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STABILITY OF FLOW BETWEEN ARBITRARILY SPACED CONCENTRIC CYLINDRICAL

HSURFACES INCLUDING THE EFFECT OF A RADIAL TEIA U =ADDIT

Li by

jJ. Walowit, S. TSao L C. DiPrim

ABSTRACT

The stability of Couette flow and flow due to an azimuthal pressure

[gradient between arbitrarily spaced concentric cylindrical surfaces is in-

Uvestigated. The stability problems are solved by using the Gal1rkin method in

conjunction with a simple set of polynomial expansion functions. Results are

Hgiven for a wide range of spacings. For Couette flow, in the case that the

cylinders rotate in the same direction, a simple formula for predicting the

critical speed is derived. The effect of a radial temperature gradient On the

the stability of Couette flow is also considered. It is found that positive

and negative toperature gradient@ are destabilising and stabilizing respec-

Htively.
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]I!NODUCTN

The stability of viscous flow between concentric rotating cylinders

was first investigated experimentally and theoretically by G. I. Taylor in his

famous paper in 1923 CI1.* He showed, in agreement with experiment, that when

La certain criterion was violated a secondary motion in the form of toroidal

vortices sets in. For the most part Taylor' s computations were limited to the

case when / = 2/CL3 > 0 or, only slightly negative (with a few exceptions)

L and P- R1/R 2 -1 where R1 ,R2 and -A1, f 2 are the radii and angular velocities

of the inner and outer cylinders respectively. However, he did give a correc-

Ition formula suitable for 1-1 small. Since this original investigation,

there have been a number of papers dealing with suitable mathematical techniques

LI for solving the related eigenvalue problem for the "small-gap" problem (Y-. ),

but for arbitrary rotation rates. The case of -k large is particularly

difficult. (See [28], (2]). On the other hand, the "finite-gap" problem

[j~ ~ 1) has only recently been considered. One of the difficulties in treating

the finite-gap problem is that the differential operators in the eigemvalue

problem has variable coefficients in contrast to the constant coefficient opera-

L tore that appear in the small-gap problem.

Using an expansion technique similar to that for the mall-gap problem

L in which one of two equations is solved exactly, Chandrasekhar [3) has consi-

dered the finite-gap problem. The aomputations are rather tedious and numerical

[I Numbers in brackets designate References at the end of the paper.

"For a discussion of some of this work as well as references to other papers,H the reader in referred to ChandraekMr [2, Sea. 71].
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results were obtained only for the case - I, but for a wide range of valune

of /, -0.5 4/<, 0.25. (The flow is stable for/U > Iz.) More recently

Chandrasekhar [43 and Chandrasekhar and Klbert [5] have shown that some of the

Inumerical difficulties can be overcome by considering the corresponding adjoint
eigenvalue problem. Witting [6], treating 1- 1 as a sall parameter, has also

considered the stability problem by expanding in powers of (1- 1). Finally

[1Kirchgssner C73 has constructed the Greens function for the finite-gap problem,

and has solved the resultant integral equation by an iteration technique. Be-

sults were obtained for < I (1 with 1A. 0, -0.4 0.2f fo44 . 2 f,

and for -014 /1JA< 14/9 for I- 2/3.

UA similar type of instability problem occurs when a vious fluid

[1 flows in a curved channel under a pressure gradient acting round the channel.

The small gap form of this stability problem was first considered by Dean £8).

(The finite-gap Dean problem has not been considered in the literature. How-

ever, Meister £9) has considered the more difficult finite-gap combined Taylor-

Dean problem for the cases A - 3/ and 5/6. By properly rescaling his results

it is possible to obtain approximately the criterion for the Dean stability

problem for these values of However, there in insufficient data to do-

,[3 termine this limit accurately.

In the present paper the finite-gap Taylor and finite-gap Dean

IIproblems are considered. It is shown that each of these problems can be

solved using the Glerkin method, the eigenfunctions being represented as a

combination of simple polynomials. With this choice of expansion functions

all necessary integrals can be easily evaluated and numerical computations

have been carried out for a much wider range of 1(0.1 ( , 1) than in previous
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computations. The results are in good agreement with the know heoretial

Iresults and all of the available experimental results.

Finally the effect of a radial temperature on the stability of Couette

]flow between rotating concentric cylinders is considered. The corresponding

theoretical small-gap problem has been considered by Yih [103, Lai [:11), and

Becker and Kaye [121. Experimental results for gases have been obtained by

Becker and Kaye [13] and BJorklund and Kaye [203, and for liquids by Nissan

and Haas [29] and Nissan, Ho and Nardacci 1303. With just a few additional

computations this problem can be solved by the Olekin method used in solving

the Taylor and Dean stability problems.

THE STABILIT! PROBEMI

Let r,e,z denote the usual cylindrical coordinates, with the z axis

Bcoinciding with the axis of the cylinders; and let R.,R 2 and £11 and R2 de-

note the radii and angular velocities of the inner and outer cylinders respec-

II tively. If Ur, ug, and u7 denote the components of velocity in the increasing

r, e, and z directions and p denotes the presure, the lavier-Stokes equations

admit a steady solution of the form

ur - u s - 0 , u V(r) , p/-)r (1)

Iwhere is the density.

fNow superimpose* on this steady notion a sall rotationally sm-

metric disturbance of a form such that the 0 component of the velocity is

u9(r,z,t) - V(r) + v(r) ert cosoXz (2)

I*A complete derivation of the disturbance equations can be found In Chapter 7

of reference [2].

