained to precess relative to the body about the z axis.

Consider a disturbance torque applied to the body about its z axis. In this case one

obtains
IfT I 6 ' +KO0 +D(0 z - g) (3.92)T d = Iz z +K z+( z - 69(-2

where I is the moment of inertia of the body about
z

the z axis of the body

K is the spring constant

D is the coefficient of damping between the body

and the gyroscope gimbal.

The torque applied to the gyroscope is given by

D(6 z - Cg)= I (3.93)

where I is the moment of inertia of the gyroscope
g

about the z axis of the body.
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Introducing Laplace transform notation, one obtains

T 2. z(S ) +K 0z(s) +Ds os(s) - Ds 5 (s) (3.94)d (sgz

and Ds z (s) - D s 0g (s) =Ig s2 E (s) (3.95)

Solving these equations for 6z(s) yields:

Td (s) [D +s Ig] = .(s) [63 iz I +s2 D (Ig + Iz ) +s 1g K +KD] (3.96)

Therefore the characteristic equation for a system employing direct damping is:

s + 9 s ; I) + i = 0 (3.97)
zg z z g

Applying the Routh stability criterion yields as a necessary and sufficient condition

for stability

D(Ig +I z ) K I - I Zg KD > 0 (3.98)

which reduces to
2

KDI >0

which is clearly always satisfied. Therefore the system is always stable. This was

intuitively expected.

As in the case of indirect damping, the characteristic equation (3. 97)

has only real coefficients. Therefore, the set of roots can only be of two types, i e

1) three real roots

2) one real root and a pair of complex conjugate roots.

The sum of the real part of the roots of equation (3.97) is given by:
D(I + I

Re(rl)+ Re(r.) Re(r3 =" I--T (3I0

z g

For a given body (fixed I z),and for a fixed D and I , the sum of the real part of

the roots is constant. This strongly suggests that optimum damping can be obtained

through the same procedures used for indirect damping. It should be noted that the

angular momentum of the rotor (H r) does not enter into the characteristic equation

(3.97), hence there are less parameters that can be adjusted to meet the required

constraints than for the case of indirect damping. It will be shown that neither of the

two optimization methods will yield any realizable results.
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Optimization with a third order pole on the real axis will be considered

first. The characteristic equation (3.97) must again reduce to the form of equation

(3.17). Therefore:

3 2 2 3 s3 s2 D(I 9+ IZ) +sK +KD(31)

8 +3oas +3a so+3 + I I K KD (3.101)
g z z z g

Equating coefficients yields:

3o D(I + Iz )  (3.102)
g z

2 K
34 K- (3.103)

z

3 KD (3.104). = (.T4-T-
z g

A soluti6n to the above equation is only possible if

1 = 8 1z (3.105)

Clearly, this is not a practical situation; optimization of this form is not attainable.

Now consider optimization with one real root and a pair of complex

onjugate roots. The characteristic equation (3.971must reduce to the form of

equation (3.72). Therefore:

3 s 2  2 +2T 2 ) s+r2 =s3 + s2 D(Ig + Iz)
n n Iz Ig

(3.106)
+sK +KD

z z g

Equating like order coefficients yields:

D(I +Iz)
3v I 1 (3.107)

g z

2 2 K (3.108)C.) + 2" =(318
n 7"

z

2 KD (3.109)o°n T=T
z g

Combining equation (3.107) and (3.109) one obtains

2 3K
wn T- (3.110)



61

Substituting equation (3. 110) into equation (3. 108) yields:

K 3K 2 (3.111)- - : r(311

Z g z

Since a- must be greater than zero,

K > 3K (3.112)

or

Ig > 21z  (3.113)

As for the case of optimization with a third order pole on the real axis, optimization
with a real pole and a pair of complex conjugate polesrequires the moment of inertia

of the gyroscope to be larger than the moment of inertia of the vehicle itself. This is,

of coursenot practical.

In order to obtain some appreciation as to the nature of direct damping,

root-loci of the system will be sketched as a function of the damping coefficient (D),

the spring constant (K) and the moment of inertia of the gyroscope (I ). The following

values will be chosen for the parameters:

-3 ft.-lbs.10 - 30 rad- c.

K = 49.4 x 10 - 6 ft. -lbs,/rad

I = 30 slug-ft.z

I = 0. 3 slug-ft.g

These values correspond to those used for optimization of indirect damping with a

third order pole.

a) Root-locus as a function of damping coefficient (D). (See Fig. 3.17).

For this case the characteristic equation (3.97) can be factored into the

form:

(s3 +be)l+D(as 2+C) = 0 (3.114)
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I +I
where a = g z

g z

b K (3.116)T
Z

z g

Substituting the chosen values, the poles and zeros of the expression

2
as + c as + c(3.118)
s(s +b)

become

z1 , Z - j (1.28 x 10 - 3 ) (3.119)

p1 = 0 (3.120)

P2 ' P3  j (l. Z9 x 10- 3 )

It is seen from Yig. 3-17 that very little damping is attainable. When indirect

damping was used, it was possible to obtain considerably more damping for the same

parameters. The reason for this is that in the indirect case, relative motion between

the gyroscope gimbal and the body was produced as a result of gyroscopic precession.

The velocity gain of the gyroscope, the ratio of precession velocity to input velocity.

is available to give a large relative velocity for a small input velocity. With direct

damping however, relative velocity between the gyroscope ginbal and the body is

the same as the input velocity, hence no velocity gain is present.

b) Root-locus as a function of the spring constant (K) (See Fig. 3--18)

For this case the characteristic equation (3.97) can be factored into

the form:

(a3 +as2) (+ K(bs +c) (3.121)

whe re D(I B +1I)

a = (3.122)
II
g z

1 (3.123)
z
D

c = T-7 (3.124)
z g
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Im

-6.74 -6.67 -. 035 Re 10

Fig. 3-18 Root Locus as a Function of the Spring Constant for Direct Damping
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Substituting the chosen values, the poles and zeros of the expression

(bs + c) (3.12)

sz(s +a)

become

z - 6.67 x 10 - 3  (3. 126)

Pi P 2 = 0
(3.127)

P3 = -6.74x10 
3

c) Root-locus as a function of the moment of inertia of the gyroscope (Ig)

(See Fig. 3-19).

For this case the characteristic equation (3.97) can be factored into the

form: form:1 ( bs2 + d) c

(s +as +cs) + 3.128)
s(1 82 +as + c

Substituting the chosen values, the poles and zeros of the expression

(bs 2 + d) (3.129)

s(s +as + c)

become

z 1 ,z 2 - j (1.29 x 10 3) (3.130)

p1 = 0 (3.131)

P 2 ' P 3  
j (1. 28 x 10- 3)

Comparing indirect damping with direct damping, it is seen that a much

higher damping coefficient is required to obtain a reasonable settling time for the

directly damped case. In a satellite vehicle employing a single gyroscope, whose

precession axis is along one of the body axes of the satellite, direct damping will

occur on one of'the axes whereas indirect damping will occur on another. If the

damping coefficient is chosen to provide adequate damping for the directly damped

axis, the damping on the indirectly damped axis will be well beyond the optimum

point, hence poor settling time about that axis will be obtained. This suggests that

either the gyroscope precession axis be offset from the body axes or several gyro-

scopes be employed so that indirect damping can be provided about each of the axes

to be controlled.
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In order to analyze the dynamics of a satellite containing internally

mounted gyroscopes, it will be first necessary to analyze the dynamics of a

gyroscope mounted, in an arbitrary position, within an orbiting vehicle. This will

be accomplished in Chapter IV.

Im

,Ol.29x1O
-3

J 1.28 x 10

Re

-. 033s10*

-J1.28 x i03

-J I. 29 x1 
'3

Fig. 3-19 Root Locus as a Function of the Moment of Inertia of the Gyroscope for
Direct Damping
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CHAPTER rV - GYROSCOPE DYNAMICS

It was noted in the examples at the end of Chapter II that an orbiting

vehicle would, at best, have only an oscillatory free response. Any practical .. tlicle

must, of course, have damping which reduces disturbance oscillations in a reasonable

period of time. Since a conventional form of damping, atmospheric drag, present

in vehicles which travel in the atmosphere, is not available, some other means of

damping must be provided. It was noted in Chapter III that a gyroscope with a

damping fluid constraint may be used to provide this damping. In this chapter the

equations of motion of a gyroscope mounted within an orbiting vehicle will be developed

for an arbitrary orientation of the precession and spin axes relative to the coordinate

system of the vehicle. From this general deriytbin special cases will be cited.

A) The Gyroscope Equatio.s for Symmetrical Design

The equations of motion of a gyroscope are developed in Appendix B of

this report. They are repeated here for convenience.

Tgi I + (I -I y) g - Hr g  (B.9)

g g i T k ggg Yg g g

T =I+I + (I - I ) oW. (B.10)
gj r y gi xg g gi gk

g g g

T = I zggk + (I - I x ) W to +H r (B. ll)~ g Y g gj g_ . r gi

g g g g g

where X , Y , Z are the principal axes of the gyroscope (Se(- Fig. B:l)g g g

Tg Tgj ' Tgk are the components of torque on the gyroscope along

g g g the X, Y, and Z axes of the gyroscope respec tvely

I , I , I are the polar moments of inertia of the gyros. ,pe along the
Xg yg Zg X, Y and Z axes of the gyroscope

gWi  w are the components of the angular velocity oui the gimbal
jg g 9 along the X, Y and Z axes of the gyroscope with respect to
g g inertial space

Hr is the angular momentum of the rotor

These equations are similar to Euler's equations of motion except that the

angular momentum of the gyroscope rotor introduces some additional terms The

angular momentum of the rotor will normally be held constant through the ,-e of an

appropriate speed control system. Therefore 1H can be taken to be zero. Ther

equations reduce to a particularly simple form if symmetrical design of the gyroscope

is assumed. (I I - I = I 1). In order to facilitate the analysis, symmetricallyg yg Zg g
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designed gyroscopes will be used throughout this report. It is anticipated that this

restriction will not cause a significant loss in generality. Making the appropriate

substitutions, equations (B. 9), (B. 10) and (B. 11) become

T IcJ -H w (4.1)
gi 9 g gi r gk

g g g

T I (4.2)g.g g g.g
J g 9 3g

T I +H (4.3)
gk g gk r gi

g g g

It is further assumed that the body, to which the gyroscope is affixed, is reasonably

aligned with the reference coordinate system so that the equations developed for

small angular deviations in Chapter II can be applied.

