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The linearized equations of motion for a ferry vehicle attempting

rendezvous with an orbital satellite (2-dimensional Clohessy-Wiltshire

equations) are:

Y = u1 2
(" + 2* - 3w2 y u 1

where u1  and u 2 are the components of the rocket thrust (the mass

of the ferry has been normalized to unity). The amplitude of the thrust

is

2 2)jul = (.1 + u)

and it is assumed that besides the initial and terminal conditions for (1)

the additional restraint

(2) lu(t) I <K (0 < t <T)

is imposed.

We wish a thrust function u = (u1 ,u2) such that, starting with

an initial position (xoYo) and velocity (i 0 , 0 ) at t = 0, we

rendezvous at t = T so that

(3) x(T) = y(T) = k(T) = (T) = 0.

We ask that T be less than a full period so wT < 2r. If it is assumed

that the rate of fuel consumption is proportional to the amplitude of

the thrust then the total fuel consumption will be (proportional to)

(4) f(u) = ST(u2 + U) t = T Iu(t)Idt
0 0
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and our problem is to determine a thrust function satisfying (2) and

(3) (subject to (1)) which minimizes (4), if such e ists.

We let M be the set of transfer functions (thrust functions u

for which (3) holds from (1) and the given initial conditions). We

employ the norm

(5) llu1 2 = T lu(t) 12dt] = [S (u +u 2 ) t*
0 0

and consider the Hilbert space X of u = (ul,"2 ) for which 11u11 2

is finite. In the topology thus defined, M will be a closed linear

manifold (see below). For any K, let MK be the subset of M for

which (2) holds; we assume K sufficiently large that M is non-empty.

Then

Lemma I: The functional f(u) actually achieves its minimum on M..

Proof: We observe that for any u, a e X

lf(u) - f(i T ISul - lulldt < STu - auldt < T'Ilu -1ll2
0 0

(using the E2 triangle inequality pointwise and then the Schwartz

inequality). Thus f is (strongly) continuous on X. We also observe

thatif ca+P=I with c>O, P>_0 then

T T
f(au + Pfi) = J jau + Piidt <_S (alul + Plil)dt = af(u) + Pf(fi)

0 0

(using, again, the E2 triangle inequality pointwise) so f is convex.

Since f is convex and (strongly) continuous, the sets

sa= (u:f(u) e



are convex and strongly closed in X. Hence they are also weakly closed

(c.f., (11 p. 422) and (c.f.,[2] p. 61) f is weakly lower semi-continuous.

In order that u be a transfer function (u e M) we mast have

x = y = i = = 0 at t = T given xo,yo,0 ,0  and the differential

equations (1). The solution of (1) is given by

x(t) = al(t) + S tfl(t - c)u(r)dr,
0

(k(t) = a 2 (t) + Sf 2(t - c)u(,)dc,(6) 0
y(t) = a 3 (t) + Stf3(t - -)u(r)dr,

0

k(t) = a 4 (t) + St 4(t - r)u(,)dr,
0

where

Hal W = x0 + 0(sin wt -3t) + 6Yo(wt -sin wt) + kol-csw)

a2(t) = 0(4 cos ct - 3) + &ayo(l - cos wt) + 2k0 sin wt,

o(t) = i(cos wt - 1) + Yo(4 - 3cos wt) + Lyo sin wt,

a4 (t) = 2 io sin wt + 3wy 0 sin wt + YO cos Wt,

and

fl(s) = (4sin s - 3s, 2[I - cos ws])

f2(S) = (4 cos ws - 3 , 2 sin ws),
f( ( 2[i i)

f3(s) = (kcos ws - 11, 1sinws),

f 4 (s) = (- 2sinws , cosws).
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Thus, the conditions (3) (which define M) are equivalent to

(3') (u,F> = Ai  (i = 1,2,3,4)

where Fi = (t) = fi(T - t) and Ai - ai(T) for i = 1,2,3,4.