~jII~-1.



The motion will be unstable if there exis3t solutions of the resultant .egm.-

[ value problem for which the real part of T is greater than sero; it will be

stable if all the solutions have real part of q- less than zeo. It is knomn

Ifrom experimental evidence that not only is the instability of this spatial

form, but that also a new steady secondary motion occurs. Hence we can an-

ticipate that the marginal state is given by T - 0 rather than ust real

Hpart Q - 0. In this case the linearized equations fbr the disrbnme veloci-

ties are

(DD* ) 2 N2 sn (r)v (3)

(DD*- >, 2 ) v - -(D*V) U (4)

where u is the disturbance velocity in the radial direction, is No kne-

vatic viscosity, .f?.(r) - V(r)/r, and

D.d D* - D + (5 )U D- ~,

\ H The requirement of no slip at the boundaries Cives the bonar'y ceIetions

u - v - Du - (6)

Hat r -Rand r -R 2 - Wewmill consider two examples.

The Taylor stability problem. In this case the basic motion is that

Hdue to the motion of the cylindrical walls (Couette flow), and V(r) is given

by

V(r) Ar B (7)r



Ill vhere

Notice that D*V = 2A, a constant.

iIt is convenient to choose our length scale so that the range of the

independent variable is independent of the parameters of the problim. Further,

the natural scale, except in the limiting case / = 2/ '-1 - . (See E28.),

[for X is the gap width. Hence we introduce the dimensionles variables

r RO + dx a - >d (9)

where d - R2 - R. and R (R2+R,)/2. Then t Taylor s',lity pr "Oetkes

the form
(DD* - a2 )2 u -- a2 T g(z) v (10)

(]* - a2 ) v -u (n)

here

LI Q.() -~lg(z) , g(x) + B

Bl B2

Al 2

Sand T is the usual Taylor number

T - 4 d 1 ) 2 (13)

-6-



and we now use D and D* for the dimensiomless operators

SFinally u has been replaced by (2Ad2/))-l u.

Equations (10) ad (11) with the boundary ocadition

i u-v - Du -0 (15)

at x - 4j determine an sigenvalue problem of the fora

F(T,a , A 7 ) - 0 . (16)

For fixed values of/C and 7 , which determine the geometry and basic velocity

distribution up to scale factors, we wish to determine the mini=a positive T

over all real positive a for which there exists a non-trivial solution of the

eigenvalue problem. The critical value of T determines the critical speed CL

for fixed /L and 7, and the corresponding critical value of a determines the

spacing of the vortices in the z direction.

j It should be noted that the Taylor ,dmber T as defined by Eq. (13)

is different froa that used by Chandrasekhar [33 (T = - M/1 2) who used

I R2 as his reference length. The present choice is the usual Taylor number

I for the small-gap problem; hence, in the smal-gap limit --l, Zqs. (10)

and (11) reduce to the usual small-gap equations. Further we note that in

the case V- 0, which is of most engineering interest, both A and B, are

proportional to 1 2. Hence to obtain a meaningful problem for A4a 0 as --P 0

it is necessary to rescale T by a factor of 12 treating T1
2 as the new eigen-

value. That is, we can anticipate that for /A. - 0, T--PC/J 2 where C is a

constant as I -0. Most of our results are given In term of T 2 tich also

1 -7-
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reduces to the m=a3-gap Taylor umber as -9 1.

I The Dean stability prob . In this case the cylinder mls we at

rest uad the notion is due to a oonstmt ofrcwremtial pressue pdiemt.

I The basi velocity is

V(r) - 2( r I r + Cr ) (17)

where

RI In R n R, R12R2 R2

-IR R R 3.R.. -I
With x and a defined by Eqs. (9), mind 5, D and D" defind by Eqs.

(12) and (14), the finite-gap Dean stability problem takes the fom

I (DD* - a2)2 u - a2 p[h(x)/I) v (19)

I (I)*- a2) v - (Dh) u (20)

p(-12)2 2 2,( )

V( a)V * h(x) , Va R2 1p 
n 2) -4 1( 1 (- )

S 2fl) ")e 412

-x 4 (l 2) )n + ) 2 / (1

(21)

P: - ( )2 d

I and V is the mean velocity. Finally u has been replaced by (Va d/&)- u.

I -8-

LI



HThe boundary conditions are given by Eqs. (15).

SIn the small-gap limit, )-e1,q. (19) and (20) red tothe

usual am-gap equations within an interal mltiplier of P.

- OF SOLUTION

The eigenvalue problems for the finite-gap Taylor and Dean insta-

jbility problems can be conveniently solved by the Galerkin method. The func-

tions u and v are expanded in complete sets of functions satisfying the

boundary conditions (15). The coefficients in the series are determined by

the requirement that the error in Eqs. (10) and (n), for the Taylor problem,

Jor in Eqs. (19) and (20), for the Dean problem, be orthogonal to the expansion

[functions for u and v respectively. This leads to a system of infinitely many

linear, homogeneous equations for the coefficients in the series. For a non-

4trivial solution it is necessary that the determinant of the system of equa-

tions vanish, and this gives a deteminantal equation for T(a,/,, ) or P(a,.

