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PREFACE 

There are two unusual features of the writeup of this 

study which should be mentioned at the outset. 

First,   due to the large number of symbols used,   it was 

felt that the reader would benefit from a glossary of symbols. 

Therefore,   such a glossary has been included at the extreme 

end of the report.    As Appendix F has been taken from another 

report of the author and it contains self-explained symbols,   the 

above mentioned glossary does not apply to that appendix. 

Secondly,   to make the reading of the main text easier, 

a considerable amount of theoretical development and numerical 

results have been placed in appendices.    It is hoped that this and 

the above feature will help convey the results of the research. 
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ABSTRACT 

In most Markov process studies to date it has been assumed that both 
the transition probabilities and rewards are known exactly.     The primary pur- 
pose of this thesis is to study the effects of relaxing these assumptions to 
allow more realistic models of real world situations.     The Bayesian approach 
used leads to statistical decision frameworks for Markov processes. 

The first section is concerned with situations where the transition 
probabilities are not known exactly. 

One approach used incorporates the concept of multi-matrix Markov 
processes,   processes where it is assumed that one of several known transi- 
tion matrices is being utilized,  but we only have a probability vector on the 
various matrices rather than knowing exactly which one is governing the 
process.    An explanation is given of the Baycs modification of the proba- 
bility vector when some transitions are observed.    Next,   we determine 
various quantities of interest,   such as mean recurrence times.     Finally a 
discussion is presented of decision making involving multi-matrix Markov 
processes. 

The second approach assumes more directly that the transition 
probabilities themselves are random variables.      It is shown that the 
multidimensional Beta distribution is a most convenient distribution 
(for Bayes calculations) to place over the probabilities of a  single row 
of the transition matrix.    Several important properties of the distribution 
are displayed.     Then a method is suggested for determining the multi- 
dimensional Beta prior distributions to use for any particular Markov 
process.    Next we deal with the effects on various quantities of interest 
of having such distributions ever the transition probabilities.     For 2- 
state processes,   several analytic results are derived.    Despite analytic 
complexities,   some interesting expressions are developed for N-state 
cases. 

It is shown that for decision purposes the expected values of the 
steady state probabilities are important qiantities.     For a special 2- 
state situation,   use of the hypergeometric function (previously utilized 
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in the solution of certain physics problems) permits evaluation of 
these expected values.    Their determination for 3 or more states 
requires the use of simulation.     Fortunately,   a simple approxima- 
tion technique is shown to generally give accurate estimates of 
the desired quantities.    An entire chapter is devoted to statistical 
decisions in Markov processes when the transition probabilities 
are multidimensional Beta distributed rather than being exactly 
known.    The main problem considered is one where we have the 
option of buying observations of a Markov process so as to im- 
prove our knowledge of the unknown transition probabilities be- 
fore deciding whether or not to utilize the process. 

In the second section of the study,  we assume that the tran- 
sition probabilities are exactly known,   but now the rewards are 
random variables.    First we display the Bayes modification of 
two convenient distributions to use for the rewards.    Next,   the 
expected rewards in various time periods are determined.    Fin- 
ally,   an explanation is presented of how to utilize these expected 
rewards in making statistical decisions concerning Markov pro- 
cesses whose rewards are not known exactly. 

Thesis Supervisor:    Ronald A.   Howard 
Title:    Associate Professor of Electrical Engineering and 

Associate Professor of Industrial Management 
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CHAPTER   1 

INTRODUCTION 

It is becoming increasingly evident that Markov process models 

are playing a more and more important role in the mathematical analysis 

of both military and industrial operations.    This increased practical 

importance necessitates further research in the fundamentals of Markov 

process theory.    This study is an effort in this direction. 

Practically all Markov process applications to date have assumed 

that all the relevant parameters (i.e.  the rewards and transition proba- 

bilities) are exactly known.    In many situations this has been and will 

continue to be a very debatable assumption.    The purpose of this dissertation 

is to study the effects of relaxing these assumptions to allow more realistic 

models of the real world situation.   The approach used leads to a statistical 

decision framework for Markov processes. 

Since Bartlett's pioneering work     in 1951 several theoretical studies 

have been devoted to the problem of estimating the transition probabilities 

of Markov processes (see Billingsley's article    for an excellent reference 

list).    These studies have been concerned with statistical methods that 

result in point estimates (i.e.  exact single values) of the transition proba- 

bilities.    In the present research a different approach,  that of a Bayesiap, 

analyst,  is to be used. 

1. Bartlett,  M. ,   "The Frequency Goodness of Fit Test for Probability 
Chains   ,  Cambridge Philosophical Proceedings, 1951 (47),   p.   86. 

2. Billingsley, P. , Statistical Methods in Markov Chains , 
Annals of Mathematical Statistics (U. S-), Vol. 32 (1961), 
No.  1,  pp.   12-40. 
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Prior knowledge about the unknown parameters (transition 

probabilities or rewards) is expressed in the form of probability distr4 

butions over the unknown parameters;   i.e., the parameters are con- 

sidered as random variables.    These prior probability distributions 

are modified through the use of Bayes/ rule when observations (perhaps 

in the form of transitions or rewards) of the Markov process are made. 

More precisely,   the a posteriori distribution is given by 

f 
x v       x 

(yi,y2 OV 
1     c n 

prior 

pr{Eilyi'y2 Vfx1(x, x hvri"—rn> 
12 n 

_ 1 f 

Pr(E.) 

a direct consequence of Bayes' rule,   x,, x,,   .. ., K • are the unknown 1      2 n 
parameters and £ denotes the observations.    The a posteriori distri- 

butions over the parameters,  unlike point estimates, clearly reflect 

our uncertainty as to the exact values of the parameters and this 

uncertainty can be incorporated when making statistical decisions about 

the process.    An excellent description of the philosophy of the Bayes 

* 
The notation is described in footnote number 12 found on page 36. 
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2a 
approach has been presented by Savage. Therefore,   we refer the 

interested reader to Savage's article for a justification of this approach 

rather than reproducing his ideas here.     Fortunately,  his article also 

contains an extensive list of references on Bayes procedures;.    In f=>ct, 

it is probably the best starting point to become familiar with the entire 

area of Bayesian statistics. 

The following,   in itself,   is an important reason for using a 

Bayes approach in the study of Markov processes.    Quite often prior to 

observational data the analyst knows considerable information about the 

unknown parameters,   but not enough for him to state outright that the 

parameters can be assigned exactly known values.    If the observations 

have significant costs associated with them,   the analyst must decide 

exactly how many observations are worthwhile.    A Bayes approach allows 

him to make his decision in a quantitative manner. 

In Section I we shall be concerned with situations where the 

transition probabilities are not known exactly.     More precisely,   Chapter 2 

assumes that we have c probability vector over several possible transi- 

tion matrices. 

a= [Q1'Q2 \ aQ] QJ 

where   a     is the probability that matrix     P  is being used (k-1, 2, . . . , Q). 

Then,   in Chapters 3,  4 and  5   we assume more directly that the transi- 

tion probabilities themselves are random variables.    Chapter 6 involves 

a brief look at continuous time processes where the transition rates are 

random variables rather than bcin,» exactly known. 

Savage,   L.   J. ,     Bayesian Statistics,     Recent Developments in Informa- 
tion and Decision Processes,   Macmillan,   1962. 



The approach of placing probability distributions directly over 

the transition probabilities is probably more appealing than that used in 

Chapter  2 where we deal with multi-matrix Markov processes,   processes 

where it is assumed that one of Q known transition matrices is being 

utilized,but we only have a probability vector on the various matrices 

rather than knowing exactly which one is being used.    However,   the 

multi-matrix approach does make the mathematical theory and computations 

considerably simpler in certain portions of the study.    Also,   as will be 

explained later,   it can be thought of as a step toward the combination of 

Mar'-.ov process theory and game theory. 

In Chapter 2,   with the multi-matrix framework assumed,   a 

detailed explanation is presented of the Bayes' modification of the 

probability vector (a) when some transitions are observed.    Next we 

determine various quantities of interest,   such as mean recurrence 

times.     Finally, decision making involving multi-matrix Markov 

processes is discussed 

As mentioned earlier,   in Chapters 3,   4 and 5, we assume directly 

that the transition probabilities themselves are random variables.    Un- 

fortunately the analytic considerations become far more formidable than 

those encountered in Chapter 2.     Still,   many interesting and potentially 

useful results are developed. 

Chapter 3 is concerned with the multidimensional Beta distribution, 

a most convenient distribution to place over the transition probabilities of a 

single row of the transition matrix.     In research work concurrent with this 
,     , 3 4 study two other individuals,   Murphy     and Mosimann   ,   have developed this 

Murphy,   Roy E.   Jr. ,   Adaptive Processes in Economic Systems,   Technical 
Report No     119,   Institute for Mathematical Studies in the Social Sciences, 
Stanford University,   1962. 

Mosimann, J E. , On the Compound Multinomial Distribution, the 
Multivariate ß-distribution, and Correlations among Proportions , 
Biometrnka. Vol    49 (1962),   pp    65-82. 
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distribution as a convenient one to place over the parameters of 

a multinomial distribution.    However,   their purposes in doing 

this did not include the  study of Markov processes.     After the 

important properties of this distribution are listed,   a method is 

suggested for determining the a priori parameters.     Next,   the 

Bayes modification of the distribution is outlined.     Then we con- 

cern outselves with the development of the multidimensional Beta 

priors for a specific N - state Markov process.     Finally,   two 

methods of simulating a multidimensional Beta distribution are 

suggested.     This simulation is required later in the study. 

Chapter 4 deals with the effects on various quantities of 

interest of having multidimensional Beta distributions over the 

transition probabilities.    A particularly detailed analytical study 

is made of the expected values of the steady state probabilities in 

the 2 -  state case.     For 3 or more states,   analytic complexities 

necessitate the use of simulation.    Detailed results of simulations 

for 3 and 4 state processes are presented.     First passage times, 

state occupancy times,   transient behavior and a trapping state 

situation are also studied. 

In Chapter 5 we attack the problem of making statistical 

decisions in Markov processes when the transition probabilities 

are not known exactly.     First,   the importance of the expected values 

of the steady state probabilities is displayed.     Then wo consider a 

specific 2 - state problem where the decision is based upon the ex- 

pected reward in s periods in the steady state and we have the option 

of buying observations of the process so as to improve our knowledge 

of the unknown transition probability.     The next section deals with 

an analogous N -  state problem.    After this,   several other items of 

interest for statistical decision purposes are discussed.     Finally, 

we look at statistical decisions under a transient situation. 

-5- 



In Section II we assume that the transition probabilities are 

exactly known but now the rewards are random variables.    First,   in 

Chapter 7,   a presentation is made of two convenient distributions to use 

for the rewards.     Bayes modification of them is also displayed.     Then 

Chapter 8 is concerned with the determination of the expected rewards 

in various time periods (both steady state and transient).    Chapter 9 

shows how to utilize these expected rewards  in making statistical 

decisions in Markov processes where the rewards are not known exactly. 

Chapter  10,   entitled    Conclusions   ,   summarizes the more 

important points of the study and also suggests  several related areas 

for further research. 
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SECTION   I 

TRANSITION PROBABILITIES NOT KNOWN EXACTLY 

In this section we remove the usual Markov requirement that the 

transition probabilities be known exactly;   rather we assume that the 

transition probabilities (or rates or matrices) are themselves random 

variaoles.     There are three primary objectives.     The first is to deter- 

mine a reasonably simple method for placing convenient distributions 

over the transition probabilities (or rates or matrices).     Secondly, we 

want to be able to easily modify these distributions through the use of 

Bayes' rule after observing some transitions.     Finally^it is important 

to know the effects on various quantities of interest of having distri- 

butions over the transition probabilities (or rates or matrices).     This 

latter consideration leads to a statistical decision framework for 

Markov processes. 

■7- 



CHAPTER 2 

THE MULTI-MATRIX MARKOV PROCESS 

2. 1 Outline of the Process 

Instead of placing probability distributions directly over the 

transition probabilities (as will be done in Chapters 3-5} we proceed 

as follows:    It is assumed that the Markov process is governed by one 

of Q given transition matrices whose elements are exactly known.     This 

one matrix is always used but we are not sure as to. exactly which one of 

the Q matrices it is.     In fact,   we define a probability vector 

*   =   [ul'    G2 QQ] 

where a .   =   probability that matrix  j   is governing the process.    A process 

defined in this way is called a multi-matrix Markov process. 

With this situation existing we show in section 2. 2 how to update 

the  Q  vector (by Bayes' rule) when several transitions of the process drv 

observed.    Next we discuss the problem of determining various quantities 

of interest such as the steady state probabilities.     In section 2. 4 considera- 

tion is given to possible cost structures for the;multi-matrix Markov 

process.     Finally, in section 2.5 we demonstrate statistical decision theoxy 

for multi-matrix Markov processes by analyzing a specific decision problem. 

Although the multi-matrix Markov framework is less appealing in a 

physical sense than is placing probability distributions directly over the 

transition probabilities,   it does make the mathematical theory and compu- 

tations considerably simpler in certain portions of the study.    Moreover, 

it can be thought of as a step toward the combination of Markov process 

theory and game theory.     The muIti-matrix process can be considered as 

• 8- 



follows.    An opponent (or nature) selects one of Q known transition 

matrices with which to run the Markov process^but we only know 

probabilistically which one has been selected.    We then have to decide 

upon our best course of action (as regards using the process,   etc.) under 

these circumstances.    Note,  however,   that it is assumed that the opponent 

(or nature) can not switch matrices once a choice has been made.    The. 

next step from the game theoretic point of view would be to allow 

switching.    Such a situation will not be considered here. 

2. 2 Bayes Modification of the a Vector 

2.2.1        Ignoring the Starting State 

Let B (F) be the event that a number of consecutive transitions are 

observed having a frequency count F - (f   .) where f     - number of transitions 

from state i to state j.     Two points should be noted.     First,   we do not 

require that the exact order of transitions be known.    Secondly,   we 

assume for the moment that the starting state provides no information 

about which matrix is being used.     This assumption could be satisfied in 

one of two ways;   either the process is forced to start in a particular state 

regardless of which matrix is being used,or we have absolutely no idea as 

to which state was the starting one. 

12 k Q 
Let the Q possible matrices be designated by    P,     P, . . .    P, . . .     P 

• u    i 12 k Q ,        _. with elements     p. .,     p ,    p.   ....    p. . respectively.    Then 
ij ij ij iJ 

pr (B(F) |    kP) = N(F)    II        (   Pn) 
13 -1 J 

1J 0°: 

f. . 
where       II      (   P     ) is the probability of a particular sequence that 

i j = 1        ' J 

would produce the frequency count F given that matrix    P is being used, 



and N(F) is the number of such sequences.K(F) is independent of the P 

matrix used,   hence will cancel out in the Bayes calculations.     This  is 
5 

fortunate as the expression for N(JF) is extremely complicated. 

Suppose that prior to the event B(F) we have a probability vector 

a ' = (a . 'i   a',...,  a',..,  a') where a    ' is the probability that 

matrix   "P is being used.     Then utilizing Bayes' rule the posterior 

probability that matrix    P is being used is 

N k      .    f!,       , 
N(F) II (   P..)      J% 

i.j^l lJ K 

Q N f.. 
N(F) II (mp..)    1Ja     ' 

l, j = 1 ij m 
m=l 

N k fii 
II (P..) J 

k i,j = l lJ 
ak 

)   a    ■   . n ,   (mP./1J 

L m 1, J  = 1 !J 

(2.1) 

m=l 
Hence,   the determination of the a posteriori probabilities is a relatively 

simple operation. 

Numerical Example 

Bob confronts his friend Ray with an interesting problem. Bob has 

two cages with an interconnecting door. He is also the owner of two white 

mice that are identical in appearance      The behavior of these mice in the 

5        Whittle,   P   .     Some Distribution and Moment Formulae for Markov 
Chains   ,   Journal of the Royal Statistical Society,   Series B,   Vol.   17 
(1955),   pp.   235 - 242. 
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cages  is exactly known to Ray.    Mouse no.   1 has a transition matrix 

1 2 

1 
1. 

2 

0.1        0.9 

0.7        0.3 

while the corresponding matrix for mouse no.   2 is 

1 2 

1 "0. 5 0. 5~ 

2 _0. 4 0.6_ 

Bob also informs Ray that he has selected mouse no.   1  wit;-' probability 

0. 8 and mouse no    2 with probability 0.2 and once selected the mouse is 

never replaced,   i.e.   the same mouse will always be in the cages. 

Now suppose Ray has observed six transitions (time periods) 

with frequency count 

F   = 
2 2 

2 0 

What should be his a posteriori probabilities that each of the two mice 

are in use ? 

This is a multi-mat i ix Markov process with N~2 and Q- 2. 

Using equation (2. 1) 

0.8 [ (0. l)l(0.9)Z iß. 7)2(0.3)°] 

,.2,„   „.2,„   _.2,„   „o, ,2,„   ^2,„    .,2, 

l. e a 

0   8 [ (0. 1)   (0.9)   (0.7)   (0.3)   ]  +0. 2[ (0. 5)   (0.5)   (0.4)   (O.b]"] 

. 137 

[  . 137.     . 863] 
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It is apparent that the six transitions have radically altered Ray's 

feelings about which mouse is being used.    Of course,   this is primarily 

due to the two 1-1 transitions which are very unlikely if mouse no.   1  is 

in action.    However,   this simple example does illustrate an important 

point.    If the possible matrices are significantly different,   considerable 

influence is played by the transition data in obtaining the a posteriori 

probabilities even if very few transitions are observed. 

2. 2. Z    Incorporation of the Starting State 

In many situations it is meaningful to incorporate the knowledge of 

the starting state into the Bayesian modification.    Suppose that the 

observed transition sequence  started in state s.     Then,   if the probability 

that the  starting state is s is a function of the specific matrix used,   this 

information should be utilized. 

Let s    be the probability that the starting state is s given that 

matrix    P is governing the process and let (B(F),   s) be the joint event 

that the starting state is s and a sequence is observed having a frequency count F. 

Then 
N ,k     . *. 

o, '   s,           II        (p..)   ij 
k                                      k       k       i,j = l          1J 

a, " = Pr(   P| E(F), s) =     -...(2.2) 

>_ 

N m 
a      '    s II (    P.,) 

m        m      ij = 1 IJ 

s      would generally be calculated in one of two ways' 

i)       If we could assume that the sequence of transitions was observed when the 

process was in thr     teady state,   then 

s     =     7T   ,   the s   ;ady state probability of being in state s given that 
K S 

.    k^ . matrix    P is in operation 
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ii)    If we were told that the process was forced to be in state u   n time 

periods before the sequence of observations,   then 

s,   -      <J5    (n),   the probability that the state at time a is s given 
k us & 

that the  state at time 0  is u and that matrix    P is being used.Howard 

describes several methods for obtaining this quantity. 

Numerical BteBJnple 

For the mouse example of the previous section suppose that Ray 

was also informed that the observed transitions occurred when the mouse 

had been in the cages for a long time and the first observed transition 

was from cage  1. 

1. 
P    = 

0. 1 

0. 7 

0.9 

0. 3 

[_C. 8 0. £] :1 
111 222 1 

Now we solve    m.    P =    it. and    it    P =    » to obtain     M =  [ 7/16,   9/16] 
2 

and     a ~ [ 4/9,   5/9]   respectively.      Then using equation (2. 2) there 

results 

Q"    =    [  . 135,   .865] 

The probability of mouse no.   1 has been reduced still further by the 

knowledge of the starting condition. 

6      Howard,   R.   A. ,   Dynamic Probabilistic Systems,   in preparation. 
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i 
2,2.3      a'   Unknown 

When a1 is completely unknown one might argue that a good 

approximation would be achieved by using 

/     s 
l_i     m 
m = 1 

However this is equivalent to assuming a   ' =   —-      and then using the 
k Q 

starting information as earlier,   for 

1 
Q sk 

a 
i i 

"QSm 

Sk 

Q 

m= l m=l 

2. 3 Determination of Various Quantities of Interest 

Many deterministic quantities in a regular Markov process become 

random variables in the multi-matrix Markov process. Furthermore, all 

these random variables are of the discrete variety because of the discrete 

nature of the probability distribution on the matrices. 

2. 3. 1        Mean Recurrence Times 

For a known transition matrix we can easily obtain the mean 
7   8 

recurrence times through the use of matrix or flow graph techniques 

7.      Ibid 

8        Kemeny,   J.   G. ,   and Snell,   J.   L. ,   Finite Markov Chains, 
Van Nostrand,   1960,   p.   79. 
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The mean recurrence time for state i is the mean time to go from that 

state to itself (staying in the state on the first transition results in a 

recurrence time of length 1). 

With matrix    P we have 

k _         , k_          k_ k_        , 
S   =   (    nlT        n?.Z      nNN> 

, k_ k 
where     n..  = mean recurrence time for state i       matrix    P is being used. 

11 & 

However,   because    P is only being used with probability a   ,   the mean 
K 

recurrence times now become random variables with probability mass 
9 

functions 

k_ 
pr ( n     =     n    ) 

li -.i 

,k_     , 
P-       (    n.. ) 

n .. li 
li 

k = 1, 2, Q 

P-    (x) 
11.. 
li a. 

k_ n.. 
li 

This random variable will have 

a mean value given by 

Q 

E(n..) 
li 

k_ 
a n.. 

k li 

k = l 

The probability mass function is 

p  (k) - pr A that a discrete random variable x takes on the 
value k ]■   k = k, ,   k^, . . . , k J 1        Z n 

Also p    I     (k | j) = pr. -j   that x takes on the value k j  the variable 
x 1 y u 

v takes on the value j V    k = k,,   k_, . . . , k  . 
' J 1        2 n 
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Numerical Example 

Again consider the mouse example. Given that a mouse is seen 

in cage i (i = 1, 2), what is the expected number of transitions until the 

moment when he first appears again in the same cage ? 

0. 1 

0. 7 

0.9 

0. 3 

0.5 

0.4 

0. 5 

0.6 

a    =     [  0.8,   0.2] 

It is shown in Appendix N that for 

P  = 
1 -a a 

b 1-b 

a + b 
11 

and      n 
a + b 

22 

1_ 0.9 + 0.7 
• .        n 

16 
11 

-—z——        =       TB— »   the mean time for mouse no.   1 -to go 

from cage  1 to cage 1.    Similarly 

1_ 16      2_ 9      2_ 9 
"22   =   T;       "ll =   4;       n22 =   5 

Hence,   n        and   n have the following probability mass functions; 
11 Ct Ct 
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Cage 

PS (x) 

11 

0. 8 (Mouse no. 1) 

0. 2  I 

I     ' 
■4 9/4 ' 16/7 

2. 28 
(Mean) 

p~  (y) TT 22 

0. 8(Mouse no. 1) 

I 0. 2 (Mouse no. 2) 

»/"')!    9/5 y 

1. 78 
(Mean) 

Figure 2.1- The Probability Mass Functions of the Mean Recurrence Times 

in a Multi-Matrix Markov Process 

Similar probability mass functions could be obtained for S   ,   the 

mean time to go from cage i to cage j,   with i ^ j. 

2. 3. 2    Steady State Probabilities 

When matrix    P is being used the  steady state probability vector 

is given by 

k r k k k       , 

As with the mean recurrence times we can think of the steady state 

probabilities as random variables 

k k 
e.g.    pr (* . ■    ff . ) = p      (   ft.) m o 

l i 7T . i k 
k= 1, ,Q 

or more directly we can say that 

In .)  -      ) a,      ir .,   the mean value of ir .,   is the expected 
l {_ k        l l 

k = l 

probability of being in state i in the steady state. 
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Numerical Example    (same as in previous section) 

E(* 4)   =   0.8 (—■) + 0.2 (|)   =.439,    this is the expected 

probability that a look at cage 1 after a long time will find a mouse in 

that cage during the period in which the look is taken.     Also 

E(TT    ) = 0. 561 

2. 3, 3    Transient Behavior 

As was done in section 2. 2.2 let     '9., (n) = pr. {   state at time n 
k ^ 

is j I   state at time 0 is i and matrix    P is in use } .    The unconditional 

multi-step transition probability, <fr..(n),   will again have a probability 

mass function and we can say that 

Q 
E r 4>     (nil     =        )   a,        $   (n),   the mean value of <t>.. (n),   is 

L    ij      J /       k ij ij 

the expected probability of being in state j at time n given that the state 

at time 0 is i. 

Numerical Example    (same as in section 2. 3. 1). 

Again using either flow graphs or matrix inversion we obtain 

l*12<rt"&    -      if   (-°'6) n>0. 

This is the probability that mouse no    1  will be in cage 2 at time n| mouse 

no.   1  was in cage 1 at time 0 and 

2  *!2(n)    =   |      -     |    (01>n n-°- 
This is the same as above except for mouse no.   2. 
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I 
,'.    E   \j\z(n\\ =   0.561   - 0.450 (-0. fa)n -C. Ill (0. l)n n>0 

This is the probability that a mouse will be in cage 2 at time n |  a mouse 

was in cage 1 at time 0. 

2.3.4    Mean State Occupancy Time 

k_ 
Let     u    be the mean number of transitions to exit from state i | 

i 

matrix    P is being used and the process is in state i before the first 

transition. 

k_                       1 
u .     =      -  (mean of a geometric distribution with 

I  -    p.. k      . 11 parameter    p   ) 
ii 

Now  u.     will have a probability mass function given by 

k k 
pr (ü. ü" )   =   p       (   TT. )    =   a, k = 1, 2, . . . , Q. 

l =       i u. l k 
l 

2. 4 Addition of a Cost Framework 

There are several possible cost frameworks for the multi-matrix 

Markov process.    Two will be discussed in detail and a third will be 

mentioned. 

2.4.1     Simple c.  Form 
 ij  

Let c. . - cost of assuming that matrix i is being used when in 

effect j is being utilized. 

We have aQ x Q matrix   C ■ (c. .). 

Let C (k) = cost of assuming that matrix    P is beiig used. 

Q 

Then E[ C(k) ]   =   )       a . c, . 
U        J   KJ 
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I 

To minimize the expected cost we select k as follows: 

Q 

min /     a . c,   . 
l<k<Q   £,    J   kj 

(2   3) 

Numerical Example 

For the mouse game Bob has decided to make things interesting 

by introducing a monetary aspect.    Ray is forced to play and is confronted 

with the following cost matrix 

"o 
C-(c    )- 

[_L6 0_ 

this says,  for example,   if he guesses that mouse no.   2 is being used 

when in reality no.   1  is in the cages,   Ray must pay $16 for his error. 

It is reasonable to have c. = 0 since c     is the penalty associated with 
11 li 

making a correct decision.    Using the data of section 2. 2. 1 we had 

a ' =    [0.8,   0.2]   and after the  set of transitions with frequency count 

F   = 
2 

2 
we had 

a "  =      [0. 137,    0. 863] 

With      Q '   =       [0.8,    0.2] 

E [ C(l)]   =0   8(0) + 0. 2(5) = 1   0 

E [ C(2)]   = 0.8(16) + 0.2(0) = 12.8 > 1.0 
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Therefore,   prior to the observations Ray would have aaid that mouse 

no.   1 was being used,   with an expected cost of 1.0.     With 

O "   *   [0.137   0.863] 

E [Q (1)] = . 137 (0) + . 863 (5) = 4. 315 and 

E [G (2)] = .137 (16) + . 863 (0) = 2. 192 < 4. 315 

Therefore,   after the observations,   even though,    c?1 » c     ,   he would 

say that mouse no.   2 is in the cages,   with an expected cost cf 2. 192. 

It is seen that the small number of transitions has completely altered 

the decision and associated expected cost. 

2. i. 2     The Expected Net Profit per Transition 

Here we assume that the important cost element is the expected 

net profit per transition.     This quantity and its importance in statistical 

decision theory will be discussed at length in Chapter  5. 

Let r. . be the reward for each transition from state i to state i 

(i,j = l,2,...,N) and let c be the cost per transition for using the process. 

Then the expected reward per transition given that matrix    P is being 

used is    R where 

k          V        V     k         k .„   ,. 
R ■   > >       * .     P.. r      2.4) 

j       j 

with    it . being the steady state probability of being in state i given that 

P is in use. 

With the probability distribution    a pv^j the  possible matrices 

the expected reward per transition,   E(R),   is given by 
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Q 
E(R) =)     ak

kR 

N N 

1=1 
l* 

k=l k=l i=l 

and the expected net revenue per transition is 

E (R)  - c 

(2.5) 

iN'umerical Example 

In the mouse problem (section 2. 2.1) Ray is now confronted with 

a different cost structure where he may have a chance of making some 

money.    He must pay $ 3. 60 per time period to have a mouse in the 

cages but he is rewarded for mouse transitions as follows: 

0 8 
(r..)    = 

1J 3 2 
(in dollars) 

where r.. is the reward for a mouse transition from cage i to cage j. 

Should he now accept Bob's offer? 

0. 1 

0. 7 

0.9 

0. 3 

0. 5 

0. 4 

0.5 

0.6 

c = 3. 6 

Using the data of section 2.2.1 we had a ' = [ 0. 8   0.2]   and after the set 

of transitions with frequency count 

2 2 

I 0 

we had a" = [ 0. 137   0. 863] 

-22- 



From equation (2. 4) 

lR    S    1?ri (lpllrli + lp12r12)+ 1'rz(lp21r21 + lp22r22) 

=  ^(0 + 7.2)   +    i^(2.1 + 0.6) 

= $4.67 

2 
Similarly        R = 3. 11.     Then using equation (2.5) 

for a ' = [ 0. 8,    0. 2] E (R) = 4. 36 

and E(N.R.) = 4. 36 - 3. 6 = 0. 76   > 0. 

For a«[ 0. 137,   0.863] E(R) = 3.32 

and E(N.R.) = 3. 32 - 3. 6 = -0. 28 < 0. 

Hence,   if Ray considers it worthwhile to play the game only when 

E (N. R.) >0,   then it is clear that before the observations he would have 

been willing to play,  but such is not the case afterwards. 

2.4.3    A Third Possible Cost Structure 

For the reader who is familiar with Howard's policy iteration 
10 

problems       it probably has become apparent that the policy iteration 

model could be generalized to the situation where instead of knowing 

the transition probabilities exactly there is a multi-matrix framework. 

Hence,   we have a third possible cost structure for the multi-matrix 

process. 

10      Howard,   R.  A. ,   Dynamic Programming and Markov Processes, 
Technology Press and Wiley,   I960, 
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The analysis of the process within this cost structure appears 

to be quite formidable.    It is hoped that successful research will be 

completed in this area in the near future; as inclusion of uncertainty 

in the transition matrices of the policy iteration problem would be a 

major step forward in the modeling of Markov decision processes. 

2. 5 A Decision Problem Involving a Multi-Matrix Markov Process 

As was mentioned at the start of this chapter the primary purpose 

of this section is to introduce the reader to the use of statistical decision 

theory in multi-matrix Markov processes by considering in detail a 

specific decision problem. 

2.5.1    Statement of the Problem 

Consider a multi-matrix Markov process having Q possible matrices 

P,     P     P.    Suppose that the decision maker is faced with the cost 

framework discussed in section 2.4.1,   namely   c. . is the cost of assuming 

that matrix   P is being used when,   in effect,    P is being utilized.    Also 

let d      be the cost of observing a transition from state r to state s.    Then 
rs 

the following general problem,   as will be shown,   can be formulated as a 

dynamic programming problem. 

The process is in state i at present and we know the vector 

Q ' = (Q   ',   a   ',...,   a    ') where a   ' is the probability that    P is 
— 12 w K 

governing the transitions.    During the next n periods we have the following 

options: 

i)   State that a particular matrix is being used and pay the 

resulting cost  - this ends the decision process. 

ii)   Observe the next transition paying the cost of the observation. 
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2. 5. 2     Dynamic Programming Framework of the Problem 

Let v    (a',   i) = the expected cost if an optimal   policy is followed 

and we are in state i with probability vector a ' over the matrices and 

there are h decision periods left.    Then as shown in section 2. 4. 1 

(equation 2. 3) 

vo(a',i) min 
l<k<Q h 

m=l 
m     km 

(independent of i). . . (2. 6) 

Als o       v, (a', i) = min        Stop   ,    ' h — 1   —    r   1< 
mm 

Q 

a     ' c.       = v   (a1,   i) 
m      km        o  — 

l<h <n. . .(2.7) 
&     0. 

S,L  (^Look   I     ^ak'   p.. Ed..+ vh_1(a">j)] 

:1    k=l 

Where a     is obtained through the use of Bayes' rule (see equation 2. 1). 

Theoretically the above recurrence relation and boundary 

conditions give us a solution to the problem.     Unfortunately,   the state 

vector is Q-dimensional for a process having Q possible matrices.     Also 

Q - 1 of the dimensions are continuous rather than discrete variables. 

However,   when Q = 2,   even for a large number of states the computations 

can be carried out.    An example with 2 states will now be presented. 

2.5.3    A 2 - Dimensional Numerical Example 

Again consider Bob and Ray's mouse game. 

1P        , 
(mouse 

no.   1) 

0. 1 

0. 7 

0.9 

0.3 

P 
(mouse 
no.   2 ) 

0.5 

0.4 

0.5 

0.6 
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Also 

c . (Cij) = 
16 

5 0.5 1 

0 
and   D = (d    ) = rs 

0. 3 0 

where c. = the cost of stating that mouse no.   i is in use when mouse no.   i 

island d      = the cost of observing a transition from cage r to cage s. 

Assume that a mouse is presently in cage 1 and that Ray's decision 

as to which mouse is being used can be made now,  after the next,  the next 

two,   or the next three transitions (i.e.  n - 3).    Also assume that 

a = (0. 3,   0.7) and this includes the knowledge of the starting cage. 

