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INTERACTION BETWEEN A SHOCK WAVE IN AN ELASTO-PLASTIC

MEDIUM AND A NONRIGID WALL

G. M. Lyakhov and N. I. Polyakova, Moscow

The interaction between a wall and a wave in an
elasto-plastic medium with an alternating sign of
curvature of the stress-strain dependence a = a(s)
was examined earlier [I]. The case of small
stresses lying on the concave section of the dia-
gram a = a(s), when the wave has no pressure Jump
at the front, has been investigated. Below, based
on earlier studies [1, 2], we will give a solution
to the problem of the interaction between a plane
wave and a nonrigid wall or the boundary of media
in the case of large stresses, corresponding to
the section of the diagram a(s) which is convex
relative to axis e. Here the wave is a shock wave.

1. We will examine a model of a medium with nonlinear dependence

a = a(e). With small values of a we have d2a/ds2 < 0 and with the

large values, d 2a/ds2 > 0. Compression and unloading when a < as occur

elastically, i.e., according to one law, but when a > a. they occur ac-

cording to different laws. Secondary loading takes place according to

the law of unloading up to the stress achieved on first compression.

Such a model is applicable to the ground and certain solid media.

We will examine large stresses, therefore we can consider the

elastic section as small and approximate the relation a = a(s) under
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load with two straight lines (Fig. i).

m, VI' I

Fig. I a and b.

We will examine two variants of the approximation of the unload-

ing curve. In the first case we will assume that unloading takes

place at a constant residual deformation, i.e., along a line parallel

to axis a, in the second case the unloading line is parallel to the

second section of the linearized compression diagram a = a(e).

In Fig. la and b, broken line I corresponds to the loading line,

straight lines 2 to the unloading lines under constant residual defor-

mation, and straight line 3 to the unloading lines parallel to the

second section of broken line 1.

Wave propagation in the first law of unloading has been examined

by V. N. Rodionov, A. Ya. Sagomonyan, and other authors; the reflec-

tion from a rigid wall for the approximation of compression curve

a = a(e) by a straight line was examined by S. Kaliski and Ya. Osieski

[3].

We will change from parameters a and e to the parameters, pres-

sure p and volume V.

For the propagation of a plane wave in a medium unbounded in a

direction perpendicular to its movement, or in a rod bounded by an in-

compressible shell, the compression of the medium corresponds to a
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uniaxial deformed state. Thus

(I, = - P, ,. .. (V - V.") ., v,,( .

By virtue of (i.i), the relation p = p(V) will be linear if the

relation a = 0(e) is linear.

The equations of the factors approximating the compression curve,

in a system of units p and V, are

/, .. .B,'' ,/ wh en U,";+,, '.. . +.,V - . , 4 n +,> p,, ( ,2
(. R, I ,' . (1.2)

The thermal energy losses on compression of the medium are'deter-

mined by the area of the figure on the plane pV bounded by a straight

line which connects, in the compression diagram p = p(V), the points

corresponding -to pressure at the front and ahead of the front and to

an unloading line. Therefore, by the first unloading law (V/ t - 0),

the energy losses by wave motions are as high as possible with the

given compression law p = p(V).

2. We will examine the interaction between a wave and a wall

when the unloading line is parallel to axis p. Let us assume that

when t = 0 in the initial cross section of the medium h 0 0, the pres-

.sure jumps to pm' and then drops according to the given law

S.. /(1) (2.1)

It 2

Fig. .
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The shock wave begins to propagate throughout the medium. The

flow of the shock wave behind the front, in Lagrangian coordinates

where h is mass and t is time, is defined by the motion equations

r .~i~r , ,, - , o(2.2)

Here u is the particle velocity.

In our case, unloading of the medium occurs behind the front

(region i in Fig. 2) when V/)t = 0, from where we obtain the solution

of Eq. (2.2)

OIL (t), Op, p - ~ 1 (1)

The functions c(k) and * 1 (t) must be determined from the initial

and boundary conditions of the problem.

When h = 0, we have p = f(t). Hence *$(t) = f(t). The relations

at the front of the shock wave in the coordinates h, t have the form

1, -/,_ - , (Vo - V), i - Uo = it (V - 1) (2.4)

where h is the front velocity. We will assume the pressure and veloc-

ity of particles in front of the wave to be Po = 0, uo = 0. Let the

maximum pressure in the cross section h = 0 corresponded to maximum

value pm in the first part of the approximation. Then h = A,, On

the line of the front h Alt we have

p = IA , /, - Ia (i - A q,, () = 0 (2.5)

Integrating the last equation, we find TI(t). In this way the

solution in region i is obtained

p (h, 1) = - h(, ( + I ( t, = q, (1) (2.6)

If the initial cross section p is given as



then integrating (2.5), we find that in region i

'"" l- ' ' ' AM (2.8)

Let us assume that a wall (or the boundary of media) is situated

in cross section h = h*. The relation p = p(V) in the second medium

behind the wall is approximated by a straight line

/- ,.. (2.9)

