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CHAPTER I
INTRODUCTION

1.1 Reesons for Studying Spherical Shock Waves in Solids

The study of spherical shock waves in solids poses an interesting
problem both from the standpoint of the desirability of the results as
well as the inherent theoretical interest of the problem.

Information gained in this study should be of 1ﬁterest to investi-
gators in many fields. The dynamic expansion of & spherical cavity in
a metal under the conditions produced by a high explosive is closely
related to several important problems. The phenomena associated with
cratering due to hypervelocity impact, auto-frettage, underwater ex-
plosions, underground nuclear testing, nuclear reactor explosions, and
many more have much in common with the cavity expansion problem.

The study of shock waves in solids and their applications to the
study of properties of solids has become an active area of engineering
and physics.

Propagation of these intense waves through solids with pressures
up to 9 megabars has ylelded fundamental thermodynamic data which could
not be obtained by any other means. Shocks have been used to produce
changes in crystal structure of some materials. It has also been found
that shocks can change electrical insulators into conductors. Shocks
harden metals, create and alter vacancies and dislocations in lattices
and shock induced impact bonding of metals is now commercial.

It is felt that the simple geometry and relative ease of perform-
ing experiments warrante a rigorous study of spherical shock waves in

solids.




1.2. Physics of Cavity Expansion Due to Explosive Impact

Consider a detonation initiated at the center of a spherical
charge of high explosive surrounded by a ductile metal. A wave races
through the explosive and imparts a sharp impact to the surrounding
material. A shock wave is formed in the metal raising the the pressure
to the order of magnitude of 500 kilcbars. Under these extreme pres-
sures the metal in a zone adjacent to the explosive behaves as a com-
pressible; inviscid filuid. The shock wave propagates outward causing
large plastic deformation, but decays due to spherical divergence, that
is the pressure acts over an increasing area, into a stress wave.

Meanwhile in the gas there is a shock wave propagated back toward
the center of symmetry which is reflected again causing the gas to pul-
sate until the pressure is sufficiently reduced.

Vibration or oscillation also takes place in the solid and for a
finite body the problem of interaction from reflected waves arises.

Thus it becames evident that the camplications produced by the
extreme pressures, the varying mechanical behavior of the metal; short
time of the phencmena as well as the interaction between gas and solid
pose a difficult problem in the study of shock waves in solids, if
attempted in its full generality. An analytical theory can be formu-
lated and carried through only by isolating the significant factors in-
fluencing the behavior of the metal. This will be done in later chapt-
ers of this work.

1.3. General Nature of Shock Waves

The concept of & shock wave is often misunderstood even among




scientific and engineering people. The label shock wave is often
attached to both strong and weak discontinuities.

Weak discontinuities are fronts across which the time a.nd/or space
derivatives of the physical variables which describe the motion and
state of the medium may experience a finite change. These will be re-
ferred to as "sound waves”. These weves are the characteristics of the
linear differential equations that describe the motion. Across a sound
wave the physical variables experience only infinitesimal changes.

Strong discontinuities are fronts across which the physical var-
lables which describe the motion and the state of & medium experience
a finite change.

There are two types of discontinuity surfaces, contact surfaces
and shock fronts. Contact surfaces are surfaces separating two parts
of the medium without any flow across the surface. Shock fronts are
discontinuity surfaces across which mass flows.

For these waves there exists no sonic transmission of the discon-
tinuities of the physical variables since the governing differential
equations are nonlinear. We find that the discontinuities of the
physical variables cannot be described by a passage to a limit from
continuous solutions as in the case of sound waves. To arrive at an
adequate theory the physical fact of the existence of the shock wave
must be taken into account.

It cannot be assumed that the motion is isentropic, since the
velocity and temperature gradients are not small. Thus we are con-

fronted with having to describe mathematically an irreversible thermo-




dynamic process. However, actual phenomena show that the irreversible
zone is extremely narrow.

Outside of this transition zone the flow obeys the laws establish-
ed for an adiabatic reversible process. Thus the empirical fact sug-
gests a further mathematical idealization i1.e., an infinitely thin
transition zone. We find that the original differential equations,
valid in the region of continuous flow, together with the conditions
expressing the conservation laws and an entropy condition across the
shock front, suffice to determine the flow without describing in de-
tall the irreversible brocess across the shock zone.

There is considerable differeisce in the complexity of shock waves
in gases and in solids. This explains the greater amount of litera-
ture on the former compared with the latter.

The difference in complexity of the two phenomena is attributable
to several factors. One of the most significant being the lack of an
equation of state for solids which is wvalid over a large range of
pressures, and in general, a lack of knowledge of the thermodynamics
of solids. (This is discussed in Section 4.9.) Another reason is the
relative difficulty of making accurate measurements in solids. Other
camplications are (1) a shorter time sequence in solids, (2) ma-
terial imperfections, (3) non-homogeneity, and lack of transparency
as well as many others.

1.4. Statement of Problem and Scope of Study

The problem considered in this research is that of the dynamic

behavior of a ductile thick spherical metal shell surrounding a




spherical charge of high explosive, subsequent to the detonation of the
charge.

The problem is approached using a similarity theory (a one dimen-
sional problem in which the motion can be described by one independent
variable and hence the partial differential equations of motion are re-
placed by ordinary differential equations.) A more complete explana-
tion of this type of theory is given in reference (k) page 146. Values
for the velocity, pressure and denzity of the material are found for
the early stages of the process. The results are compared with those
of experiments. In addition, a critical study is made of the range of
validity of similarity type solutions as they apply to shock waves in
solids. A method of extending the self-similar theory is described

Equations of state of solids are discussed and their compatibhil-
ity with the theory of self-similar motion studied. A particular type
equation of state called quasi-polytropic in this work is analyzed as
to its compatibility with the similarity solution. Comparison is made
between the shock relations obtained using this quasi-polytropic rela-
tion and the polytropic equation of state.

Experiments on thick aluminum spheres are described and the re-

sults are discussed.




CHAPTER II
BRIEF REVIEW OF PAST WORK

2.1. Elastic-Plastic Effects

The most significant work published on the problem of expansion of
a spherical cavity in which elastic and elastic-plastic effects are em-
phasized was that by Hopkins (l)*, This article is a survey of the lit-
erature and includes comments on most of the significant work associat-
ed with the cavity expansion problem to date. Solutions are given for
the elastic problem using the classical approach of integral transforms.
It is of interest to mention that in tpe discussion of elastic-plastic
waves, Hopkins emphasizes that due to the inhomogeneity of the dis-
placement equation of equilibrium the plastic disturbances are not
propagated at a definite velocity. Only that part of the plastic wave
derivable from the plastic displacement potential travels at the plas-
tic wave velocity.

It is also shown that even the relatively simple case of elastic-
plastic effects in & perfectly plastic or Reuss type material that the
location of the elastic-plastic boundary is not obtainable in closed
form. An alternative procedure suggested by Hunter (2) is to specify
the location of the interface and then determine the corresponding wave
functions and applied pressure. The results obtained from this ap-

proach were in most cases found to be unrealistic or to place such

severe limitations on the applied pressure as to be of little use.

*Figures in parenthesis appearing as superscripts refer to references
listed in Bibliography.




Several interesting approximate solutions for large elastic-plastic
deformation are also discussed as well as a numerical approach using
the theory of characteristics.

2.2. Similarity Solutions of Equations of Gas Dynamics

Many articles have appeared in the literature on similarity solu-
tions of the equations of gas dynamics. The particular equations which
appear in this thesis were first presented by G. I. Taylor (3).

Taylor worked out a few numerical solutions as well as same ap-
proximate analytical solutions for an explosion in a perfect gas with
7 ranging from 1.2 to 1.67. Subsequently or simultaneously analytic
solutions appeared by Sedov (h), J. L. Taylor (5), Latter (6) and
Sakurad (7). Sedov presents the most complete discussion of the solu-
tion curve in the plane of the non-dimensional pressure and velocity
functions. He discusses the singular points and their significance in
the physical problem.

However, it is amazing that Courant and Fried.richs(s) , who ob-
viously were not aware that the exact solution existed, were able to
deduce nearly as complete & description of the field of solution curves

as Sedov.

2.3. Self-Similar Solutions of the Problem of Cratering Due to er-

velocity Impact

As was mentioned earlier, the problem of blast waves in spheres
and cratering due to hypervelocity impact have much in common. Conse-
quently, the approach used in this thesis is similar to that used by

several investigators of hypervelocity impact phenomena.




Davids and Huang (9) were apparently the first to approach the
problem of cratering using the similarity or progre: ing wave theory.
They applied the theory of self-similar flow using a perfect gas type
equation of state for the target material and an energy criterion for
establishing the crater depth. They assumed spherical symmetry in the
problem.