In practice only a finite number of terms are used in the series for u and v,

say M, and this leads to a determinant of size 2N.*

In principle there are a number of possible sets of complete functions

Jwhich can be used for the expansion of u and v. For example, the set of func-

tions sin(2n-l)Vx and cos2nTx (n-l,2,'...) could be used for v(x), and the

Iset of functions Cn(x) and Sn(x) tabulated by Harris and Reid [323 could be

used for u(x). Unfortunately, the choice of trignometric functions leads to a

prohibitive amount of labor just to evaluate the entries that appear in the

determinantal equation. Indeed it is not clear that m of the Integals oan

* is not actually necessary that the nmber of tems in the sris for u and
v be the same.

Ii-9-
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even be evaluated in closed form.

For our purposes it is more convenient, and equally as satisfactory,

to use simple polynomials in x that satisfy the boundary coaditiom. Thus we
achoose

u(x) " o'nu(x) , v(x) pnv(x) (22)I]noi n-i

where un(x) - (x2 - J)2 xn- 1  and vn(x) - (x2 _ *) 1 n These polynomial

]expansion functions have also been used by Kurzweg [313 in his treatment of

several small-gap problems in hydrodynamic and hydromagnetic stability. It

is particularly interesting to note that with this choice of expansion func-

[tions all of the various integrals can be expressed exactly as polynomials in

or as the products of In 1 and polynomials in In the use of the

IGalerkin method for these problems it is helpful to note that the operator

d/dr(d/dr + r-1) is a Sturm-Liouville type operator with a corresponding weightf Ifunction r, or in our dimensionless variables 3. Thus we require, for example

U in the Taylor problem, that the error in the equation for u be orthogonal to

3u(x), m-l,2,...,H, which gives

U ( . ,(DD* - a2 )2 + p -0

m " 1,2,.... (23)

where (um,u n ) denotes the integral of umun from x = 
- j to x - }. Similarly

[for the equation for v(x) and for the Dean stability problem. The number of

computations that are required are considerably reduced by the symmetries

[-10-



(,(DD_-a 2 ) 2 un) (>un,(DD*a 2 )um), etc. and by the fact that the differ-

Uential operators for the Taylor and Dean stability problem are the same.

As mentioned earlier, while it is possible to evaluate all interals

[exactly, it is actually more convenient in practice to proceed in a slightly

different manner. The details of the evaluation of the Integrals are given

in the Appendix. The determinant is evaluated by the method of pivotal con-

]densation, the zero being found by trial ad error. All of the omputations

were carried out on an I.B.M. 650.

]For the Taylor stability problem. computations were carried out for

M - 2, 3, and 4 for a range of values of from 1 to 0.1 and for a range of

/L 2. ForJ9 > 2 the flow is known to be stable to disturbances of the

form (2). The results are tabulated in Table 1. For 1, and /C in the

range -1 <Al 1 the results for M - 4 are within 0.2% of the Oexact results"

given by Chandrasekhar £2, Sec. 71]. Indeed even with M - 2 the error for the

worst case, ,A -1, is only 5%. If we bear in mind that the analytical and

Lnumerical work using the Galerkin method with M - 2 is much les than that for

the expansion procedure of Chandrasekhar or the integral equation technique,

this result is surprisingly good. For - and a range of , - ig/k

[and M - 4 the maximum difference between the present results and those of

Chandrasekhar and Elbert [5 occurs at I - - I and is about 2%. With de-

Icreasing I (wider gap) and decreasing /4. it becomes more difficult to approxi-

mate the eigenfunction, so that at - 0.2 it was not possible to determine T
accurately for negative values of/L without taking more terms in the series

for u and v. By comparing the results for M a 2, 3, and 4 it is estimated that

all the results given in Table 1 for M 4 are orreot within 2%. Ffr/- O,

~-11-
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and a range of ),0.2 4) A 1, sae recent results by Roberts [143~ using

Hdirect numerical integration are essentially identical with those given here.

For the Dean stability problem computations have been carried out

[jfor a range of , O.l , 3 * 1. The results are tabulated in Table 2. The

only known results for this problem are for 1 1. In this case the result

Hfor (Vd/,)) (d/R 2)1  is essentially identical with the value 35.94 reported

I] by Reid [15] and the values given by Himmerlin £16), and Dean [8.). For M = 2

the difference is only 2.6%. Comparison of the results for H - 2 and 4 indi-

cates that the error increases with decreasing 7, the percentage change being

about 7% at - 0.1. It should be noted that the percentage change in the

actual eigewvalue P appearing in Eq. (19) is twice that in (Vd/)(d/R 2 )*.

Ii EFFBCT OF A RADIAL TEHPRATUM (RADIENT

In this section we will consider the effect of a radial temperature

gradient on the finite-gap Taylor stability problem. The presence of the radial

Htemperature gradient will give rise to convective effects through the interac-
Htion of the associated radial density gradient with the radial acceleration.

