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CHAPTER I 

INTRODUCTION 

1.1 Reasons for Studying Spherical Shock Waves In Solids 

The study of spherical shock vaves In solids poses an interesting 

problem both from the standpoint of the desirability of the results as 

well as the inherent theoretical interest of the problem. 

Information gained in this study should be of interest to investi- 

gators in many fields. The dynamic expansion of a spherical cavity in 

a metal under the conditions produced by a high explosive is closely 

related to several important problems. The phenomena associated with 

cratering due to hypervelocity impact, auto-frettage, underwater ex- 

plosions, underground nuclear testing, nuclear reactor explosions, end 

many more have much in common with the cavity expansion problem. 

The study of shock waves in solids and their applications to the 

study of properties of solids has become an active area of engineering 

and physics. 

Propagation of these intense waves through solids with pressures 

up to 9 megabars has yielded fundamental thermodynamlc data which could 

not be obtained by any other means. Shocks have been used to produce 

changes in crystal structure of some materials. It has also been found 

that shocks can change electrical insulators into conductors. Shocks 

harden metals, create and alter vacancies and dislocations in lattices 

and shock Induced impact bonding of metals is now commercial. 

It is felt that the simple geometry and relative ease of perform- 

ing experiments warrants a rigorous study of spherical shock waves in 

solids. 



1.2. Physics of Cavity Expansion Due to Explosive Impact 

Consider a detonation initiated at the center of a spherical 

charge of high explosive surrounded by a ductile metal. A wave races 

through the explosive and imparts a sharp impact to the surrounding 

material. A shock wave is formed In the metal raising the the pressure 

to the order of magnitude of 500 Mlobars. Under these extreme pres- 

sures the metal in a zone adjacent to the explosive behaves as a com- 

presslble^, inviscid fluid.  The shock wave propagates outward causing 

large plastic deformation, but decays due to spherical divergence, that 

is the pressure acts over an increasing area, into a stress wave. 

Meanwhile In the gas there Is a shock wave propagated back toward 

the center of symmetry which is reflected again causing the gas to pul- 

sate until the pressure is sufficiently reduced. 

Vibration or oscillation also takes place in the solid and for a 

finite body the problem of interaction from reflected waves arises. 

Thus It beccanes evident that the complieations produced by the 

extreme pressures, the varying mechanical behavior of the metal, short 

time of the phenomena as well as the interaction between gas and solid 

pose a difficult problem In the study of shock waves In solids, if 

attempted in its full generality. An analytical theory can be formu- 

lated and carried through only by isolating the significant factors in- 

fluencing the behavior of the metal.  This will be done in later chapt- 

ers of this work. 

1.5» General Nature of Shock Waves 

The concept of a shock wave is often misunderstood even among 



scientific and engineering people. The label shock wave is often 

attached to hoth strong and weak discontinuities. 

Weak discontinuities are fronts across which the time and/or space 

derivatives of the physical variables which describe the motion and 

state of the medium may experience a finite change. These will be re- 

ferred to as "sound waves". These waves are the characteristics of the 

linear differential equations that describe the motion. Across a sound 

wave the physical variables experience only infinitesimal changes. 

Strong discontinuities are fronts across which the physical var- 

iables which describe the motion and the state of a medium experience 

a finite change. 

There are two types of discontinuity surfaces, contact surfaces 

and shock fronts.  Contact surfaces are surfaces separating two parts 

of the medium without any flow across the surface. Shock fronts are 

discontinuity surfaces across which mass flows. 

For these waves there exists no sonic transmission of the discon- 

tinuities of the physical, variables since the governing differential 

equations are nonlinear. We find that the discontinuities of the 

physical variables cannot be described by a passage to a liitiit from 

continuous solutions as in the case of sound waves. To arrive at an 

adequate theory the physical fact of the existence of the shock wave 

must be taken into account. 

It cannot be assumed that the motion is isentropic, since the 

velocity and temperature gradients are not small. Thus we are con- 

fronted with having to describe mathematically an irreversible thermo- 



dynamic process. However, actual phenomena show that the irreversitle 

zone is extremely narrow. 

Outside of this transition zone the flow obeys the laws establish- 

ed for an adlabatic reversible process. Thus the empirical fact sug- 

gests a further mathematical idealization i.e., an infinitely thin 

transition zone. We find that the original differential equations, 

valid in the region of continuous flow, together with the conditions 

expressing the conservation laws and an entropy condition across the 

shock front, suffice to determine the flow without describing in de- 

tail the irreversible process across the shock zone. 

There is considerable difference in the complexity of shock waves 

in gases and in solids.  This explains the greater amount of litera- 

ture on the former compared with the latter. 

The difference in complexity of the two phenomena is attributahle 

to several factors.  One of the most significant being the lack of ein 

equation of state for solids which is valid over a large range of 

pressures, and in general, a lack of knowledge of the thermodynamics 

of solids.  (This is discussed in Section 4.9.) Another reason is the 

relative difficulty of making accurate measurements in solids. Other 

ccaapllcations are (l) a shorter time sequence in solids,  (2) ma- 

terial Imperfections,  (3) non-homogeneity, and lack of transparency 

as well as many others. 

l.k.    Statement of Problem and Scope of Study 

The problem considered in this research is that of the dynamic 

behavior of a ductile thick spherical metal shell surrounding a 



spherical charge of high explosive, subsequent to the detonation of the 

charge. 

The problem is approached using a similarity theory (a one dimen- 

sional problem in which the motion can be described by one independent 

variable and hence the partial differential eciuatlons of motion are re- 

placed by ordinary differential equations.) A more complete explana- 

tion of this type of theory is given in reference (k)  page 1^6. Values 

for the velocity, pressure and density of the material are found for 

the early stages of the process,  The results are compared with those 

of experiments.  In addition, a critical study is made of the range of 

validity of similarity type solutions as they apply to shock waves in 

solids. A method of extending the self-similar theory is described 

Equations of state of solids are discussed and their compatibil- 

ity with the theory of self-similar motion studied. A particular type 

equation of state called quasi-polytropic in this work is analyzed as 

to its compatibility with the similarity solution.  Comparison is made 

between the shock relations obtained using this quasi-polytropic rela- 

tion and the polytropic equation of state. 