Rae and Kirchner (10)

formulated the problem more generally but
succeeded in getting closed form solutions for the spherically symuet-
ric case only. They also pointed out some restrictions on the equation
of state and suggested ways of approaching the non-similar aspects of
the problem. A material strength criterion was used to predict crater

depth.

2.4, Numerical Solution of the Problems of Blast Waves In a Perfect

Gas and Hydrodynamics of Hypervelocity Impact

Numerical solutions of the problem of strong blast waves in a per-
fect gas have appeared in the literature since about 1954. For the
most part the approacher are all similar but there are some distinct
differences.

Goldstine and Von Neumann (11) solve the problem of a strong point
explosion in an ideal gas. The conservation laws of mass and momentum
are combined and the resulting differential equation solved by finite
differences. They employ an iterative scheme to satisfy the Rankine-
Hugoniot conditions and use this as a check on the accuracy of their

solution.

(12)
Brode claims to be following the method of one of the previous



(13)

authors and employs an artificial viscosity as a mechanism for
avoiding shock-front discontinuities. The integration process con-
8ists of the step-wise solution of the difference equations which ap-
proximate the differential equations of motion of the gas.

Another somewhat different approach to the problem of a strong

(14) | rax

spherical blast wave in a gas is that used by P. D. lax
uses the conservation form of the hydrodynamic equations and a slight-
ly different way of differencing the equations.

One of the first investigators of the cratering problem using
numerical techniques was Bjork. 1In predicting the crater due to meter-
oid impact, Bjork (15) assumed the impacted earth behaved as an invis-
cid, campressible fluid and postulated an equation of state for the
material. In later investigations of hypervelocity impact in metals
(16) this same model was assumed with favorable results.

Another investigator in the hypervelocity impact field is J. M.
Walsh (17) . He has also developed a numerical program for the impact

problem based on the "hydrodynamic'" model.
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CHAPTER IIT
SELF-SIMILAR SOLUTION OF PROBLEMS WITH SPHERICAL SYMMETRY

3.1. Theory

The theory of self-similar motion was originally conceived for the
solutions of problems in ga; dynamics. However, subsequent investiga-
tions have led to the admission of a broader class of problems.

(a) Basic Equations of Spherical Flow

The equations for sphericel flow of a medium in Eulerean form

expressing the conservation of manent\m,maas and energy are

%+u%+%—%=o } (3-1)
%’%*‘*g’%+°<%+§”'>=° (3.2)
e+ Pp (D=0 (3.3)

where g—t=%+u?¥

and e =t (p,p) 1is the form of the equation of state.
The Rankine-Hugoniot equations expressing comservation of

mass, momentum and energy across the shock front are

py(u, =€) = po(u,-€) (3.4)

pl(ul-c)2 + pl - pa(ua'c)a + pa (3'5)




ce =l L.y
° e =3 (o + 2 - 3 (3.6)

where subscripts 1, 2 refer to conditions in front of and behind the
shock front respectively.

(b) similarity Assumptions for a Strong Explosion

The approach used to determine the self-similar solution will

be campletely formal, and will employ a method commonly used in the
solution of partial differentisl equations. That is, a particular
solution of the partial differential equations is assumed reducing them
to ordinary differential equations which are then solved. This treat-
ment will be followed by a brief comment on dimensional considerations.

We seek a means by which we may obtain an analytic solution of the
problem of a strong explosion in a continuous medium. In order to do

so we introduce a variable ¢ = rt-a and the following assumptions:

u = t7¢ u(e)
/o = t62 P(¢) (3.7)
p = t°D(E)

where «a,B,e¢ and & are parameters, and U, D, P functions to be

'

determined. By introducing these functions we shall show that the par-
tisl differentisl equationsof motion (Egs. (3.1) - (3.3))are reduced to
ordinary differential equations. The variable ¢ defines geametrically
a family of surfaces ¢ = constant in the r,t-plane, one of which is

(18)

the shock front. (This has been shown experimentally to be a very



good assumption.
We now explore these solutions mathematically by substituting the

expressions (3.7) into the equations of motion, giving respectively,

et [Bu - & (sutav) + P T y(eutay) 4 £EOBH

(3.8)
(2P + ¢ PD'/D + ¢P')] = O
5-1
t [(u<) ¢D' + 8D+ (¢U' + 3U)D] = O (3.9)
t&e'l{- 752 P(5D-atD') + §2 [(5+€) DP
- a(2DP+¢D'P + eDP')] + tﬁ"’”l[ - 7§2PD' (3.10)

+ ¢(2DP + ¢D'P + ¢DP')] ¢U} =0

where the equation of state p = Ap7 has been used. This will be dis-
cussed in detail later in the thesis. These equations are now in a
form where it is possible to eliminate the explieit factor t by prop-
erly choosing the exponents, thereby leaving a system of functions of

one independent variable ¢. This is accomplished by letting

€ =28 B =a-1 (3.11)
a0 that 4P L o £8P g,
Dividing by gta-l s &1 R 1:8+€ =2 (which are not zero for t> 0)

and simplifying the resulting equations, we obtain,
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BU-a(eU'+U) + U(eU'+U) + (2P + ¢PD'/D + ¢P') = O (3.12)

(U<@) ¢D' + 8D + (eU' +3U)D = © (3.13)

P'e(U-a) + P[2p-8(7-1) + 2(U-a}]-(D'/D)Pe(7-1)

(v) =0 (3.1k)

We now have a system of ordinary differential equations for the
unknown functions U(t), D(¢), P(t) and two free parameters « and
. The substitutions of Egs. (3.7), which may appear artificial, are

thus Justified.
We shall now reduce the number of variables further. Solving Eq.

(3.13) for eD'/D gives

¢D'/D = - (8+¢U' + 3U)/(U-c) (3.15)

When Eq. (3.15) is put into the remaining two equations we obtain the

pair,

(U=)(eU'+U)+ BU + P[2 (B+eU'+3U)/(U-)] + eP' = 0 (3.16)

-(7-1)(6+¢U'+3U) - 2B+(7-1)8-2 (U-a)-(U-a)eP' /P=0 (3.17)

These equations, linear in tU' and tP' may be solved simultaneous-

ly, giving




1k

¢U' = [-U(U<x)(U-1) + (B+2B+3Uy)Pl/A (3.18)
gP' =P (7-1)y(u-1) - (Ua)[(37-1)u-2] +
(BB2=1)8) | e s (3.19)
where A= (U-a)® - p.

By dividing Eq. (3.19) by Eq- (3.18), the following ordinary

differential equation is obtained;

a&p _ eP'  P[N{U) + PQ(U)]
av - EU— ~ T R(U) + P(s(U)) . (3.20)

After the simplification,

NU) = yU(3x-1-2U) + (3-a)U-2¢
Q(U) = [2B -(y-1)8] /(U=<x) +27
(3.21)
R(U) = u(u-a)(1-u)
S(U) = B+2B+ 3Uy

This is the basic differential equation for self-similar motion. After
the appropriate solution has been found for P = P(U), the function
¢ = (U) is found by a quadrature of Eq. (3.18) and the density func-
tion D{g¢) is obtained from Eq. (3.15).

As we shall see, these self-similar solutions provide a suffic-
iently general mathematical description of an expanding cavity reason-

ably consistent with the given conditions of iniation of the process.




15

There remains the problem of choosing the two parameters « and 8.

Let us assume that the total energy given up by the explosive ap-
pears as kinetic and potential energy in the surrocunding medium. This
is a reasonsble one for the cavity expansion process, because of its
short duration,. provided certain secondary effects are neglected. With
£ = gl representing the shock front at a time t, the total energy in
the fluid shell (potential + kinetic) at time t is given by

T

r
1
E(t) = f (7%) barar + f -12- ouZlnriar (3.22)
r
o

r
(e]

(0

where Ty = §°ta is an arbitrary member of the family and r, =&.t

1 =6

1s the location of the shock front.
The first term arises from the polytropic relation p=.lm7 which
has been assumed for the material and the fact that the work done by

the material in becoming compressed fram an initial volume YV, %o a

- 1
a volume V is given by
Iy
E(V) = [ pdV=p.V 0722y » - BY_ | const. (3.23)
. 1V1 2 71
v, Py

where we have used the relation p2v2=p1vl. Using the substitutions

in (3.7) the energy expression becomes
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Pop
1
Be) = bx [ (2 24 1452 ?)e ()t

Tr
(o]

o
Substituting r=tt", dr:-tadg into the preceding equation and noting
that t 1is constant,
1

E(t) = bn 332 /; (50 + %Ue)ghD(g)dg . (3.24)

(o]

Since the integral is independent of t, we make the energy independ-

ent of time by satisfying the relation
B+50-2 = O or 5=2-5a (3.25)

We shall narrow down the number of parameters by examining the
compatibility of our solution with the basic Rankine-Hugoniot con-
ditions across a shock front. If the undisturbed and disturbed medium
parameters are W, Py Py and Uy, ;;:2, Py respectively and the
shock wave velocity is C, then the relations for (see (8) p.123-4),

conservation of mass, momentum and energy across the shock front are,

pl(ul-C) = pe(ua-c) =m (3.26)
pouy(uy-C) - oy, (w =€) = p,-p, (3.27)
pa(%uzz-PC)(ua-C)'91(%‘112*’0)(“1'0) = P, -PY, (3.28)

where e = 7% p/p for a polytropic medium.

