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IMPACT ON AN ELASTICALLY CONNECTED
DOUBLE BEAM SYSTEM
1
J. M. Seelig
and
W. H. Hoppmann 112

ABSTRACT
The report presents the development and solution of the
differential equations of motion of an elastically connected

double beam system subjected to an impulsive load.

In addlition to the theory there 1is presented a descrip-
tion of impact experiments on double beams. Theoretically
and experimentally determined strains as functions of time
are compared in the form of curves. The agreement 1s re-

markably good for the type of load used.

NOMENCLATURE
E = Young's modulus of elasticity
I = moment of 1nertia of cross section of beam about

neutral axis
= mass per unit volume

k = modulus of elastlc connectors

lGraduate Student, Rensselaer Polytechnic Institute,

Troy, New York

2Professor of Mechanics, Rensselaer Polytechnic Institute,

Troy, New York



deflection of beam

th mode of vibratlion

clircular frequency of n
length of beam

mass moment of inertia of rigid beam
time

contact time of 1impulsive load
stress

distance from neutral axis to outer fiber of beam

impulsive load acting at any point x at any
time ¢t

area of cross section of beam
density

acceleration due to gravity

th

mode shape assoclated with n”" mode of vibration

gspace varlable coordinate reference at end of bar

function of space variable only
T

'r
impact position

th

number of n mode of vibrations

INTRODUCTION

Increasingly in the last hundred years, considerable

study has been devoted to the problem of the impact loading

of structures. Since World War II an lmpressive amount of

theory and experiment has been developed and knowledge in the

field has been effectlively extended, Many of the results are
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described in detail in a book on impact by Werner Goldsmith[1]3.
Another recent study of the effect of impact on structures is
provided by Hoppmann in the Shock and Vibration Handbook,
edited by Harris and Crede [2]. An exceptionally fine experi-
mental investigation of impact for a single beam 1s glven in

a paper by Hans-Heinrich Emschermann and Karl Ruhl [3].

Probably the most extensively studlied structural element
from the standpoint of transverse dynamic loading is the
single beam. The RBernoulli-Euler theory for dynamic loading
of a beam has been shown to be very useful if the restrictive
assumptions on which the theory 1s based are observed. It has
been demonstrated experimentally by Hoppmann [4] that such a
theory 1s quite satisfactory even in the case of a multi-span

beam.

An important technological extension of the concept of
the single beam on varilous kinds of end supports 1s that of
the beam on an elastic foundation. A useful development of
the ldea of beams supported on spring-like foundations 1is pro-
vided in an excellent treatlse on the subject by Hetényi [5].
However, all of the treatment there 1s limlited to the case of
static loading. The theory of the transverse dynamlc loading
of a beam on spring-like elastlic foundation was worked out

from the standpoint of the Bernoulli-Euler theory by Hoppmann [6].

3Numbers in brackets designate References at the end of report.
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Subsequently, Wenk [7] studied the response of a thin closed
ring on elastic foundation both theoretically and experimen-

tally. The results are very encouraging.

An application of beam theory to the case of the vibra-
tion of double beams which are elastically coupled has been

attempted by Dublin and Friedrich [8) and Osborne [9],

The problem of the impact loading of two beams which are
elastically connected 1s of technological interest and has
been extensively studied in the present research. In particu-
lar, experiments have been conducted in which two free beams
elastically connected and polsed in space have been subjected
to impulsive loads. These experimental results have been

compared with the theory which was developed,

DIFFERENTIAL EQUATIONS OF MOTION
OF A FREE DOUBLE BEAM

The differential equations of motion of an elastically
connected free double beam system under impulsive load are
according to the Bernoulli-Euler beam theory:

64 2

w o w
1 AY 1
EI — = - k(w; - wy) - = —= + F(x,t) (1)
ox 1 2 g oJt !
4 2
d'w ow
2 AY 2
EI"""‘E‘ = k(w —W)—-.—-—O—T 2
ox 1 e g ot (2)

From Eq. (2), solve for W,
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y 2
O'W w .
EI 2 AY 2
W, = == + = + W (3)
1 k ox¥ gk ot2 2

Substituting Eq. (3) into Eq. (1) gives a partial differ-

ential equation in L alone.

