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ABSTRACT

As part of a general tunnel calibration program, an investigation
was made of the boundary-layer characteristics at Mach numbers 2, 3,
4, and 5 in the test section of the 12-Inch Supersonic Tunnel (D). The
boundary-layer measurements were made at one longitudinal station
(near the pitch sector center of rotation) on. the centerline of both the

r flexible plate and sidewall. Measurements were also made at vertical
locations on the sidewall between the sidewall centerline and the upper

The boundary-layer total thickness, displaL
momentum thickness are presented at each Mach number over a Reyn-
olds number range corresponding, in general, to tunnel stagnation pres-
sures between 5 and 60 psia. At each Mach number, the variation of
displacement thickness on the sidewall between the centerline and the
upper flexible plate is presented as is a correlation of the flexible plate
displacement thickness with experimental data obtained in other wind
tunnels. Velocity profiles and test section Mach numbers are presented
to indicate variations with Reynolds number.
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NOMENCLATURE

ao Speed of sound at stagnation conditions, ft/sec

g Ratio of boundary-layer displacement thickness to total
thickness, 6*/6

H Ratio of boundary-layer displacement thickness to momentum
thickness, 6*/e

K 0.0131 /1,,(Peo 1o 0

M. Free-stream Mach number

Re Test section unit Reynolds number

Uy Local velocity within the boundary layer at distance y from
wall, ft/sec

U. Free-stream velocity, ft/sec

XE Longitudinal distance of the nozzle aerodynamic exit plane
referenced to nozzle throat location, in.

y Distance normal to wall, in.

6 Boundary-layer total thickness, in.

S6L Laminar sublayer thickness of the boundary layer, in.

6* Boundary-layer displacement thickness, f -p- d,) in.

6* Displacement thickness parameter,,:_. KXE'

0 Boundary-layer total thickness, fI..(1 - ) dy, in.

• :o Coefficient of viscosity at stagnation conditions, lb sec/ft 2

P0  Density at stagnation conditions, lb sec 2 /ft 4

Py Local density within the boundary layer at distance y from
wall, lb sec 2 /ft 4

Free-stream density, lb sec 2 /ft 4

iv
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1.0 INTRODUCTION

A test program was conducted to calibrate, at the lower Reynolds
numbers, the test section of the 12-Inch Supersonic Tunnel (D) of the
von Karman Gas Dynamics Facility (VKF), Arnold Engineering Develop-
ment Center (AEDC), Air Force Systems Command (AFSC). As part of
this calibration program the boundary-layer characteristics on the flex-
ible plate and sidewall of the tunnel test section were obtained over the
Reynolds number range from 0. 02 to 0, 69 x 106 per inch at Mach num-
bers 2, 3, 4, and 5. This report presents the results of the boundary-
laver investigation and .. . - -- t- l- . --. .... .

2.0 APPARATUS

2.1 WIND TUNNEL

The 12-Inch Supersonic Tunnel (D) (Fig. 1) is an intermittent,
variable density wind tunnel with a manually adjusted, flexible-plate-type
nozzle. The tunnel operates at Mach numbers from 1. 5 to 5 at stagnation
pressures from about 5 to 60 psia and at stagnation temperatures up to
about 90 0F. A detailed description of the tunnel is given in Ref. 1.

2.2 INSTRUMENTATION

The pressure data from the boundary-layer rake was measured with
a "trapped" reference system. This system used a 5- or 30-psid trans-
ducer (referenced to a vacuum) to measure a reference pressure obtained
from the outermost rake probe. When the reference pressure reached a
desired level, a valve was closed, sealing the reference from the probe
pressure; hence, "trapped" reference. The pressure differential existing
between the rake probes and the trapped reference was then measured with
either a 1- or 15-psid transducer.

The boundary-layer parameters, 6, 6*, and 0 were determined by
methods and equations given it) Ref. 2. The data was reduced by the VKF
ERA 1102 computer.

