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ABSTRACT

Two accurately machined hemispherical shells bound by ring-stiffened
cylinders designed to provide ideal edge conditions were tested under hydro-
static pressure to determine the elastic buckling strength of near-perfect deep
spherical shells. Ratios of experimenial collapse pressure to the pressure
calculated by using the classical small-deflection theory of 0.73 and 0.90 were
obtained. The ratio of 0.90 is considerably higher than the ratios obtained in
previous tests recorded in the literature. Since these models had small, unavoid-
able imperfections, the experimental results lend considerable support to the
validity of the small-deflection analysis for the elastic buckling strength of

initially perfect spheres.

INTRODUCTION

It is evident that spherical shells will be used extensively in future vehicles designed
to operate to great depths. Complete spheres will be used as the entire pressure hull in much
the same manner as used in the research vessel TRIESTE. Small spheres may be imbedded
in a plastic matrix and used as a float material similar to the present application of glass
microballoons. Hemispheres or other spherical segments will terminate the ends of cylindrical
or spheroidal hulls.

Spherical sheils of conventional pressure hull materials will most likely collapse by
inelastic buckling when designed for deep-submergence application. However, shells of
nonconventional materials, such as glass and glass ceramics, may collapse by elastic
buckling at all depths due to their high compressive sheﬁgth.l In either case, an under-
standing of the elastic buckling pressure of spherical shells is reyuired to permit rational
design procedures.

The classical small-deflection theory for the elastic buckling of spherical shells was
first developed by Zoelly in 1915 and has been presented by Timoshenko.? Prior to the
conduct of recent experiments on machined spherical shells at the Model Basin,? very
limited data existed and none of these data supported the linear theory. Tests by other in-
vestigators,* for instance, gave elastic buckling pressures that were only about one-fourth
those predicted by classical theory. The specimens used in tliese earlier tests were formed
from flat plate and, consequently, had initial imperfections together with residual stresses
and adverse boundary conditions. Until recently,®~7 however, no attempt was made to
theoretically evaluate the effect of imperfection on the collapse strength of spherical shells.
Instead, various investigators have attempted to explain the discrepancy between the early

experiments and theory by introducing nonlinear shell equations.8—11

lReferences gre listed on page 14,




The large discrepancy between the classical buckling pressure and the existing experi-
mental data prompted the Model Basin to test a series of machined shells® which more closely
fulfilled the assumptions of classical theory. These tests demonstrated the detrimental eftects
on collapse strength of initial departure from sphericity. The collapse strength of the machined
shells was from two to three times greater than the strength of the shells formed from flat plates.

Based on the results of the machined shells, an empirical formula for the elastic buckling
strength of near-perfect deep spherical shells was developed.3 This empirical fcrmula predicts
collapse to occur at about 70 percent of the pressure calculated by the classical small-
deflection theory. However, it was recognized that this formula is based on tests of shells
which, although machined, had small imperfections which presumably had some weakening
effects.

To determine more closely the strength of near-perfect spherical shells, two additional
shells were machined in which every effort was made to minimize initial imperfections. The

test results of these two models are presented in this report.

DESCRIPTION OF MODELS

Two identical structural models, consisting of hemispherical shells each bounded by a
ring-stiffened cylinder, were machined from 7075-T6 aluminum bar stock with a nominal yield
strength of 80,000 psi. Young’s modulus, as determined by optical strain-gage measurements
on four specimens, varied between 10.6 x 10% and 11.3 x 10® psi depending on the orientation
of the specimens in the bar stock. A Young’s modulus of 10.8 x 10° psi is used in ali cal-
culations. Poisson’s ratio was not measured, but a value of 0.3 is assumed. A sketch of

the models, which are designated PS-1 and PS-2, is presented in Figure 1.
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Figure 1 — Models PS-1 and PS-2




The models were designed to study the experimental elastic-buckling strength of
spherical shells which closely conform to the idealized assumptions of the classical theory.
Therefore, every effort was made to minimize departures from sphericity, variation in thickness,
residual stresses, and adverse boundary conditions. In addition, a completely elastic failure
was assuved by selecting = thickness-t:-radius ratio whicli caused failure to occur at a stress
level well below the proportionai limit.

