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ABSTRACT 

Two accurately machined hemispherical shells bound by ring-stiffened 

cylinders designed to provide ideal edge conditions were tested under hydro- 

static pressure to determine the elastic buckling strength of near-perfect deep 

spherical shells.   Ratios of experimental collapse pressure to the pressure 

calculated by using the classical small-deflection theory of 0.73 and 0.90 were 

obtained.   The ratio of 0.90 is considerably higher than the ratios obtained in 

previous tests recorded in the literature.   Since these models had small, unavoid- 

able imperfections, the experimental results lend considerable support to the 

validity of the small-deflection analysis for the elastic buckling strength of 

initially perfect spheres. 

INTRODUCTION 

It is evident that spherical shells will be used extensively in future vehicles designed 

to operate to great depths.   Complete spheres will be used as the entire pressure hull in much 

the same manner as used in the research vessel TRIESTE.   Small spheres may be imbedded 

in a plastic matrix and used as a float material similar to the present application of glass 

microballoons.   Hemispheres or other spherical segments will terminate the ends of cylindrical 

or spheroidal hulls. 

Spherical shells of conventional pressure hull materials will most likely collapse by 

inelastic buckling when designed for deep-submergence application.   However, shells of 

nonconventional materials, such as glass and glass ceramics, may collapse by elastic 

buckling at all depths due to their high compressive strength.1   In either case, an under- 

standing of the elastic buckling pressure of spherical shells is required to permit rational 

design procedures. 

The classical small-deflection theory for the elastic buckling of spherical shells was 

first developed by Zoelly in 1915 and has been presented by Timoshenko.2   Prior to the 

conduct of recent experiments on machined spherical shells at the Model Basin,3 very 

limited data existed and none of these data supported the linear theory.   Tests by other in- 

vestigators,4 for instance, gave elastic buckling pressures that were only about one-fourth 

those predicted by classical theory.   The specimens used in these earlier tests were formed 

from flat plate and, consequently, had initial imperfections together with residual stresses 

and adverse boundary conditions.   Until recently,5-7 however, no attempt was made to 

theoretically evaluate the effect of imperfection on the collapse strength of spherical shells. 

Instead, various investigators have attempted to explain f^?' discrepancy between the early 

experiments and theory by introducing nonlinear shell equations.8-11 

References ere listed on page 14. 



The large discrepancy between the classical buckling pressure and the existing experi- 

mental data prompted the Model Basin to test a series of machined shells3 which more closely 

fulfilled the assumptions of classical theory.   These tests demonstrated the detrimental effects 

on collapse strength of initial departure from sphericity.   The collapse strength of the machined 

shells was from two to three times greater than the strength of the shells formed from flat plates. 

Based on the results of the machined shells, an empirical formula for the elastic buckling 

strength of near-perfect deep spherical shells was developed.     This empirical formula predicts 

collapse to occur at about 70 percent of the pressure calculated by the classical small- 

deflection theory.   However, it was recognized that this formula is based on tests of shells 

which, although machined, had small imperfections which presumably had some weakening 

effects. 

To determine more closely the strength of near-perfect spherical shells, two additional 

shells were machined in which every effort was made to minimize initial imperfections.   The 

test results of these two models are presented in this report. 

DESCRIPTION OF MODELS 

Two identical structural models, consisting of hemispherical shells each bounded by a 

ring-stiffened cylinder, were machined from 7075-T6 aluminum bar stock with a nominal yield 

strength of 80,000 psi.   Young's modulus, as determined by optical strain-gage measurements 

on four specimens, varied between 10.6 x 106 and 11.3 x 106 psi depending on the orientation 

of the specimens in the bar stock.   A Young's modulus of 10.8 x 10    psi is used in all cal- 

culations.   Poisson's ratio was not measured, but a value of 0.3 is assumed.   A sketch of 

the models, which are designated PS-1 and PS-2, is presented in Figure 1. 

OOI2l"NOMINAL 

Figure 1 - Models PS-1 and PS-2 



The models ware designed to study the experimental elastic-buckling strength of 

spherical shells which closely conform to the idealized assumptions of the classical theory. 