Manuscript received August 1963.
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The estimated maximum uncertainties of the boundary-layer thick-
ness values presented are: total thickness, 7 percent; displacement
thickness, 3 percent; and momentum thickness, 3 percent.

3.0 PROCEDURE

Boundary-layer measurements were made at one longitudinal station
(near the pitch sector center of rotation) on the centerline of both the
flexible plate and sidewall and at one-inch increments on the sidewall be-
tween the sidewall centerline and the upper flexible plate. Figure 2 pre-
sents a perspective drawing of the tunnel test section showing the various
locations of the boundary-layer rake.

Although tests were made at Mach numbers 2, 3, 4, and 5 over the

Reynolds number range of the tunnel, primary emphasis was placed on
Reynolds numbers corresponding to stagnation pressures between 5 and
30 psia. Table 1 lists the specific condition at which measurements were
made.

4.0 RESULTS AND DISCUSSION

Figure 3 shows a comparison of the theoretical values of the tur-
bulent boundary-layer parameters, g = 6*/6, and H = 6*/0 obtained from
Ref. 3, with the experimental values measured on the sidewall and flex-
ible plate centerlines. The number beside each data point represents the
experimental value of the velocity profile parameter N. The sidewall data

are not presented at Mach numbers 4 and 5 because the experimental values
of N were below the minimum value of 5 presented in Ref. 3. These lower
values of N are characteristic of a laminar boundary layer,

The experimental values agree with theory at all Mach numbers pre-
sented with the exception of some values of the shape parameter H on the
flexible plate centerline at Mach numbers 4 and 5. Those points which do
not agree with the theory (N = 7. 1, 8.3, and 10 at Mach 5 and N = 14 at
Mach 4) are associated with the thicker laminar sublayers shown in the veloc-
ity profiles of Fig. 4 where the flow is becoming transitional in nature. This
figure presents the boundary-layer velocity profile at Mach 4 and 5 in terms
of the dimensionless parameter y/6. The flexible plate boundary layer is
characterized by a turbulent l/N-power profile in its outer portion but has,
at the lower Reynolds numbers, a relatively thick laminar sublayer repre-
sented by the linear fairing in the region adjacent to the wall (Ref. 4). The

2
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sidewall centerline boundary layer exhibits laminar characteristics to the
extent that its power profile parameter N is less than 5 at Mach 4 and 5;
however, as the Reynolds number is increased, the value of N also in-
creases as expected.

The flexible plate velocity profiles at the extremes of the Reynolds
number ranges investigated (see Fig. 5) have been omitted from Fig. 4
because in their turbulent portions they are practically congruent with
the N = 7 profiles shown. The sidewall profiles at the intermediate Reyn-
olds numbers have been omitted since they fall between the extremes
shown.

Figure 5 presents the variation with Reynolds number of the boundary-
layer total thickness 6, displacement thickness 6*, and momentum thickness
0 on the flexible plate and sidewall centerlines. The increase in boundary-
layer thickness 6, 6*, and 6 on the flexible plate between Reynolds num-
bers of 70 and 100 thousand per inch at Mach 5 and 40 and 80 thousand
per inch at Mach 4 is reflected in the variation of the test section Mach num-
ber with Reynolds number. Figure 6 shows the Mach number and flexible
plate displacement thickness variations at Mach numbers 4 and 5. Changes
of Mach number with Reynolds number are seen to be in a direction which
would be produced by the variation of the boundary-layer thickness and in
turn nozzle area ratio. Referring back to Fig. 4, it is also interesting to
note that the turbulent outer portion of the flexible plate boundary layer is
similar throughout the Reynolds number range with the exception of an in-
crease in the velocity profile parameter, N, at the Reynolds number where
the minimum displacement thickness was measured (Re/in. of 0. 07 x 106
at Mach 5 and 0. 040 x 106 at Mach 4).

