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STABILITY OF FLOW BETWEEN ARBITRARILY SPACED CONCENTRIC CYLINDRICAL
SURFACES' INCLUDING THE EFFECT OF A RADIAL TEMPERATURE QGRADIENT

by

J. Walowit, S. Tsao, R. C. DiPrims

ABSTRACT

The stability of Couette flow and flow due to an azimuthal pressure
gradient between arbitrarily spaced concentric cylindrical surfaces is in-
v.eatigated. The atability problems are solved by using the Galerkin method in
conjunction with a simple set of polynomial expansion functions. Results are
given for a wide range of spacings. For Couette flow, in the case that the
cylinders rotate in the same direction, a simple formula for predicting the
critical speed is derived. The effect of a radial temperature gradient on the
the stability of Couette flow is also considered. It is found that positive
and negative temperature gradients are destabilising and stabiliszing respec-
tively.
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INTRODUCTION

The stability of viscous flow between concentric rotating cylinders
was first investigated experimentally and theoretically by G. I. Taylor in his
famous paper in 1923 [1].* He showed, in agreement with experiment, that when

. & certain criterion was violated a secondary motion in the form of toroidal

vortices sets in. For the most part Taylor's computations were limited to the
case when p= (1,/Qy >0 or onlly slightly negative (with a few exceptions)
and ) = Ry/Ry ~1 where By,R; and (1), (1, are the radii and angular velocities
of the inner and outer cylinders respectively. However, he did give a correc~
tion formula suitable for l-V‘ small, Since this original investigation,
there have been a number of papers dealing with suitable mathematical techniques
for solving the related eigenvalué problem for the "small-gap" problem (V’-vl),
but for ax;bitx;ary rotation rates.™” The case of -/l. large is particixlarly
difficult. (See (28], [2]). On the other hand, the "finite-gap" problem
( Y] # 1) has only recently been considered. One of the difficulties in treating
the finite-gap problem is that the differential o;;eratora in the eigenvalue
problem has variable coefficients in contrast to the constant coefficient opera-
tors that appear in the small-gap problem. .

Using an expansion technique similar to that for the small-gap problem
in which one of two equations is solved exactly, Chandrasekhar [37] has consi-
dered the finite-gap problem. The computations are rather tedious and numeriocal

*Numbers in brackets designate References at the end of the paper.

*por a discussion of some of this work as well as references to other papers,
the reader is referred to Chandrasekhar [2, Sec. 71].
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results were obtained only for the case v' = 4, but for a wide range of values
of M, -0.5€ < 0.25. (The flow is stable for M > )7"‘.) More recently
Chandrasekhar [L] and Chandrasekhar and Elbert [5] have shown that some of the
numerical difficulties can be overcome by considering the corresponding adjoint
eigenvalue problem. Witting [6], treating 1-?] as a small parameter, hn.a also
considered the stability problem by expanding in powers of (1-?) ). PFinally
Kirchgassner (7] has constructed the Greens function for the finite-gap problem,
and has solved the resultant integral equation by an iteratiom technique. Re-
sults were obtained for % < v) <1with M=0, <O.L 4/4 & 0.25 for Y] -3,
and for 0.k < L/9 for q = 2/3.

A similar type of .’_mstabﬂity problem occurs when a viscous fluid
flows in a curved channel under a pressure gradient acting round the chammel.
The small gap forn.l of this stability problem was first considered by Dean [8).
The finite-gap Dean prohlem has not been considered in the literature. How-
&er, Meister (9] has considered the more difficult finite-gap combined Taylor-
Dean problem for the cases Y] = 3/l and 5/6. By properly rescaling his results
it is possible to obtain approximately the criterion fo: the Dean stability
problem for these values of Y) However, thm is insufficient data to de-
termine this limit accurately.

In the present paper the finite-gap Taylor and finite-gap Dean
problems are considered. It is shown that each of these problems can be
solved using the Galerkin method, the eigenfunctions being represented as a
combination of simple polynomials. With this choice of expansion functions
all necessary integrals can be easily eval;xated and numerical computations
have been carried out for a much wider range of 7) (0.1 ‘7) € 1) than in previous
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computations. The results are in good agreement with the known theoretical
results and all of the available experimental results. ’

Finally the effect of a radial temperature on the stability of Couette

flow between retating concentric cylinders is considered. The corresponding
theoretical small-gap problem has been considered by Yih [10], Lai [11], and
Becker and Kaye [12]. Experimental results for gases have been obtained by
Becker and Kaye [13] and Bjorklund and Kaye [20], and for liquids by Nissan
and Haas [29] and Nissan, Ho and Nardacei [30]. With just a few additional
computations this problem can be solved by the Galerkin method used in solving
the Taylor and Dean stability problems.

