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INTERACTION BETWEEN A SHOCK WAVE IN AN ELASTO-PLASTIC
MEDIUM AND A NONRIGID WALL

G. M. Lyakhov and N. I. Polyakova, Moscow

The interactlon between a wall and a wave in an
elasto-plastic medlum with an alternating sign of
curvature of the stress-strain dependence ¢ = o(&)
was examined earlier [1]. The case of small
stresses lylng on the concave section of the dia-
gram ¢ = o(e), when the wave has no pressure jump
at the front, has been investigated. Below, based
on earlier studles [1, 2], we will give a solution
to the problem of the interactlon between a plane
wave and a nonrlgid wall or the boundary of medla
in the case of large stresses, corresponding to
the section of the diagram o(e) which is convex
relative to axls e, Here the wave 1ls a shock wave.

1. We will examine a model of a medium with nonlinear dependence
0 = o(e). With small values of ¢ we have d?g/de? < O and with the
large values, d%g/de® > O. Compression and unloading when o < g occur

elastlcally, i.e., according to one law, but when ¢ > Og they occur ac-

cording to different laws. Secondary loading takes place according to
the law of unloading up to the stress achleved on first compression.
Such a model 1s applicable to the ground and certaln solid media.

We wlll examine large stresses, therefore we can consider the

elastic sectlon as small and opproximate the relation ¢ = o¢(e) under
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load with two straight lines (Fig. 1).
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Fig. 4 a and b,

We wlll examine two variants of the approximatlon of the unload-
ing curve. In the first case we wlll assume that unloading takes
place at a constant residual deformation, l.e., along a line parallel
to axis o, in the second case the -unloading line 1s parallel to the
second section of the linearized compression dlagram ¢ = o(e).

In Flg. 1a and b, broken line 1 corresponds to the loading line,
straight lines 2 to the unlocading lines under constant residual defor-
matlon, and stralght 1line 3 to the unloading lines parallel to the
second sectlion of broken line 1.

Wave propagatlon in the first law of unloading has been examined
by V. N. Rodlonov, A. Ya. Sagomonyan, and other authors; the reflec-
fion from a rigld wall for the approximation of compression curve
o = o(e) by a straight line was examined by S. Kaliski and Ya., Osieski
[3].

We wlll change from parameters ¢ and g to the parameterq‘pres-
sure p and volume V.

For the propagatlon of a plane wave in a medium unbounded in a
direction perpendicular to 1ts movement, or in a rod bounded by an in-

compressible shell, the compression of the medium corresponds to a
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unlaxlal deformed state. Thus

G —p e (V=TI (4.2)

By virtue of (1.4), the relation p = p(V) will be linear if the

relation o = o(e) is linear.

The equatlons of the factors approximating the compression curve,

In a system of units p and V, are

P — ARV B when Py, poe e A2V L, wen p>p (1 2)
(LB vonsy ’

The thermal energy losses on compression of the medium are deter-~
mined by the area of the figure on the plane pV bounded by a straight
line which connects, in the compression diagram p = p(V), the points
corresponding to pressure at the front and ahead of the front and to
an unloading line. Therefore, by the first unloading law (dV/d3t = 0),
the energy losses by wave motions are as high as possible with the
given compression law p = p(V).

2. We willl examine the Interactlon between a wave and a wall
when the unloading llne is parallel to axis p. ILet us assume that
when t = 0 1n the inltial cross section of the medium h = 0, the pres-

-sure Jjumps to Py and then drops according to the glven law

p o= / ([) (2. i)
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The shock wave begins to propagate throughout the medium. The
flow of the shock wave behind the front, in Lagrangian coordinates

where h 1s mass and £ is time, is defined by the motion equations

g, ou o
57“"5/7":‘0’ w0 (2.2)

Here u 1s the particle velocity.

In our case,'unloading of the medium occurs behind the front

(region 4 in Fig. 2) when 3V/d3t = O, from where we obtain the solution
of Eq. (2.2)

Be0 weql) Lm0 p =R () e () (2.3)

The functions ¢y () and ¥;(t) must be determined from the initial

and boundary conditions of the problem.