In this analysis we will neglect the effect of gravity. Since in both gases

fand liquids the centrifugal force field V2/r corresponding to the critical

speed is often much less than g, this is a serious approximation.* However,

Hfor stationary cylinders no significant changes in the heat transfer as pre-
dicted by conduction were observed in the mesuriemnts of Krausahold [173 for

Rayleigh numbers (based on g) less than 103. For horiuontal cylinders this

Lwas verified by the experiments of Liu, Mueller, and Landes [183 and the

L The ratio (3 1 l. 1 )2 /Rlg is given approximately byT /3 (1 )/g 2_A

-12-



theoretical analysis of Crawford and LeAich E19). In addition, in the experi-

mental stability work of Becker and laye [13] and BJoikiund and Kays 2) with

gases no significant effect of gravity was observed. Further we might note

[that in stability problems of this type the critical Taylor nimber is rather
insensitive to variations in the basic velocity and temperature profiles. Thus

we will ignore the apparently weak convective motions due to gravity in the

present analysis. The effect of essentially a radial gravity field on varions

curted flows has been considered by Grtler [21] and KirchgVssner [22].

IIn addition to the three moentum equations and the continuity equa-

tion we must now include an energy equation and an equation of state in our

H analysis. We shall assume that our fluid has constant thermal conductivity,

H specific heat, and viscosity*, and we will neglect viscous dissipation and

energ associated with change in pressure in the energy equation. With these

Hassumptions the basic azimuthal velocity distribution is given by 3q. (7), and
the temperature distribution ( is given by

U (r) -T, - (T2 -T1 ) In In 1  (24~)

where TI and T2 are the temperatures of the inner and outer cylinders respec-

tively. As an equation of state we assume I - %oI-oc(( &0)] vhere @ o

Jis a reference temperature and Ot is the bulk coefficient of thermial expansion.
We now consider rotationally symmetric disturbances of this steady

*Thus our analysis is primarily limited to gases with.um-il tempeature dif-

ferences or liquids with only slight viscosity variation with t=emperamtre.
The corresponding sall gap problem for liquids with variable viscosity baHbeen considered by Walowit [233.

_H - 13-
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velocity and temperature distribution. A mal.1 disturbance e(r,s,t) in the

gtemperature will lead to a disturbance in the density. For small tomperature

variations, the variation in density will be small and we will assume that

the density is a constant , except when multiplied by the centrifugal ac-

celeration term V2/r. Here the density disturbance is given by - o( 8'. This

is the classic Boussinesq approximation. The disturbances can be expressed in

the form given in Eq. (2), that is, e, - e(r) eit cooXs and we obtain, using

the principle of exchange of stabilities, the following e ghth orde syt of

[equations

S)(DD*- v2 ) - (2A)u (25)

Uwith the boundary conditions

u-Du-v-e-o (26)

at r = R1 and R2 . Here < is the thermal diffumivity. In dimmmionless varia-

liles I. (25) take the form

U(DD* -a2) 2 uu a2Ttg(m) v +N3 g()3 2e)

S(DI - a2 ) v - u (2?)

] (D*D - a2) e - ,u/I

where x,a,g(x),J ,T,D, and D* are defined by Eqs. (9), (12), (13) and (14).

[-14-



Also ui has been replaced by (2Ad 2A) ) u and S has been replaced by

U[Pr(TrT3j)/2aN, In(l) J , Idhere Pr - )/) is the Pna s kiti auwEe
Pr ,((TA-T)'

N 2-71Y(28)

is the ratio of a Rayleigh number, Ray - 0((T 2 -T1)d 3 RLM 2/)0>< with

RL, - d/lnYj based on the centrifuPI acceleration E ~ and the Taylor

nmber T.

In the sma1l-gap ,limit, - 01, N-.PrC(T 2-T1)/2(1-/)). Moreover.,

as 1-01, 1 "-e, D'*-tD; hence it follows from the last of Eqs. (27) and the

]boundary conditions (26) that e - v. Consequently the eighth order systm of

equations reduces to a sixth order system. This problem has been considered

[I by Tih OLO) and Becker and Kays [12] for /k>? 0 and by Lai .J for/(i>., 0.

The eigunalue problem,

F(9,)/.,a,N,T) - 0

defined by Nqs. (27) and the boundary conditions (26) at x - 4, can be solved

[by the Oalerkin method described previously. The exprnsion functions for 0 are

the same as those for v. Computations have been carried out using tw and three

] term in the series (9z9 determinant) for - 1,/.. ,0; -d . , 0,

andO0.2 for various valuesof N, and for -, /A -for various vauesof

Ray. The results are tabulated in Table 3 and are shown graphically in Fig. 5.

For the isothermal case Ni 0 the results are within 1% of the

suats of Chandrasekhar [2,3]; and for N j 0 but I1--*1 they are within 2% of

those given by Lai [n-)]. Further, the mImMs change in the critical Taylor

nuber between the to and three teram apiroim atie is of the order of %.

-15 -
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LI The critical values of a given in Table 3 have only been deterslne up to +0.0ok.

[1 ONICLUI(NU

[1 The present results indicate that the Galerkin method in conjuncticn

with simple polynomial expansion functions can yield accurate results for a

variety of stability problem. Further, once the integrals corresponding to

such operators as (DDM * - a2)2 u, (DD* - a 2 ) v, and (D*D - a 2 ) 0 are evaluated

a number of different stability problems can be treated with only minor addi-

Li tional computations.

In Fig. 1 the variation of T 1
2 with I for,/L 0 is shown. Also

Lthe theoretical results of Chandrasekhar and Elbert 151 and Kirchgsner [7]
as well as the experimental results of Taylor [IJ, Lewis [24, Donnelly £25]

and Caldwell and Donnelly [26] are indicated. In general the agreement is

Lexcellent. The hysteresis effect indicated by Lewis appears to be incorrect.
See Caldwell and Donnelly. It is interesting to note that Taylor's correction

1formula for gap size is indeed very accurate for I ; 0.8 but does begin to
deviate fairly rapidly from the present results for I < 0.8. From a practical

point of view the present results indicate the correction in T in comparing

smll-gap theoretical ( - 1) values with small-gap experimental ( near 1)

results. Thus for - 1, -0, T - 3391 and for .95 (a reasonable

value for small-gap experiments), A - 0, T - 3511 which is a change of 3.5%.