Experiments on thick aluminum spheres are described and the re- 

sults are discussed. 



CHAPTER II 

BRIEF REVIEtf OF PAST WORK 

2.1. Elastic-Plastic Effects 

The most significant work published on the problem of expansion of 

a spherical cavity in which elastic and elastic-plastic effects are em- 

phasized was that oy Hopkins v ' . This article is a survey of the lit- 

erature and includes comments on most of the significant work associat- 

ed with the cavity expansion problem to date. Solutions are given for 

the elastic problem using the classical approach of integral transforms. 

It is of interest to mention that in the discussion of elastic-plastic 

waves, Hopkins emphasizes that due to the inhanogenelty of the dis- 

placement equation of equilibrium the plastic disturbances are not 

propagated at a definite velocity. Only that part of the plastic wave 

derivable from the plastic displacement potential travels at the plas- 

tic wave velocity. 

It is also shown that even the relatively simple case of elastic- 

plastic effects in a perfectly plastic or Reuss type material that the 

location of the elastic-plastic boundary is not obtainable In closed 

(2) 
form. An alternative procedure suggested by Hunter v ' Is to specify 

the location of the interface and then determine the corresponding wave 

functions and applied pressure. The results obtained from this ap- 

proach were in most cases found to be ■unrealistic or to place such 

severe limitations on the applied pressure as to be of little use. 

♦Figures in parenthesis appearing as superscripts refer to references 
listed in Bibliography. 



Several interesting approximate solutions for large elastic-plastic 

deformation are also discussed as well as a numerical approach using 

the theory of characteristics. 

2.2. Similarity Solutions of Equations of Gas Dynamics 

Many articles have appeared in the literature on similarity solu- 

tions of the equations of gas dynamics. The particular equations which 

appear In this thesis were first presented by G. I. Taylor   . 

Taylor worked out a few numerical solutions as well as seme ap- 

proximate analytical solutions for an explosion in a perfect gas with 

7 ranging from 1.2 to 1.67. Subsequently or simultaneously analytic 

solutions appeared by Sedov * , J. L. Taylor   ,  Latter ^ ' and. 

(7) Sakurai v  . Sedov presents the most complete discussion of the solu- 

tion curve in the plane of the non-dimensional pressure and velocity 

functions. He discusses the singular points and their significance in 

the physical problem. 

However, it is amazing that Courant and. Friedrichs^  , who ob- 

viously were not aware that the exact solution existed, were able to 

deduce nearly as complete a description of the field of solution curves 

as Sedov. 

2.5. Self-Similar Solutions of the Problem of Cratering Due to Hyper- 

velocity Impact 

As was mentioned earlier, the problem of blast waves in spheres 

and cratering due to hyperveloclty Impact have much in connnon. Conse- 

quently, the approach used in this thesis Is similar to that used by 

several investigators of hyperveloclty impact phenomena. 



(9) Davids and Huang w/ were apparently the first to approach the 

problem of craterlng using the similarity or progret Ing wave theory. 

They applied the theory of self-similar flow using a perfect gas type 

equation of state for the target material and an energy criterion for 

establishing the crater depth.  They assumed spherical symmetry in the 

problem. 

Rae and Kirchner ^   formulated the problem more generally but 

succeeded in getting closed form solutions for the spherically symmet- 

ric case only. They also pointed out sane restrictions on the equation 

of state and suggested ways of approaching the non-similar aspects of 

the problem. A material strength criterion was used to predict crater 

depth. 

2.4. numerical Solution of the ProblemB of Blast Waves In a Perfect 

Gas and Hydrodynamics of Hypervelocity Impact 

Numerical solutions of the problem of strong blast waves in a per- 

fect gas have appeared in the literature since about 1951t-. For the 

most part the approache*» are all similar but there are some distinct 

differences. 

Goldstine and Von Neumann *  ' solve the problem of a strong point 

explosion in an ideal gas. The conservation laws of mass and momentum 

are combined and the resulting differential equation solved by finite 

differences. They employ an iterative scheme to satisfy the Rankine- 

Hugoniot conditions and use this as a check on the accuracy of their 

solution. 
(12) 

Erode claims to be following the method of one of the previous 



authors     and employs an artificial viscosity as a mechanism for 

avoiding shock-front discontinuities. The integration process con- 

sists of the step-wise solution of the difference equations which ap- 

proximate the differential equations of motion of the gas. 

Another somewhat different approach to the problem of a strong 

(Ik) 
spherical blast wave in a gas is that used by P. D. Lax v  '. Lax 

uses the conservation form of the hydrodynamlc equations and a slight- 

ly different way of differencing the equations. 

One of the first investigators of the cratering problem using 

numerical techniques was Bjork.  In predicting the crater due to meter- 

old Impact, Bjork * •'■' assumed the impacted earth behaved as an invis- 

cld, ccnrpressible fluid and postulated an equation of state for the 

material.  In later investigations of hyperveloclty impact in metals 

this same model was assumed with favorable results. 

Another investigator in the hyperveloclty impact field is J. M. 

(17) 
Walsh    . He has also developed a numerical program for the impact 

problem based on the "hydrodynamlc" model. 
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CHAPTER III 

SELF-SIMILAR SOLUTION OF PROBLEMS WITH SPHERICAL SXMHETRT 

5-1. Theory 

The theory of self-similar motion was originally conceived for the 

solutions of problems in gas dynamics. However, subsequent investiga- 

tions have led to the admission of a broader class of problems, 

(a) Basic Equations of Spherical Flow 

The equations for spherical flow of a medium in Eulerean form 

expressing the conservation of momentum^mass and energy are 

du ... du , 1 
P 

^+u^+~55=0 (3.1) 

|h»^ »(£♦*"■)-<> (3.2) 

where   Dt = 5t + u 5? 

and      e = f (p,p) is the form of the equation of state. 