Departures from sphericity, variations in thickness, and residual stresses were mini-
mized by careful selection and conduct of the mackining processes, First, both the inside
and outside contours were rough machined. Then the model was held in place by a pot-type
fixiure, and the firal inside contour was obtained by using a too! specifically designed to
accurately generate an inside spherical surface. The final outside spherical contour was
obiained by supporting the inside contour by a mating mandrel and by generating the outside
surface using a lathe with a ball-turning attachment. Finally, the exterior surface of the
ring-stiffened eylinder was machined. Extremely fine feeds together with light cuts were
used during the later stages of machining each surface tc minimize residual stresses and

to produce fine surface finishes. Photographs of Model PS-1 during machining are shown in
Figure 2.

The actual wall thickness and initial sphericity were accurately measured for each model.
The wall thickness was measured using a suppori-ball and a dial gage calibrated in 0.00002 1n.
The initial departures from sphericity were obtained by supporting a dial gage in a jig-bore.
These inspection procedures are illustrated by photographs in Figure 2. The measured wall
thicknesses and initial departures fron, sphericity sre listed in Taole 1. These measurements
demonstrate the success achieved through the machining process. The maximum measured
variation in wall thickness for each model was approximately 3/4 of 1 percent from the mean
thickness., The maximum measured departure from sphericity was less than 1/100 of 1 percent
of the mean radius for each model.

The stiffened cylindrical portion of each model was designed to provide conditions of
membrane deflection and no rotation st the edge of their hemispherical ends.!? Thus the

hemisphere was designed to behave as a portion of a complete sphere, consistent with the
assumptions of classical theory.

TEST PROCEDURE

Foil-resistance strain gages were used to measure strains in both the meridional and
the circumferential diroctions of the hemispherical portion of each model. They were located
to indicate the strain distribution necar the hemisplere-cylinder juncture as well as in areas
far removed from the houndaries. The gage location diagram is shown in Figure 3.

Both models were subjected t¢ external pressure in a small pressure tank. Oil was
used as a pressure medium to avoid waternroofing the strain gages. The models were filled

with & liquid and vented to the atmosphere to permit measurements of the change in internal




Figure 2b — Support Used When Generating
Outside Centour

Figure 2c — Generating Outside Contour Figure 2d — Setup Used to Measure Hemi-
spherical Wall Thickness

Figure 2e — Measuring Hemispherical Wall
Thickness

Figure 2f — Measuring Initial Departures
from Sphericity

Figure 2 — Model PS-1 during Machining and Inspection




TABLE 1

Measured Wall Thicknesses and Initial Departures from Sphericity

) ) . Departure from Nomina!
Meridiona) Spherical Wall Thickness, in. Outer Radius, in.
Model Orientation Circumferential Orientation Circumferential Orientavon
A B C D E A B C D E

1 0.01202{0.01204 [0.0120610.01202 |0.01200
5] 2 0.012080.01208 |0.01204 | 0.01204 0 -0.000035{ -0.00025} -0.00025 0

3 0.0121410.01216 {0.012080.01208

4 0.01210/0.01218 {0.01206 [ 0.01204 -0.00005| —0.00015] -9.00025]-0.00025 0

1 0.01210]0.01225]0.012200.012250.01220 0 -0.00020|-0.00020|~0.00015 |-0.00010
P2 2 0.01210|0.01225 {0.01220 | 0.01225

3 0.612050.01220 |0.0121510.01225 -0.00005{ -0.00025{ -0.00025 | -6.00015 {-0.00010

4 0.0120510.01220 j0.01215]0.01225
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Figure 3 — Strain Gage Locations

Meridional gages are represented by odd numbers,

circumferential gages by even numbers,

*Represents gages placed on Model PS-2 only,

volume during the loading cycles. Photographs of the test setup are shown in Figure 4.
Pressure was applied in increments to both models in three loading cycles. Pressure

increments immediately prior to collapse were less than 1 percent of the observed collapse
pressure.