THE STABILITY PROBLEMS

Let r,0,z denote the usual cylindrical coordinates, with the z axis
coinciding with the axis of the cylinders; and let R,,R, and ‘Ql and .0.2 de-
note the radii and angular velocities of the imner and outer cylinders respu.:-
tively. If u,, ug, and u, denote the components of velocity in the increasing
r, 8, and z directions and p denotes the pressure, the Navier-Stokes equatioms

admit a steady solution of the form
U =ug =0, ug = V(r) , op/or = sz/r (1)

vhere § is the density.
Now superimpose® on this steady motion a small rotatiomally sym-
metric disturbance of a form such that the 6 component of the velocity is

ug(r,z,t) = V(r) + v(r) e Tt coshz . (2)

*a complete derivation of the disturbance equations can be found in Chapter 7
of reference [2].
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The motion will be unstable if there exist solutions of the resultant eigemn-
value problem for which the real part of T is greater than zerog it will be
stable if all the solutions have real part of T less than zero. It is kmown
from experimental evidence that not only is the :Lnatabd.lity‘ of this spatial
form, but that also a new steady secondary motion occurs. Hence we can an-
ticipate that the marginal state is given by O = O rather than just real
part @ = 0. In this case the linearised equations for the disturbance veloci-

ties are
(00* = X2)2 u = %3 0@ (3)
(ID* - X2 v = %(D*\%) u (k)

where u is the disturbance velocity in the redial direction, » is the kine-

 matic viscosity, {L(r) = V(r)/r, and

n-% ,

- 1

D* D+z (s)

The requirement of no slip at the boundaries gives the boumdary comditions
u=yvy=Du=0 (6)

atr=R andr = Ry We will consider two examples.

The Taylor stability problem. In this case the basic motion 1s that

due to the motion of the cylindrical walls (Couette flow), and V(r) is given

by
V(r) = Ar + g (7

o e e
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Wotice that D¥V = 24, a constant.

It is convenient to choose our length scale so that the range of the
independent variable is independent of the parameters of the problem., Further,
the natural scale, except in the limiting case /u = 'Q2/'Q‘1" -0o (See [28.),
for )\_1is the gap width. Hence we introduce the dimensionless variables

r=R,+ dx R a=\d (9)
where d = Ry = Ry and Ry = (Ry*Ry)/2. Then the Taylor stability problem takes
the form :

(DD* - a2)2 u = - a2 T g(x) v (x0)

(" - a2) v = u (1)

D) - O, ex) zfx}- ol T?E

;-,%-qwl-,,)(xoi) Ry, A 2,/0, Q2

2

A . n2 -é_'L‘
‘1 1-’)2 ’ B]. 711_7

and T is the usual Taylor number

T=- M-Qldh/pz (3)
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and we now use D and D* for the dimensionless operators

D'% ’ D*'%*—J—li . (m)

Finally u has been replaced by (2ad%/p )=1 u.
Equations (10) and (11) with the boundary comditions

usvys=sDu=0 (15)
at x = +§ determine an eigenvalue problem of the form
F('r,a,/4,7) =0 . (16)

For fixed values of /L and 7 s which deton_line the geometry and basic velocity
distribution up to scale factors, we wish to determine the minimm positive T
over all real positive a for which there exists a non-trivial solution of the
eigenvalue problem. The critical value of T determines the critical speed .ﬂ..l
for fixed /I/. and 7 , and the corresponding critical value of a determines the
spacing of the vortices in the z direction.

It should be noted that the Taylor ..mber T as defined by Eq. (13)
is different from that used by Chandrasekhar [3] (T = - Mm%/ D 2) who used
R, as his reference length. The present choice is the usual Taylor mumber
for the small-gap problem; hence, in the small-gap limit Y)—Pl, Eqs. (10)
and (11) reduce to the usual small-gap equations. Further we note that in
the case /L( = 0, which is of most engineering interest, both "1 and Bl are
proportional to )72. Hence to obtain a meaningful problem for /A = 0 as 7—# o]
it is necessary to rescale T by a factor of ']2 treating T )]2 as the new eigen-
value. That is, we can anticipate that for /M. =0, T-’C/r] 2 where C is a

constant as V)->o. Most of our results are given in terms of ."’2 which also

-7-
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reduces to the small-gap Taylor mumber as r) -1,
The Dean stablility problem. In this case the cylinder walls are at

rest and the motion is due to a constamt ciroumferemtial pressure gradiemt.
The besic velocity is

1 2 3
V(r)'w;ﬁ(rhr*ﬁ‘*;) (a7
vhere
21 R, - R 1n 2p2 R
c-..a2 : B.; 4 s I-R:la m2 . (a8)
R -®y 2"'€ £

With x and a defined by Eqs. (9), md}’,DandD*doﬁnod by Bgs.
(12) and (1), the finite-gap Dean stability problem takes the fom

(pp* - 32)2 u = a2 P[h(x)/}] v l (19)

(00* - a2) v = (D") u (20)

2 2
V) =V hx) , V=2 2p0-n)° -kn’ann)
. T e ama-P

h(x) = LG-7) {(1- 2) 1Y + 2N Q- 1)}
lwf-’(lxn)):e-(1-77)"’3 ) J 7 7 32

(a)

v d
- o( M2 d
and V_ is the mean velocity. Finally u has been replaced by (Vud/» >t
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The boundary conditions are given by Bgs. (15).
In the small-gap limit, 7-’1, Eqs. (19) and (20) reduce to the
usual small-gap equations within an integral mmltiplier of P.