8 6 b L 2
W O W o'W O W oW
2 L 2 2 2 2 2 F(x,t)
8~ ——g + 2ac¢ — + 2a - + c - + 2¢ = ¥
dx ox ot dx ot ot k
(4)
where a =,§£ and ¢ = AY

With F(x,t) = 0, the homogeneous partial differential
equation (4) has the solution

o0

Wy = alxt + ayx + a3t +oay + z;’¢n(An cos wnt + Bn sin wnt)
N=

+ a5 sin wot + a6 cos wot + a7x sin wot + agx cos wbt

(5)
where
o < gosh knx + cos8 knx i sinh knx + s8in knx (6)

n -
cosh knz - cos8 knz sinh knz - 8in knz
and
2 2k

cosh k 4 cos kb = 1 , wy® = . (7)

P



In Eq. (5), the terms involving the o's are from rigid
body motions. If each of the two beams 1s considered to be
rlglid and furthermore both beams are elastically connected,
the differential equations of motion for the system under im-

pulgive load P sin ot applied at o from the center line

are:

pﬂ%l = P sin ot - kz(w1 - w2) (8)

pzwg = k.@(wl - W2) (9)
. 3

I®, = Pcy sin wt - % (0, - 6,) (10)

1,08, = kg3 (6, - 0,) (11)
w2 T T5 %17 %

Solving these equatlions, the coefficients aq through ag are
determined by comparison with Eq. (5) assuming the vibratory

portion to be small.

The a's are found to be:

a, = a' 0y = 0 a3 = a = %& 2 ay = 0
4 (12)
a5 =d - — a6 =0 a7 = d' ag = 0

where
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a = —2— d = P& - ]
2wpl ®0 = 2p8(1 - )
o)
1 (13)
PcO w ;;E
a' = ar = Pco —_— [ s ]
awIy ®o - 21y(1 - L)
w

0

DISPLACEMENTS OF BEAMS CAUSED BY
CONCENTRATED IMPULSIVE LOAD

In order to obtain the particular solution of Eq. (4),

assume the impact force to be expressible as follows;

)

Ei%fil = (c3 teyx + E: Pn ¢n) sin wt (14)
n=1
where
(c3 +oeyx + Z Py, d>n) = -I(P— (15)
n=1

The particular solution of Eq. (4) is, therefore,

wp = (cl + e X + z W, <bn) sin ot : (16)
n=1
Again considering rigid body terms from the solutions of
Egs. (8) through (11), the coefficients c, and ¢, 1n
Eq. (16) are evaluated as



1 -2 1 -
"R w7 "2 0,
Cy = + ] P - + ] Pe L
1 [2pz w® 21 o 02
204(1 - L) Moo2T,(1 - L)
o)
(17)
and
1 1
Ch & =——— - (18)
¢ 21y 21,.(1 “’2)
MM T TS
w
0]
Substitute Egs. (14) and (16) into Eg. (4)
@« )4- 00 )-l-
22 - 2ac w YWd¢+2aZWd¢n+
Wn 8 2 ) n dxn
= n=1
+ w402[cl + ch + E: wn ¢g] - 2¢ mz[él + 02x + §: wn ®n]
n=1 n=1
= ¢y +cyx + jz P, ¢, (19)
n=1

Equating like terms in Eq. (19), allows 03 and cy to be

evaluated
¢y = cl(wuc2 - 2¢ wz) (20)
cy, = (u)4 2 _ 2¢ w2) (21)
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Equation (19) can now be simplified to

s © d8¢n 5 = du¢n
a an-a-;s--(Eacw-ea)ZWn-é—;n-+
n=1 n=1
oo -]
4 2 2 ' _
+ (w'e® - 2¢ w7) Z w, o = z P, ¢, (22)
n=1 n=1

From free vibrations it 1s known that

T 2 o dlsy
a z‘wn—a;-s--(aacwn -Ea)an—a—;u—+
n=1 n=1
4 2 2 _
+ (o.)nc -2cwn)z w ¢ =0 (23)
n=1

By combining Eqs. (22) and (23) and simplifying, w, can

be determined.

W = Pn d’n
" a'o y oy, 2
2 2 n 2 2
Qa.c(c»n - )7.1—,5' - [e (u)n -w') - 2c(u)n - )](1>n

(24)

The shape function ¢n is such that

du<l>n L

P kn (25)



Equation (24) therefore becomes

p
W = n

n 4 2 2 2 4 4 2 2
2ac k, (wn - w°) - [e (wn -w') - 2c(u)n - )]

(26)

The general sclution of Eq. (4) 1s

Wy = (alx + a3)t + (a5 + a7x)sin wot +

-]
+ EZ ¢n[Bn sin w t + A cos wnt] + (cl + czx)sin wt +

n=1
+ E;-wn ¢ sin wt (27)
n=
Assuming that the system 1is initially at rest, An and Bn
can be determined as:
= _ w
A, = O By = - 2wy (28)
n