B) The Transformation Matrix Relating Body and Gyroscope Coodinates

In the derivation to follow in Section C,the gyroscope will be assumed

mounted at an arbitrary position within the vehicle. The coordinate system of the

gyroscope will be denoted by i , j and k where i is along the precession axisgyocoewilbednoeb g, jg an g g

of the gyroscope, j is along the angular momentum of the rotor and k is chosen

to form a right handed coordinate system. (See Fig. B-1). The gyroscope coordinate

axes can be related to the body coordinate axes through an appropriate array of

Eulerian angles. This procedure is similar to that used in Chapter II, (Section C),

where a transformation matrix, relating the body coordinate axes to the reference

coordinate axes was obtained. Though the transformation matrix, (2. 3) can be

applied to the present situation, it will not represent an intelligent choice. It is

advantageous to choose the set of Eulerian angles so that the location of the precession

axis fixes two of the Eulerian angles, and precession of the gyroscope causes only the

third Eulerian angle to vary. Examination of equation (2.3) reveals that if the trans-

formation matrix, developed to relate the body coordinate axes to the reference coor-

dinate axes, is used to relate the gyroscope coordinate axes to the body coordinate

axes, precession of the gyroscope will in general cause all three Eulerian angles to

change. Precession of the gyroscope represents a rotation about the i axis of theg

gyroscope; it would therefore be wise to perform this rotation last. The Eulerian

angles that will be used will be denoted by 4 , ( z and x • These angles are defined

by successive rotations of the gyroscope axes in the order y' ( z# x which rotate

the gyroscope axes from coincidence with the body axes into its actual position. (See

Fig. 4.1). These angles will be taken as positive when the sense of rotation is

equivalent to that of a right handed screw advancing in the direction of the axis of
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Zb

zg 1 o i

Yb Yg kg 0 coo y + sin y b

1 0-sin +ycoos0
Vg

Rb  Ay
9

Zb Z9

Ug 1g cos 0 -sin zx 0

0 

z

b kg 
0 , 0 

b

19 + sin~ 0 + cos

A x

i 
z

OZ,

Zg4

Scoo j sin x 0

Y9 (:kg) sin. Cos .) 0)

A
#5 x

Fig. 4-1 Transformation Matrix Relating Gyroscope and Body Axes
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rotation. Fig. 4-1 shows the three successive rotations and their corresponding

transformation matrices. The overall transformation matrix relating the components

of a vector in body coordinates to the components of the same vector in gyroscope

coordinates is given by

Jg jb

where

A = (Ax) (Az) (A) (4.5)

and
(4.6

Cos (P Cos 4z cos Ox sin 0 sinz -cos cosy sin.,
z y z 0- y z

+ sin cos y + sin x sin 4

-sin cos - sin 4 x sin y sin sin4x cosY sin +z

+ cos +x cos 4y + cos sin 40

sin sin y cos 4, cosy cos4

As for the transformation matrix relating the body and reference coordinates, matrix

multiplication is not commutative and must be performed in the order indicated. This

again signifies that the order in which the rotations are performed is of utmost

importance. It should be noted that the first two rotations, through the angles 4y

and 4z , determine the location of the precession axis of the gyroscope. Precession

of the gyroscope, merely changes the remaining Eulerian angle ,x •

C) The General Gyroscope Equations

The angular velocity of the gyroscope with respect to inertial space is the

vector sum of the angular velocity of the gyroscope with respect to the body and the

angular velocity of the body with respect to inertial space.

/Inertial = + ./Inertial (4.7)

g/space wg/body body/ space

The angtiar velocity of the body with respect to inertial space, in terms of body

coordinates, is given as

°b/I = b ib + .b + kb (4.8)

b Jb kb
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whe re

wb. = 
+  c: z 2 (4.9)

wb  - +£] (4.10)

Jb

' k - 0 x (4.11)
tkb z x y

These equations were obtained from equations (2.14), (2.15) and (2.16) by setting

1x = 12 = 0 • Using the vector transformation matrix, derived in the previous section,

(equation 4.6), one can express the components of the angular velocity of the body

with respect to inertial space in terms of gyroscope coordinates. The resulting

equation then becomes

b g +t g bk 9 k (4.12)
g J tokg

whe re

tobi sin bz (6 7 + 2y ) - sin 4)y cos z Elz - Y (='b y yy-xy (4.13)

+ cos COs z x + 0z S, )

Wb. = cos4 cos Pz (y +0y) + (cos x sin y sin 0 z  (4.14)

J +sin 4 ) x cos )) (OZ- C x y) + (_ cos cos 4)y sin 4),z

+sin 4 x sin 4 ) ( + C zS2y

W - sin cos4 (6 + y ) + (cos Ox Cos ytbk x z y yy(.5

g - sin qx sin 4 y sin 4,z) (0 - Ox Q y) + (cos qx sin 4,y

+ sin (b cos 4y sin z) z  + 0E zy)

Since the gyroscope is constrained to rotate, relative to the vehicle, about its pre-

cession axis (i ) , the angular velocity of the gyroscope gimbal with respect to the

body can be expressed as

W = (4.16)
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Therefore, from equation (4.7), the angular velocity of the gyroscope gimbal with

respect to inertial space is given by

w /inertial = wo i +w g +c. k (4. 17)
g space gi g gj g +gk

where

tgi = b +x (4.18)
1

g g

Wg = Wb. (4.19)
g.g Jg

W gk W bk (4.20)

g g

Differentiating the components of equation (4.17) with respect to time, yields the

components of the angular acceleration of the gyroscope gimbal with respect to

inertial space in terms of gyroscope coordinates. It should be noted that the location

of the precession axis is fixed for a given gyroscope orientation, therefore + y and

+Z are fixed constants and the only Eulerian angle that will vary in time is 10x
(This angle will vary as the gyroscope precesses).

Wgi = sin +z (0 + ) - sin y cos z ( - O x 12 " x  )

g +cos 4cos4 (E) +e Ei + e n + (4.21)

W ~ ~ zjgxs n4 x o z 6y + y z o o 1 y+1 y (4 22

w , sin~ csin (6 4, +fl;+cos iCos~ 4 (6 -)
4 x X Yz y y x y ygg + (- b sin x sin by sin b ' + xcos x cos y)( 0 z- (xfly) (.2

+ ( cos x sin y sin z + sin k cos y) (0 z - exfy - 6Jxfly)

+( sin 4 cos + sin + + to coo 4x sin 4y)(0 + 0 ny)

+ (-cos i cos y sin + sin 4 sin y)(6 + o +'y 91

x x y zy y x z y zy
W = (x Cos s x os z 6y + 0y) - sin s x co( )z  y

+ (- ;x x coo oy x cos oox sin ,y sin 4,Z)(Oz- x ny)

+ (cos x cos 4y - sin x sin 4oy sin )  -)(0 i- y - Ox ly)( 4 " 23)

+(-x sin co sin y + cos cos sin 4)(0 + 6 2)

+ (cos 0x sin * y + sin x cos y sin + z)(0x + Oz y + Gzy
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Substituting equations (4.18), (4.19), (4. 20), (4. 21), (4.22) and (4. 23) into equations
(4.1), (4.2), and (4.3) yields for the components of torque on the gyroscope gimbal
along the gyroscope axes

T i  = Ig[sin z (0 +0y)-sin y Cos , z (0 -x -x y) (4.24)

gL z y co4 z xy xI

+H [sin + os ( +)-(co x cos + - sin +x sin ySin +)ry y x y
(6z " ex - Q - (cos x sin 4 n , + sin Cos4) sin z)(0 x+( z0y)

z xyy y y z y
g I5

T Ig[- xsin4,xCOS4 d~z y+0 )+COS4,CO cos4 (9y+0) (4.25)

g + (-x sin 4)x sin 4,y sin 4)z + 4x cos 4)x cos ,y)(6)z - ex  y)

co + x sin y sin y z x y 0 x Y y

+ ( x nsi cos y sin z + x cos, x sin 4y)(O +0 z )

+(-cos + Xcoo4, sin 4, + sin t, sin +y)(e. +0e o + e n)3

• . (4.26)Tg = Ig [- COS 4xCos z(0y +y)_ ysinx Cos 4)z(O ) . 6)y
kg "( xsin +x cos 4 y + 4,x cos 4) sin sin 4,)(C 0 )

+ ( cos cos 4 - sin 4, sin 4, sin 4,)( 6 y" Q)x y x y z ZX y Xy
+ ( si " (fi x sin y + Cos4, cos 4 sin 4S)(6 +0o)

+ (cos x sin 4y+ sin4 cos4, sin Z)( +eo +ra)

+ Hr [sin 4z () + Q)" sin 4, cos 4, (0 0 0 &)

