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PREFACE

There are two unusual features of the writeup of this

study which should be mentioned at the outset.

First, due to the large number of symbols used, it was
felt that the reader would benefit from a glossary of symbols,
Therefore, such a glossary has been included at the extreme
end of the report. As Appendix F has been taken from another
report of the author and it contains self-explained symbols, the

above mentioned glossary does not apply to that appendix.

Secondly, to make the reading of the main text easier,
a considerable amount of theoretical development and numerical
results have been placed in appendices, It is hoped that this and

the above feature will help convey the results of the research,
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MARKOVIAN DECISION PROCESSES WITH UNCERTAIN
TRANSITION PRCBABILITIES OR REWARDS

by

EDWARD ALLAN SILVER

Submitted to the Department of Civil Engineering on August
29, 1963 in partial fulfillment of the requirements for the
degree of Doctor of Science. :

ABSTRACT

In most Markov process studies to date it has been assumed that both
the transition probabilities and rewards are known exactly, The primary pur-
pose of this thesis is to study the effects of relaxing these assumptions to
allow more realistic models of real world situations. The Bayesian approach
used leads to statistical decision frameworks for Markov processes.

The first section is concerned with situations where the transition
probabilities are not known cxactly.

One approach used incorporates the concept of multi-matrix Markov
processes, processes where it is assumed that one of several known transi-
tion matrices is being utilized, but we only have a probability vector on the
various matrices rather than knowing exactly which one is governing the
process., An explanation is given of the Baycs modification of the proba-
bility vector when some transitions are observed, Next, we determine
various quantities of interest, such as mean recurrence times, Finally a
discussion is presenied of decision making involving multi-matrix Markov
processes,

The second approach assumes more directly that the transition
probabilities themselves are random variables. It is shown that the
multidimensional Beta distribution is a most convenient distribution
(for Bayes calculations) to place over the probabilities of a single row
of the transition matrix. Several important properties of the distribution
are displayed, Then a method is suggested for determining the multi-
dimensional Beta prior distributions to use for any particular Markov
process, Next we deal with the effects on various quantities of interest
of having such distributions cver the transition probabilities., For 2-
state processes, several analytic results are derived. Despite analytic
complexities, some interesting expressions are developed for N-state
cases,

It is shown that for decision purposes the expected values of the
steady state probabilities are important gaantities. For a special 2-
state situation, use of the hypergeometric function (previously utilized

—ive



in the solution of certain physics problems) permits evaluation of
these expected values, Their determination for 3 or more states
requires the use of simulation. Fortunately, a simple approxima-
tion technique is shown to generally give accurate estimates of
the desired quantities, An entire chapter is devoted to statistical
decisions in Markov processes when the transition probabilities
are multidimensional Beta distributed rather than being exactly
known, The main problem considered is one where we have the
option of buying observations of a Markov process so as to im-
prove our knowledge of the unknown transition probabilities be-
fore deciding whether or not to utilize the process.

In the second section of the study, we assume that the tran-
sition probabilities are exactly known, but now the rewards are
random variables, First we display the Bayes modification of
two convenient distributions to use for the rewards, Next, the
expected rewards in various time periods are determined. Fin-
ally, an explanation is presented of how to utilize these expected
rewards in making statistical decisions concerning Markov pro-
cesses whose rewards are not known exactly,

Thesis Supervisor: Ronald A. Howard
Title: Associate Professor of Electrical Engineering and
Associate Professor of Industrial Management
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CHAPTER 1

INTRODUCTION

It is becoming increasingly evident that Markov process models
are playing a more and more important role in the mathematical analysis
of both military and industrial operations. This increased practical
importance necessitates further research in the fundamentals of Markov

process theory. This study is an effort in this direction.

Practically all Markov process applications to date have assumed
that all the relevagnt parameters (i.e. the rewards and transition prota-
bilities) are exactly known. In many situations this has been and will
continue to be a very debatable assumption. The purpose of this dissertation
is to study the effects of relaxing these assumptions to allow more realistic
moflels of the real world situation. - The approach used leads to a statistical
de~ision framework for Markov processes.

lin 1951 several theoretical studies

Since Bartlett's pioneering work
have been devoted to the problem of estimating the transition probabilities

of Markov processes (see Billingsley's article 2 for an excellent reference

list). These studies have been concerned with statistical methods that
result in point estimates (i.e. exact single values) of the transition proba-
bilities. In the present research a different approach, that of a Bayesiap

analyst, is to be used.

1. Bartlett, M., ''The Frequency Goodness of Fit Test for Probability
Chains', Cambridge Philosophical Proceedings, 1951 (47), p. 86.

2. Billingsley, P., ""Statistical Methods in Markov Chains',
Annals of Mathematical Statistics (U. S.), Vol. 32 (1961),
No. 1, pp. 12-40.

-1-



Prior knowledge about the unknown parameters (transition
probabilities or rewards)is expressed in the form of probability distr: -
butions over the unknown parameters; i.e., the parameters are con-
sidered as random variables. These prior probability distributions
are modified through the use of Bayes! rule when olLservations (perhaps
in the form of transitions or rewards) of the Markov process are made.
More precisely, the a posteriori distribution is given by*

X0 X ...,xn(yl’YZ' '“’anEi)

prior

PrE;Yprygre vy fepigsenre 10270V

pr(E i)

a direct consequence of Bayes' rule. xl. X5 <ot sr{ are the unknown

2
parameters and E denotes the observations. The a posteriori distri=-
butions over the parameters, unlike point estimates, clearly reflect
our uncertainty as to the exact values of the parameters and this
uncertainty can be incorporated when making statistical decisions about

the process. An excellent description of the philosophy of the Bayes

s
The notation is described in footnote number 12 found on page 36.
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approach has been presented by Savage. ds Therefore, we refer the
ini:erested reader to Savage's article for a justification of this approach
rather than reproducing his ideas here. Fortunately, his article also
contains an extensive list of references on Bayes procedures. In fact,
it is probably the best starting point to become fainiliar with the entire
area of Bayesian statistics.

The following, in itself, is an important reason for using a
Bayes approach in the study of Markov processes. Quite often prior to
observational data the analyst knows considerable information about the
unknown parameters, but not enough for him to state outright that the
parameters can be assigned exactly known values. If the observations
have significant costs associated with them, the analyst must decide
exactly how many observations are worthwhile. A Bayes approach allows
him to make his decision in a quantitative manner.

In Section I we shall be concerned with situations where the
transition probabilities are not known exactly. More precisely, Chapter 2
assumes that we have 2 probability vector over several possible transi-

tion matrices.

a=[a1,a2,...,ok,...,uQ

where a is the probability that matrix kP is being used (k=1,2,..., Q).
Then, in Chapters 3, 4 and 5 we assume more directly that the transi-
tion probabilities themselves are random variables. Chapter 6 involves
a brief look at continuous time processes where the transition rates are

random variables rather than beinj exactly known.

2a'Savage, E. 9., "Bayesian Statistics, " Recent Developments in Informa -
tion and Decision Processes, Macmillan, 1962,




The approach of placing probability distributions directly over

the transition probabilities is probably more appealing than that used in
hapter 2 where we deal with multi-matrix Markov processes, processes

where it is assumed that one of Q known transition matrices is being
utilized,but we only have a probability vector on the various matrices
rather than knowing exactly which one is being used. However, the
multi-matrix approach does make the mathematical theory and computations
considerably simpler in certain portions of the study. Also, as will be
explained later, it can be thought of as a step toward the combination of

Mari:ov process theory and game theory.

In Chapter 2, with the multi-matrix framework assumed, a
detailed explanation is presented of the Bayes' modification of the
probability vector (g) when some transiticns are observed. Next we
determine various quantities of interest, such as mean recurrence
times. Finally,decision making involving multi-matrix Markov

processes is discussed.

As mentioned earlier, in Chapters 3, 4 and 5, we assume directly
that the transition probabilities themselves are random variables. Un-
fortunately the analytic considerations become far more formidable than
those encountered in Chapter 2. Still, many interesting and potentially

useful results are developed.

Chapter 3 is concerned with the multidimensional Beta distribution,
a most convenient distribution to place over the transition probabilities of a
single row of the transition matrix. In research work concurrent with this

3 4 .
study two other individuals, Murphy and Mosimann , have developed this

3 Murphy, Roy E. Jr., Adaptive Processes in Economic Systems, Technical

Report No. 119, Institute for Mathematical Studies in the Social Sciences,
Stanford University, 1962.

4 Mosimann, J. E., '"On the Compound Multinomial Distribution, the
Multivariate B -distribution, and Correlations among Proportions ',
Biometrika, Vol. 49 (1962), pp. 65-82.

-4-



distribution as a convenient one to place over the parameters of
a multinomial distribution. However, their purposes in doing
this did not include the study of Markov processes. After the
important properties of this distribution are listed, a method is
suggested for determining the a priori parameters., Next, the
Bayes modification of the distribution is outlined. Then we con-
cern outselves with the development of the multidimensional Beta
priors for a specific N - state Markov process. Finally, two
methods of simulating a multidimensional Beta distribution are

suggested. This simulation is required later in the study.

Chapter 4 deals with the effects on various quantities of
interest of having multidimensional Beta distributions over the
transition probabilities. A particularly detailed analytical study
is made of the expected values of the steady state probabilities in
the 2 - state case. I'or 3 or more states, analytic complexities
necessitate the use of simulation. Detailed results of simulations
for 3 and 4 state processes are presented. First passage times,
state occupancy times, transient behavior and a trapping state

situation are also studied.

In Chapter 5 we attack the problem of making statistical
decisions in Markov processes when the transition probabilities
are not known exactly. First, the importance of the expected values
of the steady state probabilities is displayed. Then we consider a
specific 2 - state problem where the decision is based upon the ex-
pected reward in s periods in the steady state and we have the option
of buying observations of the process so as to improve our knowledge
of the unknown transition probability, The next section deals with
an analogous N - state problem. After this, several other items of
interest for statistical decision purposes are discussed. Finally,

we look at statistical decisions under a transient situation.



In Section II we assume that the transition probabilities are
exactly known but now the rewards are random variables. First, in
Charpter 7, a presentation is made of two convenient distributions to use
for the rewards. Bayes modification of them is also displayed. Then
Chapter 8 is concerned with the determination of the expected rewards
in various time periods (both steady state and transient). Chapter 9
shows how to utilize these expected rewards in making statistical

decisions in Markov processes where the rewards are not known exactly.

Chapter 10, entitled "Conclusions', surmmarizes the more
important points of the study and also suggests several related areas

for further research.



SECTION I

TRANSITION PROBABILITIES NOT KNOWN EXACTLY

In this section we remove the usual Markov requirement that the
transition probabilities be known exactly; rather we assume that the
transition probabilities (or rates or matrices) are themselves random
variavles. There are three primary objectives. The first is to deter-
mine a reasonably simple method for placing convenient distributions
over the transition probabilities (or rates or matrices). Secondly, we
want to be able to easily modify these distributions through the use of
Bayes' rule after observing some transitions. Finally,it is important
to know the effects on various quantities of interest of having distri-
butions over the transition probatilities (or rates or matrices). This
latter consideration leads to a statistical decision framework for

Markov processes.



CHAPTER 2

THE MULTI-MATRIX MARKOV PROCESS

2.1 Outline of the Process

Instead of placing probability distributions directly over the
transition probabilities (as will be done in Chapters 3 - 5) we proceed
as follows: It is assumed that the Markov process is governed by one
of Q given transition matrices whose elements are exactly known. This
one matrix is always used but we are not sure as to. exactly which one of

the Q matrices it is. In fact, we define a probability vector

a = [o.l, Gyreer @

where o . = probability that matrix j is governing the process. A process

defined in this way is called a multi-matrix Markov process.

With this situation existing,we show in section 2.2 how tov update
the ¢ vector (by Bayes' rule) when several transitions of the process are
observed. Next we discuss the problem of determining various quantities
of interest such as the steady state probabilities. In section 2.4 considera-
tion is given to possible cost structures for theimulti-matrix Markov
process. Finally, in section 2.5 we demonstrate statistical decision theory

for multi-matrix Markov processes by analyzing a specific decision problem.

Although the multi-matrix Markcv framework is less appealing in a
physical sense than is placing probability distributions directly over the
transition probabilities, it does make the mathematical theory and compu-
tations considerably simpler in certain portions of the study. Moreover,
it can be thought of as a step toward the combination of Markov process

theory and game theory. The multi-matrix process can be considered as



follows. An opponent (or nature) selects one of Q known transition
matrices with which to run the Markov process,but we only know
probabilistically which one has been selected. We then have to decide
upon our best course of action (as regards using the process, etc.) under
these circumstances. Note, however, that it is assumed that the opponent
{(or nature) can not switch matrices once a choice has been made. The
next step from the game theoretic point of view would be to allow

switching. Such a situation will not be considered here.

2.2 Bayes Modification of the a Vector

2.2.1 Ignoring the Starting State

Let B (F) be the event that a number of consecutive transitions are
cbserved having a frequency count F = (fi j) where fij = number of transitions
from state i to state j. Two points should be noted. First, we do not
require that the exact order of transitions be known. Secon-ly, we
assume for the moment that the starting state provides no information
about which matrix is being used. This assumption could be satisfied in
one of two ways; either the process is forced to start in a particular state
regardless of which matrix is being used,or we have absolutely no idea as

to which state was the starting one.

1 2 k

Let the Q possible matrices be designated by P, P,... P,.. .QP

with elements 1pij’ 2pi i 'kpij’ o a 'Qpij respectively. Then
k n k fij o
pr (B(F) | P) = N(F) II ("p; ;) 0°%= 1
=
n f .

where | II 1(kpij) = is the probability of a particular sequence that

e

|- :
would produce the frequency count F given that matrix P is being used,



and N(F) is the number of such sequences;N(F) is independent of the P

matrix used, hence will cancel out in the Bayes calculations. This is

fortunate as the expression for N (¥} is extremely complicated.

a 1

Suppose that prior to the event B(¥) we have a probability vector

1
1’ Gy @

(a , a.') where o is the probability that

K Q

ok . o
matrix P is being used. Then utilizing Bayes' rule the posterior

1
probability that matrix P is being used is

k k
a k _ Pr(B(F)| "P) pr (P)
f
N k ij .
N(F) i,IjI=1 ( pij) a
2 N m fi_j
N(F II . !
) NE I Ty Ve
m=1
N i,
a. ' 11 (kp..) Y
o ko g,5=1 1
0o s (2.1)
Q
' m 1_]
2 a 1,_}1—1 ( PIJ)
m=1

Hence, the determination of the a posteriori probabilities is a relatively

simple operation.

two cages with an interconnecting door.

Numerical Example

Bob confronts his friend Ray with an interesting problem. Bob has

He is also the owner of two white

mice that are identical in appearance. The behavior of these mice in the

5

Whittle, P., "Some Distribution and Moment Formulae for Markov
Chains', Journal of the Royal Statistical Society, Series B, Vol. 17
(1955), pp. 235 -242.
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cages is exactly known to Ray. Mouse no. | has a transition matrix

210.4 0.6

Bob also informs Ray that be has selected mouse no. 1 with probability
0.8 and mouse no. 2 with probability 0.2 and once selected the mouse is

never replaced, i.e. the same mouse will always be in the cages.

Now suppose Ray has observed six transitions (time periods)

with frequency count

What should be his a posteriori probabilities that each of the two mice

are in use ?
This is a multi-matrix Markov process with N=2 and Q= 2.

Using equation (2.1)

no_ 0.8[(0. 1y%0.9)% (0. (0. 3°]

a
1
0.8 [ (0.1)%(0.9)%(0. 7)%(0. 3)°] +0.2[ (0.5)%(0.5)%(0. 4)%(0. 6,°]
= . W37
i.e. 2” = [.137, .863]
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It is apparent that the six transitions have radically altered Ray's
feelings about which mouse is being used. Of course,’this is primarily
due to the two 1 -1 transitions which are very unlikely if mouse no. 1 is
in action. However, this simple example does illustrate an important
point. If the possible matrices are significantly different, considerable
influence is played by the transition data in obtaining the a posteriori

probabilities even if very few transitions are observed.

2.2.2 Incorporation of the Starting State

In many situations it is meaningful to incorporate the knowledge of
the starting state into the Bayesian modification. Suppose that the
obscrved transition sequence started in state s. Then, if the probability
that the starting state is s is a function of the specific matrix used, this

information should be utilized.

Let ) be the probability that the starting state is s given that

k
matrix P is governing the prccess and let (B (F), s) be the joint event

that the starting state is s and a sequence is observed having a frequency caunt F.

Then
- SN
Kk ak sk i,j=1 ij :
ak”=pr( Pl E(F), s) = c.(2.2)
Q
~ N m fi_j
} a ' s 11 (p..)
1 m m i,j=1 1.]

m=]
Sie would generally be calculated in one of two ways:
i) If we could assume that the sequence of transitions was observed when tae
process was in the teady state, then

k. - S
8. = M the s :ady state probability of being in state s given that

ok .
matrix P is in operation.
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ii} IJf we were told that the process was forced to be in state u n time

periods before the sequence of observations, then
k. - r 9 .
8y = ¢us(n), the probability that the state at time n is s given

. . Lok . 6
that the state at time 0 is u and that matrix P is being used. Howard

describes several methods for obtaining this qliantity.

Numerical Egaiap.e

For the mouse example of the previous section suppose that Ray
was also informed that the observed transitions occurred when the mouse
had bLeen in the cages for a iong time and the first observed transition

was from cage 1.

0.1 0.9 0.5 0.5
lp . 25, _
0.7 0.3 0.4 0.6
_ 2 Z
a' = [o.8 0.2] F =
2 0

1 1 2ad 2 2 1 3
Now we solve 1,7_1 P= wand m P="mtoobtain # = [ 7/16, 9/16]
and 2'7{ = [ 4/9, 5/9] respectively. Then using equation (2.2) there
results

a' = [.135, .865]

The probability of mouse no. 1 has been reduced still further by the

knowledge of the starting condition.

6 Howard, R. A., Dynamic Probabilistic Systems, in preparation.
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2.2.3 a' Unknown

When E' is completely unknown one might argue that a good

approximation would be achieved by using

o ' ——-_Sk
k
s
m
m =1
1 .
However this is equivalent to assuming uk' =5 and then using the
starting information as earlier, for
L s
8 f _ k
Q Q
1 —
z ‘T)Sm 2 sm
m=1 m=1
2.3 Determination of Various Quantities of Interest

Many deterministic quantities in a regular Markov process become
random variables in the multi-matrix Markov process. Furthermore, all
these random variables are of the discrete variety because of the discrete

nature of the probability distribution on the matrices.

2.3.1 Mean Recurrence Times

For a known transition matrix we can easily obtain the mean

recurrence times through the use of matrix or flow graph techniques

7. Ibid

8 Kemeny, J. G., and Snell, J. L., Finite Markov.Chains,
Van Nostrand, 1960, p. 79,
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The mean recurrence time for state i is the mean time to go from that
state to itself (staying in the state on the first transition results in a

recurrence time of length 1).

With matrix kP we have

L S - Ka
=70 M e NN

k_ . . B .
where n,. = mean recurrence time for state i | matrix P is being used.
ii

However, because kP is only being used with probability a,, the mean

k’
recurrence times now become random variables with probability mass

functions

prin,; = "n;) =p

This random variable will have

Pg. (%)
1 ¥y a mean value given by
Q
— o=
. 200g1) S 2 kM
k=1
k_ x
n..
ii
9 The probability mass function is
p (k) = pr {that a discrete random variable x takes on the
X valuek}k:k,k ..., k
2] n
Also p l (k| j) = pr.{ that x takes on the value k| the variable
xly
y takes on the value _]} k = kl' kZ' ' ,kn.
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Numerical Example

Again consider the mouse example. Given that a mouse is seen
in cage i (i = 1, 2), what is the expected number of trgnsitions until the

moment when he first appears again in the same cage?

0.1 0.9 0.5 0.5

IP : Zp -
0.7 0.3 0.4 0.6

a = [ 0.8, 0.2]

l-a a
P =
b 1-b
= _ atb nd B _ a+b
11~ 7o 2 22 a
o lﬁll = 9—-90+—707- = 17—6 , the mean time for mouse no. l.to go

from cage 1 to cage 1. Similarly

1= _l62- 9 2. _9
n —9, n -4, n —5

22 11

Hence, Hll and EZZ have the following probability mass functions:

_libe



0.8 (Mouse no, 1)

0.2 |
!u
)

974

2.28
(Mean)

16/7 X

0.8(Mouse no. 1)

|
I 0. 2 (Mouse no. 2)

|
1679, 975 y

1.78
(Mean)

Figure 2.1 - The Probability Mass Functions of the Mean Recurrence Times

in a Multi-Matrix Markov Process

Similar probability mass functions could be obtained for ﬁij’ the

mean time to go from cage i to cage j, with i# j.

2.3.2 Steady State Probabilities

When matrix kP is being used the steady state probability vector

is given by

k

k k k
LIRS

ULIYERRY

N

As with the mean recurrence times we can think of the steady state

probabilities as random variables

k k
= = = k=1,...,
e.g. pr (rr_1 T.)=p ‘( rri) a, 1 Q

1 T
1

or more directly we can say that
E(7 i) = 2 a,
k=1

LY the mean value of 7 Y is the expected

probability of being in state i in the steady state.



Numerical Example (same as in previous section)

E(r) = 0.8 (1’76) +0.2 (%) z /439, this is'dhs expected

probability that a look at cage 1 after a long time will find a mouse in

that cage during the period in which the look is taken. Also
E(r 2) = 0.561

2.3.3 Transient Behavior

As was done in section 2.2.2 let k'.¢ij (n) = pr. { state at time n
is j| state at time 0 is i and matrix kP is in use }. The unconditional
multi-step transition probability, ¢ij (n), will again have a probability

mass function and we can say that

Q
E [¢ij (n)] = > ay k ¢ij(n), the mean value of ¢ij(n), is

k=1
the expected probability of being in state j at time n given that the state

at time 0 is i.

Numerical Example (same as in section 2.3.1).

Again using either flow graphs or matrix inversion we obtain

L oy ol ik
¢12(M"16 TR

This is the probability that mcuse no. 1 will be in cage 2 at time n| mouse

n

-0.6) n=0.

no. | was in cage 1 at time 0 and

5 5 n =
L =2 - 3 (0.1) nz0.

This is the same as above except for mouse no. 2.
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n=0

o B _ 0 et n

;. E [¢12(n)] = 0.561 - 0.450 (-0.6)" -0.111 (0. 1)
This is the probability that a mouse will be in cage 2 at time n | a mouse
was in cage 1 at time 0.

2.3.4 Mean State Occupancy Time

k'= - . .
u . be the mean number of transitions to exii {rom state i |
i

matrix P is being used and the process is in state i before the first

Let

transition.

K 1 . ;
. —_— (mean of a geometric distribution with

I - k
Py parameter pii)

Now u, will have a probability mass function given by
i

- k_, k__ _ -
pr(ui_ ui) = P, ( ui) ay k=1,2,...,Q.

2.4 Addition of a Cost Framework

There are several possible cost frameworks for the multi-matrix

Markov process. Two will be discussed in detail and a third will be

mentioned.

2.4.1 Simple cij Form

Let cij = cost of assuming that matrix i is being used when in

effect j is being utilized.

We have aQ x Q matrix C = (cij)'

1

K 2
Let C (k) = cost of assuming that matrix P is being used.

Q

Then E|{ C(k)] = a.c .
enE[CIN] = ) ajc
!
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To minimize the expected cost we select k as follows:

g

min A (2.3)

Numerical Example

For the mouse game Bob has decided to make things interesting
by introducing a moneiary aspect. Ray is forced to play and is confronted

with the following cost matrix

0 5
- L6 0
this says, for example, if he guesses that mouse no. 2 is being used
when in reality no. 1 is in the cages, Ray must pay $16 for his error.
It is reasonable to have c = 0 since c.. is the penalty associated with
11

making a correct decision. Using the data of section 2.2.1 we had

a'= [0.8, 0.2] and after the set of transitions with frequency count
2 2
F = we had
2 0
a'= [0.137, 0.863]
With o' = [0.8, 0.2]

E[C(1)] =0.8(0)+0.2(5) =10

E[C(2)] =0.8(16)+0.2(0) =12.8>1.0



Therefore, prior to the observations Ray would have daid that mouse

no. 1 was being used, with an expected cost of 1.0. With

2" = [0.137 0.863]
E [G(1)] .137 (0) + .863 (5) = 4.315 and

E [6:(2)] =.137 (16) + . 863 (0) = 2.192 < 4. 315

Therefore, after the observations, even though 51 >> 12 he would
say that mouse no. 2 is in the cages, with an expected cost cf 2.192.
It is seen that the small number of transitions has completely altered

the decision and associated expected cost.

2.4.2 The Expected Net Profit per Transition

Here we assume that the important cost element is the expected
net profit per transition. This quantity and its importance in statistical

decision theory will be discussed at length in Chapter 5.
Let rij be the reward for each transition from state i to state j

(i,j=1,2,...,N) and let c be the cost per transitidn for using the process.
k
Then the expected reward per transition given that matrix P is being

k
used is R where

with k7T . being the steady state probability of being in state i given that
i

P is in use.

With the probability distribution. & over the possible matrices

the expected reward per transition, E (R}, is given by

-2l=



\Q k 2 < k N k
E(R) DAL R = Z @ z 3 Z Py Tig (2.5)
k=1 k=1 i=1 jr=nl

and the expected net revenue per transition is

E(R) - ¢

Numerical Example

In the mouse problem (section 2.2.1) Ray is now confronted with
a different cost structure where he may have a chance of making some
money. He must pay $ 3. 60 per time period to have a mouse in the

cages but he is rewarded for mouse transitions as follows:

0 8
(r..) = (in dollars)
i 3 2

where r,, is the reward for a mouse transitici: {rom cage i to cage j.
1)

Should he now accept Bob's offer ?

0.1 0.9 0.5 0.5

0.7 0.3 0.4 0.6

Using the data of section 2.2.1 we had gi =[0.8 0.2] and after the set

of transitions with frequency count

2 0

we had a" =[0.137 0.863]

PR



From equation (2. 4)

LSRR [ R 1 11 1
Ro= om0t pprp)t 7,00, 15+ Py, 1y,

i 9 .
16(0+7.2) + R(2'1+0'6)
=$4.67
. 2 . .
Similarly R = 3.11. Then using equation (2. 5)

for ' =[0.8, 0.2] E(R) = 4.36

and E(N.R.) =4.36 - 3.6 =0.76 >0.

For a'z[ 0.137, 0.863] E(R) = 3.32
and E(N.R.) =3.32 - 3.6 = -0.28 <0.

Hence, if Ray considers it worthwhile to play the game only when
E(N.R.) >0, then it is clear that before the observations he would have

been willing to play, but such is not the case afterwards.

2.4.3 A Third Possible Cost Structure

For the reader who is familiar with Howard's policy iteration
problems10 it probably has become apparent that the policy iteration
model could be generalized to the situation where instead of knowing
the transition probabilities exactly there is a multi-matrix framework.
Hence, we have a third possible cost structure for the multi-matrix

process.

10 Howard, R. A., Dynamic Programming and Markov Processes,
Technology Press and Wiley, 1960.

-23-



The analysis of the process within this cost structure appears
to be quite formidable. It is hoped that successful research will be
completed in this area in the near future,as inclusion of uncertainty
in the transition matrices of the policy iteration problem would be a

major step forward in the modeling of Markov decision processes.

2.5 A Decision Problem Involving 2 Multi-Matrix Markov Process

As was mentioned at the start of this chapter the primary purpose
of this section is to introduce the reader to the use of statistical decision
theory in multi-matrix Markov processes by considering in detail a

specific decision problena.

2.5.1 Statement of the Problem

Consider a multi-matrix Markov process having Q possible matrices

1
P, ZP, 500 ,QP. Suppose that the decision maker is faced with the cost

framework discussed in section 2.4.1, namely cij is the cost of assuming

that matrix P is being used when, in effect, TP is being utilized. Also

let drs be the cost of observing a transition from state r to state s. Then

the following general problem, as will be shown, can be formulated as a
dynamic programming problem.