When the undisturbed state 1s a medium at rest, with ul=0, these

equations reduce to
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py(C-uy) - p C =0 (3.29)
paue(c'ua) - (pz'pl) =0 (3-30)
1.2, 1 I2)( ) 0 0) (3.31)

P2'2%2 * 5T p,7(0M2) - Polpm (e)= 3:3

It is useful to solve Eq. (3.29) and (3.30) for the velocities. Then

u, = (py-p,)/p,C (3.32)

18] Py - P
2 (2% (3.33)

Py P~ P

If p is in kilobars, p in gm/cc, then u and C will come out in

km/sec as expressed by the following formulas:

u, = (p, - »,)/(20 p,C)
(3.34)

o P, - P
c. [Pz 2 - Py
T JPpy  100(py-e)

It is useful to have these relations for a polytropic medium. Then

o - |2 P2 Pp P

(3.35)
¢ - 1 /2 Pp Pp " Py
A1 71 o, Py + P
P2

From (3.32), with pu =/ (7r-1)/(7+1), and if Py is negligible,
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c(1-u?)

=
n

2)

Pp = P U, C=p 02 (1 -p
(3.36)
(r+1)/(7-1) = 15

po/Py Ny
c=/§= ‘/1+p2 c

The last quantity is conveniently referred to as the "sound speed" in

1

shock wave analysis. These relations apply Just as well to a spheri-
cal or curved surface as to a plane, since the effect of spherical di-
vergence (the 2 u/r term) on a finite or sudden jump is of a higher
order of magnitude. This may alsc be shown geometrically by consider-
ing an infinitesimal surface element of the shock front. Since §1=r't:-(z

(by definition) along the shock front,

0=t%ar - art L at

so C = %’é =ort™t = o %1, fThen from Eq. (4.7) and the relations

(3.29) through (3.31) with
Cc - u2 == aglta-l - t'BglU(gl) = gl tB(G-U),

we obtain

5+p

2P ¢ Da-v)-p, @k, P =0 (3.37)

2P 2w (@v) - 7P P or-o (3.38)
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B
PGP (@0) 2P pu-0  (3.39)

We note that the time factor cancels in Eq. (3.38) and Eq. (3.39), so
that these equaticns are automatically satisfied. However, to secure

independence of time in Eq. (3.37), it is necessary to make

5 =0 . (5°’4‘0)

With this condition and the relations (3.25), the assumed form for the

progressing wave solutions reduce to

u = (r/t) u(e) P = (r/t)® D(e)P(k)
p = D(¢) /o = (x/t)? B(e) (3.41)
with ¢ =t

This solution shows that on the shock front; where ¢ 1is constant; the
physical quantities such as velocity, pressure, density, and wave vel-
ocity are constant on the rays r/t = constant. This also dimensionai-
izes the functions (4.7) correctly, for, with ¢ having the dimensions

Q
of length per (time) , and

¢ = (11 p(e) = (ML)

u(e) = [2] P(e) = [1]

then u, p, P, Dp/p have respectively the correct dimension of vel-

ocity, pressure (ML-]'T-Q) , density and velocity squared. The com-




Plete set of exponents is now

a=2/5 €-=-6/5
(3.42)
B=-3/5 5 =0 .

If we now turn to purely dimensional considerations the following
are recognized as the system of fundamental parameters influencing the
motion of the medium: Pys Pys Eo, r, t, 7. From these we can
form only three independent dimensionless quantities: 7 ;

0. 1/5 0.5/6 &
l r 1

e E 1/5 1:275 4 T = Ci5 .1 . For a strong shock (pl<<p2)
° o =l

the system reduces to only 7 ; A Eol/ 5 /pl/ 5 rt-e/ 5. If ve

take 7 +to bhe constant, we see that the motion can be described by
only one independent variable, A ,which agrees with our earlier find-
ings.

We can then write (see Sedov, Ref. (&) )

w=(z/t) VO, p=—gip t7% (1)
r
(3.43)
o= r;+5 t5 R(\) & = [ML¥r%)

This system of equatlions differs fram the ones previously derived
only in the dimensional sense. Here =, V and R are all dimension-
less functions of A\ and are related to the functions P, U, D in

b1 q
the following way: U=V, R = D/bl, P = xpl/b =z -
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Another means of approaching the problem is to consider a flow
field which depends on a non-dimensional parameter 1 = r/RB(t). At
each instant the distributions of velocity, pressure and density are
taken to be the same when viewed on a scale defined by the shock radius
at that instant. Then if we assume the radius of the shock wave fol-
lows & law Rs(t) = A t%, we find we have essentially the same formu-
lation as discussed earlier. All that remsins is the introduction of
the dimensionless velocity, pressure and density functions which are
functions of 1.

3.2. Solution of the Governing Differentiasl Equation of Self-Similar

Motion

The anslytical solution of the governing ordinary differential
equation is obtained in an indirect way (see Sedov (Ref. 4) ). We re-
call that in the first section of this chapter we used the fact that
the energy integral was time independent to obtain a rel!'a.tionship be -
tween the parameters @ and 5.

It can be shown that the energy assumption implies

§5[PU + (U-a) (7—2U£+ ;l—j-l-)]D = constant- (3.44)

This must be true for all stages of the process; in particular
on the shock front. Evaluation of the constant from the Rankine-
Hugoniot conditions shows it to be zero. Hence, we have effectively

obtained an integral of Eq. (3.20) and the relationship between P and

U becomes

P = (7-1) ¥ (U-0)/2 (a-7u) (3.45)




22

Relations can then be determined for D = D(¢), U =U(¢), P = P{¢)
using equations (3.15), (3.18) and (3.19).
A discussion of the singular points of the differential equation

(3.20) and the solution curve (3.45) are given in Chapter IV.
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CHAPTER IV
APPLICATION OF THE THEORY OF SELF-SIMILAR MOTION TO
THE PROBLEM OF EXPANSION OF A SPHERICAL CAVITY IN
A METAL DUE TO EXPLOSIVE IMPACT

4.1. Description of Model and Assmlpfions

Detonation of a high explosive confined within and in contact with
a ductile metal generates a strong shock wave which raises the pressures
abruptly (i.en, in negligible time) into the megabar range. These
pressures are large compared to the material strength even at high
strain rates and one is led to assume that the medium behav:s as an in-
viscid, compressible fluid.

Thus the solution of the problem of spherical blast waves in a
metal originating at a sphericel cavity reduces to solving the equa-
tions of fluid mechanies (3.1) - (3.4) (i.e., conservation of mass,
momentum and energy, together with the equation of state of the medium)p

If we next assume that the motion is self-similar, then all of
the ideas discussed in Chapter III are at our disposal. The remaining
question is that of the equation of state. In this work it has been

7

assumed to be of the form p = Ap’. This is Justified to some extent

in the next section.

4.2. Equations of State of Metals

The equation. of state plays a central part in the application of
the theory of self-similar motion to shock waves in metals. In ad-
dition to furnishing a relationship between pressure and density, it

furnishes a criterion for the termination of the regime in which the




2L

gself-similar assumptions are valid.

The notion of an equation of state of a medium implies thermo-
dynamic equilibrium and can be described by a functional relationship
between any three of the variables p; V, T, S, e. Thus there
exists several forms of the equation of state of a }-hure substance.

Consider the Helmholtz work function
F=e-T5
From this and the first and second laws of thermodynamics follows
dF = de - TdS - S4T = - pdV - SAT

Now dF 1is an exact differential of the thermodynamic potential

function and hence

3F s .
S - S - Dy

Since
)y = wE)y, -p =P, -p
it follows that

de

(%1‘%)v ar + (%%)T av

(]

cy aT + ['r(g%),r - plav
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An ideal gas is defined as a medium which possesses no inter-
molecular forces of restraint; this implies that the internal energy

is a function of temperature aloae. hence (%)T = 0 and

T(%)v -p=0

T = Telv) = T£(p) (4.1)

or

Now a s0lid possesses energy due to the presence of intermolecu-
lar forces and a thermal energy assgociated with molecular vibrations.
Hence even at absolute zero the e¢nergy of a sclid is non-zero. Thus,

we can express the energy of a solid mathematically as
e = £{V) + Tg(V) {k.2)

Another formulation for the higher pressure range called the

{10)
Mie-Grineisen (e equation is

, p - p_(p) ,
elp.p) - e, (p) = mﬁ———- (b.3}
* The subscript ¢ refers to the cohesive contribution and /° 18 the
Grineisen constant which depends weakly on p.
By rewriting equation (4.3) in another form the measured shock
wave date along the Hugonlot curve can be used to calculate the co-
hesive contribution.

pu(p) - p (o)

eqgle) - e (p) = 7 (4.}4)
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Subtracting (4.4) from (4.3) we obtain

P - pgle)

o/ (p)

e - ex(p) =

The Mie-Griineisen equation can be rewritten in the form

S vE ORI

and we find

p.(p) py(p)

ae) = 775y - o(P) = HEY - ey(P) (%.5)

The last expression can be found from shock wave data and in this way
the magnitude of A(p) can be determined.
It has been found (%) that the only form of the equation of state

campatible with the self-similar flow assumption is of the form

e = pp(p) .