+ Cos4 Cos4 (6 +6 0 U)+4

It is now necessary to express the component: of torque on the gyroscope
gimbal in terms of the body coordinate axes. This is accomplished by utilizing the
inverse transformation of equation (4. 6)
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con *,x coos . z  - sin Ox cos (z sin z

con Ibx sin y sin +z - sin sin sin z  -sin Cos z
+ in lx co o y + Cos (x Cos 4 y

A-=

-coo *,x coo +y sin(b sin 41 cosy sin coo( cos

+ sin Ox sin (by + coo x sin y

(4.27)

Utilizing the inverse matrix,

T T

(T 

T

b A g (4.28)

T T

expanding and performing algebraic simplifications, one obtains for the components

of torque on the gyroscope gimbal along the body coordinate axes

Tg = Ig +" xsin0yc°S z(6y+ 1y) (6x +z y +z y) (4,J'

+(cos 4y cos $ x zi n ( " y)]

+ Hr [(sin .x cos 4)y +cos x sin (by sin z)(0y + y)

- cos 4)x Cos z (6z " 6 x y) + (cos 4 x sin+ y +

sin (bx Cos s, sin Z) $X]

T Ig[(O +y) + sin 4oz ;x + $x cos 4iy cooz () ) (4.30)

*x sin * y cos i xz (0x +  Hz y)] Hr (sin x sin y

-cos 4 x coo y sin + )ZlZ - 0x )-(sin x cosy y

+ cos x sin 0 sin (z)(0x + 0 z y) -Y sin, x cos )]
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T = -1 - os 6 cos 6 (C + z - v fl - x S2 ) (4.31)
T g L x Y z y y. xy xy

-sin (S cos 6 z  x +  x sin 6l ((x + (z n)

+ x x z y x

-sin 6 sin 6y sin 6 z), x + (- sin 4,x sin, y

+ cos 6 cos 6, sin )(C + y)]

The equacion of constraint relating the gyroscope precession angle (6. )
to the body angular deviations (0 x , 6y and 0 z) can be obtained from the fact that the

component of torque on the gyroscope gimbal along the X axis of the gyroscope is
given by

Tg i  -D ,x + Tc (4.32)

9cg

where D represents the damping coefficient

T c represents a control torque applied to the gyroscope.

Equating the right side of equation (4. 32) to the component of torque on the gyroscope

along the i direction (equation 4. 24) yields for the equation of constraint
g

-D x + T = Igsin 6 (,y +6y) - sin 6y cos 4,z  (4.33)

- C - + cos 4, cos z (C + C Q + Q C.)+4'Iz x y xy n y) ( x zy yx

+H r [sin dbx cos6 (0y + S)2- (cosb x cosd -sin 6

sin 6 sin 6 )(Cz - ;x Cy) - (cos 6x sin 6y + sin 4,x cos 6y
sin ( ) ( * +  C 02)

Equations (4.29), (4. 30), (4. 31) and (4. 33) are completely general. For

appropriate values of 6y and 6z the equations for any desired orientation of the

precession axis can be obtained. In Section D, the equations for several different

gyroscope configurations will be tabulated, though by no means will this list be

exhaustive.

D) The Gyroscope Equations for Particular Configurations

Although the gyroscope equations (4. 29), (4. 30), (4. 31) and (4. 33) are

completely general, it will be convenient to reduce the gyroscope equations for some-

%%hat more restrictive configurations. Several of the more important configurations

are. listed below.
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1) The gyroscope precession axis is located in the Xb Yb plane. (see Fig. 42)

For this configuration, 4y = 00 and the location of the precession axis

is determined by +~ " of course, determines the location of the spin axis.

Setting +y = 0 in equations (4. 29), (4. 30) and (4. 31) yields the equations for the

components of torque on the gyroscope when the precession axis is located arbitrarily

in the Xb Yb plane

*T9. = Igx + 6z hzy + zy + Cos z x- x sn z (0z_ 0 1x y (4.34)
ib +Hr [sin 4x (6y +y) - cos 4x cos +z (0z - ex12y)

+ sin4, sin , x

T = Ig[ Fy + y +sin)z +X +dxcos 4)z (6- 0 xy) (4.35)

+Hr [- cos 4x sin z(C z 0 12) - sin 4x (0x + 0 z1y

- sin 4x cos ]

T = Ig V x cos . z (6y +y) + 0z " ex - 12 (4.36)kb + sin (6 x+ y)] + H , C os y? Cos + ( 12 C C2
Lx osz y yz zx yz y

+ cos 4x x + cos 4, sin 4z (0y +1y)]

Setting 4y = 00 in equation (4.33) yields the equation of constraint.

- D x Tc = Ig[sin z (y +fy) (4.37)

+Cos4,~ (x z+6 + 6 )y)+ M

+ H r [sin 4, cos 4)z (6y + ) - cos +x (Oz - 0x 2y)

- sin 4)x sin 4,z (6x + Oz y) ]x z x
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Fig. 4-2 Gyroscope precession axis in the Xb Yb plane

k9 kb BODY SPIN AXIS
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Ib < 1PRECESSIGN AXIS

Fig. 4-3 Gyroscope precession axis in the X b Z b plane
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2) The gyroscope precession axis is located in the Xb Zb plane. (see Fig. 4-3)

For this configuration 4)z = 0 and the location of the precession axis is

determined by 0 •) Setting 4) 0 in equations (4.29), (4.30) and (4. 31) yields

the equations for the components of torque on the gyroscope when the precession axis

is located arbitrarily in the Xb Zb plane.

Tg Ig[- )x sin4) ( +y)+ + z 11 + 0 n + cos y 1(4.39)
12 y y y ) )x z y z y yx

b H inOx Cos ) (0 + fa Cos 4 (0~ -E)0 ) +Cossin i0 +
r y Yx x y

+ Hr [sin 4x sin y j z x  ) - sin 4)x Cos 4y (6X+ z 0y)

- xsin 0

T = 1 t- *x cos 4 y (Ey +y) + Ez -x n y - 0x f2y -sin y (4.40)
gk Hr[Cos +x (6x + Oz ny )+cos Ox cos 4y 4x "sin o x i n (y (6Y+n)1

Setting +z 00 in equation (4.33) yields the equation of constraint

-Dx + Tc = Ig sin y(6 7  0 x n y 0 y 14 41)

+cOS4y (0 + + +y 0 ) + +H sin4) (0 + y

- cos $ Cos,+40
2 - 0 x y) - cos sin 4)y (0x + , zny)l

3) The gyroscope precession axis is located in the Yb Zb plane. (See Fig. 4--4)

For this configuration 4y = 90 and the location of the precession axis

is determined by z . Setting Oy = 900 in equations (4.29), (4.30) and (4. 31) yields

the equations for the components of torque on the gyroscope when the precession axis

is located arbitrarily in the Yb Zb plane.

(4.42)
T 1 aI Cs+ 6y + Iy )+0x +.z ny +z ny- i (z-)X 12 Y)lTgb Igii" xcOSz( +0y)+' +ez fy +8 0'y -4~ xSin4)(-0,y

+ [cos +, in4, (8 +0 )-Cos4) cosO (0 -0 0 n)Cos4 +

T 1re +n sinin +x c coo +(o+ z0 ] +H sin ox(Oz.C3)
gib y ,y Z x zx z X] r[ y

b O -cs4 sin40z (6x + Oz0)-4) sin4 OxCos 4,zJ (4.43)
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Fig. 4-4 Gyroscope precession axis in the Y b plane
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Fig. 4-5 Gyroscope precession axis along the X b axis
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T 1g 9 [6 e - e x CoB 4) 4)O + 4 sin 4) (0 + 0 z 4.4
gkb  y x y z xx

+ H r [cos ,x cos 4) (0x + 0 z ) - sin 4x sin z 4, sin40(b y + )]

Setting 4y = 900 in equation (4. 33) yields the equation of constraint.

-D x  + T c  Ig [ s n ( ( 6y +"yC s y x X y )

+ + Hr [sin x cos 4z ( + ) + sin , sin 4)z (6z E)ry y x x xy
- cos 4x (0 + E

4) The gyroscope precession axis is located along Xb. (See Fig. 4-5)

Although the set of equations for this configuration can be obtained from

the general equations (4. 29), (4. 30) and (4. 31) by setting 4) = Oz = 00, they can alsoy
be obtained as a special case of (1) by sdtting z = 0'since, in that case, 4 y was
already taken to be zero. At any rate, the resulting equations are

Tgb = Ig t.x+ 0z y + 6z Qy + x]+Hr [.cos +x(6z_ 0 x y) (4.4)

+ sinx (y +fly))

(4. 47)Tg --g[ y+ay ,,x( 6z. Oxy)] -Hr[sin,)X(O x 12, +4)Tg9 b = g [O+0 y + x(z-0x1 sn 0x+z SZv+ O

(4. 48)
T g Ig [- x (dy +ny)+ V- o2 6£ l r

Setting 4y = O)z = 00 in equation (4. 33) or setting z = 00 in equation (4. 37) , yieldR

the equation of constraint.

- D4 + T =T, I+e 0 + b 12
'( X a y Z yx (4-49)

+ Hr [sin 4,x (C y +12y) cos 0x (z- Sfy)]

5) The precession axis of the gyroscope is along the Yb axis. (See Fig. 4.6)
As in (4), the set of equations for this configuration can be obtained by

setting 4y = 0 and o = 90 in the general equations (4. Z9), (4. 30), and (4. 31) or
as a special case of (1) by setting 4z* 90 . Either way, the resulting equations

are (4.50)

T Z z y x z- x y)]+ Hr[,in +x(;y+y + x)]
2 b ygexe 52 A01 ~ 0-
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gT b g fY6 + - H [c s x ( (4.51)
b +sin4 x (6

+ 0 ] .) )

T I -+

g x y x y Ox z y

b +Hr Cos + (+ + + 1 )]

Setting +y = 00 and z = 900 in equation (4.33) or setting +z) = 900 in equation

(4. 37) yields the equation of constraint.