When t* = h*/Aj, the front of the wave reaches the wall. Upon

reflection form: region 2 - reflected shock wave, region 3 - reflected

plastic wave, region ±* - a passing wave behind the barrier., In re-

gion 2 loading of the medium occurs along the unloading line (V - V(h))

up to the limit of elasticity which is different for different par-

ticles. The solution in region 2 relative to (2.3) is

/, + -it , --i.( , = ( (2.10)

When h = 0, we have p = f(t). Hence *2(t) f(t). The front

velocity is

r Ij- I' ( . i

The velocity is determined by the angle of inclination of the

secant in the diagram p = p(V), drawn from a point where P2 corre-

sponds to the pressure at the front to a point where pi is the pres-

sure ahead of the front. If the time of the wave action 0 in cross

section h = 0 is great, then the maximum pressure in the incident

wave insignificantly decreases with the increase of h. The reflected

wave moves over the region with little change of pressure. Therefore.



the front velocity of a reflected wave (when p > pm) can be assumed

constant and, by virtue of our approximation, equals -A2 . Then the

equation of the line of the front 2-3 (Fig. 2) is

h - Aul -- Al i2 ( 2

On this line in region 2 the pressure in each particle reaches

the value which was at the front of the incident wave h - Alt. Thus

by virtue of (2.10)

+. AIMI-- .) I * - ,,l11 / .I

Integrating this equation, provided that p2 (t*) - T1 (t*), we

find p2 (t) which together with the condition W2 (t) = f(t) determines

the flow in region 2.

If when h = 0 the pressure is defined by Eq. (2.7), then from

(2.13) we will find that in region 2

f,0 ) . ( 2 . 1 4 )
, -l:-,- 2, -I .0 2 (,m ,9 k~ L - -. I I i- - 6- -j" 21

Unloading of a medium occurs in region 3, the solution has the

form of (2.3).

The condition at the wall: the velocity of the particles of the

medium, adjoining both sides of the wall, equals the wall velocity

qs(t). The pressure, acting from the side of the second medium when

condition (2.9) is fulfilled, is related to the particle velocity by

the ratio p = A*u = A*9 3 (t).

Thus the equation of wall motion in region 3 is

-6-



where m is the mass of the wall per unit cross-section area. Index 3

pertains to region 3. We find from the condition the function * 3 (t)

at the front of a reflected wave. According to (2.4) and (2.3)

P. -p2 -A 2 (u ,)- ) hp: (1) hq (t + (' - ) (2.5
= A2 [,,, (1) - (p3 (1)] (2-15)

Having eliminated by means of (2.15) the function *s, we will

transform the equation of motion to

(A 2t - Aat ?1l) (p3 (1) - (20 + q*) (() (2.16)
+- A 2.pg () - I(A I +i A,) t* - A .,1 1 (t) ,- / ()

Integrating this equation, provided that 93 (t*) = 0, we will

find the velocity of the wall ps(t). Having determined 4s(t) from

(2.15), we obtain the solution in region 3. If the wall is rigid

(m = oc), then in region 3 the particle velocity is equal to zero

(s(t) = 0. From (2.15) we will obtain

p (t) = AN (t) -, : ()1 - , ., (A1- . (2. 17)

If condition (2.7) is fulfilled in cross section h - 0, then

in region 3 the pressure is defined by the equation

S . 1(2.18)
At 1.1 _,\ ' f) -J .- 2 0 21.)

Hence we obtain

*'p P.-At- , (i - we

In an incident wave at that instant of time according to (2.8)

Hence the coefficient of reflection from the wall is

t(2.19
1. . -'- >



If when h = 0 the pressure is given in the form of (2.7) and the

mass m is finite, then introducing a new variable T = t - t*, we will

obtain the differential equation of wall motion (2.16) in region 3 in

the form

(i A~;.,T) ( T) +~ (,,I,+.A*) (P. (T)
I-: III' 1.- (2.20)

The solution of this equation, i.e., the expression for wall

velocity in region 3, when A* - A, A2/2 is

21n*'P'(')-= : , '-r I - ,,.t' ;c9! i) ( : ',,''- ) -

11 C4)i II - - i

where

For large values of t*/e the pressure drop at the front of the

incident wave in the section 0 < h < h* is great and the front veloc-

ity of a reflected plastic wave can be sharply distinguished from -A2 .

In this case the flow in regions 2 and 3 must be obtained by the simul-

taneous determination of the boundary between them.

If the relation p(V) on compression is approximated by one

straight line having an inclination A, and unloading occurs along the

vertical, then, assuming in Eq. (2.20) A* = A2 = Al, we will obtain

its solution as

'ww k " " " '°

Here
in I *hi - -- -



The front velocity of a reflected plastic wave is equal to -A,.

Depending on the parameters of the incident wave, on the charac-

teristics of the media on both sides of the wall, on the mass, and on

the removal of a wall from the first cross section, various configura-

tions of a reflected-wave system are possible (in particular, unload-

ing regions can be replaced by loading regions, etc.).