The process is in state i at present and we know the vector

OZ,..., G.Q

governing the transitions. During the next n periods we have the following

') where a,  'is the probability that kP is

k

options:
i) State that a particular matrix is being used and pay the
resulting cost - this ends the decision process.

ii) Observe the next transition paying the cost of the observation.
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2.5.2 Dynamic Programming Framework of the Problem

Let i (a ', i) = the expected cost, if an optimal policy is followed
and we are in state i with probability vector a' over the matrices and
there are h decision periods left. Then as shown in section 2.4.1

(equation 2. 3)

Q
v (9_', i) = min Z a 'e (independent of i)...(2. 6)
o 1<k =Q m=~1 m km
Q
Also v (a',i) = min Sto 2 Z am' km = Vo (a', i)
h'=" 2P 1<k <q

m=1 l1<h =n...(2.7)

i k "
I o,
' j=1 k=1

Where a " is obtained through the use of Bayes' rule (see equation 2.1).

Theoretically the above recurrence relation and boundary
conditions give us a solution to the problem. Unfortunately, the state
vector is Q-dimensional for a process having QQ possible matrices. Also
Q-1 of the dimensions are continuous rather than discrete variables.
However, when QQ = 2, even for a large number of states the computations

can be carried out. An example with 2 states will now be presented.

2.5.3 A 2 -Dimensional Numerical Example

Apgain consider Bob and Ray's mouse game.

0.1 0.9 0.5 0.5
1P = ZP =
(mouse 0.7 0.3 (mouse 04 0.6
no. 1) no. 2)
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Also

0 5'| 0.5 1
C = (ci.) = ) and D = (drs) =
: 16 o] 0.3 0
where cij = the cost of stating that mouse no. i is in use when mouse no. j

is, and drs = the cost of observing a transition from cage r to cage s.

Assume that a mouse is presently in cage 1 and that Ray's decision
as to which mouse is being used can be made now, after the next, the next
two, or the next three transitions (i.e. n = 3). Also assume that

a =(0.3, 0.7) and this includes the knowledge of the starting cage.

As there are only two possible matrices (Q = 2) we can replace
a by a, the probability that mouse no. 1 is in use. Then from equation

(2.6)

[a'c

I
2
=}

v (a', i) +(1-a'} e, ,]
o k=1,2 k1 k2

min

1 a'(0) + (1-a')5 =5- 5a'
1,2

2 a'(l6)+ (1-aY0 =16a'’

This says that, if no more observations are possible, Ray selects

mouse no. 1
if 5-5a'<1l6a’
5
. . ]
i.e if a'> 1

When a' = -221- the choice is immaterial.

and chooses mouse no. 2 if a'< -22}- .

Also
A (a', i) =min(5-5a', 16 a') = Ray's expected cost if no

observations remain and the probability that mouse no. 1 is.being used is a'.

<A6e



v (e i)
4 L ~
i=1or2
|
| ' By
> L 5-5¢
|
i
0 |
5/21 1 a'
Say Say
Mouse | Mouse
no. 2 no. 1
Now from equation (2. 7)
. . ' t
vh(o.',i) = min S min (5-5a', 16a')
S,L 2
1 1, 2 i "
L Z[ p, o'+t pir(l-a ] [dir+vh_l(u yr)] ... (2.8)

r=1

Using equation (2.1) a "can be expressed in terms of a' as follows:

1 e
l-q!
pira * pir( i)

As far as the variable a'is concerned it is apparent that its range
(for any specific number of observations left, h, and present cage, i, wilL

be split into 3 sections for decision purposes:

Say Say
Mouse Look Mouse
no. 2 , Again , no. |

0 a b 1
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From equations (2.8) and (2.9) "a" is where

2 1
- pP. a
1 2 ir
léa = Z [ pira+ p1r(1-a)] [dir+vh-l(1 ' 2 (l )p r)]
r=1 Piy2 PR
= Jh(a) ....................................... .(2.10)
and 'b'" is where
5-5b=Jh(b) ........................................ (2.11)
Forh=1, i=1
Using equation (2. 10) "a' is where
168 =[0.5-0.42) [0.54v ( ——12 . 1)] +[0.5+0. 48] [ i+
' ) L o 0.5-0.4a

0.9a
Vo( 0.5+0.4a ' 2)]

This equation is solved for "a" using the expression obtained for v, (a', i)

earlier. The solution is a = 0.194

Similarly equation (2.11) gives

5-5b=[0.5-0.4b][ 0.5+ v (=il

1
_0.1b o 1
o 5o ap N +[0.5+0.4b][ 1+

0.9b
Vo 9570 9

which solves for b = 0.407.

For 0.194=a'=<0.407

—7 is always less than 5/21
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0 la' 0.1a'

L vo(m , i) =16 ( m) throughout the range.
Allsol—o e han 5/21
©3TET0 4o isalways greater than /
s 0.9a' . 0:9(1' C
R vo(0.5+0.4 ==k i) =5-5 (—0—_5—_{_6—.7(1—,—) throughout the range.

Consequently for 0.194 = a' = 0.407, from equation (2. 8)

0.1la’

vl(a',l) =E0.5-0.4a'][0.5+16(m.—4—a—')] +[0.540.4a'][ 14
0.9a’
-5 (0.5+0.4a')]

v,{a', 1) =3.25-0.70a"

Note the cancellation of thea' terms occurring in the denominator.
Fortunately this always occurs so that it will be found that vy (a',i) is

a piecewise linear function of a'.

We can summarize the h=1, i=1 situation as follows:

a' range Decision vl(a Y, 1)
P=<a'=.194 Stop and say mouse no. 2 l6a'
.194<a'=.407 Observe process 3.25 -0.70 a'
.407<a'=1 Stop and say mouse no.1 5-5a'

(See diagram on next page)
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]
Vl ((1' ’ 1) ‘.l}“"
4 -
| ~3.25-0.70 o'
2 F I
|
|
] |
0 . 194 . 407 1
Say Say
Mouse | Observe| Mouse a'
no. 2 Process nr. |
h=1,1i=2

In exactly the same manner as above we find

o' range Decision vy (e’ 2)
0<a'=.1l61 Stop and say mouse no.2 16a’
.16l =a'=.365 Observe process 2.1242.89a'
.365=<a'=l Stop and say mouse no. 1l 5-5a'
Vl ((1". 2) 5-5q" / .

}2. 12+2.89¢a'

L [
0 L . 365 1 a'

Say
Observe| Mouse
Process no. |

Say
Mouse
no, 2
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Equations (2.10) and (2.11) together with the above expressions for

vl(a, 1) and vl(a, 2) allow us to obtain

a' range Decision vZ{o.'. 1)
0<a'=.168 Stop and say mouse no.2 16 a'
168 <a'=.242 Observe process 1.8145.249a'
.242 <a'=.407 Observe process 3.25-0.7a'
.407 <a'=1 Stop and say mouse no. 1 5-5a'
no_ 0.9 a'

# At a' =.242, a = .365 and therefore vl(a”, 2)

0.54+0.44a'
changes functional form (see the previous table). This in turn changes the

functional form of vz(a ', 1).

vz(a', 1) l6a'

- 1.81+5, 2490
s /

Say Say
Mouse | Observe | Mouse
no. 2 Process no, 1
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In the same manner as above there results

a' range Decision vz(a', 2)
0=<a'=0.133 Stop and say mouse no. 2 16 o'
0.133=<a'=0.277 Obtserve process 1.420+5.375 a'
0.277<a'=0.282 Observe process 2.692+0.806a'
0.282=<a'=0.483 Observe process 3.392-1.679a'
0.483=<a'=1 Stop and say mouse no. 1l 5-5a'
Vz (a') 2)
. 5-5a'  Jlea'
1.420+5.375¢!
4L
A ——%=2.692+0,806a'
= [
o P ! T %3.392-1.6790"
- | |l |
| I
I ‘
| Ll 1
0 133.277.282 .483 N
1
Say I Say @
Mouse Observe IMouse
no. 2 Process no, 1
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Now from equations (2.8) and (2.9)

0 ] I
ot ) = i S min(5-5a', 16a')

S:L ' 0.l.a'
L{0.5-0.4qa ][0.5+VZ(W, 1]

0.9 a'
0.5+0.4a"'"’ i

v3(

+[0.5+0.4a'] [ 1+ v,(
But Ray has been told that a = 0.3

v3(0. 3,1} = min

S, L 27

(_"_—'

{S min (3.5, 48)
.62

L 0.38[0.54v, (5%, 1)] +0.62[ L4y

38' 2

_mm YS 3.5
0.38[ 0. 5+‘16( )] ¥0.62[ 1+3.392-

1.679 (2 )]

min S 3.5
V(031) S, L {L 3.00 <

Therefore he should observe the first transition and his expected
cost is 3.00. Actually the solution has given him far more than just this
answer. It also shows the optimum policy to follow (with the expected

cost) for either starting state, any a vector and 0, 1 or 2 looks possible.

2.5.4 8Some Further Remarks

From the results of the numerical example some fairly general

remarks can be made.

First, as demonstrated by inducticn in Appendix A, v (.. ., 1)
is always a piecewise linear function of the components of g_ . A second

interesting point in the 2 - matrix example is that the range of a in which

-33-
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we decide to observe the next transition is a monotonic increasing
function of the number of possible observations remaining. This is as
expected. Furthermore, for more than two possible matrices we would
expect the volume of the region of the Q -1 dimensional space of the
components of a in which we decide to observe the next transition to be
a monotonic increasing function of the number of possible observations
left (a monotonic increasing function is assumed to include the trivial

case where the function is zero for all values of the argument).

It is clear from the dynamic programming form of the problem
that the number of states is not really critical. There is one state
variable for the state occupied. Increasing the number of states merely
increases the range of this one state variable. On the other hand
introduction of an extra possible matrix increases the number of state
variables by one. Hence, the number of possible matrices is the
quantity that governs the feasibility of the dynamic programming

solution.

Finally, it can be stated that the numerical example has certainly
demonstrated the possibility of statistical decision making for a multi-

matrix Markov process.
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CHAPTER 3

THE MULTIDIMENSIONAL BETA DISTRIBUTION

As was stated earlier, in this and the following two chapters we
shall assume directly that the transition probabilities themselves are
random variables. The present chapter is conceroed with the multi-
dimensional Beta distribution, a most convenient distribution to place

over the transiticn probabilities of a single row of the transition matrix.

3.1 Conjugate Prior for a Multinomial Distribution

Consider a random variable that follows a multinomial distribution

of order k, i.e., each time a draw is made it can fall into 1 of k categories.

Let P, = probability that a particular draw will fall in the

T category (G o Mz

=g

Let E = event that in n independent draws n, fall in the

ith category (i=1,2,..., k)
k\
5o
i
izl

I n n n
- (E ’ B ey -__.L;._.._ 1 2 k
O AN T (3.1)
i=11 kernel

235



Now following the suggestion of Raiffa_ and Schlaifer 11, if we
want to place a prior distribution over the pj's, it is advisable to select
the prior such that it has the same kernel as the likelihood function of
eguation (3.1). Hence the conjugate prior should be of the form

m, -1 mz-l m -1
fpl,pz,”‘pk(xl,x?_,...,xk)=cX1 x, Xy e (3.2)

k

where ;\ x., =1 and x.=0
iy g i

i=1
andds shown in Appendix B the proper normalizing constant to use is

T
‘(m1+m + +mk)

1 2

Blm,, m,, ... . m ] - T(m ) T (m,). - - T (my)

C = o (3.3)

(3.2) and (3. 3) together define the multidimensional Beta distribution with

parameters (m,, m_,

1 2...,mk).

3.2 Important Properties of the Distribution

Consider a multidimensional Beta distribution.

f (x,, %X, «.., X )=
pl,pz...,pk 1’72

11 Raiffa, H., and Schlaifer, R., Applied Statistical Decision Theory,
Graduate School of Business Administration, Harvard University,
1961, Chapter 3.

12 Throughout this study fa (w,x, ..., z) will represent the joint
density function of the rdndom’ variables a,b,...,d evaluated at the
point (w, x,...,z), and { (w] x) will represent the conditional den-

a| b
sity function of the random variable 'a' evaluated at the point "w' given

that the random variable '"b'"has taken on the value 'x'".
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In more compact notation

ii)

iii)

v)

fpl, pZ, o ,pk(xl'XZ' Ce ,xk) =f‘5(xl:x2: .. .xk| ml,mz, Ce ,mk).
Then in Appendix B the following properties are established:
i) The distribution integrates to one, i.e., we have properly
chosen the normalizing co stant.
The marginal distribution of a specific p, is given by
m, =1 igﬁ m. -1
f _(x)zﬁ(——é—-— x J (1-x) ;o I=x=1
: m.,,
h iy ™)
=f (xl m., > m) .......... (3-5)
B INE
The expected value of pJ is
m,
E(p) = - M 6uoooo0ooo00000000a (3.6)
7ok m,
i=1
The variance of pj is
m( £ m)
i 1
b = ! zJ .................. (3.7)
J (EZm.) (1+Em.)
i i
The covariance of p.j and P, is
-m, IMm
e (3.8)

J#u Cov (pj, P) =

e

(Zmi)2(1+2mi)



3.3 Determination of the A Priori Parameters

Ideally one would like to select the parameters of the multidimen-
sional Beta distribution in such a way that the prior estimates of the means
and variances of the k individual pj's are satisfied* However, this would
require 2k-1 parameters (since Zp, =1, if k-1 means are assigned, the
kth one is automatically determine;) and we have only k parameters at our
disposal. Considerable effort was made to find a suitable prior distribution
that possessed 2k-1 parameters; suitable in the senee that it would allow
easy Bayes modification and would be analytically tractable. Unfortunately
all efforts were unsuccessful. Therefore, we restrict attention to the
multidimensional Beta prior distribution (with only k degrees of freedom)
which allows easy Bayes modification but is not ideal due to its deficiency
in total parameters. We proceed as follows. Select the parameters such
that the prior mean values of the pj's, i.e. the E(pj)'s, are satisfied
exactly. This uses up k-1 of the parameters, leaving only 1 other degree
of freedom. Obtain the final parameter by a least squares fit to the prior
variances of the pj's, i.e.to the Bj's. With these conditions in mind in
Appendix C the following expressions for the m's in terms of the E(pj)'s

and \ﬁj's are developed:

k
Define M_, = the value ofi§ 1™ obtained by least squares
k 2, . 2
2, [E(p)] [1-Elp)]
11 J )
Then M, = % I (3.9)

A%
1-
1? ij(pj)[ E(pj)]

1

FEstimating the prior means and variances is not a trivial task.‘ Also,
we do not mean to imply that this is the only method for assigning
values to the k parameters.
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Numerical Example - 4 category multidimensional Beta.

E(p,) = 0.1 ‘61 =0.004
E(p,) = 0.2 ‘62 =0.008
E(p,) = 0.3 ‘53:0.001
E(p,) = 0.4 ‘64=o.004

Using equation (3.9) we find M ., = 47 (to nearest integer)

Then from equation (3.10) m, = 5, m2é9, m,=14, m, 319

1 3 4

1 4 8 13 1
x (1 -X) "X, -x3)

8
0% fpl,pz,p3(xl' X0 %3) = 5(5,9,14,19) *1 X2 *3

3.4 Bayes Modification of the Distribution

As in section 3.1 censider a multinomial distribution of order k

with parameters Py pz, o .,pk. Suppose the pj's are a priori jointly

distributed according to the multidimensional Beta distribution.

).

f

Py» Py - .pk(xl,xz, - ,xk) = fB (xl,xz, c ,xk| m,m,, ..., m
Again, as in section 3.1, let E be the event that in n independent

draws from the multinomial n, fall in the ith category (i = 1,2,...,k)

k =

«

Z/ n, = n

i

i=1
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Then it is shown in Appendix D that the a posteriori distribution of the

p.'s is again a multidimensional Beta, only the parameters are modified;
)

more precisely

(xl'XZ' e ,xk) = fp(xl,xz, ce ,xk| m1+n1,m +

2
nz,...,x'nk-i’hk)

3.5 Development of the Multidimensional Beta Priors for a Specific

f
pl.pz,---pkl E

N - State Markov Process.

Consider state i of an N - state Markov process. If we are in state

i fi times, then the numbers of transitions from state i to state j,f

i
(j=1, 2,...,N), are multinomially distributed as follows:
! £ f f
i il i2 iN
prlfn o o Il =g p P2 LBy,

i1’ 7§27’ 1N

if pij = pr{state at titne n + 1 is j| state at time n is i}

and zf.. =!Iy
ij i

J

This multinomial behavior is the motivation for using an a priori
multidimensional Beta distribution over the transition probabilities

pil’ piZ' . ,pl.u Similar reasoning would lead us to use multidimen-

sional Beta distributions over the transition probabilities for each of the

other N -1 states. Hence we utilize N distributions of the form

f (X vX, 00X, )=f (X, ,%X._,..,%x, |m ,m _,..,m,
pil,piZ C Py 11" 72 iN B i1’ 742 iN il 2 iN

-40-
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To determine the parameters (mi,'s) we consider each row

separately and use our prior estimates of the individual E(pij)"s and
\};ij's as outlined in section 3. 3.

Now because of the simple Bayes modification of the multi-
dimensional Beta prior on the probabilities of a multinomial distribution
(shown in section 3.4) we know that the separate multidimensional Beta
priors of a Markov process will be simply modified as a result of a
series of observed transitions. More precisely, the resultant posterior
distributions will be new multidimensional Beta distributions having

parameters (mij-l-fij), if (mij) are the a priori parameters and (fij) are
the number of observed transitions from state i to state j.

3.6 Random Sampling from the Distribution

A simple method of randomly sampling from an analytic distribution
is useful for simulation purposes, hoth when we use the simulation to
empirically determine simple functions of the distribution (precisely what
is done in section 4.1.6) and alsc when the random variables concerned are
but a small part of a complex system being simulated. Hence two methods
of randomly sampling from the multidimensional Beta distribution will

be described.

Method 1 - Use of Margina.l and Conditional Distributions

Consider the multidimensional Beta distribution

(x

£ l,x
Py Pyro Py

2 ...,xk)=fp(x1,x2,...,xk| ml'mZ""'mk)

Then as shown in Appendix E the following is a method of sampling from

this distribution:
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k.
. i w
1) Draw Wlfrom the simple Beta fp( 1 | m,, i§ 2 mi)
k
ii) Draw w_ from the simple Beta fa(w |m , ¥ m))
2 B2 T2 eI
k-i) Wi from the simple Beta fﬂ(w k-1 | mk-l’mk)
Then x| = Wl
=] -W
X, WZ (1-w l)

Xy = wy{l-w,)(1-w))

X1 wk_l(l-wk_z) ..... (l-wz)(l-w l)
k-1
and xk-—-l- iElxi

Hence, we have reduced the problem of randomly drawing from a
k-dimensional Beta distribution to one of taking a single draw from
each of k -1 different simple Beta distributions. Methods for drawing

. 0 = ] . . 13
from a simple Beta distribution have been discussed in the literature

13. See, for example, Galliher, H. P., '"Simulation of Random Processes',
Notes on Operations Research 1959, The Technology Press, Cambridge,
1959, p. 238
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Method 2 - Use of Ratio of Gamma Distributions

. 14 iy q
Mosimann ~ has shown the following interesting result:

If t; (i=1,2,...,k) are independent random variables having Gamma
distributions with parameters m, respectively and all with the same scale
parameter q, i.e.

m, s
B i mi«-l -ay,
= = e—— <y L

then the random variables

t.
p. {i=1,...,k) (where p, = ——1————)
1 1 k
Xt
i=1 1
have a multidimensional Beta distribution with parameters my,...my, i.e.
PPy ,pk(xl’XZ’ . ..,xk)=f6(x1,x2,...,xk| ml,mz,...,mk).

Therefore to randomly draw from f‘ﬁ(xl' xZ’ . ,xk| ml: mz, cen mk)

we can take independent draws (yi) from the k simple Gamma distributions

and then

Methods for sampling from a simple Gamma distribution have been
developed (in fact, we require this in method 1 as sampling from a

simple Beta involves sampling from two Gamma distributions).

14. Op. Cit.
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Method 2 appears superior to method 1 as method 2 requires
k draws Zrom simple Gammas per set of k -dimensional Beta values
while method 1 requires 2k -2 draws for the same output. In any event,
as mentioned earlier, being able to randomly sample from the multi-
dimensional Beta distribution is important for two reasons. First, it
allows us to obtain by simulation values of functions of multidimensional
Beta distributions that are not attainable by analytic means. Secondly
it permits the use of multidimensional Beta variables in complex

simulations.
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CHAPTER 4

EFFECTS ON QUANTITIES OF INTEREST OF HAVING
MULTIDIMENSIONAL BETA DISTRIBUTIONS OVER THE

TRANSITION PROBABILITIES

Having placed the transition probabilities into a framework where
our uncertainty about them can be easily updated in the Bayesian sense
(i.e. after observing some transitions the density functions over the
transition probabilities can be simply modified according to Bayes'
rule) we now turn our attention to the effects of uncertainty in the
transition probabilities on various quanti.ies of interest in the Markov
model. For example, the steady state probabilities are no longer exact
numbers, rather they have now become random variables since they are
functions of the transition probabilities which are random variables. It
is important, both for statistical decision purposes and for interest in
the quantities per se, that we be able to describe their behavior when the

transition probabilities are not known exactly.

4.1 Steady State Probabilities

4.1.1 General Remarks

As mentioned above the steady state probabilities are functions of
the transition probabilities which are random variables, hence the steady
state probabilities now become random variables. It will be assumed that
the following mechanism operates. Single values for each of the transition
probabilities are drawn from their distributions. With these now exactly
fixed transition probabilities the system is run to the steady state pro-
ducing exact steady state probabilities. The whole process is repeated

many times generating various values of the steady state probabilities.



Ideally we would like to know the actual density functions of the steady
state probabilities produced in this way; however, this is far more
easily said than accomplished. Actually, as will be explained in
Chapter 5, merely the expected values of the steady state probabilities

will be adequate for most decision purposes.

For 2 - state processes exact closed-form expressions will be
obtained for the expected values of the steady state probabilities. The
analytic difficulties for more than 2 states are clearly illustrated by

the 3 - state situation.

Consider the transition matrix

l-a-b a b
PA= c l-c-d d
e f l-e-f

where pij = pr { state at time

n+l =_]1. state at time

il

n

Now solving 7 P =7 or referring to another study done by the author
(see Appendix F) tells us that the steady state probability of being in

state 1 is given by

ce + cf + de
1~ ad+ae+af+bc+bd+bf+ce+cf+de

Now suppose the transition probabilities are random variables. Then

cetci+de
ad+ae+aftbc+bd+bi+cetci+de

E(7r1)=E( ).
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Unfortunately, there does not appear to be any simple way bf evaluating

the right hand side for convenient distributions over the transition

probabilities. It is clear that the problem is even more formidable when

the number of states is greater than three.

4.1.2 A Special 2-State Case Where We are Able to Obtain The

Density Functions of the Steady State Probabilities

1-
Consider the transition matrix B = 2 2
b 1-b
where fa(x)=l 0=x=1
and fb(y)=1 0 =y=1l

"a"and "b'' are assumed independent and we know that «

. b .

1 a+b
1

Using the theory of derived distributions > we find that

This distribution has a mean
of 1/2 as we would expeci.

15. See, for example, Wadsworth, G.P. and Bryan, J.G.,

Introduction to Probability and Random Variables, McGraw-Hill,
1959, Section 6.12.

L.



The only reason that a closed form can be obtained for f7r ()
1
is that the extremely simple forms of fa(') and fb(-) allow us to per-

{form the integrations involved in deriving the new distribution. The
distributions assumed for 'a' and "b" are very special forms of the
Beta. For the more general form of the Beta the integrations cannot be
performed. Now, if we observe several transitions of the special pro-
cess considered, Bayes modification will result in more general Beta
forms for the distributions of 'a' and '"b'. Hence, at that stage we

would again not be able to obtain the density function of = Thus it is

1
seen that the special distributions (uniform) assumed for "a'" and "b"
in this section are of very limited practical value despite the fact that

they allow us to obtain the density function of 7. before any transitions

1
occur. We really want to be able to handle the more general situation

of independent Beta distributions over "a'" and 'b".

4,1.3. The 2-State Case Where One Transition

Probability is Known Exactly While the

Other is Beta Distributed

As mentioned earlier it will be demonstrated in Chapter 5 that
merely the expected values of the steady state probabilities are adequate
for most decision purposes. Therefore, as a start in the right direction
we shall find the expected values ¢f the steady state probabilitics for the

Markov process with the following special structure:

b 1 -b

where 'a' is assumed exactly known but "b" has the Beta distribution
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fb(x) £3 fp(xlm, n)

Physical Application:

There is a meaningful physical application of this model. Con-
sider customer behavior between 2 brands of a product. Let state 1
represent that the customer is buying our brand, state 2 that of our
competitor. Then, from extensive past data on our own customers it
is logical to assume that we know accurately the value of "a", the proba-
bility that a customer buying our brand at time n will switch to the
competitor's brand on the next purchase. However, due to lack of
records on the competitor's customers we only have a rough idea about

the value of "b'". Hence, it is reasonable to place a Beta prior distribu-

. ! 1"
tion over lb B

Determination of E(wz):

For a given (a,b) pair

2 a+b’
the steady state probability of being in state 2.

1

. a a
L E(m) = E(m) = g —E Ala)dx
0

1

a 1 m-1 n-1
Mt oL
0

This is not an'easy integral to evaluate in its current form.
However, as shown in detail in Appendix G, use of the hypergeometric
function, a:well known function arising in certain physics problems,

enables us to obtain the following expression for E(wz):
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2
-2 n L n{n+1) 1
E(WZ) T a4+l E i m+ n (a-l-l} v {m+n)(m+n+l) (a+1 ) L

WihN1) . [ (1 )kj (4.1)

77 (min)(mtntl) ... (m+n+k-2) latl
+ Ek
where
n(nt+l) (nt+k-1) 1 §
E < n ee. (n s (4.2)
k  (m+n)(m+n+l) ... (m+ntk-1) la+l

It is clear that Ek can be made arbitrarily small by choosing k
sufficiently large. Hence, we can come arbitrarily close to E(7TZ) by
selecting a large enough k.

Finally,

E(ﬂ'l) =1 - E(ﬂ'z).

Asymptotic Check on the E(7r2) Formula

In section G.2 of Appendix G an asymptotic check on equa-

tion (4.1) is performed.

Monotonic Behavior of E(7rZ) as a Function of m + n for Fixed E(b)

In section G.3 of Appendix G it is shown that for fixed E(b),
i.e., for a fixed mean of the prior Beta distribution on "v", E(7TZ) mono -
tonically decreases as m + n increases; i.e.,, as the variance of the

Beta distribution decreases ('b'' becomes more and more exactly known).

Numerical Example

Consider the physical application of customer behavior between 2
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brands of a product. Suppose that we know accurately that a customer
buying our brand this period will switch to the competitor's brand next
period with probability 0.5 (i.e., a = 0.5). Also from our limited
knowledge of the competitor's customers we are willing to place the fol-

lowing Beta distribution on 'b",

fb(x)=fp(x|9,l) i.&, m=z=9, mw=l.

To obtain E(7r2) to 5 significant figures, equation (4.2) tells
us to use k = 7 (a small number of terms for such a high degree of

accuracy). Then equation (4.1) gives

E(7r2) = 0.35882,

the expected value of the steady state probability that a particular custo-
mer will be buying from the competitor.

This is remarkably close to the 7, when 'b' is exactly known

2
at 0.9. In that case

0.5

(R e = O B DG Croon A

Also, for this example m = 9, n =1 are the smallest integers for
which E(b) = 0.9. Therefore, due to the above-stated monotonic behavior

of E(7r2) it is seen that for any combination of integers that make

m

m+n o ek

(e.g., 90 and 10) E(7r2) must lie in the narrow range

0.35714 = E(m,) = 0.35882

8]



i.e. E(7r2) is remarkably insensitive to the variance of the prior Beta

distribution on 'b".

Numerical Results

A program for the IBM 7090 digital computer was developed
which used equations (4.1) and (4. 2) to give E(7r2) accurate to 5 decimal

places for the following 9 x 9 x 14 or 1134 combinations:

0.1, 0.2, 0.3, ..., 0.9

s¥)
1]

o
"

0.1, 0.2, 0.3, ..., 0.9
m+n =10, 20, 30, 40, 50, 60, 80, 100, 150, 200,
300, 500, 1000, «.