(We have used (a,p> to denote the scalar product in X,

T

(Oj)= S [l(t)pl(t) + a 2 (t)P 2 (t)]dt).

The condition (2) (holding for almost all t e [O,T]) is equivalent to

T
(2') <u,g) < K S jg(t) Idt (all g e X).

0

Certainly (2) implies (2') as

T T T
(u,g) = S u(t)g(t)dt < S Ju(t) I Ig(t) dt < K S Ig(t) Idt.

0 0 0

Conversely, if (2) were false on a set of positive measure there would be

a K' > K and a set S C [0,T] of positive measure such that

lu(t)I >K' > K (t a S).

If one now took

U~t S

g(t) =I

then g a X and
T

(u,g) = T u(t)g(t)dt = S u(t) u dt S Iu(t) tdt > K' meas(S)
0 S , ) I S

while
T

K S gldt = K S I U dt = K S 1 dt = K meas(S) < K' meas(S)
0 S' '7 S



which would contradict (2').

It follows that u e MK  is characterized (except on subsets of

measure zero) by the conditions (2') and (3'). Then, if (u.] in a net

of elements of MK weakly convergent to u, one has

(u"fi> = ai (U1> lim a' = a' (i = 1,2,3,4)

T T
(u,g> = lim (u ,g) <limaK S Igjdt = K S Igldt (g e X)

0 0

so u is also in M., and is weakly closed-. Also (2) implies,

for u e MV

lul12 = [T Jul2dt]i < [STK2dt]* = KT.
0 0

so MK is strongly bounded and, hence, weakly compact (c.f.,[ 1] p. 425).

Thus, in the weak topology, we have a lower semi-continuous tunction

f on a compact set M. and (c.f.,[2 ] p. 65) f must achieve its

minimum on MK. QED

We have not shown that the u e MK which minimizes f is unique

but will call any transfer function which minimizes f (subject to (2))

an optimal (or, more precisely, K-optimal) transfer function. Now that

we know such functions exist it is of interest to characterize them.

There is a theorem, the so-called "Maximum Principle", due to Pontryagin

(c.f.,[ 31, pp. 66-68) which provides a characterization. Introduce the

functions (*0,...,05) satisfying the linear system

(7) ;k= - [-2- R (R,u)] ,* 0(T) < 0
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where the original equation (1) has been written as a first order

system for ( = ... ,x5)p

(1') k R= (xu) (k =0...,5)

or, in detail,

=l X2 = R(i,u)

(ik) 52  2wx4 + u R2 (R,u)

:k = x = R3(x'u)

k4 = - 2wx2 + 3w 2x3 + u2 R4(R'u)

5 =  = R5(iu)

(the original coordinate functions, x and y, are now x, and x3) and

0= 0 (1"0 (t 1 ) < 0)
i0

42 - 02I1 + 24 4

3- 3w 2

4= - -2O2

5= 0.

Construct the function

H = H(*,x,u) = 7.k~kRk(x,u)

(8) *01ul + 1x2 + j 2 (2ux 4 + u I ) + *3x4 + 04(- 2wx 2 + 3w2 x3 + u 2 ) + $5

= 00ouI + (TQ + [OlX2 + 2L* 2 x + 3x4+ *4(- 2wx2 + 3w2x 3 ) + 053
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The Maximum Principle says that a necessary condition that u be

K-optimal (since f is convex and MK is a convex set this is also

sufficient) is that there exists a solution of (7') such that, for almost

every t e [O,T],

(9) H(*,x,u) = max HC*,i,u).
lul_

We observe that the maximization in (9) involves only H0 = '0lul + (cP,u)

This clearly attains its maximum, subject to (2), if u is equal to a

multiple of -/191, so that (c,u) = II lul. Thus the function H0 = wlul,

where w =*+ IH1, is to be maximized with u = a t/IcIand 0 < Jul (K.

Hence: ) K if w > 0,

0 if w<0.

