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ABSTRACT

The report presents the development and solution of the

differential equations of motion of an elastically connected

double beam system subjected to an impulsive load.

In addition to the theory there is presented a descrip-

tion of impact experiments on double beams. Theoretically

and experimentally determined strains as functions of time

are compared in the form of curves. The agreement is re-

markably good for the type of load used.

NOMENCLATURE

E = Young's modulus of elasticity

I = moment of inertia of cross section of beam about
neutral axis

p = mass per unit volume

k = modulus of elastic connectors

iGraduate Student, Rensselaer Polytechnic Institute,
Troy, New York

2 Professor of Mechanics, Rensselaer Polytechnic Institute,
Troy, New York



w = deflection of beam

Wn = circular frequency of nth mode of vibration

= length of beam

IM  = mass moment of inertia of rigid beam

t = time

= contact time of impulsive load

a = stress

c = distance from neutral axis to outer fiber of beam

F(x,t) = impulsive load acting at any point x at any
time t

A = area of cross section of beam

= density

g = acceleration due to gravity

n = mode shape associated with nth mode of vibration

x = space variable coordinate reference at end of bar

X(x) = function of space variable only

1r

a0  = impact position

n = number of nth mode of vibrations

INTRODUCTION

Increasingly in the last hundred years, considerable

study has been devoted to the problem of the impact loading

of structures. Since World War II an impressive amount of

theory and experiment has been developed and knowledge in the

field has been effectively extended. Many of the results are
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described in detail in a book on impact by Werner Goldsmith [1]3.

Another recent study of the effect of impact on structures is

provided by Hoppmann in the Shock and Vibration Handbook,

edited by Harris and Crede [2]. An exceptionally fine experi-

mental investigation of impact for a single beam is given in

a paper by Hans-Heinrich Emschermann and Karl RUhl [3].

Probably the most extensively studied structural element

from the standpoint of transverse dynamic loading is the

single beam. The Bernoulli-Euler theory for dynamic loading

of a beam has been shown to be very useful if the restrictive

assumptions on which the theory is based are observed. It has

been demonstrated experimentally by Hoppmann [41 that such a

theory is quite satisfactory even in the case of a multi-span

beam.

An important technological extension of the concept of

the single beam on various kinds of end supports is that of

the beam on an elastic foundation. A useful development of

the idea of beams supported on spring-like foundations is pro-

vided in an excellent treatise on the subject by Hetenyi [5.

However, all of the treatment there is limited to the case of

static loading. The theory of the transverse dynamic loading

of a beam on spring-like elastic foundation was worked out

from the standpoint of the Bernoulli-Euler theory by Hoppmann [6].

3Numbers in brackets designate References at the end of report.
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Subsequently, Wenk [7) studied the response of a thin closed

ring on elastic foundation both theoretically and experimen-

tally. The results are very encouraging,

An application of beam theory to the case of the vibra-

tion of double beams which are elastically coupled has been

attempted by Dublin and Friedrich [8] and Osborne [9].

The problem of the impact loading of two beams which are

elastically connected is of technological interest and has

been extensively studied in the present research. In particu-

lar, experiments have been conducted in which two free beams

elastically connected and poised in space have been subjected

to impulsive loads, These experimental results have been

compared with the theory which was developed,

DIFFERENTIAL EQUATIONS OF MOTION

OF A FREE DOUBLE BEAM

The differential equations of motion of an elastically

connected free double beam system under impulsive load are

according to the Bernoulli-Euler beam theory:

EI _ k(Wl w2 AT 6 2 Wl +F 1

6x g at

EI 7 z = k(w 1  w2 ) * 2w(
Sg 6(2)

From Eq. (2), solve for wI
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EI 4w 2 AT 2 w2

w + + w (3)

Substituting Eq. (3) into Eq. (1) gives a partial differ-

ential equation in w2  alone.

2 6'2 - 6w2 a4cw2 2 64w2 2w=2 F(x,t)
62 2x 6t_____62

(4)

El AT
where a=-- and c A---

k g

With F(xt) = 0 the homogeneous partial differential

equation (4) has the solution

w2 = alxt + a2x + a3t + a4 + n Dn(An cos amnt +,Bn sin wnt)

+ a5 sin wot + a6 cos wot + a7x sin wot + a8x cos ot

(5)

where

cosh knx + cos knX sinh knx + sin knxn = n. n.. n .. .. . (6)
n cosh kn2 - cos kni sinh knA - sin kni

and

coshknIosk = 1 2 2k (7)

P
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In Eq. (5), the terms involving the a's are from rigid

body motions. If each of the two beams is considered to be

rigid and furthermore both beams are elastically connected,

the differential equations of motion for the system under im-

pulpive load P sin wt applied at c0  from the center line

are:

plWl = P sin wt - ki(w 1 - w2 ) (8)

Olw 2 = ke(w1 - w2 ) (9)

IM@I = Pc0 sin Wt - k13 (01 - 2 ) (10)
12

IM-2 = k (G1 - 92) (11)
12

Solving these equations, the coefficients a1 through a8 are

determined by comparison with Eq. (5) assuming the vibratory

portion to be small.