METHOD OF SOLUTION

The eigenvalue problems for the finite-gap Taylor and Dean insta-
bility problems can be conveniently solved by the Galerkin method. The func-
tions u and v are expanded in complete sets of functions satisfying the
boundary conditions (15). The coefficients in the series are determined by
the requirement that the error in Eqs. (10) and (11), for the Taylor problem,
or in Eqs. (19) and (20), for the Dean problem, be orthogonal to the expansion
functions for u and v respectively. This leads to a system of infinitely many
linear, homogeneous equations for the coefficlents in the series. For a non-
trivial solution it is necessary that the determinant of the system of equa-
tions vanish, and this gives a determinantal equation for r(.,}t,»,) or P(n,r) ).
In practice only a finite number of terms are used in the series for u and v,
say M, and this leads to a determinant of size 2M.*

In principle there are a mmber of posaiblé sets of complete functioms
which can be used for the expansion of u and v. For example, the set of func-
tions sin(2n-1)TMx and cos2nTx (n=1,2,...) could be used for v(x), and the
set of functions C,(x) and S,(x) tabulated by Harris and Reid [32] could be
used for u(x). Unfortunately, the choice of trignometric functions leads to a
prohibitive amount of labor just to evaluate the entries that appear in the
determinantal equation. Indeed it is not clear that many of the integrals ocn

*It is not actually necessary that the number of terms in the series for u and
v be the same.
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oven be evaluated in closed form.
For our purposes it is more convenient, and equally as satisfactory,
to use simple polynomials in x that satisfy the boundary comditions. Thus we

choose
wx) = 2 dgmy® ,  v(x) = 2_Buva(x) (22)
n=1 n=1

where u(x) = (x2 - })2 x=1 and v, (x) = (x2 - 3) x»1 . These polynomial
expansion functions have also been used by Kurzweg [31] in his treatment of
several small-gap problems in hydrodynamic and hydromagnetic stability. It

is particularly interesting to note that with this choice of expansion func-
tions all of the various integrals can be expressed exactly as polynomials in
7) or'a; the products of 1n7 and polynomials in )7 . In the use of the
Galerkin method for these problems it is helpful to note that the operator
d/dr(d/dr + r-1) is a Sturn-Liouville type operator with a corresponding weight
function r, or in our dimensionless variables 3’ . Thus we require, for example
in the Taylor problem, that the error in the equation for u be orthogonal to
Sun(x), m=1,2,...,M, which gives ‘

M

Z‘ {f(n(;u.,(DD* - a2)2 “b) * én‘zr(s u‘,g(x)vlb} =0,

n=]l

mns= 1’2,0000 (23)

vhere (up,u,) denotes the integral of ujpu, from x = - % to x = #. Similarly
for the equation for v(x) and for the Dean stability problem. The number of

computations that are required are considerably reduced by the symmetries

-10 -
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( 3, (00%-a2)% wy) = (J wn, (00*-a%)um), etc. and by the fact that the differ-
ential operators for the Taylor and Dean stability problems are the same.

As mentioned earlier, while it is possible to evalwate all integrals
exactly, it is actuall& more convenient in practice to proceed in a slightly
different manner. The details of the evaluation of the integrals are givem
in the Appendix. The determinant is ewvaluated by the method of pivotal con-
densation, the zZero being found by trial amd error. All of the computations
were carried out on an I.B.M. 650.

For the Taylor stability problem computations were carried out for
M=2, 3, andhforarangeofvaluesof>7frcmltoOlandforanngeot
M < 7 For U >>) the flow is known to be stable to disturbances of the
form (2). The results are tabulated in Table 1. For n =1, and S in the
range -1 s/us 1 the results for M= | are within 0.2% of the “exact results"
given by Chandrasekhar r_2, Sec. 71]. Indeed even with M = 2 the error for the
worst case, /IA = .1, is only 5%. If we bear in mind that the analytical and

numerical work using the Galerkin method with M = 2 is much less than that for

the expansion procedure of Chandrasekhar or the integral equation techmique,
this result is surprisingly good. For Y) = § and a range OI/A, - % s/us i.,
and M = |; the maximum difference between the present results and those of
Chandrasekhar and Elbert [ 5] occurs at q = - % and is about 2%. With de-
creasing r' (wider gap) and decreasing /,L it becomes more difficult to approxi-
mate the eigenfunction, 80 that at 7- 0.2 it was not possible to determine T
accurately for negative values of /u. without taking more terms in the series
for u and v. By comparing the results for M= 2, 3, and L4 it is estimated that
all the results given in Table 1 for M = L are correct within 2%, ror U = 0,

-u-
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and a rangs of 1), o.2¢7s 1, some recent results by Roberts [1l] using
direct numerical integration are essentially identical with those given here.
For the Dean stability problem computations have been carried out
for a range of Y’, O.1¢ V} £ 1. The results are tabulated in Table 2. The
only known results for this problem are for V, = 1. In this case the result
for (de/\) )(d/nz)i‘ is essentially identical with the value 35.9L reported
by Reid [15] and the values given by Himmerlin [16), and Dean [8]. For M = 2
the difference is only 2.6%. Comparison of the results for M = 2 and ) indi-
cates that the error increases with decreasing Y) s the percentage change being
about 7% at V] = 0.1. It should be noted that the percentage change in the
actual eigenvalue P appearing in Eq. (19) is twice that in (V,d/V )(d/Rz)i.

EFFECT OF A RADIAL TEMPERATURE GRADIENT

In this section we will consider the effect of a radial temperature
gradient on the finite-gap Taylor stability problem. The presence of the radial
temperaturé gradient will give rise to convective effects through the interac-
tion of the associated radial demsity gradient with the radial acceleration.
In this analysis we will neglect the effect of gravity. Since in both gases
and liquids the centrifugal force field V2/r corresponding to the critical
speed is often much less than g, this is a serious approximtion.* However,
for stationary cylinders no significant changes in the heat transfer as pre-
dicted by conduction were observed in the measurements of Krausshold [17] for
Rayleigh mumbers (based on g) less than 10°. For horisontal cylinders this
was verified by the experiments of Liu, Mueller, and Landes [18] and the

*Tho ratio (R; .Q.l)z/lllg is given approximately by T( \)2/63)7) (1+v’ )/1.8(»)2./‘) .