The Ranklne-Hugoniot equations expressing conservation of 

mass, momentum and energy across the shock front are 

p^-C) = p2(u2-e) (3.10 

P1(U1-C)" + ?! = Pa^a"
0^ + p2 ^5'5^ 
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e2 - e1 = i (p1 + »^(i- - i_) (3.6) 
pl  p2 

where subscripts 1, 2 refer to conditions in front of and behind the 

shock front respectively. 

(b) Similarity Assumptions for a Strong Explosion 

The approach used to determine the self-similar solution will 

be completely formal, and will employ a method commonly used in the 

solution of partial differential equations. That is, a particular 

solution of the partial differential equations is assumed reducing them 

to ordinary differential equations which are then solved. This treat- 

ment will be followed by a brief comment on dimensional considerations. 

We seek a means by which we may obtain an analytic solution of the 

problem of a strong explosion in a continuous medium. In order to do 

so we introduce a variable 5 = rt   and the following assumptions : 

U = tß| U(|) 

P/P = tV HO (5.7) 

P = t8D(|) 

where a,ß,e and B are parameters, and U, D, P functions to be 

determined. By introducing these functions we shall show that the par- 

tial differential eqtaationsof motion (Eqs. (3'l) - (5-3))are reduced to 

ordinary differential equations. The variable | defines geometrically 

a family of surfaces | = constant in the r,t-plane, one of which is 

the shock front.  (This has been shown experimentally ^  ' to be a very 
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good assumption. 

We now explore these solutions mathematically by substituting the 

expressions (3.7) Into the equations of motion, giving respectively. 

.ß-1 ß-a+1 |tp"x [ßu - a UU'+U) + tp^+J- UdU'+u) + t 

(2P + | PD'/D + IP')] = 0 

.€-a-ß+i 

(3.8) 

,8-1 t   [(U-a) |D' +  8D + (lU' + 3U)D]  = 0 (3.9) 

t&fe-l|-_ ^2 p(SD^5I).) + ^2 [(^g) jjp 

- a^DP+ID'P + ^DP')] + tß"a+1[ - 71^'       (3.10) 

+ ^(2DP + |D'P + IDP')] |U] = 0 

y 
where the equation of state p = Ap  has been used. This will be dis- 

cussed in detail later in the thesis.   These equations are now in a 

form where it is possible to eliminate the explicit factor t by prop- 

erly choosing the exponents, thereby leaving a system of functions of 

one Independent variable |. This is accomplished by letting 

e = 2ß ß = a-1 

_ .  .ß-OH-1  .e-a-ßfi  .. 
so that v    = t      = 1. 

Dividing by |tK , t  , 

(3.11) 

t  "  (which are not zero for t> 0) 

and simplifying the restating equations, we obtain. 
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ßU-adü'+U) + ü(|U'+U) + (2P + ^PD'/D + IP') = 0     (3.12) 

(U-a) |D' + BD + (iV  +3U)D - 0 (3.13) 

P'ltU-a) + P[2ß-6(7-l) + 2(U-a)]-(D,/D)P|(7-l) 

(U-a) = 0 (3.1*0 

We new have a system of ordinary differential equations for the 

unknown functions U(g)9 !>{(,),    P(|) and two free parameters a and 

5. The substitutions of Eqs. (3.7)> which may appear artificial, are 

thus justified. 

We shall now reduce the number of variables further.  Solving Eq. 

(3.13) for ID'/D gives 

|D'/D = - (EH-IU* + 3CJ)/(U-a) (3.15) 

When Eq. (3«15) is put into the remaining two equations we obtain the 

pair, 

(u-a)(eu,+u)+ ßu + P[2 (8+|U,+3u)/(u-a)] + gP' = o   (3.16} 

-(r-i)(5+|U,+3u) - 2ß+(r-i)8-2 (u-a)-(u-a)|P,/p=o    (3.17) 

These equations, linear in gU' and IP' may be, solved simultaneous- 

ly, giving 



Ik 

lU'  =  [-U(u^t)(U-l) +  (&f2pf3Ur)P]/A (3.18) 

IP*   = P     (7-l)u(U-l)   -  (U-a)[(37-l)U-2] + 

((2ß-(7-l)8)  +  27)p    /A (3 19j 

where A =  (TJ-a)    - rP. 

By dividing Eq. (5.19) by Eq. (3.l8)^ the follcwing ordinary 

differential equation is obtainedj 

dU  |U'     R(U) + P(S(ü)) U"^-» 

After the simplification, 

N(u) = rU(3a-l-2U) + (3-a)u-2a 

Q(U) =  [2ß -(7-1)6] /(U-a) +27 
(3.21) 

R(U) = u(u-a)(i-u) 

S(U) « &+2ßf 3U7 

This is the basic differential equation for self-similar motion. After 

the appropriate solution has been found for P = P(u), the function 

I = (u) is found by a quadrature of Eq. (3.18) and the density func- 

tion D(0 is obtained from Eq. (3-15) • 

As we shall see, these self-similar solutions provide a suffic- 

iently general mathematical description of an expanding cavity reason- 

ably consistent with the given conditions of inlation of the process. 
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There remains the problem of choosing the two parameters a and 6» 

Let us assume that the total energy given up by the explosive ap- 

pears as kinetic and potential energy in the surrounding medium. This 

is a reasonable one for the cavity expansion process, because of its 

short duration, provided certain secondary effects are neglected. With 

I " 1^.  representing the shock front at a time t, the total energy in 

the fluid shell (potential + kinetic) at time t is given by 

rl rl 

E(t) = j       (yE_) iwr2dr +    [      \   Pu24«r2dr        (5-22) 

r r 
o o 

where r = | t  is an arbitrary member of the family and r.1 =lit 

is the location of the shock front. 