As there are only two possible matrices (Q = 2) we can replace 

a by a ,  the probability that mouse no.   1 is in use.    Then from equation 

(2.6) 

v  (a', i) o min     [ o'ck 1 + (1-Q1) ck2] 

{1        a'(0) + (l-o')5 B 5 - 5o' 

2       a'(16) + (l-a')0 = 16a1 

This says that,   if no more observations are possible,   Ray selects 

mouse no.   1 

if      5-5Q'< 16a1 

i.e if   a > Tx 

5 5 and chooses mouse no.   2 if a '< -r-r ■    When a ' = —   the choice is immaterial. 
et Ci 

Also 

v    (a ',   i) = min (5 - 5 a \   16 a')    ■ Ray's expected cost if no 

observations remain and the probability that mouse no.  1 is being used is a'. 
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,16 o' 

>\ i) 

Say Say- 
Mouse Mouse 
no.   2 no.   1 

i = 1  or 

Now from equation (2. 7) 

v   (a ', i) =     min 
h S,L 

S       mm (5-5a\   16a') 

L      7 [  1p.ra'+2p.r(l-a')][d.r+vhl(a",r)]...(2.8) 

r = 1 

Using equation (2.1) a    can be expressed in terms of a' as follows: 

P.    a 

lr 

1p.   a' + 2p.   d-a1) 
lr lr 

(2.9) 

As far as the variable a ' is concerned it is apparent that its range 

(for any specific number of observations left, h, and present cage, \, wilL 

he split into 3 sections for decision purposes: 

Say Say 
Mouse      Look        Mouse 
no.   2   t   Again |    no.   1 

t b 
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From equations (2. 8) and (2. 9)    a    is where 

2 1 

16a-    7    [1p.ra,
2p.r(l-a)][d,r + vh_1(1      ^ ,)] 

r-l P.  a+    p.   (1-a) ir *ir 

=   Jh(a)       (2.10) 

and    b    is where 

5 - 5b = J.  (b)     (2.11) 
n 

£or_h= i_,_i_=_l_ 

Using equation (2. 10)    a    is where 

16a = [ 0.5 -0.4a] [0.5+VQ (      0   5'~£ 4a'   
l)3 +[ 0.5 + 0. 4a] [ 1 + 

.       09a ... 
Vo(   0.5+0.4a     '   2)] 

This equation is solved for    a ' using the expression obtained for v   (a \i) 

earlier.    The solution is a = 0. 194 

Similarly equation (2. 11) gives 

5 -5b = [ 0.5 -0. 4b] [ 0.5+ v   ( n   rTTTT   •   l)l +[ 0.5+ 0.4b] [ 1 + ov 0.5-0.4b 

1      09b ,,, 
Vo(-Ö. 5 + 0. 4b'   2)] 

which solves for b = 0. 407. 

For 0. 194< a ' < 0   407 

0    1   a f 

'        —r   *s always less than   5/21 
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,        Ola' ,  . 0. 1 a' 
•'•   V0.5-0.4a1   '   j) = lfa (  0.5.0.4a'1   throughout the range. 

0.9a' 
Also —-—;•    is always greater than 5/21 

, 0.9a' ..      _    _ . 0.9a'     .   , 
' •   Vo ( 0.5 + 0.4a'   '   l) B 5 " 5 ^"T+ÖTa^ ' tnrou8hout the ran8e ■ 

Consequently/ for 0. 194 S a ' S 0.407,   from equation (2.8) 

v^a',1) =| 0.5-0.4a'][0.5+16(^:^~7}]   + [ 0. 5+0. 4a'] [ 1 + 

5-5(     °-9a'      )1 
V5 + 0.4aJJ 

v (a ', 1) = 3.25 - 0.70 a' 

Note the cancellation of the-a' terms occurring in the denominator. 

Fortunately this always occurs so that it will be found that v   (a ', i) is 
n 

a piecewise linear function of a '. 

We can summarize the h = l,   i = l  situation as follows: 

a1 range Decision v (a1,   1) 

P <a'^ • 194 Stop and say mouse no. 2 16a' 

.194<a'<.407 Observe process 3.25  -0.70 a 

. 407 £ a ' ^ 1 Stop and say mouse no. 1 5 - 5 a ' 

(See diagram on next page) 
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Vjla», 1) 

3.25-0.70 a' 

Observe 
Process 

SLJLii-i-JL 
In exactly the same manner as above we find 

a ' range Decision 

0 <a'< . 161 

161 <a'S. 365 

365 <a'<l 

Vj (a1, 2) 

4  - 

2   - 

Stop and say mouse no. 2 

Observe process 

Stop and say mouse no. 1 

2. 12+2. 89 o' 

Say 
Mouse Observe 

Say 
Mouse 

no. 2 Process no. J 

Vj (a', 2) 

16 a* 

2. 12+ 2.89 a' 

5 - 5 a' 
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h »ft i « 1 

Equations (2. 10) and (2. 11) together with the above expressions for 

v  (a ,   1) and v   (a ,   2) allow us to obtain 

a    range 

0< a '< . 168 

.168 <a'<. 242 

. 242 <a' <. 40 7 

.407 <Q'<1 

# At a ' = . 242,     a 

Decision 

Stop and say  mouse no. 2 

Observe process 

Observe process 

Stop and say mouse no. 1 

0.9 a' 
.  =    . 365 and therefore v,(a   ,   2) 

0. 5 + 0. 4 a 1 

changes functional form (see the previous table).     This in. turn changes the 

functional form of v  (a ',  1). 

v2(a',   1) 
1. 81 + 5. 249a' 

Say 
Mouse 
no.   2 

3. 25-0. 7a' 
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h « 2, i ■ 2 

In the same manner as above there results 

Q    range 

0 <a ' <0. 133 

0. 133<a'<0. 277 

0. 277 < a1 <0. 282 

0. 282<a' <0. 483 

0.483<a' < 1 

Decision 

Stop and say mouse no. 2 

Observe process 

Observe process 

Observe process 

Stop and say mouse no. 1 

v2(o',2) 

16 Q ' 

1.420+5.375 Q' 

2.692 + 0.806a1 

3.392 - 1. 679a' 

5 -5a' 

v2(<*\ 2) 

1.420 + 5. 375a' 

2. 692 + 0. 806a' 

133.277.282 

Say 
Mouse 
no.   2 

Observe 
Process 

Say 
Mousf-; 
no.   1 

^3. 392- i.679a' 
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Now from equations (2. 8) and (2. 9) 

v3(a\l)  =    min     |S   miM5-5a',   16 a') 

S'L     [LC0.5-0.4a»l[0.5»v2(0°^^,,   1)] 

+[0.5 + 0.4a'][l + v2(5T^5ilr7.  2)] 

But Ray has been told that a  = 0. 3 

,n   ,   ,x f S        min (3. 5,   4.8) v (0. 3,1)   = min   < ' 
S,L    (.L      0.38[ 0.5 + v2(-||,   UJ +0.62[ l+v2f-|~, 2)] 

r min    \ S       3.5 

38 
S,L     [L      0. 38[ 0. 5 + i-6 C-rl- )] +0.62[ 1+3.392 

'•679(.#i 

v3<0.3,1)a™ 
'  L      3.00 i 

Therefore he should observe the first transition and his expected 

cost is 3 00.    Actually the solution has given him far more than just this 

answer.     It also shows the optimum policy to follow (with the expected 

cost) for either starting state,   any a vector and 0,   1  or 2 looks possible. 

2.5.4    Some Further Remarks 

From the results of the numerical example some fairly general 

remarks can be made. 

First,   as demonstrated by induction in Appendix A,   v  (a1,   i) 

is always a piecewise linear function of the components of a1.    A second 

interesting point in the 2 - matrix example is that the range of a in which 
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we decide to observe the   next transition is a monotonic increasing 

function of the number of possible observations remaining.     This is as 

expected.     Furthermore,   for more than two possible matrices we would 

expect the volume of the region of the Q - 1 dimensional space of the 

components of a  in which we decide to observe the next transition to be 

a monotonic increasing function of the number of possible observations 

left (a monotonic increasing function is assumed to include the trivial 

case where the function is zero for all values of the argument). 

It is clear from the dynamic programming form of the problem 

that the number of states is not really critical.    There is one state 

variable for the state occupied.    Increasing the number of states merely 

increases the range of this one state variable.    On the other hand 

introduction of an extra possible matrix increases the number of state 

variables by one.    Hence,   the number of possible matrices is the 

quantity that governs the feasibility of the dynamic programming 

solution. 

Finally,   it can be stated that tha numerical example has certainly 

demonstrated the possibility of statistical decision making for a multi- 

matrix Markov process. 
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CHAPTER    3 

THE MULTIDIMENSIONAL BETA DISTRIBUTION 

As was stated earlier,   in this and the following two chapters we 

shall assume directly that the transition, probabilities themselves are 

random variables.    The present chapter is concerned with the multi- 

dimensional Beta distribution,  a most convenient distribution to place 

over the transition probabilities of a single row of the transition matrix. 

3. 1 Conjugate Prior for a Multinomial Distribution 

Consider a random variable that follows a multinomial distribution 

of order k,   i.e. ,   each time a draw is made it can fall into 1 of k categories, 

Let p.  = probability that a particular draw will fall in the 

i category (i = 1,2,..., k) 

2',- 

Let E = event that in n independent draws n. fall in the 
l 

i      category     (i = 1, 2, .. ., k) 

k 

1   ni    =   n 

i*l 

Then using the basic property of the multinomial distribution 

(3.1) 

i=l   » kernel 
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Now following the suggestion of Raiffa and Schlaifer      ,   if we 

want to place a prior distribution over the p.'s,   it is advisable to select 

iiie prior such that it has the  same kernel as the likelihood function of 

equation (3   1).    Hence the conjugate prior should be of the form 

"V1   "V1        "V1 
f (x   , x   , . . . , x  ) = C x x^ ...x, ....(3.2) 

P1'P2' ' '    Pk 
k 

where       )    x   = 1    and   x ä 0 
L    i i 

i=l 
and äs shown in Appendix B the proper normalizing constant to use is 

r(m   +m   +. . .+m  ) 
k ...   (3.3) 

ß(m1, m2, . . . ,mk) f(mj) r(m2)- • • rV**Ö 

(3.2) and (3. 3) together define the multidimensional Beta distribution with 

parameters (m. , m   , . . . , m  ). 

3. 2 Important Properties of the Distribution 

Consider a multidimensional Beta distribution. 

m   -1     m   -1 
f (x   , x   , . . . , x. ) = —. .     x, x 

P1'P2'      'Pk ß(m1,m2 mk)       1 2 

m    -,1 

-\  (34) 

11 Raiffa,   H. .   and Schlaifer,   R. ,   Applied Statistical Decision Theory. 
Graduate School of Business Administration,   Harvard University, 
1961,   Chapter 3. 

12 Throughout this study f (w, x, . . . , z) will represent the joint 
density function of the random variables a, b,. . . , d evaluated at the 
point (w, x, . . . , z),   and f  i    (w | x) will represent the conditional den- 

a| D 

sity function of the random variable    a    evaluated at the point    w    given 
that the random variable    b   has taken on the value    x   . 

-36- 



Z-i where    )  x.  = 1   and x. ^ 0 

= 1 

In more compact notation 

f (x. , x   , . . . , x ) - fQ(x  , x   , . . . x.    m, , m,, . . . , m, ). 
P..» P,i • • • i P.     1      2 k'      P     1 ,    2, k1      1       2 k 

Then in Appendix B the following properties are established: 

i)    The distribution integrates to one,  i.e. ,   we have properly- 

chosen the normalizing co LStant. 

ii)    The marginal distribution of a specific p. is given by 

m. -1 X. m. - 1 
f(x)=S i r-*       J     (1-x)   ^J      l' 0<x<l p. ß(m.,.S   m 

J J l*J       i 

= fn (x|  m.,     Z     m.)  (3.5) 
P J   i#j 1 

iii)    The expected value of p. is 

E(P.) = 
j k v   m. 

itl     J 

iv)   The variance of p. is 

m. 
J     (3.6) 

i.(,    2     m) 
J     i*j 

2, J (Zm.)  (1 + Em.) 

(3.7) 

v)   The covariance of p. and p    is 
J U 

- m, rn 
j # u Cov (p., p   ) ■  *y-2  (3.8) 

J      U        [Zffl]   (1 + Em.) 
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3_3 Determination of the A Priori Parameters 

Ideally one would like to select the parameters of the multidimen- 

sional Beta distribution in such a way that the prior estimates of the means 

and vanrianees of the k individual p.'s are satisfied:'   However,   this would 

require 2k-l parameters (since Zp. =1,   if k-1 means are assigned,   the 

k      one is automatically determined) and we have only k parameters at our 

disposal      Considerable effort was made to find a suitable prior distribution 

that possessed 2k-l parameters;   suitable in the sense that it would allow 

easy Bayes modification and would be analytically tractable.    Unfortunately 

ail efforts were unsuccessful.     Therefore,   we restrict attention to the 

multidimensional Beta prior distribution (with only k degrees of freedom) 

which allows easy Bayes modification but is not ideal due to its deficiency 

in total parameters.     We proceed as follows.    Select the parameters such 

that the prior mean values of the p. 's,   i.e.   the E(p.) !s,   are satisfied 

exactly.     This uses up k-1 of the parameters,   leaving only 1 other degree 

of freedom.    Obtain the final parameter by a least squares fit to the prior 
v   f 

variances of the p. s, i.e. to the p. s.     With these conditions in mind in 

Appendix C the following expressions for the m's in terms of the E(p.)'s 
v J 

and p. s are developed: 

k 
Define M,  -     =    the value of. S . m. obtained by least squares 

!••». 1  ~   1        1 

.Sj   [E(p.)]2[^E(P.)]2 

ThenML.5.       ■ -5         -1 (3.9) 

S     pE(p)[ l-E(p)] 
i - 1    j       j j 

and    m.     -     M      E(p.) (3.10) 

'F-timating the prior means and variances is not a rnvial task.     Also, 
we do not mean to imply that this is the only method for assigning 
values to the k parameters. 

-38- 



Numerical Example - 4 category multidimensional Beta. 

v 

V 
P2: -- 0 008 

V 

P3
: :   0 001 

V 
P4: -- 0 004 

E(pj) =0.1 p    = 0.004 

E(p2) = 0.2 

E(p3) =0.3 

E(p4) = 0.4 

Using equation (3. 9) we find M L-   = 47 (to nearest integer) 

Then from equation (3. 10) m    =5,  m   =9,  m   = 14,   m   = 19 

t , v         J_          4     8     13 18 
"     P1,P2'P3    r Xz' X3       P(5,9, U, 19)  Xl   X2 X3     ll"xl"x2"x3J 

> x. <1       and x   > 0 
l i 

i= 1 

3.4 Bayes Modification of the Distribution 

As in section 3. 1 consider a multinomial distribution of order k 

with parameters p  ,p  , . . -,p, •    Suppose the p.'s are a priori jointly 
1      Z k j 

distributed according to the multidimensional Beta distribution. 

p1,p2,...pk(x1,x2 xk)=fß(Xl,x2 «k!«1.«2 mk). 

Again,   as in section 3. 1,   let E be the event that in n independent 

draws from the multinomial n. fall in the i      category (i = 1, 2, . . . , k) 

k 

I    "i    =   " 
i = l 
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Then it  is shown m Appendix D that the a posteriori distribution of the 

p.!s is again a multidimensional Beta,   only the parameters are modified; 

more  precisely 

f
Pl>p2,.. .pk| E

(xrx2' ■ • • ,xk>= Vxi,x2 xk! mi+nrm2 + 

n2'-'mk+V 

3. 5 Development of the Multidimensional Beta Priors for a Specific 

N-State Markov Process 

Consider state i of an N- state Markov process.     If we are in state 

i   f     times,   then the numbers of transitions from state    i   to state    i , f 

(j = 1 , 2,    . , , N),   are muitinomially distributed as follows: 

-Pi, 

f.! f.,      f., i\ 
r   r r r I    r   1 l 11 lZ lN 

pr[fu.fi2,   ...£lN I 1] =f   j f   , f r PU    Pi2 
il      i2 iH 

if Pi. = pr{ state at time n +  1  is j| state at time n is i} 

and    >   f. . = f. 

j 

This multinomial behavior is the motivation for using an a priori 

multidimensional Beta distribution over the transition probabilities 

p., p.,, .p .    Similar reasoning would lead us to use multidimen- ril      i2 rinj B 

sional Beta distributions over the transition probabilities for each of the 

other N - 1  states      Hence we utilize N distributions of the form 

f x..,x,„..,x.„)» f«,(x. ,,x z,     m., , m. ,, .    , m.    ) 
p..   p  ,   •    .p.      il     i2 IW '      ß    il      i2 IH       il       i2 lN il.    i2 iti r 

-40- 



To determine the parameters (m.  's) we consider each row 

separately and use our prior estimates of the individual E(p..)'s   and 

v    * 
p. . s as outlined in section 3. 3. 

ij 

Now because of the simple Bayes modification of the multi- 

dimensional Beta prior on the probabilities of a multinomial distribution 

(shown in section 3.4) we know that the separate multidimensional Beta 

priors of a Markov process will be simply modified as a result of a 

series of observed transitions.     More precisely,   the resultant posterior 

distributions will be new multidimensional Beta distributions having 

parameters (m. , + f,.),   if (m. .) are the a priori parameters and (f..) are 

the number of observed transitions from state   i  to state   j. 

3. 6 Random Sampling from the Distribution 

A simple method of randomly sampling from an analytic distribution 

is useful for simulation purposes,  both when we use the simulation to 

empirically determine simple functions of the distribution (precisely what 

is done in section 4.1.6) and also when the random variables concerned are 

but a small part of a complex system being simulated.     Hence two methods 

of randomly sampling from the multidimensional Beta distribution will 

be described. 

Method 1   - Use of Marginal and Conditional Distributions 

Consider the multidimensional Beta distribution 

f (x.,x, x )=f (x  ,x x   |  m   ,m m  ) 
p.   p  , . . . ,p,      1     2 k       (3    1     2 k 12 k 

Then as shown in Appendix E the following is a method of sampling from 

this distribution: 
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k 
\)    .     DT aw w .from the simple Beta fJw,     m, ,      E , m ) 

l (3     1        1     i = 2     1 

ii} Draw w   from the simple Beta fß (w   | m   ,       X    m.) 
i * 3     » 

tpiw2,m2, 

k-i\ w,    ,  from the simple Beta f_(w ,    ,     m     . , m  ) 
k-1 p      k-1 k-1       k 

Then      x    = V 

x    = w    (1 -w   \ 
2 2 v l' 

x3 = w3 (1 -w^) (1- Wj) 

Vi^k-i^k-z* (i-WjXi^jJ 

k -1 
xk" 

- 1 - 2    x. 
i =1    » 

and 

Hence,   we have reduced the problem of randomly drawing from a 

k-dimensional Beta distribution to one of taking a single draw from 

each of k - 1  different simple Beta distributions.     Methods for drawing 
13 

from a simple Beta distribution have been discussed in the literature 

13     See,   for example,   Galliher,   H. P. ,     Simulation of Random Processes   , 
Notes on Operations Research  1959,   The Technology Press,   Cambridge, 
1959    p    238 
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t. 
1 

k 
£ t 

i = l i 

Method 2 - Use of Ratio of Gamma Distributions 

14 
Mosimann       has  shown the following interesting result: 

If t. (i ■ 1, 2. . . . , k) are independent random variables havingGamma 

distributions with parameters m. respectively and all with the same scale 

parameter q,   i.e. 

m. •_ 
i        m.-l        -qy. 

£     (y.)=f (y.|m.,q)=    -7 ry, e 0<y.<oo, 
t.    V      YW

I'      1  ^'        Mm.) ' 1 '1 

then the random variables 

p. (i - 1, . . . , k) (where p. 

have a multidimensional Beta distribution with parameters m, , . . . m, , i. e. 1 k 

f (x. , x x ) = f   (x. , x., . . . , x     m   , m  , . . . , m ). 
p. , p   , . .    , p       1      2 k       p     1     2 k       1       2 k 

Therefore to randomly draw from f^x. , x   , . . , x   | m   , m     . . , m  ) 

we can take independent draws (y.) from the k simple Gamma distributions 

etc. 

Methods for sampling from a simple Gamma distribution have been 

developed (in fact, we requfn« this in method 1 as sampling from a 

simple Beta involves sampling from two Gamma distributions). 

14.     Op.     Cit. 

and then 

yi 
'   x2^ 

y2 
Xl   £y. 

1 
üy. 
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1 
Method 2 appears superior to method 1 as method 2 requires 

k draws irom simple Gammas per set of k - dimensional Beta values 

wrile method  1  requires 2k-2 draws for the same output      In any event, 

as mentioned earlier,   being able to randomly sample from the multi- 

dimensional Beta distribution is important for two reasons.     First,   it 

allows us to obtain by simulation values of functions of multidimensional 

Beta distributions that are not attainable by analytic means.    Secondly 

it permits the use of multidimensional Beta variables in complex 

simulations. 
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CHAPTER   4 

EFFECTS ON QUANTITIES OF INTEREST OF HAVING 

MULTIDIMENSIONAL BETA DISTRIBUTIONS OVER THE 

TRANSITION PROBABILITIES 

Having placed the transition probabilities into a framework where 

our uncertainty about them can be easily updated in the Bayesian sense 

(i. e.   after observing some transitions the density functions over the 

transition probabilities can be simply modified according to Bayes' 

rule) we now turn our attention to the effects of uncertainty in the 

transition probabilities on various quantifies of interest in the Markov 

model.    For example,   tho steady state probabilities are no longer exact 

numbers,   rather they have now become random variables since they are 

functions of the transition probabilities which are random variables.    It 

is important,   both for statistical decision purposes and for interest in 

the quantities per se,   that we be able to describe their behavior when the 

transition probabilities are not known exactly. 

4. 1 Steady State Probabilities 

4.1.1    General Remarks 

As mentioned above the steady state probabilities are functions of 

the transition probabilities which are random variables,   hence the steady 

state probabilities now become random variables.     It will be assumed that 

the following mechanism operates.    Single values for each of the transition 

probabilities are drawn from their distributions.     With these now exactly 

fixed transition probabilities the system is run to the steady state pro- 

ducing exact steaay state probabilities.    The whole process is repeated 

many times generating various values of the steady state probabilities. 
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Ideally we would like to know the actual density functions of the steady 

state probabilities produced in this way;  however,  this is far    more 

easily said than accomplished.    Actually,  as will be explained in 

Chapter 5,   merely the expected values of the steady state probabilities 

will be adequate for most decision purposes. 

For 2 - state processes exact closed-form expressions will be 

obtained for the expected values of the steady state probabilities.    The 

analytic difficulties for more than 2 states are clearly illustrated by 

the 3 - state situation. 

Consider the transition matrix 

i-a~b a b 

c 1-c-d        d 

e £ 1-e-f 

where p. . = pr { state at time 

n+ 1 =j.j   state at time 

n = i} 

Now solving 7T P = 7T or referring to another study done by the author 

(see Appendix F) tells us that the steady state probability of being in 

state  1 is given by 

ce + cf + de 
1 ad + ae + af+bc + bd + bf+ce + cf+de 

Now suppose the transition probabilities are random variables.     Then 

.      . .    ce + cf + de . 
(7r r (   ad+ae+af+bc+bd+bf+ce+cf+de'' 

-46- 



Unfortunately,   there does not appear to be any simple way Of evaluating 

the right hand side for convenient distributions over the transition 

probabilities.    It is clear that the problem is even more formidable when 

the number of states is greater than three. 

4. 1. 2    A Special 2-State Cast! Where We are Able to Obtain The 

Density Functions of the Steady State Probabilities 

Consider the transition matrix      B = c a 

1-b 

where   f    (x) = 1 
a 

0 < 

and fb (y) - 1 0  < y < 1 

"a" and llb" are assumed independent and we know that  ir ,   = ——— 
1       aH- b 

15 
Using the theory of derived distributions        we find that 

0 < .'z <    1/2 
)  2(l-z) 

V    2z 

1/2 < 

This distribution has a mean 
of 1/2 as we would expeci. 

15        See,  for example,   Wadsworth,   G. P.   and Bryan,   J. G. , 
Introduction to Probability and Random Variables,   McGraw-Hill, 
1959,   Section 6. 12. 
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The only reason that a closed form can be obtained for   f     (•) 
'I 

ig that the extremely simple forms of f (•)  and f, (•)   allow us to per- 
a b 

lorm :.he integrations involved in deriving the new distribution.     The 

distributions assumed for     a     and    b     are very special forms of the 

Beta.     For the more general form of the Beta the integrations cannot be 

performed.    Now,   if we observe several transitions of the special pro- 

cess considered,   Bayes modification will result in more general Beta 

forms for the distributions of    a    and    b   .    Hence,  at that stage we 

would again not be able to obtain the density function of   v   ,     Thus it is 

seen that the special distributions   (uniform)   assumed for     a     and     b 

in this section are of very limited practical value despite the fact that 

they allow us to obtain the density function of  ir    before any transitions 

occur.     We really want to be able to handle the more general situation 

of independent Beta distributions over     a     and    b   . 

4.1.3.     The Z-State Case Where One Transition 

Probability is Known Exactly- While the 

Other is Beta Distributed 

As mentioned earlier it will be demonstrated in Chapter 5 that 

merely the expected values of the steady state probabilities are adequate 

for most, decision purposes.     Therefore,   as a start in the right direction 

we shall find the expected values pf the steady state probabilities for the 

Markov process with the following special structure: 

1   - a 

1   • b 

where     a     is assumed exactly known but     b     has the Beta distribution 
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fb(x) = f  (x|m,n) 

Physical Application: 

There is a meaningful physical application of this model.    Con- 

sider customer behavior between  2 brands of a product.    Let state   1 

represent that the customer is buying our brand,   state   2  that of our 

competitor.    Then,   from extensive past data on our own customers it 

is logical to assume that we know accurately the value of    a   ,   the proba- 

bility that a customer buying our brand at time   n  will switch to the 

competitor's brand on the next purchase.    However,   due to lack of 

records on the competitor's customers we only have a rough idea about 

the value of     D   .    Hence,   it is reasonable to place a Beta prior distribu- 

tion over    b   . 

Determination of E(ff ): 

For a given (a, b)   pair 

a 
n2 "TTT ' 

the steady   state probability of being in state   2. 

1 

;(afb)=I   ^fb<*> •  E(TT2) = El-it 1 a   \    ^T-Z-TT fj*> dx 

•s m-1 n-1 
x 11 -x) dx. 

a + x   ß(m, n) 
0 

This is not an easy integral to evaluate in its current form. 

However,   as shown in detail in Appendix  G, use of the hypergeometric 

function,   a well known function arising in certain physics problems, 

enables us to obtain the following expression for   E(7T ): 
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where 

:(7rP z 7+7 [+ STZnSlj 
n(n+i; 

(m+n)(m+n+l)    a+1 

. + n(n+l)  .. ■   (n+k-2) l\ 
(m+n)(m+n+l)  ...   (m+n+k-2)   fa+1 

k-r 

+ E. 

(4.1) 

< n(n-H) .. .   (n+k-1) 
k       (m+n)(m+rj+l)  . 

1 
(m+n+k-1)    a+1 

(4.2) 

It is clear that  E     can be made arbitrarily small by choosing  k 

sufficiently large.    Hence,   we can come arbitrarily close to E(ir  )  by 

selecting a large enough   k. 

Finally, 

E(^) = 1   - E(ir2). 

Asymptotic  Check on the   E(T  )   Formula 

In section   G. 2  of Appendix  G  an asymptotic check on equa- 

tion (4. 1) is performed. 

Monotonie  Behavior of  E(7r  ) as a Function of m + n for Fixed  E(b) 

In section   G. 3  of Appendix  G   it is  shown that for fixed   E(b), 

i.e..   for a fixed mean of the prior Beta distribution on    b   ,   E(7T  ) mono- 

tonically decreases as   m. + n   increases;    i.e.,   as the variance of the 

Beta distribution decreases (  b     becomes more and more exactly known) 

Numerical Example 

Consider the physical application of customer behavior between   2 
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brands of a product.    Suppose that we know accurately that a customer 

buying our brand this period will switch to the competitor's brand next 

period with probability  0.5   (i.e.,   a = 0.5).    Also from our limited 

knowledge of tho competitor's customers we are willing to place the fol- 

lowing Beta distribution on   "b", 

ffa(x) =f  (x|9,l)        i.e., m = 9.  n = l. 

To obtain E(7r ) to   5   significant figures,   equation (4.2) tells 

us to use   k = 7  (a small number of terms for such a high degree of 

accuracy).    Then equation (4.1) gives 

E(TT2) =  0.35882, 

the expected value of the steady state probability that a particular custo- 

mer will be buying from the competitor. 

This is remarkably close to the   ir    when     D     is exactly known 

at  0.9.    In that case 

(T„) =  -    r°; 5„   n   m 0.35714. v  2'exact      0.5 + 0.9 

Also,  for this example  m = 9,   n ■ 1   are the smallest integers for 

which  E(b) a 0.9.    Therefore,   due to the above-stated monotonic behavior 

of E(TT )   it is seen that for any combination of integers that make 

.0.9 m + n 

(e.g.,   90   and  10)  E(ff  )  must lie in the narrow range 

0. 35714 ^ E(JT ) < 0. 35882 
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i.e.      E(* _)   is remarkably insensitive to the variance of the prior Beta 

dist ribution on     b   . 

Numerical Results 

A program for the   IBM   7090   digital computer was developed 

ed equations (4.1) and (4.2) to give   E(7t )  accurai 

places for the following  9x9x14  or   1134  combinations: 

which used equations (4.1) and (4.2) to give   E(7r )  accurate to  5  decimal 

0.1,   0. 2,   0. 3,   . . . ,   0.9 

b = 0. 1,   0.2,   0. 3, 0.9 

m+n = 10,   20,   30,   40,   50,   60,   80.   100,   150,   200, 

300,   500,   1000,   oo. 

Appendix   H  presents portions of the tabulated results (the entire tabu- 

lation would have required a prohibitive amount of typing;   also graphical 

representation would have required  81   separate figures).    Analysis of 

these  results shows that,for a fixed  b, E(TT  )   is extremely insensitive to 

m + n;    i.e.,  to the variance of the Beta distribution.    Hence,   we can 

approximate   E(JT_)   by   (7t  ) where 
2      '       2 exact 

(* 2 exact      a + b 

(i.e. ,   we assume     b ' is exactly known at its mean value).    The approxi- 

mation improves as   m 4 n  and/or     a     and/or   b   increase    but it is even 

quite good for low  m + n.      a     and  b.    The fact that  E(a/(a+b))  deviates 

most from  a/(a+b)   for low     a     and  b   is  reasonable because under these 

conditions the small mean value of the denominator makes it very sensi • 

tive to variations in     b   . 
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Figure 4. 1:    Plot of E (TT 2) vs m+n for a = 0. 5,   b - 0. 5   (2 states). 
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A typical plot of E(TT )   vs.   m + n  for fixed   "a" and b   is 

given in Figure 4. 1.    The alternate horizontal scale was developed as 

tollows: 

b = 
mn b(l-b) 

(m+n)    (m+n+1)        m + n + 1 

Therefore,   for fixed  b: giving  m+n also prescribes  b.    For example, 

if b =0.5  and we say that  m + n = 24,   then we have prescribed the 
v 

variance   b   at the value   (0. 5)(0. 5)/(25) = .01. 

4. 1.4.    The 2-State Case Where Both Transition 

Probabilities are Independently Beta 

Distributed 

Again our desire is to determine the expected values of the 

steady state probabilities.    First,   a complicated summation form 

for   E(7T  )   will be presented.     Theoretically it can be used to find  E(7T ) 

exactly for any integer values of the   4  Beta parameter J.    However,   to 

study the general behavior of E(n )   it will be convenient to make use of 

the results of the last section. 

Exact Summation Expression for  E{n   ) 

Here 

1   - a 

P -- 

1   - b 

with 
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and 

fa(x) = f (xlm^rij) 

fb(y) = Vy'm2'n2^' 

1      1 

E(7r2) = J I dry Vx|mi,ni) Vy|m2,n2)dyd> 

0      0 

As shown in Appendix  I 

m   -2 n   -1 m +n   -2-k > 

V V V |m2"M n
2

+k-1"J 
««!•«!) K»2.?,)»{»2)-    I        I 1 \   k    j(-1} 

k=0       j=0 r=0 

m +n   -2-k 
n,-I\     \      Z    * 

X-r ^5 £ 1 P(m +k+r+l,n  ) + 
j      / m2 + n2 - 2 - k - j 1 1 

"V2 V1      j m2"1 n.+k-j    n2"1|l   j 
Y Y \    \       k   /(-l) \ j   /\r J ß^+nyt-n^+r-l-j,^) 
Z- Z/ L m2 + n2-2-k-j 

k=0       j=0 r=0 

+ (-l)m2 y       y     ^    j    /("1} \   r    ^(m+m+r.n  ) 
H     r=0 n2"1-^ 

n2-2      j     [V1] n2-l-j(j 

+ (_l)
m2   Y      )' \    J    /("1} LL/W«.*m»*«2*»-J-i.n1) 

^      ^ n   - r - j 
j=0    r«0 2      -    J 
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n   -1 n   -1 
m   -1     .-. r—     /n   -l\/n,-1  . 

+ M)  z     £ £     ,  V.    '■■•" 
s--0 t=0 

t     j(-l)
tJC(m1+m2+8+t) 

+ (-D 

n2_1 nl_1 

m2_1     V    I n2_1^ IV Ml (-i) 

s=0 k=0 
k     / 2 

(m +m +s+k) 
(4.3) 

where 

/ 
m +m +s+t 

—— • y + m„ + S +  t f. 
(-1) 

u-1 

1 2 
u=l 

^ (rrij+rr^+s+t) = < 

In 2 + 

when m + 

m + s + t 

is even 

m   + m   + s + t m   + m   + s + t 

m +m +s+t 

u=l 

(-D1 

when m   + m    + s 

+ t is odd. 

NOTE: 

-1 

I 
i=0 

means that there are no terms. 

Due to the complexity of this expression it cannot be used to 

study the general behavior of E(7r )  as the   m's  and  n's   are allowed to 

vary. 
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General Behavior of E(ir )  and  E(7r ) 

Again consider 

1      1 

E( *"H 
0      0 

ßtm^n^ ß(m2>n2)  x + y 

m, -1 n, -1 
x 1       M      \   l 

x (1-x) 

m  -1 n   -1 
2 2 

•   y (1 -y) dydx =   f 1 
J      ßtm^nj 

m  -1 n   -1 
x (1-x) 

I ß(m2,n2)   x + y 
x m2_1 n2_1 

y (l-y) dyldx 

Mx) 

NOTATION: 

Let   r t   as   s   t     signify that  r  monotonically increases  as   s 

increases and   r |     as   s T      signify that  r  monotonically decreases as   s 

increases. 

