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List of symbols amd notations

Generally, upper case letters will be used to represent matrices,

lower case letters to represent elements of matrices. However, for

the sake of brevity, it is sometimes preferable to refer to matrices

while speaking of their elements . For instance, instead of sayings

"the elements of matrix (I-FT) have poles on the left half plane",

the words "the elements of matrix" can be suppressed without causing

ambiguity, which elements of the said matrix are involved should be

clear to the reader who follows the reasoning in a continuous fashion.

The following symbols will be used in the sense as indicated?

P: plant transfer function matrix

G: open loop compensating filter transfer function matrix

C: cascade controller transfer function matrix

F: overall feedback controller transfer function matrix

H: inner feedback controller transfer function matrix

Us system input column matrix

X: plant input column matrix

Y: system output column matrix

E: error column matrix

T; overall transfer function matrix

I = identity matrix

s = Laplace operator

a, b, a, /3 . .. « coefficients of polynomials in s

m = number of outputs of multivariate plant

n = number of inputs to multivariable plant

iv



But m, n are also used as stated below;

m, n, v, w = orders of polynomials In s

LHP = left half of the s plane

RHP = right half of the s plane



ON THE REALIZATION OF LINEAR MULTIVARIABLE CONTROL SYSTEMS

Chapter One

Multivariable control systems

1-1: Introduction;

The problem of synthesis of a linear multivariable control

system consists in selecting a controller or controllers and a

compensation scheme such that a set of specifications on transient

and steady-state responses, disturbances and plant parameter variations

be satisfied. Furthermore, the controller or controllers selected must

be realizable in the physical sense.

A number of papers in the past have treated the synthesis problem

and are mostly concerned with the satisfaction of specifications.

Little attention has been paid to conditions concerning physical

construction of the controllers. Recently R.J. Ravanagh gave a

detailed account on his study of realizability of non- interacting

control starting from a given plant; but his problem was "mathematical"

realizability, dealing with the existence or non-existence of a

solution, and not with the physical construction of the controllers.

The purpose of this report is to present a method for recognizing

whether or not, with a given plant and a given specification, the

controller or controllers necessary to compensate the system can be

built from physical components. It is also shown how a choice is

possible among different compensation schemes to suit the problems of

availability of components, reliability of components, cost, ruggedness,

simplicity, or merely designer's taste.
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1-2; Matrix representation of multivariable control systems;

A multivariable control system, just like a single variable

system, is made up of a plant, or actuator, and one or several

controllers, or compensators, interconnected in a certain fashion.

Each of these units will have several inputs and several out-

puts. It is then convenient to represent them with matrices, each

element of which will be a transfer function relating an input to

an output. The (i,j)th element relates the jth input to the ith

output. Figure 1 represents a system with plant P and one controller C

connected in cascade. U, X, Y are column matrices „ U represents

the system inputs; X the plant inputs, Y the system outputs, which

are the same as the plant outputs.

Let n be the number of plant inputs and m the number of plant

outputs, ie;

X

n

and Y =

m

In practice, we always have m< n. It would make no sense to try to

control more output variables than the number of input variables to

which we have access. If m = n, P is a square matrix. If m< n, for

convenience in the manipulation of matrices, we can add (n-m) arti-

ficial outputs, which we will monitor and feed back to the system
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input. By so doing, we add extra rows to the plant matrix P,

these extra rows having unity elements on the diagonal and zero

elements elsewhere . As an example, a 3-output, 5-input plant

matrix would become this square matrix?

pll P12 P13 p14 p15

P21 P22 P23 p24 P25

p31 p32 P33 p34
1

P35

1

Figure 2 shows what modification has been brought to our multi-

variable system. One can see that the number of system output is

still 3. The number of system inputs is also 3 since no more than

3 different inputs are needed to command 3 system outputs

.

As a result of this artificial manipulation, plant matrices

and controller matrices can always be made square « Then only square

matrices shall be dealt withe

1-3 s Interaction and non-interactions

There have been several attempts to define what is meant by

12 3
non-interaction in a multivariable system ' ' , The simplest but

also most logical one seems to be the following? non-interaction

is said to occur when there is a one-to-one relationship between

system inputs and system outputs , In other words each system input

controls one definite output and that one only- Conversely, when-

ever one input not only controls its own output but also changes

one or more other outputs, the system is said to be interacting.
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Ideally, non-interaction is the goal in the design of multi-

variable systems. But from an engineering viewpoint, this is not

always physically realizable, nor is it always desirable, for a

number of reasons, practical, economical, commercial, among others

.