It is convenient to normalize H and * by taking *0 (T) = - 1 (it mut

be negative) so

W(t) -1 + l - -1+ (0 + #2

As all that conicerns us is the sign of w, we multiply through by the

positive function (1 + lq'l) to get

(10) w(t) = 2 + 1 ,2 ((,,) -1

and
K (1 w >

(n) u(t) =
0 ~ W<O0.



Since W = 0 only at isolated points (unless W 0 0, which is impossible

if u is to be K-optimal) we do not care particularly how u in defined

there.

We note from (11) that, for a K-optimal transfer function u,

One always wishes either to be firing at full thrust in some direction

(W>O) or to be coasting (W<O).

The total fuel consumption is, then, proportional to

T
(12) f(u) =S uldt = Kv(u)

0

where (u) is the amount of time during which the rockets are to be firing

for a K-optimal transfer function u. Since, for a given K, any K-optimal

transfer function u must give the same value for f(u), -r(u) must depend

on K alone, call it TK Thus, for any K-optimal transfer function u,

the total amount of "firing time" is TK and the total amount of "coasting

time" is (T - K) , f(u) = KtK.

Clearly, if u satisfies (2) for any K it also satisfies (2) for

any larger value of K. Thus MKC MK, for K < K' and

(13) KrK = min f(u) > min f(u) = K'cK, (K < K')
uEMK uEMK,

so that not only is TK monotonically decreasing but

(14) TY w y(/K
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This may be restated as

As K (the maximum available thrust) increases the amount of

"coasting time" increases and the amount of "firing time" goes

to zero at least of the order of 1/K. One expects, "eventually",

to have "infinitely" powerful thrusts ex3rted "instantaneously" -

i.e., impulses.

Of interest is the question of how many firing intervals there

can be, which is equivalent to determining a bound for the number of

times the rockets can "switch" from full thrust to coasting or vice-

versa. From the characterization (11) of K-optimal transfer functions

we see that a "switch" corresponds to a root of the function W = W(t)

defined ina (10) from the system (7'). At this point we note that the

general solution of (7') is given by

*0 cO (normalize so 0 -i)

(c 4 - 3c1t) - 2c2 sin wt + 2c 3 cos Wt

*3 - 2w(c 4 - 3clt) + 3c2w sin wt - 3c3W Cos Wt

*4 - (2/w)c 1 - c 2 cos Wt - c3 sin wt

*5 c5$5 = 5

so that W I(I 2 - 1= + _ 1 has the form

W(t) = 32 sin2 2t + ) + 4Y(c 4 - 3clt) sin(wt + 1) - c cos(Ut + 4)S4 1 l
(16) + 9c 2 t2 - lCt + (c2 + 4 c2 + 2

2  2= - (

where Y (C2 + c ) and tan
02
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On differentiating (16) we obtain (letting 9 = wt + $, for convenience)

= 6r 2. sin 9 cos 9 - 8Cly sin 9 + 4yw(c4 - 301t) cos 9 + 18c2t - 6c C4

and

12= - 12 2 2 sin2 @ - 20c 1 yl cos 0 - 4YW2 (c 4 - 3clt) sin 9 + (18c 2 + 6y2w2).

Letting W'= G sin 9 and writing G in terms of = cos 9 gives

G = _z2 W 2(l _2)* - 20c 1  i _ t 2)- . 4Y,[(wO 4 + 3c10) - 3c Cos-lQ

+ (18c2 + 6y2W2)(1 -

and, differentiating with respect to ( (G' = dG/dE),

G' = l2y2w2 E(1 - C2)-* - 20C 1 y(l 2) - 20c 1 2yw(1 _ t2)-3/2

_ 12Yywl( 1 _ 2)-* + (lSc2 + 6y 2 2 ) (l - 2)-3/2

= 2y 2 w2 (1 _ 2)-3/2[6 (l E (2) _ ()a(, - 2) _ iM 2 + 3(1 + 3J)C]

S_2 24i ( 2)-3/263 _ 6d 2 _ 9(1 + lc 2 )  + 16a]