Then from section 4. 1.3 we know that for fixed b ■ m /(m +n  ) 

L(x) = E(JT   |x)   |     as  m    + n  -f 
2        2 

This holds for any x between  0   and   i.    From above 

o 

1 

But 

E(TT2) =  f     fa(x) L(x)dx 
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f  Ix) > ü 
a'   " 

. '.   E(TT ) <j>      as   m   + n   f     . 

and this is independent of m.   and n..    Therefore,   for any Beta distribu- 

tion on    a     and a fixed b;E(7T )   |>     as   m    +n    f      ;   i.e.,   as  b 

decreases.    In fact,   we can now make the following series of statements: 

For As Then 

any Beta on    a   ,   and fixed b m   + n ;   i.e.,  b»     E(JT ) *     and 

E(7T2)   |. 

any Beta on    b   ,   and fixed a m    + n    T    ;   i.e.,   at      E(7T ) | and 

■(»,)! 

Suppose that both  a  and b are fixed.    Then 

E(ff.) when b  *     and/or   a   I 

E(7T )       j when b *     and/or   a j 

E(7r )       | when b |     and/or   a  + 

and 

th 

E(7r )      ^ when b|     and/or   a{ 

Knowing     a     and     b     exactly corresponds to  a = b = 0.     Let 

e corresponding exactly known steady state probabilities be   (w  ) 

and  (7T )     .    Then,   due to the above results,   the deviations from these 
2 ex 
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. values (for integer  m's  and  n's)   occur as follows: 

E<»j|>, »m*,n*) <E(/r1|m1,n1,m2,n2) S (»^ < »(»jVj» «J.».*) 

or 

E(7r1|°°,°o>m*,n2) * (*j)ex ^ EUJ m1,n1,m2>n2) < £(^1 n^ , ^ ,°° ,°°) 

and 

E(JTJ m*. a*,* , ») ^ E(TT2| mi, r^ , m2> n2) < (»^ S E^l« , », m^ n2) 

or 

E(w Im'   n',°°,°°) < (jr_)       <E(irJm.,n.,m,,n) S B(irJ », °°, m'   n ) Z      1      1 2 ex 2      112     2 2 2     2 

* # 
where  m     and n    are the smallest integers for which 

- mi 
a = m    + n 

is satisfied. 

Observe that these inequalities do not tell us on which side 

of  (IT.)       E(7T  )   falls.     However,   they do reveal the very important 1  ex 1 
fact that the worst deviations occur in situations where one transition 

probability is known exactly,   situations that we have already closely 

studied in section 4. 1. 3 through the use of the hypergeometric function. 

There we found that replacing  E(7T | BO, oo, m  , n  )  by  (».)        usually 

resulted in a very small error.    Now we know that replacing 

E(7T, I m, , n, , m_, n  )  by  (VT  )       will produce the same or an even smaller 111       2     2 lex 
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error.    Hence,   we can accurately approximate   E(»r   !m. ,n  , m  ,n ) 

bv  (TT.)     ,   the latter being easy to calculate. 
1 ex •        * 

4.1.5.    The Special 3-State Case Where Only 

1  Transition Probability is Not Known 

Exactly 

P = 

1   - a  - b 

1  - c - d 

f 

b 

d 

1  - e - f 

Suppose     a     is the only probability not known exactly.    Then 

it is convenient to let   t ■ a/(l-b)  and to assume that 

ft(x) = fß(x|m,n) - ^JL_ x--1 (i.^-1 0 < x < 1 

Then Appendix  J   reveals that the expected values of the steady 

state probabilities can be expressed in terms of the hypergeometric 

function  F (defined in equations (G..'2J) and (G. 3) of Appendix  G). 

E(VaifcF(uWsc] 

TC(Ä)'M—«I E(,2) =  - 
B 

B4C 

B + C 
G /, B 

+   „   .   _   F   1, n  m+n 
B+C 

anci 

where 

E(7T3)   =   1    -   E(^)    -   E(7T2) 
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.        ce + cf + de A = —mr~ 

B = d + e + f 

be + bd + bf + ce + cf + de C = _-  

D = e + f 

and 

G.     M 

1  - b 

Appendix  G  also suggests a method for evaluating a hypergeometric 

function for given arguments;   hence,   we can evaluate   E(7r ),   E(7T ) 

and E(7r )   for given values of  m,   n,   b,   c,   d,   e   and f. 

The Beta distribution on a/(l-b) allows simple Bayes modifi- 

cation of the prior. If r transitions occur from state 1 to state 2 and 

s   from  1   to   1,   then the posterior distribution on  t   is 

f (x)  = f   (x | m+r; n+s). 

It certainly appears that the approach used in this section could 

be extended to give us the expected values of the   TT'S   in larger Markov 

processes where only one transition probability was not known exactly. 

4. 1 . 6.     Simulation of the Steady State Behavior of 

3-State Markov Processes  Whose Transi- 

tion Probabilities are Multidimensional 

Beta Distributed 

As discussed earlier    for 
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p = 

1   - a - b 

1   - c  - d 

f 

b 

d 

1  - e - f 

where  a,   b,   c,   d,   e  and fare random variables there is no simple 

analytic method of determining  E(ir ),  E(n )   and  E(ir ).    Hence,   it 

was necessary to resort to simulation techniques. 

Simulation Procedure 

Consider the 3-state process having multidimensional Beta 

distributed transition probabilities with parameters   M = (m   ).    Using 
ij 

one of the two techniques outlined in section 3.6,   a random draw of  u 

and v  was made from f       (u, v) = fQ(u, v | m,   , m, ,, m, ,),   of  w and  x 
a,b p 12      13      11 

from  f       (w,x) = f  (w,x|m     ,m     , m,_),   and of  y  and  z  from 
c, d p 21       23      22 ' 

fe   f^y'Z^ = fß^y'Z^m31'm32'm33^'    Then we know (from section 4. 1. 1) 

that the corresponding steady state probabilities are 

 wy + wz + xy  
1       ux + uy + uz + vw + vx + vz + wy + wz + xy 

uy + uz + vz 
T,   =  -T2 1  Z       denominator 

and 

1   " *1   - *2 

This procedure was repeated a large number of times (the usual 

number was 700) using an IBM 7090 digital computer and the sample 

mean values of-n-   ,   TT _ and TT 3 approached E(TT   ),   E(IT ?) and E (IT ,), 

respectively.     The  sample standard deviation was also calculated to 
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obtain an idea of the spread of the distribution,   hence the significance 

of a given deviation of the sample mean from some fixed number.    A 

typical plot of a sample mean and sample standard deviation of the mean 

as a function of the sample number is given in Figure 4. 2.    The stabili- 

zation of the sample mean in this figure indicates that the sample size 

of 700  is reasonable. 

Parameter Values Used and Results 

For each set of parameter values the following quantities were 

recorded: 

i)   The exact steady state probabilities [rr )      ,   etc.,   correspond- 

ing to the transition probabilities being known exactly at their mean 

values. 

ii)    The sample mean values,    it  ,   ir  ,   ir  . 

iii)    The sample standard deviations of the means,    s— 

and   s—  . 
*2 

iv)    95 per cent "confidence" regions for each of  E(n  ) 

and  E(7T ).     (See the discussion below.) 

e.g.,  IT   - 1.96 s-   ^ E(?r ) S r   + 1.96 s- 

is the 95 per cent    confidence    region for  E(TT ). 

v)    The total per cent deviations (T.P.D.) of the sample means 

from the exact steady state values 

T.P.D. = loo x [|ul)ex - 7l | ♦ |(,2)ex - 72l ♦ |(,3)ex - 7,1] 

(4.4) 

We have two measures of the difference between   ( T.)        and 
J ex 

E(*.): 
J 
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i)   If the 95 per cent    confidence    resion on   K.   includes (n.)     , 
J J ex 

we are more inclined to say that  E(ff.)   is approximately equal to in.) 
J jex 

than if the region does not include   in.)     .    The use of    confidence 
J ex 

intervals is not being advocated as this dissertation is Bayesian in 

nature.    Fortunately for a reasonably flat prior distribution on  E(TT.)   in 

the neighborhood of  (n.)       (this situation can be assumed here) the a 
J ex 

posteriori distribution on  E(7T.)   is very close to the density function 

of   n.   given E(n.);   i.e.,   the a posteriori distribution of E(~.)   is approxi- 

mately normally distributed with mean  n.  and standard deviation  s— . 
"j 

Hence,   the 95 per cent    confidence    region is the central section making 

up 95 per cent of the area of the a posteriori density function of E(7T.). 

If it includes   (n.)     ,   we should be more inclined to say that E(n.) d 
J ex j 

(n )       than if it doesn't include   (n.) 
j ex j ex 

ii)    The smaller   T.F.D.   is,  the more likely that  (n.)       is a 
J ex 

good approximation to   E(7r.). 

The following systematic method was used to decide on a reason- 

able number of  (m..)   sets to test.    The   m .'s   were split into two cate- 
ij ij 

gories,   namely  Low and   High.     So that two  H's   °r two   L's   would not 

necessarily be the same,   a random element was added as follows: 

Each time an   L   was requested,   a   1,    2,    or   3   was selected, 

each with probability  1/3. 

Each time an  H  was requested,   a  7,   8,   9,   10,   11   or   12  was 

selected,   each with probability   1/6. 

To perform a reasonable number of tests which cover a wide 

variety uf pattern! it was decided to have each diagonal entry either high 

or low and each pair of off-diagonal elements in the same row both 

high or both low.    This results in 20 essentially different patterns; 

permutations of states give the same pattern,   e.g., 
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H L L 

L L L = 

L L L 

L L L 

L H L = 

L L L 

L L L 

L L L 

L     L     H 

Eighteen other miscellaneous experiments were performed as indicated 

in the legend of Appendix  K.    They were undertaken to provide extra 

points on the plot of  T.P.D.   (to be discussed shortly). 

The detailed results are presented in Appendix  K.    From these 

Figure 4.3 was developed.    It shows   T.P.D.   plotted as a function of 

two parameters,   the average diagonal transition probability and the 

sum of the parameters of the multidimensional Beta distribution.   More 

will be said on this plot later. 

After a careful study of the results of Appendix  K there is one 

important point that can be made.    The low total per cent deviations 

throughout as well as the large number of times that the 95 per cent 

confidence    region on E(TT.)   overlaps the corresponding  (IT.)       value 

clearly show the marked insensitivity of the expected values of the 

steady state probabilities to the variances of the multidimensional Beta 

distributions.    By an analytic argument this fact has been shown to hold 

for the 2-state situation in sections 4.1-3 and 4. 1.4. 

At first only experiments 1 -26 were performed.    Close study 

of their results revealed two interesting points.    First,   for fixed values 

of the means of the transition probabilities the deviations of the   E(T.)'S 

from the   (TT.)     's   decrease as the sum of the  m..'s   increases.    This is 
J ex ij 

as expected because the larger the sumtof the  m..'s,   the closer we are 

to exactly known transition probabilities.    Secondly,   the worst deviations 

of the  E(7r.)'s  from the   (w.)     's   appear to occur when the diagonal  m..'s 
J J ex u 

dominate the other parameter values;   i.e. ,   when the means of the 

diagonal transition probabilities are high.    This is directly comparable 

to the 2-state situation where the largest deviations occurred for  small  a 
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Figure 4. 3:    Plot of T. P. D.   for 3 State Processes 
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and  b   (the off-diagonal elements).    When the means of the diagonal 

transition probabilities are high,   all of a,   b,   c,   d,   e   and  f are small. 

Now each steady state probability is made up of a numerator over a 

denominator.    Each of these,   in turn,   is the sum of a series of cross- 

products of a,   b,   c,   d,   e  and  f.    Hence,   if a,   b,   c,   d,    e   and f are 

small,   the numerator and denominator will be small and hence,   relatively 

more sensitive to fluctuations in a,   b,    c,   d,   e  and f than when some or 

all of those parameters are large.    Hence,   it is expected that E(7r.) 

would deviate most from  (7r.)       when all of a,   b,   c,   d,   e   and  f were 
j ex 

small. 

In an effort to graphically portray these two important points 

the   T.P.D.   values of experiments 1-26 were plotted in Figure 4. 3.    It 

became apparent that other experiments would have to be performed to 

adequately cover the grid.    Hence,  experiments   27-38 were conducted. 

Their results further substantiated the three points mentioned earlier: 

i)    The expected values of the steady state probabilities are 

very insensitive to the variances of the multidimensional Beta distribu- 

tions. 

ii)    For fixed values of the means of the transition probabilities 

the deviations of the   E(7T.)'s   from the   (IT.)     'S  decrease as the sum of 
j J ex 

the   m..'s   increases. 

iii)    The deviations of the   E(7r.)'s   from the   (fl\)     'i increase as 
J J ex 

the diagonal  m .'s   more and more dominate the other parameter values; 
ii 

i.e. ,   as the mean values of the diagonal transition probabilities become 

large.    It was hoped that a functional relationship between  T.P.D., 

I m      and the average value of the exact diagonal transition probability 
ij 

(p   )   could be developed.    However,  although Figure 4. 3 illustrates the 
ii 

above points ii) and iii) qualitatively, it is clear that not even rough 

iso-T. P. D. curves can be drawn on the figure. If such curves could 

have been drawn,  for a given Markov process with multidimensional 
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Beta distributions over the transition probabilities,   we could estimate 

the   T.P.D.   value (i.e.,  the inaccuracy of using the   (v.)     's  for the 
r* =      J ex 

E(7T.)'s) by the fact that we would know   )  m..  and  p     and would use the 
J Li      ij Ü 

curves to obtain the corresponding   T.P.D.   value. 

In Chapter 5 we shall define the expected reward per time 

period in the steady state as 

N 

E(R) =   )     r. E(TT.) 
Li       J J 
j = l 

where   N  is the number of states   and  r.   is the reward per period for 

being in state  j.    If we define 

N 

(R). )    r   (TT.)     , 
Li     2     J ex 

ideally we would like to know the behavior of |E(R)  - (R)      j   as a function 
ex 

of the  m..'s.    However,  this behavior would also be a function of the 

r.'s   and therefore is quite difficult to study because of the large number 

of parameters involved.    Thus,   we have compromised by studying the 

behavior of 

N 

'.P.D.   j=   I IE(JT.)  - (».) 
J J ex1 

j = l 

In summary,   it appears that in most 3-state situations where the 

transition probabilities are multidimensional Beta distributed a good 

approximation to the expected values of the steady state probabilities is 

obtained by assuming that the transition probabilities are exactly known 

at their mean values and using the corresponding exact steady state 
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probabilities (quantities that are very easy to evaluate) as the approxi- 

mation.    This approximation becomes questionable when the diagonal 

transition probabilities are large and the   m..'s  are relatively low in 

magnitude.    However,   as will be shown in the 4-state situation,   m..'s 

low in magnitude are very unlikely in practice because any sort of prior 

knowledge about the transition probabilities will give reasonably small 

variances on the Betas which,   in turn,   will make the  m.'s     large. 

4. 1. 7.    Simulation of the Steady State Behavior 

of 4-State Markov Processes Whose 

Transition Probabilities are Multi- 

dimensional Beta Distributed 

Essentially the same simulation procedure as for 3 states was 

utied here.    However,   now we have 4 x 4  or   16 m..'s   instead of 9. 
lj 

Also,   the expressions for the steady state probabilities for exactly 

known transition probabilities are far more complex.    It turns out that 

the denominator of each steady state probability is the sum of  64 triple 

cross products of the transition probabilities.     More will be said on 

this point in Appendix  L. 

Part of the   L-H  framework of the 3-state simulation was used 

here but more of the  m..'s  were generated randomly at higher values 

as indicated in the legend of Appendix  M. 

An analysis of the results of Appendix  M again reveals low 

toial per cent deviations throughout as well as a large number of times 

that the 95 per cent    confidence    region on E(TT.)   overlaps the corres- 

ponding   (TT.)     .    As in the 3-state case this indicates that the expected 
J ex 

values of the steady state probabilities are quite insensitive to the vari- 

ances of the Beta distributions.     This is most encouraging as it suggests 

that the same situation exists for any size Markov process.    Unfortunately, 

simulation of processes with more than 4 states would take a prohibitively 
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long time.    Even for  4  states the computer time was becoming appreci- 

able;   e.g. ,   experiments 52 to 56 required approximately 5 minutes on 

the 7090. 

We again observe that for fixed values of the means of the 

transition probabilities  E(ir.)  approaches   (ff.)       as the sum of the 
J J ex 

m..'s   increases.    Therefore,   the approximation of using  In.)       for 
ij J ex 

E(fl\)   will improve as the sum of the   m.;'s   increases.    Fortunately, 

as will now be demonstrated,   in most physical situations the sum of the 

m..'s   will be relatively large. 

Consider the example presented in section 3. 3 of a 4 category 

multidimensional Beta. 

o-       = 0.063 
Pi 

E(Pj_) -0.1 p    = 0.004 

E(p2) =0.2 P2 * 0.008 

E(p3) - 0.3 P3 =0.001 

E(p4) =0.4 p    = 0.004 

We found that )  m. = 4V with m, 
u       J                                   1 

o-      =0.089 

o-      = 0.032 
P3 

o-      = 0.063 
P4 

5,   m„ =9,  m, = 14,  m, ■ 19.    These 
2 • 3 • 4 • 

m. values,   which are reasonably large,   correspond to quite large values 

of the standard deviations of the   p.'s.    In most physical situations we 

would know enough a priori information about the   p.'s   to have smaller 

standard deviations than these.    For the above example,  keeping the 

o-     's   in the same ratio we get the following results using equations (3.9) 

and (3.10): 
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0" 0. 9tr 0..75cr 0. 5(T 0.. i<r u. uio- 

er 
Pl 

0.063 0.057 0.047 0  032 0.006 0.0006 

0 
P2 

0.089 0.080 0.067 0.045 0.009 0.0009 

er 
P3 

0.032 0.029 0.024 0.016 0.003 0.0003 

er 
P4 

0.063 0.057 0.047 0.032 0.006 0.0006 

l-> 47 59 85 192 482 4829 

The   er      values under the   0.75er and  0.5er columns are of reasonable 
PJ 

size for a physical problem and they are seen to give very high values 

of   )   m..    Some similar calculations were done for other  E(p.)  and <r 
L   i J Pj 

values and the results were qualitatively the same —for reasonable 

standard deviations of the   p.'s   the   /   m.  value is quite large,  hence 
J (—i      J 

the approximation of using   (n.)       for  E(ir.)   is quite good.    More will be 
J ex j 

said on the approximations when they are used for statistical decision 

purposes in Chapter 5. 

4.2.    First Passage Times 

Let  n     be the number of transitions to get to state  j  for the 

first time given that the process is in state   i  before the first transition. 

If  i s j,    then  n .   is also called the recurrence time for state   i. J ii 
We shall only be concerned with the mean first passage time 

and not with the entire probability mass function.    Still,  the same dif- 

ficulties as those met in evaluating the expected values of the steady 

state probabilities are encountered for 3 or more states.    This is quickly 

shown by recalling       that the mean recurrence time and steady state 

16 
Howard,   R.  A. ,   Dynamic Probabilistic Systems (in preparation). 
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probability are related by   E(n..) ■ l/(w.).    Hence,   we shall only study 

the 2 state situation where both transition probabilities are independently 

Beta distributed. 

The mechanism assumed will again be as follows.    We select a 

value for each of the transition probabilities from its Beta distribution. 

With these values we calculate the associated exactly known mean first 

passage times   (n..).    We repeat this process over and over obtaining 

a whole series of values for the mean first passage times.    We want to 

obtain analytic expressions for the long run average values of these series 

of mean first passage times;   i.e.,   for  E(n..)  = n..,  the expected mean 

recurrence times. 

Consider 

where 

and 

fa(x) = f (xlm^n^ 

fb(y) =fß(y|m2,n2). 

Then,   as shown in Appendix  N,   the expected mean recurience times 

are given by 
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_ m (m +n   -1) 
E(n..) = 1 + : —-r. rj = 1 + 

11 (m +n )(m2-l) 

a  1 
m2+n2 

m2 + °2 

m  (m +^-1) 
E(n22) B 1 *  (m^Knij-l) 

b  1 

1 + 
m +n 

m    + n 

m    + n    - 1 

E(a12> =      m   - 1 

1 - 
1 

mi 
+ ni 

a 
1 

ml+ nl 

(4.5) 

and 

E{n„) = 
m2 + n2 - 1 

rn2-l 

1   - 
m2 + n2 

m2 + n2 

There are several comments that can now be made.    First, 

unlike the expected values of the steady state probabilities where we 

required the use of the hypergeometric function,   equation (4. 5) reveals 

that the E(n..)'s are very simple functions of the m..'s.    Secondly,   to cal- 

culate  E(n     ),   although it is a function of    a   ,   we only require  a.    A 

similar comment can be made about  E(n     )   and    b   .    Finally,   the fol- 

lowing can be said about the sensitivity of the  E(n..)'s  to the variances of 
J 

the Beta distributions.    The terms   1   - l/(m +n )  and  1  - l/(m +n  ) 

rapidly approach   1;   hence,   the terms that determine the sensitivity 

are  a - l/(m +n   )  and b - l/(m +n_,).    If a  is not too small,   a - l/(m 
11 L. L* 1 

+n  ) quickly approaches   a.   Therefore,  if a  is not too small,   both E(n   _,) 
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Figure 4.4:     E(n..)'s as functions of the Beta Parameters. 
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and  E(n     )   are insensitive to  m    + n  (i.e.,   to the variance of the Beta 

distribution on     a  ) provided m.  + n     is somewhat larger than  l/(a). 

Similarly,   if b  is not too small,  both  E(n     )  and E(n    )   are insensitive 

to m? + n?   (i.e. ,  to the variance of the Beta distribution on   "b"),   pro- 

vided  m    + n     is somewhat larger than  l/(b).    This behavior is illus- 

trated in Figure 4.4,   which presents plots of the  E(n   )'s   as functions 
ij _ 

of m   + n     and  m   + n    for the numerical example where  a = 0. 1 

and  b - 0.5.    b  is not too small,   hence   E(nrJ1)  and E(n,   )  are seen to 
a\ 1 1 

be very insensitive to m + n as soon as m + n get« slightly away 

from the value 2. On the other hand, the low a value causes E(n ) 

and  E(n__)   to be fairly sensitive to  m    + n     for a large range of  m    + 

V 
It has been demonstrated that for a 2-state Markov process 

whose transition probabilities are independently Beta distributed it is 

a simple matter to obtain the expected values of the mean recurrence 

times.    As the latter quantities are occasionally of importance in 

physical situations,  this is a worthwhile discovery. 

4. 3.    State Occupancy Times 

4. 3. 1.    The Probability Mass Function of 

the Occupancy Time 

Again,   consider an N-state Markov process with transition 

matrix  P = (p   )   where the   p    's   are multidimensional Beta distributed 
ij U 

with parameters   m   .    Under these circumstances we have shown in 
ij 

section 3.2 that the marginal distribution on  p..   is given by 
li 

v ■« ■ V" m..,   /   m. . 
11     Li        !J 

V        j*i 

Let   u    be the number of the transition on which the system 
i 
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leaves state   i  for the first time giver, that it is in state   i before the 

first transition.    Then it is well known that 

Pu I      (k|x) = x   "    (I-x) 
i     ii 

k > 1 (4.6) 

Now we use the same mechanism as earlier.    Select an x value 

from the   p..   distribution and determine the corresponding probability 

mass function on u..    This is repeated a large number of times and we 

would like to know the resulting marginal probability mass function on u., 

1 

pu(k)=y puiP 
(k|x)f

P 
wdx 

i   0 i ü   u 

Section O. 1 of Appendix  O  reveals that 

U-Pj 
Pii       Pii+Wi 

ii   \ 1+w./ \ l+2w. 1 V   ' \) 

V(k-2)V 
I l+(k-l)wj 

k > 2 

Pu (k) = 
i 

U-Pl|) k = 1 

(4.7) 

where 

m. 

P.. N 

y K 

and        w. ■ 
i N 

j-1 

(4.8) 

NOTE: 

For   p..   exactly known at   p..   the quantity  w. = 0  and equation 

(4. 7)   reduces to equation (4. 6),   as it should. 
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It is interesting that the probability of exit on the very next 

transition  (k=l)   is independent of the sum of the  m   's  and only 
lJ 

depends on  p...    Furthermore,   it is now no longer obvious that E(u )  is 
11 ■ i' 

finite (as in the case when  p..   is exactly known). 

Equation (4. 7) was used to develop the curves of Figures 4, 5 

and 4.6. 

4. 3. 2   The Mean Occupancy Time 

When p.. is exactly known the mean occupancy time is given by 
1 

(1-p..).    However,   when  p..   is Beta distributed as assumed here,   the 
*ii ii 

probability mass function of the occupancy time is as developed in equa- 

tion (4.7).    Although we cannot obtain the exact value of E(u.),   sec- 

tion  O. 2  of Appendix  O  reveals that the mean value of the occupancy 

time can be bounded as follows: 

T ij~/' ^ry/ *   k(m..+k-2).' V^ij A k miV 

(m.,-1)! 
ii k=j 

(4.9) 

The upper bound is not very tight but it does serve the important pur- 

pose of showing that the mean value of the occupancy time is finite.     This 

is not obvious from just looking at the probability mass function (equa- 

tion (4.7)).    The lower bound of equation (4.9) is obtained by merely 

truncating the summation 

k Pu (k) 

k=l 

at a finite number   (r)   of terms. 
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m.. ■ 7 (i. e.   P..  = 0. 7) 
li li 

Figure 4. 5:    The Probability Mass Function of State Occupancy 

Time,    P   (k),   for Fixed    -m.. 
U. 1J 
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Figure 4. 6:    The Probability Mass Function of State 

Occupancy Time,   p    (k), for Fixed p.. 
i 
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Although a closed expression could not be found for the mean 

occupancy time,   recall that we were able to obtain the probability mass 

function of the occupancy time when the transition probabilities are 

multidimensional Beta distributed.    This appears to be the one impor- 

tant quantity that is analytically calculable in an  N  state Markov process 

when the transition probabilities are multidimensional Beta distributed. 

Numerical Example 

Suppose 

f      (x) = f  (x|5,45)        i.e., m.. = 5,    >  m.. = 

j 

50 

Using equation (4.9),   the upper bound is given by 

(49)(45) 
44 

50.1 

The lower bound for   r = 1  is 0. 90 

r ■ 2 is 1.08 

r = 3 is 1.11 

r = 4 is 1.12 

Therefore,    1.12 < E(u.) < 50.1,   a rather wide bound,   but as stated 

earlier,   the upper bound does serve the useful purpose of assuring us 

that  E(u.)   is,   indeed,   finite.     For   p..   exactly known at   5/(50) =0.1, 

the mean occupancy time would be   1/(1-0.1)  or   1.11. 
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4.4.    Transient Behavior 

Again,   let the mechanism be as follows.    Values of the trans- 

ition probabilities are drawn from their distributions and the multi- 

step transition probabilities are evaluated conditional upon these exactly 

known values of the transition probabilities.    If this process is repeated 

a large number of times,   what can be said about the unconditional 

multi-step transition probabilities? 

Define 

and 

<t> .(n|P) = pr{ state at time   n  is   j | state at time   0  is   i 
and the matrix  P,   with exactly known 
transition probabilities,   is being used'} 

9 .(n) =   pr{state at time   n  is  j | state at time   0   is  i} 

As an example consider the 2-state process with 

P = 

1  - a 

1  - b 

where     a" and    b ' are distributed according to   f  (x)   and  f  (y). 
3L D 

l 

?12(l)=y     xMx ) dx = a. 

the mean of the distribution on     a   .    Similarly, 

4>u(l) = 1  - a,   9      = b, and        <t>22(l) = 1  - b 
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However, 

1       1 

*12(2)  ■ j     J      L(l-x)x+ x(l-y)] fa(x) f  (y)dxdy 
0      0 

1      1 

=   \      j      [2x - x2 - xy] fa(x) fß(y)dxdy 

0      0 

= 2a - a    - ab # 2a - (a)    - ab. 

The second moment of the    a     distribution has now become important. 

More generally, 

1       1 

Vn) = J      j      Vn'X,y) fa(x) fb(y)dxdy 

0      0 

l. e. , 

«fr.^n) = [4>..(n|a,b)] (4.10) 

i i k k where   * denotes that  a.    has been replaced by aJ   and b    by b  .    This 

result is useful for the 2-state case where   4>. .(n| (p..))  has been obtained 

in closed form.    For more than 2 states there is no closed form 

expression for   4>. .(n | (p,.))   in terms of power series in the transition 

probabilities.    (The 3-state situation is illustrated in Appendix  F.) 

However,   for 3 or more states for a specific   n  we could find  9 .(n)  as 

a power series in the transition probabilities by obtaining the  i-j  elem- 

ent of P    through actually raising  P to the   n      power (where the transi- 

tion probabilities would be left in symbolic form.) Power series are 
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k k 
required to allow us to replace   p..  by  p.. .    For the 2-state situation. 

ij    _     lj 
equation (4. 10) was used to develop  <t>. .(n)  for Beta distributions 

over     a" and    b   .    In the 2-state case we have 
17 

$(n|a,b) = (4>   (n|a,b)) 

b a 
a+b a+b 

b a 
a+b a+b 

+ (1-a-b) 

a 
ä+b 

-a 
a+b 

-b b 
a+b a+b 

This does not appear tobe expressible in terms of a and b . How- 

ever, for any specific n this can be achieved by expanding the above 

expression.    For example,   suppose  n = 3,   then 

*12(3|a,b) = ^-b+ (1-a-b)3 

(-a+b) 

-J-T [1  - 1 + 3(a+b)  - 3(a+b)2 + (a+b)3] 

= a[3 - 3(a+b) + (a+b)  ] 

a3 + a2(-3+2b) + a(3-3b+b2) 

4>    (3) = a3 + a2(-3+2b) + a(3-3b+b2). 

Expressions of this nature were developed for  a ■ 1,   2,   . . . ,   10  and 

then,   through the use of a computer program,    <t>     (n) n - 1,   2,   . . . ,   10 

were evaluated for the following combinations 

17 Ibid 
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Figure 4. 7:    The Multi-Step Transition Probabilities for a 
2-State Process When "a" and"b" are Indepen- 

dently Beta Distributed,    ä ■ 0. 5,   b" = 0. 5 
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where 

and 

a = 0.1,   0.5,   0.9 

b = 0.1,   0.5,   0.9 

m   + n    = 10,   50,   200,   500,   <* 

m   + n    ■ 10,   50,   200,   500,   °o 

fa(x) = f (xlm^rij) 

fb(y) «£p(y|m2,n2). 

Typical curves are presented in Figure 4.7 for the case  a = 0.5,  b = 0.5. 

The entire results (which were too detailed to be included even in an 

appendix) can be summarized by a few remarks.    For the 2-state process 

with    a     and     o    exactly known we know that the steady state probabili- 

ties will be approached in an oscillatory manner if and only if a + b > 1 
1 8 

(see Howard     ).     Empirically,   at least,   the behavior when both transi- 

tion probabilities are independently Beta distributed can best be des- 

cribed by the following flow chart: 

(please see next page) 

18. 
Ibid. 
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Figure 4.8. Oscillation in the transient behavior of 2-state processes 
when both transition probabilities are independently Beta 
distributed. 

4.5.    A Simple Trapping States Situation 

4.5.1.    3-State Example 

Consider the extremely simple Markov process whose transition 

matrix and flow graph are as follows: 
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2 3 

1 

P = 2 

3 

1   " ql  " q2      ql 

0 

0 

^2 

0 

1 

where  q     and  q    are multidimensional Beta distributed,  i.e., 

£q     q  (X'Y) = fß<x'ylm2'm3'm1) qrq2 

ß(m  , m^.m  ) 

m   -1    m   -1     m   -1 
(1-x-y) x y 

0<x,  0<y,   x + y<l. 

Let   g. be the probability that the process traps in state  j.    Then 

Appendix  P  reveals the following simple results: 

m. 
_2_ 

2 f T--: 

E<g,) =  T— and E(g„ '2        m„ + m„ °y       m„ + m„ 
2 3 

Bayes Modification 

Since the process traps in state   2  or   3   we must think of a large 

number of units starting in state   1   for a Bayes approach to have any 

meaning. 

A priori distribution 

f (x, y) = fn(x, y|m,,m,, m, ) 
1l,q2 
q,.q,-   "     P    ,,-.2.-.3,«.1, 
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Suppose we observe 

n    transitions which return to state   1 

n    transitions which go to state 

Then the a posteriori distribution is 

f (x, v) = f„(x, y |m_+n  , m +n   , m +n  ) 

and the a posteriori expected values of the probabilities of trapping in 

states 2 and 3 are 

E(g,) = 
m2 + n2 

2        m    + m    + n    + n 

and 

E(gJ    : 
m3 + n3 

3-       m2 + m3 + n2 + n3 

Note that 1-1 transitions have no effect on  E(g_,)   and  E(g0).    However, 

they would change our feelings as to the number of transitions for a 

trap to occur. 

4.5.2.    Generalization to   N  States 

The generalization to   N  states is accomplished without 

difficulty. 
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' 

p = 

N-l 

-Is 
la] 

0 

0 

1 

0 

0 

1 

0 0 

The a priori density function is 

V'" -,qN-l'   l" ~N~1'      *P>"1 

then 

qN-l 

(X1 XN-1)=VX1 XN-ilm2'm3""mN'ml) 

E(g.) = j = 2,   3 N 
N 

z». 
i = 2 

Suppose we observe   n.   transitions from state   1   to  i,   1=2,   . . . ,  N. 

Then the a posteriori expectation of trapping in j   is given by 

m. + n. 

N 

2 (mi+ni) 

i = 2 

It is realized that the trapping state example dealt with here is 
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practically trivial.    However,   it does give some insight into the prob- 

lem» encountered when the transition probabilities are not known 

exactly.     Furthermore,  for more complicated trapping situations we 

immediately become involved in the same sort of predicament as was 

encountered in the study of the steady state probabilities when the 

process contained more than 2 states. 
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CHAPTER  5 

STATISTICAL  DECISIONS IN  MARKOV PROCESSES 

WHEN  THE   TRANSITION  PROBABILITIES ARE 

NOT KNOWN EXACTLY 

Before starting this chapter it is suggested that the reader 

scan section 5. 6 to obtain an overall idea of the goals of the chapter 

and how they tie in with those of the previous two chapters. 