It is then reasonable to proceed as follows: attempt to design

the system for non-interaction, and build it if it is judged satis-

factory for the various reasons mentioned above . If non-interaction

is unrealizable or impractical, then go to the next-to-best solution,

which is a system with some minimum amount of interaction, or with

a specified amount of interaction as the case may be, until a

compromise is reached between satisfactory performance and physical

and economical realization

„
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Chapter Two

Compensation design

II-ls Selection of a compensation schemes

In the current literature, a current practice has been to

arbitrarily select a compensation scheme and solve the problem for

that particular scheme « Some writers assume one cascade and one

4
feedback controller , others restrict their treatment to a system

with only a cascade controller '
. Another assumes a feedback

controller only, and goes as far as restricting himself to a

diagonal plant matrix ,

It is true that some compensation schemes are more commonly

used than others, but it is also true that some other scheme may

serve a particular purpose better, or suit existing conditions

better in a given situation,, Consequently it is preferable for

the designer to gain an insight to several compensation schemes

and try to select the most suitable

.

Figure 3 shows 3 possible structures using both cascade and

feedback controllers

„

While schemes no 1 and 3 seem t© be more general and

reasonable, in some cases the designer may have to use scheme no 2,

for example when end-to-end feedback for the overall system is

impractical or impossible due to

II-2; Filter designs

In order to avoid restricting the design to any particular

arrangement, it is proposed that synthesis be based on the simplest
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system configuration as indicated on Figure 4, where G represents

a multivariable cascade filter. No feedback of any kind is involved.

For a given desired overall response, ies a

transfer function, say T, we haves

PG = T

or G = P
_1
T

There is no difficulty in obtaining the expression of G. The

operations in (1) are matrix operations, hence order is important

since generally PG 4 GP.

Note that, as stated before, design was started off by assuming

non-interaction, therefore T, the overall transfer matrix is diagonal,

and each diagonal element t. . is the desired transfer function of the

ith variable;

" yl~
y2

„

=

yn
1— ad

11

t
22

1

nn

In the next step, filter G is split into «

and/or feedback controller(s) F and H. Several

occur

- if none of the C, F, H controllers thus

economically realizable, it can be concluded

is not possible. One must then go to the next

u
n

l_ _i

nihilities then

are physically or

non-interaction

best solution, which
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is the scope of another report to follow

- if only one of the above schemes is realizable, there is mo choice

but to take it

- if more than one schemes are realizable, the designer has the

privilege of choosing one of them in the light of commercial and

economical conditions, availability of components, reliability,

ruggedness or his own personal taste

.

The design based on this GP configuration has 2 further advantages;

- in cases where it is necessary to design the system with inter-

action, it is easier to see which element is to be redesigned in

order to make one particular interaction, say the (i, j)th, meet

the limits specified

- as will be shown later in this report, examination of G alone is

sufficient to determine whether or not the compensating schemes

of Figure 3 are physically realizable. This permits the designer

to avoid wasting further time on an impossibility.

In the compensation design using filter G, it is convenient

to have a set of formulas for going from G to C, F and/or H.

For scheme no 1 -

Specifications are given in the form of an overall transfer

matrix T, or may be converted into such a matrix. The writer

hopes to undertake a more detailed study of this matter in the

next paper. By definition of Ts

Y = TU (3)

But from figures Y = FX (4)
X = CE (5)
E = U - FY

-7-



Again the order of operations is important since matrix

quantities are involved

.

From (4), (5) and (6)s Y= PC(U-1

or s [l + PCF] Y = PCU

where I is (nxn) identity matrix

Premultication of both sides of [l + PCF] yields:

Y = [l + PCF]"
1
PCU (8)

Comparison of equations

T =* [l + PCF]"
1
PC

But we know that T = PG (10)

Equating (9) and (10) and premultiplying both sides by [l 4- PCF]

PC = [l + PCF] PG

or

Rearranging

PC = PG + PCFPG

PC [i - fpg] =

Noting that PG = T, C = G [l - FT]
-1

(11) is the relation between G on one hand and C, F on the

other. This is one equation with two unknowns, C and F. The

designer is free to choose one, say F, the other variable, C,

-8-



is then determined. Needless to say, F, that is the elements

of F, must be chosen so that they are physically realizable.

It would be helpful if knowledge of G alone can determine

whether or not a C, F configuration can be realized. This is

the purpose of the last part of the paper.

For scheme no 2 -

T = FG

Calculations similar to the previous case lead to;

T = [i + PH]"
1
PC

Equating the 2 equations ; PG = [l + PH]~ PC

Premultiplying by [i - PH] : PC = PG + PHPG

4

Since PG=T, C=G+HT

Equation (12) relates G with C and H. As before, selection

of H permits calculation of C or vice versa.