(where we have introduced a = cl/yt to simplify the expression). Since

S= ,= - w(l - 2)1 G, this gives

(17) (1 2) = 12y2  [3 c2 3(+a2 ) + 8c]

For any value of the parameter a, the cubic polynomial on the right

of (17)(and, a fortiori, G) will vanish for at most three distinct real

values of (we are interested only in those roots which lie between

- 1 and + 1, however, so these may not all be significant). Recalling
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that 4T < 2Tr we see that t = cos(Wt + ) can take any value at most

twice for 0 < t <T and there is an upper bound of six on the number

of roots of 6 in [O,T]. Since there must be a root of 6 between any

two roots of G, it follows that G can have at most seven roots in

[0,T]. Now W = G sin 9 can vanish only when either of its factors does

and sin @ vanishes at most twice in [O,T] so V can have a maximuin

of seven plus two or nine roots in [O,T]. As above, this gives a bound

of ten on the roots of W and of eleven on the possible roots of W in

[O,T]. Each "switch" from "full thrust" to "coast" (or vice-versa) of

the rocket will occur, by (11), only at a root of W in [O,T]. Thus,

we have shown that

There are at most 6 firing intervals during the trip for a

ferry making a rendezvous under an optimal thrust program.

These results can be extended somewhat. Suppose one were to consider,

instead of the linearized equations (1), the equations of motion:

o =  U + u )2 Xo(t O) =0

= R = x 2  xl(t 0 ) = a, xl(t I ) = b,

:k = R = - xl(x2 + x ) - 3/2 + x5 u1  x2 (t 0 ) = a 2  x 2 (t 1 ) = b2

(18) k3 = R3 = x 4  x3 (t 0 ) = a3  x3 (tl) = b3
_ x( 2 2 -

*4 = R4 = x3 (3 +3/2 + x5
1 u 2  x4 (t 0 ) = a 4  x4 (t 1 ) = b4

5 = R5 = - a(u2 + u ) x5 (t 0 ) = m0

k6 = R6 = 1 x6 (t 0 ) = to x6 (t l ) = T.

Here (ulu 2) is to be chosen so as to minimize x0(tl) subject to

meeting the initial and terminal conditions specified in (18) and the
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same condition (2). As above, x0(tl) represents total fuel consumption

over the trip; x, and x3 are the coordinates and x2 and x4  the

velocity components of the ferry. Also, x5 is the mass of the ferry

(the decrease in mass of which with fuel consumption is now being con-

sidered); x6  is introduced to avoid an explicit condition on t.

The Maximum Principle now, as with (7) above, introduces new functions

f%'"~''$6 satisfying the system of equations

;)0 =0 2_22 2 2 -5/2 - xl3(2 )-5/2

l= (x - 2xl)(xl + x3)  '2 - 3x x +
i2 = -01'

(19) ;13 =- 3x1x,(xi + x35/ '~2 + (xl 2x3)(xl +x2 4

4= -  
-

-5 u1'2 - x5 u2 4

'6 = 0

to which must be added the terminal conditions that

(20) 1)°(t ) < 0
(20) *0 1

$5(ti) 1 0

(00(tl) = 0 is impossible for large K and we normalize so *0(tl) -1 ).

Then, constructing H = Zj) R. as before,

H = H(J,x,u) = [- lul + x51(*2.: + )4u2) - ',iuI]

(21) + 2 + 2) -3/2 '2+ 14-x ,x + x~ 2 + 3 62
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and this will be maximized by taking

KI/ I > 0
(22) U =

where we now have

(23) = I, (P -m(1 + a ',5)

with =( 2,3b 4) as before and m = x5. Note that m x5 and a

are always positive and, as

-2 2 u r1 0
lb -x5 u .  