We see that the leading term of the Mie-Griineisen equation is
P/D/_'(D) = pp(p) and we are forced to use only this part of the equa-
tion in the self-similar solution. Thus the assumption is accurate so
long as the term A(p) is small compared to p//7(p). It should be
pointed out that it does not follow that the fluid assumption is in-
valid when A(p) is not small compared to p/p/? (p)-.

The Griineisen factor /’ has been assumed to be & constant equal

to (7-1). This is not absolutely necessary since the variation of /7




could be taken into account but has been dropped for convenience.

For fixed parameters «a, B, €, 8 the solution P = P(U) of
the governing differential equation (3.20) is seen to depend on 7.
The value of 7y determines the location of the singular points and
other significant aspects to be discussed in more detail in the next
section.

In determining the single value of 7 +to be used, we must real-
ize that the 7 which best describes the state for one point in the
medium will certeainly ba 3 poorer approximation for another point.

If a straight line is fitted the shock wave data from Ref. (19)
and is considered as representing only the high pressure range, an
equation of state for the metals considered ieg obtained. These are
actually Hugoniot curves; but will be used to approximate the isen-

(20);.

We will ncw consider a particular equation of state p=A((p/pl)7-l)

tropes of the metals (See Huang

= Ap7 - B called quasi-polytropic in this thesis . This eq_uatlion is
very similar to the polytropic equatior; of state and 1s used by many
authors to describe the equation of state for dense medie, since p = O
does not Imply p=0 as fbr gases. Comparison is made between the
polytropic and quasi-polytropic equations with respec‘t to relations
predicted by each equation or shock front relations;, sound speed, and
thermodynamic relations. The inability of the quasi-polytropic equa-
tion to be used in a self-similar theory is also exhibited.

The sound speed for a PT gas p = Ap7 is

o im dp/dp = 7Ap7-l
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for a QPT

® =L (ap” -B) =7ap”

Consider next specific internal energy. For a PT medium;

For a QPT medium;

e= [ -7 - B ad

-1
S A g Bt
= -1
- B
= ( P + B)V
e = (E;EEZE)V (4.6)

The Hugoniot function is defined by
p + Pl
H(V,p) = e(V,p) - e(V,p;) + (V-V} (——) (.7)
If we set H(V,p) = 0, the Hugoniot relation is obtained. This rela-

tion characterizes all pairs (V,p) for the state on one side of the

shock front that are compatible with the three shock front conditions
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when the values (Vl,pa_) on the other side are prescribed. For a poly-
tropic equation of state it is a rectangular hyperbola (Fig. 1).

For a QPT medium

1- a 1 4
B(V,p) = =5— (p+B)V - =h- (p, + 7B)V,
2

?)

P, +
+ (V) (B

2% = (147) (V) + (14Z)rBV - (1u)pyvy
- (LByrmvy + 2uB(vv) ()
auaﬁ = (V-u%ll)p = (Vl-p2V) Pl

+

(14%) 7B(v-¥;) {4.8)

Figure (1) shows the Hugoniot for PT and a QPT medium plotted for the
purpose of comparison (pl has been assumed equal to zero).

For the case of a shock moving into & gas at rest we obtain
2 2
(V-uavl)[p + (1-u%)7B] = v, (1-u7)B.

This can be rewritten as

2
-(Au7)yB

P =
- A\ “%1




Pressure

FIG. | - HUGONIOTS FOR A POLYTROPIC AND
QUASIPOLYTROPIC MEDIUM




31

also

2y = 2 -
Py Pptim B Pyte Dy (4.9)
pl—p.p+-——27 —5+2— )
2% 71 1t M Po

[+
Thus we see that for a QPT medium the ratio 9—2 is not a constant as
1
in the case of a PT medium; since 51 ;! 0. Next consider using the QPT

relation for self-similar motion. In order to obtain the solution

curve of the differential equation we must have a unique starting point

P
in the P-U plane. Since the ratio 5‘3 is not constant there exists no

1
such point and we are forced to abandon the QPT relation.

k.3. Solution of the Blast Wave Problem in Aluminum

For a shock wave moving into polytropic medium at rest, the Ran-

kine-Hugoniot equations become

py (C-u)-p C=0 (4.10)
pou, (€ -u,) - (p, -p;) =0 (4.11)

tu? s 12)(c ) =0 (4.12)
Pa(3 %o *+ 577 AN Up) = Poly = .
(e; = 0)

It is interesting to estimate the accuracy of the assumption of a strong

shock wave.

To do so the above equations are rewritten in another form using

(3.32) through (3.36). That is,




Qi

]
(]

Now
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£ (4.13)

Figure (2) shows the values of f_, f2, f3 plotted against

1

If we assume Py = O which is equivalent to setting fl = f2 = f3

g = gl’
RS
)

t

R
8

t

O, then the expressions for Uy Pos Py become:

on the
U(e,)
U(e,)

u(e,)

u(e,)

C (4.14)
P (4.15)
Py o2 (4.16)

shock front and we can write

2 d a
=31 at (glt)

2 a-1
a (7)) et

& (7+l

+

rn

a
ey (4.17)
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Following the same procedure for P(gl) and D(gl) we find

2o ue / (7+1)

P(g,)
(4.18)

]

D(¢,) =p, / u?

For aluminum with 7y = 7.6 this supplies an initial point in the
P-U plane. The solution curve is the unique integral of (3.20) which
passes through this point and the singular point D, as shown in Fig.
3.

We need next to prescrive the initial conditions at the boundary
of the cavity and the total energy supplied by the explosive. We will
see how these allow us toc determire gl, and ~onsequently, the motion
of the shock front.

From private communication with R. E. Shear of Ballistic Research
Laboratories; Aberdeen Proving Grounds, we found that for pentolite
under confinement the detonation pressure would be around 400 kb For
convenience; a value of pressure = 384 kb was used in this work. This
pressure predicts the proper deasity ratio using the Hugoniot equation
(Fig. 4) as the equation of state for the material at the cavity sur-
face.

The next step is to assure that when the shock wave is at the cav-
ity surface, the pressure and density have the right values, namely

2
r
p= (i) P(g,) Dlg,) (4.19)
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In this expression p Py Tos
s’

termined, i.e.,

(o]

1/z2
ty = T, (P/R Plgy) D(gl))
The values used to calculate to were

P, = 2.785 g/cc
p = 384 kb
T, = 1.698 cm

P(gl) = 0.0286

D(gl) = 3.5182 g/cc
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P and D are known, and to is de-

as indicated in Fig. 11 and Table 2. Using these values we find to =

0.868 u sec.

This value of t 1is the "delay" time to assure the proper position

of the shock front at the initiation of the expansion process.

With the values of L) to known, 3

definitive relation ¢ = rt >. Then

£ =T, to—a = 4k51.28 cm/seca/s‘

is calculated from the

The velocity of the shock wave is given explicitly by the ex-

pression




38

dR
8 d a
C=x = g (& t)

or

Q
[}

2/5 (451.28) t-j/scm/sec

= 181 t-3/5 cm/sec . (4.20)

The physical variables immediately behind the shock wave are

given oy equations (%.14) through (4.16). That is

L2 . 2 -3/5

u, = TR C = ToT (181)t
- k2.0 t7/5 cm/sec (4.21)
8.6 Rp— ,

Py =gg P = 3-518 g/ecc (4.22)

and

2
Bf.% (2.785) (181 t'3/5)

)
o
"

2.13 x 1070 +5/5 x (k.23)

In order to describe the distribution of the variables through
the medium betv.reen the shock wave and cavity surface, we turn to the
solution of the differential equation (3.20). The sclution of the
blast wave problem was exhibited as P = P(U). It was shown that the
functions P = P(¢), U=U(e), D =D(e) could be obtained by quad-
rature of Egs. (3.15), (3.18) and (3.19). However, it was found to be

more convenient to proceed in a different manner.
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A numerical integration of the differential equation (3.20) was
performed. (See Appendix B). At the same time, particle "paths" were
traced out and the variation of the physical variables along these par-
ticle paths were calculated. (See Appendix B).