Note that, in scheme no 1, a possible choice is to take F = I,

ie; unity feedback without crossfeed. This is a very realistic

choice since in a control system it is desirable to compare

each input with its own output on a one-to-one basis. But here

in scheme no 2, feedback matrix H will generally be non-diagonal

since there is no one-to-one correspondence between y°s and x 8
s.
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For scheme no 3

T = PG

Successive reduction of block diagram leads tos

T = PG = [i + (I + PH)"
,1
PCF]"

1
(I + PH)

_1
PC

Premultiplication by [i + (I + PH) PCF] yields:

PG + (I + PH)"
1
PCFPG (I+PH)"

1
PC

Rearranging;

PG = (I + PH)
_1

PC [i - FPG]

Premultiply by (I + PH);

(I + PH) PG = PC (I - FPG)

Postmultiply by (I - FPG) :

+ PH) PG (I - FPG)"
1
= PC

ors PC = (PG+ PHPG) (I - FPG)"
1

ors PC = f (G+HPG) (I - FPG)"
1

ie C = (G + HT) (I - FT)"
1

(13)
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Equation (13) relates G with C, F and HL Ira the most general

case of unity feedback, F = I and (13) becomes

C = (G + HT) (I - T)
-1

Selection of one of the 2 unknowns, C and H, determines the

other. This is the essence of the designer's task.

Note that (13) is a more general expression of (11) » Letting

H = in (13), one obtains (11).

The following example shows how by use of equations (11) (12) (13)

a sensible choice between the above compensating schemes is possible.

Example - Given the plant to be controlled

' s+1
P =

_0
s+20

V
s+20 s+3J

It is desired that the transient responses y
1

, y_ have no

overshoot and have a short rise time as expressed by the

4
overall transfer functions t,. = t22

= —

„

First obtain the transfer matrix filter G;

G = FT

>-l
= i

1

s+3

1

s+20

s+20

1

s+1 (s+1) (s+3)
;s+20)'

1

s+3

J.
s+20

s+20

1

s+1
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-1 _
;

(s+1) (s+3) (s+20)'
P =

(s+20)
Z

- (s+1) (^-3)

1

s+3

s+20

JL
®+20

1

s+1

(s+1) (s+3) Cs+20]

36 (s+11)

1

s+3

1

s+20

s+20

1

s+1

P-
X =

36 (s+11)

:s+l) (s+3) (s+20)
36 (s+11)

(s+1) (s+3) (s+20]

36 (s+11)

(s+3)

G =P~
1
T =

(s+1) (5+20)*

36 (s+11)

(s+1) (s+3) (s+20)

36 (s+11)

36 (s+11)

_ (s+1) (s+3) (s+20)

36 (s+11)

36 (s+11)

(s+2)'

:s+2:

G =

1 (s+1) (s+20)'

9 „_.„v2

1 (s+3) (s+20)
9 , .„v2

2

m 1 (s+1) (s+3) (s+20)

9
(s+2)

2
(s+11)

The above 4 elements of filter G, g,, g.„ g21
amid g_

2
are

all physically realizable (see Chapter Three), Theoretically,

such a filter when connected in cascade with plant P, would

give the desired non-interacting responses » However, it is
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well known that some feedback is desirable and even necessary,

to minimize the effect of unwanted disturbances introduced

anywhere between system inputs and outputs c Feedback is also

necessary to reduce the sensitivity of overall system to plant

parameter changes. Consequently, G is now converted into

C, F, H as indicated in the various compensation schemes of

Figure 3-

Scheme no 1 -

From equation (11)

;

C = 6(1 - FT)"
1

As discussed before, this is one equation for two unknowns, C,

and F. The designer's job is to select one (and compute the other)

in the way that best suits his particular problem. A possible choice

here would be to take F = I, I being the (men) identity matrix

.

This corresponds to unity feedback from each system output to the

corresponding system input. This is not the only possible value

for F but is taken for this illustrative example.

(11) then becomes C = 6(1 - T)~

But (I - T) =

-13-



\

(I - T)"
1
=

(8+2)
s(s+4)

Use of expressions (15) and (17) into equation (16) yields the

expression for Cs

C-i is±m
9 s(s+4) (s+11)

- (s+:

>+l) (s+3) [s+3) (s+20)

The elements of C are realizable as

Comparison of respective elements of

no more complicated than G as far as

concerned o Considering the advantages of

therefore acceptable

.

Scheme no 2 -

From eq (12):

networks

.

shows that C is

truction is

, scheme no 1 is

C = G + HT

In this case H is non-diagonal generally ie:

HT =

C =

h
ll

h
12

h
21

h
22

811 + kllhl 812
+ h

12
t
22

821 + ^l'll 822
+ h

22
t
22

f
^ll'll

h
12

t
22

V
h
21

t
ll

h
22

C
2;
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Here again, selection of H yields the expression of Co As an

example, examine the element CL-, assuming h.. = lo This is not a

reasonable assumption, since, unlike scheme no 1, here H does not

represent an end-to-end feedback comparing reference with actual

output o However this oversimplified assumption may help the designer

reach an insight to other possible choices

.