In Fig. 7 the experimental values of the boundary-layer total and dis-
placement thickness are compared with the theoretical values computed by
the method of Tucker (Ref. 3). This method determines the turbulent
boundary-layer development along an insulated surface with a pressure
gradient. The theoretical skin friction coefficient used in the computations
was calculated using an arithmetic-mean between the wall and stream
temperature values for the viscosity calculations. Also a turbulent
velocity profile parameter of N = 7 was assumed.

The flexible plate data presented for the maximum Reynolds number
(po = 60 psia) at Mach 2 and the minimum Reynolds number (po 0  5 psia) at
Mach numbers 4 and 5 were obtained by a smooth curve extrapolation of
the boundary-layer thickness variations with Reynolds number shown in
Fig. 5.
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Figure 8 shows the variation of the sidewall boundary-layer dis-
placement thickness between the sidewall centerline and the upper flex-
ible plate. The large decrease in displacement thickness as the top wall
is approached at Mach 4 and 5, and to a lesser extent at Mach 3, is
attributed to secondary cross-flows within the boundary layer. As dis-
cussed in Ref. 5, these cross-flows are the result of transverse static
pressure gradients present in all non-axially symmetric nozzles.

Figure 9 presents a correlation of the displacement thickness meas-
ured on the flexible plate with experimental data measured in several
other supersonic wind tunnels. This correlation is based upon a nondi-
mensional displacement thickness parameter, 6*.

whe re
K X % ¶

and K 0.0131 (L
\PC an/

Reference 6 develops this relationship by rearranging the equations
of Tucker (Ref. 3) to obtain a boundary-layer growth parameter inde-
pendent of nozzle size and stagnation conditions.

In those instances where the position of the nozzle aerodynamic exit
(location of last characteristic) is known, the experimentally determined
values of 6* are transferred to this point before computing 6*. This
transfer is accomplished by the method of Ref. 6. Where the position of
the aerodynamic exit is unknown, 6* is computed directly from the meas-
ured value of 6* and the distance from the throat to the point of measure-
ment. Figure 9 indicates which method was used to compute the values of6"* shown.

Since Tucker's equations apply only to turbulent boundary-layer de-
velopment, the tunnel D data which exhibited laminar sublayers are not
included in Fig. 9. This figure shows that, for the most part, the tun-
nel D turbulent boundary-layer data correlates quite well with that of the
other tunnels, although at Mach 4 and 5, values of 6* higher than the
correlating values were obtained. At both of these Mach numbers, the
high values of 6* occurred at the peak of a rapid increase in displacement
thickness with Reynolds number (Re/in. = 0. 10 x 106 at Mach 5 and
0. 00C x, 106 at Mach 4, Fig. 5) while the values of E"* which correlated
best were obtained at the maximum Reynolds numbers tested.

4
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5.0 SUMMARY

The following results were obtained from an investigation of the test
section boundary-layer conducted in the 12--Inch Supersonic Tunnel (D)
of the von Karman Gas Dynamics Facility:

1. With the exception of the sidewall centerline measurements at
Mach 4 and 5, the test section boundary-layer characteristics
were primarily turbulent.

2. The characteristics of the turbulent boundary layers agree well
with theory except for the flexible plate boundary layers whose
profiles exhibit well-defined laminar sublayers at Mach num-
bers 4 and 5. Here, the experimental values of H are higher
than predicted by theory.

3. At Mach numbers 4 and 5, the variation of the test section Mach
number with Reynolds number is associated with the variation of
the flexible plate boundary-layer characteristics.

4. At Mach numbers 3, 4, and 5, the displacement thickness of the
sidewall boundary layer decreases as the upper wall is approached.
This decrease is attributed to secondary cross-flows within the
boundary layer.

5. The flexible plate displacement thickness correlates with that of
other supersonic wind tunnels when compared on the basis of
the nondimensional parameter, 6*.
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TABLE 1
TEST CONDITIONS

Sidewall
Flexible Distance above q,, in.