When h = O, we have p = £(t). Hence ¥:(t) = £f(t). The relations

at the front of the shock wave in the coordinates h, t have the form

P o= (Vo= V), w—up =k (Vy — V) (2. %)

where 5 is the front veloclity. We willl assume the pressure and veloc-

ity of particles in front of the wave to be pg = 0, ug = 0. Let the
maximum pressure in the cross sectlon h = 0 corresponded to maximum

value Pp in the flrst part of the approximation. Then h = A;. On
fhe line of the front h = A;t we have

po=dg, [0 = hgy () — Agpy (1) =0 (2.5)

Integrating the last equation, we find ¢i(t). In this way the

solution in region 1 is obtained
plty=—hp (1) + ) u=gq() (2.6)
If the initial cross section p 1is given as

-




P = /z.‘;<1 7’)) (2-7)

then integrating (2.5), we find that in region 1

P [ H { o
C TR O RS -;',-l(l ] EERT Al U S Rl o -3';','7(,*/ (2.8)

Let us assume that a wall (or the boundary of medla) is situated
In cross section h = h*, The relation p = p(V) in the second medium

behind the wall 1s approximated by a stralght line

Py e | . (2.9)

When t* = h*/A;, the front of the wave reaches the wall. Upon
reflection form: région 2 — reflected shock wave, reglon 3 — reflected
plastic wave, reglon 1* — a passing wave behind the barrier.: In re-
glon 2 loading of the medium occurs along the unloading line (V = V(h))
up to the limit of elasticlty which 1s different for different par-
ticles. The solution in region 2 relative to (2.3) is

Pl () (e = g, () (2.10)

When h = O, we have p = £(t). Hence ¥a{t) = £(t). The front
veloclty is

;'., R et ) (2- 11)

¥R

The veloclty 1s determined by the angle of inclination of the
secant in the diagram p = p(V), drawn from a point where ps corre-
sponds to the pressure at the front to a polnt where p; 1s the pres-
sure ahead of the front. If the tlme of the wave actlon é in cross
section h = O 1s great, then the maximum pressure in the incident
wave insignificantly decreases wilth the increase of h. The reflected

wave moves over the region with little change of pressure. Therefore.




the front velocity of a reflected wave (when p > pm) can be assumed

constant and, by virtue of our approximation, equals -Az. Then the

equation of the line of the front 2-3 (Fig. 2) is

I == -—/lul e ﬂ-‘j:*rﬂgh" (2. 12)

On this lilne in reglon 2 the pressure in each particle reaches

the value which was at the front of the lncident wave h = A;t. Thus
by virtue of (2.10)

P il) = O - [ UY = F )T A
| ()11 4y (2'13)

Mo [y R A) 1 —~ Ayl 4,y

Integrating thils equation, provided that 9a(t*) = @, (t*), we

find ¢a(t) which together with the condition ¢a(t) = £(t) determines
the flow in region 2.

If when h = O the pressure 1s defined by Eq. (2.7), then from
(2.43) we will find that in region 2

" I'm o

G2 (0) = 5 (1=%)

2 (ol - g Rt o ':.5.2] . (2. 14)
0 T

(la--240(0—2%)
! A A

ey .-i~4'-‘0 r

w{l) .'ﬂl.!
LTI R

Unloading of a medlum occurs in region 3, the solutlon has the
form of (2.3).

The condition at the wall: the veloclty of the particles of the
medium, adjolning both sides of the wall, equals the wall veloclty
¢3(t). The pressure, acting from the side of the second medium when

condition (2.9) 1s fulfilled, is related to the particle velocity by
the ratio p = A*u = A*ga(t).

Thus the equation of wall motlion in region 3 is

My (1) = = W%y (1) 5 (1) — A%y (1)
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where m 1s the mass of the wall per unlt cross-sectlion area. Index 3
pertains to reglon 3. We find from the condition the functlon ¥a(t)
at the front of a reflected wave. According to (2.4) and (2.3)

Py =Py = Ay (g ), = hipy (1) 4 Iy (1) b (1) — 1 (1) =

= Ay [gg (1) = 0y (1)) (2.15)

Having eliminated by means of (2.45) the function ¥a, we will

transform the equation of motion to

(Aot — Agf* o m) Gy (1) = — (Ay - A7) @4 () 4 '
3 g L] 1
Ay (1) = 1Ay 4 A ¥ — A Gy (1) -+ 1 (1) (2 6)

Integrating this equation, provided that ¢a(t*) = 0, we will
find the velocity of the wall ¢a(t). Having determined ¥s(t) from
(2.15), we obtaln the solution in region 3. If the wall is rigld

(m = =), then in region 3 the particle velocity 1s equal to zero

a(t) = 0. From (2.15) we will obtain
P = o () = Agia () 4+ /(1) = G2 () Ay (2.47)

Ir condition (2.7) 1s fulfilled in cross section h = 0, then
in region 3 the pressure 1is defined by the equation

L Ak oy L R AR S AT A
P TG, (1 R R (2.48)

Hence we obtain

21y

el I3
e 1/,,.(1 - 25) when ¢ == ¢

In an incident wave at that instant of time according to (2.8)

Hence the coefficlent of reflection from the wall 1is

o LLIT : .10}
)] R /\2 (2 1, ;