TEST RESULTS

Models PS-1 and PS-2 failed at pressures of 347 and 429 psi, respectively. Both
failures were confined to a local inward lobe in the spherical porticn and occurred in a very
sudden, unmistakable manner. Model PS-1 failed in an area somewhat removed from the
boundary cylinder and Model PS-2 failed in the spherical portion immediately adjacent to the
boundary. Photographs of the collapsed models are presented in Figure 5.

Experimental strain-sensitivity factors, the initial slopes of the pressure-strain plots,
are presented in Figure 6 Prior to collapse, no significant nonlinear strain behavior was
observed during either of the tests.

Figure 7 presents plots of pressure versus measured change in internal volume recorded

during the final pressure loading of eac* model.




Figure 4a — Instrumented Model Figure 4b — Final Test Setup
Being Placed in Tank

Figure 4 — Test Setup

PSD 309483

ki S e

Figure 5a — Model PS-1 Figure 5b — Model PS-2

Figure 5 — Collapsed Models
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Figure 6b — Model PS-2

Figure 6 — Measured Strain Sensitivities
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Figure 7 — Pressure versus Measured Change in Internal Volume

DISCUSSION

The ratios of experimental collapse pressure to theoretical elastic-buckling pressure?: 10
and to the bucklin; pressure determined from an empirical formula® are presented in Table 2.
Ratios of experimental collapse pressure to the classical buckling pressure? of 0.73 and 0.90
were obtained for Models PS-1 and PS-2, respectively. The ratio of 0.90 achieved in the test
of Model PS-2 represents an elastic buckling coefficient of about 1.1, which is by far the
highest experimental buckling coefficient obtained to date for deep spherical shells. Both
models failed at pressures considerably above those predicted by the nonlinear energy
analysis of Tsien.!® Specifically, Model PS-2 collapsed at a pressure about three and one-
half times greater than the lower pressure obtained from Tsien’s theory. The empirical
buckling equation used in Table 2 is based on the results of recent Model Basin tests of
small machined models.? Ratios of experimenatal collapse pressure to the pressure calculated
using this empirical equation of 1.06 2nd 1.30 were obtained for Models PS-1 and PS-2,
respectively.




TABLE 2

Comparison of Experimental Collapse Pressures with Theory

Experimental Collapse p p p
Model Pressurep“p exp| "exp [ Fexp

pl* p2** pstt*

psi

Ps-1 347 0.73] 2.81 | 1.06
PS-2 429 0.903.45 1.30

'pl is from the classical elastic linear theory
of Zoelly.2

**p, is from the elastic nonlinear theory of
of Tsien.10

**‘ps is an empirical buckling pressure for
machined snherical shells developed from recent
Model Basin tests.3

The relatively high collapse pressures observed in these tests are attributed to near-
perfect test specimens. By exercising extreme care in the design and manufacture of these
models, the idealized assumptions of classical theory were closely approximated. The near-
perfect characteristics are demonstrated not only by the initial dimensional measurements
tabulated in Table 1 but also by the change in internal volume and strain measurements re-
corded during the tests. The change in internal volume presented in Figure 7 was essentially
a iinear function of the applied external pressure prior to the collapse of each model.

Similarly, no appreciable nonlinear strain behavior was observed to pressures within 1 per-
cent of the collapse pressure,

Measurements obtained from the strain gages located near the cylinder hemisphere
juncture also demonstrate that the cylinders provided ideal boundaries for the hemispheres.
Although the repeatability of the strain readings at the various locations was not completely
satisfactory, the strain measurements do indicate that the cylinders provided edge conditions
of membrane deflection and no rotation for their respective hemispheres. Thus, the hemispheres
behaved essentially the same as complete spheres, consistent with the assumptions of classical
theory.