Appendix H presents portions of the tabulated results (the entire tabu-
lation would have required a prohibitive amount of typing; also graphical
representation would have required 81 separate figures). Analysis of
these results shows that for a fixed -5, E(7r2) is extremely insensitive to
m+ n; i.e., to the variance of the Beta distribution. Hence, we can

approximate E(7r2) by (WZ)exact where

a
(WZ)exact T a+b

] . .
(i.e., we assume b' is exactly known at its mean value). The approxi-
. . non v Q .
mation improves as m+ n and/or 'a’ and/or b increase. but it is even

quite good for low m+ n, 'a' and b. The fact that E(a/(a+b)) deviates
most from a/(a+§) for low "a' and b is reasonable because under these
conditions the small mean value of the denominator makes it very sensi-

: q 5 . ' "
tive to variations 1n lb g
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Figure 4.1: Plot of E(-rrz) vs m+n for a = 0.5, b= 0,5 (2 states),
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1" n

A typical plot of E(7r2) vs. m + n for fixed "a" and b is
given in Figure 4.1. The alternate horizontal scale was developed as
follows:

:b - mn - b(1 -g)

(m+n)Z {(m+n+1) m+n+l

Therefore, for fixed ‘t_): giving m 4+ n also prescribes b. For example,
if b=0.5 and we say that m + n = 24, then we have prescribed the

v
variance b at the value (0.5)(0.5)/(25) = .01l.

4.1.4. The 2-State Case Where Both Transition

Probabilities are Independently Beta

Distributed

Again our desire is to determine the expected values of the
steady state probabilities. First, a complicated summation form
for E(WZ) will be presented. Theoretically it can be used to find E(7r2)
exactly for any integer values of the 4 Beta parameter.:. However, to
study the general behavior of E(7r2) it will be convenient to make use of

the results of the last section.

Exact Summation Expression for E(7r2)

Here

with

= 52=



f,(x) = fp(x[ml. n,)
and

fb(y) = fp(ylmz, nz)-

1 1
E(7rz) = g g %}’ fp(xlml,nl) fp(ylmz,nz) dydx
0 0

As shown in Appendix 1

m_-2 n,-1 m +n2-2-k

2 m,-1 n k-1
B(m, . n,) B(m,.n,) E(,) = D N IEY
k=0 ;=0 r=0

n

= ﬁ(m1+k+r+1,n1) +

m,-2 n,-1 ; m2-1> e n2-1kj)
- k /(-1) j b ﬁ(m1+m2+n2+r-1-j,n1)

Z m_+n, -2-k-j
2 2
k=0 j

m._-1 s 2
+ (-1) : Z Z_,J (-1) = B(m, +m,+r, )

= -1 ..
=) é J ) nz-l-_](_)
T

+r-3-1,n1)

) [3(m1+m2+n2

nz -1. - J
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mz-l § 1 nz-l nl -1 .

+ (-1) z E ¢ (-1) J{,(m1+m2+s+t)

s=0 t=0

n_-1 nl-l

m_-1 n_-1 n, -1 k
2 2 1 -1

D Z ( ] ] #_2 (4. 3)

az0 =0 (m1+m2+s+k)
where

m1+m2+s+t :
1 . }“ (-1)%° when m, +
m1+m2+s+t ) u sl %R
u=l 2
is even
X, (m +m +s+t) =
2 1
In2 +
m1+m2+s+t m1+m2+s+t
m1+m2+s+t when m1 + mZ + s
Z (-n" +t is odd.
u
u=l

NOTE:

-1
Z means that there are no terms.
i=0
Due to the complexity of this expression it cannot be used to

study the general behavior of E(7r2) as the m's and n's are allowed to

vary.
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General Behavior of E(wl) and E(wz)

Again consider

1 1 . =l
E(r,) = 1 X 1 1 )1
2’ - ﬁ(m,n)p(m,n)x+yx -x
3T 2=
0 O
m, -1 n_-1 1 i ;
cy P ® ddx—S‘ ;_xml' (l_x)nl'
0
1
m,-1 n,-1
1 x 2 2
S' Blm,,n,) x+y Y (1-y) dy |dx
2’ 2
L—’—V—\’/
L(x)
NOTATION:

Let r} as s ¢ signify that r monotonically increases as s
increases and r ¢ as s ! signify that r monotonically decreases as s

increases.

Then from section 4. 13 we know that for fixed b = mz/(m2+n2)

Lix) = E(r,|x) | as m2+nz.¢

This holds for any x between 0 and 1. From above

1

E(WZ) = g fa(x) L(x)dx
0

But
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fi{x)=0
a

E(7r2)¢ as m +n2f ’

2

and this is independent of m, and‘nl.' Therefore, for any Beta distribu-
— v
tionon 'a' and a fixed b’E(Tr?_) y as m, + n, f ; i.e., as b

decreases. In fact, we can now make the following series of statements:

For As Then

n on ’ 5 f : v J f
any Beta on a , and fixed b m, + n, ; i.e., b E(Trl) and
E(m,) ¥
1y, 1 : = T . v‘
any Beta on ", and fixed a m, + n, ; i.e., a E(Trl) J, and
E(m,)

Suppose that both a and b are fixed. Then

v ] v T
E(Tr1) 1 when b v and/or a
v v
E(Trl) ¢ when b f and/or a ¢
E(Trz) } when !bf and/or 4 \
and
E(Trz) \L when "'DJ and/or ;T

. 1n_n 1 n v ¥
Knowing 'a' and 'b exactly corresponds to a = b = 0. Let
the corresponding cxactly known steady state probabilities be (7r1)ex

and (Trz)ex. Then, due to the above results, the deviations from these
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values (for integer m's and n's) occur as follows:

* % %* %

o o0 - -l - ° 00 00
E(1rl|A . ,mz,nz) = E(wllml,nl,mz,nz) = (”l)ex = E(1r1 Iml'nl’ , %)
or
E(7r‘°°,°°m*,n*)5(1r) SE(1r|m n,,m n)SE(wlm* n*°° )

1 e 125 2] 1'ex 1 120 o2 2 1 ) s

and
E(7r4m*‘n*oo °°)SE(7r|m n,m.,n) =(r,) =E(7 |°° °°m* n*)
S 21T Y 2'ex 2 SRR 20 )

or
E(r.|m ni,©,©) <(r)) =E(r|m ,n,m,.n,)=Erl% 9%m a0
2'1r 2'ex 21 1 Sl 2’2 2 2 2

* b
where m, and n, are the smallest integers for which

is satisficd.

Observe that these inequalities do not tell us on which side
of (1r1)ex E(1rl) falls. However, they do reveal the very important
fact that the worst deviations occur in situations where one transition
probability is known exactly, situations that we have already closely
studied in section 4.1. 3 through the use of the hypergeometric function.
There we found that replacing E(7rl| ®, ®, m,, nZ) by (ﬂl)ex usually
resulted in a very small error. Now we know that replacing

E(1r1 Iml,nl, m,, nz) by (7r1)ex will produce the same or an even smaller
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error. Hence, we can accurately approximate E(1r1 Iml, . mz,nz)

by (7r1)ex. the latter being easy to calculate.

4.1.5. The Special 3-State Case Where Only

1 Transition Probability is Not Known

Exactly
l -a->» a b
P:- c l -¢c-4d d
e { l-e-f

Suppose "a' is the only probability not known exactly. Then
it is convenient to let t = a/(1-b) and to assume that

£,x) = £40x|m, n) ~ o g el o=k =0

b
f(m, n)
Then Appendix J reveals that the expected values of the steady
state probabilities can be expressed in terms of the hypergeometric
function F (defined in equations (G.2) and (G. 3) of Appendix G).

A
B+C

Lo
B+C

E(7r1) = F(l,nlm+n|

D m B
E(1,) = goe (m) F(l,nlm+n+1l§+—a)

B(-: c F(l'“lmml'ﬁ}%—c)

and

E(7r3) =1 - E(7r1) - E(7r2)
where
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_cetcf+de

1-b

B=d+ec+f{

bc + bd + bf + ce + cf + de
C =

1 -b
D=e+f
and

bi

G T -b

Appendix G also suggests a method for evaluating a hypergeometric
function for given arguments; hence, we can evaluate E(7rl), E(1rz)
and E(7r3) for given values of m, n, b, ¢, d, e and f{.

The Beta distribution on a/(l-b) allows simple Bayes modifi-~
cation of the prior. If r transitions occur from state 1 to state 2 and

5 from 1 to 1, then the posterior distribution on t is

ft(x) = fl (x|m+r,n+s).

p

It certainly appears that the approach used in this section could
be extended to give us the expected values of the 7's in larger Markov

processes where only one transition probability was not known exactly.

4.1.6. Simulation of the Steady State Behavior of

3-State Markov Processes Whose Transi-

tion Probabilities are Multidimensional

Beta Distributed

As discussed earlier, for
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where a, b, ¢, d, e and f are random variables there is no simple
analytic method of determining E(1r1), E(?rz) and E(7r3). Hence, it

was necessary to resort to simulation techniques.

Simulation Procedure

Consider the 3-state process having multidimensional Beta
distributed transition probabilities with parameters M = (mij)° Using
one of the two techniques outlined in section 3.6, a random draw of u
and v was made from fa,b(u,v) = f‘3(u,v|rn12,rn1 3 mll)’ of w and x
from fc,d(w’ x) = fp(w,xImZI,m23,m22), and of y and z from
fe, f(y, z) = fp(y, z|m31, m,,, m33). Then we know (from section 4.1.1)

that the corresponding steady state probabilities are

wy + wz + xy
1 ux +uy +uz+vwt vx+ vzt wy+ wz+xy

_uy 4+ uz 4+ vz
2  denominator

and

This procedure was repeated a large number of times (the usual
number was 700) using an IBM 7090 digital computer and the sample
mean values of T T, and LI approached E(-nl), E('rrz) and E ('rr:;),

respectively. The sample standard deviation was also calculated to
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obtain an idea of the spread of the distribution, hence the significance
of a given deviation of the sample mean from some fixed number. A
typical plot of a sample mean and sample standard deviation of the mean
as a function of the sample number is given in Figrure 4.2, The stabili-
zation of the sample mean in this figure indicates that the sample size

of 700 is reasonable.

Parameter Values Used and Results

For each set of parameter values the following quantities were
recorded:

i) The exact steady state probabilities (7r1) L etc., correspond-
ing to the transition probabilities being known exactly at their rmean

values.

ii) The sample mean values, 7., 7, T

1" 72" T3
iii) The sample standard deviations of the means, s—
il
and s-7-r' 0
2
iv) 95 per cent "confidence " regions for each of E(7r1)

and E(WZ). (See the discussion below.)

-1.96 s;l SE(wl) S7r:l +1.96 s;l

e.g., T

1

is the 95 per cent "confidence" region for E(7r1).
v) The total per cent deviations (T.P.D.) of the sample means

from the exact steady state values

T.P.D. =100 x[l(wl)ex S ?1| + |(7r2)ex -?2| + I(7r3)ex - ?3|]

(4. 4)

We have two measures of the difference between (7r,)e and
jlex

E(7rj):

o
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i) If the 95 per cent "confidence" region on ;j includes (”j)ex'
we are more inclined to say that E(1rj) is approximately equal to (1rj)ex
than if the region does not include (ﬂj)ex. The use of 'confidence"
intervals is not being advocated as this dissertation is Bayesian in
nature. Fortunately for a reasonably flat prior distribution on E(1rj) in
the neighborhood of (ﬂj)ex (this situation can be assumed here) the a
posteriori distribution on E(1rj) is very close to the density function
of 1rj given E(7rj); i.e., the a posteriori distribution of E(‘.'.'J.) is approxi-
mately normally distributed with mean 1rj and standard deviation s;..
Hence, the 95 per cent "confidence " region is the central section maJking
up 95 per cent of the area of the a posteriori density function of E(1rj).

If it includes (ﬂj)ex' we should be more inclined to say that E(1rj) [~
(ﬂj)ex than if it doesn't include (ﬂj)ex.

ii) The smaller T.P.D. is, the more likely that (ﬂj)ex is a
good approximation to E(ﬂj).

The following systematic method was used to decide on a reason-
able number of (mij) sets to test. The mij's were split into two cate-
gories, namely Low and High. So that two H's OT two L's would not
necessarily be the same, a random element was added as follows:

Each time an L was requested, a 1, 2, or 3 was selected,
each with probability 1/3.

Each time an H was requested, a 7, 8, 9, 10, 11 or 12 was
selected, each with probability 1/6.

To perform a reasonable number of tests which cover a wide
variety of patterns it was decided to have each diagonal entry either high
or low and each pair of off-diagonal elernents in the same row both
high or both low. This results in 20 essentially different patterns;

permutations of states give the same pattern, e.g.,
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Eighteen other miscellaneous experiments were performed as indicated
in the legend of Appendix K. They were undertaken to provide extra
points on the plot of T.P.D. (to be discussed shortly).

The detailed results are presented in Appendix K. From these
Figure 4.3 was developed. It shows T.P.D. plotted as a function of
two parameters, the average diagonal transition probability and the
sum of the parameters of the multidimensional Beta distribution. More
will be said on this plot later.

After a careful study of the results of Appendix K there is one
important point that can be made. The low tbtal per cent deviations
throughout as well as the large number of times that the 95 per cent
"confidence'' region on E(1rj) overlaps the corresponding (ﬂj)ex value
clearly show the marked insensitivity of the expected values of the
steady state probabilities to the variances of the multidimensional Beta
distributions. By an analytic argument this fact has been shown tc hold
for the 2-state situation in sections 4,13 and 4.1.4.

At first only experiments 1-26 were performed. Close study
of their results revealed two interesting points. First, for fixed values
of the means of the transition probabilities the deviations of the E(‘.‘rj)'s
from the (wj)ex's decrease as the sum of the mij's increases. This is
as expected h2cause the larger the sumcof the mij's, the closer we are
to exactly known transition probabilities. Secondly, the worst deviations
of the E(1rj)'s from the (1rj)ex's appear to occur when the diagonal mii's
dominate the other parameter values; i.e., when the means of the

diagonal transition probabilities are high. This is directly comparable

to the 2-state situation where the largest deviations occurred for small a
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and b (the off-diagonal elements). When the means of the diagonal
transition probabilities are high, all of ;, S, E, a-, e and f are small.
Now each steady state probability is made up of 2 numerator over a
denominator. KEach of these, in turn, is the sum of a series of cross-
products of a, b, ¢, d, e and f. Hence, if a, b, ¢, d, e and f are
small, the numerator and denominator will be small and hence, relatively
more sensitive to fluctuations in a, b, ¢, d, e and {f than when some or
all of those parameters are large. Hence, it is expected that E(7rj)

would deviate most from (Trj)ex when allof a, b, ¢, d, e and f were
small.

In an effort to graphically portray these two important points
the T.P.D. values of experiments 1-26 were plotted in Figure 4.3. It
became apparent that other experiments would have to be performed to
adequately cover the grid. Hence, experiments 27-38 were conducted.
Their results further substantiated the three points mentioned earlier:

i) The expected values of the steady state probabilities are
very insensitive to the variances of the multidimensional Beta distribu-
tions.

ii) For fixed values of the means of the transition probabilities
the deviations of the E(ﬂj)'s from the (Trj)ex's decrease as the sum of
the mij's increases.

iii) The deviations of the E(ﬂj)'s from the (Trj)ex's increase as

's more and more dominate the other parameter values;

the diagonal m,i
i

i.e., as the mean values of the diagonal transition probabilities become

large. It was hoped that a functional relationship between T.P.D.,

zm.j and the average value of the exact diagonal transition probability
i

(;,,) could be developed. However, although Figure 4. 3 illustrates the
ii

above points ii) and iii) qualitatively, it is clear that not even rough

iso-T.P.D. curves can be drawn on the figure. If such curves could

have been drawn, for a given Markov process with multidimensional
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Beta distributions over the transition probabilities, we could estimate
the T.P.D. value (i.e., the inaccuracy of using the (7rJ) - 's for the
E(7r) s) by the fact that we would know Z m, . and ; and would use the
curves to obtain the corresponding T.P.D, value.

In Chapter 5 we shall define the expected reward per time

period in the steady state as

N

E(R) = z rj E(WJ)
j=1

where N is the number of states and rj is the reward per period for

being in state j. If we define

N
(R) = Z rlnd

ex
j=1

ideally we would like to know the behavior of |E(R) - (R)exl as a function
of the mij's. However, this behavior would also be a function of the

rj's and therefore is quite difficult to study because of the large number
of parameters involved. Thus, we have compromised by studying the

behavior of

N
T.P.D. & Z IE(7rJ.) ()l
=1

In summary, it appears that in most 3-state situations where the
transition probabilities are multidimensional Beta distributed a good
approximation to the expected values of the steady state probabilities is
obtained by assuming that the transition probabilities are exactly known

at their mean values and using the corresponding exact steady state
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probabilities (quantities that are very casy to evaluate) as the approxi-
mation, This approximation becomes gquestionable when the diagonal
transition probabilities are large and the mij's are relatively low in
magnitude. However, as will be shown in the 4-state situaticn, mij's
low in magnitude are very unlikely in practice because any sort of prior
knowledge about the transition probabilities will give reasonably small

variances on the Betas which, in turn, will make the m_j's large.
i

4.1.7. Simulation of the Steady State Behavior

of 4-State Markov Processes Whose

Transition Probabilities are Multi-

dimensional Beta Distributed

Essentially the same simulation procedure as for 3 states was
used here. However, now we have 4 x 4 or 16 mij's instead of 9.
Also, the expressions for the steady state probabilities for exactly
known transition probabilities are far more complex. It turns out that
the denominator of earh steady state probability is the sum of 64 triple
cross products of the transition probabilities. More will be said on
this point in Appendix L.

Part of the L-H framework of the 3-state simulation was used
here but more of the mij's were generated randomly at higher values
as indicated in the legend of Appendix M.

An analysis of the results of Appendix M again reveals low
total per cent deviations throughout as well as a large number of times
that the 95 per cent "confidence" region on E(?rj) overlaps the corres-
ponding (Wj)ex' As in the 3-state case this indicates that the expected
values of the steady state probabilities are quite insensitive to the vari-
ances of the Beta distributions. This is most encouraging as it suggests
that the same situation exists for any size Markov process. Unfortunately,

simulation of processes with more than 4 states would take a prohibitively
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long time. Even for 4 states the computer time was becoming appreci-
ablé; e.g., experiments 52 to 56 required approximately 5 minutes on
the 7090.

We again observe that for fixed values of the means of the
transition probabilities E(7rj) approaches (ﬂj)ex as the sum of the
mij's increases. Therefore, the approximation of using (”j)ex for
E(?Tj) will improve as the sum of the miJ;'s increases. Fortunately,
as will now be demonstrated, in most physical situations the sum of the
mij's will be relatively large.

Consider the example presented in section 3.3 of a 4 category

multidimensional Beta.

E(p,) = 0.1 b =0.004 .. ¢ =0.063
1 1 12
E =0.2 P, =0.008 ¢ =0.089
(p,) P, P,
E(p,) = 0.3 p. =0.001 ¢ =0.032
3 3 p3
E(p,) = 0.4 b =0.004 . =0.063
4 4 P,
We found that ij = 47 with m, = 5, m, = 9, m, =14, m, = 19. These

m, values, which are reasonably large, correspond to quite large values
othhe standard deviations of the pj's. In most physical situations we
would know enough a priori information about the pj's to have smaller
standard deviations than these. For the above example, keeping the
c_'s in the same ratio we get the following results using equations (3.9)
.a.n.cli (3.10):
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- 0.90. 0..75¢ 0.5¢ 0z3le 0.01c

U‘p 0.063 0.057 0.047 0.032 0.006 0.0006
1l

o 0.089 0.080 0.067 0.045 0.009 G.0009
P2

o 0.032 0.029 0.024 0.016 0.003 0.0003
Py

(V3 0,063 0.057 0.047 0.032 0.006 0.0006
Py

ij 47 59 85 192 | 482 4829

The u-p values under the 0.750 and 0.5¢ columns are of reasonable
J

size for a physical problem and they are seen to give very high values

of ij. Some similar calculations were done for other E(pj) and u-p
J

values and the results were qualitatively the same — for reasonable

standard deviations of the pj's the Z mj value is quite large, hence

the approximation of using (”j)ex for E(1rj) is quite good. More will be

said on the approximations when they are used for statistical decision

purposes in Chapter 5.

4.2. First Passage Times

Let n,. be the number of transitions to get to state j for the
first time given that the process is in state i before the first transition.
If i =j, then n. is also called the recurrence time for state i.

We shall only be concerned with the mean first passage time
and not with the entire probability mass function. Still, the same dif-
ficulties as those met in evaluating the expected values of the steady
state probabilities are encountered for 3 or more states. This is quickly

16 .
shown by recalling = that the mean recurrence time and steady state

6
Howard, R. A., Dynamic Probabilistic Systems (in preparation).
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probabilify are related by 'E(nii) = 1/(7ri). Hence, we shall only study
the 2 state situation where both transition probabilities are independently
Beta distributed.

The mechanism assumed will again be as follows. We select a
value for each of the transition probabilities from its Beta distribution.
With these values we calculate the associated exactly known mean first
passage times (;ij). We repeat this process over and over obtaining
a whole series of values for the mean first passage times. We want to
obtain analytic expressions for the long run average values of these series
of mean first passage times; i.e., for E_(n;J—) 3 n=ij' the expected mean

recurrence times.

Consider
rl - a a
P-=
b l1-b
L _|
where
fa(x) £ fp(xlml. nl)
and

fb(y) . fﬂ(y |mz. nz).

Then, as shown in Appendix N, the expected mean recurrence times

are given by
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- 1
a -
ml(mz+n2-1) ( m2+n2)

B 2-Lib TR g = L 4
15+l 2 ot
mz+n2
- 1
m_(m, +n, -1) b(l-m +n>
E(m,,) =1+ ——1-1 =1+ L
22 (m2+r12)(m1 -1) - 1
m1+n1
1 - 1 (4.5)
E(;) m1+n1-1— m1+n1
12 ml-l - )
m1+n1
and
1 - 1
m2+n2-1 m2+n2
E(n ): =
21 m, -1
2 - 1
b-m +n
2 2

There are several comments that can now be made. First,
unlike the expected values of the steady state probabilities where we
required the use of the hypergeometric function, equation (4.5) reveals

that the E(-ﬁij)'s are very simple functions of the mij's. Secondly, to cal-

culate E(;i ), although it is a function of g we only require a. A

similar comment can be made about E(;zz) and 'b'\. Finally, the fol-
lowing can be said about the sensitivity of the E(nij)'s to the variances of
the Beta distributions. The terms 1 - 1/(m1+n1) and 1 - I/"(m2+n2)
rapidly approach 1; hence, the terms that determine the sensitivity

are a - 1/(m1+n1) and b - 1/(m2+n2). If a is not too small, a - 1/(m1

+n1) quickly approaches a. Therefore, if a is not too small, both E(;1 2)

e
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and E(KZZ) are insensitive to m, + nl"(i.e. , to the variance of the Beta

1

1
Similarly, if b is not too small, both E('r—le) and E(;ll) are insensitive

distribution on "a") provided m. + ny is somewhat larger than 1/(;).

to m, + n, (i.e., to the variance of the Beta distribution on "b"), pro-

vided m, + n, is somewhat larger than 1/(;). This behavior is illus-

trated in Figure 4.4, which presents plots of the E(;,.)'s as functions
ij I

of m, + n, and m, + n, for the numerical example where a = 0.1

and b = 0.5. b is not too small, hence E(;.-ZI) and E(nu) are seen to

W

be very insensitive to m, + n, as soon as m, + n, gets slightly away

from the value 2. On the other hand, the low a value causes E(;IZ)
and E(EZZ) to be fairly sensitive to m, + n for a large range of m, +
n,.

It has been demonstrated that for a 2-state Markov process
whose transition probabilities are independently Bcta distributed it is
a simple matter to obtain the expected values of the mean recurrence
times. As the latter quantities are occasionally of importance in

physical situations, this is a worthwhile discovery.

4.3. State Occupancy Times

4.3.1. The Probability Mass Function of

the Occupancy Time

Again, consider an N-state Markov process with transition
matrix P = (p..) where the p,j's are multidimensional Beta distributed
1) 1
with parameters m... Under these circumstances we have shown in
1)

section 3.2 that the marginal distribution on P.; is given by

fpli,(x) = fpélmii, Z mij
\ j#

Let u, be the number of the transition on which the system
1
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leaves state i for the first time given that it is in state i before the

first transition. Then it i3 well known that

k-1
P (k]x) = x (1 -x) k=1 (4. 6)
u, | p,.
iVl
Now we use the same mechanism as earlier. Select an x value
from the P distribution and determine the corresponding probability
mass function on a.. This is repeated a large number of times and we

would like to know the resulting marginal probability mass function on u,.

1
p = (b lwg) (s

i i 7ii ii

0

Section D.1 of Appendix O reveals that

p.. \[P.. 4w, . Hk-2)w. |
(1_; ) 11 11 1 ' 11 1 k22
i’ \I+w, [\ 142w, T+(k-1)w,
pu.(k) = . (4.7)
1 -
(1 'pu) k=1
where
s i 1) 1
Al = 4.8
pii N and wi N ( )
Z m._ . m
1) 1)
j=1 j:]
NOTE:

For P exactly known at ;ii the quantity w, = 0 and equation

{4.7) reduces to equation (4.6}, as it should.

=qq=



1t is interesting that the probability of exit on the very ncxt
transition (k=1) is independent of the sum of the mij's and only
depends on P, Furtherinore, it is now no longer obvious that E(ui) is
finite (as in the case when P, is exactly known).

Equation (4.7) was used to develop the curves of Figures 4.5

and 4. 6.

4.3.2 The Mean Occupancy Time

g When. P, is exactly known the mean occupancy time is given by
(1-pii). However, when P.. is Beta distributed as assumed here, the
probability mass function of the occupancy time is as developed in equa-
tion (4.7). Although we cannot obtain the exact value of E(ui), sec-
tion O.2 of Appendix O reveals that the mean value of the occupancy

time can be bounded as follows:

( zj/mij-l : (Zml_]) . .k(mii‘l'k-Z)! <%4mij-1 ( Z ml_])

j#l Bk

< E(u,) <
(mii‘l)! kz‘ <Zmij+k-1).' i ( Zmij-l )

b g j#

(4.9)

The upper bound is not very tight but it does serve the important pur-
pose of showing that the mean value of the occupancy time is finite. This
is not obvious from just looking at the probability mass function (equa-
tion (4.7)). The lower bound of equation (4.9) is obtained by merely

truncating the summation

o0

Z k P, (k)

k=1 S

at a finite number (r) of terms.
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Although a closed expression could not be found for the mean
occupancy time, recall that we were able to obtain the probability mass
function of the occupancy time when the transition probabilities are
multidimensional Beta distributed. This appears to be the one impor-
tant quantity that is analytically calculable in an N state Markov process

when the transition probabilities are multidimensional Beta distributed.

Numerical Example

Suppose

£ 0= 1(x|5,45)  fe., m =5, zmﬁ' - 50

11

Using equation (4.9), the upper bound is given by

(3

LT s |
( > ) T T az 2
m, -1
s 1)
j#i
The lower bound for r =1 is 0.90
r=2is 1.08
r=3is1.11
r=4is1.12

Therefore, 1.12 < E(ui) <50.1, a rather wide bound, but as stated
earlier, the upper bound does serve the useful purpose of assuring us
that E(u) is, indeed, finite. For p,; exactly known at 5/(50) = 0.1,

the mean occupancy time would be 1/{1-0,1) or 1.11.
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4.4. Transient Behavior

Again, let the mechanism be as follows. Values of the trans-
ition probabilities are drawn from their distributions and the multi-
step transition probabilities are evaluated conditional upon these exactly
known values of the transition probabilities. If this process is repeated
a large number of times, what can be said about the unconditional
multi-step transition probabilities ?

Define

¢ (nIP) = pr{state at time n is j|state at time 0 is i
and the matrix P, with exactly known
transition pro'abilities, is being used}

and

Eij(n) = pr{state at time n is j|state at time 0 is i}.

As an example consider the 2-state process with

._.
]

™
[~

b 1-b
where "a'" and "b' are distributed according to fa(x) and fb(y).

1
¢ 2(1) = S X fa(x) dx = a,
0

the mean of the distribution on 'a'’. Similarly,

¢, =1-2, 3, =b, and $22(1) =1-b
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However,

1 1
$12(2) = S‘ S‘ [(1-x)x + x(1-y)] fa(x) Ip(y)dxdy
0 0
1 1
= g S‘ [2x - x'2 - xy] fa(x) IB(y)dxdy
0O o0

=28 - af' - 5 # 85 - B oD

n

The second moment of the 'a' distribution has now become important.