Equation (27) becomes
W, = (alx + a3)t + (a5 + a7x)sin wat + (c1 + c2x)sin wt +

+ E: ¢ B sinowt + E: w, & sin ot (29)
n=1 n=1

From Eq. (3), W, can be determined, completing the
solution of the system of differential equations.
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Wy = (alx + a3)t + [l - ii woe](a5 + a7x)sin Wyt +

+ (cl + c2x)[1 .14 wz]sin wt +

gk
- -]
+ S[EL & -“-\lw2+1]13 o sin ot +
n - n n n n

— Lk gk

n_.

eov-
+ k”-@l-ﬂlm2+1]w¢ sin wt (30)

n nn
=" k gk

The only undetermined quantity is b, - Using relation-

ship (15), rearranging terms and multiplying by an arbitrary °m

[}

3 - cux)¢m = >‘ P, O & (31)
n=1

(= -

Usling the orthogonallty relationships

£
5; o, o d&x = O n#m

(32)
0032 knz

2
2
] dx = ¢ —r n=m
vs:) n sin knz

Eq. (31) can be solved for S

2
f (-2—-03-c4x)¢ndx
Py, = ——H (33)
cos knz

l-—~1r———
sin knz
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The values of p ~ from Eq. (33) are evaluated as

follows. Assume P to be a distributed force of magnitude

per unlt length %} distributed over a small length of beam,

c. As c =0, in the limit, the product —- X ¢ goes to P,

the concentration. Therefore P may be written as

P = 0 0< X< ay-—
2
P c C
P = — an - — < X < an + = (34)
¢ 0 > =7 =70 5
P = O ao + = <x < 4
- <

where aq 1s the distance to the point of application of P.

Equation (33) then becomes

Cc

%0tz , 2 s
lim\g E<1>nc1x-5 c3<bndx—5 cyx ® dx
0 0
5

¢
o =c-bO ao--g
n cos knz
) —
sin knz

(35)

which is evaluated using Eq. (6).
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l[cosh knao + cos knao ) 8inh knao + 8in knao] \
b = k L cosh knz - cos8 knz 8inh knz - 8in knz
n cos2 knz
2 —_—T
sin knz
1
fg[sinh knz + sin knz cosh knz - ¢co8 knz]
" -
) n t cosh knz - co8 knz sinh knz - 8in knz
cosgvknz
2 —r
sin knz

(36)

where cé =cg + eyl

The displacements Wy and Wy during contact, are now

completely determined.

For the time after contact, when F(x,t) = O, the solu-
tion of the differential equation (4) 1s given by (5) for
t 2 7. Let us call this displacement w5, . At time t =«
the following conditions must hold.

wy(t) = wi(7) and wy(t) = wy(v) (37)
Substituting Egqs. (29) and (4) into relationships (37)

will enable us to determine the displacement of the system

after contact. Following this procedure
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w2 = alxt + a2x + a3t + au + a5 sin WoT + a6 cos wor

+ a7x 8in wyT + a8x cos W4T

-]
. o_T
- 2; < w ¢ [2 cos -2 sin w (t - )] (38)

n=1 wn e 2

' @ EI , 4 Ay 2 OnT 1
"E%f*'wn¢n[*' kn - e + l][2cos —E— sin wn(t - EJ
n=

(39)

The a, through ag can be evaluated using Egs. (37),
but as we are concerned with strains, when the expression for
displacement are differentiated twlce with respect to the
space varlable x, the rigld body terms will drop out and

therefore these terms will not be evaluated.

STRAINS IN THE BEAMS
SubJect to the assumptlon of elementary beam theory the

strains in a beam may be taken as:

2
€ = ¢ %;g (40)
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Using expression (40), the strains in the beam can be deter-

mined.

From Eqs. (29) and (30), the strains during contact are

@ i
_ 'EI , 4 _AY 2 n
el_c{z l.—'—kn - — +1]-—TBn sinwnt+
— Lk gk dx
n=1
2
ao
EI , 4 ay 2 ] n }
+[—-—k - =% + 1| w, —= sin ot (41)
Xk n gk n dx
® e m
e2 = c{ | wn —c-l—é- [sin Wt - — sin mnt]} (42)
n= X (Dn

O_gtq_(_z

From Eqs. (38) and (39) the strains after contact are

- EI . 4 AY 2 w d2°n
€, =«C == k -—_— W + 1| —w .
A ]2 D
= Kk gk wy dx
W, T
‘ [2 cos —=— sin wn(’c - I)]} (43)
2 2
o 2
dao w_ T
€, .—.-c{z; -~ W -.-—érl [2 cOS =i sin w (t - I)]} (44)
w dx 2 2
n=1 "n
t 2 T
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EXPEREMENTAL DETERMINATION QF STRAINS