Although these models were very accurately fabricated, it must be recognized that it is
rhysically impossible to obtain a completely perfect sphere. As anticipated, therefore, these
models had several relatively small shortcomings. For example, the initial measurements
show that the wall thicknesses varjed approximately 3/4 of 1 percent from the mean thicknesses
and that the local radii varied close to 2/100 of 1 percent of the mean radii for each model.
These geometric variations are small, and are less than could be expected from even closely
controlled machining operations. However, a shell certainly cannot be considered perfect

with these known variations in thickness and radii. Furthermore, the nonisotropic material

10




characteristics, demonstrated by the variations in measured Young’s modulus, violate a very
basic assumption of classical theory and may be essentially considered zn initial imperfection.
Finally, the fact that Model PS-2 failed in the hemispherical sktell immediately adjacent to the
stiffened cylinder suggesis thal the boundary conditions may have had a slight effect on collapse.
This is not surprising in view of the exceptionally high collapse pressure attainec by Model
PS-2, which indicates the small effects of imperfections on collapse. It should be pointed out,
however, that even with perfect membrane boundarv conditions, the hemispherical shell is

still as likely to fail adjacent to the boundary as in any other area.

By achieving a ratio of experimental collapse pressure to the vollapse pressure obtained
from the classical theory of Zoelly of 0.9 for Model PS-2, these tests lend considerable support
to the validity of the small-deflection analysis for perfect spheres. There was no appreciabie
difference in the measured initial imperfections present in Models PS-1 and PS-2. Yet, Model
PS-2 had a buckling coefficient more than 20 percent greater than Model PS-1. There is no
reason to expect, therefore, that the buckling coefficient obtained for Model PS-2 cannot be
exceeded if an even more perfect shell is manufactured. Since Model PS-2 collapsed at a
pressure only 10 percent less than that predicted by classical theory, it certainly appears
reasonable to conclude that the classical solution is valid for spherical shells which sat-
isfy its very rigid assumptions. However, it may be physically impossible to obtain test
specimens whose imperfections are so small that they have no influence on collapse strength.

The large increase in strength of these machined shells over the observed strength of
fabricated shells is chiefly attributed to the near-perfect sphericity attained by generating the
contours. Control of variations in thickness, mirimization of residual stresses (which was
evidenced by the geometric stability of the models during the final machining processes),
and the elimination of any serious boundary effects also contributed to the increase in
observed collapse pressures. The contribution of these factors, however, was undoubtedly
small since they may be, and have been on occasion, rather well controlled in fabricated
spherical shells. Therefore, the single factor which was decidedly different hetween these
machined shells and fabricated shells is the magnitude of the initial departures from sphericity.

Since these results confirm the critical dependence of collapse strength on initial
departures from sphericity, they demonstrate also that a design equation must consider the
effects of imperfection in order to consistently predict the buckling strength of practical
spherical shells. Thus, it appears that most existing theoretical studies have little value
in the design of spherical huiis because they do not consider the true reason for collapse
at stress levels below the classical buckling stress. The best known example of these
analyses is Von Karmun and Tsien’s work,® which suggests that the minimum pressure re-
quired to hold an initially near-perfect sphere in the post-buckle position be used to predict
the collapse strength of practical spherical shells. Another example is Tsien’s'? ‘‘energy
criterion of jump’’ which also assumes an initially near perfoect shell but predicts collapse
pressure to be a function of the energy, or volume and pressure medium, of the test tank.

Both of these analyses predict the saame collapse strength for machined and fabricated spheres

11




whereas the present tests have demonstrated that large differences in strength are obtained
experimentally. Specifically, fair agreement has been obtained between the theoretical col-
lapse strength under dead load as predicted by Tsien and the experimental collapse strength
of formed spherical shells fabricated within standerd commercisal tolerances. However, the
collapse strength of Model P5-2 was almost three and one-half times greater than the theo-
retical buckling pressure of Tsien.1?