More generally, B

1
$ij(n) = S‘ S‘ ¢ij(n|x, y) fa(x) fb(y)dxdy
0 0
i.e.,
- %
@,(n) = [¢ij(nla,b)] (4. 10)

j ko B
) has been replaced by al and b by b . This

where * denotes that a
result is useful for the 2-state case where ¢ij(nl(pij)) has been obtained
in closed form. For more than 2 states there is no closed form
expression for ¢ij(nl(pij)) in terms of power series in the transition
probabilities. (The 3-state situation is illustrated in Appendix F.)
However, for 3 or more states for a specific n we could find q')ij(n) as
a power series in the transition probabilities by obtaining the i-j elem-

ent of P" through actually raising P to the nth power (where the transi-

tion probabilities would be left in symbolic form.) Power series are
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k k
required to allow us to replace pij by pij . For the 2-state situation,

equation (4.10) was used to develop $ij(u) for Beta distributions

over 'a'" and "b". In the 2-state case we have
(b | a2 ]
atb a+b a+b atb
2(n]a,b) = (¢, (nla, b)) = +(1-a-b)"
b 2 b b
atb atb a+b a+b

This does not appear to be expressible in terms of al and bk. How-
ever, for any specific n this can be achieved by exranding the above

expression. For example, suppose n = 3, then

a 3 a
Higld |2kl Shorps R Sa ) Ca%)

a 3 2 3
T [1 -1+ 3(a+b) - Z{a+b) + (a+b)”]

a[3 - 3(a+b) + (a+b)2]

=] a3 + aZ(-3+2b) + a(3—3b+b2)

LR, = 2> # ac(=3#25) % 318-354b2).

Expressions of this nature were developed for n=1, 2, ..., 10 and

then, through the use of 2 computer program, CPlZ(n) fnr=. 1, 2, .. 5l

were evaluated for the following combinations

17
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Legend

(i, k) means m, +n, =j
Elz(“) and m, + n, = k
0.518
f(x) = fﬁ(xlml, n,)
| fb(Y) = fﬁ(ylmzv nZ)
{w,10)7
0.510 [
0.502 | ':z"! @) steady state for (%, «)
B (10, 10)
0.494 |-
B (10, ©)
pa —
0, 486 —
0,478 —
0.470 1 ] i L ! ] I 1 1 1
1 2 3 4 5 6 7 8 9 10

Figure 4.7: The Multi-Step Transition Probabilities for a
¢-State Process When "a'" and"b" are Indepen-
dently Beta Distributed, 2 =0.5, b =0.5
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a=0.1, 0.5, 0.9

o'l
"

0.1, 0.5, 0.9

m. + n, =10, 50, 200, 500, «

=10, 50, 200, 500,.%

)
+
o]

where

fa(x) = fp(xlml, nl)

and
fb(y) = fp(ylmz,nz .

Typical curves are presented in Figure 4.7 for the case a = 0.5, b = 0.5.
The entire results (which were too detailed to be included even in an
appendix) can be summarized by a few remarks, For the 2-state process
with 'a" and "b" exactly known we know that the steady state probabili-
ties will be approached in an oscillatory manner if and only if a4+ b > 1
(see Howardl 8). Empirically, at least, the behavior when both transi-

tion probabilities are independently Beta distributed can best be des--

cribed by the following flow chart:

(please see next page)
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Yes

\f

Oscillatary

except when
M+N, = o4
Mo+ Ny =80

Oscillatory

Monctonic

Y N
Y y
Monotonic 056“'01’0!’3 . ' —I
MogeatEnt 0sci llatory
( = N ; - r 3
fa\x) fﬁ(x|m1 nl) fb(y) fﬂ(" Imz nz)

Figure 4.8. Oscillation in the transient behavior of 2-state processes
when both transition probabilities are independently Beta
distributed.

4.5.

A Simple Trapping States Situation

4.5.1. 3-State Example

Consider the extremely simple Markov process whose transition

matrix and flow graph are as follows:

=R




where q, and q, are multidimensional Beta distributed, i.e.,

f (x,y)

f (x, m,,m_,m

1 ml-l mz—l m3-1
p(mln mz) m3) (I-X-Y) = y

0=x, 0=y, x+y =1,

Let gj be the probability that the process traps in state j. Then
Appendjx P reveals the following simple results:
m m
2 3
E(gz) = — and E(g3) S| e

T, ¥ w0y p g

Bayes Modification

Since the process traps in state 2 or 3 we must think of a large
number of units starting in state 1 for a Bayes approach to have any
meaning.

A priori distribution

fqp qz(x' T £l vl m,,m,, m, )
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Suppose we observe

n. transitions which return to state 1

1

n, transitions which go to state

n " ' LU -

3

Then the a posteriori distribution is

£ o (x,v) = fp(x,ylmz+n2, m

909

and the a posteriori expected values of the probabilities of trapping in

states 2 and 3 are

S mZ-i-n2
2 m2+m +r12+n3
and
e m3-i-n3
g3'"m +m_+n.+4+n

2 3 2 3

Note that 1-1 transitions have no effect on E(gz) and E(g,). However,
=)

they would change our feelings as to the number of transitions for a

trap to occur.

4.5.2. Generalization to N States

The generalization to N states is accomplished without

difficulty.
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N ¥
S/ T TR R IN-1
i=1
0 1 0 : 0
P = 0 0 1 0
| o 0 1|

The a priori density function is

@ 0 00000 (xl,...,xN_l) =fﬁ(xl,...,xN_1|mz,m3,. .mN,ml)
1 N-1
then
m,
E(g,) = — 2 j=2 3, .... N
N
>
1
i=2
Suppose we observe ni transitions from state 1 to i, i=2, ..., N.

Then the a posteriori expectation of trapping in j is given by

m.+ n,
J J

N
Z (mi+ni)
i=2

It is realized that the trapping state example dealt with here is
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practically trivial. However, it does give some insight into the prob-
lems eucountered when the transition probabilities are not known
exactly. Furthermore, for more complicated trapping situations we
immediately become involved in the same sort of éredicament as was
encountered in the study of the steady state probabilities when the

process contained more than 2 states.
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CHAPTER 5

STATISTICAL DECISIONS IN MARKOV PROCESSES
WHEN THE TRANSITION PROBABILITIES ARE
NOT KNOWN EXACTLY

Before starting this chapter it is suggested that the reader
scan section 5.6 to obtain an overall idea of the goals of the chapter

and how they tie in with those of the previous two chapters.

5.1. The Importance of the Expected Values of the Steady State

Probabilities

Consider an N-state Markov process with a given transition
matrix P. Let the corresponding steady state probabilities be repre-

sented by 7 = [:rl, T 3" 7rN]. Suppose that there is a reward

Zl
o0
one time period. Then, in the steady state the expected reward per time

vector r = [rl. r - rN], where r, = reward for being in state j for

period is
R = Z T, Xp
J )
j=1

Now, if the pij's are random variables, the 7rj's and, therefore,

also R become random variables. But

N

E(R) = z rj E(7rj) (5.1)
j=l

The quantity E(R) is central to many decision processes. Hence, it is

=92-=



essential that we be able to evaluate it for convenient distributions over
the pij's. However, equation (5.1) reveals that we must determine

the E(7rj)'s to obtain E(R). This was the motivation for such careful
study of the E(7rj)'s for multidimensional Beta distributions over the
transition probabilities in section 4.1. The reasoning behind using
multidimensional Beta distributions has been discussed at length in

section 3. 5.

5.2. A 2-State Problem

5.2.1. Description of the Problem

Consider a 2-state Markov process with transition matrix

l1-a a

I) =
b 1 -b
=l
where "a' is exactly known but
1 m-1 n-1

= Sl—— 1- =x =<

f, (x) fp(x|m, n) S * (1-x) 0=<x=1

Let

¢ be the fixed cost per time period for using the process.
rj be the reward per time period for being in state j (j=1, 2)
and

d be the cost of observing a transition from state 2 regardless
of the state to which it goes.

Suppose that we have the option of buying the right to observe k

transitions from state 2 (the outcomes of which would modify, in a
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Bayes sence, the probability distribution over 'b'"). For the problem
to have economic meaning, let us consider that one of the following two
conditions exists.

i) The process will only be run for s periods lfarting in the
‘steady state.

or

ii) The process will run indefinitely but there i{s a known dis-
count factor.
The second condition would be more likely to exist in the real’

world than the first.

5.2.2. The Situation Where the Observations

Do Not Affect the Decision Procadure

Intuitively, it certainly would not be worthwhile to pay for obser-
vations if they cannot affect the decision procedure. However, in the
research this fact was overlooked at first and some wather interesting,
non-trivial results were developed. They are, therefare; included
in this section and Appendix Q.

Let Er be the event that'in k transitions from atate 2 r of

them go to state 1. Then, according to Raiffa and Schlaiﬂ&:rl9

px'(-Er |m, n, k) = ppb(rim. n, k)

(5.2)
_ _(m#r-1)! (ntk-r-1)! k! (m+n-1)! {r=0,1,..,. k)
T r! (m-1)! (k-r)! (n-1)! (méntk-1).

This {s the Beta-binomial distribution. Also, we know.ffom section 3.4
that

1909. cit., p. 265,
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fb(xlEr) = { (x| m+r, ntk-r),

P
a new member of the same Beta family.

Assume that the process will be used for s periods in the
steady state. If the Beta parameters are m and n and the other transi-

tion probability is 'a , then the expected net revenue is given by

E(N.R.|m,n,a) = s[r

1 E(7r1 |m, n,a) + r, E(7r2|m, n,a) - c]

s[r1 -c+(r —rl) E(ﬂzlm,n,a)].

2

Fror the results of section 4.1, 3 and Appendix G

a g
E(N.R. [m,n, a) = sl:rl -c+ (rz—rl) Thl F(l,nlm+n a+l)J

(5.3)

Also define E(N.R. Im, n, a; k) to be the expected net revenue (prior to
the observations and excluding the cost of observation) if m and n are
the Beta parameters, 'a'' is the other transition probability and k

observations are to be taken. Then

E(N.R.|m,n, a; k) =Z pr(Erlm, n, k) E(N.R. |m#r, ntk-r, a)

T

k
E(N.R. |m,n,a; k) = 2
r=0

pﬁb(rlrn, 1n, k) E(N.R. |m+r, ntk-r, a) (5. 4)

In section Q.1 of Appendix Q it is shown by algebraic manipu-

lation involving equations (5.2), {5.3) and (5.4) that
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E(u.g.lr\.,n-}k,a)

E(N-fm,n,0;k) E (W-RImt ,0tk-1,0)

x - decision node
0 - chance node
< - indicafes decision

to take (as
proved in
% E (N&[Mm+tk,n,a) Appendix &) .

E(NR |m,n,a)

Figure 5.1. A 2-state decision problem where the observations
do not affect the decision.

E(N.R.|m,n, a;k) = E(N.R. |m, n, a),

the result that was intuitively anticipated at the beginning of this section,
An alternate proof is presented in section Q.2 of Appendix Q
through the use of a thecrem that is of interest for decision theory in

general.
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5.2.3. The Situaticn Where the Observations

Do Affect the Decision Procedure

Now let us look at the more realistic situation where we shall
decide to use the process only if E(N.R¢) is positive, otherwise we do
not use it and the net revenue is zero. (The extension to the situation
where E(N-R) must be greater than some fixed constant is trivial.)
Stated in another way, we shall act so as to maximize the expected
profit. Now experimentation may be worthwhile. The case where the
process can be used for s periods (in the steady state) will be con-
sidered. The rest of the required information is as outlined in sec-
tion 5.2.1.

The new decision problem is shown in Figure 5. 2.

use coiesSe E(N-R-|m,ntk,a)

E(N-R|™H, n+k-1,0)

E(N-R-[m+k,n,a)

X - decision node.

E (N-R:|m,n ,a)
i 0- chance node -

Figure 5.2, A 2-state decision problem where the observations
do affect the decision.
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It is clear that now
5

E(N.R.|m,n,a;k) = Z
r=0

and we select

"Buy observations'' if [E(N"Re
both 0 and E(N.R. |m, n, a),

m, n,a;k) - kd] is greater than

"Use process without observations' if E(N.R. |m, n, a) is
greater than both 0 and [E(N.R.|m,n,a; k) - kd],
"Stop" if both [E(N.R.|m,n,a;k) - kd] and E(N.R.|m,n, a)

are less than 0.

Numerical Example

Pierre and Louie are contemplating a 5 day fishing trip,
several months hence, in the wilds of northernQuebec, They, their
gear and canoe will be flown in andcout of the wilderness. However,
realizing that there is a considerable expense involved they have
decided to do some rapid calculations before making the trip. In fact,
they will only make the trip if their expected net revenue is positive.

Including the transportation costs the expenses per day would
be $40. They are willing to put a dollar value on the pleasures
derived from the fishing, etc. However, the value is a function of the
weather. On a reasonably sunny day the value is $60, on a cloudy or
rainy day, $20.

They are convinced that the day-to-day weather can be repre-

sented as a Markov process with transition matrix
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Because the fishing area is so far in the wilderness, data on its weather
conditions is extremely difficult to obtain. Pierre wrote to the Domi-
nion Weather Bureau asking for the number of occurrences on record

of the transition couplets (8s), (SR}, (RS), (RR). (SS stands for sunny
day followed by sunny day.) The government official sent back informa-
tion on only (SS) and (SR). Furthermore, he has sta‘ted that any addi-
tional weather information of this nature will be charged at a fixed

cost ($0.20) per transition coupiet.

From the (SS) and (SR) information together with their prior
knowledge, Pierie and Louie are saiisfied with saying that '2" is
exactly known at 0.9; i.e., a rainy day is very likely after a sunny
one. After talking with friends, reading geography books, etc., they
are willing to assume that "b" is Beta distributed with parameters m = 9,
n=1; i.e., again a mean of 0.9.

Pierre is not willing to spend any more money on weather
information. Louie wants to buy one piece of information, namely the
weather on a day after one specific rainy day (i.e., the outcome of a
transition from the R state). Which man's decision is preferable?

Using the symbols of section 5.2.1,
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ar =0,.49% m = 9, n=1

k

1 (number of possible transitions observable)

d = $0.20 (cost of each transition)

c = $40 (cost per period for utilizing process)

T, = $60 (reward per period for being in state 1 or S)

r, = $20 (reward per period for being in state 2 or R)

ppb(0|9.1,1) =0.1

using equation (5. 2)

2l |9, 1, )

pﬂb 0.9

Equation (5. 3) gives

E(N.R.|m,n,a) = s'[r1 -c+ (rz-rl) E(7r2| m, n, a)]

Using this expression together with the method of evaluating E(:'r2 |m,n, a)
by means of the hypergeometric function (outlined in section 4.1, 3) we

obtain

E(N.R. |9, 1,0.9) = -$0.2740, the expected net revenue if they
go fishing without any more infor-
mation.

E(N.R.|9,2,0.9) = -$5.2320

E(N.R.[10,1,0.9) = $0.2760

The equivalent structure to Figure 5.2 is presented in the following dia-
gram which gives the solution to the problem.

In words, they should buy the one observation with an expected net
revenue of $.0484. If the transition is from state 2 to state 2 (i.e.,

RR), they should not go fishing. However, if it is from state 2 to
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$0.2484 is the expected
net revenue after they
have bought the one piece
of information.

Go Fishing without 5,1140

further information

i/
p"‘g,’
y x,
P &
)

state 1 (i.e., RS), they should go fishing.

Indefinitely Long Use of the Process

Suppose that instead of being able to use the process for s
periods in the steady state we can use it indefinitely long starting x
periods from now in the steady state. (This is probably more meaning-
ful in most practical situations.) The discount factor, a, is assumed
known. Then, the analysis is identical to the above except we now use
expected discounted present values instead of the expected net revenues.
Utilizing a process with E(R|m,n,a) would give a present value of

rewards
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E(R|m, n, a)[px + ax+1

p-v.{(m,n,a) +...]

X
Qa

l -a

E(R|m,n,a).

5.3. The Corresponding N-State Problem

It was demonstrated in section 5.1 that the determination of the
expected values of the steady state probabilities is essential in obtaining
the expected reward per period in the steady state, a quantity very useful
for statistical decision purposes. For 2-state Markov processes we were
able to show analytically (in sections 4.1.3 and 4. 1. 4) that for Beta
distributed transition probabilities the expected values of the steady
state probabilities are very insensitive to the variances of the Beta
distributions (for fixed mean values). -For 3 or more states with multi-
dimensional Beta distributed transition probabilities we have arrived at
the same conclusion by means of empirical results obtained through the
use of simulation techniques (in sections 4.1.6 and 4.1.7). Consequently,
for given multidimensional Beta distributions,-we may quickly obtain a
good approximation to the E(?rj)'s in the following manner: Assume that
the transition probabilities are exactly known at the mean values of the
multidimensional Beta distributions, then use these exact values to
determine the corresponding steady state probabilities, (Wj)éx!s' by
standard techniques. Finally, use the (wj)ex's as an approximation to
the E(wj)'s.

If the particular statistical problem requires extremely
accurate values of the E(?rj)'s, it is always possible to obtain these by
simulation techniques {as outlined in sections 4.1.6 and 4.1.7) if
the (wj)ex's are not a close enough approximation. However, being able

to avoid simulation in a large scale problem would save considerable
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computation time.
It is worthwhile noting that, as
N

=
R(P) = Z TS nj(P)
3=1

is a ”pure” (as defined in Appendix Q) function of the pii's, the theorem
of section Q.2 of Appendix Q immediately tells us to not pay for obser-
vations if we cannot make the decision a function of the observed transi-

tions.

5.3.1. Description of the Problem

Consider an N-state Markov process whose transition proba-
bilities are multidimensional Beta distributed with parameters M =

(mij)' Let
c be the fixed cost per time period for using the process
rj be the reward per time period for being in state j (j=1,..., N)

and

d be the cost of observing each transition

Assume that the following three alternatives exist:

i} Stop entirely with zero net revenue.

ii) Do not observe the process anymore and decide to use it
for s periods in the steady state.

iii) Buy observations of the next k transitions, then either
stop or use the process (with no further experimentation) after the k

transitions.

5.3.2. Analysis

Let B be the event that the actual transition sequence is known
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and the transition frequency count is F = (fij) where fij = number of
transitions from state- i to state j. Fcu large k the number of such
events possible becomes very large. The probability of event B can be
determined by considering each row of F separately. Using the final

result of Appendix D,

3 ) e - Blm, #£, 4. myE )
pr{f..,...,f. and known order) =
il iN [3(mil SO miN)
i.e.,
pr(fll, 5 fiN and known order)
(3 mg) &
I Z m1J I r(mij+fij)
\ j=1 Iz (5.5)
0 N
I Z (m, 4f )| I I'(m. )
i e ij
j=1 g
Then,
N
pr(F and known order] = II pr(fil, 50800 2 fiN and known order)

(5.6)

Knowing the event B, we can quickly determine the posterior
density functions of the pij 's through the use of Bayes' rule. As out-
lined in section 3.4, the pij's will still be multidimensional Reta
distributed excent that the parameters will now be M4 F = (mi'+fij)'

Thus we can easily calculate the expected reward for using the process

after the event B has been observed.
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The expected net revenue without experimentation (i.e.,

observations) is

Stop 0

E(N.R. |(mij)) = (5.7)

max
S, U

Use S[E(R|(mij)) - c]

where, as earlier,
N
E(R|(mij)) = Z Bl Eﬂvrt|(mij))
t=1

is the expected reward per time period in the steady state given that the
transition probabilities are multidimensional Beta distributed with
parameters, M = (mij)' (The actnal calculation of E(R“mij)) is des-
cribed in the numerical example presented in the next section.)

The expected reward with experimentation is

E(N.R. l(mij);k) = Z pr{(B) ma.x[O,s[E(RI(mij),B) -c]]-kd (5.8)
all B

If

E(N.R. I(mij);k) > E(N.R. I(mij)),

we elect to observe the transitions, if not, we do not buy the observa-
tions.

To illustrate the difficulty in obtaining all possible B's and in
calculating their probabilities, the following 3-state example is pre-

sented.
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5.3.3. Numerical Example

A shady carnival man, Gary, always looking for an "honest”
dollar, has asked his friend Mark if he would be interested in the fol-
lowing game: Gary has three dice —1 red, 1 white and 1 blue. Each
has two sides marked 1, two sides marked 2 and two sides marked 3.
Auylime a 1 is rolled the red die is used for the next toss. Similarly,
2 and 3 force the use of the white or blue die, respectively.

Gary has made thc game appear attractive by means of the fol-
lowing cost framework. He will charge Mark $5.00 per roll, but will
pay him $4.00 for each 1 rolled, $5.00 for each 2 and $6.00 for
each 3. A naive bystander quickly figures that(4.00 4+ 5.00 4 6.00)/(3) =
5.00 and hence the game is fair;in the_ long run.

Gary realizes that the unknown bias of each die is quite impor-
tant for later conquests and he doesn't want Mark to learn too much
from playing. Furthermore, he will not give Mark the opportunity of
starting with a particular die. Therefore, he will only let Mark play
for 5 rolls and the first roll will only be after Gary himself has been
rolling the dice (according to the prescribed mechanism) for quite some
time (there is a third party present who will keep things honest).

To make things even more confusing, Gary has offered Mark
the option of observing two rolls beginning with the red die at a cost
of "d" per toss. Should Mark listen to the bystander and play the
game ? Should he take advantage of the option?

Unknown to Gary, Mark has seen a few rolls of the dice. Also,
he is allowed to carefully scrutinize them. From these two sources of
information he feels that he cannot state exact values for the transition
probabilities, but he is willing to assume that they are multidimensional

Beta distributed with the following parameters:
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Using the notation cf section 5.3.1,
c=%5.00 r=[%4.00 $5.00 $6.00].

Without using the option Mark's expected net revenue (using

equation (5. 7}) is

E(N.R. I(mij)) = ‘;‘a; (5.9)

U s[E(RI(miJ.)) - c]
Now

s[E(R[(m, ) - c] = s{r) E(m [(m ) + r, E(m|(m, )

(5.10)
= E(7r3|(mij)) - c]

At this stage we use the approximation (discussed earlier) that

E(m, [(m, ) =(m)_

the exact steady state probability calculated from the transition matrix
M' whose elements are the means of the multidimensional Beta distri-

butions. That is,
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Here

Ml

0.250 0.500
=10.200 0.200
0.167 0.333

0.250

0.600

0.500

Using the steady state results of Appendix F

(Trl)ex

Therefore, from equation (5.10)

=0.194, (7,) =0.322, (7,) =0.484

s[E(Rl(mij) - c] “~ 5[4(0.194) + 5(0. 322) + 6(0.484) -.5. 3]

= 5[- .010) = - $.050 <0,

Hence, from equation (5.9)

E(N.

R. I(mij)) %0

and Mark should stop rather than playing the game without the option;

i.e., Gary has duped the naive bystander (provided the latter agrees
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with Mark's prior parameters).
Suppose the option of observing two rolls starting with the red

die is accepted. Then all the following events are possible:

Bl 111 f“ =12 ; fij=o for all other i, j combinations.
BA 112 fu:l, f12=1,
B3 113 fll =1, f13=1,
B4 121 le:I' f21 =1,
B5 122 flzzl, f22=1,
B6 123 flzzl, f23=1,
B,, 131 f13=1, f31=1,
Bg 132 f13=1, f32=1,
B9 133 f13=1, f33=1,

Using equations {5.5) and (5. 6)

_ L(20) I(7) T{10) I45) _ _6x5 _
Bl I'(22) I'(5) L(10) T)5) ~ 21 x 20 ~ Gl

e I'(20).F (6) TA(M) T46] * 5% 10
Priva! = Tyazy Tis) L (10) bmy,. 20%80

=9

rB.) - D201 T(5) D) T45)  I(s) (1) T(2) I43)
PriBs! = T(21) T45) I'(10) 45) © T (6) Li1) T'(1) B43)

l»—-
o

1
=5 x5-.100

o

similarly,
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pr(B3) = .060
pr(B4) =.100
pr(Bé) = . 300
pr(B7) = .042
pr(Bs) = .083
pr(Bg) =1. 1125

After each experimental outcome we have a new matrix of

parameters given by M + F; e.g., after B,,
i

5 10 5 2 0 0 7 10 5
M1 =11 1 31+1]0 0] =11 3
2 4 6 0 0 0 2 4 6

Using Ml' we proceed exactly as we did with M to obtain

s[E(Rl(mij).Bl) -},

Mark's expected return for playing the game after he has observed two
R-R transitions. This is repeated for each experimental outcome. The
results of the calculations are shown in Figure 5. 3.

From that figure it is seen that it pays for Mark to use the

option of observing two rolls starting with the red die if

.0325 -2d>0

d< $.01625

If d> $.01625, he should refuse both the option and the game.

If he does buy the option, the diagram also illustrates that he should
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play Gary's game only if B6(RWB) or B9(RBB) occurs. These two
outcomes modify the a priori parameters sufficiently in a favorable

direction to make the game worthwhile.

5.4. Further Items of Interest for Statistical Decision Purposes

In this section several other items that are of interest in sta-
tistical decision theory are presented as they relate to the Markov proc-
ess problems considered. For a more detailed background, the reader

20
is referred to Raiffa and Schlaifer's work.

5.4.1. The Value of Perfect Information

Suppose we are faced with a decision problem where there is
a random variable, x, involved with density function fx(xo). Assume
thet we are able to calculate the expected net revenue oi the optimum
decision procedure, E(N.R. lfx(xb) knowing only the density function
of x. Now, suppose that we wer;a told the value of x, say x . Then
there would be an associated expected net revenue of the optimum
decision procedure knowing that x = x . Call this quantity E(N.R. |xo).

Then, the a priori expected net revenue before we were told the value

of x would be given by

E(N.R.|P.1.) = S E(N.R. |xo) £ (x ) dx_ (5.11)
X
o]

and the expected value of perfect information is defined to be

E.V.P.1. = E(N.R. |P.1.) - E(N.R. Ifx(xo)) (5.12)

2
0Op. cit., Chapters 4 and 5.
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If confronted with a proposition where we would be told the exact value
of x for z dollars, we would accept if and only if E.V.P.1. = z.

This concept is simplest to illustrate for the 2-state decision
problem considered in section 5.2.1. We have a 2-sta£e Markov proc-

ess with transition matrix

where 'a' is known exactly, but fb(bo) = fﬁ(bolm' n). As before,
let ¢ be the fixed cost per period for using the process, rj be the
reward per time period for being in state j (j<1, 2}, and d be the
cost of observing a transition from state 2.

If it is desirable, we can use the process for s periods in the
steady state. Also, we have the option of buying the right to observe k
transitions from state 2.

In section 5.2.3 it was shown that the expected net revenue

following an optimum procedure is
E(N.R. |fb(bo)) = max[0; E(N.R. |m, n,a); E(N.R. |m,n, a; k)]
(5.13)
To evaluate E(N.R.|P.I.}), Appendix R shows that we proceed as fol-

lows:

Case 1. r1<c<r

(rz-c)a/'(c-rl)

E(N.R.|P.1.) =§ s[rl-c+(r2-r1)-a—?a?].
0 . °7 (5.14)

fp(bo |m, n) db_
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This would require numerical integration or an extremely involved

analytic integration. Finally, equations (5.13) and (5.14) would be

used to evaluate

E.V.P.I. = E(N.R.|P.1.) - E(N.R. |£b(b0))

Case ii r2<c<r

1
E(N.R.|P.1.) = 5
(c-r,)a/(r,-c)

. fp(bo |m, n) db_

Then proceed as above.

Case 11i. ¢ < both r and r2 or

+ )—i—:l
S |E PSR RS R atb,

>
¢ > both r1 and rz

> < I
If ¢ both ™ and rz,

we would always use the process,

(5.15)

(5.16)

hence, the E. V. P, 1. =0. If c >bothr, and r., we would never use

1 2

the process, hence the E. V., P. I. = 0.

Numerical Example

Consider, again, the Pierre-Louie fishing problem of sec-

tion 5.2.3. Therefore,

a=0.9, m=9, n=1, k=1, d=0.2, s=5

c = $40, r, = $60, r_ = $20.

What is the expected value (to the fishermen) of perfect

2
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information about the conditional probability, 'b'', that day n + 1 will
be sunny given that day n is sunny ?
It was found that E(N.R. |£b(bo)) = $.0484. The c and r's are

seen to correspond to Casc ii above. Therefore, from equation (5.16)

1
_ill 0.9 1
E(N.R.|P.1.) -S 5 @20 - $40 093580 b, db_
20(0.9)/(20) °
(.1 e I.Bbi
o § g T,
0.9 o ..