-12-
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theoretical analysis of Crawford and Lemlich [191 . In addition, in the experi-
mental stability work of Becker and Kaye [13) and Bjorklund and Kays [20) with
gases no significant effect of gravity was observed. Further we might note
that in stability problems of this type the critical Taqur namber is rether
insensitive to variations in the basic velocity and temperature profiles. Thus

. we will ignore the apparently weak convective motions due to gravity in the
‘present analysis. The effect of essentially a radial gravity £4el1d on various

curved flows has been considered by Brtler [21] and Kirchgdssner [22]

In addition to the three momentum equations and the continuity equa-
tion we must now include an energy equation and an equation of state in our
analysis. We shall assume that our fluid has constant thermal conductivity,
specific heat, and viscosity*, and we will neglect viscous dissipation and
energy associated with change in pressure in the energy equation. With these
assumptions the basic aszimuthal velocity distribution is given by Bq. (7), and
the temperature distribution (3) is given by

In(r/R,)
() = 75 - (T5-T7) _/51_. (2k)
.my)
where T; and T, are the temperatures of the inner and outer cylinders' respec-
tively. As an equation of state we assume ‘g = ?o[l-o((@ - @o)] where @ o
is a reference temperature and 0 is the bulk coefficient of thermal expansion.

We now consider rotationally symmetric disturbances of this steady

*Thus our analysis is primarily limited to gases with. mmall temperature dif-
ferences or liquids with only slight viscosity variation with temperature.
The corresponding small gap problem for liquids with variable wviscosity has
‘been considered by Walowit [23].

-13-
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velocity and temperature dis;tribution. A small disturbance O(r,z,t) in the
temperature will lead to a disturbance in the density. For small temperature
variations, the variation in density will be small and we will assume that
the density is a constant § , except when multiplied by the centrifugal ac-
celeration term V2/r. Here the density disturbance is given by - X ®!. This
is the classic Boussinesq approximation. The disturbances can be expressed in
the form given in Bq. (2), that is, 6' = 8(r) eTY cog) s and we obtain, using
the principle of exchange of stabilities, the following eighth crder system of

equations
P(m* - A\ u = X"{Z.ﬂv _%'z o}
D(OD* « X\2) v = (20) u (25)
K™ - X2) & = (08) u
with the boundary conditions
. u=Du=v=8s=0 (26)

at r = B and Rp. Here X is the thermal diffusivity., In dimensionless varia-
bles Eqs. (25) take the form

0% - )% u = - 221 {g(x) v+ ¥} Letx)]’ o)
(nﬁ -a?)v=u (21)
(D*D - a2) © = u/]

where x,a,g(x), } ,T,D, and D¥ are defined by Eqs. (9), (12), (13) and (1h).

-1 -
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Also u has been replaced by (2082/p )-1 u and 6 has been replaced by
[Pr(rg~r;)/2aR4 11/ JJo, vhere Pr = D /K is the Prandtl mmber. Here
Pr d(T,-T, )

W | (28)

48 the ratio of a Rayleigh mumber, Ray = O (Tp-T;)d3 amﬂi/px with
Ry ™ = d/'.l.n'], based on the centrifugal acosleration nmﬂf and the Taylor

number T.

In the small-gap limit, Y]-’l, N—»Pro((Tz-Tl)/Z(l-/(). Moreover,

as r)-; 1, ¥, D*—»D; hence it follows from the last of Eqs. (27) and the

boundary conditions (26) that © = v. Consequently the eighth order system of

equations reduces to a sixth order system. This problem has been considered

by Yih (30] and Becker and Kays [12] far JA> 0 and by Lai (1] for/({O.
The eigemvalue problem,

F( 7 ,/A,a,l,'l') =0

defined by Eqs. (27) and the boundary conditions (26) at x = +%, can be solved
by the Galerkin method described previously. The expension functions for @ are
the same as those for v. Computations have been carried out using two and three
terms in the series (9x9 determinant) for )7-’ 1,//.- 03 and )‘7- i,/&- o;
and 0.2 for various values of N, and for Y’ -4, /l- 2 for various values of
Ray. The results are tabulated in Table 3 and are shown graphically in Fig. S.
For the isothermal case N = O the results are within 1% of the re-
eults of Chandrasekhar [2,3]; and far N # O but y)—>1 they are within 1% of
those given by Lai [IIJJ . Further, the maximm change in the critical Taylor
mumber between the two and three term approximatioms is of the order of X.

-15 -
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The oritical values of a given in Table 3 have only bsen determined wp to 40.0k.
CONCLUSIONS

The present results indicate that the Galerkin method in conjunction
with simple polynomial expansion functions can yield accurate results for a
variety of stability problems. mther, once the integrals corresponding to
such operators as (DD* - a2)2 u, (ID* - a2) v, and (D*D - 22) © are evaluated
a number of different stability problems can be treated with only minor addi-
tional computations. )

In Fig. 1 the variation of 'r»]2 vith v) for M = 0 is shown. Also
the theoretical results of Chandrasekhar and Elbert [5] and Kirchgéssner [7],
as well as the experimental results of Taylor [1], Lewis [24], Donnelly [25]
and Caldwell and Donnelly [26] are indicated. In general the agreement is
excellent. The hysteresis effect indicated by Lewis appears to be incorrect.
See Caldwell and Domnelly. It is interesting to note that Taylor's correction
formla for gap size is indeed very accurate for V] » 0.8 but does begin to
deviate fairly rapidly from the present results for ﬂ < 0.8. From a practical
point of view the present results indicate the correction in T in comparing
small-gap theoretical (V] = 1) values with small-gap experimental (V) near 1)
results. Thus for Y) =1, M=0, T = 3391 and for V’- .95 (a reasonable
value for small-gap exper:_hn.ents), /U.- 0, T = 3511 which is a change of 3.5%.
As mentioned earlier for/«(- o, Tr)2 = (2 Qlﬁ/g )2(14-)]2) approaches a value
of approximately 500 as Y)—»O.