Thus, assuming h.
1

= 1, and taking g11
from ©q (15), we haves

c.- = 1 (s+1) (s+20)
2

+
4 _ 1 s

3
+ 41s

2
+ 476s + 796

9 (s+2)
2

(s+11) (s+2)
2 9 (s+2)

2
(s+11)

This element c.- is physically realizable and is no more

complicated to build than the elements of C in scheme no 1

(equation 18) .

However it has been assumed h-- = 1„ If it is necessary to

realize a certain loop transfer function L = PH, in order to satisfy

specifications on sensitivity to parameter variations (see loop

shaping, chaps 3 and 10 reference 8), h-. is more likely to have the

form 7ZTg\ Then, e, . will be, at best, more complicated than the

corresponding cascade controller elements of scheme no 1 (more poles,

more zeros to realize) . In addition, it costs more to build both

H and C versus C alone

„

Despite the higher cost, this s<

ever an overall feedback is difficult

Scheme no 3 -

Assuming overall unity feedback (F = I), eq

C = (G + HT) (I - T)"
1

Selection of H yields a computed expreg

-15-



c =
8u + hnhi 8i2

+ ^Pn
821

+ h
21

t
ll 822

+ h
22

fc

22

- f

Taking the first element c., as an examples

- t
22

C
ll 5n + ^ihP r-

1

'ii

ii
i -

1

ii
-

1

ii

The first term on the right hand

scheme no 1 (eq 18) <> Thus t

1 (a+l) (s+20)*
u
ll 9 s(s+4) (s+11)

1 - if h. . - 0, one

19) shows that

es back to scheme no 1*

2 - if one takes the oversimplifying but not realistic assumption

h.. = 1, c-. is physically realizable and not more complicated

than c, , of scheme
11

L.

3 - if, as is usually the ease, h.« must assume the form k —^n to
JL JL £+p

satisfy a number of requirements, sensitivity and others, then

c.. becomes, at best, more complicated than c. . of equation

as far as physical realization is

Conclusions

For this example it may be concluded.-that scheme no 1 is simplest

and most economical to build, unless difficulty of realizing overall

feedback leads to scheme no 2 in which case more hardware will be

needed in the controller H» or unless special problems concerning

-16-



loop shaping leads to scheme no 3, where two controllers need be

built in lieu of one. Other problems arise where construction

of H and C as in scheme no 3 is simpler than that of € al

in scheme no 1. Still other problems oris

to controllers with real poles, while another scheme leads to

controllers with complex poles realizable only with active networks

which the designer may or may not wish to

-17-



Chapter Three

Physical realizability

For a rational function of the Laplace transform variable s to

be physically realizable as a voltage transfer function, three

9
conditions must be met :

Condition 1 - The coefficients of the function must be real

Condition 2 - The order of the numerator must be less than or

equal to the order of the denominator

Condition 3 - There can be no poles in the right-half plane, and

poles on the imaginary axis must be simple

It is important to note that the above conditions are in connection

v
with unilateral networks. A network giving _2

v
does not give

V
2

= F(s)

I
2
-0

iro
F <s >

In the following, it will be seen whether any relationship

exists between physical realizability of G on one hand, and that

of C, H, F on the other.

Scheme no 1 -

Since comparison between each reference with its own input is

generally desired, F will be made diagonal. Further, elements of

F must be realizable functions. Also, the elements of T, as

specified, are realizable transfer functions. For non-interaction,

T is diagonal and the elements of FT have the form f . . t . . where
ii il

i = 1 , 2, .... n.

Both f . . and t. . are realizable. Is their product realizable

also? Condition 1 is satisfied since the product of real

-18-



coefficients yields real coefficients. Condition 2 is satisfied

since: order of numerator f.. < order of denominator f..

order of numerator t . . -^ order of denominator t..
ii ^ li

by addition: order of numerator fjjt.. < order of denominator f..t..

Finally, condition 3 is also satisfied since the poles of f . .t.

.

are also poles of f.. or t... Consequently, fj-t.., ie: the

elements of FT, are realizable transfer functions.

From the realizability property of the elements of FT the 2 following

consequences may be derived:

a) All coefficients of (I - FT) are real. Proof:

Since FT is diagonal, (1 - FT) is also diagonal, and elements

of (I - FT) are just inverses of elements of (I - FT)

.