To integrate the second term we use the substitution, y=0.94+ bo'

then expand the resulting (y-0. 9)8 term in the numerator. We obtain
E(N.R.|P.L) = $2.7648

Hence, from equation (5.15)
E.V.P.I. =2.7648 - .0484 = $2. 7164

This is the maximum amount that Pierre and Louie would be willing

to pay in return for learning the exact value of '"b'. (The transition
probability out of the rainy state.) Note that the E(N.R. Ifb(bo)) value
of $.0484 is conditional upon the fact that in section 5. 2. 3 they were
allowed to pay for observation of one transition from state R. Hence,
the above E.V.P.I. value is also conditional upon that fact. If the
option of observing was not available, E(N.R.]| fb(bo)) would be zero as

shown in section 5.2.3 and in this case
E.V.P.I. = $2.7648 - 0 = $2. 7648

These ideas can be extended to situations where we want to
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know the value of perfect information concerning 2 or more random

variables. Presumably we would already know

E(N.R. Ifx I 'xk(yllyz, seey Yk)):

s L
the expected net revenue following an optimum policy when only the
density function (and not the exact values) of the random variables

x, is known. Then, equations (5.11) and (5.12) become

X X

I” ey il Tk
E(N.R.|P.I.)=S S‘ E(N.R.|y1,y2,...,yk)
" Yk
. fx1'...’x (yl,...,yk) dyl dyk
and
E.V.P.I. = E(N.R. |P.1.) -E(N.R.|fx1'“”xk(yl,yz,...,yk))

However, in practice the above integration would usually be very dif-

ficult to perform.

5.4.2. The Choice of the Number of Observations

to Take

Suppose that we are given a choice as to the number (k) of
observations that we can buy. However, the stipulation is added that
we must decide on the exact number before any observations are made.
Physical constraints or an opponent could place us in this position. This,
in effect, prevents the problem from becoming sequential in nature. (A
sequential decision structure will be treated in the next section.)

In principal, at least, the optimum number can be determined
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in the following way. For any particular k we know, from earlier in

this study, how to determine the expected net revenue {including the

cost of observation) assuming that the observations will be made.

Although it has not been proved, it seems reasonable to assume that

tiie expected net revenue would be a unimodal function of the number

of observations for the decision framework and costs considered.

Hence, we determine the expected revenue for a number of values of k

until the peak is detected. The corresponding k should be the optimum.

Numerical Example

For the same fishing example as that considered in sections

5.2.3 and 5.4.1, the expected net revenue as a function of the number

of observations (transitions from the rainy state) is as follows:

3

0

© 0 0 N O W NN

—

Decision

Stop
Buy observation
Buy observations
Buy observations
Buy observations
Buy observations
Stop
Stop
Stop
Stop
Stop

E(N.R. lk)

0
$.0484
$.1956
$.2280 -
$.1858
$.0916
0

0
0
0
0

The beliavior of the expected net revenues is depicted in Figure 5.4. In

this example it is apparent that the expected net revenue is a unimodal

function of the number of observations. The optimum number of
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22 L,

- Beyond this point it is better
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must be taken
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optimum at k = 3
0.2 x~ T ~, Expected net revenue including
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-0.2 N - .
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o= O e _process_without observations

L 1 1 | ) ] 1 1 1 " T
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k, the number of observations

Figure 5.4. Numerical example of the choice of the
optimum number of observations.
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observations of transitions from rainy days is three.

5.4.3. A Sequential Decision Structure

Now we make the decision structure more flexible by dropping
the assumption that all k observations must be made; i.e., we can now
stop observing after any number of observations up to k. However,

k is still assumed known and fixed (perhaps due to a deadline on the

time of our decision to use or not to use the process). The solution of
the new sequential decision problem is accomplished simply by the solu-
tion of a number of old single observation problems. Although the
method will work for the IN-state case, it is easiest to present using

the 2-state problem where 'a' is known exactly and 'b' is Beta distrib-
uted. In fact, the problem considered will be identical to that of section
5.2.3 except, as stipulated above, we can now stop observing after any
number of observations up to k.

Define vj(m, n) = expected net return if there are j possible
observations left, the parameters of the Beta distribution are m and n,

and an optimum policy is followed. Then

m n
S ,n+l) -
(Qbserve e vj_l(m+1,n) + =T nvj—l(m n+l) -d
j=1
max <
= .R. , n, J)
vj(m,n) 0, U,5 Use E(N.R |m n,a) (5.17)
Stop 0

and
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U E(N.R- |m: n, a)

max

U, 5 (5.18)

vo(m_.n) =

The determination of vo(m, n) is seen to be identical to finding whether
or not to use the process when no observation is possible. This was
done in section 5.2.3. Then equation (5.17) is used recursively to
solve the rest of the problem. For a particular (j, m,n) triplet, the
solution of equation (5.17) is identical to solving a single observation
problem except that E{N.R. |m+1,n,a) and E(N.R. |m, nt1,a) are
replaced by vj_l(m+l,n) and vj_l(m, nt+l), respectively.

It should be noted that because of the sequential nature of the
decision making we now update the Beta distribution on 'b' after each
observation. In an N-state problem we would have to update the

appropriate multidimensional Beta distribution after each observation.

Numerical Example

We again consider the same fishing example as in sections 5. 2. 3,
5.4.1 and 5.4.2. However, now we assume that Pierre and Louie
can stop buying information about days following rainy days after 1
or 2 observations. The corresponding decision tree is shown in
Figure 5. 5. As would be anticipated, the expected net revenue of
$.2152 is higher than the value of $.1956 found in section 5. 4. 2,

where they were forced to buy both observations at once.

5.5. Statistical Decisions for a Transient Situation

In section 3.4 we outlined how to determine the multi-step
transition probabilities when the p,j's are random variables instead of
1

being exactly known. It was shown that the method was most practical
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for 2-state processes. Hence, we shall restrict our attention here to
2-state situations.

The decision framework is the following. We have a 2-state
process with both transition probabilities independently Beta distributed.
The costs and rewards are all exactly known. The crucial question is:
"What is the e'xpected net revenue in the next h time periods given that
we shall have a transition from state i just before the first period?"
Let us denote this quantity by E{N.R. |h, i, (mij)) where (mij) are the

parameters of the Beta distributions. Then

h B 2

E(N.R. |h, i, (mij)) = Z z ¢ij(n|(mij)) rj - hc (5.19)
n=1 j=l

where $ij(n|(mij)) = probability that the process will be in state j at
time n|the state at time 0 is i and the parameters of the Beta distri-

butions are (mij); and, as earlier

r. = reward per period for being in state j
and

c = cost per period for using the process.

Now there is no need to elaborate in detail on the statistical
decision problems for a transient situation because the methods are
essentially identical to those for the cases studied earlier where the
process was to be used in the steady state. We merely replace
the E(N.R. I(mij)) of the steady state problem by E(N.R. |h,i, (mij)).
There are other obvious minor modifications such as reducing h
to h - 1 if we delay using the process for 1 period. Hence, we can
handle all the following situations for a 2-state transient problem where

the transition probabilities are independently Beta distributed:
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i) Determination of the expected net revenue in the next h
periods given that we are presently in state i.

ii) Study of whether or not to delay and pay for observations
before deciding to use or not use the process (including the possibility
of sequential decisions).

iii) Evaluation of the optimum number of observations to make
before deciding whether or not to use the process.

iv) Determination of the expected value of perfect informa-
tion about one or both of the transition probabilities.

Although the transient statistical decision problem has been
so lightly covered due to the fact that its solution is very similar to
that of the steady state problem, its practical importance should not
be underestimated. In fact, the transient situation is probably more
likely to occur in the real world than the steady state problems con-
sidered. An even more realistic extension would be the situation where
the process could be used indefinitely long with discounting starting at
the very next transition. Also, we have not considered the situation
where once we have decided to use a process we can change our
strategy (i.e., make further decisions) as we observe the process in
operation during the time in which we are using it. This problem is of

an adaptive control nature.

5.6. Summary

The statistical decisiorn framework developed for a Markov
process whose transition probabilities are not assumed exactly known
can best be summarized with the aid of the block diagram of Figure 5. 6.

In box 1 we place multidimensional Beta distributions over the
transition probabilities of the Markov process considered. The pro-
cedure for doing this was discussed in section 3.5,

Next, if the process will be used in the steady state, the
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e
>

Figure 5.6. The statistical decision framework for a
Markov process whose transition proba-
bilities are not assumed exactly known.
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expected values of the steady state probabilities are determined as out-
lined in section 4.1. For the special 2-state process where one transi-
tion probability is exactly known and the other is Beta distributed this
can be done analytically (section 4.1.3), For more than 2- states we
require either simulation or the approximation technique of using (7rj)e
for E(1rJ,), discussed in sections 4.1.6 and 4.1.7. If the transient
behavior is important, we obtain the multi-step transition probabilities,
$i.(n), by the methods of section 4. 4.

’ Box 3 is concerned with the use of the E(7rj)'s or Eij(n)'s to
answer various statistical decision questions (as discussed at length
in the present chapter). Usually we would first evaluate the expected
net revenues under various policies, then select the policy that maxi-
mizes the expected net revenue. Several other items can be obtained
including the optimum number of observations to take and the expected
value of perfect information about one or more of the unknown transition
probabilities.

Having decided on the policy to use, we either terminate the
decision process or allow the Markov process to run for one or more
transitions as noted in box 4. When transitions are observed, modifica-
tion of the prior distributions through the use of Bayes' rule is extremely
simple because of their form (multidimensional Betas). As illustrated
in section 3.4, the posterior distributions are again multidimensional
Betas, only the parameters have been modified.

Now, because the transition probabilities are still multidimen-
sion:lil Beta distributed, we are justified in drawing the feedback (6) to
box 2. The cycle is complete. We are again ready to calculate either

the E(7.)'s or the $i,(n)'s by the exact same method, then move on to

box 3 for new statistical decisions, etc.
Hence, utilization of multidimensional Beta prior distributions
over tihe transition probabilities has enabled us to place Markov proc-

esses into a most convenient statistical decision framework.
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It should be mentioned that besides their uses in the decision
problems considered in this chapter, the expected rewards in various
periods also allow direct comparison of the future values of several

possible Markov processes if such a comparison is of interest.
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CHAPTER 6

A BRIEF LOOK AT CONTINUOUS TIME PROCESSES

A continuous time Markov process is defined as follows. Given
that the process is now in state i, in the next time interval dt it will
make a transition to state j with probability aij dt(i#j). (This implies
that the state occupancy times are exponentially distributed.) For
small enough dt the probability of two or more transitions is assumed
to be zero. The quantity a.ij(i#j) is called the transition rate from:
state i to state j . The process can be completely described by a

matrix A = ('iij) where we define

j#1

The primary objective of this chapter is to show that essentially
the same approach as was used to incorporate uncertainty as to the
values of the transition probatilities in a discrete-time process can
also be utilized to take into account uncertainty as to the values of the
transition rates in a continuous time process. Consequently, the treat-
ment will be rather brief; in fact, we shall only look at the determina-
tion of the expected values of the steady state probabilities in a 2-state
process and then make some general remarks about other aspects of the

continuous time problem.

6.1. The Use of Gamma Prior Distributions on the Transition Rates

of a 2-State Process

6.1.1. Justification for the Use of the Gamma Priors

Consider one of the states. As was mentioned earlier, the
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cccupancy times within that state are exponentially distributed. More
precisely, let ti be the occupancy time of the state considered. Then,
-a t

f I “(to|ao)=aoe et 0 =it

t.ja o)
1 1)

where aLij is the transition rate from the state considered to the other

state. But this is the speclal case of the Gamma distribution

a a-l
a'oto 0 ©
f t la)=£f(t |o,a )= co—— € 0=t 6.1
o plto |2g) = £t lara) = s (6.1)

when a =1. Now, as shown in section S.1 of Appendix S, it is con-
venient for Bayes calculations to place a Gamma prior on ag when the
distribution of t is as in equation (6.1) and a is known exactly. Hence,
it is advisable to use the Gamma prior on a,, inthe 2-state problem;

~J
i.e., we choose

f (x)=f(x|v.w)
a, v 1" 71

and (6.2)

fa21(Y) = fY(ylvz, wz)

6.1.2. Bayes Modification of the Gamma Prior

Let E1 be the event that in k1 occupancies of state 1 the total
occupancy time is T1 . Then, using the results of section S.3 of

Appendix S we know that
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falz(x|El) = fy(x|vl+k1, w1+Tl)J

a new Gammea distribution. Similarly, if E& represents the event that

in k, occupancies of state 2 the total occupancy time is T

2 , then

2

faZI(Y|EZ) = fy(y|v2+k2. w,+T,)

6.1.3. Selection of the A Priori Parameters

For

and

falz(ao) = £ (a, vy s w))

it is shown in section S.2 of Appendix S that the marginal distribution

of t1 is
vV, W g
171
= 0=
ftl(to) v, +1 to
(t°+w1)
and
w
By =
1
and
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% =2 3

l'—'— v

— (vl-l)'2 (vl-?-)

v

Using these last two equations we can select v and w, soas
to satisfy our prior estimates of E(tl) and vtl. Similar reasoning would
hold for the evaluation of the two parameters of the prior Gamma distri-

bution on the other transition rate, az1 .

6.2. Determination of the Expected Values of the Steady State Proba-

bilities of a 2-State Process When the Two Transition Rates are

Independently Gamma Distributed

Consider the 2-state process with transition rate matrix

12 12
A =
La21 b3
where
f (r) =f (rlv w. )
a12 0% 171
and (6.3)

fau(s) = fy(s|v2,w2)

For a, and a1 exactly known it can easily be shown that the

steady state probabilities are given by
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g 1

1 a.12+a.21
and (6.4)
R )
2 a.12+.=.121

However, as a12 and a21 are random variables, 7rl and 7r2 are now

random variables. Again, the following mechanism will be used. We

randomly select an (a ) pair from their distributions and deter-

127 %51
mine the associated exactly known steady state probabilities. If this

is repeated a large number of times, we would like to know the expected

values of &) and Ty Interestingly enough we can evaluate the entire

density functions as well as the expected values,

> are as defined in equation (6. 4) and a.12 and a21

are distributed as in equation (6. 3), then using the theory of derived

If T and 7

distributions the density functions of 7. and 7_ are

1 2
v, Vv v, -1 v, -1
WllWZZ 2 2 (1-%) 1
f = o 0=x=1
ﬂl(x) B(vl,vz) vl-l-vz
[w1 + (wz-wl )x]
and (6.5)
v, v
WllWZ vl-l vz-l
f (z) = 4 (25%) 0=z=1
. Blv,,v.) v.+v
2 1’72 2

[w2 + (w1 -wz)z]

For Wy o= w, these are seen to reduce to fp(x ]vz'. Vl) and

fp(zlvl, VZ)' respectively, a well known result. In that case we can
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directly state that

v
E(Wl) = +2
LR
and
v
1
E(m.) =
2 v1 + V2

However, if we force the q's to be equal, we lose one degree of free-
dom and we then have only 3 a priori parameters with which to satisfy
the prior means and variances of the occupancy times (4 quantities).

If W, > W, from equation (6.5)

v v

1 2 1 v v, -1
w, W -
Bir ) = =t 2 D) dx
172" %0 [w, + (w,-wx] | 2
By TS =
(w,/w )vz ! v v, -1 w -(v.+v.)
2 1 2 1 2 1 2
———— x (l1-x) -f1l-— Ix dx
ﬂ(V » v ) W
1’72 1
0
i N B W (v 4v_+1) : v,+1-1 v, -1
) _2) 2 12 2 e !
. x 4« i I v H 2 .
W:l 1772 \'1) ( 2‘1)

0

. -(Vl+v2)
2
[ - < -w—>x dx
1

and using equation (G. 2) of Appendix G, which defines the hypergeometric

function F,
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(“’z W ot
E(7r1) = —w—> v1+v2 F(v1+vz,v2+1|v1+v2+ll 1-\-;; )

( convergent because W, > WZ) (6.6)

Then

E(7r2) =1 - E(7r1).

If w2 > W, we evaluate E(7r2) first by

Y1
| i il
E(7r2) = ;l; V—IWZ F(V1+V2, V1+1 |V1+V2+1l 1-“72 (6.7)

and then use E(7r1) =1 - E(7r2).

6.3. General Remarks

We now have precisely the same framework as in the 2-state
discrete case except the two transition rates are independently Gamma
distributed, whereas the two transition probabilities were independently
Beta distributed. Hence, we can determine many of the quantities that
were obtained in the discrete case —e.g., the expected revenue per unit
time in the steady state, the worthwhileness (preposterior analysis) of
observing several transitions, the value of knowing a transition rate
exactly, etc. Also, for more than 2 states the same analytic difficulties
as those in the discrete situation would be encountered.

It should be noted that in the discrete case the hypergeometric
function was required for the situation where only one transition proba-

bility was not known exactly; we did not obtain a closed form solution for

-133-



the expected values of the steady state probabilities (other than a com-
plicated summation) for the situation where the two transition probabili-
ties were independently Beta distributed. However, in the continuous
case use of the hypergeometric function has enabled us to obtain simple
closed form expressions for the expected values of the steady state
probabilities when both transition rates are independently Gamma dis-

tributed.
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SECTION 1I
TRANSITION PROBABILITIES EXACTLY KNOWN BUT REWARDS
ARE NOW RANDOM VARIABLES

In Section Iit was assumed that the rewards were exactly known
but that the transition probabilities (or rates or matrices) were ran-
dom variables. Now, we consider the completely oppos'ite situation;
the transition probabilities are assumed exactly known but the rewards
are now random variables. This new situation turns out to be easier to
handle in most respects than the ones considered in Section I.

The first step is to develop convenient prior distributions to
use on the rewards, convenient in the sense that they allow easy Bayes
modification and simple determination of the expected values of the
rewards, and their ranges satisfy the physical constraints. Also, the
actual Bayes modification of a prior distribution on a reward after
several sample rewards have been observed is demonstrated for two
different prior distributions. Then we consider the expected rewards
in steady state and transient situations, very important quantities for
statistical decision purposes. Knowing how to evaluate these quantities
for appropriate prior distributions on the rewards we next deal with
typical statistical decision problems based on either steady state or

transient situations.
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CHAPTER 7
CONVENIENT PRIOR DISTRIBUTIONS TO USE ON THE REWARDS

As was the case for the E(7rj)'s in Section I, it will be dem-
onstrated in Chapter 8 that the expected values of the rewards, E(rij)'s,
are the critical quantities to know for many Markov decision purposes.
(rij = reward per transition from state i to state j.) Hence, it is
important that a prior distribution on an rij allows easy determination
of E(1ij). As in Section I, the other two required properties of the
prior distribution on an rij are:

i) The distribution must be convenient for Bayes calculations.
Ideally, after some sample values of rij are observed we would like to
obtain a posterior distribution on rij which is a member of the same
family as the prior distribution.

ii) The range of the distribution must satisfy actual physidal
constraints. Two physical situations will be considered in detail; the
first where a reward can lie anywhere between (0 and %, the second
where the range is - to ®©. A third situation where the range is
finite, will be briefly mentioned.

7.1. The Range of 'r'' is (0,®) — Exponential-Gamma Form

7.1.1. Determination of the Form of the

Prior Distribution

The probability density function of a random variable having
this range can often be adequately described by an exponential distribu-
tion whose parameter is in turn a random variable. That is,

-Ar

(e o]

frlk(rollo) =2e 0=<r (7.1)
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where A, in turn, has a density function fK(KO). This latter density
function is the one that must be chosen so as to satisfy the require-
ments of easy determination of E(r) and simple Bayes modification.

1t should be recognized that a Gamma distribution on r given A
would allow greater flexibility than the exponential distribution of equa-
tion (7.1). However, as demonstrated in Appendix S, use of a
Gamma distribution instead of an exponential leads to serious difficulties
in assigning the prior parameters of the distribution of A. Hence, we
sacrifice some flexibility in order to simplify the assignment of the
prior parameters.

The situation here is identical to that considered in Chapter 6
where we had exponential holding times whose parameters (the transi-
Ltion rates) were in turn random variables. There, with the use of
Appendix S, we .f.ound that it was most convenient to have each transi-
tion rate Gamma distributed. Hence, in the present context the A
parameter of equation (7.1) should be Gamma distributed. That is,

W -wA

o)
£,(0) = f’y(Kolv,w) = Ty A e 0 =2 (7.2)

7.1.2. The Marginal Distribuation of r

and its Mean and Variance

Section 5.2 of Appendix S shows that for the conditions of

equations (7.1) and (7.2), the marginal density function of r is

o0
= [
fr(ro) g frl)k(ro >\(.)) f7k(>ko) d>k0
0
(7. 3)
7 v
w
= 0 =r
ety :
o
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The expected value of r 1is

E(r) = —— for v=2 (7.4)
v -1
and the variance is
v v 2
= ———;"— for v=3 (7.5)
(v-1)" (v-2)

7.1.3. Determination of the A Priori

Parameters

Using equations {7. 4) and (7.5) we can select v and w so as to
satisfy our prior estimates of E(r) and Y. These latter two marginal
quantities are easier to estimate a priori than the moments of the
parameter X itselt. The reason that this is mentioned is that the mean
and variance of A can be expressed in terms of v and w and an alter-
nate method of obtaining values for v and w would be to select the
values such that the estimates of the mean and variance of A were

satisfied.

7.1.4. Bayes Modification of the Gamma

Prior Distribution

Consider the variable r with

-Aoro
| frn(rolxo) =2 e

where

£, ) = f‘}l()\o |v, w)
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Let E represent the event that k independent values of r sum to Tk.
Section S.3 of Appendix S illustrates that use of Bayes' rule gives the

following a posteriori distribution on A

£, |E) = f,y(xo [ vk, wtT, )

which is another member of the same Gamma family, precisely what
was wanted. Furthermore, the a posteriori marginal distribution of r
is of the same form as its a priori distribution. Using the results of

section 7.1.2, there follows

(v+k)(w+Tk)v+k
f(r |E) =———= 0=r
1
r o (r +wtT. )v+k+ o
[0 K
and
w4+ T
k
E(z|B) = SoTy

Hence, the expected value of r on the next draw is still extremely
easy to calculate after we have observed the event E; this was another

desired consequence of the form of distribution placed on A .

7.2. The Range of 'r" is (-®, ®) —Normal-Normal Form

7.2.1. Determination of the Form of the

Prior Distribution

For this range the logical choice for a density function for r
is the Normal distribution. We could be quite general and allow both
parameters of theNormal to be random variables. However, this

causes the calculations to become quite invoived (but they can be carried
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out). Instead, attention will be restricted to the case where the variance
of the Normal is assumed exactly known but the mean is considered to

be a random variable. In other words,

! -(ro-uo)z/(Zcz)

e
V27 o

2
frh.((rolpo) - fN(ro|po’°- A~
-0 < ro < (7.6)

and we have a density function fp(p.o). Again, this latter density func-
tion must be selected so as to satisfy the requirements of easy determi-
nation of E(r) and simple Bayes modification.

Appendix T reveals that the proper choice is

2 —
| 2 1 -(Ho'v) /2 W)
f( = f_ ( V, Wor ) = ————— e -0 < < ©
s l-*o) N "Lo 27V Ho

(7.7)

That is, the mean should, itself, be normally distributed.

7.2.2. The Marginal Distribution of r

and its Mean and Variance

Section T. 2 of Appendix T shows that for the conditions of

equations (7.6) and (7.7) the marginal density function of r is

0
= gl £ ) an
- 00
which leads to
fr ) = L (r |v, (wt1)o?) (7.8)
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; 2
Hence, r is normally distributed with mean Vv and variance (w+l)o

.- E(r) =V (70 9)

and

¥ = (w1)e? (7.10)

7.2.3. Determination of the A Priori

Parameters

Using equations (7.9) and (7.10) we can select v and w so as

to satisfy our prior estimates of E(r) and Y. This is possible because

o is assumed exactly known.

7.2.4. Bayes Modification of the Normal

Prior Distribution

Consider the random variable r with

2
fr|p.(ro|po) - fN(rolpo'o- )

where, in turn,
£ (n) =t (p |V, wod)
TR} N o

Let E represent the event that k independent values of r sum

to Tk. Section T.3 of Appendix T shows that use of Bayes' rule gives

the following a posteriori distribution on .

1VAYT, w2

Mol k'wel "kw4+1?

f =
PLmolrs) £y
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which is another member of the same Normal family. Furthermore,
the a posteriori marginal distribution of r is again a member of the

Normal family. Using the results of section 7.2.2, there follows

VEWT 1) 2
vl \ewntY

fr(ro |E) = fN(ro

and

v o+ WTk
k'w+ 1

E(r |E) =
Thus, aNormal distribution on r with its variance exactly
known but its mean, in turn, normally distributed, allows us to
obtain E(r) easily and also perform simple Bayes modifications when
some sample values of r are observed.

7.3. The Range of r 1is Finite

In most cases a finite range on r can be adequately approxi-
mated by either an Exponential -Gamma or Normal -Normal framework
with suitably chosen parameter values. Another possible method of
handling this situation would be the following:

Suppose the allowable range of r is from A to B. Then, we

could say that

r|m, n(rolmo' no) -

(The Beta distribution with arbitrary limits)
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where m and/or n would, in turn, be random variabies having con-
venient distributions. Unfortunately, it appears that there are no such
convenient distributions. Hence, it seems that we must resort to one

of the aforementioned approximation methods when the range of r is

finite.
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CHAPTER 8

DETERMINATION OF THE EXPECTED REWARDS IN
VARIOUS TIME PERIODS

As was explained in Chapter 5 the expected rewards in
various time periods are of central importance in decision making in
Markov processes. Hence, it is imperative that we be able to evaluate

these expected rewards.

8.1. The Expected Reward per Period in the Steady State

8.1.1. Arbitrary Distribution on rij

Consider an N state Markov process with exactly known transi-
tion matrix, P = (pij)’ and let rij be the reward per transition from
state i to state j (i,j=1,2,...,N). The rij's are random variables
rather than being exactly known.

When all the rij's are exactly known, the expected reward per
transition or per period (we assume throughout that exactly one transi-

tion occurs per period) in the steady state is

oV

Pis Ty

N
R- )
% 1
i=1

j=1

(N
"

where, again, 7ri is the steady state probability of being in state i. How-

ever, the r,.'s are random variables; still, we can write
1)
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N N N N

E(R) = DR > .
(Rt) E Z 7r1 / lerIJ / ﬂi ‘z pij E(rij) (8.1)
i=1  j=1 i=1  j=1

Two different mechanisms will produce this result:

i) As in earlier situations we select rij values from their
distributions and let the process run to the steady state obtaining
an Rt. This is repeated a large number of times and the long term
average of Rt is as given in equation (8.1).

i1) We let the process run to the steady state just once and
everytime a transition occurs from state i to state j we draw an rij
value from its (unchanged) distribution. The long term expected
reward per transition is again given by equation (8.1}).

If, instead of rewards for transitions we used rewards for

being in states, equation (8.1) would be replaced by

N
E(R) = Z 7 E(ri) (8.2)

i=1

where E(R) is the expected reward per period in the steady state

and r. is the reward per period for being in state i (i=1,2,...,N).

8.1.2. Exponential-Gamma Distribution

| . and
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1j
W vij-l -w,,)\o
£, ) =1 (A fv, ., S - 1 -
a A FE AV s T A T e ISR
1j 1)
Then, as shown in section S.2 of Appendix S
V..
T
g 1
5 o ¢ t =
fri ,(ro) v, . +1 2 o
J (r +w..) R
1}
and
W, .
E(r.) = __131 v,. =2
ij vij 1j
Therefore, substituting in equation (8.1)
N N w
R =] ‘ _#_ 8
E(R) Z i 2, Piy v -1 58]
i=1 3=l

which is the expected reward per transition in the steady state when
the rewards have Exponential-Gamma prior distributions with para-
meters vij and wiJ. Unlike in section I where the pij's were not
exactly known, here we have an easily computable expression for
the E(Rt) of an N state process.