In Fig. 2 the variation of qu with )') for /M- 0.2, 0, -0,125, and
-0.25 is shown. Finally the regions of stability in a ({}R,d/v )(d/Rl)% va
(Qpha/v )(d/ni)’} plane are depicted in Fig. 3 for r’ = 1.0, 0.7, and 0.5.

-6 -
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It 18 well known for the small-gap problem, ))-r 1, that even if
n(r) is replaced by its average value accurate results are obtained for
,b( 20, Llin [27] has suggested that it should also be possible to do this
for the finite gap problem. However, some care must be taken in choosing a
suitable average. It is natural to consider the velocity rather than the
angular velocity, and to replace V(r) by its average over the gap, Vv To
obtain a suitable average angular velocity, V,, must be divided by a suitable
length scale independent of /{ The requirement that the average angular
velocity be the same as the angular velocities of the cylinders in the limit
/A-»l, leads to the choice of R for this length. Thus g(x) in Eq. (10) is

replaced by Ay + Bl/“?o?lm) where 70 - (1‘”))/2 and 71‘“ - (1-7)/(-11”) )3
and we can anticipate that .

Ty ¢ ) =T, (29)

’)07114

should depend only upon 7) for /M) O. Actual computations show that this

dimensionless parameter gives the correct value of T withinzﬁfor & range of
from 0.2 to 1.0 and for/a(; O. In addition, it was found that the critical
value of '1'av is relatively insensitive to variations in 7 . By using its value

at )7 = 1, namely 1708, we obtain from Eq. (29) after substituting for A and
B, from qs. (12) the extremely simple formila for the oritical value of T

RO | (30)
/“'7 * (1'/'()? /70)7114

which is correct within L% in the range 0.5 ¢ 7 < 1,/&; 0.*

*After this work was completed the authors learned that Rintel and Lieber [33)
have also suggested an averaging proceas for computing the critical Taylor
number for the finite gap. Their averaging is considerable more camplicated
and does not appear to yield any more accurate results.
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For the Dean stability problem the variation of (V,d/v )(a/R.‘,)i with
7’) is shown in Fig. L. Of particular interest mithematically is the non-
monotonic behavior of P with an increasing number of terms in the series ex-
pansion. For example for Y’ =1 and a = 3,96 the result 36.86 for M = 2 is
closer to what we might consider the “exact® value 35.94 than the result 37.26
for M= 3. At first sight these results seemed surprising and were consequently
checked by hand computation. However, if we bear in mind that these are nonself-
‘adjoint eigenvalue problems we realize that we cammot expect necessarily mono-
tonic behavior of P with increasing M. Indeed, this result shows that the well
known result for self-adjoint, positive definite eigenvalue problems that the
approximation to the eigenvalue is improved with increasing M does not hold in
general for nonself-adjoint eigenvalue problems.

Finally, we consider the effect of a radial temperature gradient on
the stability of Couette flow. As shown in Pig. 5, positive and negative
temperature gradients are destabilizing and stabilizing respectively. For /u.
not near )72 it is difficult in practice to achlieve values of N, without vio-
lating the assumptions we have made, large emough to chapge significantly the
critical Taylor number from that predicted by isothermal theory.

However, Ay will be small for/L near 7 2, and hence it will be pos-
sible to have large values of N. In this case the Rayleigh number plays an
important role. .A_ graph of the critical Taylor number vs. Ray number for -
> 72 (N = 3) is given in Fig. 6. As can be seen from this figure, for
sufficiently large Ray numbers it is possible for the flow to be unstable even
though T is negative, that is /u.> 7 2. This was first pointed out by Yih [10]
and Becker and Kaye [12] for the small-gap problem. Further, Yih observed for
the small-gap problu- as is the case here, that von Karmam's condition based

-18 -
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‘on an inviscid fluid (that the product of the demsity g and the square of the

circulation [ increasing. outward is a necessary and sufficiemt condition for
stability) no longer holds when viscosity is taken into accommt. This can be
seen from the plot of T vs. N for /A—qu (n = %), Pig. 7. The points in
the lower left hand quadrant correspond to ? decreasing and [ increasing
radially. Thus for suitable Prandtl numbers one can find flows which are wm-

stable even though f[‘ 2 increases outward and the flow is stable aocording to
the inviscid theory.

In a manner similar to that used in deriving Bq. (30), and making use
of the rather insensitive dependence of the differential operators on V’ for
g V)s 1 it is possible to derive an "average-type" stability criterion for
the thermal problem. For MU 30, %< 7$1 this relation is given by

Tyy * (Ray)y, = 1708 (n)
vhere T, is defined by By. (29) and
B 2
(Ray)yy = RBay(hy + —2—)° . (32)

’)oy)m

This result reduces to that given by Becker and Kaye [12] for h=>1.
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Table 1.

the mmber of terms used 1n the

Critical Taylor mumbers and comsponding values of a for various
assigned values of M = (1 o/ {11 and

Bl/nﬁm Subscripts demote
{18
given in columm C are those gimtuchm (2] md
Chandrasekhar and Elbert [5].