If when h = O the pressure is glven in the form of (2.7) and the
mass gﬁis finite, then introducing a‘new variable T =% - t%, we will

obtain the differential equation of wall motion (2.16) in region 3 in
the form '

(i - ALT) Gy (1) 3 (Ag - A*) g (1) -
UL T SO MR (LA TN PORIELC AN 2,20
P \ T "\-1 i i 0 In \\1 tlll"}_!~ ( )

The solutlon of this equation, i.e., the expression for wall

velocity in reglon 3, when AY = A; = Aa/2 is

N 2[’"] ! TR p 2 K A
Fa (T) 7= T'.IU - —lf~0- — :,é%n—\’} (1 — =) -t -—.Ll - :)., In I _.2...:: -—
EAY 20/ o0 20 \ t (2 21)

- s g VA0 ()
—gil= 23— 5 (a3) ln(.‘(/“ﬁ__{)] (.‘V?»'-? l))]l}

where

m

h
[/ A R 9 5z - ——
nel- ! o g I m'

For large values of t*/6 the pressure drop at the front of the
incident wave in the section O ¢ h € h* 18 great and the front veloc=-
1ty of a reflected plastic wave can be sharply distinguished from -Az.
In this case the flow in regions 2 and 3 must be obtalned by the simul-
taneous determination of the boundary between them.

If the relation p(V) on compression is approximated by one
étraight line having an inclination A; and unloading occurs along the

vertical, then, assuming in Eq. (2.20) A* = Az = A;, we will obtain
its solution as

el 3 (0 5T 0 - 5w =Sl

Here




The front velocity of a reflected plastlic wave 1s equal to -A;.

Depending on the parameters of the incident wave, on the charac-
teristics of the media on both sides of the wall, on the mass, and on
the removal of a wall from the flrst cross sectlon, various configura-
tions of a reflected-wave system are possible (in particular, unload-
ing reglons can be replaced by loading reglons, ete. ).

3., We will examine the Iinteractlon between a wave and a wall in
the case where the unloading line is not parallel to axis p. Let us
assume 1n cross section h = 0 that the pressure changes in conformity
with (2.7). We will approximate the curve of compression of thé med -

fum by a straight line (1.2), and the unloading line curve by a
stralght line

pom = ARV b By (3.4)

where Bz depends on the value of maximum stress attained on compres-
sion; P corresponds to maximum pressure in the first section of the
approximation. The solution of Eqgs. (2.2) defining the flow behind
the wavefront formed in the medium, for linear approximation of the

relation p = p(V), as was shown in [1] is

PP (e gy - Py, g = Fofh — Aty — Fy (b + Ayt) (3. 2)

The functlons F, and Fz are defined by the initlal and boundary
conditions. The flow behind the wavefront (region 1 in Fig. 3), ob-

tained from (3.2), according to [1], 1s defined by the equations

_— [ _i1::_‘7'.:.,l."' h [
P l’m\l SET 0T (3.3)

fely h RILEp o

1, o= R R L
A= P (T o~ i )

When t = hx/Al = t%, the front reaches the wall. In this case

reglons 2 and 1* are formed. As in part 2, we will assume the equatic -




of the reflected wavefront in the form of (2.42) and the relation
p = p(V) in the second medium behind the wall in the form of (2.9).

DI

Fig. 3.

v

The region corresponding to reglon 2 in Flg. 2 In the case con-
sldered does not appear, since the veloclty of the reflected wave-~
front coilncides with the unloading velocity. The condition at the
boundary of 1-2 (Fig. 3)

Pe + Agug = D + A,u, (3' 4)
ylelds that the function
Pyt — Agd) = p,, {A‘zj';l”“ 4 if;,::“:;"' (h — A,t)} (3.5)

transfers from region 1 to region 2.

Thus the differential equation of wall motion is

mG (Y = py — ppo= 20,00 = Ad) — (Ay - A7y (8)
or
G i O A B A D =0 (3.6)

where

Comh oty Lhb ARl ety (A - AN D%
m ! - . O - i’

|
200 ! =P, m.ly I o 24,0

Integrating (3.6), provided that condition ¢(t*) = 0, we will
find the wall veloclty

v ber e fh-Rimscl= ] )

We will determine the second functlon in region 2 from the con-
dition

-10-




Fy (% — Agl) = Fy(e == 0gt) Ay ()

Hence

2.0, R

Pt Aat) = S (op S 007 )] - (PR A

The solution in region 2 is

Ay Ay o Ay TR kA e A,
P o= ‘.‘l|/-/'ml_1 - = Y A Ay ".111 . “2(:(/_1___!{ | /l-.l)

PR T Ty
o (3.8)

Ay o oly

Te — ¢y |
v =g P )

(l)

We obtain the solution in region 1X from the condition at the
front of the passing wave pf - N’hf = 2F§ = 0 and from the condition
that when h = n* the particle veloclty equals the wall velocity

NE ).

pE= A =P - ) - (——/'x —hoa

602 < A

Fig. 4.