Therefore, every effort was made to minimize departures from sphericity, variation in thickness, 

residua! stresses, and adverse boundary conditions.   In addition, a completely elastic failure 

was assured by selecting a thickness-tc-radius ratio which caused failure to occur at a stress 

level weil below the proportional limit. 

Departures from sphericity, variations in thickness, and residual stresses were mini- 

rnized by careful selöction and conduct of the machining processes.   First, both the inside 

arid outside contours were rough machined.   Then the model was held in place by a pot-type 

fixture, and the final inside contour was obtained by using a too! specifically designed to 

accurately generate an inside spherical surface.   The final outside spherical contour was 

obtained by supporting the inside contour by a mating mandrel and by generating the outside 

surface using a lathe with a ball-turning attachment.   Finally, the exterior surface of the 

ring-stiffened cylinder was machined.   Extremely fine feeds together with light cuts were 

used during the later stages of machining each surface to minimize residual stresses and 

to produce fine surface finishes.   Photographs of Model PS-1 during machining are shown in 

Figure 2. 

The actual wall thickness and initial sphericity were accurately measured for each model. 

The wall thickness was measured using a support-ball and a dial gage calibrated in 0.00002 in. 

The initial departures from sphericity were obtained by supporting a dial gage in a jig-bore. 

These inspection procedures are illustrated by photographs in Figure 2.   The measured wall 

thicknesses and initial departures from sphericity are listed in Table 1.   These measurements 

demonstrate the success achieved through the machining process.   The maximum measured 

variation in wall thickness for each model was approximately 3/4 of 1 percent from the mean 

thickness.   The maximum measured departure from sphericity was less than 1/100 of 1 percent 

of the mean radius for each model. 

The stiffened cylindrical portion of each model was designed to provide conditions of 

membrane deflection and no rotation at the edge of their hemispherical ends.12   Thus the 

hemisphere was designed to behave as a portion of a complete sphere, consistent with the 

assumptions of classical theory. 

TEST PROCEDURE 

Foil-resistance strain gages were used to measure strains in both the meridional and 

the circumferential directions of the hemispherical portion of each model.   They were located 

to indicate the strain distribution near the hemisphere-cylinder juncture as well as in areas 

far removed from the boundaries.   The gage location diagram is shown in Figure 3. 

Both models were subjected to external pressure in a small pressure tank.   Oil was 

used as a pressure medium to avoid waterproofing the strain gages.   The models were filled 

with a liquid and votited to the atmosphere to permit measurements of the change in internal 
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Figure 2a — Generating Inside Contour Figure 2b - Support Used When Generating 

Outside Contour 

Figure 2c — Generating Outside Contour Figure 2d - Setup Used to Measure Hemi. 
spherical Wall Thickness 

Figure 2e — Measuring Hemispherical Wall 
Thickness 

Figure 2f - Measuring Initial Departures 
from Sphericity 

Figure 2 - Model PS-1 during Machining  and Inspection 



TABLE 1 

Measured Wall Thicknesses and Initial Departures from Sphericity 

Model 
Meridional 

Orientation 

Spherical Wall Thickness, in. 
Departure from Nomina'                         \ 

Outer Radius, In.                            •. 

Circumferential Orientation Circumferential Orientauon                    j 

A B C D E A B C D E        j 

PS-1 

1 0.01202 0.01204 0.01206 0.01202 0.01200 

2 0.01208 0.01208 0.01204 0.01204 0 -o.oooo: -0.00025 -0.00025 
0         1 

3 0.01214 0.01216 0.01208 0.01208 

4 0.01210 0.01218 0.01206 0.01204 -0.00005 -0.00015 -0.00025 -0.00025 0 

PS-2 

1 0.01210 0.01225 0.01220 0.01225 0.01220 0 -0.00020 -0.00020 -0.00015 -0.00010 

2 0.01210 0.01225 0.01220 0.01225 

3 0X1205 0.01220 0.01215 0.01225 -0.00005 -0.00025 -0.00025 -0.00015 -o.oooio 1 
4 0.0120,, 0.01220 0.01215 0.01225 
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112. 113 

-f- 116. 117 

Figure 3 - Strain Gage Locations 

Meridional gages are represented by odd numbers, 

circumferential gages by even numbers. 