The resulte

| N M a (172)2 (r>)2)3 (rv)z)h C  T/Ty T T,
1.00 1,00 3.12 1750.0 1708.5 1708.k 1708.1 1.024 1,000 1,02k
0.5 | 3.12 23314 2276.4  2276.1 .2275.3 1,024 1,000 1.02k

0.25  3.12 2792,7 2727.1  2725.9 2725.3 1.024 1,000 1.025

0 3.12 3Uu75.0 33%4.6  3392.3 3390.3 1.023 1,001 1,025

=0.125 3.13 3952.9 3863.0  3856,6 e--- 1,023 1,012 1.025

<0.25  3.13 L4575.8 Lh7h.h  LW63.L  Ll62.6 1,023 1,003 1.025

-0.50  3.20 6589.4 6L62.7  6lB.h 6417.1 1.020 1.007 1.026
=0.70  3.34 9718.1 9598.3  9k35.6 9L433.0 1.012 1,017 1,030
-0.%  3.70 15537 15559 14952 14940  0.999 1.0k2 1,039

-1.00  L4.00 1964k  197hS 18703 18680 0.995 1,055 1.050

0.95 0.9025 3,12 1663.5 162h.2  1624.2 | -=== 1,024 1,000 1.02k
0.70  3.12 1869.3 1825.3  1825.1 1.024 1,000 1,02k

0.50 3,12 2128.7 2078.7  2078.L4 1,02 1,000 1.024

0.20  3.12 268L.9 2622.9  2621.6 1,024 1,000 1.024

0 3.13 32h5.L4  3172.L  3168.8 1,023 1,001 1,02}

-0.125 3,14 3727.2 3645.5  3638.8 1,022 1,002 1,024

=0.25  3.15 L368.1 L276.1  L263.k4 1.021 1,003 1.025
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Table 1. (Comtinmed)

d
7.

Noop o Py (B (), o w1y Tyn M
0.90 0.81  3.12 1579.0 15l1.9 15&1.9" 1,024 1,000 1.02l
0.50 3.12 193L.9 1890.1  1889.6 1,024 1,000 1.02h
0.20 3,12 2470.9 2L15.2  2l13.7 1,023 1,001 1,024
0 3.13 3024k.7 2958.9  2955.0 1.022 1,001 1,02}
=0.125 3,14 3511.7 3L38.1  3430.8 .02 1.002 1.024
-0.25  3.15 1175.0 L092.8  LoO78.k 1.020 1,00k 1.024
0.80 0.64 3,12 115.7 1383.6 1383.3 1.023 1.000 1.023
0.h0  3.12 1710.8 1673.9  1672.L 1,022 1.001 1.023
0.20 3.13 5;2068.1; 202h.6  2022,8 1,021 1.001 1.023
0 3.13 $2609.6  2557.8  2553.4 1,020 1,002 1,022
-0,125 3,16 3112.8 3055.3  3046.8 1.019 1,003 1,022
<0.25  3.17 3840.5 3778.1  3759.9 1,006 71.005 1,022
0.70 0.49  3.12 1260.2 1233.5 1233,0 1,022 1,000 1,022
0.35  3.13 k0.2 1410.6  1409.7 1.021 1.000 1,022
0.20  3.13 1699.2 1665.8  1664.2 1,020 1,001 1,021
0 3.1h 2229.5 2190.L  2185.9 1,018 1.002 1,020
-0.125 3,15 2760.2 2718.7  2708.5 1.06 1,00k 1.019
-0.25  3.19 3597.0 3556.7  3532.1 1.012 1.007 1,018
~0.50  3.56 - 78219  7586.6 PO I « Qe
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Table 1. (Continued)

'1'2/ Th

7 M a (r,"c’)z (r,)2)3 (T"]z)h_ c ~:2/13 Ty/T),
0,60 0.3 3.13 1112.9 1091.5  1091.0 1.020 1,001 1,020
0.25  3.13 1272.9 1249.7  12h8.6 1,009 1.001 1.019
0.0 3.1 1561.5 1555.8  15§3.2 1,017 1.002 1,018
0 3.15 1883.5 1856.6  1851.5 1,005 1,003 1.017
=0.125 3,17 2L66.9 2u36.6  242L.8 1,015 1.005 1.017
-0.25  3.24 3512,6 34868.2  3U53.2 1,007 1.010 1.017
0,50 0.25 -3.14 973.88 958.35  957.22 957.8 1.017 1.001 1.017
0.20  3.14 1054.L 1038.5  1037.0 1,016 1.001 1.017
10,10 3.15 1263.2 12h6.2  1243.7 1,015 1,002 1,016
0 3.16 1574.7 155L.5  1549.6 1550. '1.013 1.003 1.016
-0.125 3,19 2250.4 2230.3 2216.4 2219 1,009 1.006 1.015
-0.25  3.32 3774L.5 3752.0  3693.9 3700 1,006 1,015 1.022
-0.50 L. 78 === 13553 13323 13022  ee= 1,017 «--
o.bo 0,26 3.15 8L4S.74 833.22 831.81 1,015 1.002 1.017
0.08  3.16 1025.6 1011.5  1009.1 1,014 1,002 1,016
0 3.17 1298.6 1283.5  1279.1 1,012 1,003 1.015
-0,125 3.éh 2253.0 2164.2  2k6.5 1,01 1,008 1,049
-0.25  3.76 5179.1 L9k2.5  L830.6 1,048 1.023 1.072
0,30 0,09 3,19 728,00 °716.56  Tik.81 1,016 1.002 1.018
0.05 3.20 B8U6.17 833,10 830.70 1,016 1,003 1.019
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Table 1. (Continued)