7 
The first term arises from the polytroplc relation p=AP  which 

has been assumed for the material and the fact that the work done by 

the material in becoming compressed from an Initial volume V.  to a 

a volume V  Is given by 

1 w 

E(V) = f    pdV=P1V1 J  AP7(-^|) * " |^+ const.    (3.25) 

Vl Pl 

where we have used the relation P2
V2=Pivi* using the substitutions 

in (3-7) the energy expression becomes 



16 

Kt) - I« /     (t^6 Ä + It&+2ß ü2)62D(^r2d' 
r o 

Substituting    r=|t ,    dr=tad|    into the preceding equation and noting 

that    t    is constant, 

*1 

E(t) = k* t8+5«-2   /       (JL + i tl2)tSKt)d8      . (5.24) 

Since the Integral Is Independent of t, we make the energy Independ- 

ent of time by satisfying the relation 

5+5a-2 =0   or   B=2-5a (3.25) 

We shall narrow down the number of parameters by examining the 

compatibility of our solution with the basic Ranklne-Hugonlot con- 

ditions across a shock front. If the undisturbed and disturbed medium 

parameters are tt-, p,, p, and Up, p2, p2, respectively and the 

shock wave velocity is C, then the relations for (see (8) Tp.l2J-k)s 

conservation of mass, momentum and energy across the shock front are. 

P1(u1-C) = P2(u2-C) = m 

P2u2(u2-C) - PJUJ^-C) = P;^ 

P2(|u2
2+C)(u2-C)-P1(|u1

2+C)(u1-C) = P^-P^g, 

where e = -==- p/p for a polytrppic medi\jm. 
7-1 

When the undisturbed state is a medium at rest, with u^O, these 

equations reduce to 

(5=26) 

(5.27) 

(5-28) 
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P2(C-u2) - p^ = 0 

P2u2(e-u2) - (P2-P1) = o 

^^  + Ä S?)(C-U2> - P2U2=0  <el=0) 

(3-29) 

(3.30) 

(3.31) 

It is useful to solve Eq. (5-29) and (3-30) for the velocities. Then 

U2 = (P2"Pl^/plC 

Pg  P2_-P 
Pl  p2 " Pl 

i) 

(3.32) 

(3.33) 

If p is in kilobars, p in gm/cc, then u and C vill come out in 

km/sec as expressed hy the following formulas: 

U2 = (p2 " V/(10 P^p) 

C = 
Pg -v1 

(3.34) 

P^^  lOCPg^) 

It is useful to have these relations for a polytropic medium.    Then 

2      ^2    P2   ' Pl 
7-1    P2     (Pg + Pi) 

(3-35) 

c    = -a 
2_    ^2    P2  -pl 

7-1    P2    P2 + V1 

From (3.32), with ki = y (7-l)/(7+l), and if p1 is negligible, 
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u2 = C (1 - n2) 

P2 = Pi u2 C = pl c2 ^ " ^ 
(3.36) 

P2/Pl    =     (7+l)/(7-l) = % 

/g = /i+.
2  c 

The last quantity is conveniently referred to as the "sound speed" in 

shock vave analysis. These relations apply just as well to a spheri- 

cal or curved surface as to a plane, since the effect of spherical di- 

vergence (the 2 u/r term) on a finite or sudden jump is of a higher 

order of magnitude. This may also he shown geometrically hy consider- 

ing an infinitesimal surface element of the shock front. Since l-^rt 

(hy definition) along the shock front, 

0 = t"" dr - art-0"1 dt 

so C = I?- = art"1 = at ta" . Then from Eq,. (h-.l)  and the relations 
dt 1 

(5-29) through (5.3l) with 

C - u2 = a^t
0'1 - t^U^) = ^ tß(a-u), 

we ohtain 

t6^ ^ D(a-u)- p1 a ^ tß = o (3.37) 

t5^ l^ m (a-u) - t6^ i/ DP = 0 (3.38) 
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t^ D^2 (i u2 + ^ P) Si (a-u) -t^
3\^  DPü = o  (5.39) 

We note that the time factor cancels In Eq,. (5.38) and Eq,. (5.59), so 

that these equations are automatically satisfied. However, to secure 

independence of time in Eq. (3.37)3 it is necessary tp make 

0 (5.W)) 

With this condition and the relations (3.25), the assumed form for the 

progressing wave solutions reduce to 

u = (r/t) U(t) 

P = D(|) 

with   I = rt 

P = (r/tr D(e)P(t) 

p/p = (r/t)2 P(|) 

-a 

(5.fcL) 

This solution shows that on the shock front, where |  is constant, the 

physical quantities such as velocity, pressure, density, and wave vel- 

ocity are constant on the rays r/t = constant.  This also dimensional- 

izes the functions (4.?) correctly, for, with | having the dimensions 

of length per (time) , and 

I = [LT^] 

U(|) - [1] 

D(|) = l*L'y] 

HO = [i] 

then u, p, P, P/P have respectively the correct dimension of vel- 

ocity, pressure    (ML"T;~ ),  density and velocity squared.  The com- 



20 

plete set of exponents Is now 

a = 2/5       e = - 6/5 

ß = - 5/5      8=0 

(3.1*) 

If we now turn to purely dimensional considerations the following 

are recognized as the system of fundamental parameters influencing the 

motion of the medium: p., p1> E , r, t, y.      From these we can 

form only three independent dlmensionless quantities: 7 } 

"ll/5r Pi57' * 
x ° —173—275~  '       T = —173—i^- '   For a strong shock   ^pi<<p2^ 

O O     1 

the system reduces to only 7 ;    X E ' /p '  = rt' ' . If we 

teike 7    to be constants we see that the motion can be described by 

only one independent variable,  X , which agrees with our earlier find- 

ings. 