Since f. .t.. is realizable, it may be written as:

as +....+ a.s + a
f t = _» 1 _°
ii ii , m . .bs +....+ b,s + bm lo

where a . . . a , b . . . b are real
n cm o

as +....+ a
i . ft- = i . -a—_ £

ii ii , m .
b s +....+ b^,m o

The coefficients of the denominator of 1 - f..t.. are the same
ii ii

as those of the denominator of f.,t... The coefficients of

the numerator of (1 - f..t..) are differences of real numbers
ii ii

ie: real numbers themselves. Thus, all coefficients of the

elements of (I - FT) are real. If these elements are inverted,

-19-



the elements of (I - FT)" are obtained, whose coefficients are

the same, ie: still real numbers. qed.

b) Generally, order of numerator of (I - FT) equals order of

denominator of (I - FT) The reason for using the word

"generally" will be mentioned below.

For f . , to be a realizable function, it must satisfy the condition

order of numerator^ order of denominator, t .„ , the desired

overall response function, generally satisfies the condition

order of numerator < order of denominator . Adding the two

inequalities together, one obtains:

order of numerator f..t. . < order of denominator f..t...
li ii li li

Note that this is a < sign, and no longer the ^ sign.

Then: order of numerator (1 - f..t..) =
N ii ii/

= order of denominator (1 - f. .t..)x ii ii'

The < sign becomes = sign due to the addition of 1 to the

element

.

-1
=

-1

Also: order of numerator (1 - f..t..)x ii ii'

= order of denominator (1 - f. .t..)N ii ii'

Thus, statement is proved.

Now go back to the original problem: a criterion for

realizability of scheme no 1.

C = G(I - FT)"
1

For C to be realizable:

1 - all coefficients of C must be real. This amounts to saying

that all coefficients of G must be real, since those of

-20-



(I - FT)" are real (from a above), and product of real numbers

gives real numbers.

2 - order of numerator of C must be ^ order of denominator of C.

This obviously is equivalent to the condition: order of

numerator of G^ order of denominator of G, since from b above,

order of numerator of (I - FT) =

= order of denominator of (I - FT)

3 * poles of C must be on LHP and j-axis poles must be simple*

-1
First note that, since C = G(I - FT) , poles of C are either

poles of G, or poles of (I - FT)" . If G has any forbidden

poles, one may ask the question whether it is possible that

they be cancelled by similar zeros of (I - FT)
'"" ie: poles

of (I - FT). The answer is no, since poles of (I - FT) are

the same as poles of FT, and therefore cannot be forbidden

ones. Thus, one condition for C to have acceptable poles is

that G itself have acceptable poles. The other condition

for C to have acceptable poles, obviously, is that poles of

(I - FT) be on the LHP, or be simple on the j-axis. Note

that the elements of (I - FT) are merely the inverses of

those of (I - FT) since this matrix is diagonal.

In summary, it has been determined that for the scheme no 1 to

be realizable, G must satisfy all 3 conditions, ie: be

-1
realizable itself; and in addition, poles of (I - FT) be on

the LHP, or be simple on the j-axis. With a given T, this last

condition serves as a guide in the selection of a proper expression

for F.

-21-



As an example, if desired t is

(s+2)

r>, f.. = 1 leads to a

s(s+4)
realizable feedback scheme since 1 - f-i-it.- = —

»

£,
11 lL

(s+2)
Z

2

(1 - fiit..)" = /-. a\ » whose poles are acceptable.

The value f
1

. = 3 leads to an unrealizable feedback scheme since

i f ^ i
12 . s*+4s-8 _ (s+5.46) (s-1.46)

" 11 11 2 2 211
(s+2r (s+2)

Z
(s+2)^

a . f c r 1 = ^±2^U r
ll

C
ll ; (s+5.46) (s-1.46)

whose pole at + 1.46 is

unacceptable.

Scheme no 2 -

It has been said previously that, while in scheme no 1,

feedback controller matrix F is generally diagonal, here in

scheme no 2, there is no reason to assume H diagonal since H

is not intended to compare each overall input with its own

output. Therefore, the general expression for C, from eq (12), is:

11 In

nl nn

gir*" gln

+

'nl'
*" 8nn

h. , . • o .h.
11 In

fc

ll\ o

• \

•
\

\
•

o \
h .....h
nl nn nn
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ll
,,,,C

ln

'nl"
..C

nn

(sn^iihi' («ln
+ VJ

(«21
+ ^ihl)

(
82n

+
^n'nnj

(
gnl

+ ^lhl} /g + h t ]

l°nn nn nni

The general expression for C. . may be written as:

C. .
= g . . + h. .t.

.

ij ij iJ J J

The element t.. is realizable, and h. . has to be chosen realizable,

and consequently h..t.. is realizable, ie:

h. .t., =
ij JJ

a
v
s + + O^s + a

Q

s
w
+ + jS. s + £*w ^1 'o

where a ....a. , & . . . .B are real coefficients, v -$ w: and all
v o *w o

poles are on LHP, and simple if they are on the j-axis.