As mentioned earlier for/s- , T 2 _ (2 f.1 /) 2 (l+ 12) approaches a value

of approximately 50"ar I -- ).

In Fig. 2 the variation of T 2 with J for /A- 0.2, 0, -0.125, and

-0.25 is shown. Finally the regions of stability in a (flRd/O)(d/Rl)l vs

2 ( Rd/p )(d/R 1)i plane are depicted in Fig. 3 for *1.0, 0.1, and 0.5.

i- 16 -
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It is well known for the mall-gap problem, )-.l1, that even if

1f(r) is replaced by its average value accurate results are obtained for

/A >,O. Lin t27) has suggested that it should also be possible to do this

for the finite gap problem. However, some care mst be taken in choosing a

suitable average. It is natural to consider the velocity rather than the

Uangular velocity, and to replace V(r) by its average over the gap, Vav. To

robtain a suitable average angular velocity, Vav must be divided by a suitable
length scale independent of/-,. The requirement that the average angular

velocity be the same as the angular velocit ies of the cylinders in the limit

--P 1, leads to the choice of Ro for this length. Thus g(x) in Eq. (10) is

replaced by A, + Bl/( ol) where - (l+1)/2 and ?)u" (1-7)/(-ln );

and we can anticipate that

I T(A,+ B -Ta (29)

should depend only upon 9 for / , 0. Actual computations show that this

IIdimensionless parameter gives the correct value of T within 2% for a range of

fro 0.2 to 1.0 and for 0 0. In addition, it was found that the critical

Ivalue of Tav is relatively insensitive to variations in ) . By using its value

at 1 , namely 1.706, we obtain from Eq. (29) after substituting for A, an
from lqs. (12) the extremely simple formula for the critical value of T

ITm 1708 1- Y72) (30)

which is correct within 4% in the range 0.5 . * /&. 0.*

I *After this work was completed the authors learned that Rintel and Lieber 33]
have also suggested an averaging process for coputing the critical Taylor
number for the finite gap. Their averaging is considerable more owqloated
and does not appear to yield any more accurate results.

-17-
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For the Dean stability problem the variation of )Vid/t)hd/R2)* v

9 is shown in Fig. 4. Of particular interest mathematically is the non-

monotonic behavior of P with an increasing number of terms in the series ew-

pension. For example for - and a - 3.96 the result 36.86 for - 2 is

closer to what we might consider the *exact* value 35.94 than the result 37.26

Ifor M - 3. At first sight these results emed surprising and were consequently

checked by hand computation. However, if we bear in mind that these are nonself-

adjoint eigenvalue problem we realize that we camot expect necessarily mono-

[tonic behavior of P with increasing M. Indeed, this result shows that the well

known result for self-adjoint, positive definite eigenvalue problem that the

approximation to the eigenvalue is improved with increasing N does not hold in

general for nonself-adjoint eigenvalue problems.

Finally, we consider the effect of a radial temperature gradient am

the stability of Couette flow. As shown in Fig. 5, positive and negative

temperature gradients are destabilizing and stabilizing respectively. For/4

i not near 1 2 it is difficult in practice to achieve values of N, without vio-

lating the assumptions we have made, large enough to change significantly the

critical Taylor number from that predicted by isothermal theory.

[ However, A, wil be small for /14 near 9 2, and hence it will be pos-

sible to have large values of N. In this case the Rayleigh number plays an

I important role. A graph of the critical Taylor number vs. Bay number for

/A __0 ? 2 (N ~is given in Fig. 6. Aacan bemeen from thisufigure, for

sufficiently large Ray numbers it is possible for the flow to be unstable even

2though T is negative, that is/4. 9  . This was first pointed out by Ti o 1l0]
and Becker and Kaye [12J for the small-gap problem. Further, Yih observed for

the mall-gap problem as is the case here, that von Karuma's condition based

1 -18-
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I]on aninviscid fluid (that the product of the denity ead thesqaare of the

[1 circulation r increasing outward is a necessary and sufficient condition for

stability) no longer holds when viscosity is taken into acco b. This can be

seen from the plot of T vs. N for #-* * I(n Fig. 7. The points In

the lower left hand quadrant correspond to T decreasing and P increasing

I radially. Thus for suitable Prandtl rmbers one can find flaw vhich are un-

11 stable even though r 2 increases outwmrd and the flow in stable according to

the inviscid theory.

1In a manner similar to that used in deriving 3q. (30), and ain use

of the rather insensitive dependence of the differential operators on I for

] 1 it is possible to derive an "average-type" stability criterion for

p the thermal proble0M. For/ Ik 0, 3. 7~ this relation is gve. by

Tav + (hT)av - 1706 (31)

where Tar ins defined by 2q. (29) and

(Rayar ft(Al B 1 2 V'~)oD,7 "IM

This result reduces to that given by Decker and Zre [123 for I-Pl.