- D +x Tc =Ig[y+ h y +)x (4.53)

- Hr [cos +x (6z ex 0y) + sin 4x (6x + 0z y)]

6) The gyroscope precession axis is along the Ab axis. (See Fig. 4-7)

The set of equations for this configuration can be obtained from the

general equations (4. -29), (4.30) and (4.31) by setting +) = - 900 and +)z = (,

or as a special case of (Z,) by setting +4y = -900 since +z is already zero. At any

rate, the resulting equations are

T - Ig 'x (y + fy) + 0 x + Oz 0y + oz iy (4.54)

~H lCos +x(;z - ex fly + ;x)]

Tg I6 + n ( +60)n Hr [in 4(z-Ox 0 + )1 (4. 55)
gib

TY
b g Y y x

T g b I9 z - (x C)y -ex Oy + Ox  + Hr [cos +)x (;x + e 7e ) (4.56)

b sin 4) (4y + y)I

Setting 4) = - 900 and 40z = 00 in equation (4. 33) or setting y) - 900 in equation

(4.41) yields the ,quation of constraint.

-D + = - - 4 1 + (4.57)"Dx T x y x y X4

+Hr sin +x ;(ey + 0 y) + cos x (x + Oz fy)

With the equations for a gyroscope and the equations developed in

Chapter II for a rigid body, it is now possible to obtain the equations of motion for

a vehicle containing any configuration of gyroscopes. In order to intelligently choose

a configuration, it is necessary to first consider the nature of the steady state

response. This is the subject matter of Chapter V .



83

CHAPTER V - STEADY STATE REQUIREMENTS FOR AN ORBITING VEHICLE

Consider a vehicle in orbit of the earth that contains internally mounted
gyroscopes for damping purposes. If no disturbance torques are applied, steady

state wiil eventually be attained. If the vehicle's orbit is circular, and the gyroscope

configuration is chosen such that the resultant torque exerted by the gyroscopes on
the body at steady state is zero, the body coordinate system will become aligned with
the reference coordinate system; the body will then have an angular velocity of y Jb
If the orbit is elliptical, and the gyroscope configuration is chosen such that no resul-
tant torque is exerted on the body at steady state, 6 , 6 and their derivatives willx z
vanish but 6 and its derivatives will not vanish. This is because an elliptical orbit

requires the vehicle to have a variable angular acceleration. Since the restoring
torques are produced through the mechanism of differential gravity and gyroscopic
cross-coupling of the vehicle's orbital rate, it is necessary that an angular deviation
appear about the Yb axis. It should be noted that a vehicle in an elliptical orbit can

never attain complete alignment with the reference coordinate system. If a less
restrictive gyroscope configuration is employed, the gyroscopes will, at steady state.
exert a torque on the vehicle. In order to counter this torque, steady state will be
reached with the body axes offset from the reference coordinate system, so that

counterbalancing differential gravity and gyroscopic cross coupling torques are
produced. Therefore, in steady state, the best that can be expected is that

x x z z

0 # 0 0yt 0 ez~ 6 0 6 0 (5.2)
x yy y

Even though, for an arbitrary gyroscope configuration, an offset will occur from the
reference coordinate system, the offset can be determined in advance, permitting
the orientation of data gathering -equipment to be adjusted to compensate for the
angular error. It is therefore anticipated that permitting the vehicle to have a small

offset from the reference coordinate system will not produce any serious problems.
At steady state, it is also necessary for all of the gyroscopes in the configuration to
be at rest with respect to the body; that is, the angular velocity and acceleration of
each gyroscope gimbal with respect to the body be zero. Therefore,

*x = -- 0 (5.3)

for each gyroscope in the configuration at steady state. The desired orientation of
each gyroscope at steady state will, of course, depend on the vehicle design. The

question immediately arises as to the nature of the torque that must be supplied to
each gyroscope to maintain it at rest in its desired orientation at steady state, and
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how this torque will be supplied.

A) The General Steady State Torque Equations
When a gyroscope is mounted within an orbiting vehicle, it is subjected to

an angular velocity and acceleration due to the vehicle' s orbital rate. If the gyro-

scope is at rest with respect to the body, the angular velocity and acceleration of the

gyroscope gimbal with respect to inertial space, is the same as the angular velocity

and acceleration of the body with respect to inertial space. For a vehicle with an

arbitrary gyroscope configuration at steady state in an elliptical orbit, the angular

velocity and acceleration of the body with respect to inertial space can be obtained

from equations (2.14) through (2.19) by setting

X X z Z X = z =0 5.4

wb/I.s. wg/i.s, = z y ib +( + n b"x b 0y kb (5.5)

0 E.yib+(0y+'yJb + kb (5.6)
bg/,. s. yy y) -

The components of the torque on the gyroscope, necessary to produce this angular

velocity and acceleration at steady state, can be obtained along the gyroscope axes

from equations (4. 24), (4. 25) (4. 26) and along the body axes from equations (4. 29),

(4. 30), (4. 31) by setting

X = 6 - 6 = 0 = 0 (5.7)

The required components oftrrque on the gyroscope along the gyroscope axes are

Tg = lg [sin ,z (F:y + 6 y) + sin ,y cosz 06 6 y (5.8)gxiy

44 (Cos 4 yCos 4) 6 0192Y + H rF.[sin+ cos z (0 y+0),

+ (cos x cos y - sin + x sin y sin +z) 0 x ny - (cos x sin 4 y

+ sin 4 x cos 4y sin ) 0 zy]

T = Ig [cos x cos 0z (F + 'y) - (cos + x sin c) sin 40z (5.9)
3jgY y y

+ sin x cos 4)y) 0 f - (cos x cos y sin 4z

- sin (x sin c)y) O hy]

T =Ig [-sin )x cos ) ( + )-(cos ) x cos) (5.10)

yk zy x yg sin 41 x sin 40y sin +z ) 0 x C1y + (coo + x sin y

+sin 4X cos + sin4))0zi i+Hr[sin +)z)y y

+ sin 4 1 Cosz 0 0 y + cos4 y cos 4 ) t 1y
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and along the body axes are

T g 1 I +H r I(sin x cos * y + cos + x sin+ y sin zTg.b Ig zy ri y(.1

(6 +Q)+ cooi cos+. o "

Tgj = g (0y + fly) + Hr [cos +x Co s +y sin (g'12)

b sin + e sin +) 2 -(sin x co so y + coso + sin y

sin 0z 17 y

T = - I 0 fy +Hr [cos x Cosz 0 )z[ y + (co c o y sin , (5.13)

b sin 4) sin cy)(0+Sy)3

B) Specialization for several restrictive cases.
It is advantageous to specialize these equations for somewhat more restric-

tive conditions.

1) Consider a satellite in an elliptical orbit with a gyroscope configuration

chosen such that the components of the resultant torque exerted by the gyroscopes on

the body along the Xb and Zb axes are zero. In steady state, the components of

torque on each gyroscope in the configuration can be obtained along the gyroscope

axes from equations (5.8), (5.9), (5. 10) and along the body axes from equations

(5.11), (5.12), (5.13) by setting

e = 0 = 0 (5.14)

The required components of torque on the gyroscope along the gyroscope axes are

Tg i = 1gsin (z (0 y+fly)+H rsin xcoS z(0y +ly) (5.15)

g

T = I coo 10 cos )z (9y + ) (5.16)

T = - I sin4x cos+ z (W + +y) Hr sin+z (6y+IUy)(5 " 17)

g

and along the body axes are, (5.18)

Tgb Hr (sin +x cos + y + coso +x sin y sin ) ( y + y

T =I (y +Sy) (5.19)
gb g y y

Tgk H (cos x cos + sin +z - sin x sin+ )(0 +1 ) (5. 20)
gkb r x y x y y y
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2) Consider a satellite in a circular orbit with a completely arbitrary gyroscope

configuration employed. In steady state a resultant torque will, in general, be

exerted on the body by the gyroscopes. Therefore, Ox , 0y and 0z will, in general

not be zero. In steady state, the components of torque on each gyroscope in the

configuration can be obtained along the gyroscope axes from equations (5.8), (5.9)

(5.10) and along the body axes from equations (5. 11), (5.12), (5.13) by setting

v = ; =-e = 0 (5.21)
y y y

The components of the torque on the gyroscope required along the gyroscope axes are

Tg H r sin 4, cos lz E2 + (coo Ox coso - sin 4 x sin 4y sin 4z ) UxQ

X ,yy y xT

- (cos 4)x sin 4y +,sin 4X cos 4y sin ,) 0 Ql (5.22)

T =0 (5.23)g.g

Tg k = Hr[sin ycos 8z Ex0ny +cos ,vcos, 0 z0 y + sin 4 z 1 y2 (5.24)

g

and along the body axes are

Tgib Hr [(sin x cos ,y + cos 4x sin ,y (525)

+ cos x cos * z x y]

T = Hr I (cos x cos 40y sin 4z - sin x sin y) 8x  Q(
g~b Y(5.26)

(sin4,x cos 4 y +cos 4,x siny sinz) ez 0Qy

Tk =H oscs4 e 1 + (cos4, cos 4y sin 4z
T b r Cos 4x Cos z z y x Zb (5.27)

- sin 4, sin 0y) n2 ]

3) Consider a satellite in a circular orbit with a gyroscope configuration chosen

such that no resultant torque is exerted by the gyroscopes on the body at steady state.