Let gtj
=
as +....+ a, s + a
n 1 o

bs +....+ b.s + b
m 1 o

Then;

C. . = g. . + h. .t. .
=

ij ij iJ JJ

fa s
n
+ + a ^ ($ s

w
+ + jS V« s

V
+ + a ") (b s

m
+ + b ^)

_ v ;;n oy Vw 'oy V v oyVm o/

&f +••• + 0(vw+
+

(20)
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What are the conditions for C. . to be realizable?

1 - all coefficients of C. . must be real: For the denominator, since

8 . .

.

.8 are real, b . ...b must be real also,'wo mo
For the numerator, coefficients are made up by additions such

as (a 8 + a b ) . It was assumed that a , 8 are real. It
n w v m v w

was also determined that b must be real. The only unknown left
m

is a . For the sum (a 8 + a b ) to be real, a also has to be
n N n w v nr n

real.

Hence, this first condition is equivalent to saying that all

coefficients of g. , must be real.

2 - order of numerator of C. . must be < order of denominator.
ij

Since h..t.. is realizable, v ^ w. Looking at expression of

C , , in (20) and focusing one's attention on the superscripts,

it is seen that 2 cases may happen: either nw ^ mv or nw < mv.

If nw ^ mv, the order of numerator of C. . will be nw and

condition 2 becomes nw ^ raw, ie: n^a . If nw -$ mv, order of

numerator of C. . will be mv and condition 2 becomes mv ^ mw,

ie: v^ w which is known to be true.

Thus, condition 2 is equivalent to saying that n < m, ie:

order of numerator of g . must be < order of denominator of

gij-

3 - poles of C. . must be on LHP, and must be simple if they are

on the j-axis.

Eq (20) shows that poles of C.. are merely poles of g.

and poles of h..t... Those of h..t.. are acceptable since

h. .t.. is realizable. Then, to satisfy condition 3, poles
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poles of g. . must be acceptable also, unless there are some

RHP zeros of numerator of (20) to cancel the forbidden poles

of g . . . But the following reasoning shows that this "unless"

cannot happen. Refer to numerator of (20). Suppose g. . has

a forbidden pole, say at +3, ie: (b s
m
+ + b J contains

the factor (s-3). Then, the second term of numerator of (20)

contains (s-3) as a factor also. For a cancellation to be

possible, the first term of numerator of (20) must also

contain factor (s-3). This is impossible since (jSs + PQJ

is denominator of a realizable function and cannot have

forbidden roots, and (a s +....+ a J
cannot contain (s-3)

either (it would have cancelled with (s-3) of denominator of

g. . and there would have been no problem).

Therefore, condition 3 is equivalent to saying that the poles

of g. . itself must be acceptable.

To summarize; the condition for feedback scheme no 2 to be

realizable is that G itself be realizable.

Scheme no 3 -

C = (G + HT) (I - FT)"
1

It is true that scheme no 3 is the most general scheme and

includes the 2 others as particular cases. If H is taken = 0,

scheme no 1 is obtained. If F = 0, scheme no 2 is obtained.

However it is easier to treat these 2 schemes first, and extend

the results to the more general case of scheme no 3.

By comparison with scheme no 1, it is clearly seen that what
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applied for G, now becomes applicable to (G + HT) . Thus one may

use the results for scheme no 1 on page 21 for the present case.

From page 21, derive the following:

For scheme no 3 to be realizable, one must have;

a - (G + HT) realizable

b - poles of (I - FT) on LHP, or simple if on the j-axis.

For (a), one may use the results of scheme no 2 on top of page 25,

which say that for (G + HT) to be realizable, G itself must be

realizable. The following conclusion is arrived at: Realizability

of scheme no 3 is assured if

a - G itself is realizable

b - poles of (I - FT) are on LHP, or simple on j-axis.

This is the same conclusion as for scheme no 1. Hence, whenever

scheme no 1 can be built, so can scheme no 3.

III-4: Generalization of results to interacting systems:

In the above sections, T was taken as a diagonal matrix, ie:

the system was designed for non-interacting response. Under such

condition, it was found that realizability of all 3 schemes is

assured if the following 2 conditions are fulfilled:

a - the elements of filter G are physically realizable

b - the poles of the elements of (I - FT) are on the LHP, or are

simple if they are on the imaginary axis

For schemes no 1 and 3 where F 4 0, condition b guides the

designer in the choice of an expression for F. In other words,

the designer has one equation, to solve for 2 unknowns, but the

choice of one of the 2 unknowns is not quite a free choice. For
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scheme no 2, where F = 0, condition b becomes trivial and may be

suppressed.