L
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Table 1. Critical Taylor mmbr and corresponding values of a for various

asuiped values of ,- .121.01 " 1" / 2 . Subscripts de m1 o me ber of term used in the anw ing . e. The relbI .

given in colum C are those give, y Obdyemr EllC M[1 Chandrauekhar and hlbert [51.

/4 a (T ?2 )2 (TJ2 )3 CT2) T2,/t3 T3/T T2 T.
1.00 1.00 3.12 1750.0 1708.5 1708.4 1k06.1 1.024 1.000 1.024

0.5 3.12 2331.4 2276.4 2276.1 .2275.3 1.024 1.000 1.024

0.25 3.12 2792.7 2727.1 2725.9 2725.3 1.024 1.000 1.025

0 3.12 3475.0 3394.6 3391.3 3390.3 1.023 1.001 1.0*

-0.125 3.13 3952.9 3863.0 3856.6 -- 1.023 1.012 1.025

-0.25 3.13 4575.8 4474.4 4463.4 4462.6 1.023 1.003 1.025

-0.50 3.20 6589.4 6462.7 6418.4 6117.1 1.020 1.007 1.026

-0.70 3.34 9718.1 9598.3 9435.6 9433.0 1.012 1.017 1.030

-0.90 3.70 15537 15559 14952 14940 0.999 1.O2 1.039

-1.00 4.00 19644 19745 18703 18680 0.995 1.055 1.050

0.95 0.9025 3.12 1663.5 1624.2 1624.2 ---- 1.024 1.000 1.024

0.70 3.12 1869.3 1825.3 1825.1 1.024 1.000 1.024

0.50 3.12 2128.7 2078.7 2078.4 1.024 1.000 1.024

0.20 3.12 2684.9 2622.9 2621.6 1.024 1.001 1.024

0 3.13 3245.4 3172.4 3168.8 1.023 1.001 1.024

-0.125 3.14 3727.2 3645.5 3638.8 1.022 1.002 1.024

-0.25 3.15 10.1 4276.1 4.263.4 1.021 1.003 l025

24



Table 1. (CasiUeod)

a a (T, 2 )2 (T, 2 )3 (T1
2 ) 4  C T2/?T3  /Tj T2/t 4

0.90 0.81 3.12 1579.0 1541.9 1541.9 1*024 1.000 1.024

0.50 3.12 1934.9 1890.1 1889.6 1.024 1.000 1.024

0.20 3.12 2470.9 2415.2 2413.7 1.023 1.001 1.024

0 3.13 3024.7 2958.9 2955.0 1.022 1.001 1.024

-0.125 3.14 35n.7 3438.1 3430.8 1.021 1.002 1.02

-0.25 3.15 175.0 4092.8 1408.4 1.020 1.004 1.024

0.80 0.64 3.12 1415.7 1383.6 1383.3 1.023 1.000 1.023

0.40 3.12 1710.8 1673.9 1672.4 1.022 1.001 1.023

0.20 3.13 12068.4 2024.6 2022.8 1.021 1.001 1.023

U[ 0 3.13 12609.6 2557.8 2553.4 1.020 1.002 1.022

-0.125 3.16 3112.8 3055.3 3046.8 1.019 1.003 1.022

-0.25 3.17 3840.5 3778.1 3759.9 1.016..005 1.022

0.70 0.49 3.12 1260.2 1233.5 1233.0 1.022 1.000 1.022

0.35 3.13 140.2 1410.6 1409.7 1.021 1.000 1.022

0.20 3.13 1699.2 1665.8 1664.2 1.020 1.001 1.021

0 3.14 2229.5 2190.4 2185.9 1.018 1.002 1.020

-0.125 3.15 2760.2 2718.7 2708.5 1.016 1.004 1.019

-0.25 3.19 3597.0 3556.7 3532.1 1.012 1.007 1.018

[ -0.50 3.56 - 7821.9 7586.6 - 1.o'. -

L - 25-
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II

Table 1. (Continued)

[1 B (T1 )2  C 1 )3  ( 1 )4 . C .?2/13 3yT /T 14

0.60 0.36 3.13 1112.9 1091.5 1091.0 1.020 1.O0 1.020

0.25 3.13 1272.9 1249.7 318.6 1.019 1.001 1.019

H' 0.10 3.14 1581.5 1555.8 1553.2 1.017 1.002 1.018

0 3.15 1883.5 1856.6 1851.5 1.o,5 1.003 1.017

-0.125 3.17 2466.9 2436.6 2424.8 1.015 1.005 1.017

-0.25 3.24 3512.6 3488.2 3453.2 1.007 1.010 1.017

0.50 0.25 3.14 973.88 958.35 957.22 957.8 1.017 1.001 1.017

0.20 3.14 1054.4 1038.5 1037.0 1.016 1.001 1.017

0.10 3.15 1263.2 1246.2 1243.7 1.015 1.002 1.016

H 0 3.16 1574.7 1554.5 1549.6 1550. 1.013 1.003 1.016

-0.125 3.19 2250.4 2230.3 2216.4 2219 1.009 1.006 1.015

-0.25 3.32 3774.5 3752.0 3693.9 3701 1.006 1.015 1.022

-o.5o 4.78 --- 13553 13323 13022 - 1.017 --

0.40 0.16 3.15 845.74 833.21 831.81 1.015 1.002 1.017

0.08 3.16 1025.6 1011.5 1009.1 1.014 1.002 1.016

0 3.17 1298.6 1283.5 1279.1 1.012 1.003 1.015

-0.125 3.24 2253.0 2164.2 2146.5 1.o l 1.oo8 1.o49

-0.25 3.76 5179.1 4942.5 4830.6 1.o48 1.023 1.072

0.30 o.o9 3.19 728.00 '16.56 714.81 1.016 1.002 1.018

0.05 3.20 846.17 833.10 830.70 1.06 1.003 1.039

H- 26 -
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Table 1. (Continued)