The a's are found to be:

a'

a' a2 = 0 a 3 a - a 4 = 0
2

d' (12)
a = d -- a6 = 0 a 7 = d' a8 = 0

2

where
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1

a = P d = -_[0 I
2op I O 2pj(1 E2--/

00

1 (13)

a' = d' = Pc 2

2wIM C0 2I(1 -

Cl)0

DISPLACEMENTS OF BEAMS CAUSED BY

CONCENTRATED IMPULSIVE LOAD

In order to obtain the particular solution of Eq. (4),

assume the impact force to be expressible as follows;

00

F(xkt) = (c3 + c 4x + Pn On) sin wt (14)
k

n= 1

where

c03 + c4x + I. Pn -n)  P (15)

k
n= 1

The particular solution of Eq. (4) is, therefore,

00

(Cl +  c2 x + z wn On) sin wt (16)

n= 1

Again considering rigid body terms from the solutions of

Eqs, (8) through (11), the coefficients c1  and c2  in

Eq. (16) are evaluated as
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1 1 1 1ct W0 . - 2 -
2p l2p( _21 M  21M(1 2

W0 0

(17)

and

1

C 2 . ... 0 ( 1 8 )
2 21M12M 2IM(l - W-:

cuO

Substitute Eqs. (14) and (16) into Eq. (4)

a 0 d 82 ) d 4n D d 4 (D

n= dx n= dx n= dx

+ 42[Cl + c2x + w n Dn] - 2c w2[cl + C2 x + I Wn (nD =

n= 1 n 1

=c 3 + c4x + 1  Pn Dn (19)
n-- 1

Equating like terms in Eq. (19), allows c3  and c4  to be

evaluated

c3  = c 1 (k4a 2 - 2c w2) (20)

C4  = 2(w4c2 - 2c c2 (21)
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Equation (19) can now be simplified to

2 Go 8An 00 d 4 P

a2  n - _(2ac 2a) I Wn n +
n-- dx 7-1 dx

+ (W4C2 - 2c w 2 ) E Wn (D = : Pn n (22)

n= 1 n= 1

From free vibrations it is known that

a2  n = _ (2accn _ 2a) n +dx Z 7
n=l d n=l d

+ (aon 4C 2  2c con 2 ) z wn  n = 0 (23)
n-- 1

By combining Eqs. (22) and (23) and simplifying, wn can

be determined.

Pn On
Wn 2ac(n 2 _ 2 ) -i _ [c2((On 4  ) - 2c(wn2 -2)0

2ac (W ndxn WW n

(24)

The shape function D n is such that

= kn4 0 (25)
n n n

dx
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Equation (24) therefore becomes

W n  =. .... . . .4 () w ) (26)2ac kn 2 - w [c2(n n _a) - 2c(n 2 n 2 ) (

The general solution of Eq. (4) is

w2 = (alx + a 3 )t + (a5 + a 7x)sin c0 t +

+ 1 On[Bn sin an t + An cos wn t ] + (cI + c2x)sin ct +
n=1

+ Wn 'n sin wt (27)

Assuming that the system is initially at rest, A. and Bn

can be determined as:

An = 0 B =--- n  (28)
n

Equation (27) becomes

w2 = (a 1x + a3 )t + (a5 + a7 x)sin w0t + (cI + c2x)sin ct +

+ n1On Bn sin wn t + Z Wn on sin ct (29)
n= n=l

From Eq. (3), wI  can be determined, completing the

solution of the system of differential equations.
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w (al x + a3 )t + [i '02](a5 + a7x)sin wot +3 1 gk

+ (cl + c 2 x)[1- 2 2sin wt +
gk

n__[E r_1k A'Y w 2 + 1] Bn On sin nt +
=L T

k n  gk

+ 7[kn 4 EI, Ay 2 + 1] wn cn sin wt (30)

k gk

The only undetermined quantity is pn Using relation-

ship (15), rearranging terms and multiplying by an arbitrary Om

(P 3 - C4x>X Pn Om n (31)

Using the orthogonality relationships

0 On 4m dx= 0 n m

(32)

S 2 d0 82 n=m

sin
4 kn 

n

Eq. (31) can be solved for Pn

S(.L - c3 - c4x)o n dx

Pn = k " 2 (33)

sin kn£

-11-



The values of pn from Eq. (33) are evaluated as

follows. Assume P to be a distributed force of magnitude

PPper unit length -Fdistributed over a small length of beam,

c. As c -0 , in the limit, the product -L x c goes to P,

the concentration. Therefore P may be written as

P = 0 0<x<a0  -
2

p = ao _ < x< ao + (34)
c 2 2

P = 0 ao + 2--< x <
2

where a0  is the distance to the point of application of P.