3. We will examine the interaction between a wave and a wall in

the case where the unloading line is not parallel to axis p. Let us

assume in cross section h - 0 that the pressure changes in conformity

with (2.7). We will approximate the curve of compression of the med-

lum by a straight line (1.2), and the unloading line curve by a

straight line

P - .. + -I-. htu

where B2 depends on the value of maximum stress attained on compres-

sion; pm corresponds to maximum pressure in the first section of the

approximation. The solution of Eqs. (2.2) defining the flow behind

the wavefront formed in the medium, for linear approximation of the

relation p = p(V), as was shown in [] is

P, ,(--, ) . AA (!- Y .(h+ .j), P. (i - A.,I). - P'.,(h + A + (3.2)

The functions F, and F2 are defined by the initial and boundary

conditions. The flow behind the wavefront (region I in Fig. 3), ob-

tained from (3.2), according to [1], is defined by the equations

p - p,,(1 - I. /o ...
oV (3.3)

'IO -P", ~

When t = hX/Ai tX , the front reaches the wall. In this case

regions 2 and IX are formed. As in part 2, we will assume the equatic



of the reflected wavefront in the form of (2.12) and the relation

p - p(V) in the second medium behind the wall in the form of (2.9).

Fig. 3.

The region corresponding to region 2 in Fig. 2 in !-.he case con-

sidered does not appear, since the velocity of the reflected wave-

front coincides with the unloading velocity. The condition at the

boundary of 1-2 (Fig. 3)

P2 + A u.,+A, (3.4)

yields that the function

I?(h ) p. fAi+A2+-(At+_A) L (3.5)

transfers from region I to region 2.

Thus the differential equation of wall motion is

m('f (I) p ',L - P," 2F1 , (Ih - A.1) - (A., ')(p ()

or

C - -'(P ! ;, -I- 0 (3.6)

where

C I . .. -I, /,_ (.I,.[- ,.,) ,, P..,,, ,- 7J i;- I . .. I (,,I -I- ,4.,lh '

m ' 2. I , I1 010 '2A,-u .

Integrating (3.6), provided that condition q(tX) 0, we will

find the wall velocity

7J --- T \ CI) (I -ij (3-7)

We will determine the second function in region 2 from the con-

dition

-1iO-



Hence

The solution in region 2 is

1 -;-A t IJ- I-It (3.8)
-M AI~/~ 2Ii

We obtain the solution in region I2< from the condition at the

front of the passing wave p - A><uxi 2FX2 = 0 and from the condition

that when h -hX the particle veaLocity equals the wall velocity

Fig. 4.

The wall velocity, defined by equation (3.7), first increases

and then drops off. Differentiating (3.7) and equating the derivative

to zero, we will find that the inaxtinun value of velocity is reached

at the instant of time T, detenrrined from the condition

- / IL ( -9



If m - , then in region 2 when h - hX

U O, P, (h - A) - ( - AS) =

Hence

P'2 (h -q. " Lt) --F1 (2hL -h - A5t) -l. . x,

+l (.lo,,,,4-,

I , - .. )I -1,1 G

If m 0, then from (3.6) we will find that when h = hX

AX+A (3. 11)

4. We will analyze the regularity of wall movement in an elemen-

tary case where the relation a(e) on compression is approximated by

one straight line.

We will examine the calculation results of the wall velocity,

which are presented in Fig. 4 by two graphs corresponding to the dif-

ferent models of the medium.

In both cases the wall mass m, its distance from the initial

cross section hX, and the pressure change in cross section h = 0

(Eq. (2.7)) are assumed identical.

The graphs correspond to the same law of compression of a medium

(one linear factor), however, the unloading line is different: curve

i is the unloading line coinciding with the load line; curve 2 is the

unloading line parallel to axis p.

In the second case under these conditions, the energy loss on

movement of the incident and reflected waves, as noted above, are max-

imum, and in the first case are minimum.

FTD-TT-63-360/I+2+4 -12-



Fig. 5a. Fig. b.

The difference in the character of the graphs is due to the dif-

ference in energy loss. The greater the loss, the smaller the value

of maximum wall velocity.

Figures 5a and 5b show the pressure change at the wall-during its

movement for these two models of the media: Fig. 5a is the medium

governed by Hooke's law; Fig. 5b, the unloading line is vertical. In

Fig. 5a and 5b the pressure in the wave in cross section h - hX in the

absence of a wall is shova by a dashed line. It is obvious from the

figures that the presence of a wall appreciably distorts the wave only

in a time interval small as compared with e.

Thus in an elasto-plastic medium with vertical unloading, just

as in a linearly elastic nedium governed by Hooke's law, even a wall

with a relatively large nass is involved in motion together with the

medium during a time interval small as compared to the time of the

wave action.

This conclusion also pertains to media with an inclined unload-

ing line.
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