The wall velocity, defined by equation (3.7), first increases
and then drops off. Differentiating (3.7) and equating the derivative
to zero, we will find that the maxlmum value of veloclity 1s reached

at the instant of time 1, determined from the condition

Y S e i

. l'L \ N R I P TR o ) ey T3y X
[i. b twa v (18 e ) % (3.9)
S AR P (T




If m = o, then in region 2 when h = n%

W= 0, P — dg) — Fa (% -k Agt) =0

Hence

CFy (A gl) = By (20— = Agt) = p DT A8

24,

[t S — b Ag)]

(3.40)
L =S TR I gy U ECE TR
If m = 0, then from (3.6) we will find that when h = h*
DEY (S - 1) Ayl b)) Pl Ay o by,
el = -%x+auj ”%ﬁlm.37ﬁ_1+ %ﬁﬁ#‘”“ ”“”] (3.12)

4, We will analyze the regularity of wall movement in an elemen-
tary case where the relation o(c) on compression 1s approximated by
one straight line.

We will examine the calculation results of the wall veloclty,
which are presented in Fig. 4 by two graphs corresponding to the dif-
ferent models of the medium.

In both cases the wall mass m, 1ts distance from the 1nitial

cross section hx, and the pressure change in cross section h =0
(Eq. (2.7)) are assumed identical.
’ The graphs correspond to the same law of compresslion of a medium
(one linear factor), however, the unloading line is different: curve
1 18 the unloading line coinclding with the load line; curve 2 i1s the
unloading line parallel to axis p.

In the second case under these conditions, the energy loss on
movement of the incident and reflected waves, as noted above, are max-

imum, and in the first case are minlmum,

FID-TT-63-360/1+2+4 -12-
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Fig. ba. Flg. 5b.

The difference 1n the character of the graphs 1s due to thé aif-
ference 1n energy loss. The greater the loss, the smaller the value
of maximum wall velocity.

Figures 5a and 5b show the pressure change at the wall ‘during its
movement for these two models of the media: Filg. 5a 1s the medium
governed by Hooke's law; Flg. 5b, the unloading line 1s vertical. In
Fig. 5a and 5b the pressure In the wave 1n cross sectlon h = n* in the
absence of a wall 1s shown by a dashed 1line., It 18 obvious from the
figures that the presence of a wall appreciably distorts the wave only
in a time interval small as compared with 6.

Thus in an elasto-plastic medlum with vertical unloading, Just
as in a linearly elastic medium governed by Hooke's law, even a wall
with a relatively large nass 1s involved in motion together with the
medium during a time interval small as compared to the time of the
wave actlon.

This conclusion also pertains to media with an inclined unload-

ing line.

FTD-TT-63-360/1+2+4 -13-




PEFERENCES

1. G. M. Lyakhov and N. I. Polyakova, Rasprostraneniye 1
vzaimodeystviye voln szhatiya 1 razrezhenlya v uprugo-plasticheskikh
srgdakh. Izv. AN SSSR, OTN. Mekhanika 1 Mashinostroyeniye, No. 3,
1960,

2. @. M. Lyakhova, O vzaimodeystvili udarnykh voln v vodonasyshs
chennom grunte I v vode. Izv. AN SSSR, OTN, Mekhanika 1 Mashinostroy-
eniye, No. 1, 1961.

3. S. Kaliskl and J. Osilegkl, The Problem of Reflection by a
Rigid or Elastic Wall ol an Unloading Wave in a Body with Rigid
Unloading Characteristic. Proc. of Vibr. Problems, Warsaw, No. 41,
1959.

FTD-TT+63-360/1+2+1 1k~




DISTRIBUTION LIST

'DEPARTMENT OF DEFENSE Nr, Coples MAJOR ALR COMMANDS Nr. Coples

AFSC

SCFDD 1
DDC 25

HEADQUARTERS USAF TDBIL 5
IDBDP 6

.AFCIN=3D2 7 1 TDEPF ; (Merkle) 1

ARL (ARB) 1 SSD (SSF) 2

‘ E AEDC (AEY) 1
APGC (PGF) 1
ESD (ESY) v 2

OTHER AGENCIES RADC (RAY) 1
AFWL (WLF) 1

CIA 1 AFMTC (MTW) 1

NSA 6 ASD (ASYIM) 2

.DIA 9

AID 2

0TS 2

AEC 2

PWS 1

NASA 1

arvy (P8TC) 3

NAVY 3

NAFEC 1

AFCRL (CRXLR) 1

RAND 1

PGE 12

FID=TT= 63-360/1+2+4