Equation (33) then becomes

a 0 + c

§aim - n dx - c 3 Cn dx -. c4x C4n x
c--O 0 - o

Pn =cos 2 kni

sin4 kn2

(35)

which is evaluated using Eq. (6).
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P cosh kn a +Cos knao sinh knao + sin kn a

Pn k cosh kL - cos knA sinh k n sin k 'Psin 2 n

sin 4 kn 2

cI [sinh knI + sin kn' cosh k - cos kn

fn cosh knj - cos kni sinh kn- sin kni

cos 2- kn2

sin kn$

(36)

where c= c3 + c42  .

The displacements w1  and w2 , during contact, are now

completely determined.

For the time after contact, when F(x,t) = 0, the solu-

tion of the differential equation (4) is given by (5) for

t > rT. Let us call this displacement w2 At time t = T

the following conditions must hold.

w2(T) = w2( ) and *2(T) = ( ) (37)

Substituting Eqs. (29) and (4) into relationships (37)

will enable us to determine the displacement of the system

after contact. Following this procedure

-13-



w2 = alxt + a2x + a3t + a4  5

+ a7x sin c0  + a8x cos 0z

Wn Dn[2 Cos - sin nt (38)

2 2

w= alxt + a2 x + a3 t + a 4

+ I co 2R(a5 + a7x)sin w0 t+ (a 6 + a8x)cos w0 t}I gk

--- AT_. + 1 2cos-fn sin cun(t--)

k gk 2 2

(39)

The al through a8 can be evaluated using Eqs. (37),

but as we are concerned with strains, when the expression for

displacement are differentiated twice with respect to the

space variable x, the rigid body terms will drop out and

therefore these terms will not be evaluated.

STRAINS IN THE BEAMS

Subject to the assumption of elementary beam theory the

strains in a beam may be taken as:
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Using expression (40), the strains in the beam can be deter-

mined.

From Eq.. (29) and (30), the strains during contact are

E 1 = c I-EI  - + 1] n Bn sin wn t +=L k kn gk x

+ E k _Ayw2 + 1 d2 ( sin wt} (41)
L k gk J

E2 = c 4  wn d 2x D sin wt - W sin wnt (42)

n dx Ln

From Eqs. (38) and (39) the strains after contact are

0]d2 n

E 1 =C{ [ k n .- + n
n= k gk n nn dx

[2 cos - sin cfn(t- 2)]J (43)
2 2

62 { d2 n [2 Cos wn' sin con(t )(44-)

cn=- n 2neW

t T
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EXPERIMENTAL DETERDUNATION OF STRANS

A rigid 12' x 4' x 2' support tower was ereoted to carry

the pulse generator and the experimental model as shown in

Fig, 1. The model was supported from 9' lengths of 0.02"

diameter piano wire. The wires were soldered into holes

drilled through the bars , at their centroids, at distances

from the bar ends corresponding to the looation of the nodal

points for the fundamental mode of a free-free system. The

model teeted consisted of two 1/2" x 1/2" x 39.9" parallel

bars, elastically connected with 2Q coil springs on 2"

centers.. The spring constant for each spring was 40 pounds

per inch. Type A-7., SR-4 strain gages were cemented to each

bar at its quarter point and Center point using t&aco cement.

A dummy gage was cemented to a piece of cold rolled stock and

placed in the bridge circuit as a temperature compensator. An

Ellis BAM-1 Bridge Amplifier Meter was used to amplify strain

gage response and it was connected to one beam of a Tektronix

Type 502 Dual Beam Oscilloscope to display the strain. A

piezoeleatric force gage (10] was placed on the bar at the

impact point and its output was displayed on the other beam

of the oscillosdope. In order to calibrate the piezoelectric

crystal, a calibrating device was made from two pieces of

1" x 1" x 1-3/4" bar stock. Three strips of -093" brass shim

plate were attached to the 1" x l" bars to provide a moment-

less joint. Weights were plaoed on a platform which was

spliced with solder to the end wire of the calibrating device.

- J6-



Totw SuPP-V.

Figure 1. Experimental Apparatus for Impact on
Elastically C onnected Free Double Beams
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The distances from the momentless joint tu the cap on the

crystal and to the end wire were accurately measured4 Using

these data, the force on the crystal could be determined.