Pressure isocbars were then drawn connecting the poinés of equal
pressure in the medium. {See Fig. 5).

Particular attention was paid the particle which started at
X, = ro = 1.698 as this marked the cavity surface and was of great in-
terest in the study. (Figs. 5,6,8,9). It is also convenient to tabu-
late the energy integral (3.24) and compare it at some selected time
to the energy given up by the explosive

In the theory of self-similar motion; an assumption of constant
energy was made (See Eq. (3.24) ) in order to provide the condition
(3.25) for determining a and with it, all the other exponents. The
energy integral (3.24) is extended between two pointe, one of which is
located on the shock front ¢ = 3 and a lower value ¢ = go. The in-
tegral path, such as BC in Fig. 6 may be arbitrarily chosen, so long as
it terminates on these two curves.

The energy in the disturbed part of the solid will, however, change
with time because its lower boundary, the cavity surface, is not one of
the family of ¢-curves. Thus, the energy values in Table (1) repre-
sent an integration of the expression in (3.25) taken along the cavity
surface curve. If we extend this integration far enough (say to 100
microsec) so that point D practically coincides with point C, the

values in the table become asymptotically constant, and we have
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From Table 1 we see that the energy dces tend to be a constant and we
have just shown that this limit is the vslue of the energy integral
(3.25).

If we now suppose that all {or any known fractional part) of the
energy given up by the explosive is transmitted into the solid, then
the shock proceses could be terminated when the energy reaches the
amount available. It is not possible to determine a precise point of
time becauée of the asymptotic way in which the energy increases. It
is seen, however, that E reaches 90% of its ultimate value in 3 micro-
seconds, which is a very short time zompared with the expansion process.

The post-shock expansion presumably must take place under con-
stant energy conditions for a "long" period of time, until it is dissi-
pated by viscosity of the flow, elastic waves and other side effects.

For energy available in the explosive, Shear (1) gives the value

ETotal = 1.152 k cal/k

which, for our explosive weight of 0.07 1b, gives

12
Erotal = 1.26 x 10°° ergs.

Our calculated asymptotic value (Table 1) from the energy integral

comes to 96% of this value.
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Variation of Physical Quantities Along

TABLE 1

Solution Curve and Cavity Surface
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T u P 3 D E R
sec X ergs x

10~ am/cc 1012 cm
.8684 .09302 .02856 451.28 3.5182 -0.0 1.698
.9539 .09312 .02854 438.45 3.4282 -.188 1.713
1.062 .09%24 .02852 ka4, 25 3.3282 -.368 1.730
1.186 -09337 .028L44 }10.10 3.2282 -.520 1.748
1.329 .09352 .02846 396.02 3.1282 -.648 1.767
1.495 .09369 .02843 381.99 3.0282 -.755 1.786
1.688 .09389 .02840 368.02 2.9282 -.8uh 1.807
1.939 .09411 .02836 354.12 2.8282 -.918 1.828
2.181 . 09436 .02832 340.29 2.7282 -.979 1.851
2.496 .09L466 .02827 326.52 2.6282 -1.029 1.874%
2.872 .09500 .02821 312.83 2.5282 -1.069 1.900
3.323 .09539 .02815 299.21 2.4282 -1.101 1.926
3.868 .09586 .02807 285.69 2.3282 -1.127 1.95%
4.533 .09641 .02799 272.24% 2.2281 -1.148 1.984
5.350 .09707 .02789 258.89 2.1282 -1.164 2.016
6.364 .09787 02777 245.63 2.0282 -1.176 2.050
T7.636 .09884 02764 232,48 1.9282 -1.186 2.087
9.252 .10003 .02749 219.43 1.8282 -1.193 2.127
11.33 .10152 .02731 206.51 1.7282 -1.198 2.171
14.04 .10341 .02710 193.71 1.6282 -1.202 2.219
17.65 .10585 .02686 181.05 1.5282 -1.205 2.272
22.52 .10904 .02669 168.55 1.4281 -1.207 2.332
29.28 .11331 .02628 156.21 1.3282 -1.209 2.401
38.91 .11914 .02593 144.08 1.2282 -1.210 2.481
53.07 .12728 .02555 132.17 1.1282 -1.211 2.577
Th4.76 .13883 .02513 120.56 1.0282 -1.211 2.696
109.5 .15536 .02462 109.38 .9282 -1.212 2.849
168.3 .17866 .02384 98.85 . 8282 -1.212 3.058
275.2 .21002 .02241 89.36 7282 -1.212 3.355
470.8 . 24867 .01974 81.30 6282 -1.212 3.795
865.8 .29068 .01550 Th.96 5282 -1.212 4. 465
171 .32972 .01012 70.40 4282 -i.212 5.51k4
3681 .35941 .00478 67.43 3282 -1.212 6.968
T4ok .37363 .00098 65.87 2282 -1.212 9.257
8357 .36027 .00001 65.67 1282 -1.212 9.687
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b.4. Blast Waves in Other Metals

The study of blast waves in other metals 1s essentially the study
of the part 7> plays in the theory of self-similar motion. For this
reason the present section will explore in some detail the many intri-
cate ways that 7 enters into the problem.

Selected for study were 3 common metals, copper (y = 8.5), iromn
(y = 16), and lead (7=5.9). Figure 4 is a log-log plot of the shock
wave data from Ref. 19. Straight lines were passed through the data
and the slope measured to obtain the values of 7.

In the method of obtaining the solution of the differential equa-
tion (3.20), the functions U, P, D and the particle trajectories as
well as shock wave paths are the same as in Sec. 4.3. All that is
necessary is to change the value of 7 in the computer program. (See
Appendix B).

For purposes of comparison the distribution of velocity and pres-~
sure were calculated on the cavity surface and plotted in Figs. 8 and
9. An r-t diagram for the four metals is shown in Fig. 7.

Of particular interest is the fact that the 7's used range from
5.9 for lead to 16 for iron. This value used for iron is supposed to
represent the lower pressure range in which iron has a body centered
cubic lattice. It can be shown (Fig. 10) that for 7 = 7 the shock
front falls on one of the singular points of the differential equation
(3.20). YFor this case there exists (k) a particularly simple solution

of equation (3.20), i.e.,
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whu, = £/t = r/h, = p/o,
(4.2h)

/o, = (8/t,)°

A value of 7y = 7 serves to separate the domains of the function

U. For 7r< T

i
25740 £ 55y
and for
. b 2
72T sy £V =25
4
The value U = W corresponds to the shock wave in a gas

due to a point explosion and 2/5 7 corresponds to the center of the
explosion. However, in the cavity expansion it is meaningless and
hence, lower bound of the damain of U would be some number greater
than 2/57.

For 7>7 the domain of the function U 1is bounded above by
U= 2/5 which corresponds to the edge of & so-called vacuum for a
point explosion in a gas and below by the shock front. The value of
U = 2/5 would not necessarily apply to the cavity problem. Fig. 16
shows the behavior of the solution curves for variable 7"

However, it is significant that the solution curve P = P(U),
which describes the process, has entirely different behavior in the
two ranges. (See Figs. 10, 16). Figure 10 shows the changeover from

solution curves which go to point B from those which go to D, (Fig.3).
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It 1s fitting at this time to mention that the careful considera-
tion of the singular points and their physical meaning ceme about from
having the analytical solution of the strong blast wave problem. It
is doubtful if this could have been accompiished by numerical computa-
tion alone. This also applies to establishing the exact domains of
the function U. However, it is possible to determine the type of
singular point that exists as well as a good description of the gen-
eral behavior of the solution curves without the analytical solution
of the differential equatione.

4.5. Consideration of the Non-Similar Aspects of the Blast Wave

Problem

It is well known that even for the case of spherical blast waves
in air that for large time the flow becomes non-similar. That is, the
motion can no longer be described by the self-similar assumptions.

This is particularly true for the case of shock waves in metals
where use has been made of the strong shock approximation. For large
values of time the density ratio p2/p:L is not constant and the shock
front is no longer described by Rs = glta/ 5. In order to extend the
domain t of the self-similar solution it is necessary to account for
these non-similar effects.

(10) for the cratering

An approximate theory developed by Rae
problem will be 'considered and its use in the cavity expansion problem
described. The assumption is that for any shock speed C = Rs the

distribution of velocity, pressure, density, etc., are the same as for

the self-similar polytropic equation of state distributions which would
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have the same values &t the shock. This allows the density ratio
pe/p:L to vary and thus accounts for one of the non-similar factors
mentioned earlier. However, even though we have satisfied the condi-
tions at the shock front, the flow field behind the shock is still

(10) to be &

incorrect For the cratering problem this is showm
fairly good approximation

We recall that the density ratio was giver by the expression
= =l
/Py = ) .