♦Represents gages placed on Model PS-2 only. 

volume during the loading cycles.   Photographs of the test setup are shown in Figure 4. 

Pressure was applied in increments to both models in three loading cycles.   Pressure 

increments immediately prior to collapse were less than 1 percent of the observed collapse 

pressure. 

TEST RESULTS 

Models PS-1 and PS-2 failed at pressures of 347 and 429 psi, respectively.   Both 

failures were confined to a local inward lobe in the spherical portion and occurred in a very 

sudden, unmistakable manner.   Model PS-1 failed in an area somewhat removed from the 

boundary cylinder and Model PS-2 failed in the spherical portion immediately adjacent to the 

boundary.   Photographs of the collapsed models are presented in Figure 5. 

Experimental strain-sensitivity factors, the initial slopes of the pressure-strain plots, 

arc presented in Figure 6    Prior to collapse, no significant nonlinear strain behavior was 

observed during either of the tests. 

Figure 7 presents plots of pressure versus measured change in internal volume recorded 

during the final pressure loading of ear1- model. 



Figure 4a — Instrumented Model 

Being Placed in Tank 

Figure 4b — Final Test Setup 

Figure 4 — Test Setup 

Figure 5a - Model PS-1 Figure 5b - Model PS-2 

Figure 5 — Collapsed Models 
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Figure 6a — Model PS-1 
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Figure 6b - Model PS-2 

Figure G — Measured Strain Sensitivities 
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Figure 7 - Pressure versus Measured Change in Internal Volume 

DISCUSSION 

The ratios of experimental collapse pressure to theoretical elastic-buckling pressure2, 10 

and to the buckling pressure determined from an empirical formula3 are presented in Table 2. 

Ratios of experimental collapse pressure to the classical buckling pressure2 of 0.73 and 0.90 

were obtained for Models PS-1 and PS-2, respectively.   The ratio of 0.90 achieved in the test 

of Model PS-2 represents an elastic buckling coefficient of about 1.1, which is by far the 

highest experimental buckling coefficient obtained to date for deep spherical shells.   Both 

models failed at. pressures considerably above those predicted by the nonlinear energy 

analysis of Tsien.10   Specifically, Model PS-2 collapsed at a pressure about three and one- 

half times greater than the lower pressure obtained from Tsien's theory.   The empirical 

buckling equation used in Table 2 is based on the results of recent Model Basin tests of 

small machined models.3   Ratios of experimental collapse pressure to the pressure calculated 

using this empirical equation of 1.06 and 1.30 were obtained for Models PS-1 and PS-2, 

respectively. 



TABLE 2 

Comparison of Experimental Collapse Pressures with Theory 

Model 

Experimental Collapse 
Pressure pexp 

psi 

"exp ^exp ^exp 

pr* Px* P2** 

PS-1 347 0.73 2.81 1.06 

PS-2 429 0.90 3.45 1.30 

♦p1 is from the classical elastic linear theory 
of Zoelly.2 

**P2 is from the elastic nonlinear theory of 
ofTsien.10                                                                                | 

"♦•p-j is an empirical buckling pressure for             | 
1    machined spherical shells developed from recent 

Model Basin tests.                                                                  ] 

The relatively high collapse pressures observed in these tests are attributed to near- 

perfect test specimens.   By exercising extreme care in the design and manufacture of these 

models, the idealized assumptions of classical theory were closely approximated.   The near- 

perfect characteristics are demonstrated not only by the initial dimensional measurements 

tabulated in Table 1 but also by the change in internal volume and strain measurements re- 

corded during the tests.   The change in internal volume presented in Figure 7 was essentially 

a linear function of the applied external pressure prior to the collapse of each model. 

Similarly, no appreciable nonlinear strain behavior was observed to pressures within 1 per- 

cent of the collapse pressure. 

Measurements obtained from the strain gages located near the cylinder hemisphere 

juncture also demonstrate that the cylinders provided ideal boundaries for the hemispheres. 

Although the repeatability of the strain readings at the various locations was not completely 

satisfactory, the strain measurements do indicate that the cylinders provided edge conditions 

of membrane deflection and no rotation for their respective hemispheres.   Thus, the hemispheres 

behaved essentially the same as complete spheres, consistent with the assumptions of classical 

theory. 