We can then write (see Sedov, Ref. {k)  ) 

u = (r/t) VU)  ,  P = ^1 t^2 «(X) 
r 

(3.1*3) 

,k+3 
p = -J^f tS R(X)   a = [MlV] 

r 

This system of equations differs from the ones previously derived 

only in the dimensional sense.  Here n,  V and R are all dimension- 

less functions of X and are related to the functions P, U, B in 

the following way: U = V, R = D/p^ P = ^/b = - . 
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Another means of approaching the problem is to consider a flow 

field which depends on a non-dimensional parameter    TI = T/R (t).    At 
s 

each instant the distributions of velocity, pressure and density are 

taken to be the same when viewed on a scale defined by the shock radius 

at that instant. Then if we assume the radius of the shock wave fol- 

lows a law R (t) = A t , we find we have essentially the same fonnu- 
s 

lation as discussed earlier. All that remains is the introduction of 

the dimenslonless velocity, pressure and density functions which are 

functions of r\. 

5-2. Solution of the Governing Differential Equation of Self-Similar 

Motion 

The analytical solution of the governing ordinary differential 

equation is obtained in an Indirect way (see Sedov (Ref. 4) ). We re- 

call that in the first section of this chapter we used the fact that 

the energy Integral was time Independent to obtain a relationship be- 

tween the parameters a and B. 

It can be shown that the energy assumption implies 

|5[PU+ (U-a) {2^-+  r^)]!» = constant- (5-WO 

This must be true for all stages of the process, in particular 

on the shock front. Evaluation of the constant from the Ranklne- 

Hugoniot conditions shows it to be zero.  Hence, we have effectively 

obtained an Integral of Eq. (5-20) and the relationship between P and 

U becomes 

p = (r-i) 02 (u-a)/2 (a-yu) (3.^5) 
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Relations can then be determined for D=D(6), U=ü(|), P=P(|) 

using equations (3.15), (5-18) and (5-19). 

A discussion of the singular points of the differential equation 

(5.20) and the solution curve (J«^) are given in Chapter TV. 
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CHAPTER IV 

APPLICATION OF THE THEORY OP SELF-SIMILAR MOTION TO 

THE PROBLEM OF EXPANSION OF A SPHERICAL CAVITY IN 

A METAL DUE TO EXPLOSIVE IMPACT 

4.1.  Description of Model and Assumptions 

Detonation of a high explosive confined within and In contact with 

a ductile metal generates a strong shock wave which raises the pressures 

abruptly (i.e., in negligible time) into the megabar range. These 

pressures are large compared to the material strength even at high 

strain rates and one is led to assume that the medium behavt 3 as an in- 

viscid, compressible fluid. 

Thus the solution of the problem of spherical blast waves in a 

metal originating at a spherical cavity reduces to solving the equa- 

tions of fluid mechanics (3.1) - {3-h-)  (i.e., conservation of mass, 

momentum and energy, together with the equation of state of the medium). 

If we next assume that the motion is self-similar, then all of 

the ideas discussed in Chapter III are at our disposal. The remaining 

question is that of the equation of state.  In this work it has been 

assumed to be of the form p = Ap . This is justified to some extent 

in the next section. 

14-.2.  Equations of State of Metals 

The equation, of state plays a central part in the application of 

the theory of self-similar motion to shock waves in metals.  In ad- 

dition to furnishing a relationship between pressure and density. It 

furnishes a criterion for the termination of the regime in which the 
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self-similar assumptions are valid. 

The notion of an equation of state of a medium implies thermo- 

dynamie equilibrium and can be described by a functional relationship 

between any three of the variables p, V, T, S, e. Thus there 

exists several forms of the equation of state of a pure substance. 

Consider the Helmholtz work function 

F = e - TS 

Prom this and the first and second laws of thermodynamics follows 

dF = de - TdS - SdT = - pdV - SdT 

Now dF is an exact differential of the thermodynamic potential 

function and hence 

dl? röSx      dg. 
5v5r   ^5V

;
T " vSr^ 

Since 

(^T - *<SI>T " P " T(^\ -  p 

it follows that 

de = (|)v dT + (^)T dV 

= Cv dT + [T(^)T - p]dV 
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An Ideal gas Is defined as a medium -which possesses no Inter- 

molecular forces of restraintj this implies that the internal energy- 

is a function of temperatore alone., hence (sr)m ■ 0 and 

or 

T(|pjf)v - p = 0 

P = Tg!» = Tf(p) a.i) 

Now a solid possesses energy due to the presence of intermolecu- 

lar forces and a thermal energy associated with molecular vihratlons» 

Hence even at absolute zero the energy of a solid is non-zero. Thus, 

we ean express the energy of a solid mathematically as 

e = f(V) + Tg(V) t>.2) 

Another formulation for the higher pressure range called the 

Mle-Grüneisen 
dO) 

equatioB. Is 

e(p,,p.i e (p) c ' 
P - PC(P) 

^mtr <>.3j 

The subscript c refers to the cohesive contribution and A" Is the 

Grdneisen constant which depends weakly on p. 

By rewriting equation (4=5) in another form the measured shock 

wave data along the Hugoniot curve can be used to calculate the co- 

hesive contribution. 

PH(P) - PC(P) 
eH^ " ec^ - ^TTTV ik.k) 
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Subtracting (It-. 10 from (^.3) we obtain 

• - eH(p) = 
P ' PH(p) 

H    P/-(p) 

The Mie-Grüneisen eq.uation can be rewritten in the form 

P  . 
P/^TPT e = ^7r^-    -A(P) 

and we find 

P„(p) .   .       P0(P) 

^ - rT^y - ^ - '#m - eH(p) ('-5) 

The last expression can be found from shock wave data and in this way 

the magnitude of A(p) can be determined. 

It has been found '**' that the only form of the equation of state 

compatible with the self-similar flow assumption is of the form 

e = p<p(p)  . 