7oA s anhp (aphy @nd Tty Ty/T, T/,
0.0 0  3.20 1058.7 10k3.1  1040.0 1.015 1.004 1.018
<0.125 3.Lh 2623.8 2525,  2L95.2 1,039 1l.012 1,051
0.20 0.04 3.22 624.36 609,12 606.72 1.025 1.004 1,029
0 3.23 8Lh9.2h 833.4L0 829.1h4 1.009 1.005 1.024
0.0 0,01 3.29 5l1.11 513.87 509.10 1.053 1.009 1.062
0 3.30 673.59 657.09 650,00 1,025 1.011 1.036
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Table 2.

Critical values of R(
of a for various assi

&)* - (3/ )(a/nl)i and correspondiag valwes

values of . demote the mmber

of ternas used in the approximating s

N bemdl bempll bemtl, wm wym o wm,
1.0 3.96 36.8L 37.31 35.90 0.989 1.039  1.025
0.95  L.02 37.19 37.70 36.26 0.986 1,000  1.025
0.90  L.06 37.72 38.30 36.79 0.985 1.041 .1.02L
0.80  L.16 38.82 39.51 37.88 0.983 1.043 1.024
0.70  L.2k Lo.11 40.96 39.19 0.979 1,045  1.023
0.60 L.32 L1.6k 42.73 140.79 0.975 1,046 1,02
0,50 L.l L3.47 Lh.91 42.79 0.968 1,050 1,017
0.0 L.b6 L5.65 L7.70 15.18 0.957 1,053 1,011
0.30  L.51 LB.LT7 5117 48.75 0.942 1,056  0.995
0.20  L.57 51.72 57.00 53.60 0.908 1,063  0.96L
0,10  L.6h 57.03 65.91 60,92 0.865 1,082  0.93%
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J Table 3. Critical Taylor numbers and corresponding values of a for various

e assigned values of /7 , /A, and N or Ray. Subscripis demete the
[ | number of terms usel in the approximating series.

j 7 M a N Ray T2 T3 To/T3
g 1.0 o 3.2 1.0 2223.4 2177.3  1.0212
¥ 0.5 3n2.1 2653.3 1.3990
L\ 0 34Th.7 3394.6 1.0235
-0.5 1829.4 4705.9 1.0262
[ -0.75 5992.0 5826.3 1.0284
g «1.0 787L.9 7631.9 1.018
L
U 0.5 0 3.15 1.0 14659.9 1609.0 1.0110

‘ 0.5 5356.9 5295.3 1.0116
U 0 6296.,  6218.2  1.0126

1 -0.5 7628.7 7522,2 1.00k2
L: -0.75 8526. 3 8397.3 1.0154

U -1.0 9656.6 9kok.8  1.0170
L] 0,5 0.2 3.15 1.0 2895.2 2852,3  1.0150

0.5 U354 3382.8 1.0155
| D 0 4221.9 K1sh.2  1.0163
; 0.5 5471.3 5376.8 1.0176

[I =0.75 6417.1 6300.0 1.0186
1 -1.0 7750.7 7598.0 1,0200
[
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Table 3. (Continued)

)) /;L a Ray T, T3 '1‘2/‘!‘3
0.5 0.25 3,15 16000 =3996.7 -hol.2 989
12000 =2010.2 -2058.1 9T
7828 0
Looo 19375 1879.2 .01
o 3898.3 3833.6  1.017
14000 5850.6 5778.5 1,012
~7000 7309.1 72311 1011
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APPENDIX

All of the integrals that are needed %0 use the Galerkin method with
the polynomial functions

up(x) = (2 = P2 a1 | w(x) = efx) = (2 - }) -1 (a)

can be expressed as linear combinatioms of the following three functions:

3 0 , modd
S(m,n) -j (x2 - 3)R dx = { a mn (a2)

A F&%ﬁt , M even

F(m,n,p, ) -j M dx

/(—)pZ (x5 £ Zk -(% S (m+2k,n) » M even

' -< k=0

(B ™ el s 2o

(A3)
and
3
P(m,n, ) '-j o (x2 -})n 1n5 ax
&
.- S(n:n)h? o *&S(mfl,n) "'7 Zz'_ﬂr-?ﬁ- S(mtk,n) (AL)
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Here m and n are sero or positive integers, p is a positive integer, and

..70'221 s &'1-’) ’ }'7,,*5,1 .. (45)

The series converge for 0 < V) < ©0 and converge for Y] = 0 whenever the inte-
grals do. If Y}- ‘1, then £ = O, and the series either terminate after one term
or are identically zero. The series converge rapidly for >7 in the range of
interest. For example, to evaluate F(i,l,l,}) and F(1,1,1,0.1) correet to six
significant figures requires 8 and 27 terms rupobtiuly.