8.1.3. Normal-Normal Distribution on rij

2 2
P (20
(lo o) / ij)

2 1
Yy = f , 8= - <L < @
fr_ I _.(rohlo) N(rohlo GiJ) — - o
ij i) V2T @
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and

)
f = =
) fN(p'ol Vij’ ‘”ij“ij)

1)

Then, as shown in section T.2 of Appendix T,

2
f =f{ ) .
ij(ro) N6 Viy (Wit ey)

and

E(r ) =v..
1) 1)

Therefore, substitution in equation (8.1) yields

N
E(R) = Z .
t 1
i=1

which is the expected reward per transition in the steady state when the
1)

(8. 4)

Pii Vi

[\/| 7

1=1

e
1

rewards have Normal-Normal prior distributions with parameters v, ,

Again, E(Rt) is an easily computable quantity.

and w._ ..
1)
8.1.4. The Effects on E(Rt) of Sample
Values of the Rewards
Suppose we observe several transitions with the associated
rewards.
Let f . = the number of observed transitions from state i to

J
,....N), F= (fij), and s.. = the total reward from the fij

1
state j (i, j=1,
transitions; S = (s_j).

i
For the Exponential-Gamma framework with prior parameters

i)
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v..  and w.. we have seen in section 7.1.4 that
1) 1)

Therefore,

N N
5 wij + si;
_ J
E(Rt]F,S)_Z ™, Z e e BT (8.5)
i=1 =1 ooy

ii) For the Normal-Normal framework with prior parameters

v.. and w,., section 7.2.4 showed that
1] 1]
Vij + w, .s..
1] 1)
E(r.. |f ,s.) = —2—rt
i + 1
ij i) i fijwij
Therefore,
N. S V'j + wijsij
i | = } T ! 8. 6
i=1 J=1 f.ow..+1
1] 1)

Hence, both frameworks allow us to easily calculate E(Rt)
after several observations have been made, a very desirable property

for statistical decision purposes.

8.2. The Expected Rewards in Transient Situations

We shall restrict attention to the situation where the rewards
are given for being in states. For exactly known rewards let Ri(n) be

the expected reward in n periods given that we start in state i. Then,
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N
Ri(n) = Z ?ij(n) r.j

j=1
where r.j is the reward per period for being in state j (j=1,2,...,N)
and _{ij(n) is the expected number of times that the process will be in
state j during the next n periods given that the present state is 1i.
The quantity, Tij(n), can be cbtained by transform techniques as shown
in Howard's ”Dynamic Probabilistic Systems. n2l

Since the r.'s are random variables, R.(n) is now a random
i

var:able whose expected value is

_N
< -
E[R,(n)] = E'-Z tij(n) T
j=1
i.e.,
Ly
_ = 8.
B[R] = ) T, (m) Eir) (8.7)
j=1

where the quantities are defined above. This formulation assumes the
following mechanism. For each j we select an rj and run the process
(starting from state i) for n periods. If this is repeated a large num-
ber of times (selecting new rj's each time), the average reward for

the n periods approaches E[Ri(n)]. Note that the r.j distributions are

not updated as we progress through the n periods. Furthermore, it is

21
Op. cit.
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interesting that we use here the same E(r..) quantities that were
1)

required under steady state conditions in section 8.1.

Numerical Example

Mike, the waiter, who is in financial trouble, is concerned about
the amount of money he can expect to make on tips from the next n cus-
tomers that he serves. Mike i1s mathematically inclined but rather
moody. He figures that all customers can be split into two groups, good
and bad. In fact, Mike reasons that a good customer will leave a tip
that is approximately normally distributed with variance 0.2, and a2
mean that 1s, in turn. normally distributed with mean 2 and variance 0.1.
The corresponding quantities for a bad customer are 0.4, 1 and 0. 3.
Mike's moodiness is reflected by the fact that his transitions from one
customer type to another can be represented by the following proba-

bilities.

G B
- -
G|3/4 1/4
2 5
B'1/3 2/3

That is, he is more likely to stay with the current type than switch. (A
good t1p improves his morale making his attitude better. This, in turn,
improves the chance of another good tip.)

Given that Mike 1s now serving a good customer, what are his
expected total tips in the next n customers (including the present one)?

The reward structure is given by
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‘ : , . !
frl(ro) fN(rolp'l’o 2) frz(ro) fN(ro'p'Z'o"l)
\ = { ,0.1 = » Vo ]
fpl(uol £l 12,0.1) fp.z(p.o) £ (8 11,0.3)
1 3
vl—Z,wl—2 . vzﬂl,wz..4

The following flow graph immediately gives us the geometric trans-

- - 2
forms of tll(n) and t'LZ(n) 2, the expected numbers of good and bad

customers, respectively, in the next n customers.

The transmission from A to B

22

g
o,
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— T > _ n
{z) = =]
TAB\L.) tll (z) /. tll(n)z
n=0
. 2 2
-—z
T 3
t, (&)=

(1 -z)‘2 ( 1-5—22)

—

Using a partial fraction expansion and inverting the transforms, we

obtain

n-1
T oy dag36 15(5 .
tll(n)-7 n + 29 - 49(12> n=0

Similarly, using the transimission from @ to @) there results

-1
- 3 36 15 [5 \"
i =3n - g+ 9(12) n=0

Now, from section 7.2.2,
E(rl) = E(p.l) V= 2
and

E(rZ) = E(p.z) =V, = 1

Then, using equation (8. 7),
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2
E(R, (] = ) ) Elr)

—

j:

—

-1
i 36 15 5\
B oo g 22l DR =
TRT 49(12) D0

This is his expected total tip money from the next n customers.

§-5¢
®
3 - EI[Ry(n)] 200
X
-~ 541 . q
. ( Asymptotic to the line
a % n/7 + 36/49 )
2
- X
0 1 | 1 ] 1
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CHAPTER 9

MARKOV DECISION PROBLEMS WHEN THE TRANSITION
PROBABILITIES ARE KNOWN EXACTLY BUT THE
REWARDS ARE RANDOM VARIARLES

As was done in Chapter 5, we shall make the realistic assump-
tion that, given a choice, the decision maker will use a Markov process
ounly 1f the expected net revenue is positive. Hence, in the steady state
situation the process will be utilized only if the expected reward per
transition E(Rt), is greater than the fixed cost per period for using the
process, c. Inthe transient situation the process will be operated only
if the expected reward in the n remaining periods, E[Ri(n)]. is greater
than the cost of operation, nc. This does not imply that all Markov
decisions are made in this manner; rather it is hoped that the reader
will use the analysis presented here as a guide for analyzing a situation

. where the decision mechanism is different.

9.1. Problems Based on Steady State Conditions

Once more it is assumed that the process will be used for only s
periods in the steady state or with discounting for an indefinitely large
number of periods. Only the first siiuation will be analyzed, the sec-
ond involves a trivial extension as mentioned in section 5.2.3. Within
this framework there is a possibility that observations of the process may

be worthwhile.

9.1.1. Preposterior Analysis for a Single Observation

1 E(Rr) is the expected reward per period in the steady srate
then because of the assumed decision mechanism, the expected net

revenue 1S
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E(N.R.) =max[o,s[E(Rt) -c] ] (9. 1)

Suppose that the process is in state k and we decide to pay for

pkm(m_

1,2,...,N) we shall observe a draw from the density function { (r)
rkxn
of the reward L The probability that the reward will be between x

and x + dx giventhat the transition is to state m is clearly a function of

an observation of the next transition reward. With probability

the prior framework placed on r, _; itis given by fr (x) dx. For

km
km
the Exponential-Gamma {ramewor k with parameters Vij and W'j' it was
1

shown in section 7.1. 2 that

km

f (x)dx = _km km . dx 0 =x (9. 2)
r 7 +1
km km
(x+w. )
km

N

For the Normal-Normal framework with parameters v , W and

. km km

o , section 7.2.2 revealed that

km
£ () dx=fix|v. ,(w,  #1) ¢Z ) dx (9. 3)
T N km’ ' km km'

km

Now, when a draw falling between x and x 4+ dx occurs from
the m distribution, only the k-mm element of E(Rt) is changed and,

again, the change, Akm(x), is a function of which framework is being

used. Recall from equation (8.1) that

N N
=) 2, fog )
i=1

—_
—.
—

For the Exponential-Gamma framework with parameters V'j and wJ
i 1

prior to the obserwvation
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km
E(I‘km) =7 1 (using equation (8. 3))
km
after the observation,
wkm + x
E(l‘kml L) = ——— (using equation (8. 5))

km
. Akm(X) = 7rk pkm[E(rkml 1, x) - L(rkm)]

wkm + X wkm
km(x) - 7rk pkmi‘ v Y -1 (9. 4)
km

A

For the Normal-Normal framework with parameters Vij’ wij and o-ij

prior to the observation

E(r ) = v (using equation (8. 4))

km km

after the observation,

vkm + wkm X
E(rkml 1, x) = - 11 (using equation (8. 6))
km
Vkm + wkm *
) Ak_m(x) = "k Pkm w + 1 " Vkm (9.5)
km

The change, Ak (x), in E(Rt) may also cause a change in the
m

expected net revenue. According to equation {9.1) prior to observation,

E(N.R.) = max[0, E(Rt)]
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and after it

)

E(N.R. [observation of x from r
km

= max[0, E(Rt) + Akm(x)]

Finally, the expected net revenue prior to the observation,
given that it will be taken, is the integral of the expected net revenue
given each possible outcome, weighted by the probability of that out-

come minus the cost of the observation. That is,

E(N.R. Iobservation)

N
(9.6)
= -dk+ Z pkmS\ fr {x) max[0, E(Rt)-l' Akm(x)] dx
km
m=1 X
where dk = the cost of observing the reward for one transition from
state k.

If E(N.R. Iobservation) is greater than E(N.R.), we buy the

observation; if not, we do not buy it.

Numerical Example

Joe, a famous local vendor, has been offered the opportunity of
setting up a concession stand in Boston Gardens for 5 consecutive games
late in the 1963-64 schedule of the Boston Bruins. Joe is somewhat con-
cerned about any venture connected with the Bruins; hence, he has called
in a local operations analyst for help. Joe knows for sure that his fixed
costs per game will be $161. After considerable deliberation, Joe is
convinced that his revenues during a particular contest will be a function

of the Bruins' showing in both the previous game and the present game.
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11

He is satisfied with separating the Bruins' behavior into "WIN", "TIE"

" Also, from past records and forecasts of the coming sea-

or "LOSE.
son Joe and the analyst are willing to assume the transition probabilities

exactly known at

w T L
W io0.l (O8] 0.6
P=T 0.2 0.6 0.2

The corresponding steady state probability vector is

w T L

7=[.214 .429 .357]

Joe isn't so confident about his revenues for various Bruins'
showings. Again, after considerable thought he feels that the revenues
have Exponential-Gamma frameworks. That is,

-Ar

[oJNe)
‘(rol)\o) = e

fr..|A.
1) 1)

and

f)‘ij(%) - f‘y()\ol Vi)

His estimates of the parameters are



and

$300  $300  $300
.wz(wij)= $400  $400  $s500

$100 $300  $300

From equation (7.4)

p— =

%300 $300 $300
W,

$400
1 $200 -
[B(r; ] = Vg = ’ ’

$125

$100 $100 $ 60

This says, for example, that his expected revenue in a game that the
Bruins win given that they tied the previous game is $200 (the 2-1
element).

Joe will accept the offer only if his expected net revenue is
positive.

Now, Joe has a friend who has run a similar concession stand
at Boston Gardens. Unfortunately, the friend only has revenue data
for a single contest and without delving into his papers (for a fee) he is
only willing to tell Joe that the previous game ended in a tie. For $d2
he will tell Joe his revenue and the outcome of the corresponding game.

Without his friend's revenue 1information, from equation (8.1) we have

E(R) = .214{(0.1) 300 + (0.3) 300 +(0. 6) 300] + .429[(0.2) 200 +

(0.6) 400/3 + (0. 2) 125] 4+ .357[(0.3) 100 + (0.3) 100 +
(0. 4) 60]

$156. 40
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ER) - c= -$4.60<0

Therefore, without his friend's information Joe would not accept the
offer and his expected net revenue would be zero.

Now, suppose that the friend's help is accepted. As the transi-
tion is from state 2 (a tie) only the second row of (E(rij)) will be affected.

Let us treat the 3 possible transitions separately.

Transition from 2 to 1 (With Probability P,y = 0.2)

Let the observed revenue be x. Then, using equation (9.4) the

change in E(Rt) is given by

4004x
3

(.429)(0.2)( -zoo)

or
.0286x - 5.72

From above, E(Rt) must increase by at least 4.60 to make the offer worth-
while.

Therefore, v0286x - 5.72 must be =4.60. That is,
x = $361.

Hence, when x = 55361, the Gardens' offer becomes worthwhile and

E(N.R.) 5E(Rt| 1,x) = 5[0Old E(R) + 4 ,(x) - c]

5[156.40 + .0286x - 5.72 - 161.00]

5[-10.32 + .0286x]



o0

‘. E(N.R. |tran51t10n from 2 to 1 observed) = 5 5 E(Rtll,x) .
361

0
(using equa-

3
0
__—.3(40v) 4 dx tion (7. 3))

fr (x}) dx = 5 ( [-10.32 +.0286x]
(x+400)

21 v,
3ol
= $7.93 by straight-forward integration.
Similarly,
E(N.K. |[transition from 2 to 2 observed) = $12.42
and

E(N.R. |transition from 2 to 3 observed) = $1.05

Now,
E(N.R. itransitlon from 2 observed)

3
: Z ij E(N.R. [transition from 2 to j) - d2

J=1

=0.2(7.93) 4+ 0.6(12.42) + 0.2(1.05) - d2

= $(9.25-d2)

As we found that the E(N,R.) without an observation was zero, Joc would

pay for his friend's information if, and only if

d2<$9.25
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Furthermore, the analysis tells us that Joe would accept Doston's offer
only under the following outcomes of the single revenue observed:

i} If the transition is from 2 to 1 (tie to win) and the revenue
1s greater than $361.

11) If the transition is from 2 to 2 (tie to tie) and the revenue
is greater than $205.

or
ii1) If the transition is from 2 to 3 (tie to lose) and the revenue

1s greater than $393.

9.1.2. Preposterior Analysis for More Than

One Observation

The method in principle is the same as that used for the case
of one observation discussed 1n the previous section. To find the
expected net revenue given that the observations will be taken, we
integrate the expected net revenue after each possible outcome weighted
by the probability of that outcome. There is no problem in evaluating the
net revenue after any particular experimental outcome. Egquations (8.5)
and (8. 6) allow us to find the expected reward per period in the steady
state after any experimental outcome tor the Exponential-Gamma and

Normal-Normal prior frameworks, respectively. Then, we use

E(N.R.) = max[0 s[E(R)) - c]]

ro obtain the corresponding expected net revenue. The difficulty is that
the probability of any particular experimental outcome 1s now an involved
function. This makes the integration difficult. More will be said on this
point in the next section.

Again. if the expected net revenue given that we shall buy the

observations is higher than the expected net revenue without them, we
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buy the observations; if lower, we do not make the purchase.

2.1.3. Some Other Remarks of Interest

The continuous nature of the random variables causes diffi-
culties when a sequential form of analysis is attempted. This can be
illustrated by a situation:where we can observe the rewards of one or
two consecutive transitions with the option of not observing the second
one after we have seen the first. For just one transition remaining, the
problem can be analyzed as in the previous section. However, the con-
tinuous nature of the reward for the first transition forces us to consider
an infinite number of possible situations when just the second transition
remains. This would be tractable if the expected net revenue using an
observation was a simple analytic function of the prior parameters.
However, such is clearly not the case.

A possible method of avoiding the above difficulty would be to
approximate each continuous reward distribution by a discrete {(quantized)

probability mass function; that is,
pr(r:xk) = pr(xk) = P k=1, 2, ..., n

But, in order to allow Bayes modification, we would not assume that

the pk's were known exactly; rather, we would place a multidimen-
sional Beta distribution on them as was done with the multinomial distri-
bution in section 3.1. Under this framework, each observation would
have a finite number of outcomes ard sequential analysis would thus be
possible.

In the single observation case discussed 1n section 9.1.1 we
could obtain the expected value of perfect information about one or more
of the unknown parameters by ‘ollowing the method outlined in section
5.4.1., Therefore, there is no need to elaborate here on the value of

perfect information,
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G9,2. Statistical Decisions in Transient Situations

In Chapter 5 it was mentioned that in the case of statistical
decision problems when the transition probabilities were not exactly
known, transient situations could be handled in essentially the same
way as the decision problems based on steady state conditions. The
exact same statement can be made for the present situation where the
rewards are not exactly known.

The quantity, S[E(Rt) - ¢] is replaced by E[Ri(n)] - nc, the
expected net revenue 1n the next n periods given that the process will
be used. Naturally, if we delay 1 period (perhaps to observe a reward)
before using the process and the system moves to state j, the expected
net revenue will then be E[RJ(nwl)] - {n~1)c. With these minor modifi-
cations we are able to analyze the single observation case exactly as in
section 9.1.1. Also, we encounter the same predicament for a
sequential decision framework as in the steady state situation. Finally,
the expected value of perfect information about one or more of the un-

known parameters could be evaluated by the methed of section 5.4.1.



CHAPTER 10

CONCIL USIONS

10.1  Summary

The purpose of this study has been to extend the range of applicaticn
of Markov process theory by removing one of the fundamenfal assumptions
made in earlier theoretical considerations of such processes, namely that
both the rewaxrds ard transition probabilities be known exactly.

In Section I we assumed that the rewards were exactly known but the
transition probabilities ( or matrices or rates ) were random variables.

The first approach involved the concept of a multi~-matrix Markov
process -~ this process is governed by one of several known matrices but
we only know probabilistically which matrix is being used. The analysis of
this situation is quite straightforward as was shown in Chapter 2. We des-
cribed the Bayes modification ( after some transitions are observed j of the
probabilities that the various matrices are being used. The determination
of various quantities, such as mean recurrence times, was illustrated.
Then various cost structures were placed on multi-matrix processes.
Finally, the possibility of using statistical decision theory in multi-ma%rix
situations was revealed by consideration of a 2-state, 2~matrix example
where there 1s an option of buying observations of transitions befcre stating
which matrix is being used.

Chapters 3, 4, and 5 were concerned with the physically more ap-
pealirg situation where the transition probabilities themselves ( rather than
the matrices ) are considered as random variables. It wae first demon-

strated that it is convenient { “o» Bayes calculations and this for statistical
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decision purposes ) to have a multidimensional Beta prior distribution on
the probabilities of each row of the transition matrix. This is a direct
extension of the previously known result of using a Beta prior on the prob-
ability of success in a Binomial process. Chapter 3 was concerned with
developing many basic properties of the multidimensional Beta distribution,
several o which were to be utilized later in the study.

In Chapter 4 we attacked the problem of determining various quantities
of interest when the transition probabilities are multidimensional Beta dis-
tributed. It is important, both for statistical decision purposes and for
interest in the quantities per se, that we be able to describe their behavior
when the transition probabilities are not known exactly. Unfoitunately analytic
complexities prevented a detailed theoretical treatment of the situation. The
one important analytic achievement for the N state case was the derivation of
the probability mass functions of the state occupancy times. Analytic resuits
were also obtained for mean recurrence times, multi-step transition proba-
bilities and expected steady state probabilities in 2-state processes. Finally
a simple trapping states situation was analyzed.

It was illustrated that the expected values of the steady state proba-
bilities are very important for many decision purposes. Hence, considerable
time was devoted to those quantities. The analytic expression for a special
2-state situation was made possible through the use of the hypergeometric
function. Due to analytic complexities simulation was required for processes
with more than 2 states. However, the results were most encouraging in that
they suggested that a reasonable approximation to the expected values of the
steady state probabilities can be obtained by assuming that the transition
probabilities are exactly known at their mean values and then using the cor-
responding, easily calculable, steady state probabilities. This permits us

to have the multidimensional Beta priors on the transition probabilities, a
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situation ideal for Bayes modifications, yet we can still easily obtain a
reasonable approximation to the expected steady state probabilities, tne
latter being essential for statistical decision purposes.

In Chapter 5 we analyzed several statistical decision situations for
Markov processes whose transition probabilities are multidimensional Beta
distributed. Again, it should be emphasized that no claim is made that the
situations considered cover most of those that could occur in practice.

Rather the intent was to provide the reader with an approach to solving
certain types of decision problems arising in Markov processes in the hope
that he would be able to make the suitable adjustments to fit the particular
physical situation confronting him. Items such as the expected value of
perfect information about a transition probability were also considered. The
entire statistical decision frarnework established for Markov processes was
summarized in Figure 5. 6.

Chapter 6 involved a brief look at ¢ontinuous time processes to show
that essentially the same situation { including analytic difficulties ) exists as
in the discrete time case.

In Section II we assumed that the transition probabilities were exactly
known but now the rewards were random variables. This 1s the exact opposite
situation from that of Section I.

Chapter 7 illustrated two convenient ( in the Bayes sense ) prior dis-
tributions to place over the rewards. Then Chapter 8 was concerned with the
determination of the expected rewards in various time periods ( both steady
state and transient ). These quantities were much easier to obtain than were
the corresponding items in Section I where the transition probabilities were
not known exactly. Chapter 9 illustrated how to use these expected rewards
in making statistical decisions concerning Markov processes where the rewards
are not known exactly. e.g., is it worthwhile to observe some sample rewards
to improve our knowledge about expected future rewards before deciding

whether or not to utilize a Markov process?
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10.2 Some General Remarks

There are several remarks that do not logically fit into the above
”summary” section or into Section 10. 3.

As in all situations where a Bayes approach is to be utilized the
analyst must avoid the pitfall of developing his prior probability distributiors
after observing the data and then obtaining an a posteriori distribution through
the use of the same data. Therefore, in using a Bayes approach to the study
of Markov processes the prior probability distributions over the transition
probabilities or rewards must first be developed, then the observational data
is used to obtain the postericr distributions through the use of Bayes' rule.

In many sections of this study the suggested formulas or techniques
involve considerable computation. Fortunately, as in other areas of applied
mathematics, the use of high speed digital computers makes these methods
practical whereas hand computations would be out of the question.

Again it should be stressed that the intent of this study was not to
solve all practical Markov problems where either the transition probabilities
or rewards are not cxactly known; rather the goal was to develop mathe-
matical expressions for some quantities of interest under this situation and
to indicate by analyzing some specific examples that statistical decisions

related to Markov processes can and should be made.

10.3 Suggested Related Areas for Further Research

It is apparent that a fundamental study of this nature would suggest
several related research topics of varying difficulty.
In two situations in this research the lack of an ideal prior distri-

bution restricted our progress. One restriction was of a relatively minor
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nature, namely in Chapter 7 where we could not obtain a convenient prior
that would exactly fit the physical constraint of a reward having to lie within
a finite range. However, the second restriction was of a far more serious
nature. The multidimensional Beta prior used for the probabilities of a
single row of the Markov transition matrix was ideal for Bayes calculations
but was restrictive due to the fact that it provided only k prior parameters
(for a k state process ). Ideally we would like 2k - 1 parameters so that
the prior estimates of the k -1 marginal means and the k marginal variances
of the individual probabilities could be satisfied. The determination of a
prior distribution having 2k - 1 parameters yet still allowing simple Bayes
modification would be a significant extension to this study.

As mentioned in the main text an intercsting related problem 1s
Howard's policy-iteration situation but with transition probabilities and/or
rewards no longer exactly known.

In many Markov process applications probabilities in different rows
of the transition matrix are not independent as assumed throughout Chapters
3to 5. An extreme situation would be a process where we know that two rows
of the matrix are identical but do not know the exact values of the elements.
Situations like this would require more complicated prior distributions than
thc maultidimensional Betas used in this study.

Recently, significant research has been done in the area of semi-
Markov processes. processes where the transitions are governed by a regular
P matrix but the transition ‘imes have arbitrary probability distributions.

A natural extension of this thesis would be to consider semi-Markov processes
where the P matrix and/or the probability distributions of the transition times
were not exactly known

This stufiy has not encompassed the situation where both the transition
probabilities and ihe rewards are not exactly known. An analysis of this more

general problem would certainly be of value.
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As mentioned in Chapter 2 the multi-matrix framework is really
a part of the combination of Markov process theory and game theory.
Unfortunately, the complexities of game theory have made the determi-
nation of analytic results extremely difficult; hence, the use of game
theory in Markov processtsituations would not appear imminent.

As was stated in the main text, an important decision problem
not considered in this report is the situation where once we have
decided to use a process we can change our strategy {i.e., make further
decisions) as we observe the process in operation during the time in
which we are using it. In effect, this situation can be considered as a
tvpe of adaptive control problem. We are not committed by a single
decision but can adjust our actions as we become more familiar with the
process.

Undoubtedly, the reader will be able to make additions to the
above list of suggested related areas for additional research. In any
event it is hoped that this study will stimulate further fundamental investi-

gations in the theory of Markov processes.
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APPENDIX A

PROOF THAT 'vh(q_' 1) 1S A PIECEWISE LINEAR
FUNCTION OF THE COMPONENTS OF d

Equation (2.6) says

Q
A (Q-':l) = on Z Q.! C
o'~ 1 =k=Q m km
m=1

which 1s clearly a piecewise linear function of the a' 's.
. . m

Using equations (2.7) and (2.1},

WV (Ers]) = (2.7)

o

] N

\ .
L 2
)=

!'

where the typical component of a is

Nk . "

; )
2 le ak[di_] + Vi 1('0 r)]
k=l

kp 0
Q" i)k - (2.1)

kg
Y ™p a
7 1] m
m-1i

!

() - . 0 . 1
Now, suppose that = (a ,r) is piecewise linear in the components of a .

"hol

Then we can write,
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where a and the bk’s are constants. Substituting from equation (2.1},

Then the L' part of equation (2.7) becomes

N Q Q-1 s Q! —l
Z - d tat Z ‘J °
j=1 k=1 s=1 e
mo
Z le m
i m=1 _1
or
N Q Q-1
a (d +a) + y b Sp a'
i' Z  °s Pij %
: k=1 s=1

which is seen to be a piecewise linear function of the components of a'.

!

"L

Now, vh(g', i) is either "s'" but we have already shown that 'S
is piecewise linear in the components of a'. Therefore, by assuming
that vh_l(g', r) is piecewise linear in the components of o', we have

shown that vh(g', r) is piecewise linear in the components of a'. Also,

we have shown that vo(g_', i) is piecewise linear in the components of a'.

Hence, the proof that vh(g', i) will always be a piecewise linear function
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of the components of a' has been completed by induction.
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APPENDIX B

IMPORTANT PROPERTIES OF THE MULTIDIMENSIONAL
BETA DISTRIBUTION

(X %y, o X ) = T (x,,)(_,, %) "\'.,f'h,---,hk)
[ 3

l LA B R - |
) Xy Xy s Xy
Blm,m, . --:"M.)
HCB NG RNLY

Fmama . o+ m,)

k
where E' X; =1, X 20 and B(m m, .. ny)=
t=

BE.1l1. Check that Distribution Integrates to One

f PHPA:"' (K"x'l‘-“,’(k‘)dyi : “dxk‘l

- . " ! k~i LY
= ff ! x,n"xlm.‘..-xl_:‘ (-=x;) " dy,. dx,_,
VK, Xk~ ,B('m,,,m,‘._,m«) Lei cos
- & X
f N\,‘_;" d j L:‘y\, -1
Y_ d{. {_ x L0
,G(M.“Mh Ml \/( - | - 0 -
- (1= Ex ) " de,,
el
K-
Substitute g = ’—“Z—x— 2l = dkxx-l
= -2
] /-”E‘ X/
and when X, 0 , y=0
k-2
" " X‘_ (—2 XL , y: ,
=
. I = l j f M-t Ma” J’ -1
X
Blm, m,,. . n,L) S "z,;l S dx dx,. Y
-1 N ™
(,_gx [I—ZXL J(I—a)()] (l—éx)dy
L=
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Myt nk_'—l

mt m, -1 k-2
= ’ f X, X (- = x dy, ....
Blrmim,, ... m) ’("“"{l-; ! k-a ( = L) !

L
o, - My -1
a YK-.’L f y 1] (’_J) k d
o)
nk*nk’i-’

= B(M™y M) f \( )(‘m-i...)('::.L-;l(l—%z’(i) dx,....dx

)B(""lu"‘u.--'."tg) t Xg-a {=1

Letting 2 = xn—;

- 2y,

C=y

the next im‘egraﬁon gives

I= /B("\‘k—nmk /B(M’k-.unz‘f"\g-, "\:" My ! *-'J"""*"‘l-'+"l'-fl
co X (172 g dxg,
Blm, my,. o, my) X, - ) 430
I+erafin5, in this manner we end up with
I-= ﬂ(mz;lmg)p(m‘k-hmz "k-a)' ""/B("Ll'mz""m'l-,""" +M'.).)
'B(M/IMAl"’ IM‘k)
Plmed) Mme) O (M, ) P (et me., ) P (nt 4wy )
. Cmyg, tmn,) Oy, M, ) ’ Clm,+m, 4. +m,)
r’(m,)f'(rm_l). ce imy )

Flm +m,t-+m,)
Complete cancellation occurs and I=1.