We see that the leading term of the Mie-Gruneisen equation is 

p/pPip)  = p<p(p) and we are forced to use only this part of the equa- 

tion In the self-similar solution. Thus the assumption is accurate so 

long as the term A(p)  Is small compared to p//^(p)-  It should be 

pointed out that it does not follow that the fluid assuntption is in- 

valid when A(p) is not small compared to p/p Z"7 (p)- 

The Grüneisen factor f1    has been assumed to be a constant equal 

to (r-l).  This is not absolutely necessary since the variation of Z"7 
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could be taken into account tout has been dropped for convenience. 

For fixed parameters a, ß, €, B  the solution P = P(u) of 

the governing differential equation (3»20) is seen to depend on 7. 

The value of 7 determines the location of the singular points and 

other significant aspects to be discussed in more detail in the next 

section. 

In determining the single value of y    to be used, we must real- 

ize that the y   which best describes the state for one point in the 

medium will certainly bs i poorer approximation for another point. 

If a straight line is fitted the shock wave data from Ref. (19) 

and is considered as representing only the high pressure range^ an 

equation of state for the metals considered is obtained- These are 

actually Hugoniot curves, but will be used to approximate the isen- 

tropes of the metals (See Huang ^ ' )' 

We will now consider a particular equation of state p=A((p/p ) -l) 

y 
= Ap - B called quasi-polytropic in this thesis . This equation is 

very similar to the polytropic equation of state and is used by many 

authors to describe the equation of state for dense media, since p = 0 

does not imply p = 0 as for gases. Comparison is made between the 

polytropic and quasi-polytropic equations with respect to relations 

predicted by each equation or shock front relations, sound speed, and 

thennodynamic relations. The inability of the quasi-polytropic equa- 

tion to be used in a self-similar theory is also exhibited. 

y 
The sound speed for a FT gas p = Ap  is 

e = dp/dp ■ 7Ap 7-1 
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for a QPT 

c2 = ^ (Ap7  - B)  = 7 Ap7-1 

For later use we will define 

p = p + B = Ap' . 

Consider next specific internal energy.  For a PT mediumj 

= ÖL 
" 7-1 

For a QPT medium.; 

^ - (Ap7 - B) d(i) 

= (   ^ P7"1  - ^ 

= (  -Ej + B)V 
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- (2^S)V (^•6) 

The Hugoniot function is defined by 

P+ ^ 
H(V,p) = e(V,p) - ei^v^  + (V-VjK—g-^) (4.?) 

If we set H(V,p) = 0,  the Hugoniot relation is obtained.  This rela- 

tion characterizes all pairs  (V,p)  for the state on one side of the 

shock front that are compatible with the three shock front conditions 
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when the values (V,,?,) on the other side are prescribed. For a poly- 

troplc equation of state It is a rectangular hyperbola (Fig. l). 

For a QPT medium 

2 2 
H(V,p) = i=|l- (p+yB)V - Mh ^ + 7B)V1 

^l 2n 

P-, + P\ 

2^ = (l-M2)(pV) + (1-H2)7BV - (l-n2)?^ 

P P      P + PT 
- (1-^)7^ + 2|i£:(V-V1)(—g-^) 

2^ = (v-u2v1)p - (v1-u
2v) ^ 

+ (1-U2) 7B(V-V1) (^•8) 

Figure (l) shows the Hugoniot for PT and a QPT medium plotted for the 

purpose of comparison (p, has been assumed equal to zero). 

For the case of a shock moving into a gas at rest we obtain 

(v-n2v:L)[p + (i-n
2)7B] = yx  (l-n2)B. 

This can be rewritten as 

2, 
r 

'■2  '   '■   '1 

- (i-n2)yB  ,   » 
Po -       p    v 2 1; 
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(^•9) 

in the case of a PT medlumj since p, / 0. Next consider using the QPT 

relation for self-similar motion.  In order to obtain the solution 

curve of the differential equation we must have a unique starting point 
p2 in the P-U plane.  Since the ratio — is not constant there exists no 
Pl 

such point and we are forced to abandon the QPT relation. 

k,'}.     Solution of the Blast Wave Problem in Aluminum 

For a shock wave moving into polytropic medium at rest, the Ran- 

kine-Hugoniot equations become 

p. (C - uj -p. C = 0 (4.10) 
d <i     I 

P2U2 (C ' U2) ' (p2 " Pi) = 0 ^"11) 

p2(iu22 + Ä: ^-^ -P2U
2 = 0 ^"12) 

(e1 = 0) 

It is interesting to estimate the accuracy of the assumption of a strong 

shock wave. 

To do so the above equations are rewritten In another form using 

(3-52) through (3.36). That is. 
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2       „  r-        /CV2, 2 C     _ 

^2 = ^r pi C1 + Ä (§)2]" ^r pi f2 ^♦15) 

2 „2  rn       7-1     /CV2, 2 „2  _ 
I)2 =     ^Tl     pl  C     f1  " 2T    (C)   ]     =    ^1     Pl C    f3 

Figure (2)  shews the values  of    f ,     f_,    f,    plotted against 

el 
C  ~ M   ' 

If we assume p1 = 0 which is equivalent to setting f = f = f 

= 1 and p = 0,  then the expressions for Up,  p-, pp become: 

u2 = ^ C (4.U) 

Pa = rr p (u-15) 

P2 = ^ P, C2 (4.16) 

Now 1 = 1-1»  on the shock front and we can write 

RSx „,  N   2  d  /.  ^ 
<r) U^i) - Tfr k <*i *) 

^ Ud,) = a (^ !, t-1 

Rs „/ v    / 2 x „ ^.-a ^a-1 

*ix) -   IS (^17) 
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Following the same procedure for P(|, ) and D(|.. ) we find 

Hlj)  = 2 a2 n2 / (7+1) 

(4.18) 

For alujninuin. with y  = 7,6 this supplies an initial point in the 

P-U plane. The solution curve is the unique integral of (5=20) which 

passes through this point and the singular point D, as shown in Fig. 

3. 

We need next to prescrioe the initial conditions at the boundary 

of the cavity and the total energy supplied by the explosive. We will 

see how these allow us to determine |,, and consequently^ the motion 

of the shock front. 