Mý Po' Re/in. x 10- 6  Plate
SCenLerline " 1 2 3 4 5

2 1 0. 02 x x x x x x x

5 0.11 x x x x x x x

10 0. 23 x x x x x x x
15 0. 33 x x x x x x x
30 0.69 x x x x x x x

5 0.07 x x x x x x x
10 0. 14 x x x x x x x
15 0.21 x x x x x x x
20 0. 28 x x x x x x
30 0. 39 x
60 0. 82 x x x x x x x

4 5 0. 04 Y x x x x x
10 0.08 x x x x x x
15 0. 12 x x x x x x x
20 0. 16 x x x x x x
60 0.48 x x x x x x x

5 5 0. 02 x
7 0.03 x x x x x

10 0.05 x x x x x x
15 0.07 x x x x x x
17 0.08 x x x x x x
20 0. 10 x x x x x
30 0. 14 x x x x x
40 0.19 x
60 0.29 x x x x x x x

x Indicates where measurements were made

7
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M" Klh

VI, I'w 1 -

Assembly

Fig. I The 12-Inch Supersonic Tunnel (D)
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Sidewall Rake Locations

Alltatnion for Centerao

Fig. 2 Boundary-Layer Rake Locations
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0,6 Flexible Plate Centerline " Sidewall Centerline
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28 8 0__ _ _ _ _ _ _ _ _ I N I

1 2 3 4 3 1 2 3 4 5

Fig. 3 Boundary-Layer Thickness Ratio&, g -8*18 and HI - 8*/0, on the Flexible Plate
and Sidewall Centerlines at Mach Numbers 2 through 5
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0.02 0.03 0.04 0.050.08 0.08 0.10 0.20 0.30 0.40 0.60

Re/in. x 10-6

Fig. 6 Mach Number and Displacement Thickness Variation with Reynolds Number

at Mach Numbers 4 and 5
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Max Re/in. Min Re/in,
M x 106 x 10-' - Theory (Ref. 3)

1.6 2 1.38 0.11
3 0.82 0.07
4 0.48 0.04 Sidewall Centerline
5 0.29 0.03

1.2 0
Flexible Plate Centerline

"Re" mn 
Remi

0,8

0.4

0 6

2.0 0 Re min

0Remin

1.6[R@a

0.80

0.4

0
0 2 4 6 0 2 4 6

Fig. 7 Comparison between Experimental and Theoretical Values of Total and Displacement Thickness
on the Flexible Plate and Sidewall Centerline at Mach Numbers 2 through 5
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6 Mach 2 Upper Mach 3
Flexible
Plate

Re/in. (Typ) Re/in.

Symbol x 10"' Symbol x 10"
0.11 0 0.07

o 0.23 0 0.14
A 0.34 A 0.28
o 0.69 0 0.82

2-4

o0 - Sidewall

rn

S6 Mach 4 Mach 5. •- Re/io, Re/in•
0.04 0.05

S0.08 , 0.10
4 0.16 0A .140 0.48 0 0.28

2

0
0 0.4 0.8 1.2 0 0.4 0.8 1.2

6*, in. 6*, in.

Fig. 8 Variation of the Sidewall Displacement Thickness between the Centerline and
Upper Flexible Plate at Mach Numbers 2 throagh 5
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Symbol Facility Test Section Ref.

* 0 AEDC(VKF) 12" x 12"
* 0 AEDC(VKF) 40" x 40" 7
* A AEDC(PWT) 12" x 12" 6
< JPL 20" x 20" 8
0 JPL 20" x 20" 9

* Q NASA 3.84" x 10" 5
0 OAL 19" x 27.5" 10

* C DRL 1.45" % 1.45" 11
V RAE 8' x 8' 12

UTIA 5" x 7" 13
* D NSL 18" x 24" 14

* •- computed at aerodynamic exit plane.

16

0

12
0

8

4

0 I I I I I

1 2 3 4 5

FIg. 9 Flexible Plate Displacement Thickness Correlation at Mach Numbers 1.5 through 5
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