Let

L.m*.%(ag.:»,%) , I*=D"

(ups¥y) = S(mn-2,3)
(up,vy) = - 1/1k0
(ug,vo) = O

(uyvy = = 1/5040
(upvy) = - 1/50k0
(upyv 3) =0

(upuy = - 1/73920

;




9;

(5 VpsVy) * Vlos(n-l-n-2,2) + £ 8(mnel,2)
(3 viovy) = Yo/30
(3 vl,va) = £ /840
Grysmy = Moo
(?vl,vh) = £ /10080
(}vz.,vz) - ")0/8140
(Tve,v3) = £ /10080
(}vz,vh) = ")0/10080
(ZV3,v3) - Y]°/10080
(}vB,vh) = £/88704
(3mm,) = 7)o/88700

(Y upouy) = 7) oSlatn=2,l) + & 8(men-1,k)
(3 ug,um) = ¥)o/630

(} uy,up) = £/27720

(3“1’“3) - ’]0/27720

( }ul,uh) = £ /480480

(3 upouy) = 7)/27720

(}uz,uB) = £/480L480

(Fup,y,) = ")o/hBOhBO

(3uj,u3) = ")/LB0LBO

(Fug,m) = &/5765760

(Jugow) = 1),/5765760




(} VW) = V)os(m+n-2,3) + £ 8(w*n-1,3)
(3vysu) = - T)o/2ko

(Fvy00p) = -€/50k0

(Jvysus) = =7)o/5010

(3vyou) = -€/13920

(3 vosup) = = ")o/5000

(Y vpoug) = -&/13920

(Fvpowy) = - )o/13920

(3 vgug) = = 1] /73920

(3vyow,) = £/768768

(} Vh’“h) ® - 70/768768

(}zum,vn) - >)§s(mn-z,3) + 2 7063(-":-1,3) + £%(wm,3)
(3 2u,v) = - 1/2k0 - £2/50L0

(‘gaul,v2) - - &)/

(y2uy,vy) = -*)ﬁ/SOho - £2/13920

(72ug0p) = -7§/souo - £2/13920

(3Pugev3) = - €]/ 36560

(32u3,v3) = -7%/73920 - E21168168

( 3-171”%) = F(m+n-2,3,1, 7)
( }-znm"n) = F(mn'2s392‘17)

(} UpsVp 1n3 ) = P(mm-Z,B,?)
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-

—J —_

(}vl,Lvl) - - ']O/B

(} vy,Lv,) = - £/30
(}vl,LVB)\ - . ')0/60
(3vy,Lv)) = - &/280
(‘){vz,va) = = Nof20
(}’vz,INB) = . &/8)
(Frast) = - 3 /560
(Jvylvg) = =11 ’70/1680
(‘){v3,1.vh) = - 11 £/10080
(}vh,Lvh) = w23 70/20160

(}ul,Lul) = a2 7)0/105
(3w Lup) = - £/1260
(yuy,Tug) = 0
(}uy,Im)) = - £ /55440
(upluy) = = 7),/630
(Jug,lug) = - €/11088
(3up,lw) = = ')o/13860
(Jugoluy) = - 70/92140
(}u3,Luh) = - 31 £/2882880

£ 2F(0,2,1, v])
£°%F(1,2,1, ")
£2r(2,2,1, n)
% (3,2,1, 7))
£27(2,2,1, ")
£2F(3,2,1,r' )
E%F (L,2,1, ")
£2r(L,2,1, 7 )
€27 (5,2,1, )
£%7(6,2,1, 7)

621“(0.14,1,?’ )
£2F(1,h,1,)")
- E,2F(2,h,1,7))
E£%(3,L,1, 2
£2F(2,L,1, )7)
£°F(3,L,1, V))
£2F(h,h,1,7))
€2F (L,b,1, 7 )
E%F (5,41, 0)

(Juwpluy) = - 277 /ALl - €27 (6,L,1, 7)

(}V]_:L*"’]_) = - Y’o/B
( }vlsL*vz) =-£/3%
(3 vps8%v3) = = 7)o/60
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—

(}72,L*v2) - V)O/20
(3'2,1:*73) = - &/8L
(Jwglhvy) = -1 70/1680

(Jutbm) =bnofs -3 g2 [12r(2,2,1, ) - r(o,z,l.j)]

(Yw.i%u,) = 36/3% - 3€° [161?(3,2,1,»)) - 2(1,2,1,7))]

(Jutta) = )5 = 387 [AF(,2,1,0) -(/2)P(2,2,1,7) +Q9)7(0,2,1, )]
(Jup,t2y) = Ao - 3&2 [27?(5,2,1,r,) -(11/2)1'(3,2,1,7) +(3/16)r(1,2,1,»))]
(3 up,12up) = /7 - 3&2 [20F(h,2,1,']) - 3r(2,2,1.>')]

(Yupslfuy) = /60 - 362 [260(5,2,1,7) -0/2)(3,2,3,)) + (/29 70,2,, )]
(3 upsl?uy) = Noftk - 382 [ar¢e,2,1,1) -(13/2)r(h,2,1._1) + (3/16)r(2,2.1.v| )]
(Juzst2ug) = 375/10 - 3€% [ (6,2,1,0) - &(hs2,1,7)  +Q/0)F(2,2,1,1)]
(3 ug,LPu) = 59 €/16160 - 3€ [36703,1,1, 7)) + 209(3,3,1,7) +@/27G,2,1,)]
(3 w,1%,) = 1370/3696 - 382 [uor(y,b,1, h) + 1RG,3,1,7) 0(1/2)1-(&,2.1,7)3

It is possible of course to derive formmlas for the genesal immer
products. For example

(Jrastra) = o mm2)s(men-2,1) = by (a-d) (me2)s (uenol )}
+ & { (m1)2S (wtn-1,1) - (})(n-l)zs(mn-j,l)}
- ezl‘(lfn-2,2,1ﬂ))

- b3 -