From private communication with R. E. Shear of Ballistic Research 

Laboratories, Aberdeen Proving Grounds, we found that for pentollte 

under confinement the detonation pressure would be around 400 kb For 

convenience, a value of pressure = 384 kb was used in this work. This 

pressure predicts the proper density ratio using the Hugomot equation 

(Fig. 4) as the equation of state for the material at the cavity sur- 

face. 

The next step is to assure that when the shock wave is at the cav- 

ity surface, the pressure and density have the right values, namely 

2 

P = C^) Pdi) Ddi) (4.19) 
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In this expression p  p,  r , P and D are known, and t  is de- *      o o 

"temined; i.e., 

(P/V p(ei) DCI^J t  « T  In/r,   Pf t     , nl e  S ) V^ 

The values tised to calculate t  were 
o 

P1 = 2.785 g/cc 

p = 584 Kb 

r = I.698 cm 

P^) = 0.0286 

Dd^ = 3.5182 g/cc 

as indicated in Fig. 11 and Table 2.  Using these values we find t = 

0.868 n sec. 

This value of t is the "delay" time to assure the proper position 

of the shock front at the initiation of the expansion process. 

With the values of r •  t  known,  |,  is calculated from o*   o      ^  sl the 

definitive relation 5 = rt  .  Then 

f., = r t ""^ = 451.28 cm/see2/5 sl   o o ' 

The velocity of the shock wave is given explicitly by the ex- 

pression 
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dR 
C d  I   -    9-   (t    ta) 

- dt  " dt ul * ; 

or 

C = 2/5 (^51-28) t"5/5cm/sec 

= iSl t"5'5 cm/sec . (k.20) 

The physical variables immediately behind the shock wave are 

given oy equations (4.11»-) through (4.l6). That is 

= 42.0 t-5/5 cm/sec (^^l) 

p2 = lil pi= 5-518 g/cc (4-22) 

and 
2 

P2 = 57^ (2.785) (181 t
-3/5)' 

= 2.15 x 10"5 t /5 kb (4.23) 

In order to describe the distribution of the variables through 

the medium between the shock wave and cavity surface, we turn to the 

solution of the differential equation (3.20). The solution of the 

blast wave problem was exhibited as P = P(U). It was shown that the 

functions P=P(|), U=U(|); D=D(|) could be obtained by quad- 

rature of Eqs. (3'15), (3-18) and (3.19)-  However, it was found to be 

more convenient to proceed in a different manner. 
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A numerical integration of the differential eqviation (3.20) was 

performed.  (See Appendix B). At the same time, particle "paths" were 

traced out and the variation of the physical variables along these par- 

ticle paths were calculated.  (See Appendix B). 

Pressure Isobars were then drawn connecting the points of equal 

pressure in the medium,  (See Fig. 5)- 

Particular attention was paid the particle which started at 

r = r « I.698 as this marked the cavity surface and was of great in- 

terest In the study.  (Figs. 5j6,8j9)- It is also convenient to tabu- 

late the energy Integral (3-24) and compare It at some selected time 

to the energy given up by the explosive. 

In the theory of self-similar motion;, an assunrpt|.on of constant 

energy was made (See Eq.. (3.24) ) in order to provide the condition 

(5.25) for determining a    and with it, all the other exponents. The 

energy integral {3-2k)  is extended between two points, one of which is 

located on the shock front  I ■» I,  and a lower value 6 = 1-  T116 i11- 
1 o 

tegral path, such as BC in Fig. 6 may be arbitrarily chosen, so long as 

it terminates on these two curves. 

The energy In the disturbed part of the solid will, however, change 

with time because Its lower boundary, the cavity surface, is not one of 

the family of |-curves. Thus, the energy values in Table (l) repre- 

sent an integration of the expression in (3.25) taken along the cavity 

surface curve.  If we extend this integration far enough (say to 100 

microsec) so that point D practically coincides with point C, the 

values in the table become asyaiptotically constant, and we have 
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A     A     B B        £ 

Frop» Table 1 ve see that the energy does tend to be a constant and we 

have just shown that this limit Is the value of the energy integral 

(3.25). 

If we now suppose that all (or any known fractional part) of the 

energy given up by the explosive is transmitted into the solid, then 

the shock, process could be terminated when the energy reaches the 

amount available.  It is not possible to determine a precise point of 

time because of the asymptotic way in which the energy increases.  It 

is seen, however^ that E reaches 90%  of its ultimate value in 3 micro- 

seconds, which is a very short time compared with the expansion process. 

The post-shock expansion presumably must take place under con- 

stant energy conditions for a "long" period of time, until it is dissi- 

pated by viscosity of the flow, elastic waves and other side effects. 

(21) For energy available in the explosive. Shear *  ' gives the value 

Wi = 1"152 k cal/g 

which; for our explosive weight of 0.07 lb, gives 

^otal '1°26*  1012 ergS- 

Our calculated asymptotic value (Table l) from the energy integral 

comes to 96%  of this value. 
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FIG    6 - CAVITY EXPANSION  AND   PARTICLE   TRAJECTORIES 
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TABLE 1 

Variation of Physical Quantities Along 

Solution Curve and Cavity Surface 

T u p 1 D E R 

sec x 

ID"6 gm/cc 

ergs x 

1012 cm 

.8684 .09502 .02856 451.28 
• 9539 .09512 .02854 458.45 

1.062 .09524 .02852 424.25 
1.186 .09357 .02844 410.10 
1.529 .09552 .02846 596.02 
1.495 .09369 .02843 581-99 
1.688 .09389 .02840 568.02 
1.959 .09411 .02856 554.12 
2.181 .0914.36 .02852 540.29 
2.496 .09466 .02827 526.52 
2.872 .09500 .02821 512.85 
5.525 .09539 .02815 299.21 
5-868 .09586 .02807 285.69 
4.555 .09641 .02799 272.24 
5-550 .09707 .02789 258.89 
6.564 .09787 .02777 245.65 
7.656 .09884 .02764 252.48 
9.252 .10005 .02749 219.45 
11.55 .10152 .02751 206.51 
14.04 .10341 .02710 195.71 
17.65 .IO585 .02686 181.05 
22.52 .10904 .02669 168.55 
29.28 .11351 .02628 156.21 
58.91 .11914 .02595 144.08 
55.07 .12728 •02555 152.17 
74.76 .15885 .02515 120.56 