)I a ( 22 (T 2) (T 2)T T TA
'7 4. a T~ 2  )3 )4 2/T3  T4~T2 P

0.30 0 3.20 108.7 14o3.1 1040.0 1.015 L "004 1.018

-0.325 3.1, 2623.8 2525.I4 2195.2 1.039 1.012 1.o'

0.20 0.04 3.22 624.36 609.12 606.72 1.025 .oo4 1.029

0 3.23 849.24 833.40 829.-3. 1.M9 1.005 1.02.4

0.10 0.01 3.29 51.11 513.87 509.10 1.053 1.009 1.062

0 3.30 673.59 657.09 650.00 1.025 1.00. 1.036

2
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Table 2. Critical values of R*d (V2d) * )(d/R) o
of a fi* *arioui assi' valus 6f ft Sbow*Ut duos - 6m

I]
of tozin used in the app nmadat~ng si'ies.

B _) a tR(d/R2 )1j12  [Rd/R12 1 33  [(d/R)I'j 4  R2/R3  Ry'R 14  "~R4

1.0 3.96 36.84 37.31 35.9o 0.989 1.039 1.025

0.95 4.02 37.19 37.70 36.26 0.986 1.040 1.025

0.90 4.o6 37.72 38.30 36.79 0.985 1.01 .1.o24

0.80 4.16 38.82 39.51 37.88 0.983 1.043 1.024

0.70 4.24 40.11 4o.96 39.19 0.979 1.o45 1.023

0.60 4.32 41.64 42.73 40.79 0.975 i.o46 1.021

0.50 4.41 43.47 44.91 42.79 0.968 I.o5o 1.017

01 0.40 4.46 45.65 47.70 45.18 0.957 1.o53 1.011

0.30 4.51 48.47 51.47 48.75 0.942 1.o56 0.995

0.20 4.57 51.72 57.00 53.60 0.908 1.o63 0.964

o.0 4.64 57.03 65.91 60.92 0.86$ 1.082 0.936

[2
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I]
Table 3. Critical Taylor numbers and oorresponding values of a for various

assigned values of I , , and N or Pay. Subsort dwte the
number of terms usea in the appi =Wag seis.

IiAa N Rsy T2  T3  23
1.0 0 3.12 1.0 2223.4 2177.3 1.0212

0.5 3712.1 2653.3 1.3990

0 0 3474.7 3394.6 1.0235

-0.5 4829.4 4705.9 1.0262

-0.75 5992.0 5826.3 1.0284

L -1.0 78714.9 7631.9 1.o38

0.5 0 3.15 1.0 4659.9 4609.0 1.0.10

0.5 5356.9 5295.3 1.0116

L 0 6296.4 6218.2 1.0126

-0.5 7628.7 7522.2 1.0142

-0.75 8526.3 8397.3 1.0154

-1.0 9656.6 9494.8 1.0170

0.5 0.2 3.15 1.0 2895.2 2852.3 1.0150

0.5 3435.4 3382.8 1.0155

0 4221.9 4154.2 1.0163

-0.5 5471.3 5376.8 1.0176

-0.75 6417.1 6300.0 1.0186

[ -1.0 7750.7 7596.0 1.02M1

S-2-
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Table 3. (Continued)

/. a N Ray T 3 T/1

0i .5 0.25 1.15 16000 -3996.7 -14041.2 .989

12000 -2010.2 -2058.1 .977

7828 0

4000 19375 1879.2 1.033.

0 3898.3 3833.6 1.17
-4000 55.6 5778.5 I.aM2

[ -700 7M09.1 7231.1 1.O.

L3
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APPENDIX

Al-l of the integrals that are needed to use the Uilkin imthod with

[ the polynomial fuanctions

[IUn(x) - (x2 - J)2 36-3 , vn(x) _ (x) _ (x2 -I n-l (Al)

can be =pzesseod as linear combinations of the following Um functiona:

10 a odd

S(R~) 3~x2 J~ dx(A2)

F(Monps X (X2 dx

LF F~~np a()-12

(T-, )P) kW i* I S(no2k,rk) ,uavo

dii07 k-O0

(mkkl

WA)

iii and

[ P(m,n, ) ii zu(x2_ )n ln5 dx

k1 k(k-l)

L -38-



Here a and n are sero or positive intgwsU, p is a positiveintogw, and

Ii a-l 3,. 9 (A5)

The series converge for 0 < 00 and conwerge for - 0 whenever the into-

grals do. If 1-'1, then E - 0, azd the series either terminate after one ter

or are identically zero. The series converge rapidly for I in the range of

[ interest. For example, to evaluate F(1,1,1,1) and 7(1,1,,0.1) comet to of

sieificant figures requires 8 and 27 term respectively.