Although these models were very accurately fabricated, it must be recognized that it is 

physically impossible to obtain a completely perfect sphere.   As anticipated, therefore, these 

models had several relatively small shortcomings.   For example, the initial measurements 

show ihat the wall thicknesses varied approximately 3/4 of 1 percent from the mean thicknesses 

and that the local radii varied close to 1/100 of 1 percent of the mean radii for each model. 

These geometric variations are small, and are less than could be expected from even closely 

controlled machining operations.   However, a shell certainly cannot be considered perfect 

with these known variations in thickness and radii.   Furthermore, the nonisotropic material 

10 



characteristics, domonstrated by the variations in measured Young's modulus, violate a very 

basic assumption of classical theory and may be essentially considered an initial imperfection. 

Finally, the fact that Model PS-2 failed in the hemispherical shell immediately adjacent to the 

stiffened cylinder suggests that the boundary conditions may have had a slight effect on collapse. 

This is not surprising in view of the exceptionally high collapse pressure attained by Model 

PS-2, which indicates the small effects of imperfections on collapse.   It should be pointed out, 

however, that even with perfect membrane boundary conditions, the hemispherical shell is 

still as likely to fail adjacent to the boundary as in any other area. 

By achieving a ratio of experimental collapse pressure to the collapse pressure obtained 

from the classical theory of Zoelly of 0.9 for Model PS-2, these tests lend considerable support 

to the validity of the small-deflection analysis for perfect spheres.   There was no appreciable 

difference in the measured initial imperfections present in Models PS-1 and PS-2.   Yet, Model 

PS-2 had a buckling coefficient more than 20 percent greater than Model PS-1.   There is no 

reason to expect, therefore, that the buckling coefficient obtained for Model PS-2 cannot be 

exceeded if an even more perfect shell is manufactured.   Since Model PS-2 collapsed at a 

pressure only 10 percent less than that predicted by classical theory, it certainly appears 

reasonable to conclude that the classical solution is valid for spherical shells which sat- 

isfy its very rigid assumptions.   However, it may be physically impossible to obtain test 

specimens whose imperfections are so small that they have no influence on collapse strength. 

The large increase in strength of these machined shells over the observed strength of 

fabricated shells is chiefly attributed to the near-perfect sphericity attained by generating the 

contours.   Control of variations in thickness, minimization of residual stresses (which was 

evidenced by the geometric stability ot tne models during the final machining processes), 

and the elimination of any serious boundary effects also contributed to the increase in 

observed collapse pressures.   The contribution of these factors, however, was undoubtedly 

small since they may be, and have been on occasion, rather well controlled in fabricated 

spherical shells.   Therefore, the single factor which was decidedly different between these 

machined shells and fabricated shells is the magnitude of the initial departures from sphericity. 

Since these results confirm the critical dependence of collapse strength on initial 

departures from sphericity, they demonstrate also that a design equation must consider the 

effects of imperfection in order to consistently predict the buckling strength of practical 

spherical shells.   Thus, it appears that most existing theoretical studies have little value 

in the design of spherical hulls because they do not consider the true reason for collapse 

at stress levels below the classical buckling stress.   The best known example of these 

analyses is Von Karman and Tsien's work,8 which suggests that the minimum pressure re- 

quired to hold an initially near-perfect sphere in the post-buckle position be used to predict 

the collapse strength of practical spherical shells.   Another example is Tsien's10 "energy 

criterion of jump" which alro assumes an initially near perfect shell hut predicts collapse 

pressure to be a function of the energy, or volume and pressure medium, of the test tank. 

Both of these analyses predict the same collapse strength for machined and fabricated spheres 

11 



whereas the present tests have demonstrated that large differences in strength are obtained 

experimentally.   Specifically, fair agreement has been obtained between the theoretical col- 

lapse strength under dead load as predicted by Tsien and the experimental collapse strength 

of formed spherical shells fabricated within standard co.nmercial tolerances.   However, the 

collapse strength of Model PS-2 was almost three and one-half times greater than the theo- 

retical buckling pressure of Tsien.10 

A comparison of these Lest results with previous results of machined models    and 

recent unpublished results of fabricated models obtained by Kiernan13 at the Model Basin 

gives a qualitative explanation of the effects of initial departures from sphericity on collapse 

strength.   In general, the tests of machined models have shown that for small, almost un- 

measurable, departures from sphericity, the buckling coefficient may vary from a value ap- 

proaching the classical buckling coefficient to 70 percent or less of the classical coefficient. 