5.1.    The Importance of the Expected Values of the Steady State 

Probabilities 

Consider an  N-state Markov process with a given transition 

matrix P.    Let the corresponding steady state probabilities be repre- 

.... 
one time period.    Then,   in the steady state the expected reward per time 

period is 

sented by  * ■  [n  ,   ir  ,   ....   i   ],    Suppose that there is a reward 

tor  r_ = [r   ,   r   ,   . . . ,   r   ],   where   r. = reward for being in state  j  for 
12 N j 

vec 

N 

R =    )      7T. r. 
L     j   j 
j-1 

Now,   if the  p   's  are random variables,   the   n.'s  and,   therefore, 
!j J 

also  R become random variables.    But 

N 

E(R) =   Y    r. E(ff.) (5.1) 
CJ      J        J 

i=l 

The quantity  E(R)   is central to many decision processes.    Hence,   it is 
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essential that we be able to evaluate it for convenient distributions over 

the   p..'s.    However,   equation (5.1) reveals that we must determine 

the  E(TT.)'S  to obtain E(R).    This was the motivation for such careful 

study of the E(7r.)'s for multidimensional Beta distributions over the 

transition probabilities in section 4.1.    The reasoning behind using 

multidimensional Beta   distributions has been discussed at length in 

section 3. 5. 

5. 2.    A 2-State Problem 

5.2.1.    Description of the Problem 

Consider a 2-state Markov process with transition matrix 

1   - a 

P = 

b 1  - b 

where     a     is exactly known but 

fb(x) - fß(x|m,n) - -^L_ x—1  (1_x)n-l     , £y s , 

Let 

and 

c  be the fixed cost per time period for using the process, 

r.  be the reward per time period for being in state   j   (ja 1,2) 

d  be the cost of observing a transition from state   2  regardless 
of the state to which it goes. 

Suppose that we have the option of buying the right to observe   k 

transitions from state   2  (the outcomes of which would modify,   in a 
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Bayes «ente,  the probability distribution over   "b").    For the problem 

to have economic meaning,  let us consider that one of the following two 

conditions exists. 

i)   The process will only be run for s periods starting in the 

steady state. 

or 

ii) The process will run indefinitely but there is a known dis- 

count factor. 

The second condition would be more likely to exist in the real 

world than the first. 

5.2.2.    The Situation Where the Observations 

Do Not Affect the Decision Procedure 

Intuitively,  it certainly would not be worthwhile to pay for obser- 

vations if they cannot affect the decision procedure.    However,   in the 

research this fact was overlooked at first and some rather interesting, 

non-trivial results Were developed.    They are»;   therejftrej   included 

In this section and Appendix  Q. 

Let E    be the event that in k transitions from state   2   r  of 
r 19 them go to state   1.    Then,  according to Raiffa and Schlaifar 

pr(Ey | m, n, k) = P^d"! m, n, k) 

(5.2) 
(m+r-1).'  (n+k-r-1).' k! (m-fn-1).1 (r=0, 1 k) 

■ r.1 (m-1)! (k-r)! (n-1)! (m+n+k-l).' 

This is the Beta-binomial distribution.   Also, we know f*om -secftion 3.4 

that 

19Dp. cit.,  p. 265. 
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fb(x|Er) ■ f(x|m+r, n+k-r), 

a new member of the same Beta family. 

Assume that the process will be used for   s   periods in the 

steady state.     If the Beta parameters are   m  and  n  and the other transi- 

tion probability is     a   ,   then the expected net revenue is given by 

E(N. R. Jm, n, a) = s[r    E(ir   |m, n, a) + r    E(ir   | m, n, a)  - c] 

= s[r1   - c + (*,-',) E(TT   |m, n,a)]. 

From the results of section 4. 1. 3 and Appendix  G 

E(N.R. |m,n,a) = s [TJ   - c + (j^Tj)  ~^   F^l,n|m+n| —)J 

(5.3) 

Also define   E(N.R. jm, n,a;k)   to be the expected net revenue (prior to 

the observations and excluding the cost of observation) if m  and  n are 

the Beta parameters,    "a" is the other transition probability and   k 

observations are to be taken.    Then 

E(N.R. |m, n, a; k) = \   pr(E   | m, n, k) E(N. R. | m+r, n+k-r, a) 

i.e., 

E(N.R.  |m,n,a;k) ■   \    p    (x jm, n.k) E(N.R. |m+r, n+k-r, a)        (5.4) 

r=0 

In section  Q. 1   of Appendix  Q   it is shown by algebraic manipu- 

lation involving equations (5.2),   (5.3)   and   (5.4) that 
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E(^R|n,f)+k,a) 

E(N-ft'|n+i ,n+fc-l,aj 

E(w.R.|n+lcyn;aJ 

x - decision node. 

o - chance  node. 

N- - iodica+es decision 
+o -hike (cu 
prov/ed  in 
Appendix  &) . 

E-(N.R-U,o,a) 

Figure 5.1.    A 2-state decision problem where the observations 
do not affect the decision. 

E(N.R. |m, n, a;k) - E(N.R. |m, n, a), 

the result that was intuitively anticipated at the beginning of this section. 

An alternate proof is presented in section Q.2   of Appendix Q 

through the use of a theorem that is of interest for decision theory in 

general. 
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. 5.2.3.    The Situation Where the Observations 

Do Affect the Decision Procedure 

Now let us look at the more realistic situation where we shall 

decide to use the process only if E(N.R*)   is positive,   otherwise we do 

not use it »nd the net revenue is zero.    (The extension to the situation 

where   E(N-R-)   must be greater than some fixed constant is trivial.) 

Stated in another way,   we shall act so as to maximize the expected 

profit.    Now experimentation may be worthwhile.    The case where the 

process can be used for   s   periods (in the steady sta,te> will be con- 

sidered.    The rest of the required information is as outlined in sec- 

tion 5. 2.1. 

The new decision problem is shown in Figure 5.2. 

sejOv^— E(N-R-I^ntlc, a) 

0 

E(N-1-f *v+k,n,qj 

X - decision node- 

o -   chance hode. 

Figure 5. 2.    A 2-state decision problem where the observations 
do affect the decision. 
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It is clear that now 

E(N.R. |m, n, a; k) =    )    p     (r jm, n, k) max[0,   E(N. R.|m+r, n+k-r, a)] 

r=0 

and we select 

"Buy observations" if [E(N-R-|m, n, a; k)  - kd]  is greater than 

both  0   and  E(N.R. |m, n, a), 

'Use process without observations " if E(N.R. |m, n, a)   is 

greater than both  0  and  [E(N. R. |m, n, a;   k) - kd], 

"Stop" if both  [E(N.R. |m, n, a; k) - kd]  and  E(N. R. | m, n, a) 

are less than  0. 

Numerical Example 

Pierre and Louie are contemplating a 5 day fishing trip, 

several months hence,   in the wilds of northern Quebec.   They,  their 

gear and canoe will be flown in androut of the wilderness.    However, 

realizing that there is a considerable expense involved they have 

decided to do some rapid calculations before making the trip.    In fact, 

they will only make the trip if their expected net revenue is positive. 

Including the transportation costs the expenses per day would 

be   $40.    They are willing to put a dollar value on the pleasures 

derived from the fishing,   etc.    However,   the value is a function of the 

weather.    On a reasonably sunny day the value is   $60,   on a cloudy or 

rainy day,    $20. 

They are convinced that the day-to-day weather can be repre- 

sented as a Markov process with transition matrix 
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. 
p = 

S R 

1   - a a 

b 1   - b 

Because the fishing area is so far in the wilderness,  data on its weather 

conditions is extremely difficult to obtain.    Pierre wrote to the Domi- 

nion Weather Bureau asking for the number of occurrences on record 

of the transition couplets   (SS).  CSRi»   (RS),   (RR).    (,SS  stands for sunny 

day followed by sunny day.)    The government official sent back informa- 

tion on only (SS)   and (SR).    Furthermore,  he has stated that any addi- 

tional weather information of this nature will be charged at a fixed 

cost   ($0.20)   per transition couplet. 

From the   (SS)  and   (SR)   information together with their prior 

knowledge,   Pierre and Louie are satisfied with saying that     a    is 

exactly known at  0. 9;   i.e.,   a rainy day is very likely after a sunny 

one.    After talking with friends,   reading geography books,   etc.,   they 

are willing to assume that     D     is Beta distributed with parameters m = 9, 

n = 1;   i.e.,   again a mean of 0.9- 

Pierre is not willing to spend any more money on weather 

information.    Louie wants to buy one piece of information,   namely the 

weather on a day after one specific rainy day (i.e. ,   the outcome of a 

transition from the   R  state).    Which man's decision is preferable? 

Using the symbols of section 5.2.1, 
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a - 0.9,        m = 9,        a = 1 

k = 1    (number of possible transitions observable) 

d = $0. 20   (cost of each transition) 

c - $40   (cost per period for utilizing process) 

r    - $60   (reward per period for being in state   1   or   S) 

r    = $20   (reward per period for being in state   2   or   R) 

pßb(0|9.1,l) =0.1   1 

*" using equation (5. 2) 
ppb(l|9,l,l) =0.9^ 

Equation (5.3) gives 

E(N.R. |m, n, a) = s[r1  - c + (r2-
r

1) 
E(7r

2l     m> n- a)l 

Using this expression together with the method of evaluating E(?r   | m, n, a) 

by means of the hypergeometric function (outlined in section 4. 1. 3) we 

obtain 

E(N.R. | 9, 1, 0.9) ■ -$0. 2740,  the expected net revenue if they 
go fishing without any more infor- 
mation. 

E(N.R. |9, 2,0.9) = -$5.2320 

E(N.R. 110, 1,0.9) = $0.2760 

The equivalent structure to Figure 5.2 is presented in the following dia- 

gram which gives the solution to the problem. 

In words,   they should buy the one observation with an expected net 

revenue of  $.0484.    If the transition is from state   2 to   state   2   (i.e. , 

RR),   they should not go fishing.    However,   if it is from state   2  to 
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$0.2484 is the expected 
net revenue after they 
have bought the one piece 
of information. 

state   1   (i.e.,   RS),   they should go fishing. 

Indefinitely Long Use of the Process 

Suppose that instead of being able to use the process for   s 

periods in the steady state we can use it indefinitely long starting  x 

periods from now in the steady state.    (This is probably more meaning- 

ful in most practical situations.)   The discount factor,    a,   is assumed 

known.    Then,  the analysis is identical to the above except we now use 

e^pecf.ed discounted present values instead of the expected net revenues. 

Utilizing a process with  E(R|m,n,a)   would give a present value of 

rewards 
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p. v. (m, n, a) - E(R.| m, n, a)[p    +a        +...] 

1  - a 
E(R I m, n, a). 

5. 3.    The Corresponding N-State Problem 

It was demonstrated in section 5. 1 that the determination of the 

expected values of the steady state probabilities is essential in obtaining 

the expected reward per period in the steady state,  a quantity very useful 

for statistical decision purposes.    For 2-state Markov processes we were 

able to show analytically (in sections 4. 1. 3 and 4. 1. 4) that for Beta 

distributed transition probabilities the expected values of the steady 

state probabilities are very insensitive to the variances of the Beta 

distributions (for fixed mean values).    For  3  or more states with multi- 

dimensional Beta distributed transition probabilities we have arrived at 

the same conclusion by means of empirical results obtained through the 

use of simulation techniques (in sections 4.1.6 and 4.1.7).    Consequently, 

for given multidimensional Beta distributions,   we may quickly obtain a 

good approximation to the  E(TT.)'S   in the following manner:   Assume that 

the transition probabilities are exactly known at the mean values of the 

multidimensional Beta distributions,   then use these exact values to 

determine the corresponding steady state probabilities,    (ff.)     's,   by 
J ®^ 

standard techniques.    Finally,   use the   (ir )      's   as an approximation to 
J ex 

the   E(7T.)'s. 

If the particular statistical problem requires extremely 

accurate values of the  E(7r.)'s,   it is always possible to obtain these by 

simulation techniques (as outlined in sections 4.1.6 and 4.1.7) if 

the   (v.)     'S  are not a close enough approximation.    However,  being able 
J ex 

to avoid simulation in a large scale problem would save considerable 
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computation time. 

It is worthwhile noting that,   as 

N 

K(P) ■  )      r. jr.(P) 
i-j        J    J 
H 

is a    'pure    (as defined in Appendix  Q)  function of the  p .'s,   the theorem 
lj 

of section Q. 2 of Appendix Q immediately tells us to not pay for obser- 

vations if we cannot make the decision a function of the observed transi- 

tions . 

5.3.1.    Description of the Problem 

Consider an  N-state Markov process whose transition proba- 

bilities are multidimensional Beta distributed with parameters   M = 

(m..).    Let 
ij 

c be the fixed cost per time period for using the process 

r.  be the reward per time period for being in state  j (j = l, . . ., N) 

and 

d be the cost of observing each transition 

Assume that the following three alternatives exist: 

i)   Stop entirely with zero net revenue. 

ii)   Do not observe the process anymore and decide to use it 

for   s  periods in the steady state. 

iii) Buy observations of the next k transitions, then either 

stop or use the process (with no further experimentation) after the k 

transitions. 

5. 3. 2.    Analysis 

Let   B be the event that the actual transition sequence is known 
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and the transition frequency count is  F = (f..)   where  f.. = number of 

transitions from state  i  to state   j.    Fo: large  k the number of such 

events possible becomes very large.    The probability of event  B   can be 

determined by considering each row of  F  separately.    Using the final 

result of Appendix  D, 

pr(f .f.^T  and known order) 
ll IN 

P(mil*fil "iN+W 
P(mil'mi2 miN> 

l. e. , 

pr(f.. , . . . , f   T  and known order) 
ll iN 

N 
N 

r   > m..     n r(m..+f.) 

l£i V&    1J 1J 
(5.5) 

N 

(m..+f   ) 
kl    iJ 

j = l 

N 
n   T(m..) 

J-l 1J 

Then, 

N 
pr[F and known order] = ü pr(f , . . . , f  and known order) 

i=l 

(5.6) 

Knowing the event B, we can quickly determine the posterior 

density functions of the p. . 'a through the use of Bayes' rule. As out- 

lined in section 3.4,   the  p..'s   will still be multidimensional Beta 
ij 

distributed except that the parameters will now be   M+ F = (m. .+£ .). 

Thus we can easily calculate the expected reward for using the process 

after the event   B  has been observed. 
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The expected net revenue without experimentation (i.e., 

observations) is 

IStop 0 

(5.7) 

Use s[E(R|(m .)) - c] 

where,   as earlier, 

N 

E(R|(m..)) =y    r   E<*. | (m..)) 

t=l 

is the expected reward per time period in the steady state given that the 

transition probabilities are multidimensional Beta distributed with 

parameters,    M = (m..).    (The actual calculation of E(R|(m..))  is des- 

cribed in the numerical example presented in the next section.) 

The expected reward with experimentation is 

E(N.R. |(m..);k) =      )       pr(B)   max[0, S[E(R| (m..), B)  - c] ] - kd        (5.8) 

all   B 

If 

E(N.R. |(m..);k) > E(N.R. |(m..)), 

we elect to observe the transitions,   if not,   we do not buy the observa- 

tions. 

To illustrate the difficulty in obtaining all possible   B's and in 

calculating their probabilities,  the following 3-state example is pre- 

sented. 
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5. 3. 3.    Numerical Example 

A shady carnival man,   Gaiy,   always looking for an "honest" 

dollar,   has asked his friend Mark if he would be interested in the fol- 

lowing game:    Gary has three dice -1 red,   1 white  and   1  blue.    Each 

has two sides marked   1,   two sides marked   2 and two sides marked   3. 

Anytime a   1   is rolled the red die is used for the next toss.    Similarly, 

2 and   3  force the use of the white or blue die,   respectively. 

Gary has made the game appear attractive by means of the fol- 

lowing cost framework.    He will  charge Mark $5.00 per roll,   but will 

pay him $4.00 for each   1   rolled,   $5.00 for each   2  and   $6.00   for 

each   3.    A naive bystander quickly figures that(4.00 + 5.00 + 6.00)/(3) = 

5.00 and hence the game is fair,in the long run. 

Gary realizes that the unknown bias of each die is quite impor- 

tant for later conquests and he doesn't want Mark to learn too much 

from playing.     Furthermore,   he will not give Mark the opportunity of 

starting with a particular die.     Therefore,   he will only let Mark play 

for   5   rolls and the first roll will only be after Gary himself has been 

rolling the dice (according to the prescribed mechanism) for quite some 

time (there is a third party present who will keep things honest). 

To make things even more confusing,   Gary has offered Mark 

the option of observing two rolls beginning with the red die at a cost 

of    d     per toss.      Should Mark listen to the bystander and play the 

game?    Should he take advantage of the option? 

Unknown to Gary,   Mark has seen a few rolls of the dice.    Also, 

he is allowed to carefully scrutinize them.     From these two sources of 

information he feels that he cannot state exact values for the transition 

probabilities,   but he is willing to assume that, they are multidimensional 

Beta distributed with the following parameters: 
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R W B 

R 5 10 5 

M ■ W 1 1 3 

B 2 4 6 

Using the notation cf section 5. 3. 1, 

c = $5.00        r = [$4.00 $5.00        $6.00]. 

Without using the option Mark's expected net revenue (using 

equation (5. 7)) is 

E(N.R.   (m..)) = 
ij S, U 

Now 

s[E(R|(m..))  - c] 

(5.9) 

s[E(RJ(m..))  - c] - s[r    E(TT   |(m..)) + r    E(»r |(m..)) 
IJ 1 I IJ L L IJ 

(5.10) 
+ r3 E(7T3|(m..))  - c] 

At this stage we use the approximation (discussed earlier) that 

EU. |(m..)) -(7T.)     , 
J        ij J ex 

the exact steady state probability calculated from the transition matrix 

M' whose elements are the means of the multidimensional Beta distri- 

butions.     That is, 
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M' 

mn 
m11+m12+m13 

m 
21 

m21 + m22 + m23 

31 
m31 + m32 + m33 

ml2 

mll +ml2 + mi3 

 22  
m21 + m22 + m23 

m 
32 

m„, + m__ + m„ _ 
31 32 33 

ml3 
mll +ml2+m13 

m 
23 

m21 + m22 + m23 

m 
33 

m„, + m„, + m 
32 33 

Here 

M1 

0.250 0.500 0.250 

0.200 0.200 0.600 

0.167 0.333 0.500 

Using the steady state results of Appendix  F 

(jr.)       =0.194,   (jr.)       =0.322,   (jr )       =0.484 
1  ex 2 ex 3 ex 

Therefore,   from equation (5. 10) 

s[E(R.|(m..)  - c]    ~ 5[4(0.194) + 5(0.322) + 6(0.484)  -5.3] 

5[- .010] = - $.050 < 0. 

Hence,  from equation (5. 9) 

E(N.R. |(m..)) = 0 

and Mark should stop rather than playing the game without the option; 

i.e. ,   Gary has duped the naive bystander (provided the latter agrees 
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with Mark's prior parameters). 

Suppose the option of observing two rolls starting with the red 

die is accepted.    Then all the following events are possible: 

Bl m fll=2 

B/ U2 fll^'f12 

B3 U3 fll=1'f13 

B4 121 f12^'   f21 

B5 122 f12 = l, f22 

B6 123 f12 = 1'f23 

B7 131 f13 = 1'f31 

B8 132 f13 = 1*f32 

B9 133 f13 = l,   f33 

f.. = 0   for all other i.j combinations. 

Using {equations (D.t>) and (5.6) 

Dr,P   v _   El&l r(?) g<10)^5)      _6x. Hr**lJ     r(22) r(5) ru-o)_£)5)    21 x 
5_ 
20 

,071 

_   T(20) T(6) T(H) rj^5)   _   5x10 
pr(ß2; -   r(22) r(5) r(10) J^J   -   21 x 20 .119 

m  ^      T(20) T(5) T(l) J^5) r<5) gjl) T(2) j^3) 
Pr^5; - P(21) r^5) r(io)i^5) x r<6) £<i) r<i) r^f3) 

similarly, 

10        1 -xT=.100 
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pr(B3) = .060 

pr(B4) = .100 

pr(B6) - .300 

pr(B?) - .042 

pr(B8) - .083 

pr(B9) = .125 

After each experimental outcome we have a new matrix of 

parameters given by   M+ F;   e.g.,   after   B,, 

M. 

5       10 

1 1 

2 4 

2 0 0 

0 0 0 ■ 

0 0 0 

10      5 

1       3 

.4      6 

Using  M. ,   we proceed exactly as we did with  M to obtain 

s[E(R|(m..),B1)  - c] , 

Mark's expected return for playing the game after he has observed two 

R-R transitions.    This is repeated for each experimental outcome.    The 

results of the calculations are shown in Figure 5. 3. 

From that figure it is seen that it pays for Mark to use the 

option of observing two rolls starting with the red die if 

.0325  - 2d > 0 

l. e. , 

d < $.01625 

If d > $.01625,  he should refuse both the option and the game. 

If he does buy the option,   the diagram also illustrates that he should 
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Figure 5. 3.    A 3-state statistical decision problem. 
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play Gary's game only if B (RWB) or B (RBB) occurs. These two 

outcomes modify the a priori parameters sufficiently in a favorable 

direction to make the game worthwhile. 

5.4.    Further Items of Interest for Statistical Decision Purposes 

In this section several other items that are of interest in sta- 

tistical decision theory are presented as they relate to the Markov proc- 

ess problems considered.     For a more detailed background,   the reader 
20 

is referred to Raiffa and Schlaifer s work. 

5. 4  1.    The Value of Perfect Information 

Suppose we are faced with a decision problem where there is 

a random variable,   x,   involved with density function f  (x  ).    Assume 
x    o 

thz.t we are able to calculate the expected net revenue 01 the optimum 

decision procedure,   E(N.R. | f (x  )  knowing only the density function 

of x.    Now,   suppose that we were told the value of x,   say x   .    Then 

there would be an associated expected net revenue of the optimum 

decision procedure knowing that  x = x   .    Call this quantity  E(N.R. |x   ). 

Then,  the a priori expected net revenue before we were told the value 

of x  would be given by 

E(N.R. |P.I.) =   \      E(N.R. |x  ) f (x  ) dx (5.11) 
J: o     x    o        o 

x 
o 

and the expected value of perfect information is defined to be 

E.V. P. I.  - E(N.R. I P. I.) - E(N.R. |f (x  )) (5. 12) 
x    o 

20 
Op.   cit. ,   Chapters 4 and 5. 
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If confronted with a proposition where we would be told the exact value 

of x for   z  dollars,   we would accept if and only if E. V.P.I.   — z. 

This concept is simplest to illustrate for the 2-state decision 

problem considered in section 5.2.1.    We have a 2-state Markov proc- 

ess with transition matrix 

1  - a 

where     a"  is known exactly,  but f, (h  )  = f_(b   Im, n).    As before, 
tr   o p    o 

let c be the fixed cost per period for using the process, r. be the 

reward per time period for being in state j (j-1, 2), and d be the 

cost of observing a transition from state   2. 

If it is desirable, we can use the process for s periods in the 

steady state. Also, we have the option of buying the right to observe k 

transitions from state   2. 

In section 5.2.3 it was shown that the expected net revenue 

following an optimum procedure is 

E(N.R. |f (b   )) = max[0; E(N.R. |m,n,a); E(N.R. |m,n,a;k)] 

(5.13) 

To evaluate   E(N.R. |P.I.),   Appendix  R   shows that we proceed as fol- 

lows : 

Case l.    r    < c < r 

E(N.R. [P. I.) J 
(r2-c)a/(c-r.) 

t« s| r    - c  + (r     r l' a + b    I 
(5.14) 

f0(b     m, n) db 
p    0 o 
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This would require numerical integration or an extremely involved 

analytic integration.     Finally,   equations (5.13)   and  (5.14)   would be 

used to evaluate 

E. V.P.I.   - E(N.R,   P.I.)  - E(N.R. |f(b  )) (5. 15) 
b    o 

Case ii      r    < c < r 

E(N.R.|P.I.) = j* s[ri  .c + {Vrl)r^o] 
(cr2)a/(rrc) (J U) 

■   f„(b   |m. n) db 
p    o o 

Then proceed as above. 

Case iii.    c < both r.  and r     or   c > both r.   and r 

If  c   <  both   r     and   r   ,    we would always use the process, 

hence,   the   E.   V.  P.   1.   = 0.    If  c > both r.   and   r   ,   we would never use 

the process,   hence the   E,   V.   P.   I.   - 0. 

Numerical Example 

Consider,   again,   the Pierre-Louie fishing problem of sec- 

tion 5. 2.. 3.     Therefore, 

a  --0.9    m ^ 9,   n--  1.   k ^  1,   d   - §. I    s=5 

c  = $40,   r     -- $60     r     -  $10. 
1 fi 

What is the expected value (to the fishermen) of perfect 
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information about the conditional probability,    "b",   that day n + 1   will 

be sunny given that day   n  is sunny? 

It was found that  E(N.R. | f^b  )) = $.0484.    The  c  and  r's  are 

seen to correspond to Case ii above.    Therefore,   from equation (5. 16) 

1 

E(N.R. |F.I.) = ( 5 fco - $40       °-9—~I—L-   b
8 db 

J L 0.9 + bJ ß(9,l)    o      o 
20{0.9)/(20) ° 

1 

- 900 

0.9 "" 

" 8      1.8b8- 

o 

To integrate the second term we use the substitution,   y a 0.9 ♦ b 
8 °' 

then expand the resulting  (y-0. 9)     term in the numerator.    We obtain 

E(N.R. I P.I.) = $2.7648 

Hence,   from equation (5.15) 

E.V. P. I.   = 2.7648 -  .0484 = $2. 7164 

This is the maximum amount that Pierre and Louie would be willing 

to pay in return for learning the exact value of   "b ".    (The transition 

probability out of the rainy state. )   Note that the E(N.R. If (b  )) value 
* b    ° 

of ».0484  is conditional upon the fact that in section 5. 2. 3 they were 

allowed to pay for observation of one transition from state  R.    Hence, 

the above E.V. P. I.  value is also conditional upon that fact.    If the 

option of observing was not available,   E(N.R.| f (b  ))   would be zero as 
b    o 

shown in section 5.2.3 and in this case 

E.V. P. I.   ^ $2.7648 - 0 - $2.7648 

These ideas can be extended to situations where we want to 
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know the value of perfect information concerning 2 or more random 

variables.    Presumably we would already know 

E(N-R-|fXl,x2 -«VT, yk». 
12 k 

the expected net revenue following an optimum policy when only the 

density function (and not the exact values) of the random variables 

x.i   x2>   ...,   x     is known.    Then,   equations (5 . 11) and (5. 1 2) become 

E(N.R. |p.i.) =f    ...f    E(N.R. Iy1.y2» ••••yk) 

'  £x......«.(V"-,yk,dirl   •••  dyk 1 k 

and 

E.V. P. I.   = E(N.R. | P. I.) - E(N.R. |f (y   , y   , . . . , y  )) 
X.  )  • *  • j X L C AC 

1 k 

However,   in practice the above integration would usually be very dif- 

ficult to perform. 

5. 4. 2.    The Choice of the Number of Observations 

to Take 

Suppose that we are given a choice as to the number   (k)   of 

observations that we can buy.     However,   the stipulation is added that 

we must decide on the exact number before any observations are made. 

Physical constraints or an opponent could place us in this position.     This, 

in effect,   prevents the problem from becoming sequential in nature.    (A 

sequential decision structure will be treated in the next section. ) 

hi principal,  at least,   the optimum number can be determined 
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in the following way.    For any particular  k  we know,  from earlier in 

this study,  how to determine the expected net revenue (including the 

cost of observation) assuming that the observations will be made. 

Although it has not been proved,   it seems reasonable to assume that 

the expected net revenue would be a unimodal function of the number 

of observations for the decision framework and costs considered. 

Hence,   we determine the expected revenue for a number of values of k 

until the peak is detected.    The corresponding  k  should be the optimum. 

Numerical Example 

For the same fishing example as that considered in sections 

5.2.3 and 5.4.1,  the expected net revenue as a function of the number 

of observations (transitions from the rainy state) is as follows: 

k Decision E(N.R. |k) 

0 Stop 0 

1 Buy observation $.0484 

2 Buy observations $.1956 

3 Buy observations $.2280 

4 Buy observations $.1858 

5 Buy observations $.0916 

6 Stop 0 

7 Stop 0 

8 Stop 0 

9 Stop 0 

10 Stop 0 

The behavior of the expected net revenues is depicted in Figure 5. 4.    In 

this example it is apparent that the expected net revenue is a unimodal 

function of the number of observations.     The optimum number of 
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observations of transitions from rainy days is three. 

5.4. 3.    A Sequential Decision Structure 

Now we make the decision structure more flexible by dropping 

the assumption that all  k observations must be made;   i.e. ,   we can now 

stop observing after any number of observations up to  k.    However, 

k  is still assumed known and fixed (perhaps due to a deadline on the 

time of our decision to use or not to use the process).    The solution of 

the new sequential decision problem is accomplished simply by the solu- 

tion of a number of old single observation problems.    Although the 

method will work for the   N-state case,  it is easiest to present using 

the 2-state problem where     a     is known exactly and    "b ' is Beta distrib- 

uted.    In fact,   the problem considered will be identical to that of section 

5. 2. 3 except,   as stipulated above,   we can now stop observing after any 

number of observations up to  k. 

Define  v.(mi n) = expected net return if there are   j   possible 

observations left,  the parameters of the Beta distribution are  m and  n, 

and an optimum policy is followed.    Then 

Observe        :— v.     (m+1, n) + — v.   . (m, n+1) -d 
m + n    j-1 m + n    j-1 

, .       max 
vj(m'n)=o,u,sll 

Stop 

E(N.R. jm,n,a) 

0 

(5.17) 

and 
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E(N.R. |m, n,a) 

v   (m.n) = — | 

The determination of v  (m, n)   is seen to be identical to finding v/hether 
o ■ 

or not to use the process when no observation is possible.    This was 

done in section 5. 2. 3.    Then equation (5. 17) is used recursively to 

solve the rest of the problem.    For a particular   (j, m, n)  triplet,  the 

solution of equation (5. 17) is identical to solving a single observation 

problem except that  E(N. R. | m+1, n, a)   and  E(N. R. | m, n+1, a)  are 

replaced by v.   . (m+l,n)   and  v.   ..(m.n+l),    respectively. 
j-1 J_i 

It should be noted that because of the sequential nature of the 

decision making we now update the Beta distribution on     b     after each 

observation.    In an N-state problem we would have to update the 

appropriate multidimensional Beta distribution after each observation. 

Numerical Example 

We again consider the same fishing example as in sections 5. 2. 3, 

5.4.1   and  5.4.2.    However,   now we assume that Pierre and Louie 

can stop buying information about days following rainy days after   1 

or   2  observations.    The corresponding decision tree is shown in 

Figure 5.5.       As would be anticipated,   the expected net revenue of 

$.2152  is higher than the value of  *, 1956 found in section 5. 4. 2, 

where they were forced to buy both observations at once. 

5.5.    Statistical Decisions for a Transient Situation 

In section 3. 4 we outlined how to determine the multi-step 

transition probabilities when the   p..'s   are random variables instead of 
ij 

being exactly known.    It was shown that the method was most practical 
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Figure 5.5.    A 2-state sequential decision problem 
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for 2-state processes.    Hence,   we shall restrict our attention here to 

2-state situations. 

The decision framework is the following.    We have a 2-state 

process with both transition probabilities independently Beta distributed. 

The costs and rewards are all exactly known.    The crucial question is: 

What is the expected net revenue in the next  h  time periods given that 

we shall have a transition from state   i just before the first period?" 

Let us denote this quantity by  E(N.R.   h, i,(m..))   where   <m.,)   are the 
ij ij 

parameters of the Beta distributions.     Then 

E(M,R.   h, i, (m..)) \      Y    4>..(n|(m..)) r. 
L   L    IJ IJ     J 

he (5.19) 

:1    i=l 

where   <p. ,(n | (m..))   = probability that the process will be in state   j  at 

time   njthe  state at time  0   is   i  and the parameters of the Reta distri- 

butions are   (m  .);   and,   as earlier 
ij 

r. a reward per period for being in state   j 

and 

c = cost per period for using the process. 

Now there is no need to elaborate in detail on the statistical 

decision problems for a transient  situation because the methods are 

essentially identical to those for the cases  studied earlier where the 

process was to be used in the steady state.     We merely replace 

the   E(N.R. i(m  .))   of the steady state  problem by E(N.R. | h, i, (m .)). 

There are other obvious minor modifications  such as reducing   h 

to   h   •   i   if we delay using the process for   1   period.    Hence     we can 

handle all the following situations  tor a 2-state transient problem where 

the transition probabilities are independently  Beta distributed: 
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i)    Determination ol the expected net revenue in the next   h 

periods given that we are presently in state   i. 

ii)    Study of whether or not to delay and pay for observations 

before deciding to use or not use the process (including the possibility 

of sequential decisions). 

iii)    Evaluation of the optimum number of observations to make 

before deciding whether or not to use the process. 

iv)    Determination of the expected value of perfect informa- 

tion about one or both of the transition probabilities. 

Although the transient statistical decision problem has been 

so lightly covered due to the fact that its solution is very similar to 

that of the steady state problem,   its practical importance should not 

be underestimated.     In fact,   the transient situation is probably more 

likely to occur in the real world than the steady state problems con- 

sidered.    An even more realistic extension would be the situation where 

the process could be used indefinitely long with discounting starting at 

the very next transition.    Also,   we have not considered the situation 

where once we have decided to use a process we can change our 

strategy (i.e.,   make further decisions) as we observe the process in 

operation during the time in which we are using it.    This problem is of 

an adaptive control nature. 

5.6.    Summary 

The statistical decision framework developed for a Markov 

process whose transition probabilities are not assumed exactly known 

can best be summarized with the aid of the block diagram of Figure 5. 6. 

In box  1   we place multidimensional Beta distributions over the 

transition probabilities of the  Markov process rnnside-ed.     The: pro- 

cedure for doing this was discussed in section 3.5. 

Next,   if the process will be used in the steady state,   the 
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© 

Figure 5. 6. The statistical decision framework for a 
Markov process whose transition proba- 
bilities are not assumed exactly known. 
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expected values of the steady state probabilities are determined as out- 

lined in section 4.1.     For the special 2-state process where one transi- 

tion probability is exactly known and the other is Beta distributed this 

can be done analytically (section 4. 1. ^).     For more than 2- states we 

require either simulation or the approximation technique of using (n.) 
J  cX 

for   E(7T.),   discussed in sections 4. 1. 6 and 4. 1. 7.     If the transient 
J 

behavior is important,   we obtain the multi-step transition probabilities, 

<(>   (n),    by the methods of section 4.4. 

Box 3 is concerned with the use of the   E(n )'s   or   <j>   (n)'s   to 
J ij 

answer various statistical decision questions (as discussed at length 

in the present chapter).    Usually we would first evaluate the expected 

net revenues under various policies,   then select the policy that maxi- 

mizes the expected net revenue.    Several other items can be obtained 

including the optimum number of observations to take and the expected 

value of perfect information about one or more of the unknown transition 

probabilities. 