This can be rewritten as

py/P - L (4.25)

Thus if the shock speed were such as to cause a density ratio of 1.2
then the solution is assumed to be the self-similar solution for
y = 11.

Note that as e, = p, the value of 7y becomes infinite. (As
the shock wave decays to & stress wave 7 = m.)

If the shock speed ﬁs is considered as the independent variable,
then Eq. (4.25) becomes

(25 - 1) l’as +c

y = —— . (4.26)

RS'C

2 used in this equation has been shown

to approximate the Hugoniots of several metals very well.

The relation ﬁs =¢ + Su
(22)
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We now turn our attention to the energy integral Eq. (3.25).

R
s
E = f (;%)«u :—2L-u2) ph-:trzdr
RO
RB
r\°pP 1 2 g2
= lx f [(1—;) 51 * 3 ) U?f dr. (4.27)
RO
2
dR o R . R
but g =R, R mR - a(D), (R - (D)
also r2 = §2t2(z

Using these relations and substituting where appropriate into Eq.

(k.25), we find

E = ﬁsz Rs3 F(») , ) (4.28)
where . §l 2
F(7)=;2’£f RLTEEEYS e
§0

Solving (4.27) for R, we find

Y

T (k.29)
F(7) Ry

= (

8

Since 7 is a function of I'RB by Eq. (4.26) this expression beccmes
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1/3
R, = (F[T(fi_i—)]ﬁ_z 4 (4.30)
s’ 8
Equation (4.30) describes the shock radius in terms of shock speed
and is a very useful relationship. By considering E as a free para-
meter Eq. (4.30) could be used to fit test results. On the other heand,
the expression could be solved for E and estimates could be made of
the percent of available energy present in the solid.
If equation (4.30) is solved for ﬁs = és(Rs) and the identity

R
v = f
R

8 dRs
@ x (%.31)

8
-]

is used, we obtain an expression for RS = Rs(t). The value of k 1is
determined fron consideration of the "delay time" discussed in Section
4.3,

With the relations R_ = Rs(t) and R = Rs(ﬁs) at our disposal
it is possible to obtain the distributions of veloclity pressure and den-
sity throughout the solid. The cavity radius versus time curve can
alsc be found. However, the procedure used in Section 4.3 would have
to be modified.

We recall that in solving the problem for constant 7 that we con-
structed one solution curve P = P(U) which described the functions
for all ¢. In the caze when 7 is allowed to vary continuously, an

infinite number of solution curves must be constructed.
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The obvious way to avold this is by considering small increments
“of time At at the end of which the shock speed is calculated. This
value of ﬁs is used to calculate the corresponding 7y fraom Eq.
(4.25) and for this instant the distribution of velocity, pressure and
density as well as the particle velocity on the cavity surface; This
would be continued to the limit of wvalidity of the equstion of state
or by using some other criterion which terminated the solution.

4.6. Summary and Conclusions

In this chapter we have attempted to study the cavity formation
process in several metals by determining how the important physical
variables of cavity radius, velocity, pressure, and density vary with
time and positién near the cavity. The most prominent general feature
of the whole process is the short time of the "shock" regime as compar-
ed with the total time of the expansion. One general criterion for
the end of the shock is furnished from the time when the super-sonic
velocity of the shock front drops to sonic i.e.;, at the point P 1in
Fig. 5; where the slope attains the value for elastic disturbances in
the material. There is some concern whether the self-similar solution
can be used beyond this point since it would predict a subsonic shock
velocity. However, it could mean that a large plastic wave is devel-
oped which travels at a speed less than the elastic wave velocity.

This transition region is highly uncertain. This situation has occurr-
ed after 0.5 microsec.

We note that the highest pressures and densities in the metal are

located Jjust behind the shock front, and trail off with decreasing
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radius to minimum wvalues at the cavity boundary. We note that the equa-
tions of state (Fig. 4) which have been used for the calculations have
a lower limit of about p = 100 kb. This could also be used as a cri-
terion for shock termination (point D, Fig. 5). This point is reached
in 0.7 p sec. These conditions thus determine a roughly parallelogram
shaped region ODPE in the r,t-plane for the validity of the assumed
theory. Note that the cavity has only expanded 0.1 cm during this
period, which is about 1/30 of the total observed increase in radius.
We are thus Justified in referring to the shock process as impulsive,
i.e., the later stages of the process are insensitive to many features
of the shock part. Hence, the self-similar solution remains valid at
least for the analysis of the shock zone.

The asymptotic characteristics of the solutions are thus not of
direct physical interest since they do not apply to the problem much
beyond the region described above. The expansion zone, headed by a
wave travelling with the dilatational wave velocity goes on for at
least 100 p seconds, during most of which the metal continues to move
by fluid or plastic flow.

The final cavity radius attained is of great interest to the
general problem as this value is directly observable on the specimens
after blast. In principle the preéiction of this radius should afford
a test of any theory, but the matter is not so direct as this, since
several theories are involved. It is now evident that the cavity for-
mation process is complicated. It starts under one theory (in which

the state of the metal is fairly well established) but terminates in a
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different state of the material, about which information is almost com-
pletely lacking. Several mechanisms have been suggested for terminat-
ing the cavity expansion:

(1) an energy-level criterion

(2) & temperature criterion

(3) a yield-point criterion

Criteria such as (2) or (3) afe tempting because they tend to pro-
vide fairly definite marks as to when the material "freezes", either
when a given temperature, or a given pressure is reached. However, our
knowledge of materials under these conditions is still too incamplete
to solve this problem. The total energy of the moving material appears
to stop increasing after the expansion phase has begun, so there is no
change in energy. Furthermore, any quantitative use of energy balances
would require careful accounting of all the energy losses as well.

It was shown that in the self-similar approach the only difference
in the approach used for different materials was the material constant
7. Also there is considerable difference in the behavior of materials
whose value of 7 i1s less than 7 compared to those having a value of
7 greater than 7, due to the completely different behavior of the
solution curve. (See Fig. 10) One must be reminded that these compari-
sons are valid only under the assumption that the equation of state
used in this anelysis is valid in the stated range of pressures.

In the previous section a procedure was discussed for extending

the regime in which a self-similar type solution is wvalid.
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Application of this theory to the problem of cavity expansion in
metals was described in some detail without presenting numerical re-
sults.

In considering the application of this theory to other materials,
the only difference to be encountered would be the initial value of 7

used.
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CHAPTER V
EXPERIMENTAL PROCEDURE AND RESULTS

5.1. Description of Specimens and Experimental Arrangement

The experiments reported on in this chapter were performed at the
Ballistic Research Laboratories of Aberdeen Proving Grounds, Aberdeen,
Maryland. The writer acted as an advisor on the test program and par-
ticipated to a minor extent in the testing. Some of these results will
appear in a joint paper (23) with a member of the Ballistic Research
ILaboratories staff to be published later.

The specimens chosen for the tests were spheres made of 24 ST and
6061-T4 aluminum alloys. The first series of tests were made using
spheres whose outer diameter was nominally eighteen centimeters. The
second series was made using spheres of 25 cm outer diameter. The
inner cavity in both cases was 3.4 centimeters. (See Fig. 11). The
exact dimensions are given in Table 2. A threaded well was machined
in the spheres in which a threaded plug with a hemispherical cup ma-
chined in the end was inserted. This arrangement offered essentially a
condition of an lisolated cavity inside a metal sphere. A small diameter
hole drilled through the axis of the plug provided a means for running
the firing line and ionization probe to the cavity. The end opposite
the hemisphericel cup protruded from the sphere and served as a means
of mounting the specimen.

The explosive used was a 32 gram sphere of Pentolite which fitted

snugly into the cavity in the aluminum sphere.
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The permanent deformation of the inner and outer surface of the
sphere as well as the material damage were of primary concern in the
experiment. However, there were other quan?:ities that were of great
interest such as free surface velocity tim.e cufves, time of arrival of
first disturbance and maximum deflection and shock velocity time curve
through the material.

Two condenser type micrometers were used to obtain the free surQ
face velocity and ma.ximum radial deflection. These micrometers consist
of a condenser arrangement in which the surface of the sphere consti-
tutes the ground side and the other plate is placed & few tenths of a
centimeter away. (See Fig. 12). The output of these micrometers is
recorded on cathode ray oscilloscopes which are triggered by a simple
ionization probe inserted through the plug into the explosive detonator
cavity.

Quartz disc crystals are affixed to aluminum rods and threaded in-
to the sphere to varying depths to measure the time of arrival of the
disturbance through the aluminum sphere. The output from the crystals
is recorded in the same way as the condenser micrometers.

After the apparatus is assembled the condenser micrameters are
calibrated remotely. The explosive is then initiated and the scope
traces recorded with still cameras using polaroid film.