It is desired now to extend the above result to the more

general case of interacting systems, in which T is a non-diagonal

matrix.

It turns out, after a somewhat tedious proof, that the above

is still applicable to the case of non-diagonal T matrix.

In the above sections, where T is diagonal, (I - FT) is also

diagonal (since F is diagonal for one-to-one feedback). Thus the

elements of (I - FT) are merely the inverses of the diagonal

elements of (I - FT) . In other words , the poles of the elements

of (I - FT) are the zeros of corresponding elements of (I - FT)

,

For the more general case of a non-diagonal T matrix, we

have

(I " FTrl =
|I - FT

|

[
adj(I " FT)

]

where
1
1 - FT

|
is the determinant of the matrix (I - FT)

.

Then the poles of the elements of (I - FT)" are roots of the

equation

I - FT =0

plus some others coming from the expression of adj (I - FT)

.

The remainder of this section is devoted to the proof as

applied to the general case, and the result stated at the end

of the section.

x
X X
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Start with:

C = (G + HT) (I - FT)"
1

For convenience in notation, let (I - FT) be defined as L matrix

(I - FT)"
1 AL

three statements will be made before the final proof is undertaken.

statement 1; elements of L have all real coefficients

statement 2: order of numerator of elements of L^ order of

denominator

statement 3: if 2 transfer functions are physically realizable,

their sum is a realizable transfer function.

Note that the first two statements are similar to the 2 statements

on pages 19 and 20 concerning the diagonal-T case.

Statement no 3 is proved in Appendix 1.

An illustration using (2x2) matrices clearly shows the validity of

statements 1 and 2 for the general case with non-diagonal T matrix.

-1 ,io
L £ I - FT =

I 1 - f,,t

l"
1 -

V
L = 1

. 1
[adj L"

1

]

11-11 '
fn t

i2

f
22

fc

21
l " f

22
fc

22

(21)
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L*
1 -

(1 - f^t,,) (1 - f--t00 ) + f--f--t,-t.
ll w

ll' 22 22' ll'-22"12
u
21

(1 - f
22

t
22 )

f
22

fc

21

f
ll

t
12

(1 " f„t
ll

w
ll'

1,, =
1 " f

22
fc

22

11 (1 - f^t..) (1 - f ~t _) + f-.f-.t.-t11"11 22 22' ir22"12
w
21

(22)

1,- =
f
ll

fc

12

12 (1 - f^t..) (1 - f90 t,, 9 ) + f-.f__t._tini 22 22' 11 22 12 21
(23)

Since f.., f
2 _,

t.., t...... all have real coefficients, the

coefficients of 1.., obtained by cross multiplication and

summation of the above, are real numbers as well (statement

no 1)

.

Since f.., f_
2

, t.., t._ . ... all satisfy the condition: order

of numerator^ order of denominator, so does their product.

Considering terms of the type fiif22 > °^ f. ifo2 t
12

t 21 as a

whole, these terms will have a negative order (order numerator

- order denominator^ 0). Terms of the type (1 - f_-t
?
-) will

have zero order (order numerator - order denominator = 0)

.

Consequently, eq (22) shows that 1.. satisfies the condition

order of numerator - order of denominator. This is true for

1 . . in general

.
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Similarly, eq (23) shows that l.~ satisfies the condition:

order of numerator ^ order of denominator. This is true for all

terms 1.. in general, where i 4 j.

To sum up, it is always true for all elements of L, that the order

of numerator is ^ order of denominator. Statement no 2 is thus

shown to be valid. The above remarks are applicable to a matrix

L of any order.

x
X X

The 3 statements will now be used to prove a realizability

condition for C

C = (G + HT)L where L A (I - FT)
-1

For the (2x2) case:

C =

More explicitly,

l

12

'22,

u
11

u
12'

V
21

u
22

1
11 *12

X
21 *22

C
ll

=
<*11 + \lhl + h

12
t21> 1

ll
+ <*12 + hlhl + h

12
t22> 1

21 <
24)

C
12

= (gn + hn tu + h
12

tn )l
12 + (g12

+ hn t
12

+ h
12

t
22

)l
22 (25)

A general expression for C. . is:

^^Ji^VV^j 1^ (26)
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In a (2x2) system, C. . is the sum of 2 terms. In a (nxn) system,

C. . is the siim of n terms. Due to statement no 3, if each term

is physically realizable in itself, then C. . is realizable. But

each of these terms has the form (see eq 24):

<*u *ii«ii * *u'» + ••• )1n (27)

which can be written as

gll
+
kJ1

h
lk

t
kl)

X
ll

Each of the functions h-j.t,, is realizable, hence so is its sum

(from statement no 3)

.