Having decided on the policy to use,   we either terminate the 

decision process or allow the Markov process to run for one or more 

transitions as noted in box  4.     When transitions are observed,   modifica- 

tion of the prior distributions through the use of Bayes' rule is extremely 

simple because of their form (multidimensional Betas).    As illustrated 

in section 3.4,   the posterior distributions are again multidimensional 

Betas,   only the parameters have been modified. 

Now,   because the transition probabilities are st.ill multidimen- 

sional Beta distributed,   we are justified in drawing the feedback (6) to 

box   2.     The cycle is complete.     We are again ready to calculate either 

the  E(7T.)'s   or the 4>   .(n)'s   by the exact same method,  then move on to 

box 3 for new statistical decisions,   etc. 

Hence    utilization of multidimensional Beta prior distributions 

over the transition probabilities has enabled us to place Markov proc- 

esses into a most convenient statistical decision framework. 
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It should be mentioned that besides their uses in the decision 

problems considered in this chapter,   the expected rewards in various 

periods also allow direct comparison of the future values of several 

possible Markov processes if such a comparison is of interest. 
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CHAPTER  6 

A   BRIEF LOOK AT   CONTINUOUS  TIME   PROCESSES 

A continuous time Markov process is defined as follows.    Given 

that the process is now in state  i,    in the next time interval  dt  it will 

make a transition to state  j  with probability a.. dt(i=^j).    (Inis implies 

that the state occupancy times are exponentially distributed.)    For 

small enough  dt  the probability of two ox more transitions is assumed 

to be zero.    The quantity  a..(i^j)   is called the transition rate from 

state   i  to   state  j   .    The process can be completely described by a 

matrix A = (a,.)   where we define 

a.. = 
XI 

V 
I   aij- 

The primary objective of this chapter is to show that essentially 

the same approach as was used to incorporate uncertainty as to the 

values of the transition probabilities in a discrete   time process can 

also be utilized to take into account uncertainty as to the values of the 

transition rates in a continuous time process.    Consequently,   the treat- 

ment will be rather brief;    in fact»   we shall only look at the determina- 

tion of the expected values of the steady state probabilities in a 2-state 

process and then make some general remarks about other aspects of the 

continuous time problem. 

6. 1.    The Use of Gamma Prior Distributions on the Transxtion Rates 

of a 2-State Process 

6.1.1.    Justiiicatxon for the Use of the Gamma Prxors 

Corisider one of the states.    As was mentxoned earlier,   the 
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occupancy times within that state are exponentially distributed.    More 

precisely,   let  t.   be the occupancy time of the state considered.    Then, 

f    I       (t     a  )  = a  e t.   a..   o     o o 

-a  t 
o o 

0 St 

where  a.,   is the transition rate from the state considered to the other 
ij 

state.    But this is the special case of the Gamma distribution 

a   a-1 
a    t 

f I   (t   | a  ) = f  (t   I a, a  ) =  -2_2    e 
t|ß   o     o Y   o o r(Q) 

a  t 
o o (6.1) 

when   a = 1 .    Now,   as shown in section S. 1  of Appendix  S,   it is con- 

venient for Bayes calculations to place a Gamma prior on a     when the 

distribution of t   is as in equation (6.1)   and   a   is known exactly.    Hence, 

it is advisable to use the Gamma prior on a.,   in the 2-state problem; 

i.e.,   we choose 

12 y 

and (6.2) 

f      (y)«f(y|v.w) 
a21 7       2^ 

6.1.2.     Bayes Modification of the Gamma Prior 

Let   E     be the event that in k     occupancies of state   1   the total 

occupancy time is   T. .     Then,   using the results of section S. 3 of 

Appendix  S  we know that 
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fa     (X|E]) =Vx|vl+kl'wl+T]^ 

a new Gamma distribution,    Sirnilarly,   if E     reprpsents the event that 

in  k    occupancies of state 2 the total occupancy time is   T   ,  then 

fa     (y|E2),yy|v2+k2,w2+T2) 

6.1.3.    Selection of the A Priori Parameters 

and 

For 

-a  t 
f     I        (t|a)=ae     °° 0 <t 
t. |a  ,   o    o o o 

f       (a  ) = f (a     v   , w  ) 
a o 7   o     1      1 

it is shown in section S. 2 of Appendix   S that the marginal distribution 

of t    is 

1 
V   w 
11 

V'o> ■ v> 
(t+w,) 

0 < t 

and 

and 

E(t.) =  *— 
1 v,   - 1 
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V 
VjW, 

(Vj-1)    (Vj-2) 
Via3 

Using these last two equations we can select v    and  w     so as 
v 

to satisfy our prior estimates of E(t   )   and  t   .    Similar reasoning would 

hold for the evaluation of the two parameters of the prior Gamma distri- 

bution on the other transition rate,   a_   . 

6. 2. Determination of the Expected Values of the Steady State Proba- 

bilities of a 2-State Process When the Two Transition Rates are 

Independently Gamma Distributed 

Consider the 2-state process with transition rate matrix 

A = 

-a a 
12 12 

a21 "a21 

where 

f       (r)  - f  (r   v   w  ) 
ai2 Til 

and (6.3) 

f        (s)  = f   (s   V   , w   ) 
a21 7 2      2 

For   a        and  a       exactly known it can easily be shown that the 

steady state probabilities are given by 
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r, ■ - 
i       a 

l?l 

12 + a21 

and (6.4) 

12 
a      + a 

12        21 

However,   as   a       and  a       are random variables,    n    and  7r    are now 

random variables.    Again,   the following mechanism will be used.    We 

randomly select an  (a12>a2i)   Pair from their distributions and deter- 

mine the associated exactly known steady state probabilities.    If this 

is repeated a large number of times,   we would like to know the expected 

values of  n    and   V  .    Interestingly enough we can evaluate the entire 

density functions as well as the expected values. 

If   IT    and   n    are as defined in equation (6.4) and a       and a 

are distributed as in equation (6. 3),   then using the theory of derived 

distributions the density functions of  7r     and   it     are 
1 «-. 

Vl   V2 
Wl   W2 

V(x) = P(v7,T3 i i 

V    -1 V    -1 

(1-x) 

[w.  + (w2-w1)x] 
V   +v 
12 

0 < x < 1 

and (6.5) 

f     (») 

Vl   V2 
Wl   W2 
P(v1)V2) 

v   -1 v   -1 

[w2 + (w1 -w2)z] 
v  +v 
12 

0 < z < 1 

For   w    = w    these are seen to reduce to  f  (x |v,, v  )   and 

fß(z|v   , v  ),    respectively,   a well known result.    In that case we au\ 
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directly state that 

E(»r.) 1       v1+v2 

and 

E(JT  ) =  — 
2        v.  + v. 

1 i 

However,   if we force the   q's  to be equal,   we lose one degree of free- 

dom and we then have only   3   a priori parameters with which to satisfy 

the prior means and variances of the occupancy times (4 quantities). 

If  w    > w   ,   from equation (6.5) 

v      v 
1     2       1 

w,    w v2 V1 
x     (1-x) dx 

—    V    TV 
12 

0      [w,  + (w_-w, )x] 
i 2      1     J 

(w2/wl} 

:ß(vrv2) 

V2 Vl'1 

x     (1-x) 

•(v1+v2) 
dx 

rA2 JJL 
r(Vl+v2+i)    p1   v2+i-i 

r<v \ rfv HI i (1-x) 
V1 

r 

I    w. 
^-(v1+v2) 

dx 

and using equation (G. 2) of Appendix  G,   which defines the hypergeometric 

function   F, 
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E( 

Then 

F(v1+v2,v2+l v1+v2+l 

f convergent because w > w ]        (6. 6) 

E(TT2) = 1 - E(TT1). 

If  w    > w   ,   we evaluate   E{ir  )   first, by 
!-■ X £ 

E(V-(S)   V7?72 
Flvi+vvi+1 w1 

wn 
(6.7) 

and then use   E(7r  ) = 1   - E{n  ). 

6. 3.    General Remarks 

We now have precisely the same framework as in the 2-state 

discrete case except the two transition rates are independently Gamma 

distributed,   whereas the two transition probabilities were independently 

Beta distributed.    Hence,   we can determine many of the quantities that. 

were obtained in the discrete case —e.g.,   the expected revenue per unit 

time in the steady state,   the worthwhileness (preposterior analysis) of 

observing several transitions,  the value of knowing a transition rate 

exactly,   etc.    Also,   for more than Z states the same analytic difficulties 

as those in the discrete  situation would be encountered. 

It should be noted that in the discrete case the hypergeometric 

function was required for the situation where only one transition proba- 

bility was not known exactly;   we did not obtain a closed form solution for 
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the expected values of the steady state probabilities (other than a com- 

plicated summation) for the situation where the two transition probabili- 

ties were independently Beta distributed.    However,   in the continuous 

case use of the hypergeometric function has enabled us to obtain simple 

closed form expressions for the expected values of the steady state 

probabilities when both transition rates are independently Gamma dis- 

tributed. 
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SECTION  II 

TRANSITION  PROBABILITIES EXACTLY   KNOWN  BUT  REWARDS 

ARE   NOW  RANDOM  VARIABLES 

In Section I it was assumed that the rewards were exactly known 

but that the transition probabilities (or rates or matrices) were ran- 

dom variables.    Now,   we consider the completely opposite situation; 

the transition probabilities are assumed exactly known but the rewards 

are now random variables.    This new situation turns out to be easier to 

handle in most respects than the ones considered in Section I. 

The first step is to develop convenient prior distributions to 

use on the rewards,   convenient in the sense that they allow easy Bayes 

modification and simple determination of the expected values of the 

rewards,   and their ranges satisfy the physical constraints.    Also,   the 

actual Bayes modification of a prior distribution on a reward after 

several sample rewards have been observed is demonstrated for two 

different prior distributions.    Then we consider the expected rewards 

in steady state and transient situations,   very important quantities for 

statistical decision purposes.    Knowing how to evaluate these quantities 

for appropriate prior distributions on the rewards we next deal with 

typical statistical decision problems based on either steady state or 

transient situations. 
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CHAPTER  7 

CONVENIENT   PRIOR  DISTRIBUTIONS  TO  USE  ON  THE  REWARDS 

As was the case for the  E(fl\)'s   in Section I,   it will be dem- 

onstrated in Chapter 8 that the expected values of the rewards,   E(r   )'s, 

are the critical quantities to know for many Markov decision purposes, 

(r.. = reward per transition from state  i  to state  j.)   Hence,   it is 

important that a prior distribution on an r  .  allows easy determination 
ij 

of E(i..).    As in Section I,   the other two required properties of the 

prior distribution on an  r..   are: 

i)   The distribution must be convenient for Bayes calculations. 

Ideally,   after some sample values of  r..  are observed we would like to 

obtain a posterior distribution on  r..   which is a member of the same 

family as the prior distribution. 

ii)   The range of the distribution must satisfy actual physiaal 

constraints.    Two physical situations will be considered in detail;   the 

first where a rewsi.rd can lie anywhere between  0   and   °o,   the second 

where the range is   -°o   to   °o .     A third situation where the range is 

finite,   will be briefly mentioned. 

7.1.    The Range of     r     is   (0,°°)  — Exponential-Gamma Form 

7.1.1.    Determination of the Form of the 

Prior Distribution 

The probability density function of a random variable having 

this range can often be adequately described by an exponential distribu- 

tion whose parameter is in turn a random variable.    That is, 

-X  r 
f  ,.(r   |X ) ■ X •    ° ° 0 <r (7.1) r IA    o    o        o o 
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where   X,    in turn,   has a density function  f.(X  ).     This latter density 
A.    o 

function is the one that must be chosen so as to satisfy the require- 

ments of easy determination of  E(r)  and simple Bayes modification. 

It should be recognized that a Gamma distribution on  r   given  X 

would allow greater flexibility than the exponential distribution of equa- 

tion (7.1).    However,   as demonstrated in Appendix  S,    use of a 

Gamma distribution instead of an exponential leads to serious difficulties 

in assigning the prior parameters of the distribution of  X.    Hence,   we 

sacrifice some flexibility in order to simplify the assignment of the 

prior parameters. 

The situation here is identical to that, considered in Chapter 6 

where we had exponential holding times whose parameters (the transi- 

tion rates) were in turn random variables.    There,   with the use of 

Appendix  S,    we found that it was most convenient to have each transi- 

tion rate Gamma distributed.    Hence,   in the present context the   X 

parameter of equation (7, 1) should be Gamma distributed.    That is. 

v - wX 
MA ) =f (X   |v,w) = -p-f-,  XV"    e 0<X (7.2) 

X    o 7    o J- (v)     o o 

7.1.2.     The Marginal Distribution of     r 

and its Mean and Variance 

Section S. 2 of Appendix  S   shows that for the conditions of 

equations (7.1) and (7.2).   the marginal density function of  r   is 

f (r ) = \      f  , Ax   |X ) fJX ) dX 
ro       J rAooAo o 

(7.3) 
V 

V w 

(r  +w! 
o 

0 < r 
v^ 1 o 
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The expected value of r  is 

E(r) = —2L- for v > 2 (7.4) 
v - 1 

and the variance is 

I 
V vw 
r =   — 

(v-1)2 (v-2) 
for v > 3 (7.5) 

7.1.3.    Determination of the A Priori 

Parameters 

Using equations (7. 4) and (7. 5) we can select V   and w   so as to 

satisfy our prior estimates  of  E(r)   and  r.    These latter two marginal 

quantities are easier to estimate a priori than the moments of the 

parameter   /\ itself.    The reason that this is mentioned is that the mean 

and variance of  X can be expressed in terms of v  and  w and an alter- 

nate method of obtaining values for  v  and   w would be to select the 

values such that the estimates of the mean and variance of  X  were 

satisfied. 

7. 1. 4.    Bayes Modification of the Gamma 

Prior Distribution 

Consider the variable   r   with 

-X  r 
f  i% (r   |X ) = X a    °° 0 < r r   X     o     o o o 

where 

f,(X  )  r f   (X     v. w) 
X   o        y   o 
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Let  E  represent the event that  k  independent values of r   sum to  T  . 
k 

Section  S. 3  of Appendix  S illustrates that use of Bayes1 rule gives the 

following a posteriori distribution on   X 

fx(Xo|E)=fy(Xo|v+k,w+Tk) 

which is another member of the same Gamma family,   precisely what 

was wanted.    Furthermore,  the a posteriori marginal distribution of r 

is of the same form as its a priori distribution.    Using the results of 

section 7.1.2,   there follows 

f  (r     E) 
r     o 

(v+k)(w+T, ) 
k 

v+k 

(r  +w+T. ) 
O K 

v+k+ 1 
0 ^ 

and 

E(r|E) 
w+ T. 

v + k - 1 

Hence,   the expected value of r    on the next draw is still extremely 

easy to calculate after we have observed the event  E;   this was another 

desired consequence of the form of distribution placed on  A. . 

7.2.     The Range of "r " is (-go , co )   — Normal-Normal Form 

7.2.1.     Determination of the Form of the 

Prior Distribution 

For this range the logical choice for a density function for   r 

is the Normal distribution.    We could be quite general and allow both 

parameters of theNormal to be random variables.    However,   this 

causes the calculations to become quite involved (but they can be carried 
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out).    Instead,   attention will be restricted to the case where the variance 

of the Normal is assumed exactly known but the mean is considered to 

be a random variable.    In other words, 

2 1 -(VH0)2/(2<r2) 
fr|fA

(ro!llo)=fN(rcl,V<r   )=    j=-   6 

-oo < r    < oo (7.6) 
o 

and we have a density function  f  (\x  ).    Again,   this latter density func- 
H"     o 

tion must be selected so as to satisfy the requirements of easy determi- 

nation of E(r)   and simple Bayes modification. 

Appendix  T   reveals that the proper choice is 

2 j -(uo-v')2/(2Wa-2) 
f  (ix ) = LAu.   I v, wo-  ) =    e .oo < j!    <  oo 

p.    o'       N ro' I ■ - o 

(7.7) 

That is,   the mean should,   itself,   be normally distributed. 

7.2.2.    The Marginal Distribution of     r 

and its Mean and Variance 

Section T. 2 of Appendix  T   shows that for the conditions of 

equations (7.6)  and (7.7) the marginal density function of  r   is 

i (r  ) =   \       f   |   (r     n  ) f (u  ) du 
r    o        J r | u    o     o     (X    o        o 

which leads to 

f(r   ) = f   (r   |v .(W+lJo-2) (7.8) 
o IN     o 
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Hence,    r   is normally distributed with mean   V and  variance   (w'+l)cr 

. ' .  E(r) = v (7.9) 

and 

v 2 r » (w + l)o- (7.10) 

7. 2. 3.    Determination of the A Priori 

Parameters 

Using equations (7.9) and (7.10) we can select  v   and   w   so as 
if 

to satisfy our prior estimates of E(r)  and  r.    This is possible because 
2 

cr     is assumed exactly known. 

7.2.4.    Bayes  Modification of the Normal 

Prior Distribution 

Consider the random variable   r   with 

f   |   (r    |x ) = f   (r     u ,er ) 
r | (i    o     o IN     o     o 

where,   in turn, 

y«\>)swv'wa > 
Let   E   represent the event that   k   independent values   of  r   sum 

iection  T. 3  of Appendix   T   shows 

the following a posteriori distribution on  (x. 

to   T   .    Section  T. 3  of Appendix   T   shows that use of Bayes' rule gives 

iV+WT 
k       w       2 

fijL(lVE)  = fNV o!   kw+1   'kw + l0" 
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which is another member of the same Normal family. Furthermore, 

the a posteriori marginal distribution of r is again a member of the 

Normal family.     Using the results of section 7.2.2,   there follows 

f  (r     E) = f     r 
r     o N     o 

VfWJ 

kn 1   •(kw+i+1),r 

and 

v +   wT 

Thus,   a Normal distribution on  r   with its variance exactly 

known but its mean,   in turn,   normally distributed,   allows us to 

obtain  E(r)   easily and also perform simple Bayes modifications when 

some sample values of   r  are observed. 

7.3,     The Range of     r     is Finite 

In most cases a finite  range on  r   can be adequately approxi- 

mated by either an Exponential -Qamma or Normal-Normal framework 

with suitably chosen parameter values.    Another possible method of 

handling this situation would be the following: 

Suppose the allowable  range of  r   is from  A to   B.    Then,   we 

could say that 

m   -1 n   -1 
f   i (r    |m   ,n   ) =    ; : (r   -A)     °       (B-r   ) 
r|m.n    o       o     o m +n   -loo 

(B-A)     °     °       ß(m   ,n  ) 
o     o 

A < r     S B 
o 

(The Beta distribution with arbitrary limits) 
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where  m and/or   a  would,   in turn,  be random variables having con- 

venient distributions.    Unfortunately,   it appears that there are no such 

convenient distributions.    Hence,   it seems that we must resort to one 

of the aforementioned approximation methods when the range of r   is 

finite. 
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CHAPTER  8 

DETERMINATION  OF  THE  EXPECTED  REWARDS  IN 

VARIOUS  TIME  PERIODS 

As was explained in Chapter   5  the expected regards in 

various time periods are of central importance in decision making in 

Markov processes.    Hence,   it is imperative that we be able to evaluate 

these expected reward». 

8.1.     The Expected Reward per Period in the Steady State 

I. 1.1.    Arbitrary Distribution on  r.. 

Consider an  N   state Markov process with exactly known transi- 

tion matrix,    P = (p..),    and let   r..  be the reward per transition from 
ij iJ 

state   i  to state  j   (i, j = l, 2, . . . , N).    The   r..'s   are random variables 

rather than being exactly known. 

When all the r 's are exactly known, the expected reward per 

transition or per period (we assume throughout that exactly one transi- 

tion occurs per period) in the steady state is 

N N 

R   =    >     T.   )      p.. r 
t Li        1   Ll IJ     IJ 

i-1 j=l 

where,   again,    1    is the steady state probability of being in state   i.    How- 

ever,   the   r..'s   are random variables;    still,   we can write 
ij 
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E(R 

(N N N N 

I *il Vij]: 1 \I puE(V 
i=i   j=i     /  i=i   j=i 

(8.1) 

Two different mechanisms will produce this result: 

i)   As in earlier situations we select   r  ,   values from their 
ij 

distributions and let the process run to the steady state obtaining 

an   R .     This is repeated a large number of times and the long term 

average of R    is as given in equation (8.1). 

ii)    We let the process run to the steady state just once and 

everytime a transition occurs from state   i  to state   j  we draw an  r 

value from its (unchanged) distribution.     The long term expected 

reward per transition is again given by equation (8.1). 

If,   instead of rewards for transitions we used rewards for 

being in states,   equation (8. 1) would be replaced by 

iJ 

N 

E(R) A    *i E(ri) (8.2) 

1 

where   E(R)   is the expected reward per period in the steady state 

and   r.   is the reward per period for being in state   i   (i = l , 2, . . . , N). 

1.2.    Exponential-Gamma Distribution 

on  r  .. 
 LL 

f      K     (r     A  )  = A e 
r..   A o     o o 

iJ       iJ 

-A r 
o  o 

and 
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v. . 
i. . v..-1     -w. .A 

A  .     o 7011       11 i- (v.   )      o 
1J ' iJ 

Then,   as shown in section S. 2 of Appendix  S 

v. .w 
v  . 

U 

f      (r   ) =  -       1J    1J      +1 
1-   .     O V. .+ 1 o 

1J (r   + w .)   1J 

O Ij 

and 

w. . 
E(r..) -    —11— v  . S 2 

ij v. .  -  1 11 
1J 

Therefore,   substituting in equation (8.1) 

N N 

E(Rt).   I    «.   )     PiiV-^- (8.3) 

1=1 j=l       '     1J 

which is the expected reward per transition in the steady state when 

the rewards have Exponential-Gamma prior distributions with para- 

meters   v      and   w   .    Unlike in section I where the   p..'s   were not 

exactly known,   here we have an easily computable expression for 

the   E(R ) of an  N state process. 

8.1.3.     Normal-Normal  Distribution on  r.. 
 U 

-(r   -u )2/(2«rf.) 
f      1       (r    |u  ) = f   (r    lu  ,cr .) =            e lJ      -«° < r    < *> 
r    hx..     00 N    no     11 PT~ ° 

11       1J J J 2T  cr   . 
J IJ 
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and 

f      (n  ) = f„T(n      v.., w. .0-..) fi       o N ro'     ij      ij  ij 

Then,   as shown in section T. Z of Appendix  T, 

f     (r   ) = £   (r   |v..,(w. ,+l)<r2) 
r..    o N    o     ij        ij ij 

and 

E(r  .) = v.. 
ij IJ 

Therefore,   substitution in equation (8. 1) yields 

N N 

E(R ) =   ")      jr.   )     p.. v.. (8.4) 

i=i       3=1 

which is the expected reward per transition in the steady state when the 

rewards have Normal-Normal prior distributions with parameters   v.. 

and  w.   .    Again,   E(R )   is an easily computable quantity. 

8.1.4.     The Effects on  E(R )   of  Sample 

Values of the Rewards 

Suppose we observe several transitions with the associated 

rewards. 

Let  f . = the number of observed transitions from state   i  to 
ij 

state  j (i, j=l, 2, . • . , N),    F = (f   )     and  s  . = the total reward from the   f 

transitions:    S - (s   .). 
ij 

i)    For the Exponential-Gamma framework with prior parameters 
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v      and   w .   we have seen in section 7.1.4 that 
ij iJ 

w.. + s.. 
E(r U...8.; —y—y lj     ij        v.. + f.. - 1 

Therefore, 

N N 

E(Rt|F,S)=   >     ,.    >     P ij^X-^T (8-5) 

iJ        iJ i=l j 

ii)    For the Normal-Normal framework with prior parameters 

v      and   w   .    section 7.2.4 showed that 

V     + w    s   . 
E(,..|f......)=-M ILiL 

ij     lj       IJ fijW.,+  1 

Therefor«', 

N N 
r-, V.   .    +    W.   .S.   . 

E(R|F, S)=   >     Jr.   )     P..     1J        1J  1J (8.6) 

1 = 1 1 = 1 f. .w.. + 1 
iJ   ij 

Hence,   both frameworks allow us to easily calculate   E(R ) 

after several observations have been made,   a very desirable property 

for  statistical decision purposes. 

8. 2.     The Expected Rewards in Transient Situations 

We snail restrict attention to the situation where the rewards 

are given for being in states. For exactl/ known rewards let R.(n) be 

the expected reward in  n  periods given that we start in state   i.     Then, 
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N 

R.(n)  =    )     t..(n)  r. 

j=i 

where   r.   is the reward per period for being in state   j   (j = 1, 2, . . . , N) 

and  t  .(n)   is the expected number of times that the process will be in 

state   j   during the next   n   periods  given that the present state   is   i. 

The quantity,    t.  .(n).    can be obtained by transform techniques as shown 
ij 

in Howard's     Dynamic Probabilistic Systems. 
,21 

Since the   r.'s are random variables,    R (n)   is now a random 
J i 

variable whose expected value is 

E[R.(n)] -- E 

N 

Lj = 1 

t..(n)  r. 
ij j 

l. e. , 

N 

E[R (n)] =    )     t   (n) E(r.) (8.7) 

j = l 
ij 

where the quantities are defined above.    This formulation assumes the 

following mechanism.     For each   j   we  select an   r.   and run the process 

(starting from state   I) for   n   periods.     If this is repeated a large num- 

ber of times (selecting new   r.'s   each time)    the average reward for 

the   n   periods approaches   E[R.(n)].    Note that the   r.   distributions are 

not updated as we progress through the   n   periods.     Furthermore,   it. is 

Op.   cit. 
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interesting that we use here the same   E(r   .)   quantities that were 

required under steady state conditions in section 8.1. 

Numerical Example 

Mike,   the waiter,   who is in financial trouble,   is concerned about 

the amount of money he can expect to make on tips from the next  n  cus- 

tomers that he serves.    Mike is mathematically inclined but rather 

moody.    He figures that all customers can be split into two groups,   good 

and bad.    In fact,   Mike reasons that a good customer will leave a tip 

that is approximately normally distributed with variance   0.2,   and a 

mean that is.   in turn,   normally distributed with mean 2 and variance 0. 1. 

The corresponding quantities for a bad customer are   0.4,   1 and 0, 3. 

Mikes moodiness is reflected by the fact that his transitions from one 

customer type to another can be represented by the following proba- 

bilities . 

G B 

3/4 1/4 

B 1/3        2/3 

That is,   he is more likely to stay with the current type than switch.    (A 

good tip improves his morale making'his attitude better.   This,   in turn, 

improves the chance of another good tip.) 

Given that Mike is now serving a good customer,   what are his 

expected total tips in the next,   n  customers (including the present one)? 

The reward structure is given by 
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f     (r   ) = f   (r    !n  .0.2) 
r      o N    o     1 

fr,(ro)=fN(rc!^°-4) 

Vj^-W2»0-11 v^-w1*0-35 

?    i 

•   •   vl  = Z>   wl  = 2 •   v2 = 1«   w2^4 

The following flow graph immediately gives us the geometric trans - 
22 

forms of t1   (n)   and  t   ?(n)     ,   the expected numbers of good and bad 

customers,   respectively,   in the next  n  customers. 

© 

-M 

-2 

0 

->— 

J-2 
^M 

© 

The transmission from to B 

12. 
Ibid. 

-151 



TAB(*)=tllT(*>=    )     hl™* 
T, 

z.)  - 

n=0 

.    -    T Z  "7Z 

■ -hi w d-2)2(l-f2z) 

Using a  partial fraction expansion and inverting the transforms,   we 

obtain 

4 36 ls/5\n_1 

Similarly,   using the transimission from    (A) to (c)    there results 

-     .   .       3 36       15/5  \n_1 

'»W8-»  "l9 + 49(l2l 

Now,   from section l.Z.Z 

E(rj) - E(Kl) = Vj   -- 2 

ana 

E(r2) = E(^)  = v    » 1 

Then,   using equation (8. 7), 
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E[R, (n)] =    )    t..(n) E(r.) 

[4 36       15./5 V 
= 2[jn+  49   '  49  I12J 

n-l-i 

+ 1 _3_ Ü   .   11 f_5_ 
7  n "   49       49  I 12 

n-1 

H        _36_     j_5 /_5_ 
7 49   "   49 V 12 

n-1 

This is his expected total tip money from the   next  n  customers. 

$■$(, 

|_  EtRxtn)] X 

7.0 0 
i 

Ml 

ins 
t 

(A 

X 

1             1 L_ I         1 

( Asymptotic to the line 

lln/7 + 36/49   ) 

1 2       3        4        5      n 
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CHAPTER 9 

MARKOV DECISION PROBLEMS WHEN THE TRANSITION 

PROBABILITIES ARE KNOWN EXACTLY BUT THE 

REWARDS ARE RANDOM VARIABLES 

As was done in Chapter 5,   we shall make the realistic assump- 

tion that,   given a choice,   the decision maker will use a Markov process 

onlv 1/ the expected net revenue is positive.    Hence,   in the steady state 

situation the process will be utilized only if the expected reward per 

transition     E(R ).    is greater than the fixed cost per period for using the 

process,    c.     In the transient situation the process will be operated only 

if the expected reward in the   n   remaining periods,    E[R.(n)],    is greater 

than the cost of operation,   nc.    This does not imply that all Markov 

decisions are made in this manner;   rather it is hoped that the reader 

will use the analysis presented here as a guide for analyzing a situation 

where the decision mechanism is different. 

9.1.    Problems Based on Steady State Conditions 

Once more it is assumed that the process will be used for only   s 

periods in the  steady state or with discounting for an indefinitely large 

number of periods.    Only the first situation will be analyzed,   the sec- 

ond involves a trivial extension as mentioned in section 5.2.3.    Within 

this framework there Is a possibility that observations of the process may 

be worthwhile. 

9.1-1.    Preposterior Analysis for a Single Observation 

If   E(R )   is the expected reward per period in the steady sr.ate 

then because ot the assumed decision mechanism.,   the expected net 

revenue is 
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E(N\R.)  = max[o,s[E(R  )  - c] ] (9.1) 

Suppose that the process   is  in state   k.  and we decide to pay for 

an obse rvation of the next transition reward,     With probability   p,      (m= 
km 

l.Z,....N)   we shall observe a draw from the density function  f (r   ) 
r o 

Km 

of the reward   r,      .    The probability that the reward will be between x 
km 

and   x + dx   given that the transition is to  state   m   is clearly a function of 

the prior framework placed on  r,      ;   it is given by  f (x) dx.     For 
krn r 

the Exponential-Gamma framework -with parameters v..  and  w. .,   it was 

shown in se ction 7.1.2 that 

v, km 
£ (x)  dx  =     VkmX\rn         dx 0<x (9.2) 

km , .   km 
(x+w.      ) 

Km 

For the  Normal-Normal framework with  parameters  v.      ,   w,        and 
km       km 

a       .    section  7. 2. 2 revealed that 
km 

f (x) dx = f„(x|v.      , (w.     fl) a".2    ) dx (9.3) r, N km        km km 
km 

Now,   when a dra-w falling between  x  and  x + dx  occurs from 

the   r distribution,   only the   k-rn   element of E(R )   is changed and, 
km t 

again,  the change,    A       (x)     is a function of which framework is being 
km 

used.    Recall  from equation (8. 1) that 

N N 

E(R) =   )     jr.   )     p.. E(r..) 
t /_j 1 {_, I] 1  ] 

i=l j-1 

For the Exponential-Gamma framework with parameters   v..   and   w 
ij 'J 

prior to the observation 
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kin 

E(r,      ) 
km        v.        -  1 km 

(using equation (8. 3)) 

after the observation, 

w,       + x 
km 

E(r,        l,x) =     km v (using equation (3. 5)) 
km 

Ai,    M - «r.   p,     [E(r       11.x) - E(r,     )] km k    km km km 

A (x)    -    7T      p 
km k    km 

w        + x 
km km 

v, v - 1 
kjn knn 

(9-4) 

For the Normal-Normal framework with parameters   v.-,    w. .   and  cr.. 

prior to the observation 

E(r.     )  = v, 
km km 

(using equation (8. 4)) 

after the observation. 

v,       + w.       x 
km km 

E(r        |l,x)=  —  
km w,       +1 

(using equation (8. 6)) 

A       (x) =    Ti    p 
km k    km 

V, +   W, X 
km km 

w,       + 1 
km 

km 
(9.5) 

The chance.    A      (x),    m  E(R )   may also cause a change in the e km    ' t 
expected net revenue.    According to equation (9.1) prior to observation, 

E(N.R.) =  max[0.   E(R )] 
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and after it 

E(N.R. (observation of  x  from   r       ) 
km 

= max[0,   E(R ) + A,      (x)l 
t km      J 

Finally,   the expected net  revenue prior to the observation, 

given that it will be taken,   is the integral of the expected net revenue 

given each possible outcome,   weighted by the probability of that out- 

come minus the cost of the observation.    That is, 

E(N.R. (observation) 

N 

m^l 

-dk+    I     PknJf (x)max[0,   E(R)+Akin(x)]   ix 

x 

where  d    -- the cost of observing the reward for one transition from 

state   k. 

If E(N.R. | observation) is greater than  E(N.R.)     we buy   the 

observation;    if not,   we do not buy it. 

Numerical Example 

Joe.   a famous local vendor,   lias been offered the opportunity of 

setting up a concession stand in Boston Gardens for 5 consecutive games 

late in the 1963-64 schedule of the Boston Bruins.     Joe is somewhat  con- 

cerned about any venture connected with the Bruins;   hence,   he has called 

in a lucal operations analyst for help.     Joe knows for  sure that his fixed 

costs per game will be  $161.    After considerable deliberation,   Joe is 

convinced that his revenues during a particular contest will be a function 

of the Bruins' showing in both the previous game and the present game. 
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He is satisfied with separating the Bruins' behavior into "WIN   ,   "TIE" 

or     LOSE.      Also,   from past records and forecasts of the coming sea- 

son Joe and the analyst are willing to assume the transition probabilities 

exactly known at 

W 

P =  T 

L 

W 

0. 1 

0. 2 

0. 3 

T 

0. 3 

0.6 

0.3 

L 

0.6 

0.2 

0.4 

The corresponding steady state probability vector is 

W T L 

n = [.214        . 429        . 357] 

Joe isn't so confident about his revenues for various Bruins' 

showings.    Again,   after considerable thought he feels that the revenues 

have Exponential-Gamma frameworks .    That is, 

f      |,     (r   \\ ) = X e 
r ..   A . .    o     o o 

-X r 
o   o 

0 < r 

and 

f.    (A  )  = f  (A    v.., w .) 
A. .     o 7    o'    ij      ij 

His estimates of the parameters are 

V = (v..) 