The equations for this case can be obtained from the general equations (5. 8) through

(5. 13) by setting

0 = = 8 = = = =0 (5.28)
x y z y y y
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The required components of the torque on the gyroscope along the gyroscope axes are

Tg i = H r sin x cos z f0y  (5.29)

g

T = 0 (5. 30)

Tg k =Hr sin + fn (5. 31)

g

and along the body axes are

Tgib =H r (sin+ cos + cos+ sin+ sin )2 (. 32)

T = 0 (5. 33)g.b

T = Hr (cos 4x cos+ y sin4kz - sin+ x sin+ y) fl (5.34)
kbY

For a circular orbit, and steady state, an equivalent form for the torque

on each gyroscope in a configuration, is, of course, given by

Tg = fQy x H r  (5. 35)

The resultant torque on all the gyroscopes for a circular orbit at steady state, is

therefore given by

Z(0 y X Hr)= QyX ZHr (5.36)

The resultant torque on the body is the negative of the resultant torque on the gyro -

scopes. Therefore, at steady state, the resultant trque on the body will be zero,

when either Z Hr = 0 (the Hr vectors form a closed polygon) or the Z Hr is along

y
At steady state, it is necessary for the required to que, predicted by the

equations, to be present on each of the gyroscopes of the configuration. Since none

of the gyroscopes are constrained about their precession axes, it will be necessary

to utilize a gyroscope torquer to furnish the i component of the torque for eachg
gyroscope for which this component is not zero. For a circular orbit, the required

torque will be a constant. For an elliptical )rbit, it will be necessary to supply a time
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varying torque which will undoubtedly require the use of programmed digital equip-

ment. It would be interesting to consider what would happen if gyroscope torquers-
are not utilized. For a circular orbit, the precession angle of each gyroscope in

the configuration, and the body angular deviations, will adjust themselves so thaL the

resultant torque on the body will be zero. If desired, the values of the precession

angles and body deviation angles can be obtained by first setting equation (5. 22) equal

to zero to obtain a relation between the precession angle and the body deviation angles,
and then equating the negative of the resultant torque applied to the gyroscopes (the

resultant torque is obtained by summing equations (5. 25), (5. 26), (5.27) for each

gyroscope in the configuration ) to the torque on the body, equations (2.52), (2. 54),

(2.56) after setting all the derivatives equal to zero.

T g T. = _ (Izb _ Iyb)4 0x y2 (5.37)
gb

Tgb = 3 (Ixb - Iz) 0 yy2 (5. 38)

bT = (Iyb Ixb )  fl 2 (y, y91

gb

If the orbit is elliptical, the gyroscope will never reach a state of rest with respect

to the body. Therefore, energy will be constantly dissipated due to gyroscope

damping. The only sources of this energy are the kinetic and potential energy of the

satellite. Invariably, as time progresses, the orbital parameters will therefore be

altered.
C) Choice of a Gyroscope Configuration

Consider briefly the problem of choosing a gyroscope configuration for a
vehicle in a circular orbit. The configuration must, of course, be chosen to provide

damping about all vehicle axes. (This aspect of the problem will be considered in

detail in Chapter VI. ) If possible, the gyroscope configuration should be chosen so

that no resultant torque is exerted on the body due to the gyroscopes at steady state.

If this cannot be achieved, it will be necessary to determine the steady state offset

angles from equations (5.37), (5. 38), and (5.39). (The precession angle of each

gyroscope is specified by the configuration. ) The torque which the torquer must

supply to each gyroscope, is given by the i component of the torque on the

gyroscope.

Ttorquer T g i  (5.40)

g
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It is also necessary for each gyroscope in a configuration to be in a state of stable

equilibrium. The nature of the equilibrium can be easily established for each

gyros( ope by substituting the value of x specified by the design into the derivative

of equation (5.22) with respect to 10,

d (5 41)
T T = Hr cos z -(sinoxcosy +cos 4 siny sin, O) 02

co os' y x y x y x y

- (cos 0x cos 4y sin iz- sin 6i sin y 0

If equation (5.41) is positive, a state of stable equilibrium exists. If equation (5.41)

is negative, a state of unstable equilibrium exists. The explanation for this test is

as follows: Equation (5.41) is the derivative of the torque required to maintain the

gyroscope at any specified position at steady state. If the derivative is positive, at

the specified position, a positive angular displacement of the gyroscope will require

a larger torque than is being supplied to maintain the new position. A negative

angular displacement will require a smaller torque than is being supplied to maintain

the displacement. Hence, in either case, a resultant torque will be established such

that the gyroscope will return to its original position. If the derivative ,s negative,,

a positive angular displa, oment will require a smaller torque than is being supplied,

and a negative angular displacement will require a larger torque than is being

supplied. In either case, the resultant torque will be established such that the

gyroscope will continue to move in the direction displaced.

In order to obtain a better understanding of the principles involved, an

example will be considered. Consider the configuration shown in Fig 4-4 where a

single gyroscope is mounted with its precession axis along the Xb axis of the vehicle.

The satellite design requires the spin axis of the gyroscope to be at an angle + X with

the Yb axis. It will be assumed for convenience that the satellite is in a circular

orbit. It is immediately apparent that if Ox is not zero, steady state will be estab-

lished with the body offset from the reference coordinate system. If the vehicle was

aligned with the reference coordinate system at steady state, the angular momentum

vector H , will not be along ( . The angular offset, at steady state. can ber y
obtained by setting 1y = Oz = 0 in equations (5.25), (5.26) and (5.27) and substituting

in equations (5. 37), (5. 38) and (5. 39)

- H r  (sin + 
y  + cos x 8 2) = - (I z b - Iyb )40x 

y 2 ( .42)

H sin x 0 = 3(1 - I z) 8 y (s.43)
r y b Zb Y4Y



90

H cos 4 0 0 =(I -I x) (5.44)
r xzY y b b

Solution of these equations, yields the offset angles of the vehicle at steady state.

H sin 4e = r x(5.45)

(Izb - Ixb 42y - cos 4x Hr

If

H r Cos+ x - (Ixb - I y )f 0 (5.46)

then

0 = 0 = 0 (5.47)y z

If the left side of equation (5.46) is equal to zero, A and 0 are indeterminate.
y z

The torque which must be supplied by the gyroscope torquer is given by

Ttorquer = Hr fQ (cos +x 0x + sin 4 x) (5.48)

If a gyroscope torquer is not utilized, steady state will be established with 4) = 0

and the vehicle aligned with the reference coordinate axes.

If another gyroscope is added to the configuration of Fig. 4-5 so that the

configuration of Fig. 6-Z, with +z = 0 results, steady state will be established with

the vehicle axes aligned with the reference coordinate axes, since for this

configuration, the resultant angular momentum vector, at steady state, is along

Q* This configuration is known as a "V" configuration and will be discussedy

further in Chapter VI.

In Chapter VI, the results of Chapters II, IV and V will be combined to

obtain the equations describing the dynamics of an orbiting vehicle with internally

mounted gyroscopes. Several configurations will be considered that provide

damping about all of the vehicle axes. For simplicity, the treatment will be

restricted to vehicles in a circular orbit.
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CHAPTER VI - THE DYNAMICS OF AN ORBITING VEHICLE WITI! INTERNALLY

MOUNTED GYROSCOPES FOR A CIRCULAR ORBIT

The dynamics of an orbiting vehicle in a circular orbit with internally

mounted gyroscopes will be developed for several gyroscope configurations. There

is no contention that the configurations chosen for presentation are, in any sense,

optimal; they are presented to illustrate the principles involved. The gyroscope

configurations chosen for analysis, will provide indirect damping about all three

of the vehicle axes. It was noted in Chapter III that a smaller settling time could be

obtained through the utilization of indirect damping than with direct damping. It is

for this reason that all the configurations presented are chosen to provide indirect

damping. In fact, if direct damping was desireable, it would be merely necessary

to construct the vehicle in two parts, coupled viscously, since the mechanism of

gyroscope precession is not involved. It has been shown in the literature, and should

be expected from the results of Chapter III of this report, that direct vehicle damping

will result in excessive settling time.

The dynamics of an orbiting vehicle with internally mounted gyroscopes

can be developed by combining the results obtained in Chapter II for an orbiting rigid

body and the results obtained in Chapter IV for a gyroscope under various constraints.

The torque exerted on the body is equal to the vector sum of the external disturbance

torques (exclusive of the differential gravity torque) exerted on the body and the

torques exerted by the gyroscopes on the body. For a symmetrically designed gyro-

scope, there is no differential gravity torque on the gyroscope, hence the torque

exerted by the gyroscope on the body is the negative of the torque exerted on the

gyroscope.
N

Te= Td + Z T (6.1)
n=l gn

where T is the external torque applied to the body less the differential
gravity torque.

Td " is the total torque on the body less the differential gravity torque.

Tg n is the torque on the nth gyroscope of the configuration.

A) Analysis of a Configuration Employing Gyroscopes with Precession axes

along Xb and Zb .