The solder was cut using a blowtorch and the load was thereby

removed from the crystal. The response'of the crystal was

displayed on the oscilloscope and photographed using a

Tektronix 0-12 Polaroid camera. This procedure was followed

using different weights and with the results, a calibration

curve of force as a function of voltage output was determined.

The slope of this curve was .642 pounds/millivolt, The os-

cilloscope connections from the force gage were shunted by a

1.0 microfarad 200V capacitor. This gave an RC value of 1

second. This RC value varied from about 50v to 100T for the

tests run. The response to an approximate halt-sine wave

impulsive load can accurately be determined with the RC con-

stant between these limits.

As an approximate half-sine wave pulse generator, a 2"

diameter steel ball, weighing 1.25 pounds was used. A 1/2"

diameter, hard rubber hemisphere, backed by sponge rubber,

was cemented to the ball in order to sBoten the. blow imparted

to the model and produce a half-sine pulse. The ball was

hung with a bifilar suspension of nylon string, from the

tower.

The impacting ball was brought back to a predetermined

angular position and then allowed to freely swing and strike

-18-



the force gage. The oscilloscope circuit was triggered by the

force gage response. The oscilloscope sweep speed was known

so that the duration of response could be accurately determined.

Experiments were performed by impacting the structure both at

the quarter point and then at the center point. StraIn re-

sponse was recorded from all the strain gages mounted on the

model. For each test the force gage response was displayed

and in this manner a check was made to determine that the same

impulsive load was applied during each test. The response was

quite easily and accurately duplicated.

COMPARISON OF EXPERIMENTALLY AND

THEORETICALLY DETERMINED STRAINS

The impulsive force used in the theoretical calculation

was taken as a half-wave sine approximation to the actual

applied force as shown in Fig. 2. Comparisons of the theo-

retically and experimentally determined strains are shown in

Fig. 3 to Fig. 10 inclusive. It may be noted that stress

which is assumed to be proportional to strain is what is

actually plotted.

DISCUSSION AND CONCLUSIONS

The study shows that the Bernoulli-Euler beam theory may

be used reliably to determine flexural strains caused in the

elastically coupled double beam, at least for a blow soft

enough so that not more than about ten modes are preceptibly

-19-



II

0

I-

TIME) MILL SECOKDS

Figure 2. Impact Force

-20-



00

N. .0oo"

tooo*\

IKOR

In 0 Set

$ooo _____ _
0 10 1.. %o 4o So

T'IME , MILLISECONDS
Figure 3. A IMPACT AT C.NTEK LINE) BEAM,, i

STR.E% K- CENTER LINE) BEAM

oo

I

0~*//"I
o/

¢ \ /

\ ,v

10.9

a 0t o0 l 40 cO
TIME, %ILLSrECOWD5

Figure 4. (6) IMPACT AT CENTF-R LINE, BSWAM I
ST RE" AT C.E.NTM UIN E) 13EAM z

-21-



T - MIL EODSTR5 ."% UA,-, \oW BE.

,I / '
- - 'I " -1-",.

\ /

0 io 40 so
TIME I MILLI SECONDS

Figure 5. (6) IMPACT AT CENTEP LNE, BEAM I
STRES AT QUARTrVA P'POIT BEAM I

/I -22-
I I

' \ /

Fiue6,~IPT TCNE IE \ AM

Fiur 6 (,' iPTRE AT ENTR I-INT ) BEA.M I.

-22-



iI /
i/

LkiI,- /

o 60 2 0 40 s0

TIME) MLLI ECONDS
Figure 7. W IAPA.C- -r TQUAX-T, OINT, BEAM I

STRESS XT QUAIKTE POINT, EA _ I

\ /

U_ I

0 10 "0 Al 90
TIME$ M MILL% SECONDS

Figure 8. 02) IMPACT AT OU AXLTEK f20%NT, BEAM I
STILESS AT Q U AKTE1 PONT, SEA Z,

-23-



Il I '\

- \

Iso

'°I,, ' ;

o to S 4o so

TINE MILLISECON-D
Figure 9. La) IMPAC.T AT QUAP.TE POINT. BEAM I

STRESS AT CENTER LINE SEAM I

t.oo

i" ., .,/ \,

,,', ___ -

s o 4

71'ME ) f-t-ISEiEODS
Figure 10. (6 IMPACT kT QUA___IvO Tt FAA I

STRESS XT CE NTEP, LiMER , ac.Am

-24-



excited. It is considered that the agreement between the

measured strains and those predicted by the theory is suffi-

ciently good for many practical design problems.

The load generator developed for the purpose of perform-

ing the experiments proved to be very satisfactory. The

rubber impacting surfaces applied to the steel striking ball

can be fashioned readily to cover a range of hardness from

steel-on-steel to very soft rubber on steel.

The load measuring crystal performs excellently in the

force ranges encountered in the experiments.
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