2 2        2 

3 4        5 

2        4        6 
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and 

W= (w..) 
ij 

From equation (7.4) 

300 $300 $300 

kOO        $400        $500 

$100        $300        $300 

$300 $300 $300 

$200 
$400 

$125 
)] ; 

■ -' 3 
IJ V    .    -    1 

IJ 
$100 $100 $   60 

This says,   for example,   that, his expected revenue in a game that the 

Bruins win given that they tied the previous game is  $200 (the 2-1 

element). 

Joe will accept the offer only if his expected net revenue is 

positive. 

Now,   Joe has a friend who has run a similar concession stand 

at Boston Gardens.     Unfortunately,   the friend only has revenue data 

for a single contest and without delving into his papers (for a 'eej he is 

only willing to tell Joe that the previous game ended in a tie.     For   $d 

he will tell Joe his revenue and the outcome of the corresponding game. 

Without his friend;s revenue information,   from equation (8. 1) we have 

E(R ) - . 214[(0. 1) 300 + (0. 3)  300 +(0.6)  300] +  . 429[(0. 2) 200 + 

(0.6) 400/3 + (0. 2)  125] + . 357[(0. 3) 100 + (0. 3)  100 + 

(0. 4) 60] 

-- $156. 40 
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E(R )  - c =  -$4.60 < 0 
t 

Therefore,   without his friend's information Joe would not accept the 

offer and his expected net revenue would be zero. 

Now,   suppose chat the friend's help is accepted.    As the transi- 

tion is from state 2 (a tie) only the second row of (E(r  .)) will he affected. 

Let us treat the 3 possible transitions separately. 

Transition from 2 tc 1  (With Probability   p       = 0.2) 

Let the observed revenue be  x.     Then,   using equation (9.4) the 

change in E(R )   is given by 

(.429)(0.2)(i^iX-   -200) 

.0286x - 5.72 

From above,   E(R )   must increase by at least 4.60 to make the offer worth- 

while . 

Therefore,   :0286x - 5.72  must be   >4.60.    That ia, 

x 2: $361. 

Hence     when  x S $361,   the Gardens' offer becomes worthwhile and 

E(N. R.) - 5E(R I 1. x) = 5[Old E(R ) + A. ,(x) - c] 

= i>[156.40 + ,0286x - 5. 72 - 161.00] 

= 5[-10.32 + .0286x] 
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uC 

. ' .   E(N.R.   Itransition from 2 to 1  observed)  = 5   \ E(R  | 1, x)  ■ 

361 

C 3(40")3 (using equa- 
f       (x) dx = 5   \ [-10. 32+.0286x]       V       ;      dx        tion (7. 3)) 
r21 J,., (x+400) 

ibl 

= $7.93       by straight-forward integration. 

Similarly, 

E(N.R. I transition from 2 to 2 observed) = $12.42 

and 

E(N.R. Itransition from 2 to  3 observed) = $1.05 

Now. 

E(N.R. Itransition from 2 observed) 

3 

>     p      E(N.R. [transition from 2 to j)  - d 
Li     2J l 

J--< 

0. 2(7.9 3) -f 0.6(12.42) + 0. 2(1.05)  - d^ 

$(9.25-d2) 

As we found that the   E(N.R.)   without  an observation was zero,   Joe would 

pay for his friend's information if    and only ii 

d    < $9.25 
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Furthermore    the analysis tells us that Joe would accept Eoston's offer 

only under the lollowing outcomes of the single revenue observed: 

L)    If the transition is from 2 to 1 (tie to win) and the revenue 

is greater than $361. 

n)    If the transition is from 2 to 2 (tie to tie) and the revenue 

is greater than $205. 

or 

m)    If the transition is from 2 to 3 (tie to lose) and the revenue 

is greater than $393. 

9.1.2.    Pre posterior Ana 1 ysis for More Than 

One Observation 

The method in principle is the same as that used for the case 

of one observation discussed in the previous section.     To find the 

expected net revenue given that the observations will be taken,   we 

integrate the expected net revenue after each possible outcome weighted 

by the probability of that outcome.     There is no problem in evaluating the 

net  revenue after any particular experimental outcome.    Equations (8.5) 

and (8. 6) allow us to find the expected reward per period in the steady 

state after any experimental outcome lor the Exponential-Gamma and 

Normal   Normal prior  frameworks     respectively.    Then,   we use 

E(N.R.) = max[0;   s(E(R)-c]] 

to obtdin the corresponding expected net revenue.    The difficulty is that 

the probability of any particular experimental outcome is now an involved 

function.     This makes the integration difficult.     More will be said on this 

point  in the next section. 

Again-   if the expected net  revenue given that we shall buy the 

observations is higher than the expected net  revenue without, them,   we 
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buy the observations;    if lower,   we do not make the purchase. 

9.1.3.    Some Other Remarks of Interest 

The continuous nature of the random variables causes diffi- 

culties when a sequential form of analysis is attempted.    This can be 

illustrated bv a situation where we can observe the rewards of one or 

two consecutive transitions with the option of not observing the second 

one after we have seen the first.     For just one transition remaining,   the 

problem can be analyzed as in the previous section.    However,   the con- 

tinuous nature of the reward for the first transition forces us to consider 

an infinite number of possible situations when just the second transition 

remains.    This would be tractable if the expected net: revenue using an 

observation was a simple analytic function of the prior parameters. 

However,   such is clearly not the case. 

A possible method of avoiding the above difficulty would be to 

approximate each continuous  reward distribution by a discrete (quantized) 

probability mass function;   that is, 

pr(r--xk)  -- PrUk)  r PR        k = 1,   2.   . ..,   n 

But;   in order to allow Bayes modification,   we would not assume that 

the   p   's   were known exactly;    rather,   we would place a multidimen- 
K 

sional Beta dist ribution on them as  was done with the multinomial distri- 

bution in section 3.1.    Under this  framework,   each observation would 

have a finite number of outcomes ar.d sequential analysis would thus be 

possible. 

In the single observation case discussed in section 9. i. 1  we 

could obtain the expected value ot perfect information about one or more 

of the unknown parameters bv 'oliowing the method outlined in section 

5. 4. 1 .     Therefore,   there is no need to elaborate here on the value of 

perfect information. 
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Q.2.    Statistical Decisions in Transient Situations 

In Chapter 5 it was mentioned that in the case of statistical 

decision problems when the transition probabilities were not exactly 

known., transient situations could be handled in essentially the same 

way as the decision problems based on steady state conditions. The 

exact same statement can be made for the present situation where the 

rewards are not exactly known. 

The quantity-    s[E(R )   - c]  is replaced by  E[R,(n)] - nc.   the 

expected net. revenue in the next   n  periods given that the process will 

be used.    Naturally,   if we delay   1   period (perhaps to observe a reward) 

before using the process and the system moves to state  j,    the expected 

net revenue will then be   E[R (n-1)]   - (n-l)c.    With these minor   modif i - 

cations we are able to analyze the single observation case exactly as in 

section 9.1.1.    Also,   we encounter the same predicament for a 

sequential decision framework as in the  steady state  situation.     Finally, 

the expected value of perfect, iniormation about one or more of the un- 

known parameters cou'd be evaluated by the method of section 5.4. 1. 
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CHAPTER   10 

CONCLUSIONS 

10.1       Summary 

The purpose of this study has been to extend the range of application 

of Markov process theory by removing one of the fundamental assumptions 

made in earlier theoretical considerations of such processes,   namely that 

both the rewards and transition probabilities be known exactly. 

In Section I we assumed that the. rewards were exactly known but the 

transition probabilities ( or matrices or rates ) were random variables. 

The first approach involved the concept of a multi-matrix Markov 

process -- this process is governed by one of several known matrices but 

we only know probabilistically which matrix is being used.    The analysis of 

this  situation is quite straightforward as was shown in Chapter 2.    We des- 

cribed the Bayes modification ( after some transitions are observed ) of the 

probabilities that the various matrices are being used.    The determination 

of various quantities,   such as mean recurrence times,   was illustrated. 

Then \arious cost structures were placed on multi-matrix process-s. 

Finally,  the possibility of using statistical decision theory in multi-matrix 

situations was revealed by consideration of a 2~state,   2-matrix example 

where there is an option of buying observations of transitions before stating 

which matrix is being used. 

Chapters 3,   4,   and 5 were concerned with the physically mo^e ap- 

pealing situation where the transition probabilities themselves ( rather  than 

the matrices } are considered as random variables.    It was first demon- 

strated rhat it is convenient ( for Bayes calculations and this f •_ r statistic! 

165- 



decision purposes ) to have a multidimensional Beta prior distribution on 

the probabilities of each row of the transition matrix.    This is a direct 

extension of the previously known result of using a Beta prior on the prob- 

ability of success in a Binomial process.    Chapter 3 was concerned with 

developing many basic properties of the multidimensional Beta distribution, 

several of which were to be utilized later in the study. 

In Chapter 4 we attacked the problem of determining various quantities 

of interest when the transition probabilities are multidimensional Beta dis- 

tributed.    It is important,  both for statistical decision purposes and for 

interest in the quantities per se,  that we be able to describe their behavior 

when the transition probabilities are not known exactly.    Unfoitunately analytic 

complexities prevented a detailed theoretical treatment of the situation.    The 

one important analytic achievement for the N state case was the derivation of 

the probability mass functions of the state occupancy times.    Analytic results 

were also obtained for mean recurrence times,  multi-step transition proba- 

bilities and expected steady state probabilities in 2-state processes.    Finally 

a simple trapping states situation was analyzed. 

It was illustrated that the expected values of the steady state proba- 

bilities are very important for many decision purposes.    Hence,   considerable 

time was devoted to those quantities.    The analytic expression for a special 

2-state situation was made possible through the use of the hypergeometric 

function.    Due to analytic complexities simulation was required for processes 

with more than 2 states.    However,   the results were most encouraging in that 

they suggested that a reasonable approximation to the expected values of the 

steady state probabilities can be obtained by assuming that the transition 

probabilities are exactly known at their mean values and then using the icor- 

responding,   easily calculable,   steady state probabilities.     This permits us 

to have the multidimensional Beta priors on the transition probabilities.,   a 
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situation ideal for Bayes modihcations,   yet we can still easily obtain a 

reasonable approximation to the expected steady state probabilities,   tne 

latter being essential for statistical decision purposes. 

In Chapter 5 we analyzed several statistical decision situations for 

Markov processes whose transition probabilities are multidimensional Beta 

distributed      Again,   it should be emphasized that no claim is made that the 

situations considered cover most of those that could occur in practice. 

Rather the intent was to provide the reader with an approach to solving 

certain, types of decision problems arising in Markov processes in the hope 

that he would be able to make the suitable adjustments to fit the particular 

physical situation confronting him.     Items such as the expected value of 

perfect information about a transition probability were also considered.     The 

entire statistical decision framework established for Markov processes was 

summarized in Figure 5   6. 

Chapter 6 involved a brief look at .continuous time processes to show 

that essentially the same situation ( including analytic difficulties ) exists as 

in the discrete time case. 

In Section II we assumed that the transition probabilities were exactly 

known but now the rewards were random variables.     This is the exact opposite 

situation from that of Section I. 

Chapter 7 illustrated two convenient ( in the  Bayes sense ) prior dis- 

tributions to place over the rewards      Then Chapter 8 was concerned with the 

determination of the expected rewards in various time periods ( both steady 

state and transient ).     These quantities were much easier to obtain than were 

the corresponding items in Section I where the transition probabilities were 

not known exactly.    Chap'er 9 illustrated how to use these expected rewards 

in making statistical decisions concerning Markov processes where the rewards 

are not known exactly,   e. g. , is it   worthwhile to observe some sample  rewards 

to improve our knowledge about expected future rewards before deciding 

whether or not to utilize a Markov process? 
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10.2       Some General Remarks 

There are several remarks that do not logically fit into the above 

"summary" section or into Section 10. 3. 

As in all situations where a Bayes approach is to be utilized the 

analyst must avoid the pitfall of developing his prior probability distributions 

after observing the data and then obtaining an a posteriori distribution through 

the use of the same data.     Therefore,   in using a Bayes approach to the study 

of Markov processes the prior probability distributions over the transition 

probabilities or rewards must first be developed,   then the observational data 

is used to obtain the posterior distributions through the use of Bayes' rule. 

In many sections of this  study the  suggested formulas or techniques 

involve considerable computation.     Fortunately,   as in other areas of applied 

mathematics,   the use of high speed digital computers makes these methods 

practical whereas hand computations would be out of the question. 

Again it should be stressed that the intent of this study was not to 

solve all practical Markov problems where either the transition probabilities 

or rewards are not exactly known;   rather the goal was to develop mathe- 

matical expressions for some quantities of interest under this situation and 

to indicate by analyzing some specific examples that statistical decisions 

related to Markov processes can and should be made. 

10. 3       Suggested Related Areas for Further Research 

It is apparent that a fundamental study of this nature would suggest 

several related research topics of varying difficulty. 

In two situations in this research the lack of an ideal prior distri- 

bution restricted our progress.     One restriction was of a relatively minor 
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nature,   namely in Chapter  7 where we could not obtain a convenient prior 

that would exactly fit the physical constraint of a reward having to lie within 

a finite range.    However,   the second restriction was of a far more serious 

nature.     The multidimensional  Beta prior used for the probabilities of a 

single row of the Markov transition matrix was ideal for Bayes calculations 

but  was restrictive due to the fact that it provided only  k  prior parameters 

(for a  k   state process ).     Ideally we would like   2k -  1   parameters so that 

the prior estimates of the   k -1   marginal means and the   k  marginal variances 

of the individual probabilities could be satisfied.    The determination of a 

prior distribution having   2k -  1   parameters yet still allowing simple Bayes 

modification would be a significant extension to this  study. 

As mentioned in the main text an interesting related problem is 

Howard's policy-iteration situation but with transition probabilities and/or 

rewards no longer exactly known. 

In many Markov process applications probabilities in different rows 

of the transition matrix are not independent as assumed throughout Chapters 

3 to 5.    An extreme situation would be a process where we know that two  rows 

of the matrix are identical but do not know the exact values of the elements. 

Situations like this would require more complicated prior distributions than 

the multidimensional Betas used in this study. 

Recently, significant research has been done in the area of scmi- 

Markov processes,   processes where the transitions are governed by a  regular 

P matrix but the transition times have arbitrary probability distributions. 

A natural extension of this thesis would be to consider semi-Markov processes 

where the P matrix and/or the probability distributions of the transition times 

were not exactly known 

This  study has not encompassed the  situation where both the transition 

probabilities and the  rewards are not exactly known      An analysis of this more 

general problem would certainly be of value. 
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As mentioned in Chapter 2 the multi-matrix framework is really 

q part of the combination of Markov process theory and game theory. 

Unfortunately,   the complexities of game theory have made the determi- 

nation of analytic results extremely difficult;   hence,  the use of game 

theory in Markov process<situations would not appear imminent. 

As was stated in the main text,   an important decision problem 

not considered in this report is the situation where once we have 

decided to use a process we can change our strategy (i.e. ,   make further 

decisions) as we observe the process in operation during the time in 

which we are using it.     In effect,   this situation can be considered as a 

tvpe ot adaptive control problem.     We are not committed by a single 

decision but can adjust our actions as we become more familiar with the 

process. 

Undoubtedly,   the reader will be able to make additions to the 

above list, of suggested related areas for additional research.    In any 

event it is hoped that this study will stimulate further fundamental investi- 

gations in the theory of Markov processes. 
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APPENDIX A 

PROOF   THAT   v, (a   i)   IS A PIECEWISE  LINEAR 
 h    '  

FUNCTION  OF  THE  COMPONENTS  OF  a' 

Equation {I. 6) sa v s 

(a',i) =      min        )      a! 
>1--   '       i<k<Q     /_,      i m    km 

m= i 

which is clearly a piecewise linear  function o.t the   a"'   !s. 
m 

Using equations (2.7) and (2. 1): 

,   ,   ..       rmn. 

v   (a',i) 
o ~" 

N     Q 

VL *)     )    kp     a[d    + v.    ,(a",r)] 

j=]  k.~I 

(2.7) 

where the typical component  of  a     is 

P      Q ' 
II ij     k a,     ..5  

y 
m- i 

P     ° i l     m 

(2.1) 

Now.,   suppose that   v,        (Q     r)   is piecew.se linear  in the components of   a   . 

Then we can write 
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Q-l 

vh.1(o",r)=  a+    £ b    a 
s    s 

s = l 

where   a   and the   b, 's   are constants.    Substituting from equation (2.1) 

Q-l 

vh-]/-"' r) = a + 

p.. a1 

11      s 

s^l 
Q 
Y ■> XXL                                ■ 

) P.. o1 

Li ij   n 
m=l 

Then the     L     part of equation (2.7) becomes 

N     Q 

> 
'   k 

P.. a' 

j=l k--l 

Q-l 

I d., + a + 

8 = 1 

P..   a 

Q 

\ m i / P.. a 
6 ij    rr 

or 

N 

I 
Q 

k=l 

Q-l 

) +   ) 
»=] 

ij    k    ij 
b    S

P     Q' 
s       ij    s 

which is seen to be a piecewise linear function of the components of _a'. 

Now, v (_a', i) is either L or S but we have already shown that S 

is piecewise linear in the components of   a'.    Therefore,   by assuming 

that  v      . (Q.'• r)   is piecewise linear in the components of   o ,   we have 
h ■■■ 1 

shown that   v  (a', r)   is piecewise linear in the components of   a'.    Also, 
h — — 

we have  shown that  v   (a1, i)   is piecewise linear in the components of  a'. 
o — — 

Hence,   the proof that  v   (a',i)   will always be a piecewise linear function 
h — 
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jf the components of _a;  has been completed by induction. 
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APPENDIX  B 

IMPORTANT  PROPERTIES OF  THE   MULTIDIMENSIONAL 

BETA DISTRIBUTION 

r'; 'a j     ■, fit 

=          X, Xa        .-..*. 

where    ,«.)(•« I .   X;>*0    and    ß (n, ,nA .. yM.fc - 77- - 

B. 1.    Check that Distribution. Integrates to One 

^      ...-J      !  *,     xA      -v,    0-^*iJ     rfV~<<V( 

77 iJ *'   ••- ***   d*'"d**-J    *kl 

I« 1 

Subrfitaie.       u r        /t-i .'.    du =   *~' _ 

£-.      •" '" .* *i 
1=1 

and    ujhen      <t_| - o    ,    y = 0 

X..,*'- s?*i , £ = I 
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i   •TJ—;/    1   *r-C?'0-**t)       dt,.... 
d*«-* J ji * c-j/)     a«/ 

0 

" ET~    , 
/-  *.tL 

+^t   n<r*-f    i<\iegra.Ttor\   gives 

— j      j   *,   ...x      (/-»/ d/,...d)f 

I+erafir\n   )i\   this   nanner    toe   end   UP  uiifh 

r^JfYrvj F^Tj 

CoMp/e-fe   Gdnee/lfff/oo   occurs     <3"d     !•"(. 

B. 2.     The Marginal Distribution of  p,    and Its Moments 

By the same approach as that used in section B. 1  (except that all 

variables are integrated before   p.    instead of merely proceeding by subscript 

order) we find that 

^r*/*;.4i*J 
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(i»-J> V*)4« m[likw^) ^d-*)"^"* 
L*J 

PCM.fiKl) k 
• !/(, / 

ro^fnj r^j lU^n-j 
ETC?,) -^ rv; 

Similar/^    cue   can   ob+ain     £ ( P; ,)   and  use   '+   "fo determine 

B. 3.    Joint Distributions and Covariances 

Proceeding   a-S   above    cue   ob+ai'n 

»•«■   f?i,Pu (*i.M   =     f»(xj,^u/ «v,*«,^  M; J 

and    cov(pJ(pj  - —!^L!^  j>u 
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APPENDIX  C 

DETERMINATION  OF  THE  PRIOR  PARAMETERS  OF A 

MULTIDIMENSIONAL   BETA  DISTRIBUTION 

BY   LEAST   SQUARES 

P1. pz> . . . , pk   1     2 k       p(mltm2, ... ,ax )   1 

rn   -1 m, -1 
2 k 

m. -1 
i 

X2 •* •   Xk 

wnere 

It 
i=l 

As stated in section 3. 3,   we wish to select the parameters (m.'s) 

suchthat the prior mean values of the   p.'s; i- e., the E(p.) 's   are satisfied 
J J 

exactly.     This uses up  k-1   of the parameters,   leaving only 1  other 

degree of freedom.    The final parameter is to be obtained by a least 

squares fit to tne prior variances of the   p.'s;    i.e. ,   to the   p.'s. 

Define 

k 

M =   \     m 
Li       i 
i=l 

From equations (3. 6) and (3. 7), 
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E(p) =—i 
J        M 

(C.l) 

and 

v 

m.(M-m.) 
J J 

M  (M+l) 
(C.2) 

Equation (C.l) gives 

m. = ME(p.) 

Substituting in equation (C.2), 

ME(p.)[M - ME(p.)] 

M  (M+l) 

E(p.)[l   - E(p.)] 

(M+l) 

Let  p.  be the prior estimated value of the variance of  p.  and 

let   p.  be the value of the variance of  p.   obtained when   M  is used. 

Then,   the problem is to select   M   so as to minimize 

D . i «y 
j=l 

E(p.)[l   - E(p.)] 

M+ 1 

■V 
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I 
We set  dD/dM = 0   (the necessary condition for a minimum) and solve the 

resulting equation for the 

This quantity is given by- 

resulting equation for the least-squares value of M,   denoted by  M 

k 

)     [E(p,)l 2 [1  - E(D )] 

M
L.s. =^  -1 (c-3) 

)    P   E(p )[1  - E(p )] 

and from equation (C. 1) 

m. = MT    _    E(p.) (C.4) 

■179- 



APPENDIX D 

BAYES  MODIFICATION  OF  THE  MULTIDIMENSIONAL 

BETA  DISTRIBUTION 

As in section 3. 1,   consider a multinomial distribution of 

order  k   with parameters   p  ,   p.,   ...,   p   .     Suppose the   p.'s are a. 
12k j 

priori jointly distributed according to the multidimensional Beta dis- 

tribution 

f (x  , x   , . . . , x  ) = f„(x  , x  , . . . , x     m  , m  , . . . , m ). 
p  , p  ,...,p      1      2 k p    1      2 k      1       2 k 

Let  E  be the event that in  n  independent draws from the multinomial  n. 
tVi 

fall in the   i      category (i = l, 2 k) 

Z». n 
l 

i = l 

pr(E |x   ,x   ,...,x ) =        ; 
12 k        n, :     n 

n! nl 
Xl 

n2 
x2   ,   . \ 

nr' n2l.   .. -v' •'   Xk 

Using Bayes' rule 

Pj-P2 PklE    1      2 k 

pr(E x. , x   , . . . , x. ) f (x. , x,, .... x ) 
1      2 *    Pj»P2. •••»Pk~      2 k 

pr(E) 
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f i„(x, , X,, . . . , X   ) 
PrP2. •• •-Pk|E    1      2 k 

nl     n2 \        "V1    mZ~l "V1 

X,       X_       • • •    X, •    X_ X • • •   X 
12 k 1 2 k 

k-1     „ n, 
m,    . -1 / r    r     ni   n2       nk-i/ v   \k "v1       "Vi 

(    J     •••J Xl       X2 Xk-1    P-Z   Xii      "I  "k-1 
\    xi x

k.i 
l-1 

k-1 m, -1 
k 

1 - )     x.   ] dx dx. 
1        k-1    j (D.l) 

i=l       / 

where some terms independent of the   x. 's   have been cancelled from the 

numerator and denominator. 

Proceeding exactly as in Appendix   B  this reduces to 

I I T-.\X,  ) X_ i  •  • • , X.   J 
P1,P2,....Pk|E    1     2 k 

m,+n,-l       m,+n_-l m,+n, -1 
.  1 112     2 k     k 
'* • —          j^ j^ ...     X 

ß(m +n  , m0+n_, . . . , m, +n, )     1 2 k 
112     2 k    k 

=  fß(xl' x2 xk I ml+nl' m2+n2 mk*nk) 

This is seen to be a multidimensional Beta distribution with modified 

parameters. 

NOTE: 

The denominator of equation (D. 1)  was (before '.he above- 

mentioned cancellation of terms) 
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pr(E) = B !.   n2.'.'....  nk! «mj,m2 m^ 

Let   E ,   be the event   E   with tha added stipulation that we know the order 

of the occurrences.    Then,   clearly 

ßdiij+nj, m2+n2, m
k
+n

k> 

pr(E^ = p(m1,m2,...,mk) 
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APPENDIX  E 

A  METHOD  FOR SAMPLING  FROM  THE   MULTIDIMENSIONAL 

BETA DISTRIBUTION 

Consider the variables   p   ,   p   ,   . . . ,   p,    having the multidimen- 

sional Beta distribution 

f (x  , x  , . . . , x  ) = f„(x  , x x.    m  , m  , . . . , m ) 
P,.P2>•••'Pk    1      2 k P    1      2 k1     1       2 k 

(E.l) 

As shown in equation (3.5) the marginal distribution of  p.   is given by 

Vxi)=HXi vZmi) 

The conditional distribution of  p  ,   p   ,   . . . ,   p     given  p     is defined by 

f I      (x,i x   , . . . ,x     x  ) 
P2,P3. ■■-.PkIP1     2     3 k     l 

f (x   ,X   ,...,x   ) 
P1'P2 Pk    l      2 k 

f     (x.) 
pl l 

f I   (x , x ,..., x, x.; 
P2,P3,....PkIP1     2     3 k     1 

i      »r1 "V1 

P(m , m2> . . . , m  )     1 2 

mk-l 

Pfm, .   E m ) Xl 
V   1 Wl   :' 

m   -1 m -1 
i-x 
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This  simplifies to 

f |      (x   , x   , . . . ,x     x ) 
P2   P3, •••.PklP1     2     3 k     » 

P(m2,m3!...,mk)   \\ -Xj j ^1-Xj 

Xk-I   , x2  fV1 ,  x3   ,-3-] 

1-x 

m, -1 
X^,    k 

1-x, 

wh ere 

l Xi " *   * Xl 
i=2 

and 

x.  > 0 
l 

Making the substitutions 

j "   1  - Pi 
also  y.= 

j   1-x. 
j = 1-   2, 

and noting that the Jacobian 

9(P2-P3. 

a(r2,r3 rk> 
= d-Pj) 

k-1 

we obtain 
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V^.TJ^-»^«!' 

m2-l       m3-l 

ß(m2,m3 mk)   YZ Y3 

m, -1 
k 

= VVy3 yk|m2,m3,...(mk) 

which is a multidimensional Beta distribution of one lower dimension. 

Now we know that the marginal distribution of  r     will be the 

simple Beta 

f     I      (y,  x  )  -  fa(y, I 
i=3 

m..   / m. 
2   A     l 

and letting 

Sj =   1   - r. 
j = 3,   4,   ...,  k 

we obtain the conditional distribution 

f i (z„, z z,    x, . y,) 
s,   s„, . . . , s   |p  , r_    3     4 ■    k1   1   y 2. 

3,    4 ']f,lcV'Z 

= £p(z3,z4,...,zk|m3,m4...... rx^). 

Continuing in this way the conditional distribution will, 

eventually,   be reduced to a simple Beta.    This suggeBt5 the following 

method of sampling from the k-dimensional  Beta distribution, 

fß(x1,x2....,xk|m1   m2,...;mk): 
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i)   Draw w,  from the simple Beta  f  (w,   m, ,   £  m.) 
1 P\   1'     1   U2     ij 

ii)   Draw w- from the simple Beta  fJwJm,,   T,  m. 1 
2 P\   2|     2   .=3     ij 

iii) 

k-1)   Draw w        from the simple Beta fft(w     , |m       , m ) 

Then 

Xl   ^Wl 
x2 = w2(l-w) 

X3 = w^5^1"w2^1" ,vi^ 

xk-l =wk-l(1-wk-2} •••  <1-W2)(1"W1) 

and 

k-1 

x,   = 1   -      >      x. 
k /_,       l 

l :1 

As shown in equation (E. 1),   x  ,   x   ,   ...,   x     are sample values of 
1 Li K 

p. ,    P- p   ,    respectively. 
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APPENDIX  F 

THE   TRANSIENT  SOLUTIONS  FOR   3-STATE, 

DISCRETE   TIME, MARKOV PROCESSES 

This appendix presents a portion of the results of another study 
23 

performed by the author. 

Consider a 3-state,   discrete time, Markov process having the 

transition matrix 

1   - a  - b 

1   - c. - d 

f 

b 

d 

1   - e - f 

Define   <f .(n)   to be equal to the probability that the system will 

be in state   j   at time   n   given that it is in state   i   at time zero.    Also, 

let 

1   •  2a 

1   - 2a 

and 

2 3„ 
Silver    E.  A.;  The  Transient Solitions for  3-State    Discrete  Time, 
Markov Processes.     Technical Note 1.    M.   I.   T.   Operations Research 
Center.     1963. 
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1   -  2a 

b 1  - 2b b 

1   - 2c 

Then the following flow chart and equations give   <t> .(n)   for any combi 
ij 

nation of the parameters   a,   b.   c,   d,   e   and  f. 

The Relevant Equations 

V(n) ~~ 1 ' 7 (1"3a)n    i *i 

> o (F. 1) 

<t>,  (n) -- \ + 4 (l-3a)n 
li 3        3 

Convention: 

We shall denote a transition probability by  p       - pr(state is   ß 
aß 

at time   n + 1 | state was   a   at time   n).    Then,   if we are looking for 

4>   (n),   i i1 j.    we denote the third state by   k;    if we are looking for 

we arbitrarily denote the other two states by   j   and  k. 

For 

b-y  noting that 

For the matrix,    P   ,    wc can make the notation even simpler 
it 

and 

P.. = P..   = P.. ij lk        i! 

pji = pjk " pr 

Pki = Pkj T Pk>: 
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FLOW  CHART  OF  METHOD  FOR  OBTAINING A 

PARTICULAR  <i>. .(n),   GIVEN  P. 
 y  

Start 

use second 
port 6-P 
e<jn, (P.lj 

Calculate, p 
bj eqn- 

< 

use  -first 
part  of 
eqn - (F' j) 

use tqns- 

(B4) +(?■$) 

use eqns. 

use eqn- £f-:ij 

fo ajlculat«- 
M 

use can(P.<?) 

to   Calculate 

 i 

6-nsafer 
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r /,.:?S. N 
• </;    > 

use C(ft\S- 

(F.ZS)4-(.P-2tj 

use e<j<vs. 
(F.Z3R(F.Z4) 

use eqas- 

(F.I3)+CP.I4) (F.ll) 4-(F.lzJ 

use eqns- 

(F.ZIU(F.Z:ZJ 

© 

Uj? 

use eqns- 

(F,I7)4.(F.(8) 

M 

use eqris- 

use eqns 

(F.irj4(F.(t) 

■ 190- 



2      2 

mnH)*{^f(^ n S 0 

where 

and 

L = Pi*Pj*
+Pi*Pk*+Pj*Pk* 

P= ^Pi/Pj^+Pk*"1) 

,   /   2 2    .     2        ~ 
v - 2>/Pl,

+ Pj#*Pk* - L 

ü = 3pi* pk* 

ß -  6p   .('p. ,p   , -P.  ,) 

(F.2) 

(F.3) 

♦..(n) Vpk*    _L 
L        "   6L W)«vmn{-A n > 0 

where   L.    p     and  v   are as in equation (F. 3) 

w - -3p  .(p. ,+p,   ,) 

(F.4) 

and (F.5) 
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°- - p.. p, . + p . p, • + p., p, . rij rki      rij    kj ikrkj 

y - p.. p., + p.■ p,. + p.. p, . + p., p.. ij    jk        ij    ki ij    kj      rik rji 

+ P.v, P-,   + P-,   P, • + P.. P, • lk    jk lk    kj        ji    ki 

+ P.. P, • + P.,   P, • rji    kj jk    ki 

(F. 6) 

M = p     - 4q (F.7) 

where 

p = p - 2 

q - 1  - p + y 

p  -a+b+c+d+e+f 

(F.8) 

(F.9) 

(F.10) 

and  y  is as defined in equation (F.6) 

k   /   \       a        1 

? .(n)  = — 
IJ 7       27 T-fKW^fK n > 0 

i *i 
(F.ll) 

where 

= X/M" 

M  is defined in  equation (F. 7) 

2 2 2 
ß = 2p.. p     + p.. p     + p.. p     + 2p . p     p.. 

ij    jk ij    ki ij    kj ij     lk    ji 

+ 2p.    p      p      + p . p.    p   . + p. . p..  p   . 
ij rik    jk      rij rji rki      rij rji rkj 

+ P.. P.,   P, • ij    jk    ki 
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pij p
ik 

pki - pij V p
kj - 2pij p

kl 
pkj 

pij pki - pij pkj - p
lk 

pji pkj - pik pjk pkj 

Pik Pki Pkj " Pik Pkj " Pik Pkj (F.12) 

7   and  a   are as defined in equation (F.6) and  p  is as defined in equa- 

tion (F.8). 

,n n 
9. ■ (n) = ■=- 11 y      ly CF) KM^) K) n>0 (F.13) 

where 

6 = P.. P, . + P.,   P, . + P.. P, ■ rji    ki        jk    ki        ji    kj 

w = 6 -   7 

x = A pkj ■ A pji ■ pL pjk - % p
kl - pfj p

kj 

2 2 2 2 
- p.. p..   4 p. . p. . + p..   p. . 4 p.. p rij    jk     rij rki     rik    kj        IJ    kj 

+ P,k P
J: 

+ P,k Pjk + Pü Pjk " Pik Pij Pki 

- 2p.,   p     p.     -2pp. p rik    ij rkj        rik    ij    jk (F.14) 

"Pik pk> Pji " p,k Pk, Pjk ' P,k pij pji 

- PU Pk> Pji " Pij pkj pji + P:k pki pkj 

+ 2P
XJ 

Pki Pkj + 2pik Pkj Pjk + 2PU Pkj Pjk 

4 2p      p.. p     + p.. p.. p rik r
Jt *jk      rij rji    jk 
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and   7      p  and  v  are as defined inequations (F.6),    (F.8)   and (F.12), 

re spectively. 

n/2 B a 0 

t>   (n)  - — -   -—     [a COS n0 + ß/y   sin n6 ] . 
ij 7 7 l P j 

(F.15) 

where 

l-M 

M  is defined in equation (F.7) (F.16) 

-1 
0  - tan     (-y/(-p)) 

and   a, ß,    7,    q and  p are defined in equations (F.6),   (F.12),   (F.6), 

(F.9)   and  (F.8),    respectively. 

n/2 
<t>.  (n) = i—   [-wcosnfl   - x/(y) sinnfl] n>0 (F. 17) 

where   6,    w and  x are defined in equation (F.14);   y and  0   are 

defined in equation (F. 16);   and 7    and  p  are defined in equa- (F. 18) 

tions (F.6)   and  (F.8).    respectively. 