A rigid 12' x 4t x 2' support tower was erepted to carry
the pulse generator and the experimental model.as shown in
Fig. 1. The model was supported from 9' lengths of 0.Q2"
dlameter piano wire. The wires were soldered lnto holes
drilled through the bars, at thelr centrolds, at dlstances
from the var ends corresponding to the loocation of the nodal
points for the fundamental mode of a free-free system. The
model tested céhsisted of two 1/2" x 1/2" x 39.9" parallel
bars, elastically connected with 29 coll springs on 2"
centers. The spring constant for each spring was 49 pounds
per inch. Type A«T7, SR-4 straln gages were cémented to each
bar at its quarter point and center polint using Imco cement.
A dummy gage was cemented to a plece of cold rolled stock and
placed in the bridge circult as a temperature compensator. An
Ellis BAM-1 Brldge Amplifier Meter was used to amplify strain
gage response and 1t was connected to one beam of a Tektronix
Type 502 Dual Beam Oscilloscope to display the strain. A
piezoeleatric force gage [10] was placed on the bar at the
Impact point and its output was displayed on the other beam
of the oscilloscope. In order to calibrate the plezoelectric
crystal, a calibratiné device was made from two pleces of
1" x 1" x 1-3/4" bar stock. Three strips of .QQ@3" brass shim
plate were attached to the 1" x 1" bars to provide a moment-
less joint. -Weighbs were placed on a platform which was

spliced with solder to the end wire of the calibrating device.
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Figure 1. Experimental Apparatus for Impact on
Elastically Connected Free Double Beams
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The distances from the momentless joint tu the cap on the
crystal and to the end wire were accurately measured; Using
these data, the force on the orystal eould be determined.

The solder was cut using a blowtorch and the load was thereby
removed from the crystal., The response-of the crystal was
displayed on the oscllloscope and photographed using a
Tektronix C~12 Polarold camera. This procedure was followed
using different welghts and with the results, a calibration
curve of force as a function of voltage output was determined.
The slope of this curve was .642 pounds/millivolt. The os-
cllloscope connections from the force gage were shunted by a
1.0 microfarad 200V capacltor. This gave an RC value of 1
second. This RC value varied from about 50t to 1007 for the
tests run. The respbnée to an approximate half-sine wave
impulsive load can accurately be determined with the RC con-

stant between these limits.

As an approximate half-sine wave pulse generator, a 2"
dlameter steel ball, weighing 1.25 pounds was used. A 1/2"
diameter, hard rubber hemisphere, backed by sponge rubber,
was cemented to the ball in order to soften the blow imparted
to the model and produce a half-sine pulse. The ball was
hung with a bifllar suspension of nylon string, from the

tower.

The impacting ball was brought back to a predetermined

angular posltion and then allowed to freely swing and strike

-18-



the force gage. The oscilloscope circuit was triggered by the
force gage response. The oscilloscope sweep speed was known

so that the duration of response could be accurately determined.
Experiments were performed by impacting the structure both at
the quarter point and then at the center point. Straln re-
sponse was recorded from all the strain gages mountedion the
model. For each test the force gage response was dispiayed

and in this manner a check was made to determine that the same
impulsive load was appllied durlng each test., The response was

quite easily and accurately duplicated.

COMPARISON OF EXPERIMENTALLY AND
THEORETICALLY DETERMINED STRAINS

The 1mpulslve force used in the theoretical calculation
was taken as a half-wave sine approximation to the actual
applied force as shown in Fig. 2. Comparisons of the theo-
retically and experimentally determined strains are shown in
Fig. 3 to Fig. 10 inclusive. It may be noted that stress
which 1s assumed to be proportional to strain is what 1is

actually plotted.

DISCUSSION AND CONCLUSIONS
The study shows that the Bernoulli-Euler beam theory may
be used reliably to determine flexural strains caused in the
elastically coupled double beam, at least for a blow soft

enough 80 that not more than about ten modes are preceptibly
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excited. It 1s considered that the agreement between the
measured strains and those predicted by the theory is suffi-

clently good for many practical design problems.

The load generator developed for the purpose of perform-
ing the experliments proved to be very satisfactory. The
rubber lmpacting surfaces applied to the steel striking ball
can be fashloned readily to cover a range of hardness from

steel-on-steel to very soft rubber on steel.

The load measuring crystal performs excellently in the

force ranges encountered in the experiments.
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