5.2. Test Results

Table 2 contains a tabulation of pre-shot and post-shot physical

measurements of each specimen. The inner cavity and outer surface

measurements are averages and do not reflect the asymmetric deformation
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detected in the post-shot measurements. However; the values obtained
from the recorded data presented in Table 3 do reflect this non-uniform
deformation. The values in Table 2 indicate that>£he average increase
in the outer diameter of the small spheres is about 2% and about 1% for
the larger spheres. For the inner cavity the post-shot diemeter was
found to be about 75% greater than the pre-shot diameter for the small-
er spheres. The increase for the larger spheres is, however, greater
than 100%. In Table 3 we see the values of the wave velocity agree
well with the known elastic wave velocity in the aluminum. It is also
evident that the free surface velocity for the two materials is apprec-
iably different.

Figure 13 shows a typical plot of datg showing the response of an
18 cm sphere recorded through & condenser micrometer. Notice the de-
finite tendency toward oscill;tion of the outer surfa.'ceo Figure 14 is
an actual trace of the surface response of the 25 cm sphere recorded by
the polaroid camera.
5.3. Discussion and Conclusions

One of the most significant questions that we hoped the experiments
would answer was how much the cavity size was influenced by the loca-
tion of the outer boundary More specifically, how large the sphere
had to be to be considered an infinite medium. This was not answered
quantitativeiy, but it was found that the location of the boundary was
a significant factor. We notice that the post-shot cavity was consis-
tently larger for the 25 cm sphere when compared to the 18 cm sphere.

This might be explained through a coupling effect between the reflect-
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ed elastic wave and the plastic loading or vnloading wave. Another
possible explanation is based on assuming that the motion is quasi-

(24) shows that the displacement of

static and fully plastic. Hill
the inner surface increases with an increase in outer radius.

Figure 15 is a sketch of a post-shdf section of the sphere.

Notice the three regions maerked on the sketch labeled A, B, C. Sec-
tion C is a narrow region surrounding the cavity in which there are
few c1a;ks and during deformation the metal appears to flow much as

a fluid. In region B the material exhibited many small shear and
tension failures. Zone A appeared to be dominated by reflective ef-
fects and showed several "scabbing" type failures.

In all of the tests, the plug was blown out. It was concluded
that this did not effect the final cavity size significantly as the
sphere had to expand throughout to free the plug. However, the pre-
sence of the plug was concluded to cause the asymmetric deformation
of the sphere.

The quartz disc crystals used to signal the time of arrival of the
wave were only able to measure the small amplitude waves. The crystals

would not sustain the violent conditions in the shock zone.
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Failures due to
Reflected Wave

18.16 &

Zone A — No damage, other than that of
reflected wave

Zone B - Heavily damaged
Zone C — "Fluid" zone

Note — Dimensions are approximate

FIG.IS — SMALLER SPHERE — POST SHOT.
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CHAPTER VI
CLOSURE

6.1. Summary and Conclusions

The behavior of shock waves in metale is & subject of current
scilentific and engineering interest. There has been & considerable
amsunt of experimentsl research snd & lesgser amount of enslytical
effort in this field. Scme of the most successfual api:roaches to the
problems of shock waves in solids have been baged on the so-called
"hydrodynsmic" model.

In Chapter ITL of this thesis the thesry of self-similar motion
is reviewed and discussed. The equaticas for spherical motion of a
compressible inviscid fluid subjected to & astrong shock sre solved.

One of the main corntributions of this thesis is contained in
Chapter IV. In this chapter the problem of the dynamic short time
behavior of & ductile metal‘ surrounding s spherical detonsted charge
of high explosive, is solved for the first: time. The problem is ap-
proached using the theory of self-similar motion presented in @pter
III. The trajectories of the shock waves and cavity surface are ob-
tained as well as values for the variation with time of pressure and
velocity cn the cavity surface. Cavity formation in cther metals is
discussed and values - for shock and cavity surfacze trajectories are ob-
tained. Pressure and velocity variation with time on the cavity sur-
face are also presen*’ted,

A critical analysis of the theory of self-similar motion as it

applies to shock waves in solids i1s presented. The restrictions im-
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posed on its use by equations of state and assumptions of constant
shock strength are discussed. An equation of state called quasi-poly-
tropic is considered and its incompatibility with the theory of self-
similar motion exhibited.

A method which accounts for one of the non-similar aspects en-
countered at large times for spherical shock waves in solids is dis-
cussed and its applicetion to the cavity expansion problem outlined.

The results of the analysis for aluminum show that the "shock
zone" or range of v;lidity of the self-similar solution is very small.
The reasons for this are (1) after only 0.5 microseconds the shock
wave velocity predicted by the self-similar solution has fallen to that
of the elastic wave velocity in the material, (2) in only 0.7 micro-
seconds the pressure behind the shock front has fallen to 100 kb (which
has béen chosen as the lower bound for the range of validity of the
equation of state of aluminum). At this time the cavity has expanded
0.1 cm which is only 1/30 of the total increase in radius.

Thus the material behavior is referred to as impulsive, that is,
the latter stages of the process are insensitive to many of the fea-
tures of the shock part.

The final cavity radius attalned is of great interest to the gen-
eral problem as this value is directly observable on the specimen after
blast. In principle, the prediction of this radius should afford a test
of any theory, but the matter is not so direct as this, since several
theories are involved. It is now evident that the cavity formation pro-

cess 1s complicated. It starts under one theory, in which the state of
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the metal is fairly well established, but terminates under another,
about which there is little information.

In applying the theory of self-similar motion to cavity expansion
in other metals, it is seen that the only difference is the material
constant 7 The behavior of the solution curves for variable 7y is
shown in Fig. 16. For ¥ = 7 the solution is particularly simple (see
Egs. (4.24) ).

In considering the application of the theory, which takes into dc-
count the variable density ratio across +he shock front (see Sec. 4.5),
we see that a numerical approach can be successfully used to extend the
self-similar theory.

In Chapter V the results of new experiments were presented. These
studies were made for the purpose of verifying the foregoi_ng theory.
Aluminum spheres of 18 cm and 25 cm diameter were subjected to an in-
ternal blast from a 32 gm spherical charge of Pentolite. The result-
ing surface motion and permanent deformation were presented and the ef-
fect of the size of the sphere established.

The inner cavity of the smaller spheres was deformed from an in-
itial diameter of 3.40 cm to 6.0 centimeters. The cavity of the larg-
er spheres, however, increased from a diameter of 3.4 to 7.4 cm.

Other pertinent data is given in Tables 2 and 3.

The actual cause of the difference in cavity size 1s not known.
However, the possibility of coupling of the waves due to reflection

from the boundaries is a possible explanation. Another possible cause

(24)

is that presented by Hill in which the motion is assumed quasi-
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static and the sphere completely plastic. Under these assumptions Hill
shows that the inner radius incréases with the outer radius, o6ther
things remaining equal.

The damage suffered by the spheres is seen to be rather sharply
delineated intoc 3 categories. The first 1s the zone immediately next
to the cavity. In this zone there were few shear cracks and the ma-
terisl appeared to have been deformed in a fiuid-like hanner.

In the second zone this was not the case. There were numerous
shear and tension cracks snd damage was severe.

The outer zone was dominated by reflective effects. Most of the
failures in this zone were "scabbing" type failures.

Another interesting fsct determined from the experiments is that
there is definitely some oscillation of the sphere.

In all the tests the plug was blown ocut. It was decided that this
did not affect the cavity size to a great extent, since it only occurr-
ed after the sphere had expanded sufficiently tc allow its release.

6.2. Suggestions for Further Research

It is obvious in considering the analysis of later stages of the
cavity expansion process that a criterion 1s needed for marking the end
of the self-similsr solution.

Several such mechanisms have been suggested such as temperature,
(10)

material strength and energy (9) but none are completely satis-

factory.
To obtaein a better approximation of the actual material behavior

for later time, one must account for the non-similar aspects of the
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flow. Por this reason it is suggested that some numerical results be
obtained using the theory described in Section 4.5.

In order to obtain an exact analytical solution; the boundary con-
ditions on the inner cavity surface must be prescribed for all values
of time. This will require a detailed anelysis of the effect of con-
finement on the detonation pressures of the explosive, and also con-
sideration of pulsation of the exploded gas.

There remains the problem of defining the equation of state of a
solid throughout the range of pressures encountered in the blast wave
problem. This problem is camplicated by phase changes and other com-
plicated mechanical behavior. This should cantinue to be an area of
great effort.

There are several questions that cen be answered by experimental
investigations which would facillitate the formulation of a satisfact-
ory theory.

(1) What part do the reflected waves play in the final cavity size.

This could be answered using a flash x-ray or some similar device.
(2) What is the actual initial detonation pressure exerted on the

metal.

There is need for a pressure sensing device which will survive the

extreme conditions experienced in this test.