Fig. 6,-l shows a configuration employing two gyroscopes which will

provide damping about all vehicle axes. One of the gyroscopes is oriented with

its precession axis along the Zb axis(precessionangle denoted by *X ) and the other
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PRECESSION AXIS

1 / Yb

PRECESSION AXIS

Fig. 6-1 Configuration Employing Gyroscopes with Precession
Axes Along Xb and Zb
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with its precession axis along the Xb axis, (precession angle denoted by iOx2 ). If

gyroscope torquers are not utilized for both gyroscopes, at steady state, the body

will be aligned with the reference coordinate axes and the steady state values of

10, and 4'x2 , Oxl and Ox2 , will be zero. For such a condition, indirect

0 0
damping will not be attainable about the Yb axis. To obtain indirect damping about

the Yb axis, it is necessary that at least one of the steady state gyroscope precession

angles, Ox or ,0 , be non-zero. In general, for arbitrary values of xl and
o o0  0

Ox2  indirect damping about the Xb axis is provided by the Zb oriented gyroscope,

0
indirect damping about the Yb axis is provided byboth the Xb and Zb oriented

gyroscopes, and indirect damping is provided about the Zb axis by the Xb oriented

gyroscope. For arbitrary values of loXl and 4x 2 , a gyroscope torquer will be
0

required for each gyroscope.

The angular deviations of the vehicle as a function of 4x 1 and 4x2  at
0o 0

steady state can be calculated from equations (5. 25), (5. 26), (5. 27), (5. 37), (5. 38)

and (5. 39). Solution of these equations yields:

H sin 4,

e = 0 (6.2)
X0  4(1 - Iyb )fly- H r (cos 4,x +cos 1x )

-H sin 4,

o =
0 =I- 0 (6.3)z 0 1Y x y + Hr (Cos 0xi+Cs 2

0 0

Hr(sin x 0z - sin + X )

= 00 (6.4)
3(1xb Iz b )

The torque which each'gyroscope torquer must supply can be determined from

equation (5.40). For the Xb oriented gyroscope, the torque required is obtained from

equation (5.22) with 4,y = Oz = 0 .

TtHrquerx 2 H r fly(sin +x2  + cos 4x2 0 Xo) (6.5)

0 o
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For the Zb oriented [yroscope, the torque required is obtained from equation (5. 22)
with =, -90 and 4z = 0.

Ttorquer z y r = H  (sin ,x I + cos xI 08z ) (6.6)
0 0

where 0 and 0 are obtained from equations (6.2) and (6.3)x z
0 0

The values of 4,X and 4xl must, of course, be chosen so that the
o o1 2
0 0gyroscopes, at steady state, are in a state of stable equilibrium. To check the nature

of the equilibrium it is merely necessary to substitute the steady state deviation

angles (equations (6.2), (6. 3), (6.4)) into equation (5.41) for each gyroscope and

examine the sign.

For stability

H r sin 2 4,x

cos OX + > >0 (6.7)
X 1  0 I - I ) ( ( o ) x 1 o

o yb Xf, yH(C +x cos4,x )
1 2

H sin2  x

Coso 0 >0 (6.8)
x 2  -4(1 I b)f - Hr (coS 4X +cos +x 2 )o 4(zb yb~ r 1

0 0

The dynamic performance of the vehicle with internally mounted gyroscopes

can be obtained from the body equations for a circular orbit (2.52), (2.54), (2.56),

from the equations of an Xb oriented gyroscope (4.46), (4.47), (4.48), from the

equations of a Zb oriented gyroscope (4. 54), (4.55), (4. 56) and from equation (6.1).

The resulting equations are:

Te= (I +2g) (1 + fly) + (I b  I ) (0 y - 4 0x ') (6.9)
e b b g x zy Y Zb b z y x y

+ Ig 2 n y +H r [(in0 (0 + x 2 + ayy

a (coso X1 + coso+X2) (z x 0i)- 4x1 cos Oxl
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T =(I +2 1g) 0° +3(1 -I ) 0 y 2 g+ (6 -e 0 )
ejb Yb g y xb zb )  .x 2  y

(; x z Q 0 )+sin4 Xe +,y

+ 1 sin4I + ; in x

1 1 2)[ 2j(,)+T (I +21) +( o - 1 +) (I -Ix ) ( x y + ( ') (6.11)kb zb g X b b X zy

I[ Xl 2 0y ' ] +Hr.'4cs

- ,, +0) r 0xo,,z

The equation of constraint for the Xb oriented gyroscope, relating 4x 2 to the body

deviation angles, can be obtained from equation (4.49), where T c is equal to

Ttorquerx given by equation (6.5)

Ttorquerx D x 2 +1 (6X+ 0x zy + 4 ")r x2  y y)
- co o xg (1 " Ox y1. )

The equation of constraint for the Zb oriented gyroscope can be obtained from

equation (4.57) where T c is equal to T torquerz given by equation (6.6)

nD4, +16 -60+, )+ [sin4,cox (Ttorquerz = D OXI + g ( z - 0x y + xl A H r  &n + iy)
#cos 4x (6x + 6z y)

The equations developed in this section characterize the steady state and

dynamic performance of an orbiting vehicle for the configuration of Fig. 6-1 for

arbitrary 41x and 4, * Since the equations are nonlinear, the dynamic performance

0 0
of a vehicle containing this configuration can best be analyzed using an analog or

digital simulation. It will be necessary to choose values of 4x , 4, and find a

0 0

suitable vehicle geometry so that both adequate settling time is attained and the

vehicle angular deviations at steady state are small. Indeed, for large angular

deviations, the approximations made in Chapter II will probably invalidate the

re sults.
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Zb

Xb

Fig. 6-2 "V" Configuration in the X b Y b Plane
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B) Analysis of a "V" configuration in the Xb.Yb plane.

Fig. 6-2 shows two gyroscopes with their precession axes in the Xb Yb

plane forming a "V" configuration. This configuration will provide indirect damping

about all three of the vehicle axes. At steady state, one of the gyroscopes will have

its spin axis above the Xb Yb plane by an angle 'tx . This gyroscope will, for

convenience, be referred to as "gyro I" • The othehyroscope will, at steady state,

have its spin axis below the Xb Yb plane by an angle 4 I . This gyroscope will

0
for convenience, be referred to as "gyro I" The precession angle of gyro I will

be denoted by 4x and the precession angle of gyro II will be denoted by x 2 . At

steady state " 2

x 1 =x 1  (6.14)

0

=  360o " I (6.15)
20

The angular deviations of the vehicle as a function of 4x I at steady state

can be calculated from equations (5. 25), (5.26), (5.27), (5.37), (5.38) and (5. 39).

Hr Cos bxI Cos x0z 0X 0 2(Izb I yb) 0 x 0ny (6.16)

0

2H=s~sn,8 n( -I 6 fl (6.17)

Hr Cos 4x 1 sin z x °  3(1z b  Ixb) Yo Y

2 Hr (cos 4x I cos (0 eZo +cos, x I sin Z) (6.18)

(Ixb b z y

Solution of these equations yields the offset angles of the vehicle at steady state.

2 Hr cos (0 sin4,

0 = 0 (6.19)
o )fy - b +2H r cos 0x I cos 0z

Yb xb Y~r x
0

If

rXr coo +x0 coo gz "2(1z b " ly b } Qy A 0 (6.20)

then 0 = =O 0 (6.21)
xo yo
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If the left side of equation (6. 20) is equal to zero, 0 and f, are indeterminate.

Note, that if Oz = 0, 0 will also be zero and hence, at steady state, the vehiclez
0will be perfectly aligned with the reference coordinate axes.

The torque which each gyroscope torquer must supply can be determined

from equation (5. 40). For gyro I, the torque required is obtained from equation

(5.22) with 4y = 0 . (6.22)

T t u 1 r' (sin4, cos + cos 8 - sin, sin, 8z o )
torquerI r y xI z x 1  x 0 x z z0

r 0 0 0

For gyro II, the torque required is obtained from equation (5.22) with 4y = 0 and

Ox = 3 6 0 -O x l1

1 0 (6.23)

T trquerl r (cosrXylC0 X - sin4,xl cos oz +sin 4 l sin4)z 0Z 0

0 0 0

Since 0 0x
0

T =H r 0 sin lc z - sin 4z 8 ) (6.24)
torquer I r y (cos z 0

0

Ttorque I H r 92y sin 40Xl (sin ,z  o -zcos ) (6.25)
0

where 0z  is obtained from equation (6.19).
0
The value of 4,Xl must, of course, be chosen so that both gyroscopes,

0

at steady state, are in a state of stable equilibrium. To check the nature of the

equilibriumjit is merely necessary to substitute the steady state deviation angles

(6.19) and (6.21) into equation (5.41) for each gyroscope and examine the sign. For

stability of both gyroscopes

2H r cos 2 ,Xl sin 4,z

cos +Xl0 cos 4,z + o >0 (6.26)
o (I b -Ixb)S +2HrC° cosx I (os 4z

0

If the precession axes of the gyroscopes are along Xb( ,
z = 0), the condition for

stability reduces to

cos 4,X > 0 (6.27)

0
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Clearlythe gyroscopes will be in a state of stable equilibrium when

- 900<,x I < +900 (6.28)

0

The dynamic performance of the vehicle with internally mounted gyroscopes

can be obtained from the body equations for a circular orbit (2.52), (2.54), (2. 56),

from the equations for a gyroscope whose precession axis is in the Xb Yb plane

(4.34), (4.35), (4.36) and from equation (6.1). The resulting equations are:

of 2
T I= (l +2) (0 + n ) + (Izb Yb ) y - 40 1 ) (6.29)eib gI x z y) zIb ( z y"

+Ic0 +oo4 ) -sin 4 (8 e-0 +; 4)1b + 1 z I  x 2  z z x ny x1  x2 J

+H (4 +4 )(sin@ +sin -Cos x (0 - 0 ) (cos 4 +oe. )
r 2 y x x 2

+ sin Oz sin .@x + 4x2 sin X2)]

T (I +2 +3(1 1 ) g 2 [+ i n Oz + . (6.30)
eb Zb y Y Y g X1 2)z"or (4, sin '1  @ xsin4,