-x 
2 1uilH l <0, (t) = 0,

we also have P5 always non-negative for t e [t,t]. As before,we can

therefore multiply ; by the (always positive) function [JJ + m(1 + a*

to get

( 2 2 m2(l + ab5)2
(24) "2 +~, - ( 5

K9/JTI W > 0,

(221) u(t) =

It follows that, for the equations of motion (18), the K-optimal

transfer functions (we have not yet, of course, shown that such exist)

are characterized in exactly the same way as for the linearized equations

(1). That is

For a K-optimal transfer function (for (18)) one is always either

firing at maximal thrust (Jul = K for W> 0) or "coasting"

(u = 0 for < 0). urther, if rK denotes the amount of firing

time during the trip then K K  is monotonically decreasing and

TK (1/K).
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Unfoi'tunately, it is no longer possible in the non-linear case

to find the general solution of the auxiliary system (19) independent

of x and u nor can we write down, as with (16), a simple expression

for the manifold of possible W. Thus, the method used above to demon-

strate a bound (independent of K) on the number of firing intervals

cannot be employed here. We have no proof that for a given K the

determining function W will have only a finite number of roots, much

less an explicit bound independent of K.

The existence theorem given above for the case of the linearized

equations (1) no longer applies as the manifold M cannot be charac-

terized as in (3') - the proof is valid modulo a lemma to the effect

that M is weakly closed. It is possible, however, to prove existence

by the use of a general existence theorem due to Roxin [4 which for our

purposes may be stated as follows:

Theorem: Let & = R(i,u) where R,R e Em and u e U CE n  for each t.

Let Si [R(i,u): u c U1 be convex for each x e Em. Assume that R is

defined on E x U so as to be continuous in u and Lipschitz continuous
m

in R (uniformly for u s U). Specify initial conditions for x(t 0 ) and

terminal conditions x(tl) e E where E is compact. Then there exists

an optimal control, i.e., a measurable function u(t) such that the condi-

tions on x are satisfied and x 0 (t 1 ) is a minimum.

The right hand side R( x,u) in (18) is not uniformly Lipschitz

continuous,as it has a singularity at x1 = x3 = 0 and at x 5 = 0. This

is easy to fix up, however, - if, as we assume, the capsule is already
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in an approximate orbit it is clear that the trajectory determined by

any optimal control will be bounded away from the singularity of the field

(the center of the earth - actually, of course, it must be bounded away

from the earth's surface) and x5 is, of course, always greater than the

payload so that R(i,u) can be re-defined within that bound arbitrarily

so as to make R Lipschitz continuous in x without affecting the

physically significant problem.

That S- is not convex for each x (it turns out to be part of the
x

surface of a cone) is a more difficult matter which can, fortunately, be

gotten around by a trick. Consider the new set of equations (the boundary

conditions are the same as in (18) except that we place some a priori

bound on xo(tl) to make the terminal set E compact)

x0O = Rol= u 0
0 0

1 = RI = x 2 2 12 -3/2 + -1
k2 = R' = - x (xl + x u 1

(i,) 3 = RI = xu

4 - + 5 2

k5 = R51 = - u 0

k= %

where the new control u' = (uoUlU 2) lies in the set U' C E3 defined

by

(25) o < (u 1 + u2)f < u 0 < K.

Modify R', of course, as described above so as to make it Lipschitz

continuous even for small x1 ,x3 ,x5. Then this problem satisfies all the
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conditions of Roxin's existence theorem and an optimal control u'(t)

ust exist.

If we could show that necessarily u0 = (2 + u ) for this

optimal control then the solution to this problem would also give a

K-optimal control for the problem posed by (18). We make use of the

Pontryagin Maximun Principle again and note that (letting b be the

solution to the auxiliary system corresponding to (18') - which happens

to be the system (19) again) the function H = H(i,R,u') is now given

by

(21') H = [- u0 + xs5( 2ul + %14u 2 ) - alb uo]

+ ( ix2 + b3x4) - (xl + x3-3/22xl + '4x3 ) +

and this is clearly maximized, for u' c U, by letting

(ul.'u2) = uOq'/t lp uo = (u . + u 2) 0 <K  0

so that u0 can be replaced in (18') by lul and (181) reduces to (18).

Thus u = (u1 ,U2) provides a K-optimal control for (18) and existence

is demonstrated.
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