If g,
1

is also realizable, then so is (g
1

, + L h.. t . )

.

But (27) also contains 1.-. Thus another condition for realizability

of (27) - ie: realizability of C, . - is that 1-., too, be realizable.

Statements no 1 and 2 show that 1,, satisfies the first two conditions

for realizability. The third condition is that 1,, should have no

forbidden poles. Equation (21) shows that poles of 1.. are roots

of the equation:

or

L"
1

I - FT

=

=

(Other poles of l's may come from the expression of their respective

numerators, but they are all poles of f's or of t's, ie: acceptable

poles
.

)
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The result for this general case of non-diagonal T matrix is

summarized as follows. If:

a) elements of G are physically realizable

b) roots of 1 1 - FT I
=0 are on the LHP and are simple if on the

imaginary axis,

then all indicated feedback compensation schemes can be realized.

Note the generality of the above statement. In the particular

case of diagonal T matrix, the roots of 1 1 - FT | =0 are the

same as the zeros of (diagonal) elements of (I - FT), ie: poles

of elements of (I - FT) , thus again yielding the results of

sections III-l to III-3.
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Conclusion

Chapter Two of this report suggests a quick way to look

into various feedback compensation schemes before making a

judicious decision as to which scheme will best suit the designer's

situation. Equations (11) (12) (13) are convenient for such

purpose. For relatively small systems with 2, 3 variables, calcu-

lations are simple. For more complex systems, computational aids

will be needed to avoid time consuming labor.

Chapter Three of the report develops a simple criterion to

check whether or not a compensation scheme is realizable with

physical components, using only the expression of G, the cascade

open loop filter. The study begins with a non- interacting system

and is later generalized to interacting systems as well. It turns

out that if the elements of G are physically realizable and if,

in addition, the determinant |I - FT I
has no roots on RHP, then

feedback compensation schemes using any or all of the controllers
f

C, F, H are realizable. This last restriction on | I - FT

|

serves as a guide to the designer in the selection of F.

It is believed that the approach presented in this report

leads to a systematic way of designing multivariable feedback

control systems. Starting with the given plant P and the desired

specification T, the designer obtains the expression of G, which,

as shown in the report, is very convenient to work with, since

the first step in obtaining a physically realizable feedback

compensation scheme, is to try to make G itself realizable.

It is the authors' hope to report next on a method of

obtaining a realizable G while satisfying other specifications

on stability, transient response and interaction.



Appendix 1

Proof of statement no 3

If f, (s) and f
2
(s) are both physically realizable transfer functions,

then f, (s) + f„(s) is also a physically realizable transfer function

n V
a
n
s + .... + a

Q V +....+<*
f
l
(8) = 7"m r f

2
(s) =

b s
m +....+ b j3 s

w +....+ £mo 'wo
where a, b, a, )3 are real coefficients

and n ^ m, V ^ w.

Now form the sum

f(s) = f^s) + f
2
(s) =

Cv
n+

••• + 0(vw
+ ••• + ,(v

v
+ •••• + OCbm

sm+
•••• +

Cv
m+

•••• + 0^wsW+ •••• +

1 - coefficients of f(s) are real. (In denominator, products of

real coefficients give real coefficients. In numerator the

sum of products of real coefficients yield real coefficients

also.)

2 - order of numerator of f (s) < order of denominator.

Same proof is given in paragraph 2/ page 24.

3 - poles of f(s) are acceptable: poles of f(s) are merely those

of f,(s) and those of f
2
(s) which are both acceptable.

Thus f(s) satisfies all 3 conditions and is realizable.
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u
C

X y

P = plant transfer function matrix

C = cascade controller transfer function matrix

U = system input column matrix

Y - system output column matrix

X = plant input column matrix

Figure 1 s A multivariate control system

-35-



=*> ;£> 3"=>

/uj-\.

3"

^

In £0

o

o

O
o
o

CL jClLo O-

A

* >f
Va

N

V

is

v>

Sj
» » ^u

<>«5r—

^

to

3

<«^

i/
>|

-36-

X
•H
fn

-P
crt

fl
a

cf> CD

-P Ph
03 cri

^ 2,
03 O"1

CD

H
cri

fs

-P o
fl +3

o <d
cij

•H
H <+H

s 3H
H Fj

01

> Ph
•H
-P *J
rH P
d •H
S >

CM

<!.<

u

a
•H
ft



-o-

La)

Figure 3 : Possible feedback structures

(a) scheme no 1

(b) scheme no 2

(c) scheme no 3
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P = plant transfer function matrix

G = open-loop cascade filter transfer function matrix

U = system input column matrix

Y = system output column matrix

X = plant input column matrix

Figure 4 t Filter design
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