B.2. The Marginal Distribution of pj and Its Moments

By the same approach as tnhat used in section B.! (except that all
variables are integrated before p, instead of merely proceeding by subscript

order) we find that

&M
(-x) " 04 X%t

", -1

s (x)

(M, 'Em,)
= FB(x[mJ',‘,%PLg)
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E(p;) = fo' x Fp,lx)dx = ‘J;‘}(n:_fn‘) xm(,_x)mm-, »
. }i(WLJH,Li.'Z m; ) ™
m;, = ng
- f:.;fm;ﬂ;ﬂﬂgs)%m) r(Z ne)
F(i1,2m,) Mng) CCZEng)
E(R) = i

= M.
£=1 "i

Similarly we can obtain E(P;) and use 1t to determine
b = E(pi)- LEGRI = ng (F M)
En;) (1+2n;)

B.3. Joint Distributions and Covariances

Proceeding as above we obtain

/ BRI P o
. oy J u”~ 5 .
-FPJ,Pq (%5 %) = X;  x,  (1-x-x)" J#EU
B(n; m,, = m;)
’ P
. (¥ X7
with  x;+4x, £1 X; 20, Xu20.
e Fop (6,Xu) = T3 (X,',Yu/'%',"tu,g% m;
i,t-u
. -Mmom .
and  Cov (p; p.) = J_u JAuU

(En )1+ 2n)
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APPENDIX C

DETERMINATION OF THE PRIOR PARAMETERS OF A

MULTIDIMENSIONAL BETA DISTRIBUTION

BY LEAST SQUARES

where

k
Zx,:l
i

i=1

As stated in section 3. 3, we wish to select the parameters (mi's)
such that the prior mean values of the pj's; it.es,the E(pj)'s are satisfied
exactly. This uses up k-1 of the parameters, leaving only 1 other
degree of freedom. The final parameter is to be obtained by a least
squares fit to the prior variances of the pj's; i.e., to the faj's.

Define

k
M = Z m,
i

i=1

From equations (3. 6) and (3. 7),
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m

E(p,) = EY] (C.1)
M
and
) mj(M-mj)
Pj = ’T—— (C.2)
M (M#+1)

Equation (C.1) gives

m. = ME(p.)
J pJ

Substituting in equation (C. 2),

ME(pJ.)[M - ME(pJ.)]

<

J M2 (M+1)

{M+1)

Let ‘}’)j be the prior estimated value of the variance of pj and
let \}I)j be the value of the variance of pj obtained when M is used.

Then, the problem is to select M so as to minimize

k

N iy
D = (b.-b.

pJ pJ)
j=1
2

k E(p.)[! - E(p.)]
) - v J J
D= Z, Py M+ 1

j=1
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We set dD/dM = 0 (the necessary condition for a minimum) and solve the
resulting equation for the least-squares value of M, denoted by ML s

This quantity is given by

[E(pj)] é - E(pj)lz

N

w
i
—

My, s. " & =4 (C.3)

v
Z b, E(pJI1 - Elp,)]
j=1

and from equation (C.1)

m‘j = ML.S. E(pj) (C.4)



APPENDIX D

BAYES MODIFICATION OF THE MULTIDIMENSIONAL

BETA DISTRIBUTION

As in section 3.1, consider a multinomial distribution of

order k with parameters Py» Ppr ++er Py Suppose the pj's are a
priori jointly distributed according to the multidimensional Beta dis-
tribution

fpl, Py enes pk(xl,xz, S ’xk) = fﬁ(xl’xl’ 500 ,xk|m1,mz, cen ,mk).

Let E be the event that in n independent draws from the multinomial n,

h
fall in the it category (i=1,2,...,k)

k
Z n,=n
i

i=1
'
pr(E|x X x, ) = = xnl xnz xnk
b LR | - H (] 1 " ’
1'72 k nl. Dyee oooeeny . 1
Using Bayes' rule
f (X, %51 ec0rx )
pl,pz,...,pklE 1' %2 k
pr(E|x1,x2,...,xk) fp,p,...,p(xl’xl’”"xk)
1N s 2 k
) pr(E)
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f t %, %o, v eer X))
p1)p21‘0°1pk|E 1 2

n1 n, nk m1 -1 me-Al mk-l
) X, x, cee Xy e X 2 :ﬁ(
- k-1 n
n1 nz xnk_1 , \k ml-l nﬁ(-l-l
s e xl xz e oo oy k-l xi/' xl . . xk_l .
1 %k izl
k-1 mk-l
l-z xi> dxl...... dxk_1 (D.1)
i=1

where some terms independent of the xi's have been cancelled from the
numerator and denominator.

Proceeding exactly as in Appendix B this reduces to

f (x, %X ,+00,%,)
pllpzl"'lpklE 1 2 k
i 1 xm1+n1-1 xmz-!-nz-l xn‘xk‘f-nk-l
[3(m1+nl, mytn,, ..., mk-l-nk) 1 2 k
= fﬁ(xl' ETERRY xk|ml+n1, m2+n2. 000g mk+nk)

This is seen to be a multidimensional Beta distribution with modified

parameters.
NOTE:

The denominator of equation (D.1) was (before the above-

mentioned cancellation of termas)
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p(ml-i-nl , rnz+n2, cees mk+nk)

pr(E)=ng n! ”"n! p(ml’m

2 m

PXRERTELW)

Let E, be the event E with the added stipulation that we know the order

of the occurrences. Then, clearly

+n_,...,m +n

Blm,+n,, m,tn, 1)

ot

priE,) = Blm ,m,, ..., mk)
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APPENDIX E

A METHOD FOR SAMPLING FROM THE MULTIDIMENSIONAL

BETA DISTRIBUTION

Consider the variables Pps Pyr voes P having the multidimen-

sional Beta distribution

fpl,PZ,---,pk(xl’xz’”"xk) = fﬁ(xl,xz,...,xk|ml,m2, ...,mk)

(E.1)

As shown in equation (3.5) the marginal distribution of P, is given by
fpl(xl) = fﬁ><xl m, }: mi>
i#l

The conditional distribution of Pyr Pgrores pk given P, is defined by

f (X, X, pee+,X |x)
pz! p3;-.-)pklp1 2 3 k l

(x. ., X ,.00,% )
Py 1Py e s Py 172 k
= £ (x,)
p; 1
Lf (X.) Xy oo X |x)
pz,p3,--.,pk|pl 2' %3 k'*1
1 xml-l mz-l mk-l
X eeo o X
i ﬁ(ml,mz,---,mk) 1 2 k
= ) =
1 my s WL
e = N X (l-xl)

ﬂm,IZm,) 1
( 1441 °
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This simplifies to

f

(X Xy o

pz p33""pl<|p1 2 3

1
B(mz, Mgseees mk) (1 -x

where
k
ZXI, =1 - X
1=2
and
x, =0

Making the substitutions

p. X,
—"'J ‘——J 1, 2
r. = also y,= j=1,
j 1-p J1-x
and noting that the Jacobian
p,: Pys -1 )
7- = (1-pp*
- BN
B(rz, Ty rk)

we obtain
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f (Y0 Yo eeer Y %))
1'2:1‘3'---»1‘1(1131 2 '3 k'l
- -1 .
1 ymzl ym3. mkl
= 5 paog Y7
B(mz,m3,....mk) 2 3 k

:fﬁ(YZ’Y?}’""yklmZ’mf&""’nlk)

which is a multidimensional Beta distribulion of one lower dimension.
Now we know that the marginal distribution of r, will be the

simple Beta

and letting

s, = j=3,4, ..., k

we obtain the conditional distribution

’rZ(Z3, Z4, o .,Zklxl,yz)

.53 S

klpl

=f(z.,2,,...,2

B 53" %4

m

3,m4....,nﬁ().

|

Continuing in this way the conditional distribution will,
eventually, be reduced to a simple Beta. This suggests the following

method of sampling from the k-dimensional Beta distribution,

fﬁ(xl,xz,...,ﬁl|mlrm2,...,mk):
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i) Draw Wy from the simple Beta fp(wllml’ =z m.)
i

i=2
k
ii) Draw w, from the simple Beta f_(w |m , £ m,
2 V2| ™2’ i
i=3
iii)
k-1) Draw Wil from the simple Beta fﬁ(wk-l |mk-l’mk)
Then
]
X, = wz(l-w.l)
Xy = w3(l-w2)(l-wl)
X1 = wk-l(l-wk—Z) ee (l-wz)(l-wl)
and

k-1
xk=l - Z xi
i=1

As shown in equation (E.1), x., x._, x, are sample values of

1 A
pl, PZ’ 000p pk, respectively.
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APPENDIX F

THE TRANSIENT SOLUTIONS FOR 3-STATE,

DISCRETE TIME, MARKOV PROCESSES

This appendix presents a portion of the results of another study
performed by the author.
Consider a 3-state, discrete time, Markov process having the

transition matrix

l1-a-b a b
P - ) l -c-d d
e f l -e-f

Define ¢1.J.(n) to be equal to the probability that the system will
be in state j at time n given that it is in state i at time zero. Also,

let

P - a 1 - 2a a

La a 1 - 2a

and

Z3S'ilver E. A., The Transient Solutions for 3-State, Discrete Time,
Markov Processes. Technical Note 1. M. I. T. Operations Research
Center. 1963,
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P b 1-2b b

c © 1 - 2¢

Then the following flow chart and equations give 4>_J_(n) for any combi-
i

nation of the parameters a, b, ¢, ¢, e and f{.

The Relevant Equations

1 1 n R .
o m) =5 - 3 (1-32)" i#)
n=0 (F.1)
1 2 n
¢ii(n) = 3 + -3— (1-3a)
Convention:

We shall denote a transition probability by Pg= pr{state is P

p
at time n + l|state was a at time n). Then, if we are looking for
¢ij(n)’ i #j, we denote the third state by k; if we are looking for ¢5i(n)'
we arbitrarily denote the other two states by j and k.

For the matrix PZ, we can make the notation even simpler

by noting that

Pis = pik - px*

U
1

i~ Pik T Py

and

Pri ™ Py 7 Pra

-188-



\

use second
port of
eqn. (F.l)

IF1.LOW CHART OF METHOD FOR OBTAINING A

PARTICULAR ¢,.(n), GIVEN P,
1)

Start

\

Y

use anS'
(F4) +(F:S)

use eqns.

(F2)+(F3)

use eqgn. (£1)
to caleulate
M

Y

use eqn.(F.q)
to calculate
%

Y

(F.8)

Caleulate, p
by eqn:

f 3
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use eqn:
(F. 29)

use eqn.s .
(F.21)4(F. 28

use eqns.
(F.25)4(F. 2¢)

use ean.
(F.13) +(F. 14)

use eqns.
(F.1t) ¢(F.12)

use eqgns.
(F21)4(F22)

use eqns.
(F.23)<4(F. 24)

use eqns.
(F 1) +(F 18)

use eqns-
(F.iS)4-(F1¢)

use eqns-
(F.1a) = (F.20)
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P Prx 1 [y-p-v\" [ .B -prv\" [ B A =0
o ) =T "éf[(z ) (°+3)+(2 ) (“"7) i %

(F.2)
where
L= Py Pise + Py Pt Py Py
pP= Z(pi ==;i-pj*'l'pk*-l)
v =2 \/Pi + p?::c + Pi* = &
(F.3)
a = 3Pi* Py
and
2
p= 6Pi*(pi>up_,*'pk,*)
o - 2 [ (o) (B2 ] e
(F. 4)
where L, p, and v are as in equation {F.3)
w = ~'3Pi,,,(Pj,;,"'pk>:=)
and e

=6 2 +p2 )
x= pl*(pj* pksk"ppepj*"pwpk*'

.................................................................
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=] + +
@ TPy Py TPy Py T Pk Py

= .P,.+Pp.. . ..
Y pij pjk + pi_] pkx pl_] pk_] + pi_k p_]l

(F. 6)
P Baoth Pip B BB
b e
2
M:p -4q (F.7)
where
p=p -2 (F.8)
q:l -p+'y (F.9)
p=a+b+ct+dtet+ (F.10)
and v is as defined in equation (F.6)
n n N
_a _1_ (-p-v ( B - v) ]3) n=0 F.l1
) = 27[2 ) Cg +(z (‘1\7 i#j (F.11)

v=IM

M is defined in equation (I'. 7)

2 2 2
= 12 P 2
B =2p; Py ¥ Pyj Py + Py Py + 2P Py P

j ji

2 :
+ PR EB Pl +p Piiot Bys Pag Pis

ij pji i) )i

.+ p..P

ij Pjk P

ki
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- 2
pij Pig Py ~ 1_] p_]k pk_] le Pri pk_]
2
Pij Pi ~ Pij Py 7 Pik Pji Py~ Pik Pjk Pij
p

2
" Pik Pri Pij ” Pik Pkj ~ Pik Pyj (F.12)

¥ and a are as defined in equation (F.6) and p is as defined in equa-

tion (F. 8).
¢ii(n)=-f;-% [('—;:Y)n (Miﬁ)*(%’)n(wéﬂ n=0 (F.13)
where

= +
8 = Py Py + Py Py ¥ Py Py
w=6 -9
2 2 2 2 2
¥ = Pix Py " Pik B5i 7 Pik Pjk ™ Pij Pri ” Pij Py
2 2 2 2
© Pyj Poie ¥ Py Prg ¥ Py Prj ¥ Py Py

LB p?i * Py pjk TN jk P Pij Pri
T Ry Pyg Phg SRRy, Pyg Py (F.14)
Pik Pui P55 7 Pik Pri Pik T Pik Pij P
" Py5 Pri Pii 7 Pij Pij Pii ¥ Pige Puei P

2 2p.. . P.
* 2P;; By Pugj * 2Py Piy Py P Big B

1R, B P R Bl Bl

-193-



and ¥, p and v are as defined in equations (F.6), (F.8) and (F.12),
respectively.

n/Z =
¢ij(n) = 53 - C_l‘y_ [a cos n6 + B/y sin n6] ?;jo (F.15)
where
y= ¥-M

M is defined in equation (F.7) (F.16)

6 = tan™ (~y/(-p))

and a, B, v, q and p are defined in equations (F.6), (F.12), (F.6),
(F.9) and (F.8),

respectively.
5 n/Z
¢ (n) = Ay O [-w cos nf - x/(y) sin n6] n=0 (F.17)
u Y Y
where 6, w and x are defined in equation (F.14); y and 6 are
defined in equation (F.16); and v and p are defined in equa- (F.18)
tions (F.6) and (F.8), respectively.
a Zp.n'rn a _n n=0
d>1(n)=—+——-—?'r 1;& (F.19)
! (p-2)p !
where
Bo= pij(-pij-Pik-pji-pjk+pki+pkj) +2p,, Py
2 -
S ZP (F.20)

and a, ¥ and p are defined in equations (F.6), (F.6), and (F.10),
respectively.
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.3 R/ > F.21

where

Coflpazl B2 2 .
M= Py ¥ Py T Pyi T Pik T P T Pi ¥ AUPPy FPP

TP Pl PP Py TR Pa P Pl TP P ) (F.

and 6,7, p and T are defired in equations (F.14), (F.6),
(F.10), and (F.20), respectively.

{p,.-a) (p-1) p,. -0 1
= 1 6 + 2 + 1 2~ e n=0
)
where a and p are defined in equations (F.6) and (F.10)
1 for k=0 (F.
e, 30 _{0 otherwise
(p-24p,, -9) (pr1) . -8 -1 .
b.n) 8 —— 0 5(n) 4+ —0r + ()" ' nzo (F.
ii p-1
p-2 p-1
where 6, p, and 6(k) are defined in equations (F.14), (F
(F.10) and (F.24), respectively.
¢ (n) = S sn-1)+a =0 (F
1_] n) = (-a) (n) (le-a) (n- ) 1 *J .
where a and 6(k) are defined in equations (F.6) (F
and (F.24).
= -p. .- - " =0 F.
¢ii(n) (1468) 8(n) + (1 Pi Py 8) 8(n-1)+ 6 n (

where 6 and 6(k) are defined in equations (F. 14)
and {F. 24).
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APPENDIX G

THE USE OF THE HYPERGEOMETRIC FUNCTION IN THE

DETERMINATION OF THE EXPECTED VALUES OF THE STEADY

STATE PROBABILITIES IN A SPECIAL 2-STATE MARKOV

PROCESS.

b 1-b
n_n

where a is assumed exactly known, but "b'" has the Beta distribution

fb(x) = fﬁ(xlm, n)

G.l. Determination of the Expected Values of the Steady State Proba-

bilities

For a given (a,b) pair

a a
mir) = B(5) = | s o
0
1
K a 1 m-~1 n-1
:S -y m) x (1-x) dx
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This is not an easy integral to evaluate in its current form.

However, the substitution w=1 - x leads to

1

-1
a 1 n-1 m-1 1
E('rrz) S e B, ) S\ w (1-w) E - w(m] dw (G.1)
0

It is fortunate that this integral has appeared elsewhere, namely in the
solution of differential equations arising in certain physics problems.

24
More precisely, we have the hypergeometric function, F, defined by

I'(c) [

Fla,c-blelz) = pfigy | w0 (1w v aw  (G.2)

F is tabulated only for values of the 4 parameters relevant to the
physics problems for which the function was first conceived. Unfortu-
nately, those values are not appropriate for the Markov process analysis.
Therefore, we must find a convenient way of calculating F.

F is expressible as a convergent series

pqz , p(ptl) q(q+l) 2
L+ ar t w2 2t

F(p,q|r]z) = (G.3)

(convergent provided |z| < 1).

Using equations (G.1) and (G.2), there results

2
4Morse, P. M. and Feshbach, H., Methods of Theoretical Physics,
Part I, McGraw-Hill, 1961, p. 591,

25 Ibid, p. 388.
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a 1
B(ry) = 731 Fl1nlmenl g

Then, utilizing equation (G 3) (valid "." 1/(a+1) < 1), we obtain

2

__a n 1 n(n+1) § A
E(”Z) Ta+l [1 e hn ( a+l)+ {(m+n)(m+n+l) (a+l) e
. n(ntl) ... (ndk-2) LIS (G.4)
ot (m+n)(m#n+l) ... (m¥n+k-2) (a+l) k
~— — - —
kth term counting the "1" as the first term
where
k
_ n{nt+l) ... (ntk-1) _l\ 1+ n+ k (_l_
X 7 {m+n)(m+n+l) ... (mint+ic-1) | atl m+n+k\ a+l)
. 2
(n4k) (n+k+1) 1 - ]
(m+n+k)(m+nt+k+l) (a+1) trt
But

n+j

—_— <]
m+n+t)

k
. n{n+l) ... (ntk-1) 1 1 1
’ Rl: : (m+n)(m+n+l) ... (m+ntk-1) (a-l-l ) l:l +(a + 1)+ (a+l)+ o

a n{n+l) ... (ntk-1) = k(a_-H)
" (m#n)(mintl) ... (m+ntk-1) a-H) a

Therefore, substituting in equation (G. 4) there follows
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E(m,) = 2 [1+ = (—11)+—“(“—“)—($)2+

a+1l m+n \at (m+n}{m+n+l)
(G. 5)
k-1
4 — nfntl) ... (otk-2) L) ]+E
< (m#n){im+n+tl) ... (m+ntk-2) (a.+1 k
where
a n(n+l) (n+k-1) 1 k
- < * o @ -l —— s
Ek a+l Rk (m+n)(m+nt+l) ... (méntk-1) ( a+tl ) (Gii6)

It is clear that Ek can be made arbitrarily small by choosing
k sufficiently large. Hence, we can come arbitrarily close to E(7TZ) by
selecting a large enough k.

Finally,

E(r)) = 1 - E(n)

G.2. Asymptotic Check on the E(7,) Formula

In equation (G.5) suppose we fix m/(m+n) - t and let m and n

both tend to infinity (this is equivalent to saying that "» " is exactly

known). Then,

lim E(T.) = lim a n 1 4+ =B
m, n—w 22 " m,n—w a+1 m+na+l m+n
1

n 1
R v
. -7 +Ill:r

1 a+t+l
1
i m+n

2
a 1 1-b40 (1
= L (1-b) —a= o (Uety) SmBO L N
a+1|:+‘ gy el EE Ay g s (a-l-l) :]
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It

2
a l1-b 1-b
a+1|:1+a+1+(a+1) it tE ]

_ _a 1 _ _a_, a+l
_a+11 1-b~_q+'1 a+l-14+0b
a4+l
a
T a+b

which is the exact steady state probability when "a'" and "b" are known

exactly.

G.3. Monotonic Behavior of E(7r2) as a Function of m + n for

Fixed E(b)
n J
n+j m+n m+n
m+n+j j
1 52 m+n
1 -b+ min —
= ; (m/(m+n)=E(b)=b)
o m+ n
+] j J T J
d(ﬁ_.L) (1+__>(- ) (1 b \(-
1+
mint) _ gy (m-l*-n)Z i (m+n)2
d{m+n) 2
(1)
m+n
-b.
J <0 for j> 0 e

2 ] 2
(m+n) (1"'&)

Therefore., (n + _])/(m+n+_j) decreases monotonically as m + n increases.
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But, we observe from equation (G.5) that each term in E(?TZ) is a

multiple of factors of the form (n + j)/(m+n+j) and terms that don't

depend on m + n. Hence, for fixed E(b), E(7,) monotonically decreases
&

as m+ n increases.
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PORTIONS OF THE E(w,) VALUES OBTAINED THROUGH

APPENDIX H

THE USE OF THE HYPERGEOMETRIC FUNCTION

Consider the 2-state Markov process with

P =

where "a' is exactly known but fb(x) =f
give values of E ( 7r2) accurate to 5 significant figures for the various com-
binations of a, b = m/(m + n), and m + n.
results obtained using a computer program and equations (4.1) and (4. 2).

(Presentation of the entire results would have required a prohibitive amount

b

a

1-b

(x| m,n). The following tables

These are only portions of the

of typing).
i a=0.2
m+n\b 0.2 0.4 0.6 0.8
10 .54432 . 35584 .25988 . 20341
30 . 51606 . 34080 .25319 . 20109
50 .50979 . 33780 . 25190 . 20065
100 . 50495 .33556 . 25094 .20032
200 .50249 . 33445 . 25047 . 20016
500 .50100 33378 .25019 20006
1000 . 50050 . 33355 . 25009 . 200083
o .50000 . 33333 . 25000 .20000
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m+n\b 0.2 0.4 0.6 0.8
10 .69196 .51785 . 40962 .33714
30 .67601 .50616 . 40321 .33458
50 . 67240 .50372 .40192 .33408

100 . 66958 .50187 . 40096 .33370

200 . 66813 .50093 . 40048 .33352

500 . 66726 .50037 . 40019 .33341

1000 . 66696 .50019 . 40009 . 33337
% . 66667 .50000 . 40000 .33333

a=0.6

m+n\b 0.2 0.4 0.6 0.8
10 . 76598 . 61338 .50813 .43208
30 . 75590 . 60469 .50276 .42974
50 . 75362 . 60284 .50166 . 42927

100 75184 .60143 .50083 . 42892
200 .75093 . 60072 .50041 . 42875
500 .75037 . 60029 .50016 . 42864

1000 .75018 .60014 .50008 . 42860

% . 75000 . 60000 .50000 . 42857
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a=0.8

m+n\b 0.2 0.4 0.6 0.8
10 . 81095 . 67687 .57815 .50308
30 . 80403 . 67027 57373 .50104
50 . 80247 . 66885 .57282 .50062

100 .80126 66777 .57212 .50031
200 . 80063 . 66722 .571178 .50015
500 . 80025 . 66689 .57157 .50006

1000 . 80013 . 66678 .57150 .50003

© . 80000 . 66667 .57143 .50000
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APPENDIX 1

SUMMATION EXPRESSION FOR E(1r2) FOR A 2-STATE

PROCESS WHERE BOTH TRANSITION PROBABILITIES

ARE INDEPENDENTLY BETA DISTRIBUTED

-a a falx) = fa(x[m, n,)

P:
b i-b foly) = f5(ylm, n,)

where m, ,n,,m, and n, are positive integers

E(m,) =‘_('fl

o "o

B(W,,“:)}B(MJ,nL)E(”.\)=\,(O’Xm’ (f-X)n'-'fo vty y " ) dgax @)
\_‘_V__J

I

-F (xlmunr) .F (Hlna.,n)dyd)(

X+y

Substitute 2 =Xx+y
' - 1+X
'I°j —(zw) (r+x 2)™ 'dz

n Ml g EP ny-t=J
g o x>"z“*"'fl£é,< e (o) o

. n-l 3 ny~l=d [1€X 40 —k-j-3
= ( a” )( a:-/)((f)() (-,) JC z 2 thy, ~K-y e

1\

The term where k= M-t and J=0,-1 will produce a logarithm .

Therefore, we must separate it
Ma-2 ny~1 D . n)+ng‘-1‘k-J
s = 'NL;-I)_ Lk 2 n, -1 Jo_ ".\'J[ (14x )
& (043 (3<) = ( <) (1) -1) Sevaer
mn, tn,~ 1-Kk=) o a2 . -1-J
- -X——L-—J f )™ () () (1) Raf=d

m,+n, -2a-k-y J=o

A Gex) " y x " "JJ n,-! ny-i 1+x
[.-n,_—l-,] n;( J + (-x) (H‘Y) Y x

Substituting this expression info (T.1) leads to
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B(mi,n) B(ms,n,) E(T,) f x " (1-0)™ {:é: (% 1)t ot
[(!4 JM,+n h-a-k Mac! (”; )( I) n,~I-j _ 'n,:é-t (,,3_)(“\()%_'):\‘-4-./

= My+n, -2~ k—J

My +0, ~2-k-y = ,..'L - na=i-4
g J+(—l)n‘ [(H-x) | i ‘)( 1)

Mo+ N, —2-k~-j T

—\,niq (" } (14x)” (- )™ —J _n& w] + x "'(-1) ;‘(Hx)n‘_' Hx Ldx

n,~1-J

Expandmg The (I+>() terms , we ob‘f‘am e .
M-~ ng_ -1 ;-M -2~ Iy = = a0, -2~
Bl ) £C) = 5B ety 1)

koqo

"’0 M, 4N, —d- k—J
J yv'\.+k+r( )n, d
L [—-X X
N k-j -y
VEE E CRICINUCTIE) 1 peed e,
k=0 jzo reo M+, ~d-k-y o
+(_l)nuﬂ£ﬁ X (n;—'}( )"x ‘J< ﬂr) f M+, - l( L
Jeo -
+(_( My n-\-‘L J (n_; )( )’\;-‘-J(:i) J!xn|+‘m’.\+n+r—~)’_l(l_x) "‘l'ldx
V= ° "‘° n,-i-}J

M-t Na~l 0
L) .L . - n,-1 mtn -1+stt
( ) ( )C )( ') J dn (14x) dx
The first four ferms involve 8efa integrals; the last fwo
are evaluated through the use of the following formulas Taken

from integral +ables ™

S'Oto

26DeHaan, D. B., Nouvelles Tables D'Intégrales Définies, Hafner, 1957,
Tables 106-107.
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| - 2 | 2a+! (_')I-l
JO\UV(”H)H dy = Tas1 v + 3oy 5— u

) . 2a u-1
‘fo \U»(lty)gla 'dy = o7 EI (—ul)
| b a p-i b a ,ay (-1)"
and fo(dfxy) (1-5?) Yy dy = (-1) b,‘u=§o (u (PHH})
Then L
a=2 n, -f Mot -a-k = N n,—1i M,,_-Mfl-k)
B(mm) Blnan) E(T) = 2 & BTN
k=o \/ 0 =9 M,_‘+n_‘ — k_J.

« B(m, +k+r+l n, )

= - ny+k i ny-t
+ mél ! (““ l) (“') ( )( ) B (M An 0, +r- =), N, )

k=0 j-o r—o My 4N, —2-k—y
st EE ey

J=0 oo - Ny -i-y T BNy 40,0, )
M, -2 - n—t-«
+ (_') 2 é 2 (ﬂ_,_ £y \/
J=0 r=q )h(-l-d )}3("\' A== n,)

+ (- )M: na-! n. (n*—l)(m')( Wi X (m,+nm Hs+t)
yrt & ( n;-) = (et

k=0 (N, tm, +5k)?

where K (m +m,+s +¢)

nptm s+t (_’ ) u-1

— . . = when M, +m +stt is even
mAm ts+t u= u
= mtm, s+t ).‘
2 dn 2 + S = %— when T)H-M,ff#"t
motm,+s+t mtm+stt  u= 1S odd.
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APPENDIX J

DETERMINATION OF THE EXPECTED VALUES OF THE STEADY

STATE PROBABILITIES FOR A SPECIAL 3 - STATE PROCESS

l1-a-b a b
P = c l1-c¢c-d d
e f l-e-f

Where b, ¢, d, e and f are all exactly known, but t = T%E is Reta

distributed, i.e.