A comparison of these test results with previous results of machined modeis® and
recent unpublished results of fabricated models obtained by Kieman!3 at the Model Basin
gives a qualitative explanation of the effects of initial departures from sphericity on collapse
strength. In general, the tests of machined models have shown that for small, almost un-
measurable, departures from splericity, the buckling coefficient may vary from a value ap-
proaching the classical buckling coefficient to 70 percent or less of the classical coefficient.
This was demonstrated by the present tests which yielded experimental buckling coefficients
of about 73 and 90 percent of the classical coefficient for shells which had very small initial
imperfections of similar magnitude. Thus, it appears unlikely that shells may be machined
with sufficient accuracy to justify the use of an elastic buckling coefficient greater than
about 70 percent of the classical value for design purposes. In current tests of HY-80 steel
hemispheres fabricated by pressing and welding together seven spherical segments, Kiernan
has obtained elastic huckling cocfficients between about 20 and 40 percent of the classical
value. Complete evaluation of the imperfections in these fabricated models has not been
completed, but the initial measurements clearly indicated that the departures from sphericity
were much less for the morels which produced buckling coefficients of about 40 percent of
the classical value than for those models which produced coefficients of only 20 percent.
Thus, it appears that a relationship exists between collapse pressure and initial imperfections,
or an unevenness factor, similar to that illustrated in Figure 8.

As indicated in Figure 8, no single buckling coefficient may be used to consistently
predict the collapse strength of practical spherical shells whose initial departure from sphe-
ricity and other initial imperfections vary with fabrication procedures. Since most of the
initial imperfections, such as variation in thickness, residual stresses, and adverse boundary
conditions, can be satisfactorily controlled by proper design and fabrication procedures, it
appears profitable to focus attention on the effects of initial departure from sphericity in
future theoretical and experimental work. Thompson® has receat!y conducted an ‘‘elementary
study’’ of the theoretical behavior of a complete sphere with an initial departure from sphericity.
Based on a middle surface imperfection of assumed shape and amplitude, he solved the
nonlinear equations for the maaimum buckling pressure. This type of theoretical approach
shows proniise of producing the first valid analysis for practical deep spherical shells and
appears worthy of further investigation. Tests have recently been conducted at the Model
Basin to study the experimental buckling strength of machined shells with known local “‘flat

spots.’”” The results of these tests will be compared with the limited theoretical predictions
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Figure 8 — Effect of Initial Imperfections on the Elastic
Buckling Coefficient for Spherical Shells

to tielp in evaluating the validity of existing theory on the strength of imperfect spherical
shells. They will also be compared with these present tests in an effort to provide an experi-

mental relationship between the collapse strength of near-perfect and initially imperfect deep

spherical shells.

CONCLUSIONS

1. Ratios of experimental collapse pressure to the pressure obtained from the classical
small-deflection theory for the elastic buckling strength of complete spheres of 0.73 and 0.90
were obtained in the tests of Models PS-1 and PS-2, respectively. This difference in observed
strength could not be predicted, based on measured initial contours. The ratio of 0.90 is con-
sidcrably higher than the ratios obtained in previous tests of deep or complete spheres re-

corded in the literature.

2. By achieving a ratio of experimental collapse pressure to the collapse pressure obtained
from classical theory of 0.90, these tests iend considerable support to the validity of the small-

deflection analysis for perfect spheres.

3. The ratios of experimental collapse pressure to the pressure cbtained from the classical
theory which were observed in these tests of machined spherical shells were about two to five
times greater than the ratios normally observed in tests of formed spherical shells. This large
increase in collapse strength is attributed to the near-perfect sphericity attained in these
present models by careful control of the machining processes.
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4. A design equation must consider the effects of initial imperfections in order to con-

sistently predict the elastic buckling strength of practical spherical shells.

5. For design purposes, an elastic buckling coefficient of about 70 percent appears to be
the upper limit for near-perfect spherical shells.

6. The ““lower’’ buckling pressures obtained from existing large-deflection analyses have

no apparent relationship with the observed collapse pressures.
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