+cos tz (4 - Ox ny) x + 2 ); - HrCos z x i  x x

1 1' 2

+~~~~~~~ ~ ~ ~ si ; 1)(o +o +(x )(sin+ + sin@ 4W
inzOz x t'y) (o O x)2 0x z Y x I  x21

T = +21g)(0 z- Oxy)+(I y b I ( 0 + ) D (6.31)

+Ig sin z ( yx +  z (Y) 4 1 + - cos 4z ( y ) xI 
+  6

+ Hr ;x cos xI +; cos x 2 + cos 4z (0x + oz 2y)(Cos x1+cos+,

1 1 2 2 X 1  Xi

+sin 4z (8y +y)(cos Oxl + cos X2 )]

The equation of constraint for gyro I, relating its precession angle to the body

deviation angles, can be obtained from equation (4.37), where T c is equal to

TtorquerI given in equation (6.24)

T = D + I -sin 4z + cos z (0 + l)+ +x (6.32)
torquer xn g x y z zy x y x1

+ Hrs in Ox ICos z ( y +Q y) Cos 0xi (0 z 0x 0 y)

- sin Xsin4 (06 + 0 r fl)]
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The equation of constraint for gyro II is identical with that for gyro I (equation (6.32))

with 0x. replaced by *x2 and Ttorquer replaced by TtorqueriI •

Although the development' for the " V" configuration in this section was

for equal and opposite displacement angles from the Xb Yb plane, the development

could have been easily extended to the case where the displacement angles are

arbitrary. In fact, an extension to a "V"1 configuration, where the precession axes

lie on any line relative to the body coordinate system, can be easily accomplished

from the equations developed in Chapters II, IV and V in a manner similar to that

used in this section.

C) A Configuration Employing a Single Gyroscope to Provide Three Axis

Vehicle Damping .

Fig. 6-3 shows a configuration employing a single, one degree i'f freedom,
gyroscope whose precession axis is located in the Xb Zb plane. This configuration

will provide damping about all three of the vehicle axes. Since only one gyroscope

is used, no subscripting is necessary therefore, the gyroscope precession angle will

be denoted merely by Px, and the value of the gyroscope precession angle at steady

state will be denoted by Ox
0

The angular deviations of the vehicle as a function of 4x at steady state
can be calculated from equations (5. 25), (5. 26) and (5. 27) with Oz = 0 and from

equations (5. 37), (5. 38) and (5. 39). Solution of these equations yields:

H~ sin b cos b

S= o0 y (6.33)
0 4(Izb - Iyb )y - H r cos x°

H r sin~ h~ in b

0 = 0 (6.34)
o (Iyb -I xb)y + H r cos bx°

Hr sin x0 (sin 0y x0 +cos by ez )
e 0= x y (6.35)

• o 3(xb - zbl y
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Fig. 6-3 Configuration Employing a Simple Gyroscope
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The torque which the gyroscope torquer must supply can be obtained from

equation (5.22) with 4z = 0 and from equation (5.40) (6.36)

T torquer  H H r y (sin x0 +cos 0x° cos, y 0x - cos x0 sin ty 0)z
toqe 0  0 0y x0

where Cx  and 6 are oLtained from equations (6. 33) and (6. 34)
0 0

The value of 4x must, of course, be chosen so that the gyroscope, at
0

steady state, is in a state of stable equilibrium. To check the nature of the equilibrium

it is merely necessary to substitute the steady state deviation angles (equations

(6.33), (6. 34), (6.35) into equation (5.41) and examine the sign. For stability

cos 4x cos 4z - sin 4x cos 40y 0 tsin4 x sin y 0z > 0 (6.37)
0 0 0 0  0

The dynamic performance of the vehicle can be obtained from the body
equations for a circular orbit (2. 52), (2. 54), (Z. 56), from the equations for a gyroscope

constrained to rotate in the Xb Zb plane (4. 38), (4. 39), (4.40) and equation (6.1) •

The resulting equations are:

T e (Ib + I)(e x  +(Iz Yb  (z a 40) (6 38)

+I g PXCos 4y - * (0~ + Qy) sin 4,y + Hr[e + 0 )sin io cos o

Tei g " ex fy) y b  y r [( y 1.

-cos 'x - 0 -, sin4,y)]
.. r" [( (6. 39)

T e =(I +1 0 + 3(1 1 )e0 2 + (z xy y
eb b Ig) 3( b y bb y y gOx - OylCos

+ (, +a 0y )] + .Hr sin ,x.z - 0 _, )sin+y - -(0 +0 o.)o

Te = (Izb +I) (Oz 0 -xy) + (Iyb " Ixb )(0xl y+ 01 y) (6.40)

1 9g ;x(6y+ y)Cos . y + ; X sin Hr ,[( y + y ) sin x in .

CO O 6 x z 0y + 0x Co *y j
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The equation of contraint relating the gyroscope precession angle to body

deviation angles can be obtained from equation (4.41) where T c is equal to

Ttorque r given by equation (6.36)

Ttorquer = Dox +1g [cos 0y (x 0z E2y)sin yy (aez " 0y)+ 4] (6.41)

+ Hr [sin 0, ( +y)- cos cosy (-0 0

- cos 0 sin ( + 0 1

The procedure involved for developing the equations describing the statics

and dynamics of an orbiting vehicle for an arbitrary configuration should be clear

from the examples that have been presented. The equations developed in Chapters

II, IV and V can be used to analyze any configuration in a circular orbit. Further-

more, many of the equations can be applied to a vehicle in an elliptical orbit

Chapter VII will summarize the results thus far obtained and will indicate the areas

in which further study is warranted.
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Chapter VII - CONCLUSION

The analyses given in this report are valid if the following assumptions

are satisfied:

1. Attitude deviations are small so that the equations of motion for the body can

be linearized.

2. With the exception of the internally mounted gyroscopes, the satellite comprises

a rigid body with no moving internal parts.

3. Control is desired about the principal axes of the vehicle.

4. The earth is assumed to be a homogeneous sphere, and therefore the gravitational

field is inverse square.

5. All gyroscopes are assumed symmetric.

It is further assumed in the latter part of Chapter V and Chapter VI that the orbit is

circular.

With the above assumptions the following has been accomplished:

1. The equations of motion of a rigid body in an elliptical orbit were obtained with

the inclusion of the gravity gradient torque.

2. An analysis of a simple configuration employing gyroscope damping was

considered to furnish an insight into the mechanism of gyroscope damping ani it

prope rtie s.

3. The equations of a symmetrical one degree of freedom gyroscope mounted in an

arbitrary position within the vehicle in an elliptical orbit were obtained and several

specialized cases were cited.

4. The steady state requirements for an orbiting vehicle containing internai]"

mounted gyroscopes were considered. In the latter part of this analysis the v.| 1 Ile,

orbit was assumed circular.

5. The equations of motion for a vehicle containing internally mounted gyroscopes

were obtained for several gyroscope configurations for a circular orbit.

There are several areas of investigation that have been neglected in this

work and should be the topic of future study in this field.

1. The effects of large angular deviations should be considered since at the time

of insertion of the vehicle into its orbit large angular deviations will invariably occur.
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2. The effects of an non-spherical, non-homogeneous earth should be considered.

3. The effects of moving internal component., should be investigated. The

acceleration and deceleration of internally moving parts (such as tape recorders)

will produce reaction torques on the vehicle. Motion of components may also cause
the moments of inertia and location of the vehicle's principal axes to beL ome time

varying.

4. The analysis should be extended to include non-symmetrically designed

gyroscopes.

5. A computer study of several gyroscope configurations is essential to obtain
both an optimum vehicle geometry and optimum gyroscope configuration.
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APPENDIX A

Derivation of Euler's Equations

For any system of particles, the angular momentum of that system about
any point in space (see Figure A:I)

Fig. A-i System of Particles

is given by
n

h r , r x m i V  (A.1)

i= 1

where m. is the mass of the it h particle

r. is the radius vector from the point about which the angular momentum

is to be obtained to the ith particle.

v. is the velocity of the 1th particle relative to the point about which

the angular momentum of the system is to be obtained.

This definition is meaningful regardless of whether the reference point be fixed or

translating with respect to inertial space.

The case where the system of particles comprises a rigid body, and the point

about which the angular momentum is to be obtained is the mass center of the body, is

of particular interest. For this case, the velocity of an arbitrary (i t h ) particle is

given by

v. = w x r. (A. 2)1 1
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where c is the angular velocity of the rigid body with respect to inertial space

r i is the radius vector from the mass cente: to the it h particle.

Substituting into the general equation for the angular momentum, (A. I) one obtains for

the angular momentum about the mass center

n
h = i xm i (c x ri ) (A. 3)
c.g. i=l 1 1

Using the vector identitiy for a triple cross product

A x (B x C) = B(A.C) - C(A.B) (A.4)

one obtains rix m i( x r m i r i  ( w 1ri) (A.5)

Resolving r i and w into a system of rectangular coordinates

r=xi +yj +zk (A.6)

W = ii. + W j+Wkk (A.7)

and performing the indicated operations, one obtains

hc, g. = hii +hi j +hkk (A.8)

where

h Ai  A w Hw .i G wk (A.9)

hj - H i + B w - F wk (A.I0)

hk =- Gw - F wj + C Wk (A.U1)

Equations (A.9), (A.10) and (A.11) can be expressed in matrix notation by representing

the angular momentum vector and the angular velocity vector as column matrices

hj H B F F A 2
(A. 12)

hk G t F C k

The first term on the right side of the equation is referred to as the inertia tensor.
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Where A = m mi (y2 + z 2) (A. 13)

B = Zm (x 2 + z 2 ) (A.14)

C = E m (x2 + y 2 ) (A. I)

are the polar moments of

inertia about the i, j and k axes respectively

and

H = E m i xy (A.16)

G = Em i X (A.17)

F = E m i yz (A.18)

are the products of inertia in

the i-j,. i-k, and j-k planes respectively.