(xm,n) = e ¥ ™! 0 ¢ x 2 1

ft (x) = B s

i

From section 4.1.1, we know that

ce +cf +de
_ ce+cf+de _ —1-b
™| "ad+ae+af+bctbdfolfcetcitde a bc+bd +bf+ce+cf+de
(d+e+f)1_b-l- e
{e+n 2 + 2
and ¢ = aetaf+bf - 1-b 1-b
2 same denominator same denominator
T = ———A and 1w = ————Dt+G
1 Bt + C 2 Bt + C

Where A, B, C, D and G are constants defined by

ce + cf + de

A 1-b

R VA D

w
1

d+e+f
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bc + bd + bf + ce + cf + de

¢ = 1-b

D=e+f ...(J.l)
_ bf

and G —m

Fortunately the situations here are closely related to those studied in

Appendix G.

1

m-1 n-1

- A _ A 1 t (1-1)

E(WI)EE(Bt+C)_F S‘O e B (m, n) dt
‘“tE
Setting w = 1 -t and simplifying gives
1 -1

_ A 1 n-1 m-1] ] B

Elr) * 53¢ Fmw go S T R e L O

A

. E ("1) *BiC F(l,n[m+n|B_) (convergent becausc—B—E—c< 1)

B+ C
Where A, B and C are defined in equation (J. 1).

Now E (r,) = (L L e

G
Bt+C)

Bt + C)
Clearly, the second term presents no difficulty as it is similar in form

to that appearing in E (rrl). The other term is treated as follows,

Dt D 1 & t m-1 n-1
Egrd * 8 pmw ), Lo © 00«
B

Substituting w = 1-t and performing some algebraic manipulations leads to

Mim+n+l)

1
Dt . D m n-1 m B -1
E(Bt+c)' B+C'(m+n) M (m+1)[7(n) -(0 SRR ¢ [1'B+C wl™ dw
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Using the definition of F {equation (G. 2) of Appendix G)

Dt _ D m - . B
E ) = g i) F(l,n|m+n1-l|E—+—C-)

_ D m B G - B
Hence. E(‘n’z) -m (m) F (l, n‘|m+n+1|B+C) +m F (1, n|m+n!m)

Finally, E (1r3) =]1-E ('rrl) - E ('rrz)
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APPENDIX K

TABLE OF SIMULATION RESULTS FOR 3-STATE STEADY
STATE BEHAVIOR WHEN THE TR.ANSI'I'.ION PROBABILITIES
ARE MULTIDIMENSIONAL BETA DISTRIBUTED

Within Within

95% 95%

Fxpt. Sarple _\g- Cont - \g. Coni.
No. Size (7rl)e AT Rggion(wz)ex T, T, Re?’gion TPD.

x10° 'x10”

1 7001.33681.3370 | 4.32 | Yes |.2211}2176 | 3.81 [Y ! 0.7
2 7001.2528).2470 | 2.88| Y 3199 1.3159 | 3.16 | Y | 2.0
3 7001.2988].2929 | 2.20 | No |.3382].3342 | 2.24 Y | 2.0
4 750 .4094].4101 | 1.38 | Y .28941.2873 | 1.06 [N | 0.4
5 700/.3807].3685 | 5.49 | N |.2749[.2720 | 3.65|Y | 3.0
6 7001.4361].4278 } 3.67 | N |.2349|.2387 | 3.34 | Y 1.7
T 700].56171.5652 | 5.63| Y .2043].1900 { 2.84 |N | 2.5
.8 700(.3099].3005 | 2.90 | N .29491.2878 | 2.60 [N | 3.3
9 700].6450|.6572 | 3.85 | N |[.15121.1471 { 1.99|Y | 2.4
10 7001.4094|.4082 2.04 Y .28941.2885 | 1.65|Y | 0.3
11 7001.4775].4908 | 5.75| Y .3708].3691 | 5.63|Y | 2.6
12 700).14701.1385 | 3.00 | N .52451.5223 | 5.42 )Y | 2.1
i3 700|.4266|.4406 | 4.91 | N | .3961(.3907 | 4.55}1Y | 2.8
14 | 700(.3327|.3307 | 2.43|Y .3434([.3410 | 2.36 |{Y | 0.9
15 700(.2523(.2512 | 2.73| Y .4997/.5090 | 3.87|N | 1.8
16 700|.3467].3455 | 2.35 1 Y .35521.3569 | 1.93|Y | 0.3
17 |1200].2727].2980 | 5.27 | N | .5455[.5306 | 5.90 [N | 5.1
18_ 700).2527(.2378 | 3.13 | N |.2780(.2772 | 4.11 |Y | 3.2
19 | 700(.2316(.2288 |2.61 ]|Y .2692].2624 | 2.59 N | 1.9
20 700(.3494}.3537 12.00|Y .3031}.3033 11.84|Y | 0.9
21 600(.14041.1377 | 2.24] Y .19301.1913 | 2.57|Y | 0.8
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Within With_in

- 5, &i"é
El‘:;%t. Sizee (wl)eJ% 7?1 S;r-l _?egion (WZ.)ex. 7?2 S??Z -gégion TFPD.
x10 x10
22 800].3882].3901 | 2.69; Y .28241.2820 | 2.70| Y | 0.4
23 | 800].3882{.3922| 2.09| Y .28241.278312.09]1Y | 0.8
24 [1050}.2727|.2848 | 4.00| N | .5455[|.5362 | 4.55) Y | 2.4
25 700|.2527}|.2467| 1.85| N .27801.2808 12.45]1Y | 1.2
26 | 750/.4094}.4101; 1.38| Y .28941.2873 | 1.06|Y | 0.4
27 {1000].2000(.2012; 3.77] Y .4000{.4085 | 5.011Y | 1.9
28 |1000}.2000}.1955 | 2.26| N | .4000}.3992| 3.021Y | 1.1
29 11000{.2000(.1996 | 1.76 | Y .4000}.4011 | 2.31|Y | 0.2
30 |1000|.2857}.2864 | 1.87| Y .2987|.3016 | 2.21]Y | 0.7
31A 1000|.3929(.3916 | 1.97| Y .3750{.3740| 2.05}Y | 0.4
32 110001.2368(.2377§ 1.56} Y .42111.4206 | 1.34}1 v 1 0.2
33 |1000).2148).2142 | 1.21 | Y .4003(.3989 | 1.16| Y | 0.4
34 |1000).35931.3592}10.95| Y .3353].3351} 1.01{Y (0.1
35 |1000{.2527]|.2506 | 0.98 | N .3571|.35851 0.871Y | 0.4
36 }1000(.2710].2691 | 2.84| Y .28971.2907] 2.82|Y | 0.4
37 |1000).2963}.2970 | 3.35| Y .3333|.3421{ 4.16 | N | 1.9
38 |1000}.2353].2416 | 3.03 | N .5882].5858 3.63|Y | 1.3

: ) T i =1,
Note (713)ex. and 7, can be obtained from T AT, b,

T.P.D. is defined in equation (4. 4).

( See Legend for Experiment Numbers on next page.)
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Legend for Experiment Numbers of the Above Takle

a b c
Note: To save space a, b, c/d, e, f/lg,h,i = d e f
g h i
" =
Expt, No. M Category

1 3, 2, 3/2,2,3/2, 1,3 L), L, L e, 80y b, 6, 08
2 212 7/ 2; 1, 3(l2, 2, 3 I, B, B o, M g Ly, B
3 3,12, &/11, 3, 8/ 2, 3, 3 L,H,H/H,L,H/L,L, L
4 3, 8, 9/11, 1,11/11,11, 3 L,H,H/H,L,H/H,H, L
5 9, 3, 2/2,2,3/1, 2,3 H, L, L/ Ly Ly L/ L, Iy L
6 11, 8 8/ 2,1, 1/3, 1, 3 H,H,H/L,L,L/L,L, L
7 9, 2, 1/11, 2,11/ 1, 2, 2 H,L,L/H,L,H/L,L, L
8 7, 9,10/10, 2, 8/ 1, 2, 2 H,H,H/H,L,H/L,L,L
9 12, 1, 3/12, 3,12/12,12, 2 H,L,L/H,L,H/H,H, L
10 12,11, 9/ 9, 3,11/ 9, 7, 3 H,H,H/H,L,H/H,H, L
11 7, 1, 2/ 3,8, 1/2, 3, 1 H,L,L/L,H{HL/L,L,L
12 12,12,10/ 1, 9, 3/ 1, 2, 3 H,H,H/L,H L/L, L, 1L
13 8, 2, 2/ 2, 8, 3/11,11, 2 H, L,L/L, 8, L/H,H, L
14 12,12,10/10,11,11/3, 3, 3 H,H,H/H,H,H/L, L, L
15 9, 8,10/ 2, 8, 3/ 7, 9, 3 H,H,H/L,H,L/H,H, L
16 11, 8, 8/ 7, 7,12/ 7,10, 2 H,H,H/H,H,H/H, H, L
17 8, 1, 1/ 1,18, 1/ 3, 3, 14 H,L,L/LL,H L/L,LL,H
18 11, 8, 9/3,8,3/2 1, 7 H,H,H/L,H,L/L, L, H
19 8, 7, 8/8, 9,12/ 2, 3, 8 H,H,H/H,H,H/L, L, H
20 11, 8,10/10,9,11/10,10, 10 H,H,H/H,H.H/H,H,H
21 10, 10, 20/10, 15, 25/ 2, 3,15 Test Sequence
22 1, 2, 2/ 4, 1, 5/ 6, 3, 1 Low Diagonal, reasonably

low elsewhere
23 2, 4, 4/ 8, 2,10/12, 6, 2 2 x No, 22
24 16, 2, 2/ 2,36, 2/ 6, 6,28 2x No. 17
25 33, 24,27/ 9,24, 9/ 6, 3,21 3 x No. 18
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Expt. No. M Category

26 24,22,18/18, 6,22/18,14, 6 2 x No. 10
27 6, 2, 2/ 1, 7, 2/ 1, 2, 7 Miscellaneous
28 18, 6, 6/ 3,21, 6/ 3, 6, 21 "

29 30,10, 10/ 5,35,10/ 5,10, 35 i

30 15, 6, 9/ 8,24, 8/'8, 6,26 "

31 15, 9, 6/12,15, 3/ 6, 9,15 &

32 25,10, 15/10, 20, 20/ 5, 30,15 U

33 10, 22, 8/10,15,25/ 8,16,14 "

4 3,15,12/24, 4,12/16,16, 8 "

35 4,20,16/ 8, 4,28/20,25, 5 U

36 3, 1, 6/ 2, 3, 5/ 3, 4, 3 "

37 14, 2, 4/ 2,16, 2/ 6, 4,30 "

38 32, 4, 4/ 3,54, 3/ 6,12,42 "
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APPENDIX L

THE FORM OF THE STEADY STATE PROBABILITIES IN AN

N-STATE MARKOV PROCESS

For the simulations of the steady state behavior of 3 and 4
state processcs (see sections 4,1.6 and 4.1.7), it was necessary to
write out expressions for the steady state probabilities for the cases
of exactly known transition probabilities. The purpose of this appen-
dix is to point out some general properties of the form of the steady
state probabilities which became evident from a study of the 3 and 4

state cases,

In general, to obtain the steady state probability vector

= f{w,, m,, .., m,) for a given transition matrix P we solve the
— 1 2 N N
set of equations T P = ¢ and jgl 1rj =1.
l-al-a2 al a,
For 3 states with P = bl l-bl-b2 b2
I_ <, <, l-cl =<,
b
CAC R T, Tib. racta :l-:la-'-bb{l-caz:; +2:lc +b c +b c_  +b,c
12 171 12 21 272 272 11 172 271
) ajc, +a;c, +asc,
g2 denom.,

alb2 + azb1 + azb2

denom,
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For 4 states with l-al—az—a3 a; a, ag
b1 l-bl-bz-b3 b2 b3
F =
c1 c2 l-cl—cz—c3 c3
dl d2 d3 1--d1—d2-d
(blcldl + ulcld2 +b1c1d3+blc2d1 +~b1c2d2 +b1c2d3 +b1c3d 1.+ b1c3d2 +
"1 - bzcld1 +b2c1d2+b2cld3+b2c3d1 +b3c1d1 &-b:‘}c1 d3+b3c2d1 + b3c3d1

D

Where D = sum of 4 expressions (64 terms in all) similar to the numerator

of:rrl.

(The other 3 expressions are the numerators of T, Mg and 1'r4).

Also, for 2 states with 1 -a a
P =
b 1-Db
_ b
T ~ a+b
- a
and To B T

From the above results for the 2, 3 and 4 state systems, we can
now suggest the following general statements about the form of the steady

state probabilities of an N-state Markov process.

i) For a given process, every steady state probability will have

the same denominator D, i.e. wj = Nj where D = l\il. Nj
D j=1
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ii} For an N-state process, D is the sum of NN-l terms -
these are all the possible (N-l)s'C order cross-products obtainable
by taking one off-diagonal transition probability from each of N-1
rows of the transition matrix in such a way that no cross-product

involving p 5 pji is obtained for any i and j,

jii} The numerator Nj is made up of all those terms of D
which do not include a factor from the jth row of the matrix,
Nj will have NN-2 terms,

iv) Any one off-diagonal transition probability occurs in

NN-2 terms of D, i.e., in -}T\Tth of the terms,
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APPENDIX M

TABLE OF SIMULATION RESULTS FOR 4-STATE STEADY STATE

BEHAVIOR WHEN THE TRANSITION PROBARILITIES ARE MULT]

DIMENSIONAL BETA DISTRIBUTED.

No. (out of

IE;I);?L Sg?zlzle (vl)ex. ;Tl (vz)ex. 1-72 (“3)ex. -3 935)7:‘”&2:&. T.P.
Region,

39 700 |.2601 |.2487 |.1938|.1876 |.2442 |.2475 1 3,58
40 700 {.2032 {.1873 |.2579|.2443 |.2787 |.2844 0 5.9
41 700 }.2926 [.2926 |[.1688|.1655].2653 |.2728 3 1.5
42 700 {.2654 |.2567 |.2450].,2358 |.2676 |.2653 1 4.0
43 1000 {.2654 |.2560 |.2450].2350 |.2676 |. 2661 1 4.2
44 700 |[.2757 |.2722 |.2496|.2455 }.2183 {.2177 1 1.6
45 700 |{.2438 |.2322 |.2463].2336 |.2481 |.2475 1 5.0
46 700 |.2889 |.2792|.20291.1823 |.2375|.2366 1 6.2
47 700 |.2889 |.2822]|.2029}|.1838|.2375|.2344 1 5.8
48 700 |.2598 |.2533 |.2322|.2235|.2632 |.2663 1 3.0
49 700 |.2619 |.2631|.2523}.2513|.2630 |.2631 3 0.2
50 700 {.2334 |.2334|.2632|.2625|.2757].2766 3 0.2
51 700 |.2363 |.2349 |.2455].2447 |.2508 |.2525 3 0.4
512 1000 {.2514 |.2517 |.3086|.3093 |.2640 |.2617 3 u.5
53 1000 |.2514 |.2510 {.3086 |}.3091 {, 2640 |.2625 3 0.4
54 1000 |.2514 |.2504 |.3086 |.3084 |.2640 |.2642 3 0.2
55 1000 |.2514 |.2511 |.3086 |.3094 |.2640 }.2631 3 0.2
56 1000 |.2514 |.2510 |.3086 |.3088 |.2640 |.2644 3 0.1
57 700 [.2593 |.2597 |.2827 |.2843 |.2352 |.2343 2 0.4
58 700 |.2672 |.2669 |.2251 }.2254 |.2892 |.2907 3 0.3
59 700 |.2661 |.2656 |.2459 |.2454 |.2231 |.2235 3 0.2
60 700 [.2511 |.2512 |.2812 |.2810 |.2390 |.2380 3 0.2
6l 700 |.2638 |.2639 |.2425 |.2418 }.2332 |.2339 3 0.2
62 | 700 |.2407 |.2412 J.2586 |.2579 |.2555|.2558 3 0.2
(ry)gy and ;74 can be obtained from m + w, + w3 + Wy =1

T.P.D. is defined in equation (4. 4).
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Expt.

39
40

42
43
44

45

46
47
48
49
50
51
52
53

55
56
57
58
59
60
61
62

Legend for Experiment Numbers of the Above Table

Bl

1, 2, 2, 3/ 3,1, 1, 3/ 2, 2,2, 3/ 2 1, 2,1
1,12,10,11/ 8, 3,11, 7/ 7, 7, 3,12/ 17,11,11,

o~

7, 2, 1, 3/ 3, 8, 3, 1/ 3, 1,10, 1/ 3, 1, 2,11

9) 7! 12) 9/12) 7! 8) 8/ 9) 12) 7’ 7/ 8’ 9’ 12) 8
18,14, 24, 18/24, 14, 16,16/18, 24, 14,14/16, 18, 24, 16
20,11, 8, 9/11,21,10,11/12,13,22,13/13, 8, 9,21

8, 20, 19, 23/22, 8,22,22/21,22,10,19/18,19,19, 11

4, 8, 3, 2/ 9, 1, 7, 6/ 6, 1, 9, 7/ 5, 3, 2, 7
8,16, 6, 4/18, 2,14,12/12, 2,18,14/10, 6, 4,14
17,15, 18,15/15, 15, 20, 22/23, 20, 22,19/21, 18,17, 16
24,16, 21, 15/ 23, 20, 20, 18/16,19, 19, 18/15, 20,18, 15
15,23, 23, 18/ 23, 24, 24, 16/19, 19, i3, 15/15, 16, 20, 22
19,22, 15,22/15, 17, 24, 19/22, 23, 21,23/22, 19, 22, 24
1, 4, 3, 2/ 3, 2, 3, 1/ 4, 4, 2, 4/ 3, 4, 3, i
2, 8 6, 4/ 6, 4, 6, 2/ 8, 8, 4, 8/ 6, 8, 6, 2
5,20, 15,10/15,10, 15, 5/20,20,10,20/15,20,15, 5
10, 40, 30, 20/30, 20, 30, 10/40, 40, 20, 40/30, 40, 30, 10
15, 60, 45, 30/45, 30, 45, 15/ 60, 60, 30, 60/45, 60, 45, 15
22, 36, 24, 29/37, 30, 28, 20/36, 36, 32, 39/29, 33, 29, 21
36, 25, 34, 26/ 36, 36, 39, 34/34, 36, 40, 28/ 33, 21, 38, 27
24, 32, 36, 29/27, 33, 21, 35/37, 25, 22, 24/34, 23, 23,33
36,.36, 39,22/ 28, 39,25, 29 /27, 35, 38, 36/39, 33, 33, 31
49, 39, 42, 33/42, 34, 30, 35/42, 43, 43, 42/ 30, 34, 30,49
49, 46, 47, 39/31, 38, 38, 39/30, 39, 45, 49/48, 45, 36, 31
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Comments

L throughout

L diagonal, H
off-diagonal

H diagonal, L
off-diagonal

H throughout
2 x No. 42

H off-diagonal,
higher diagonal

H diagonal, higher
off-diagonal

Random 1- 9
2 x No, 46
Random 15-24

Random | - 4
2 x No. 52

5 x No, 52

10 x No., 52

15 x No. 52
Random 20 - 40

Random 30 - 50



APPENDIX N

THE EXPECTED MEAN RECURRENCE TIMES OF A 2-STATE

PROCESS WHEN THE TRANSITION PROBABILITIES ARE

INDEPENDENTLY EETA DISTRIBUTED

Consider the 2-state Markov process with

where

)

fa(x) = f[s(xlm1 'y

\' Y s N .

"o ! 1"
For "a' and '® 2xactly known, the exact mean recurrence

times (n .‘s) are found as follows:
1j

v

come right go to state

back to 2
_ state 1 /_"k\\
n (1-a) « T4 aln_ +1)
il 21
and
- e T F (1D
21 {(b) - 1 + (1 b'(nZl+1)

ne
[§Y]
[et]
1



These two equations yield

- 1
217D
and
; _a+b _ __1_
] = =
1 b 7r1
Similarly,
- 1
M2
and
; v a+4+b _L
22 a 7r2

Now, let "a' and 'b" be independent Beta variables as indi-

cated above. Then,

. .aand b are

= a+b a 1
E(nll) - E(T) =14 E(_b-) =L+ ) E(.l;) independent
9 1
=14 ;1—1' T o E(T)
! m_-1 n, -1
S 1 1 27 R
E(T) B S y Btm;mn,) ¥ (1-y) dy
0
_Blmyling) my-2)! (gt (mptn,-L)!
ﬂ(mz,nz) - (mz-l-nz-Z).’ (mz-l)fw
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s v
mz-l
a1 =t
m,_ (m_+n_-1) m_+n
E(m )=1+4——2F— -1 2t
S (m +n Y(m,-1) = 1
1‘12+n2
Similarly,
o= 1
1-
m_{m_4n_-1) b( m +n>
B, ) -14 —— 1 _ 14— 1
"22 (m_+n_)(m_ -1) = 1
22 1 afm o
1 1
1 1
E(_ ) ml+nl-l i ml+nl
"2 m, -1 - - 1
! ar m._ +n
1 1
and
1 1
m. +n2 1 m2+nz
E(n,. ) = =
21 m 1 - 1
2 b T
m, +n,

222~
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APPENDIX O

STATE OCCUPANCY TIMES WHEN THE TRANSITION PROBA-

BILITIES ARE MULTIDIMENSIONAL BETA DISTRIBUTED

O.1. Determination of the Probability Mass Function of the

Occupancy Time

Consider an N-state Markov process with transition matrix,
P = (pij) where the pij's are multidimensional Beta distributed with
parameters mij'

Let u, be the number of the transition on which the system
leaves state i for the first time given that il is in state i before the

first transition.

From equation (4.6),

P | (klx) = LN (0.1)
i 71l

We want to know the marginal probability mass function on u,

1
pu_(k) =§ P, !p.:(klx) fp“(x) dx (0.2)
1 1 11 11
0
But
fpii(x) = fﬁ x|m,., Z m1J> (0. 3)
jA

(from section 3.2). Therefore, substituting equation {O.1)and equa-

tion (O. 3) into equation (O.2), we obtain
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1

m, . -1 &y
k-1 1 i~
PY (k) = g x (1-x) -p———u
1

x (1-x)J¢1 dx
p (m.., Zm.,
0 1

je Y
(zm,,-1>!( Sm..
; 1j ij
k) =
pu(( )

_2\!
i#i ) (mi.i+k 2).

k=1
(m. -1)! (Zm, ,-i-k-l)f
ii i i}

1

(0. 4)

This can also be written as

(m. Y{m. +1) ... (m_ . +k-2)
>m \ 11 11 11
e ijl (Emi)(zml,'}l) ..
J j J j J

=
. (Zm, .+k~1) LS
. 1)
\ J
pu.(k) =

(0.5)
Ao

m.
- 1i
Pi™ N
T m,
1Y
and (0. 6)
- 1
YiT N
Z m
jrleid
for then
/

224~



e B, WDt Botlk-2hw, Pt
Pit \ 14w A 142w, ) o\ Hk-Dw, =
p, (k) = (0.7)

(l-pii) k=1

0.2. Bounds on the Mean Occupancy Time

Using equation (O.4), the mean occupancy time is

) 0 (Em,,-l)! = m, _)(m,,+k-2)!

— Y i#i ij ii '
E(ui) - 2/ k pu.(k) - Z k (m -1) Zm. .+k-1)f (0. 8)

k=1 ! k=1 ( g Y

There is no apparent way to obtain this summation in closed form. How-
ever, a reasonable bounding technique has been developed. We are
primarily concerned with an upper bound siuce a lower bound can easily
be obtained by truncating the summation at a finite number of terms.

The process must. eventually, leave state i. Therefore,

o0

z p, (k) =1

k=1 '

Hence, from equation (O.5)

(m +k 2)!

0
N > (Zm 4k- 1)
d

k=1

=N

where
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(Zmij-l)! < Zmij)

. .

£ {m,  -1}! = (0.9)
ii

CcC =

is independent of k. Therefore,

0 1 - 1
2 .(mii+k:i)_' 1 (m_ -1)!
(Zm,,+k-l)!‘ T e 7 (Zm..-l '{ =m.,
k=1 Vj Y i M e Y
or, more generally,
o0
(a4k-2)! _  (a-1)! -

Z MFk-1)! ~ (boD) (bemy (7=l (0.10)
k=1

Now, equation (O.8) gives

2 k., bk -2
11

E(ui) - ¢ [ Zm, .+k.-1\!
S {11
k=1 \j

[¢ o]
(mii+k-2)3
< — e
Z (2m..+k--2)!
k=1 \j M

(mii-l)!

= c Emi,-Z I Em,_-l) (using equation (O.10))
j Y Y

That is,
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v = Mmoot
(?mﬂ' ) (#a"ij)(”“
E(u,) < ;

i gnu/f)' (?mij-Z).( Zmij-l)

j j#

or

<2m‘,-1)( Zm_,)
i 0\ Y

<
Efu,) Tm, -1
i# Y

Hence, E(ui) can be bounded as follows:

Sm..-1}!{ Tm._, ' Zm, . -1\ Tm_
(j v7) (jﬁ i) r o med (a7 5m)
(m. -1)! Z (Zm k- 1) S s Tm, -1
1 k=1 (jaei U
(0.11)
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APPENDIX P

DETERMINATION OF THE EXPECTED VALUES OF

THE TRAPPING PROBABILITIES IN A SPECIAL

TRAPPING STATES PROBLEM

Consider the Markov process with the transition matrix

1 2 3
P=2 0 i 0
3 - 0 0 i

where q, and q, are multidimensional Beta distributed. That is,

fql, qZ(X, y) = fp(x ylrnz.myml)

m. -1 m_-1 m_-1

0=x; 0=vy; and x+y =1.

For known q, and 9, let gj = pr{process traps in state j).

Then,

2
= + = = - - .
8, =q; *+(l-q,-q,) q, +(1-q;-q,) q; +... (P.1)

E
. o
=q 1 +(1-q-q,) + {I-q;-q,)" +...]
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4
L)
When q and a, become random variables, from equation (P.1)
2
But

m,+k-1 m m,_-1

k 1
E[q(1-q;-q,) ] = Wy g (1-x-y) x Ty dydx

Substituting z = y/(1-x) and performing the double integration gives

I‘(m ) m +m +m +k)'

B(m3, m]+k)
E[ql(l-ql-qz) 1= S, ) B(m2+l,ml+m3+k)
1 2 3
— (m m +k) ﬁ(rn 41, m_+m_+k}
2 Bl = Z 1 3
2 = (ml, mz,ms)
This simplifies to
o -
m, Hml+m2+n13) = (m1+k-1)3
E(gz) = (P. 2}
I(m,) (m,+m_+m _+k)!
1 k=0 1 2 3
Similarly,
[*a]
m_ I'(m, +m +m) (m +k-1)!
3 1
E(g,) = Z
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But we know that E(gz) + E(g3) = N Theréfore,

0
1yt
r(m1+m2+m3)(m2+m3) < (m1+k 18)4 1
5 '
1.(m1) =0 (m1+m2+m3+k).
or
® (m1+k~1).' r(ml)
Z = (P.3)
1
=0 (m1+m2+m3+k). (m2+m3) r(m1+m2+m3)
NOTE:

This checks with the identity (equation (O.10}) developed in

Appendix O if in the identity we substitute a = m, 4+l and b = m, + m,

1.
+m3+

Substituting equation (P.3) into equation (P.2), there follows

m
2
E(g,) =
mZ + m3
and
m
3
Elg,) =
m2 + m3
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APPENDIX Q

PROOF THAT E(N.R.|m,n,a;k) = E(N.R. |m, n, a)

Q.1. ALGEBRAIC PROOF

Equations (5.4), (5.2) and (5. 3) give

k
E(N.R. Im,n,a;k) = ;\ pBb(ri m, n, k)
od |

r=0 (5.4)

. E(N.R.|m+r,ntk-r, a)

{mt+r-1)! (ntk-r-1)! k! (m+n-1)!
r! (m-1)! (k-r)! (n-1)! (m+n+k-1)!

b(rl m, n, k) = (r=0,1,...,k)

Pg

{5.2)

and

a 1
- - { -~ . e 5.
c -I‘rZ rl) = F(l~n|m+n| a+1)<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>