<t>   (n) = — + —-  
ij 7 (p -2)p 

a     n 
— T 
7 

n & 0 
(F. 19) 

where 

|A -- p. .(-p.  -p     -p .-p   +p    +p    ) + 2p     p 
ij      ij     lk     ji     jk    ki     kj rik    kj 

T  - 
2 - p 

(F.20) 

and   a,   7 and   p   are defined in equations (F.6).   (F.6),   and (F. 10), 

re spectively. 
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6        rnr 7 -   &     n n > 0 (F.21) 

where 

2 2 2 2 2 2 
1 = p.. + P.,   - P..  - P-,   - P, •  - P, • + 2(p. .p..   +p..p. . rij      *ik      rji        ,]k        ki      rkj l.i   ik      ji  ki 

+P-P,   +P-, P,   -P-P-, -P-, P,   -P, -P,   ) rjirkj   'jk'ki   rjrjk  rjkrkj   rkir kj (F.22) 

and   6,7 , p  and   T   are defined in equations (F.14),   (F.6), 

(F.10),   and  (F.20),   respectively. 

iPii"a) a ( ^ PV ' Q n-1 
fjn] =    „1J,     6(n) +   -2-   +  ■ -H-   -  (2-p) 

iJ p- 2 p - 1 
   (2-p) n==0      (F.23) 

i *i 

where   a   and p   are defined in equations (F.6)   and (F.10) 
.    ....     fl for k = 0 

and   6 k   =jn ... (.0 otherwise 

(F.24) 

(p-2+p. -6) 

♦u(n) » 
6 ^^H-6    ..     .n-1 

6(n) + _i_ + 2_ (2-p)11-1 n >0   (F.23) Tl 
p - 2 r p -  1 

where   6, p ,    and   6(k)   are defined in equations (F.14), 

(F.10)   and  (F.24),   respectively. 

n a 0 
4>.(n) = (-a) 6(n) + (p. .-a) 6(n-l) + a 

+ 3 

(F.26) 

(F.27) 

where   a   and   6(k)   are defined in equations (F.6) 

and (F.24). 

(F.28) 

i>..(n) = (1 + 6) 6(n) + (l-p..-p    -6) 6(n-l) +6        n > 0 
li IJ     jk 

(F.29) 

where   6   and   6(k)   are defined in equations (F. 14) 

and (F.24). 

■195- 



APPENDIX G 

THE USE OF THE HYPERGEOMETRIC FUNCTION IN THE 

DETERMINATION OF THE EXPECTED VALUES OF THE STEADY 

STATE PROBABILITIES IN A SPECIAL 2-STATE MARKOV 

PROCESS. 

1 - a 

1 - b 

where     a     is assumed exactly known,   but     b      has the Beta distribution 

f  (x)  = f  (x  m, n) 
b ß 

G.l.     Determination of the Expected Values of the Steady State Proba- 

bilities 

For a given  (a.b)   pair 

2       a + b , 

the steady state probability of being in state   2. 

1 

E<^E(afbM     a-^Vx)dx 

J      a + x     ß(m, n 
m-1 n-i 

x (1 -x) dx 
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This is not an easy integral to evaluate in its current form. 

However,   the substitution  w ■ 1  - X  leads to 

«VITI wbf -""'"">m"'H^f *• ,G-" 
It is fortunate that this integral has appeared elsewhere,   namely in the 

solution of differential equations arising in certain physics problems. 
24 More precisely,   we have the hypergeometric function,    F,   defined by 

1 

F(a,c-b|c|z) =  r(b^r}c.b)   \      wC"b_1 (l-w)1"1  (l-wz)"adw     (G.2) 

0 

F  is tabulated only for values of the   4  parameters relevant to the 

physics problems for which the function was first conceived.    Unfortu- 

nately,  those values are not appropriate for the Markov process analysis. 

Therefore,   we must find a convenient way of calculating F. 

F  is expressible as a convergent series 

^■'■'i-'^'til1!!"''-        <G-3) 

(convergent provided   |z|  <   1). 

Using equations (G.l) and (G.2),   there results 

24 
Morse,   P.   M.  and Feshbach,   H. ,   Methods of Theoretical Physics, 
Part I,   McGraw-Hill,   1961,   p.   591. 

25Ibid,   p.   388. 
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E(V-rh F(1'n!m+nliir) 

Then5   utilizing equation (G3) (valid   ' . '   l/(a+l) < 1),   we obtain 

E(JT„) 2'      a + 1 
1 + JL_ /J_.\ + SiBtU /^_\ 

+ n I a+1 /      (m+n)(m+n+l) \ a+ij 
+ .. . 

where 

. . .  + n(n+l) ■ . ■   (n+k-2)  
(m+n)(m+n+l)  ...   (m-fn+k-2) 

,      k-1 -, 

, th. . ni ii 
k       term counting the     1     as the first term 

(G.4) 

R, 
n(n+l)  . . .   (n+k 

(m+n)(m+n+l) ...   (m+n+ 
n (±\k fi+ -a±A_ i-L\ 
l-n+k-l) \ a+1 J     [_        m + n + k I a+i j 

(n+k)(n+k+ 
(m+n+k)(m+n+k+l "- (-MV.-! hk+1) (a+1/ J 

But 

m + n + j 

R,  < 
n(n+l)  . . .   (n+k-1) 

k       (m+n)(m+n+l)  ...   (m+n+k-1) I a+1 
1 

k  r- 
1 + fcW*) 1 + 

n(n+l)  . . .   (n+k-1) 
(m+n)(mfn+l)  ...   (m+n+k 

1    \    /a+1 
-1) (a+l)    V 

Therefore     substituting in equation (G.4) there follows 
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r- 2 a n       /    1   \ n(n+l) /    1    \ 
E(V "  a + 1 [_        m + n [ a+1 I       (m+n)(m+n+l)  I a+1 J 

(G. 5) 

n(n-fl) ,. .  (n+k-2) 
(m+n)(m+n+l) ... (m+n+k-2) + E, 

where 

R,   < 
n(n+l) . . .   (n+k-1) 

k      a+1      k      (m+n)(m+n+l) ...   (m+n+k ■1) ( a+l) 
(G.6) 

It is clear that  E,    can be made arbitrarily small by choosing 

k  sufficiently large.    Hence,   we can come arbitrarily close to  E(TT?)  by 

selecting a large enough k. 

Finally, 

EO^) = 1  - E(JT2) 

G.2.    Asymptotic Check on the E(IT ) Formula 

In equation (G. 5) suppose we fix m/(m+n) - b  and let  m   and  n 

both tend to infinity (this is equivalent to saying that    D     is exactly 

known).     Then, 

linn       _.     . lim 
E(TTJ = m, n—"0 2       m, n-»«c a+1 1 + 

1 n 
+ 

m+na+1        m+n 

+   — 
m+n       m+n/    1 

a+1 
1 + 

1 
+  

rn + n 

mh'-^H,,,^^-.] 
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*T["*TM&)''--] 
a + 1 

a + 1 1  - b a + 1    a + 1  - 1 + b 
a + 1 

a 
a~+~b 

which is the exact steady state probability when   "a" and   % ' are known 

exactly. 

G.3.    Monotonie Behavior of E(7r )   as a Function of m + n for 

Fixed E(b) 

n J 

n+j m+n       m+n 
m+ n+ j j +       j 

m+n 

1  - b 4    — 

1+   ~i 

K  - (m/(m+n)^E(b)=b) 

m+n 

■m4n+J/ .   \     m+7\  (m+n 
dl-^r. I      I l+-i-H- —i-, 1- I l-b+^-V        J 

)2i      V m+nA(rn+7)2 

dtm+n) 

I      m+n/ 

SI     < 0 for j > 0 
\2 J 

(m+n)    (1 + 4-1 y     m+n I 

Therefore   (n + j|/(m+n+j)   decreases monotomcally as   m+n  increases. 
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But,   we observe from equation (G.5) that each term in E(?r )   is a 

multiple of factors of the form(n + jj/(m+n+j)  and terms that don't 

depend on  m + n.    Hence,   for fixed E(b),   E(7r_,)   monotonically decreases 
Z 

as   m + n  increases. 
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APPENDIX H 

PORTIONS OF THE E ( w2)  VALUES OBTAINED THROUGH 

THE USE OF THE HYPERGEOMETRIC FUNCTION 

Consider the 2-state Markov process with 

1  - a 

where  "a" is exactly known but  f(x) = f.(x'|  m, n).    The following tables 

give values of E ( JT- )   accurate to 5 significant figures for the various com- 

binations of a,  b = m/(m + n),   and m + n.    These are only portions of the 

results obtained using a computer program and equations (4. 1) and (4. 2). 

(Presentation of the entire results would have required a prohibitive amount 

of typing) 

0. 2 

m+n\b  0.2 0.4 0.6 0.8 

10 .54432 .35584 .25988 . 20 341 

30 .51606 .34080 .25 319 .20 109 

50 .50979 .33780 .25190 .20065 

1 00 .50495 - 33556 .25094 .20032 

200 .50249 .33445 .25047 .20016 

500 .50100 33378 .25019 20006 

1000 .50050 .33355 .25009 .20003 

oo .50000 .33333 .25000 .20000 
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a = 0.4 

m+ n\ b  0.2 0.4 0.6 0.8 

10 .69196 .51785 .40962 .33714 

30 .67601 .50616 . 40 321 .33458 

50 .67240 .50372 .40192 .33408 

100 .66958 .50187 .40096 .33370 

200 .66813 .50093 .40048 .33352 

500 .66726 .50037 .40019 .33341 

1000 .66696 .50019 .40009 .33337 

00 .66667 .50000 .40000 .33333 

0.6 

m+ n\b 0.2 0.4 0.6 0.8 

10 .76598 .61338 .50813 .43208 

30 .75590 .60469 .50276 .42974 

50 .75362 .60284 .50166 .42927 

100 75184 .60143 .50083 .42892 

200 .75093 .60072 .50041 .42875 

500 .75037 .60029 .50016 .42864 

1000 .75018 .60014 .50008 .42860 

00 .75000 .60000 .50000 .42857 
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0. 8 

m+ n\ b  0.2 0.4 0.6 0. 8 

10 .81095 .67687 .57815 .50308 

30 .80403 .67027 .57373 .50104 

50 .80247 .66885 .57282 .30062 

100 .80126 .66777 .57212 .50031 

200 .80063 .66722 .57178 .50015 

500 .80025 .66689 .57157 .50006 

1000 .80013 .66678 .57150 .50003 

00 .80000 .66667 .57143 .50000 
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I 
APPENDIX  I 

SUMMATION  EXPRESSION   FOR  E(ir )   FOR A  2-STATE 

PROCESS  WHERE   BOTH  TRANSITION  PROBABILITIES 

ARE   INDEPENDENTLY  BETA DISTRIBUTED 

I- a        Q 

b l-b 

fat*) -  +ß (* IN , n, J 

■fbty) » -fß (J/IN, nA j 

cohere.   >"v, , n,, »v und   nA   are   positive   integers 

«,-i -j 

Substitute   z - x+y 

= »I • 
Hi-/ 

dz 

The.   fern    where    fc»  VI   and   j*0A-(    wiifl   produce Q   \oganthn 

Therefore, cue   MU-st separafe   ff ■ 

i. Iff (vlH'^YJH't.iri ^C^"J 
k=o 

n.-l-j 

nci-j 
< r        \ni*' , \ 0,-1 / + < . r our; 

L n».-'-J 

^übs+itcrfinä   thi*   expression    info (X'i    leads   to 
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P(*,,n,) p( 

J=o   ——-——T—i         J.«  ^   «/ A       '  ^   y 

* 
v7"° r\-i-j    J J 

Fxpanding   the    ('+*/     terMS, we obtain 

fe=o   J=o    r ^  —  

"« *•   - «»♦V-A-k-j _J» ^     * 

+(-0   * g I wKj    ( w f x^" ^+r"Vf_y)n'-'dx 
n*-'-J 

The   first   four ferns    irwo/ve    6efa   integrate;   fht  /a-sf fioo 

ore  evaluafecß   -through iht use of "Me fb/lou/intf   forMu/as   "/aken 

froM    /nfe^ra/  tab /es 

JDeHaan,   D.   B. ,   Nouvelles Tables D'Integrales Definies,  Hafner,   1957, 
Tables 106-107. 
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_ y f-')u 

u* I 

w=f       U 

U = o *■ 1 ' 

Then ,. > 
n,-i v-'  *»*V*-k /n«.-»)/ ,1°'       ^x-'l/MVi-M 

^ (*l,+ k+r>/, n, j 
*u-» «v-i   j 

sj-o    r= o Ha + oJl-a-k-j 

-f- 

4  f- 

(J^j (-/j C^'Ki)   ß fa*^^ +r_,_j n (; 
v/=0    Hr« ^A+Oj.-i-fe.j 

nA-a    ru-l 

(  ;     ßc ~ *■ * 'J-  '. L—J to****-*.:) 

fC-i)^" 
na-i    n,-f 

flj.-1-J 

£ £ rarat-'^^wtj 

where     ^ (m,, + nA+s ft) 

H^m^+s+t      u=i 

c-o 

lllVJL     +- 

u,'htn     ■*,+n^-fs+t    is   even 

h., + MA + S + t l*\,,+ l<Vjl+5-ft      U*l 
a 

ii   ocM 
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APPENDIX J 

DETERMINATION OF THE EXPECTED VALUES OF THE STEADY 

STATE PROBABILITIES FOR A SPECIAL 3 - STATE PROCESS 

1  - a - b 

1  - c - d 

f 

b 

d 

1  - e - f 

Where b,   c,   d,   e and f are all exactly known,   but   t = -j—r-    is Beta 

distributed,   i. e. 

ft(x)    =   fp  (xim,n)    =   TT±^    x™-1 (I-*)""1 0   4    x   £     1 

From section 4. 1. 1,   we know that 

ce + cf + de 
ce + cf 4- de 

H^b 
" 1      ad + ae + af + be + bd + bf + ce + cf + de     ' a       be + bd + bf + ce + cf + de 

(d + e + f)TT¥+ y^  

and IT 
ae + af -!- bf 

,,     a bf 
^e + f)-Tb  +   TTb 

2 same denominator same denominator 

1 Bt + C 
A Dt + G 

and     IT . 2 Bt + C 

Where A,   B,   C,   D and G  are constants defined by 

ce + cf + de 
i-b 

d + e + f 
(J. 1) 
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_         be + bd + bf + ce + cf + de C    = p^  

D    "   e + £ ...   (J.1) 

bf 
ana U    -  -.—rr 

Fortunately the situations here are closely related to those studied in 

Appendix G. 

_,.     ,      -. ,      A      .        A        f 1 t"1'1 (1 -t)"'1      . 
1 Bt + C B       Jn      ^      C_ ß (m, n) u       r.  ,   B 

Setting w =  1 - t and simplifying gives 

n\ -1 T- /      \ A 1 1 n-1,,       ,m-l    r. B     , , 
E^1)=&-TC       ßTrnT^)        J0      W        <UW) [1-WB-TC] dw 

. ' . E (IT   )  -■ „     -       F (1, n| m+n | g ) (convergent because B - >, <   1 ) 

Where A,   B and C are defined in equation (J. 1). 

Now   EU2)    =   ■(1^c.)   ♦   E   (3^, 

Clearly,   the second term presents no difficulty as it is similar in form 

to that appearing in   E (IT,).     The other term is treated as follows. 

-. ,    Dt ,       D l  t .m-1 .,   ..n-1 E(
BTTC^-

_
B-   pimT^y  J0    77p: '     <ut)     dt 

Substituting w = l~t and performing some algebraic manipulations leads to 

_ .    Dt     . D      ,    m     .     T (m+ n+ 1)        f n-1/,       vm r ,       B       ,„1_1  J 
E(BTTÜ)=  BTc^rnT^  YT^WXW     J0  w      (1"W)     [1"BTÜ w]     dw 
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Using the definition of F (equation (G. 2) of Appendix G) 

_ <     Dt     > D        .    m     i   _ »,      , ,iB. 
E(

BFTC-
)
   

=  B-TÜ {^TT^)   F (».«!« + «+ ilßTC» 

D     ,   m B B Hence, E(»,)=-™-(-S-.) F (1, n |m+n+l|=S__) + J£- F (1, n|m+nj^^) 

Finally,   E (IT 3) = 1 - E (ir j) - E (IT 2) 
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APPENDIX  K 

TABLE  OF SIMULATION  RESULTS  FOR   3-STATE   STEADY 

STATE   BEHAVIOR  WHEN  THE   TRANSITION  PROBABILITIES 

ARE MULTIDIMENSIONAL BETA DISTRIBUTED 

Expt. 
No. 

Sandle              /      \c 

Within 
95% 

._      Con£  1 
ir    Region 

x 10"3 
2 ex. *zV 

Within 
95% 1 

Cont• 1 
r_   Region | 

xlO"3 

TPD. 

1 700 .3368 .3370 4.32 Yes .2211 .2176 3.81 Y 0.7 

2 700 .2528 .2470 2.88 Y .31,99 .3159 3.16 Y 2.0 

3 700 .2988 .2929 2.20 No .3382 .3342 2.24 Y 2.0 

4 750 .4094 .4101 1.38 Y .2894 .2873 1.06 N 0.4 

5 700 .3807 .3685 5.49 N .2749 .2720 3.65 Y 3.0 

6 700 .4361 .4278 3.67 N .2349 .2387 3.34 Y 1. 7 

7 700 .5617 .5652 5.63 Y .2043 .1900 2.84 N 2.5 

8 700 .3099 .3005 2.90 N .2949 .2878 2.60 N 3. 3 

9 700 .6450 .6572 3.85 N .1512 .1471 1.99 Y 2.4 

10 700 .4094 .4082 2.04 Y .2894 .2885 1.65 Y 0. 3 

11 700 .4775 .4908 5.75 Y .3708 .3691 5.63 Y 2.6 

12 700 .1470 .1385 3.00 N .5245 .5223 5.42 Y 2. 1 

13 700 .4266 .4406 4.91 N .3961 .3907 4.55 Y 2.8 

14 700 .3327 .3307 2.43 Y .3434 .3410 2.36 Y 0.9 

15 700 .2523 .2512 2.73 Y .4997 .5090 3.87 N 1.8 

16 700 .3467 .3455 2.35 Y .3552 .3569 1.93 Y 0. 3 

17 1200 .2727 .2980 5.27 N .5455 .5306 5.90 N 5. 1 

18 700 .2527 .2378 3.13 N .2780 .2772 4.11 Y 3.2 

19 700 .2316 .2288 2.61 Y .2692 .2624 2.59 N 1.9 

20 700 .3494 .3537 2.00 Y .3031 .3033 1.84 Y 0.9 

21 600 .1404 .1377 2.24 Y .1930 .1913 2.57 Y 0.8 
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Jäqst. Sample                _ 
No.   Size     (*,)     / ?. lexy    1 

Within 
95% 

s_      Con£  1             i\ 

Within 
95% 

s         Con£ 
TT,  Itegion TPJD. 

xlO"3 

22 800 .3882 .3901 2.69 Y .2824 .2820 2.70 Y 0.4 

23 800 .3882 .3922 2.09 Y .2824 .2783 2.09 Y 0.8 

24 1050 .2727 .2848 4.00 N .5455 .5362 4.55 Y 2.4 

25 700 .2527 .2467 1.85 N .2780 .2808 2.45 Y 1.2 

26 750 .4094 .4101 1.38 Y .2894 .2873 1.06 Y 0.4 

27 1000 .2000 .2012 3.77 Y .4000 .4085 5.01 Y 1.9 

28 1000 .2000 .1955 2.26 N .4000 .3992 3.02 Y 1. 1 

29 1000 .2000 .1996 1.76 Y .4000 .4011 2.31 Y 0.2 

30 1000 .2857 .2864 1.87 Y .2987 .3016 2.21 Y 0. 7 

31 1000 .3929 .3916 1.97 Y .3750 .3740 2.05 Y 0.4 

32 1000 .2368 .2377 1.56 Y .4211 .4209 1.34 If 0.2 

33 1000 .2148 .2142 1.21 Y .4003 .3989 1.16 Y 0.4 

34 1000 .3593 .3592 0.95 Y .3353 .3351 1.01 Y 0. 1 

35 1000 .2527 .2506 0.98 N .3571 .3585 0.87 Y 0. 4 

36 1000 .2710 .2691 2.84 Y .2897 .2907 2.82 Y 0.4 

37 1000 .2963 .2970 3.35 Y .3333 .3421 4.16 N 1.9 

38 1000 .2353 .2416 3.03 N .5882 .5858 3.63 Y 1.3 

Note:   (n'j       and n    can be obtained from n, + jr   + ff    = 1. 
         3 ex. 3 12        3 

T.P.D.   is defined in equation (4.4). 

(See Legend for Experiment Numbers on next page.) 

•212- 



Legend for Experiment Numbers of the Above Table 

Note:    To save space a, b, c/d, e, f/g, h, i    = 

Expt. No. 

1 3, 2, 

2 2, 12, 

3 3, 12, 

4 3, 8, 

5 9, 3, 

6 11, 8, 

7 9, 2, 

8 7, 9, 

9 12, 1, 

10 12, 11, 

11 7, 1, 

12 12, 12, 

13 8, 2, 

! 1 12, 12, 

13 9, 8, 

16 11, 8, 

17 8, 1, 

18 11, 8, 

19 8, 7, 

20 11, 8, 

21 10, 10, 

22 1, 2, 

23 2, 4, 

24 16, 2, 

23 33, 24, 

M_ 

3/  2,   2,   3/  2,   1,   3 

7/ 2,   1,   3/ 2,   2,   3 

8/11,   3,   8/ 2,   3,   3 

9/11,   1,11/11, 11, 3 

2/ 2,   2,   3/  1,   2,    3 

8/ 2,   1,   1/ 3,   1,    3 

1/11,   2, 11/  1,   2,   2 

10/10,   2,   8/  1,    2,   2 

3/12,   3,12/1?., 12, 2 

9/  9,   3, 11/ 9,   7,   3 

2/   3,   8,   1/ 2,   3,    1 

10/  1,   9,   3/  1,    2,    3 

2/   2,   8,   3/11,11,   2 

10/10,11,11/3,   3,    3 

10/ 2,   8,   3/ 7,   9,    3 

8/   7,   7,12/ 7, 10,    2 

1/   1,18,   1/ 3,   3,   14 

9/ 3,   8,   3/ 2,   1,    7 

8/ 8,   9, 12/ 2,   3,    8 

10/10, 9, 11/10,10, 10 

20/10, 15, 25/ 2,   3, 15 

2/4,     '.   5/ 6,   3,    1 

4,   4/   8,    2, 10/12,   6,   2 

2,    2/ 2, 36,    2/ 6,    6, 28 

24, 27/ 9,24,   9/ 6,     3: 21 
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Category 

L, L, L 

L, H, H 

L.H.H 

L, H, H 

H, L, L 

H, ri, H 

H, L, L 

H, H, H 

H, L, L 

H, H, H 

H, L, L 

H. H, H 

H, L, L 

H, H, H 

H, H, H 

H, ri| H 

H, L, L 

H, H, H 

H, H, H 

H, H, H 

L, L, L 

L, L, L 

H, L, H 

H, L, H 

L, L, L 

L, L, L 

H, L, H 

H, L, H 

H, L, H 

H, L,H 

L, H, L 

L, H, L 

L, H, L 

H, H,H 

L, H, L 

H, H, H 

L,H, L 

L, H, L 

H, H, H 

H, H. H 

Test Sequence 

Low Diagonal, 
low elsewhere 

2 x No.   22 

2 x No.   17 

3 x No.   18 

L, L, L 

L, L, L 

L, L, L 

H, H, L 

L, L, L 

L, L, L 

L, L, L 

L, L, L 

H, H, L 

H, H, L 

L. L, L 

L, L, L 

H, H, L 

L, L, L 

H,H? L 

H, H, L 

L, L, H 

L, L, H 

L, L, H 

H, H, H 

reasonably 



Expt.   No. ^ l_ Category 

26 24, 77 18/18, 6, 22/18, 14, 6 2 x No.   10 

27 6, 2, 2/   1, 7, 2/   1, 2, 7 Miscellaneou 

28 18, 6, 6/   3, 21, 6/   3, 6, 21 " 

29 30, 10, 10/   5, 35, 10/5, 10, 35 ii 

.30 15, 6, 9/   8, 24, 8/8, 6, 26 >i 

31 15, 9: 6/12, 15, 3/   6, 9, 15 II 

3 2 25, 10, 15/10, 20. 20/   5, 30, 15 n 

33 10, 22, 8/10, 15, 25/   8, 16, 14 II 

34 3, 15, 12/24, 4, 12/16, 16, 8 II 

3b 4, 20, 16/   8, 4, 28/20, 25, 5 II 

36 3, 1, 6/   2, 3, 5/   3, 4, 3 II 

3 7 14, 2, 4/   2, 16, 2/   6, 4, 30 ii 

38 32, 4, 4/   3, 54, 3/   6, 12, 42 M 
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APPENDIX L 

THE FORM OF THE STEADY STATE PROBABILITIES IN AN 

N-STATE MARKOV PROCESS 

For the simulations of the steady state behavior of 3 and 4 

state processes (see sections 4. 1. 6 and 4. 1. 7),   it was necessary to 

write out expressions for the steady state probabilities for the cases 

of exactly known transition probabilities.    The purpose of this appen- 

dix is to point out some general properties of the form of the steady 

state probabilities which became evident from a study of the 3 and 4 

state cases. 

In general,   to obtain the steady state probability vector 

IT   -   (IT   ,   TCp,   . , ,   TT.T) for a given transition matrix P we solve the 
I       i. N N 

set of equations TT P  = TT  and    .2      TT,    =1. 
J = 1     j 

For 3 states with     P     - 

l-ara2 

1 -b   -b 
1       2 

1 - c. 

we obtain      -rr 
 Vl +bic2^b2Cl 
aib2 + aiCl + aiC2 + a2bl+a2b

2 + a2c2 + Vl+blC2 + b2C] 

alCl +alC2+a2C2 
denom. 

alb2 + a2bi + a2b2 
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For 4 states wi'h l"W*3 
1"bl-b2-b3 

l-crc2-c3 

l-d1-d2-d3 

(b1c1d1+b1c1d2-;b1c1d3 + b1c.2d1+b1c,d2 +b1c2d3+b1c3d1+b1c3d2 + 

b2c1d1+b2c1d2 + b2c1d3 + b2c3d1+b3c1d1 lb3c1d3 + b3c2dI+b3c3d1 

n 

Wbere D = sum of 4 expressions (64 terms in all)  similar to the numerator 

of TT . . 

(The other 3 expressions are the numerators of TT ?,   IT , and IT .). 

Also,   for 2 states with 1  - a 

b 1  - b 

1 a + b 

and IT 2 a + b 

From the above results for the 2,   3 and 4 state systems,   we can 

now suggest the following general statements about the form of the steady 

state probabilities of an N-state Markov process. 

i)    For a given process,   every steady state probability will have 
N N 

the same denominator   D,   i. e.   T. =     i      where D=  jr        N. 
J      D j = 1        J 
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N- 1 ii)   For an N-state process,  D is the sum of N terms - 

st 
these are all the possible (N-l)      order cross-products obtainable 

by taking one off-diagonal transition probability from each of N-l 

rows of the transition matrix in such a way that no cross-product 

involving p .. p .. is obtained for any i and j. 

iii)   The numerator N. is made up of all those terms of D 
1 

tVi 
which do not include a factor from the j      row of the matrix. 

N-2 N. will have N"'      terms. 
J 

iv)   Any one off-diagonal transition probability occurs in 

IVTN-2 , _ lth,., N terms of D,   i.e.,   in   ™-      of the terms. 
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APPENDIX M 

TABLE OF SIMULATION RESULTS FOR 4-STATE STEADY STATE 

BEHAVIOR WHEN THE TRANSITION PROBABILITIES ARE MULTI- 

DIMENSIONAL BETA DISTRIBUTED. 

No. (out of 
Expt. Sample 
No.   Size Wex. *1 2 ex. *2 3 ex. ^3 

3)within 
9 57„ Conf. T.P. D. 
Region. 

39 700 . 2601 .2487 . 1938 . 1876 . 2442 .2475 1 3. 5 

40 700 . 2032 . 1873 .2579 . 2443 . 2787 . 2844 0 5.9 

41 700 . 2926 .2926 . 1688 . 1655 . 2653 . 2728 3 1. 5 

42 700 . 2654 . 2567 . 2450 . 2358 . 2676 . 2653 4.0 

43 1000 . 2654 . 2560 . 2450 . 2350 . 2676 .2661 4. 2 

44 700 . 2757 . 2722 . 2496 . 2455 . 2183 . 2177 1.6 

45 700 . 2438 . 2322 . 2463 . 2336 . 2481 . 2475 5.0 

46 700 . 2889 . 2792 . 2029 . 1823 . 2375 . 2366 6. 2 

47 700 . 2889 . 2822 . 2029 . 1838 . 2375 . 2344 5.8 

48 700 . 2598 . 2533 . 2322 . 2235 . 2632 . 2663 I 3. 0 

49 700 . 2619 . 2631 . 2523 .2513 . 2630 . 2631 3 0. 2 

50 700 . 2334 . 2334 . 2632 . 2b25 . 2757 . 2766 3 0. 2 

51 700 . 2363 . 2349 . 2455 . 2447 . 2508 . 2525 3 0. 4 

52 1000 . 2514 . 2517 . 3086 . 3093 . 2640 . 2617 3 U. 5 

53 1000 . 2514 . 2510 . 3086 . 3091 . 2640 . 2625 3 0.4 

54 1000 . 2514 . 2504 .3086 . 3084 . 2640 . 2642 3 0. 2 

55 1000 . 2514 . 251 1 . 3086 . 3094 . 2640 . 2631 3 0. 2 

56 1000 . 2514 . 2510 . 3086 . 3088 . 2640 . 2644 3 0. 1 

57 700 . 2593 .2597 . 2827 . 2843 . 23 52 . 2343 2 0.4 

58 700 . 2672 . 2669 . 2^51 . 2254 . 2892 . 2907 3 0. 3 

59 700 . 2661 .2656 .2459 . 2454 . 2231 . 2235 3 0. 2 

60 700 .2511 . 2512 . 2812 . 2810 . 2390 . 2380 3 0. 2 

61 700 . 2638 . 2639 . 2425 . 2418 . 2332 . 2339 3 0. 2 

62 700 . 2407 . 2412 . 2586 . 2579 . 2555 . 2558 3 0. 2 

(v.)        and TT ,  can be obtained from ir. + IT , + TT    + T .  -  1 
4 ex. ■* I 2 J ■* 

T. P. D.   is defined in equation (4. 4). 
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Legend for Experiment Numbers of the Above Table 

Expt. 
No. M_ 

39 1,    2,    2,    3/   3,    1,    1,    3/   2,    2,    2,    3/   2,    1,    2,    1 

40 1,12,10,11/   8,    3,11,    7/   7,    7,    3,12/   7,11.11,    2 

41 7,    2,    1,    3/   3,    8,    3,    1/   3,    1,10,    1/   3,    1,    2,11 

42 9,   7,12,   9/12,    7,    8,    8/   9,12,    7,   7/   8,   9,12,    8 

43 18, 14, 24, 18/24, 14, 16, 16/ 18, 24, 14, 14/16, 18, 24, 16 

44 20,11,    8,   9/11,21,10,11/12,13,22,13/13,    8,   9,21 

45 8,20,19,23/22,    8,22,22/21,22,10,19/18,19,19,11 

46 4,   8,   3,   2/   9,    1,   7,   6/   6,    1,   9,   7/   5,   3,   2,   7 

47 8,16,    6,   4/18,    2,14,12/12,    2,18,14/10,   6,   4,14 

48 17, 15, 18, 15/15, 15, 20, 22/23, 20, 22, 19/21, 18, 1 7, 16 

49 24, 16, 21, 15/23, 20, 20, 18/16, 19, 19, 18/15, 20, 18, 15 

50 15, 23, 23, 18/23, 24, 24, 16/19, 19, 19, 15/15, 16, 20, 22 

51 19, 22, 15, 22/15, 17, 24, 19/22, 23, 21, 23/22, 19, 22, 24 

52 1,    4,    3,    2/   3,    2,    3,    1/   4,    4,    2,   4/   3,   4,    3,    i 

53 2,    8,    6,   4/   6,   4,    6,    2/   8,    8,   4,    8/   6,    8,   6,    2 

54 5,20,15,10/15,10,15,    5/20,20,10,20/15,20,15,    5 

55 10, 40, 30,20/30,20,30, 10/40, 40, 20,40/30,40,30, 10 

56 15, 60, 45, 30/45, 30, 45, 15/60, 60, 30, 60/45, 60,45, 15 

57 22,36, 24, 29/37, 30, 28, 20/36, 36, 32, 39/29,33,29,21 

58 36, 25, 34, 26/36, 36, 39,34/34,36,40,28/33, 21,38,27 

59 24, 32, 36, 29/27, 33, 21, 35/37, 25, 22, 24/34, 23, 23, 33 

60 36, 36, 33, 22/28, 39, 25, 29/27, 35, 33, 36/39, 33, 33, 31 

61 49, 39, 42, 33/42, 34, 30, 35/42, 43, 43, 42/30, 34, 30, 49 

62 49,46,47, 39/31, 38, 38,39/30,39,45,49/48,45, 36, 31 

Comments 

L throughout 

L diagonal,   H 
off-diagonal 

H diagonal,   L 
off-diagonal 

H throughout 

2 x No.   42 

H off-diagonal, 
higher diagonal 

H diagonal, higher 
off-diagonal 

Random 1 - 9 

2 x No.  46 

Random  15-24 

Random 1-4 

? x No.   52 

5 x No.    52 

10 x No.    52 

15 x No.    52 

Random 20 - 40 

Random 30 - 50 
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APPENDIX  N 

THE   EXPECTED  MEAN  RECURRENCE   TIMES OF A  2-STATE 

PROCESS   WHEN   THE   TRANSITION  PROBABILITIES ARE 

INDEPENDENTLY   EETA  DISTRIBUTED 

Consider the 2- state Markov process with 

1   - a 

i   - b 

whe re 

and 

fa(x) =  f (xlnynj) 

(y)  •- E (y|m,, n ). 