If i, j and k are body fixed vectors, the components of the inertia tensor are constant-

It is shown in any text of classical mechanics that the torque exerted on a hody

about its center of gravity is equal to the rate of change of its angular momentumi about

its center of gravity as seen from inertial space.

T =-g hcg (A.- 19)rc.g. =hc.g. (.9

whe re 6 h

c.g. 6t c.g. (A ZO)

whe re

1/6t denotes a partial differentiation in which the

i-j-k vectors are held fixed,

w is the angular velocity of the i-j-k coordinate

system with respect to inertial space (whi( h need not

not be that of the body).

It can also be shown in advanced books of classical mechanics that there exists

at least one set of axes for which the product of inertia terms (H, G, F) vanish. Such

axes are known as principal axes. For the principal axes, the inertia tensor is

diagonal.

A 0 0
0 B 6 (A.- 21)

0 0 C
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It will be assumed that the i-j-k vectors are fixed in the body and coincide with the

principal axes.

Therefore

hc.g. = AL ii + B W'jj +C W k :k (A.22)

and
c.g" = AL ii + B jj + C1k k(A23+ x [A i. +Bw jj+C W kk

Expanding and equating (A. 23) component wise to the torque yields the following

equations:
T - A i + ( C B) wj k (A. 24)

T = B +(A -C) wi " (A.25)

Tk = CLk +(B - A) oi w (A.26)

These are Euler's equations.
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APPENDIX B

Derivation of Gyroscope Equati6ns.

A gyroscope consists of two basic components. An inertia wheel or rotor
which rotates at a high speed and a gimbal to which the rotor is mounted and which

permits angular motion of the rotor with respect to inertial space. (Refer to Fig. B-I).

The torque on the rotor and gimbal which comprise the gyroscope, about the

center of gravity of the gyroscope is given by the time derivative of its angular momen-

tum about its center of gravity with respect to inertial space.

T - d (B. 1)Tgc. 9. =I g hoe ge

The angular momentum of the gyroscope can be considered to be composed of two
parts. One due to the angular velocity of the rotor and the other due to the angular

velocity of the gimbal • The compon entofangular momentum due to the angular velo-

city of the gimbal,' is computed by considering the rotor to be stationa rir

h r m rix mivi I (B 2)
hg. - i 'I rotor + gimbal plus

I stationary, rotor

Now

Zr i x m i v i rotor r (B. 3)

H =J u(B4r r r (B.4)

where 3 represents the polar moment of inertia of the rotor about its axisr
of rotation.

W r is the angular velocity of the rotor about its axis of rotation.
Z rix mivi l g imbal plus = A w i B g i j%

stationary rotor cgg

As was done in deriving Euler' s equations in Appendix A

6hdh + (B.6)

whe re

Wg = W ig + WjJig +Wkg kg (B.7)

is the angular velocity of the gimbal axes with respect

to inertial space.
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kg (INPUT AXIS)

GIMBAL/

~ROTOR-

wHr (SPIN AXIS) Jg

rDAMPER

p.. CASE

i(OUTPUT OR PRECESSION AXIS)

Fig. B-1 Single Degree of Freedom Gyroscope
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Therefore

dh A w.i + (H + B +CW(B. 8)
t hc. g. g g r g ig + g k (B.8

+ *i[(Cg Bg) wj 9Wkg Hr Wkg]+ g [Ag C g wkg

+ kg[(Bg -Ag)wi .j +Hr Wi

Grouping terms and equating component wise to the torque one obtains

T (C 9 +C -B . Wk -Hr k  (B.9)gi g g (g Bg) Jg rk

g

Tg r + Bg g + (Ag - C 1 ig k (B.10)
3 g 9 g g

Tgk = Cg k +(B- A).,. i j +H r wi (B. ll)
T gk g g Jg B9 r 1

Examination of these equations reveals that the torque on the gyroscope is

composed of two parts. The first part is given by

g i = g 1 g g g jg k (ggg g

Tgj =B g i g + (A - Cg) W i Wk (B. 13)

Tgk = C 4kg +(B - Ag) g 9 (B.14)

and the second part is given by
Tg i  H r ;H k (B.15)

g

T =H r (B. 16)gg r

T = H w. (B. 17)
gk r i

g g

The first part is seen to be a restatement of Euler' s Equations, (A. 24), (A. 25), (A. 26).

It describes the rigid body dynamics that do not depend upon the angular momentum
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of the rotor. The second part of the equation, which is known as the gyroscopic

torque , is provided by the angular momentum of the rotor. If the angular velocity of
the rotor is assumed to be constant (AHr = 0) , the equation of gyroscopic torque takes a

particularly simple form. Namely

Tg = wx Hr (B.18)

where W is the angular velocity of the gimbal with respect to inertial

space.

Hr  is the angular momentum of the rotor.

This form of the equation is extensively used in the literature.
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APPENDDC C

Derivation of the Gtavity Gradient Torque.

Consider a rigid system of particles in orbit around the earth. (See Fig. C'l)

The force on the ith particle ;s given by

1(C. 1)

Where

m i is the mass of the ith particle

gi is the acceleration due to gravity at the position of the ith

particle.

P is the vector displacement from the center of the earth to the
.th
i particle.

Now gg Re2

pi
2

where go is the acceleration due to gravity at the surface of the

earth.

Re is the mean radius of the earth.

Substituting eq. (C. 2) into eq. (C.l) yields:

R. 0 2 (C. 3)

P2 
3

The torque exerted on the system of particles about its center of gravity due to the

earth's geavitational field, is given by n
=dg r. x (C. 4)

Tdg=

where Tdg is the gravity gradient torque on the body (differential gravity

- torque)

r. is the vector displacement from the center of gravity to the
- ith particle.

Substituting eq. (C. 3) into eq. (C. 4) yields:
n

T = -g 5 R . x (C. 5)
1=l1



i PARTICLE *' L<~

I CENTER OF GRAVIT"v OF

SYSTEM OF PARTIOLES

CENTER OF EARTH

F'ig. C-1 An Arbitrary Shaped Orbiting Vtchicle
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From Fig. (C-l) it is seen that

,= pk + r (C.6)

where

p is the distance from the center of the earth to the mass center of

the system of particles.

k is a unit vector outward along the geocentric vertical.

Now 3

Pi : (p. -i (C.7)

Substituting eq. (C. 6) and simplifying yields:

3

[I 2 k.r. r
p.i = p Il +-. +1 l (C.8)P1 0 P O V o /

Since

r.

I-<< I (C. 9)
0

3. -- '3

P + (C. 10)

Expanding in a power series and taking only the first terms yields:

-:3 3 [Lk *-iJ (C. 11)
Pi "PO- POkr

Substiting eq. (C. 6) and (C. 11) into eq. (C. 5) and expanding the vector product yields:

g a R e2 n 3g R 2  n (C. 12)

Tdg - k 2 x mir i + M irixkLri;k)- i=l i=I

0 Po

But n

m. r. = 0 (C.13)1= I-4

defines the center of mass of the system. Therefore

Tg= 3gR z m i (r.xk)(r.k) (C.14)dg 3iro3 il-
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For a circular orbit

P = g0 =  
- (C.15)

y 0 2Po 0

where

g is the acceleration due to gravity at the mass center.

Therefore

go Re2 2
-3 D (C.16)

Substituting eq. (C. 16) into equation (C. 14) yields for a circular orbit.

2n
Td= 3 1 E mi (r.i x k) (r..k) (C. 17)

d9 y i= I 1 -

Let Xbp Yb and Zb be the coordinate system formed by the body principal axes,

with corresponding unit vectors ib' Jb and kb • Let X, Y and Z be the reference

coordinate system with corresponding unit vectors i, j and k • (Refer to Chapter II

sections A and B. ) The set of Eulerian angles relating the body coordinate system

to the reference coordinate system is denoted by 0 X , 0 and 0 z The transformationx y z

matrix relating the two coordinate systems is given in equation (2.5) . (Refer to

Chapter II, oection C.)

Expressing the vector r. in terms of body coordinates yields:

r. x b ib + Ybb ' zbkb (C.18)

Using the transformation matrix (2. 5) yields:

k = - 0 ib + Ox Jb +kb (C. 19)

Substituting equations (C. 19) and (C. 18) into eq. (C. 14) yields:

2

T 3 3g R~ [i 2 (n m C.
dg 3 [b (yb - x b jb b- ey zb)T- p0  = c.0

PO ].
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Expanding eq. (C.- 20) and noting that the product of inertia terms vanish (icee
eqs.(A.16), (A.17), (A.18)yields:

3 g sR e2 n.2
_____ 2 bO b '2 bO X

PO (C. 2 1)
+ kb e x (yb2 

- xb 2 )]

The k b component will be neglected since it involves the product of two small
angles. Substituting eqs. (A-13), (A-14) and (A.15) into eq. (C-21) yields the final
result for the gravity gradient torque.

'd9 PO I [ib ex (Iz b - ~b b 8 y ~b xbJ (C2)

Substituting eq. (C. 16) into eq. (C. 22), one obtains the corresponding equation for a
circular orbit.

i ~g = 31 ny2 [i 'x (Izb - Ii) + jb ey (Izb - Ixb)J/ (C.23)
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