This was demonstrated by the present tests which yielded experimental buckling coefficients 

of about 73 and 90 percent of the classical coefficient for shells which had very small initial 

imperfections of similar magnitude.   Thus, it appears unlikely that shells may be machined 

with sufficient accuracy to justify the use of an elastic buckling coefficient greater than 

about 70 percent of the classical value for design purposes.   In current tests of HY-80 steel 

hemispheres fabricated by pressing and welding together seven spherical segments, Kiernan 

has obtained elastic buckling coefficients between about 20 and 40 percent of the classical 

value.   Complete evaluation of the imperfections in these fabricated models has not been 

completed, but the initial measurements clearly indicated that the departures from sphericity 

were much less for the models which produced buckling coefficients of about 40 percent of 

the classical value than for those models which produced coefficients of only 20 percent. 

Thus, it appears that a relationship exists between collapse pressure and initial imperfections, 

or an unevenness factor, similar to that illustrated in Figure 8. 

As indicated in Figure 8, no single buckling coefficient may be used to consistently 

predict the collapse strength of practical spherical shells whose initial departure from sphe- 

ricity and other initial imperfections vary with fabrication procedures.   Since most of the 

initial imperfections, such as variation in thickness, residual stresses, and adverse boundary 

conditions, can be satisfactorily controlled by proper design and fabrication procedures, it 

appears profitable to focus attention on the effects of initial departure from sphericity in 

future theoretical and experimental work.   Thompson6   has recently conducted an "elementary 

study" of the theoretical behavior of a complete sphere with an initial departure from sphericity. 

Based on a middle surface imperfection of assumed shape and amplitude, he solved the 

nonlinear equations for the maximum buckling pressure.   This type of theoretical approach 

shows promise of producing the first valid analysis for practical deep spherical shells and 

appears worthy of further investigation.   Tests have recently been conducted at the Model 

Basin to study the experimental buckling strength of machined shells with known local "flat 

spots."   The results of these tests will be compared with the limited theoretical predictions 

12 



UNEVENNESS FACTOR 

Figure 8 — Effect of Initial Imperfections on the Elastic 
Buckling Coefficient for Spherical Shells 

to help in evaluating the validity of existing theory on the strength of imperfect spherical 

shells.   They will also be compared with these present tests in an effort to provide an experi- 

mental relationship between the collapse strength of near-perfect and initially imperfect deep 

spherical shells. 

CONCLUSIONS 

1. Ratios of experimental collapse pressure to the pressure obtained from the classical 

small-deflection theory for the elastic buckling strength of complete spheres of 0.73 and 0.90 

were obtained in the tests of Models PS-1 and PS-2, respectively.   This difference in observed 

strength could not be predicted, based on measured initial contours.   The ratio of 0.90 is con- 

siderably higher than the ratios obtained in previous tests of deep or complete spheres re- 

corded in the literature. 

2. By achieving a ratio of experimental collapse pressure to the collapse pressure obtained 

from classical theory of 0.90, these tests lend considerable support to the validity of the small- 

deflection analysis for perfect spheres. 

3. The ratios of experimental collapse pressure to the pressure obtained from the classical 

theory which were observed in these tests of machined spherical shells were about two to five 

times greater than the ratios normally observed in tests of formed spherical shells.   This large 

increase in collapse strength is attributed to the near-perfect sphericity attained in these 

present models by careful control of the machining processes. 

13 



4. A design equation must consider the effects of initial imperfections in order to con- 

sistently predict the elastic buckling strength of practical spherical shells. 

5. For design purposes, an elastic buckling coefficient of about 70 percent appears to be 

the upper limit for near-perfect spherical shells. 

6. The "lower" buckling pressures obtained from existing large-deflection analyses have 

no apparent relationship with the observed collapse pressures. 
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