Let

LL LiM*hmd(+x- , * D*

then

(uv n) - s(mn-2,3)

(u1,vi) - - 1/140

U (U,v2 ) -0

(u,v) - - 1/5o40

(u2,v 2) -o 1/540

(u 2,v) 0

(u9) - -1/73920

[3



I~ ~ ( vll - %1o83n22 6(042

I(3 v,1v2) -u /4
(I v. v3) " U /4

II vvvj - FAoo8o

(v2-9v2) - &/000

Ev v3~'~) - 'A0 1oO
v2v)- I 0 8

(v,v3) - /10001

(I (vT,v4) - 6)/88704~

L(I3 um,un) - ) S(m+n-2,O4) + s(se-n-s,4)
( u11 u,9 - 10/630
(I (u1,u2) - F6/27120

(I u1u,) - 1d27720

(u,u4) - E./4.O80

[1( u21 u2) - 1 /27720

(u21 u3) - &.A80480o

Cu2,u4) - 1/4804808

(u 3 ,u 3 ) - 1/480480

(3 3,uh) - 6/5765760

L(3 uJ4,uj) - V5S765760

L4



(v.,u.) - $JS(m+r1-2p3) E 6(Uil-n-1,93)

(I (>aPul) --)J1tL40

(3 (v1,2) - -F 54

(v1,u3) - -10/5040

(vl,ia4) - - 6/73920

Q('21,u2) - - )o/5140

(I (v 2,u3) - - F/73920

Q v31u3) - - 0/32

Q~ v3,uj) - 8./768768

(I v49u4) - - Vo768768

(~2 ,,~v)- ~~m-n-203) + 2>&OFS(In-ls3) + 6 60%la3)

2u.V)- -1/140O - F 2/5040O

2uv)- - 6 9/220L (~2 10/5040 - 0/73920

(2,v2) _ 97 /5o40 _ 02/73920

1 2 2v ) -- c/36960ii(3r21,:-
(3u3,v3) -- )/32 ?786

( f1Y3 1Un) - F(mfn-2,3o,,7

F( 2,v)- F(mi-n-2,3,2, J
%,,v,)In P(m~n-2,3,I)

L -'I4-



Cvi9 Lv1L) - - -/3 2F (0,2,,1

(v1,LV2) ' - 6130 p F (1, 2,1, 1

L(v,,LV3). - -$/0&2F(2,2, 1.,
(vl,,Lv4) - - -/280 & 2F(30201,1

L(V2,PLV 2) : - )70/20 - 2F(2p2sl$ 1

(Tv2,LV3) - --E/4 L2F(3,2,lpl

( I riLVi) - - 050 - eF(4,2,1,1)

(I ('v3,Lv3) -1 n /i68o - e2F(4,2,1,' 9

(I v3 ,Lvj) -11n&/10080 - 6F521

U 'vj,Lv4) - - 23 7/2M160 - 6?F (6,2,)

(I (u 1 ,Lu19 - 2 9 A05 f- Fo~i

(u1,LU2) - -&/1260 - 414,,

111u i1 Lu3) - - 0 - 2F(2,14,1,1)

Q (ul,Luh) - -6/55I440 e- 2F (3i4,1,p

(21LU2) ~/630 -,F2.41

(lu2 ,Lu3) - - F-/3 108 8 - 23F(3,4#lpb)

(U2 ,LUh - - 0180 - 2(4,1

L (u 3 ,Lu3) - - 0/9240 -OF(,,1

[3'U4 - 316/2882880 - F54

Q u,LU,4) - - 3.7 7A4414440 - EF6,

(v1 ,L*v1 ) - - 1 0/3

(v1,L*v2) - - 6/30

Q VI ,L*73) - - /60

L 42



h (~v2,L*v 2) - - jo/20

I ~ TY2 ,
4. v3) - -

T3 *v - -n ) 6eo

LI (7u,L2uj) - 4 ')o/ - F- 2 [12P(2,2,.,) F (0,2,1,3

(u1 ,L2 u 2 - 3 F/35 - 3E2 [1F -2lj 27(12,,1)

[j ( L;L2 u3) * 03 - 3F2 [zu'(i&2l 1  -(1/2)r(2,2,1L,? .(1.6)P(o.,2#1,1)

L(u,L2u4) - 61J140 - 3 E [27F(5,2t,, 1  1/2)F(302#1,,Jp +(3/A6)7(1,2,1P))

() u2 ,L
2 U2) - 7/7 - 3 4 2 [2oF(4,2,1.,) 37(2#2,1,1I)]

[1(u 2,Lku3) - e-160 - 3E.2 [25i'(5,2,191 ) -(9/2)F(3,29.1) + Ol6) F(1#2s,,)

(U2, 2 u4) - 70/84& - 3E2131(6,2,1.,lI) -(L3/2)F(I&,2911Vj + OA6)(2p21pl9

(U3 ,1 Lku) - 3 jfro/14o - 3E2 [30F(6,2,,) - 6F(492plp,1I + (1/8) F(202#101)]

i(5u3,L
2u4) - 59818o - 3 E? [36r(3,4g,1) +107F(3,3,j,1I) + (1/2) 7t3,2,l, 1

U4Lu)- 132d o3696 - 3 &2 [42(4 4,, + n 4,3,1,~ *(iL/2)F(4&5201 0.~

It is possible of course to derive farwlau for Us e w m m r

Ii prodmats. For example

L~~ ~~~~ FS ( (m.1)2S(m4n-l1,1) -()u12~~~e

- y3 ( n o mf-2 2 1 .1J

Ii4