(3) How much time is required for the cavity to assume its final con-

figuration.
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APPENDIX A

SINGULAR POINTS OF ORDINARY DIFFERENTIAL EQUATIONS

The singular points of an ordinary differential equation dv/dx =
f(x,v)/g(x,v) are defined to be those points for which dv/dx = % .

It is necessary to study carefully the singular points of the 4dif-
ferential equation {Eq. (3.20) ), % a W , in order to
construct solution curves using numerical methods.

Poincsre showed that the differential equation

' s
av ax + bv + fztx,af) (A.1)
dx  ecx + dv + ge(x,B)

in which the constants &, b, ¢, d are such that A = ad - be # O

2 2

and in which f, and g. vanish like X + v &as X,v- 0, has as
2

2
its only singularities those of the much simpler equation

dav ' ax + bv
&x T ox+ av ‘ (a.2)

It is obvious that these occur only at the origin (x,v) = (0,0).
However, in order to study a singular point (Uo, Po) a change of var-
jables can be made by letting x = U - U, Vv= P - P, Thus in the
neighborhood of an isolated singularity(U,,P ) the differential equation

av ax + bv

(3.20) can be written > " oxiay

curves in the neighborhood of the point is then determined by the val-

. The behavior of the solution

ues of a, b, ¢, d.
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The singular points of Eq. (3.20) will now be determined and class-
ified according to the notation and criterion of Stoker (25). Rewrrit-
ting Eq. (3.20)

ar P[N(U) + U

auv = "R(U) + PS(U (a.3)

By inspection of Eq. (A.3) we find

(s1) U=0 s P=0
(s2) U=a . P=0
(s3) U=1 , P=0

The location of (S4) 1s determined by the condition

N(U R(U
I IR

This statement leads to the cubic equation

A3U3+A202+A1U+A°=0

where

>
n

5 =27 (1 - 37)

>
"

p =37 (37 - 1) + 77 - 58) - 7(36 + bp) + & + 28

7 (308 + 68 -2 - ha) + (2 - a) (& + 2B)

i

- 20 (8 + 2B)

s
"
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For aluminum (y = 7.6) the point (S4) is given by U = 0.0916,
P = 0.02884. The remaining roots are imaginary.

A sumary of the results of the classification of the nodes is as

follows:

Singular Point Classification
s1  (0,0) stable node
s2 («,0) saddle point
s3 (1,0) stable node
sk  (.0915, .02884) unstable node

From numerical calculations it appeared that the solution curve
for y = 7.6 should end at S2. However, this was a saddle point of
the differential equation and curves starting near Sk never went into
S2. (Theoretically we know there is only one curve which does so and
this cannot be found numerically.) In order to obtain a better approxi-
mation to & solution cur}ré Joining the points S2 and Sk the following
procedure was used.

Near U = we have

P=PO+(%)U=G(U-G)+ (A.4)

Dividing both numerator and denominator in the differential equation

(A.3) by U - @ and putting

m o= Py, (A.5)

we may write
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apP [N(U) (28 + 29(U - a
av =™ U(l-%fm+ (QB++ ;t(h')m ) (a.6)

We now seek a solution curve wvhich approaches the point U= with
a definite limiting slope (i.e. be locally a straight-line). Letting
U—-a in Eg. (A.6), placing the resulting expression in (A.k4), and di-

viding by (U-a), we obtain the following equation for m:

N(U 26+ 27 (U - &
n [Uglzu; ; %as: 3I717§m I (A.7)

Equation (A.7) has the following three solutions:

1) m=o
2) m=0
3) m= (a-1)/3

Thus there aré three solution curves which pass through the point. The
first two are the straight lines U=, P = 0 respectively, which
are singular to the differential equation. The remaining slope is
m=-0.2 for &= 0.4,

By proceeding along the straight line of slope m a short dis-
tance toward S4i and using this point as the starting point for the
numerical calculation, a very close approximation to the actual curve

is obtained.
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. APPENDIX B

NUWMERICAL PROGRAM

The problem p;ogra.mmed for the computer was to obtain the traject-
ory of the shock front and particle paths as well as distribution of
physical variables from the differential equation and a starting point,
(see Appendix A) together with boundary conditions and kinematic rela-
tions. 4

In order to avoid the difficulties caused by vertical or horizon-
tal tangents, the differential equation (A.3) was written in the follow-

ing parametric form,

s (R+PS) = au (B.1)
. J PP(WPQ)® + (R+Ps)?

cs P(MPQ) = aP (8.2)
/ PP(wPQ)? + (R+Ps)?

where
—_— -
-/ T+ = J1+ (P a (B.3)

Expressions (B.1) and (B.2) are well behaved except at Sk and S2,

which are carefully avoided.

b The accuracy of the calculation is seen to depend on the choice of

ds (other things remaining fixed). However, ds has no physical mean-




ing and the density was decided to be a better parameter. Using the

relation

- _ pr{ReE8) + U (U0)? - B), as
U-a
: J (wpQ)2 P + (meps)?

dap

a program wes developed where the density is the independent variable

and a physical constraint was maintained on the lntegration.




TABLE &4

Program Symbol Table

Progrem Symbol

CEEEER-ER: EE%EEEmﬁ%Eux&mcmou»

Our Notation or Name

DW%WGVO"@Q

num. of iterations
potential energy
kinetic energy

Py

R
initial U
initial P
initial p

1/a

t
u
b
at
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TABLE 5 - FORTRAN PROGRAM

COMPILE RUN FORTRAN
R-T CALCULATION PROGRAM
100 DIMENSICN IDENT (2)
1 READ BOQO»AsBsCsGeDOs IDENT
800 FORMAT(5F10.092A5}
2 READ 801+XsRsDD s IMAXs PRES
801 FORMAT(3F1040,11051F1040)
3 IF(IMAX)G4sbb,4
4 PRINT 802
802 FORMAT (1H1 40X 32HBRL—PAJSTATE PROJECT BLAST WAVES/
11H0» 48X s 15HR-T CALCULATION/
11HO» 15X s 10HINPUT DATA)
5 PRINT 803,IDENT sGsR»DO»PRESIMAX0D
803 FORMAT(1HO»10Xs LIHMATERIAL = ,2A5/
11HO» 10X+ BHGAMMA = 41F5,2/
11HOW 10X+ X THINITIAL RADIUS = »1F5.3,3H CM/
11HO»10X+18HINITIAL DENSITY = ,1F5.,346H GM/ CC/
11HO»10X»19RINITIAL PRESSURE = 41F5.1s9H KILOBARS/
11HO»10X+20HNO, OF ITERATIONS = 4114/
11HO+10X+20HDOENSITY INCREMENT = +1F6e346H GM/CC//
11HO»1X e 1HT s 7Xs1HT 311 X9 1HR 912X s1HV12X9THPRES KBs9X9s1HDs11Xs1HUs 11 X
1slHP s9X s 1HX 11X s 1HEZ /7))

6 UsA®(140=(6-140)/(6+1e01}

T Ps(A*¥A%®(G-140)/7(G+160) 1% {1e0~(G~1e0)/(G+1e0)}
8 D=(G+140)/(G~1.0)*DO

9 EP=0

10 EK=0

11 E=0

12 DO 42 I=14IMAX
13 FN=G*U* (3,0%A~1e0-2.0%U)+(3,0-A)*U-2.0%*A
14 FQ={240%#B~(G-10)*%C)/(U~A)+2,0%GC
15 FR=U*(U-A)*(1.0-V)
16 FS=C+2.0#B+3.,0*UKG
17 FT=P*(FN+P*FQ)
18 FWeFR+P*FS
19 FY=(U=A)*(U-A)-G*P
20 FX==DD* (U=A)/(D* (FW+3.0%U*FY))
21 DP=FT#*FX
22 DU=FW#*FX
23 EX=140/A
24 T=(R/X)®*EX
25 DX=X%FY*FX
26 V=R*U/T
27 PRES={R/T)%#2%PRD* (10 0*¥(-9})
28 PRINT BO&4sIsTyRsVIPRESsDsUIPIXsE
BO4 FORMAT(IM 31431 E12e451F12e¢791E14e541F14454+4F12.541E1545)
29 DT=DX/{{~A/T+V/R) *X)
30 IF(P)43+431,31
31 T=T+0T
32 R=R+V*DT
33 u=u+DU
34 P=pP+DP
35 X=X+DX
36 D=D+DOD
37 DEP=4,02#3 4141593 #PAD* (X #24)%DX/{G=-1.0)
38 DEK=6,0%3,141593%(U¥U)XD*(X**4)%DX/2.0
39 EP=EP+DEP
40 EK=EK+DEK
41 E=LP+LK
42 CORTINUE
43 6O 70 1
44 STOP
4% END




(1)
(2)

(3}

(%)

(5)

(6)
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(8)

(9)

(10}

(11)

(12)

(13)

(14)
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