For     a     and      j     exactly known,   the exact mean recurrence 

times   (n    's)   are found as  lollows: 

come right     go to state 
back to 2 
»täte I y— \ 

n        :    (l    a)  •   1   + a(n     +i) 
11 c 1 

and 

n,,       lb)  •   I + (1 -b)(n    +1\ 
2i -     21      ' 
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These two equations yield 

and 

and 

n21 = ~b 

a + b 1 
"11-      b      " ■n 

Similarly, 

12      a 

+ b       1 
22 a 77 

Now,   let   "a" and   "b" be independent Beta variables as indi- 

cated above.    Then, 

E(;i]) = E(ia) = ltE(|) = ltE(alE(i) .  a and b  are 
independent. 

=   1 + 

m,-l n   -1 

4H Is=k)^  ™* dy 
2'    2' 

ß(m2-l,n2)        (m2-2)! jr^i*        (m^-l)] 

ß(m2,n2)     "        (m2+n2-2);      ' (m.,-1 )I ^n^t! 
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m2-l 

m   (m +n   -1) 

II (m1+n1)(m2-l) 
= 1 + 

\    m2+n2/ 

m2 + n2 

Similarly, 

m,(m.+n. -1) 

22' (myfn-){m.-1) 
=  1 + 

mi+ni 

(N.l) 

E(n12) 
ml+ nl" 

1 

a 

m    + n 

m.   -  1 1 
i m    + n 

and 

E(n21) - 
"V-2      1 

m2      1 

1 • 
I 

m    + n 

b 
i 

m2 + n2 
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APPENDIX O 

STATE  OCCUPANCY   TIMES  WHEN  THE   TRANSITION PROBA- 

BILITIES ARE   MULTIDIMENSIONAL  BETA DISTRIBUTED 

O. 1.    Determination of the Probability Mass Function of the 

Occupancy Time 

Consider an N-state Markov process with transition matrix, 

P = (p..)   where the   p .'s  are multidimensional Beta distributed with 

parameters   m... 
ij 

Let   u.   be the number of the transition on which the system 

leaves state  i  for the first time given that it is in state   i  before the 

first transition. 

From equation (4.6), 

p     |       (k|x) =  xk_1  (1-x)        k > 1 (O. 1) 
Uilpii 

We want to know the marginal probability mass function on u., 

p    (k) = f      p     |       (k|x) f      (x) dx (0.2) 
U. J U    I D p. . 

0 l     " 

But 

fp. .(X) = fßl X m.., )   m.. ] (O. 3) 

(from section 3.Z).    Therefore,   substituting equation (O.l)and equa- 

tion (O. 3)   into equation (0.2),   we obtain 
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C       k-1                                  1 
p    (k) =   \     x (1 -x)   —.  

I «ij - 1 

P   (k) u. 
1 

(m .,   £m . \ 

\J /    \J*i       /        *j  

/ Sm .+k-l\: 

lj     1J / 

m..-l . 
x (l-x)J      dx 

k > 1 (0.4) 
(m.  -1)! 

li 

This can also be written as 

(m, )(m:;+l) . (m   +k-2) 
li 

.   /Em .+k~l 

J     1J 

P    (k)  =\ 
u ■ 

1 

Z  m 

k = 1 
V X m 

lj 

k > 2 

(0.5) 

This last form can be normalized by letting 

and 

tor then 

rn 
li 

n        N 
S    m 

'J 

i 

'i  '     N 
S   m 

iJ 

(O. 6) 
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(\\  YPii+VV /Pü+(k-2)w.N 
(1 '*iiJ ^l<HrAl4>lw. J * " ' yi+(k-l)w.   i 

k > 2 

p    (k) = \ (O. 7) 

_ 
Id -P..) k-1 

O. 2.    Bounds on the Mean Occupancy Time 

Using equation (0.4),   the mean occupancy time is 

oo oo      fzm    -lW   Sm. W..+k-Z)! 

E(u.) =   I   k Pu W =2,   k   '    (m<4-l)t/Sm„+k-I\! (°" 8) 

k=l * k=l li \j     1J        / 

There is no apparent way to obtain this summation in closed form.    How- 

ever,  a reasonable bounding technique has been developed.    We are 

primarily concerned with an upper bound sim_e a lower bound can easily 

be obtained by truncating the summation at a finite number of terms. 

The process must,   eventually;   leave state   i.     Therefore, 

pu (k) = 1 

k--l       l 

Hence,   from equation (O. 5) 

o0 

c 

(m   +k-2); 
li  

_Zm   +k-l\ I 

\i      1J 

where 
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j 1J I \m l}' 
(m. -D: 

11 

is independent of  k.     Therefore, 

Z     (m.+k-2)! . (m..-l)! 
\ 11 y_ _    11  

/    /Sm .+k-l\r   :"   c   r:   /Sm. .-1\!  /   2m..\ 
k=ilj lJ   )        Ij lJ ) b* 1J) 

or,   more generally, 

00 

V     (M-k-1)!    "   (b-1)!   (b-a) 
k=l 

Now,   equation (O. 8)   gives 

oo 
, k(m..+k-2)! 

:(u ) = c ) -rr» 
l /j     |Sm 

k=i v J 

..+k-l\! 

< c 

k 

(m   +k-2)! \    —a. 
k,l    lj      *J ) 

(0.9) 

Y   (a+k-2)!    _       (a-1)! /v>,*n in im 
/     (h+k-n-    -   fh.n!   /wl (b>a>l) (O.10) 

(m   -1)! 
=  c   ,— V,   .      r. (using equation (O. 10)) 

Sm   -2 

J      1J 

!   / Sm..-l\ 

1J*  1J   ) 
That is, 
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3    iJ >i w^» 
E(u.) < lJ   "  imf!*t)l ( 2m..-2\: /   Sm..-1\ 

or 

Em .-111   ^ m 
J^i 

E(u.) < 2m.  -1 

j* 
iJ 

Hence,   E(u.)   can be bounded as follows: 

Sm..-ll! f Em..\ r        k(m..+k-2)! 

(m..-l)! 
li 

I lrm..+k-n;<E<''i
,< 

1,      /Sm..+k-lV 
= 1     Ij      1J ) 

/Sm..-l\/ E m..\ 

2Jm. .-1 

(O.ll) 
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APPENDIX  P 

DETERMINATION  OF  THE  EXPECTED  VALUES OF 

THE   TRAPPING  PROBABILITIES IN A SPECIAL 

TRAPPING  STATES PROBLEM 

Consider the Markov process with the transition matrix 

1 2 

1 1 
■qi ■q2 

q 

P  : - 2 0 i 

3 0 Ü 

where  q     and  q     are multidimensional Beta distributed.     That is, 

f (x,y)  - f,(x. y ! m  , m  > m ) 
q^q2 P 2      3      1 

P(m,i m2, m3) 

m   -1     m   -1     m   -1 
(1-x-y) x y 

Then.. 

0 < x;   0 < y;   and x + y :S 1. 

For known  q     and  q       let   g. -  pr(process traps in state  j). 

i2 - qj + U-q^q^) q} + (i-q1 -q2)   qj + • • • (p.i) 

- qx[l + (l-qi-q2)+ (i-qi -q^)2 + ...] 
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Ll   •   ^2 

When q     and  q     become random variables,   from equation (P.l) 

E(g2) - E(qi) + E[qi(l -qx -q2)] + E[q,(l -qi -q./] +  . . . 

But 

k 1 
Elqjd-qj-qj) 1 = plm^m^m^ \     \ (l-x-y) x        y dydx 

0    0 

Substituting   z = y/(l~x)   and performing the double integration gives 

ß(m   . nij+k) 

■hl<l-«l-12)   1    ■   ßIrn-mT^nß(m2+1'mi+m3+k) 

1 £ ■) 

:(«2l ■   I 
ß(m  ,m +k) p(m2+l. n^+m^k) 

k=0 
ß(m , m   ,m  ) 

This simplifies to 

m     Urn +m +m  )     ~ (n^+k-1)! 

rtmj) k=0 (»i*«2*«3+k)- 

(F. 2) 

Similarly, 

E(g3) 

m    T(m  +m +m  )     .- (m  +k-l)! 

rdiij) > ]■     (m +m +m +k)I 
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But we know that   E(g  ) + E(g  )  -   1.     Therefore, 

00 
P(m +m  +m  )(m +m ) (m +k-l)! 

I rtnij) k=Q   (mj+m^+m^k)! 

or 

„ (m  +k-l)! r(m   ) 
)       - =      (P. 3) 

, (m.+m +m +k)' (m +m  )  r(m +m +m  ) 

NOTE: 

This checks with the identity (equation (O.10))   developed in 

Appendix  O  if in the identity we substitute   a = m    +1   and b = m    + m 
1 1 ft 

+ m3 +  1. 

Substituting equation (P.3)   into equation (P.2),   there follows 

E(g2) = 
m2+m3 

and 

E(g3) 
m3 

m    + m 
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APPENDIX Q 

PROOF THAT E(N. R. I m, n, a; k) - E(N. R. j m, n, a) 

Q. 1. ALGEBRAIC PROOF 

Equations (5.4),   (5.2)   and (5.3) give 

k 

E(N. R. |m, n, a; k)  -    y     PRh(ri  m, n, k) 

r=0 (5.4) 

•   E(N.R. |m+r, n+'k-r, a) 

(m+r-1)!   (n+k-r-1):  k!   (m+n-1).' 
pni (r   m, n, k) -      ~ . ,   ,.       TT~,     TTT'i    T~T,    TTi   (*=0, 1, . . . , k) r(3b r.   (m-1).   (k-r)!   (n-l)i   (m+n+k-1). 

(5.2) 

and 

E(N.R. |m,n,a) = sir    - c +(r--r,)  j-^—J   F(I : n|m+n | ~ j J       (5.3) 

Substituting equation (5.2) and equation (5.3) into equation (5.4) gives 

E(N.R. |m,n,a;k) = s(r   -c) 

+ s(r fi>rn I 
a        £    (m+r-1):   (n+k-r-1)!  k.'  (m+n-1).' 

2'Va+l    L r!   (ml)!   (k-r)!   (n-l)I (Q.l) 
r*0 

F{1   n+k-r j m+nirK 11/(a+1)) 

(m+n+k-1)! 
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Now,   from equation (G. 3) of Appendix  G we know that 

p  /   1  \      p(p+l) /   1 
F(l.P!q|l/(a+l)) = I+-^—j*55IJ^ )    ♦... (Q.2) 

That is,   a power seriös in   (l/(a+l)).    Therefore,   both  E(N. R. [m, n, a; k) 

and  E(N.R. | m, n, a)   can be thought of as power series in  (l/(a+l)). 

Let  A. = coefficient of  (l/(a+l))J   in E(N.R. |m, n,a;k).    Then, 

from equations (Q. 1)   and (Q.2) 

k      (m+r-1)!  (n+k-r-1)!  k.'   (m+n-1).' 

A. =  sa(r2-ri)    £    r;  (m.l);  (k-r)!   (n-I).1  (m+n+k-1)! 

r=0 

(n+k-r)(n+k-r+l)  ...   (n+k-:r+j-2) 

(m+n+k)(m+n+k+l)  ...   (m+n+k+j-2) 

(m+r-1)!   (n+k+j-r.2)i   ki   (m+n-1 )\ 
sa(r,-r.) 

2    1'    /_j    v\  (m-1):  (k-r)J  (n-l)J (m+n+k+j-2): 
r=0 

Multiplying and dividing by 

(n+j-2).' 

(m+n+j-2) 

there  results 
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sa(r2-ri)(n+j-2)!   (m+n-1).' 

Aj = (m+n+j-2)!   (n-1)! 

*       (m+r-1):   (n+k+j-r-1)! k!   (m+n+j-2)! 

2J    r!   (m-1)!   (k-r)!   (m+n+k+j-1)!   (n+j-2)! 

p„v(r| in, n+j-1, k) . " .  /   =1 

Therefore, 

sa(r   -r   )n (n+1) ...   (n+j~2) 
A    _  £ I  

j       (m+n)(m+n+l)  ...   (m+n+j-2) 

Now,   using equations (5. 3) and (Q.2),   this is seen to be the coefficient 

of (l/(a+l))J in E(N.R. |m,n,a).    Hence, 

E(N.R. |m,n,a;k) = E(N.R. |m,n,a); 

the result that was intuitively anticipated at the beginning of section 5. 2. 2. 

An interesting side issue is that the following identity has been proved 

F(l,n|m+n|a)  -     )     p     (r I m, n, k) F(l, n+k-r | m+n+k | a) 
Li      Po 

r=0 

Ü. 2.    Alternate Proof of WhyE(N.R. jm,n,a;k)   is Independent of k, 

the Number of Transitions Observed 

The following theorem (that is of interest for decision theory 

in general) will enable us to justify the independence of E(N.R. |m, n, a:k) 

from  k. ; 

Theorem:   Consider  '■■. random variable   x.    Suppose   R(x)   is a 
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pure    function of x;   that is    it is independent of the distribution of x 
...  2 _ 

'this rules out such situations as   P(x) -  c(x-x)     because the mean,   x, 

is a function of the distribution).    Let there be an experiment   G whose 

outcome   y   is a function of x;   more precisely,   the likelihood function 

La   f   i   (y     x  ).    Then the expected posterior mean of R before per- 
y | x    o     o 

forming the  experiment,   given that: it will be performed,   is equal to the 

mean of R  without experimentation. 

Proof: 

E(R|yo) R(x  ) f        (x     y   ) dx 
o     x  y    o     o        o 

f   I   (y   |x  ) f(x  ) 
„ y |x   o    o        o 
\        R(x  )  — ;    dx (Bayes) 
J o f  (y   ) o y    o 

expected posterior mean =   \       E(R| y   ) f  (y   ) dy J o     y    o o 

' I    I     R,*o' 
£  I    (y    x  ) f  (x  ) 

y | ..     O '   O      x     O 

v     x " o     o 

 c      —  dxU<] dy 

=   C      R(x  ) f  (x   )(   (     f   ,    (y    |x  )dy   \ dx J o    x   o yJ     y|xJo    o   'ol    o 

=  \       R(x  ) f (x  ) dx 
•    J O     X    o o 

E(R)        Q.E.D. 
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1 
'NOTE; 

If  R(x)   was a function of the distribution of x,    R{x  )   would o 
have been a function of the experimental outcome   y     and we could not o 
have performed the simple integration on y   .    Hence,   the proof would 

not be valid. 

Now in the 2-state problem considered,   because we cannot con- 

trol, the decision mechanism after the observations,    E(N.R.)  becomes 

a  "pure    function of the random variable     D   .    Hence,   E(N. R. j m, n, a; k) 

= E(N.R. |m, n, a). 
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APPENDIX R 

DETERMINATION OF THE EXPECTED VALUE OF PERFECT 

INFORMATION IN A SPECIAL 2-STATE MARKOV PROCESS 

CunsiJcr a 2-statc Markov process with transition matrix 

; i  - a a where "a" is known exactly but 

b 1-bj fb(bo)  =fß  (bjm.nl 

Let c be the fixed cost per period for using the process.. 

r.,   the reward per time period for being in state j.   (j = 1, 2). 

and d,   the cost of observing a transition from state 2. 

If it is desirable (i. e.   the expected revenue is positive),   we can 

use the process for & periods in the steady state.    Also,   we have the 

option of buying the right to observe k transitions from state 2. 

In section 5. 2. 3 it was shown that the expected net revenue 

following an optimum procedure is 

/"Observe   E (N. R. | m, n, a; k) 

E [N. R. | fb(bo) )   =  max "\ Use E (N. R. | m, n, a)  (R . 1) 

°'U'S(stop 0 

To evaluate E (N. P.. | P. I. ),   we proceed as follows. 

For a known value of "b",   say b   .   (IT -,)        ■  ■— ,   the 
'     o 2 ex       a + b 

exact probability of being in state 2 in the steady state and the expected 

reward per period in the steady state is 

R=rlU1
)ex + r2(lT2)ex "  C 

= rj -c + (r2- r1)(,r2)ex 

,   ; \       a 
r, -c + (r, - r,) ■ 1 2        I' a + b 
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We would use the process if     R> 0 

i.e.    r    - c +(r;, - rL)   r±T   >   0 
o 

(rj - c) (a i- bQ} + (r? - r^     a > 0 

or use only if b    (r    - c) + (r2 - c) a > 0 ....  (R. 2) 

If c < both r,   and r?,   we will always use the process. 

If c > both r,   and r?,  we will never use the process. 

Therefore,   we need only consider c between r    and r_. 

(r2 - c) a 

o c - r. 

Case i      r   <   c <  r 

Inequality (R. 2) becomes — use process when b    < 

(r-, - c)a 
Therefore,   if b   <  —  ,   the E (N. R.   b  ) = s [r.-c+(r,-r.) —-r—] 

o c - r o i c     i   a-t-D 
1 o 

if bo>   (r2 ' C)a  ,    rhe E(N.R.|b0) =0 
c:"rl 

Now,   from equation (5. 11) 

.R. |P.I.) =J[ E(N.R.|bo) fb(bQ) dbo 

(r2-c)a 

=   j   C1l B[r1-c+(r2-r1)I^]fß(bo|m,n)dbo 

0 

1 

+ f (0) f    (bjm.n) dbc 

J (r-,-c) a (r2-c)a 

-cTr7 
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(r?-c)a 

i.e.  E(N.R. |P.I.) »J    C_rl        s[r1-c+(r2-r1)^-jfß(bo|m,n)dbo . . . (R. 3) 

0 '      ° 

Finally,   (R. 1) and (R. 3) would be used to give 

E.V.P.I.   - E (N.R.I P. I.)      E [N.R. |fb(bQ)] . . .   (R. 4) 

Case ii        r. y <   c   <   r 

(c - r2) a 
Inequality (R. 2) becomes — use process when b    >   —-  

1 

Consequently,   E(N. R. | P. I.) = J s[r j-c+U^r^^-] f   (bj m,n)dbQ     . . . (R. 5) 

(c-rja 

rrc 

Then nroceed as above. 
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APPENDIX S 

THE USE OF A GAMMA PRIOR ON THE SECOND 

PARAMETER OF A GAMMA DISTRIBUTION2 ' 

S. 1   Justification for the Gamma Prior, 

Consider a Gamma variable t with parameters a and (3 where a 

is assumed exactly known but ß will be a random variable. 

a      a   -1      - yx 
f,    (x|y)=f     (xla.y)-J = -  0<x        ... (S. 1) 
HP a i r^ 

Let E be the event that k independent draws from this distribution take 

on the values x. ,   x»,   ...   ,   x. 

a a   -I    -yx. 
k        y      x. '   i 

Clearly pr (E|y) =   *f       — 
F (a) . 

k 

pr(E|y) =<xlx2---xx>   "' y °k   e^*^ 2) 

[T(Q)    ]k * y ' 
Kernel 

This suggests using a prior on ß   of the form 

Cß"'1 e"Wß 

but this is seen to be a Gamma distribution with parameters V and w, i. e. , 

the conjugate prior is 

ffl (y) = *~ (ylv.w) = nv,Vwy oi y      ...(s.3) 
p r(v) 

O "7  

Part of the results of this appendix have been stated (but without proof) 
in an article by Scarf. 

Scarf,    H     E. ,  "Some Remarks on Bayes Solutions to the Inventory 
Problem",   Naval Research Logistics Quarterly,   Vol.   7 (I960), 
pp.   591-6. 
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S. 2   The Marginal Distribution of "t" and its Moments 

ft(x) =Aie{x,y)Vy)dy 
iß 

0 

f00   a    a-l    -yx v    v-l    -wy        . 
)     V     x e w    y e _        dy 
0  " T(ö) r.(v)^ 

v    a - 1 ,.°° 
w     x 

I\a)r(v) 

v      a - 1 

I ö+v-1       -(x+w)y 
J       y e 'y dy 

0 

W      x T{ a +v) 

r(«) r(v) /          \ a + v 
(x + w) 

V w o -1 
X 

ß  ( a ,   v) ,          >  a + v (x + w) 
ft W -  a , .:    .A   • 0 ±   x . . .  (S . 4) 

Uj 

C C     v    a 
;(t) =   J   xft (x) dx -   J   w   x 

ß(ß,v)(x+w)Q'fV 

This can be integrated to obtain 

a -v 
E (t) =   —T-J2 r     •      51      («\       ( -1) provided   v>  2. 

ß ( a , v) k^Q    I k I     a +v^k- 1 

Unfortunately, this is a rather complicated function of the parameters 

v and w. The situation with the variance will be even worse. As was 

done in the discrete time problem,   we would like to choose v and w to 

satisfy our prior estimates o: E (t) and t.     This would be very difficult 
v 

with such complicated expressions for E (t) and t.    Hence,   wc restrict 
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attention to the special case of a =  1,   i. e.   the density function of t 

given ß is 

ft|ß  (X'V)  B fe{xly) =Ve"yX °^   x 

the exponential distribution with mean  —— . 

. . .   (S. 5), 

Setting a = 1 in (S. 4),   we obtain 

ft (x)    = 
vw 

(x+w) 
v+1 

0 £  x (a = i) .  (S. 6) 

Then E (t) 5 
V 

VW       X 

(x+w) 
v+1 

dx        which integrates to 

*(*> ■  v^r for   v i   2   and   a ■  1 (S. 7) 

In the same way we find that 

2 2w2 

E{t)    =   (v-2)W(v-l) 

v 2 2 t   =   E (t   ) -  [E (t) ] which simplifies to 

1        (v-l)Z(v-2) 
for v >  3 and o ■ 1 (S. 8). 
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S, 3   Bayes Modification of the Gamma Prior 

Let the event E be as defined in Section S. 1 

Now   f    (y|E)    -    pr (E | y)   fp (y) 

pr (E) 

l^wi^ 
J° , -,^-1       ak     -y <    x.      y   v-1     -wy    , 

(xiiS»-—*^*v' y       e      i = i      x -w    y e      7    dy 

o   _Lx4*H^ 

k k 
, X ,v+ok      v+ffk-1       -y(w+ ,<t,    x. ) 

=   (w +   i = 1     
xj ) y e i = 1     i 

r  {v + ak) 

i. e.    fR  (y   E)    =   f      (y| v + ak,   w + .«.   x.),   a Gamma distribution 

with modified parameters.     Note that the individual x. values are not 

important;"?!) we need know is their sum. 
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APPENDIX T 

THE USE OF A NORMAL PRIOR ON THE MEAN OF A 

NORMAL DISTRIBUTION 
28 

T. 1   Justification for the Normal Prior. 

Consic   r a Normal variable       whose variance c u is assumed 

exactly known,   but whose mean |j. will be a random variable. 

,2 
1 

I r >J2TT   or 

-(x - y) 

2cr   c 

J< x < (T. 1) 

Let E be the event that k independent draws from this distribution 

take on the values   x,,   xo5   . . . ,   x   . 

k 
Clearly,   pr (E| y) =   j* 

2 IT o- 

I fii? fl- 

it 
i = l 

exp 

2 2 ' 
(x      - Zxy + y  ) 

?.o- 

which can be expressed as 

L(y-a)2 \ 
pr (E I y)    = C expl   2b a      J     where a,   b avid c are constants 

Kernel 

This suggests using a prior on p. of the form 

2 \ 

C   exp 
■<H-v) 

2wcr 

IE 

29 

A portion of the results of this appendix have been given by Raiffa 
29' 

and Schlaifer. However,   for completeness,   they are rederived 

here with slight notational changes. 

Op.   Cit,   pp.   294-6 ■243- 
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2 
This is merely a Normal distribution with mean v and variance w c  , 

l. e. ,   the conjugate prior is 

2 f(y-v)2\ 
fu(y) = fN(ylv>   Wr   >    = T=^eM~Z^Zl       -00<y<0°       ...(T.2) 
^ V 2 rr w tr \ / 

T, 2    The Marginal Distribution of "r " and its Moments. 

f
r 

(x) = J.Am (x|y) V (y) dy 

r°°      1 /-(x-y)2\ 1 /-(y-v)2\, 

■^x  J2-IT0- \   2r       /      J2irw<r \   2\v v     j 

After performing the integration on y and considerable simplification 

there results. 

1  /-(x-v)2 

2. 
K   M      =     !■>   i    ; ,\      expU/      .w2J = f   (x|v. (w+ljr *)       ...(T.3) r V2Tt(w+l)cr \2(w+l)ff    /       n      ' ' ' 

2 
Hence,   r   is normally distributed with mean v and variance (w+l)<r 

Therefore,   E (r) - v and      r ~ (w+1) 

T.3   Baycs Modification of the Normal Prior. 

Let the event E be as defined in section T. 1. 

Now f    (y|E) = pr (E| y) f    (y) 

pr (E) 
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h      k 

■or) Ä- 
-(x^x.y+y  ) 

20- "2" 
■,   .Z--    exp| -(y-v) 

P^   p Uw^ 

\/?n"cr / 

k /-(x.-2x.y+y )\      1/ 
I •<T-V);i 

2w cr 
dy 

After considerable straight-forward manipulations (such as completing 

the square in "y") there follows 

^y|E) ^ 

exp 

y -   v+w i«l 4 
kw+1 

kw + 1 
"2w 2 cr 

kw   +   1 

+w    5      x- 
i-l      * 

i.e.    f   (y|E)   -   fN(y|     kw +. j kw + 1 
<r    4.   a Normal distribu- 

tion with modified parameters.    Again note that the individual x, values 

are not important» all we need know is their sum. 
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IJ 

GLOSSARY  OF  SYMBOLS 

Svmbol                             Meaning Page 

a..                                       Transition rate from state   i 127 
to state  j   in a continuous time 
process (i^j) 

A                                           A - (a   ). matrix 127 

B                                         Event 137 

B(F)                                     Event 9 

(B(F), s)                           Joint event that B(F) occurs 12 
and the starting state is   s 

c                                            Cost per period for using a 9 3 
Markov process 

C.                                         Cost of assuming that matrix 19 

P is in use when   P  is really 
governing the process 

C(k) Cost of assuming matrix    P 19 

cov(p,q) Ccvariancc of  p  and  q 37 

d Cost of observing a transition 93 

d Cost of observing a transition 24 
TS 

from state   r  to state   s 

E,E Events 35,94 
r 

E Error in E(TT  ) when only   k 50 

terms are used in the hyper 
geometric expansion 

E(x) ■ x Expected value of the random 37 
variable   x 
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Symbol Meaning Page 

E(N. R. I m n, a) Expected net revenue in a 2- 95 
state process given that one transition 
probability is known exactly 
at    a    and the other is Beta 
distributed with parameters 
I!        II ,       II      II m    and     n 

E(N.R. |m.n  a; Same as above except k obser- 95 
k) vation« of transitions related 

to the unknown probability 
will be taken (does not include 
the cost of observations) 

E(N.R.|(m .)) Expected net  revenue following 105 
an optimum policy without 
experimentation when the transition 
probabilities are multidimen- 
sional Beta distributed with 
parameters (m..) 

E(N.R. |(m..): Same as above except k transi- 105 
k) tions will be observed 

E(N.R.|f  (x  )) Expected net revenue following 112 
x    o . i. • , an optimum policy given that 

the random variable   x has the 
density function shown 

E(N.R.|h,i, Expected net  revenue in the 122 
(m. )) next h periods given that, a 

transition will occur from 
state   l   just before the .first 
period and the transition proba- 
bilities are multidimensional 
Beta distributed with param- 
eters (m   ) 

E(N.R. |P.l.) Expected net revenue following 112 
an optimum policy given perfect 
information about the unknown 
parameter(s) 

E. V.P.I. Expected value of perfect mlorma- 112 
tion 
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Symbol Meaning Page 

E(»Jm,n,a) Expected value of the steady 
state probability of being in 
state 2 of a 2-state process 
where    a    is known exactly 
but    b    is Beta distributed 
with parameters   m and n. 

95 

EC*,   m,, , n, , m  , Expected value of the steady 
state probability of being in 
state j of a 2-state Markov 
process whose transition 
probabilities are multidimen- 
sional Bet* distributed with 
parameters 

m 

59 

f      (w, x, .. .,z) 
a.b..... a 

Joint density function of the 
random variables  a,b, ....d 
evaluated at the point (w,x. 
■ • ■, z) 

36 

f   i,(w|x) 
ab 

Conditional density function 
of the random variable    a 
evaluated at the point,    w 
given that the random varia- 
ble    D    has taken on the valus 
ii   ii x 

36 

Number of times that the proc- 
ess has been in state   i 

40 

iJ 
Number of transitions from 
state   i to state   j 

40 

WVV1 

VX1*X2 V 
"Vmi "He1 

Normal distribution 

Multidimensional Beta distri 
burion 

140 

37 
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Symbol Meaning Page 

f lx|v,w) Gamma distribution 128 
y . 

F(a.   c-b|c|  z) Hypergeometric function 197 
(integral form) 

F(p, q | r j z) Hypergeometric function 197 
(series form) 

g. Probability of trapping in state j 88 

M = (m..) Parameters of the multidimen- 103 
^ sional Beta prior distributions 

on the probabilities of a Markov 
transition matrix 

M Value assigned to the sum of 38 
the parameters of a single 
multidimensional Beta distri- 
bution by the least squares 
technique of Appendix C 

m    + n Smallest integers for which 59 
ä - m   /(m  +n  )  takes on a 

spec ified value 

n 
i 

n. 
1J 

Number of occurrences of the 35 

i       category oi a multinomial 
distribution 

Number of transitions to get 72 
to state   j  for the first time 
given that the process is in 
state   i  before the first transi- 
tion 

Mean recurrence time for state i 15 

given that matrix     P  is being 
used 

N Number of states in a Markov 
pT ocess 

k- 
n. . 

li 
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Symbol Meaning Page 

N(F) Number of possible sequences 10 
producing the transition fre- 
quency count F » (f. .) 

p Variance of p 37 
*\* 
p Value assigned to the variance 178 

of p by least squares technique 

p Probability that a random draw 35 
1 th 

falls in the  i      category of a 
multinomial 

p Probability that the state Kt time 40 
i i n + 1   is  j   given that the state 

at time  n is  i 

p.. Expected value of diagonal transi - 68 

tion probability of  I       row of 
matrix-p .   - m,  /  Sm_. 

'   li n it 
J       J 

p  (k) Probability that the discrete 15 
x , '   .   , ,      II   "       ■ random variable    x     takes 

,, ,       ii, ii on the value    K 

p   |     (klj) Conditional probability that the 15 
x    y ,. , ,,iin discrete random "Sriable    x 

takes on the value    k    given that 
the variable   y   assumes the 

,       II n value    j 

p     (r |m,n.k) Beta-binomial probability mass 94 
Pb 

function 

k k th 
P = (   p   ) k       possible transition matrix 9 

ij in a multi--matrix Markov proc 
ess 

Number of possible transition 
matrices in a mult l - matr iu. 
Ma rkov process 
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Symbol Meaning Page 

r. Reward per period for being 69 
in state  j 

r.. Reward per transition from. Zl 
J state   i  to state  j 

R Expected reward per period in the 92 
steady state when the transition 
probabilities and rewards are 
known exactly 

R.(n) Expected reward in the next n 148 
periods given that the present 
state is   i and the transition 
probabilities and rewards are 
known exactly 

R Expected reward per t^.nsition in 144 
the steady state when the transi- 
tion probabilities and rewards 
are known exactly 

s Number of periods in the steady 94 
state that the process will be 
used 

s Probability that the process 12 
starts in state   s   given that 

matrix     P is being used 

s_ Sample standard deviation of 63 
j the mean of the steady state 

probability of being in state j 

s  . Total observed reward in f.. 147 

transitions from state i to state j 

t   (n) Expected number of times in 149 
lj 

state j in the next n periods 
given that the present state is i 
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Symbol Meaning Page 
k 

T T.   ■   Zr. 139 
K R 

T.P.D. Total per cent deviations of 63 
the sample means from the 
exact steady state values 

N 
T.P.D.  B 100   2   |(TT.) IT 

js,       jex        j 

u. Number of the transition on which 76 
the system leaves state i for the 
first time given that it is in state i 
before the first transition 

ü. Mean number of transitions to first 19 
leave state i given that the process 
is in state i before the first 

k 
transition and    P is the transition 
matrix 

v  (a', i) Expected cost if an optimal policy 2b 
is followed and we are in state i 
with probability vector   a    over 
the matrices of a multi-matrix 
process and there are h decision 
periods left 

v      w . Parameters ct the prior distri- 146,147 
ill) ........ J butions in the Exponential - 

Gamma and Normal-Normal 
frameworks 

v.(m,n) Value function of a special I 119 
state Markov decision problem 

1 77 w. w    -     ^ __ w 
1 ■fa 

1 

m 

i)   Discount factor   ^ 101 
li)   Probability that *P is being 26 
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Symbol Meaning Page 

used when there are only 2 
possible matrices in a multi- 
matrix process 

a, Probability that    P is being 
used in a multi-matrix proc- 
ess 

lk 

ß(m  , m  , .    . , Generalized Beta function 36 
mk) 

A,     (x) Change in E(R ) caused by the 155 
km t . 

observation      of a reward 
of value x to x + dx for a transi- 
tion from state k to state m 

■K Steady state probability 6f being 12 
in state s given that matrix 

P is being used. 

n. Sample mean value of 7i. 63 
J J 

(jr.) Steady state probability of being 63 
1 ex 

in state j when the transition 
probabilities are assumed exactly 
known at their mean values 

o- Standard deviation of x   
x 

4>. ,(n|P) Probability that the state at 82 
time n is j given that the state 
at time 0 is i and the transi- 
tion matrix is P 

<J5. .(n) Unconditional (marginal) proba- 82 
bility tnat the state at time n 
is j given that the statt-, at time 
0 is i 

4> .(n) Probability that the state at 13 
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Symbol Meaning Page 

time n is j given tjiat tne state 
at tin 
used 

ij 

at time 0 is i and    P  is bein,} 

[4>. .(n| a, b)] * denotes that a   is replaced 83 

by a    and b    by b 

;i     as y* x monotonically decreases as 57 
y increases 
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