109.5 •15556 .02462 109.58 
168.5 .17866 .02584 98.85 
275.2 .21002 .02241 89.56 
470.8 .24867 .01974 81.50 
865.8 .29068 .01550 74.96 
1717 .52972 .01012 70.40 
5681 .55941 .00478 67.45 
740^ .57565 .00098 65.87 
8557 .36027 .00001 65.67 

5.5182 -0.0 1.698 
5.4282 -.188 1.715 
5.5282 -.568 1.750 
5.2282 -.520 1.748 
5.1282 -.648 I.767 
5.0282 -.755 1-786 
2.9282 -.844 1.607 
2.8282 -.918 1.828 
2.7282 -.979 1.851 
2.6282 -1.029 1.874 
2.5282 -1.069 1.900 
2.4282 -1.101 I.926 
2.5282 -1.127 1.954 
2.2281 -1,148 1.984 
2.1282 -1.164 2.016 
2.0282 -1.176 2.050 
1.9282 -1.186 2.087 
1.8282 -1.195 2.127 
I.7282 -1.198 2.171 
1.6282 -1.202 2.219 
1.5282 -1.205 2.272 
1.4281 -I.207 2.552 
1.5282 -I.209 2.401 
1.2282 -1.210 2.481 
1.1282 -1.211 2.577 
1.0282 -1.211 2.696 
.9282 -1.212 2.849 
.8282 -1.212 5-058 
.7282 -1.212 5-555 
.6282 -1.212 5.795 
.5282 -1.212 4.465 
.4282 -1.212 5-514 
.5282 -1.212 6.968 
.2282 -1.212 9.257 
.1282 -1.212 9-687 
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k.k.  Blast Waves In Other Metals 

The study of blast waves in other metals Is essentially the study 

of the part 7 plays in the theory of self-similar motion. For this 

reason the present section will explore in some detail the many intri- 

cate ways that y    enters into the problem. 

Selected for study were 5 ccannion metals., copper (7 = 8.5)» iron 

(7 = 16), and lead (7=5-9)- Figure k is a log-log plot of the shock 

wave data from Ref- 19= Stiaight lines were passed through the data 

and the slope measured to obtain the values of 7. 

In the method of obtaining the solution of the differential equa- 

tion (3.20), the functions U, P, D and the particle trajectories as 

well as shock wave paths are the same as in Sec. 4.5» All that is 

necessary is to change the value of 7 in the computer program.  (See 

Appendix B). 

For purposes of comparison the distribution of velocity and pres- 

sure were calculated on the cavity surface and plotted in Figs. 8 and 

9- An r-t diagram for the four metals is shown in Fig. 7» 

Of particular interest is the fact that the 7^ used range from 

5.9 for lead to 16 for iron. This value used for iron is supposed to 

represent the lower pressure range in which iron has a body centered 

cubic lattice. It can be shown (Fig. 10) that for 7=7 the shock 

front falls on one of the singular points of the differential equation 

(5.20). For this case there exists *  a particularly simple solution 

of equation (5.20), i.e.. 
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P/P2 - d/i!)3 

A value of    7=7    serves to separate the domains of the function 

U.     For    7 <  1  i 

2/5^ü- 5£TT 
Emd for 

The value U = ,-/„ -■ \   corresponds to the shock wave in a gas 

due to a point explosion and 2/5 y    corresponds to the center of the 

explosion. However, in the cavity expansion it is meaningless and 

hence, lower bound of the domain of U would he some number greater 

than 2/57- 

For 7 > 7   the domain of the function U is hounded ahove by 

U = 2/5 which corresponds to the edge of a so-called vacuum for a 

point explosion In a gas and helow hy the shock front. The value of 

U = 2/5 would not necessarily apply to the cavity problem. Fig. 16 

shows the behavior of the solution curves for variable y. 

However, it is significant that the solution curve P = P(u), 

which describes the process, has entirely different behavior In the 

two ranges.  (See Figs. 10, l6). Figure 10 shows the changeover from 

solution curves which go to point B from those which go to D> (Fig.3). 
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It is fitting at this time to mention that the careful considera- 

tion of the singular points and their physical meaning came about from 

having the analytical solution of the strong blast wave problem. It 

is doubtful if this could have been accomplished by numerical computa- 

tion alone. This also applies to establishing the exact domains of 

the function U.  However, it is possible to determine the type of 

singular point that exists as well as a good description of the gen- 

eral behavior of the solution curves without the analytical solution 

of the differential equation. 

J4-.5- Consideration of the Non-Slmllar Aspects of the Blast Wave 

Problem 

It is well known that even for the case of spherical blast waves 

in air that for large time the flow becomes non-similar. That is, the 

motion can no longer be described by the self-similar assumptions. 

This is particularly true for the case of shock waves in metals 

where use has been made of the strong shock approximation. For large 

values of time the density ratio Pp/p-i  is not constant and the shock 

2/5 
front is no longer described by R • |..t ' . In order to extend the 

S    x 

domain t of the self-similar solution it Is necessary to account for 

these non-similar effects. 

An approximate theory developed by Rae ^  ' for the craterlng 

problem will be considered and its use in the cavity expansion problem 

described. The assumption is that for any shock speed C = R  the 
3 

distribution of velocity, pressure, density, etc., are the same as for 

the self-similar polytropic equation of state distributions which would 
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have the same values at the shock. This allows the density ratio 

p^/p.. to vary and thus accounts for one of the non-similar factors 

mentioned earlier. How-ever, even though we have satisfied the condi- 

tions at the shock front, the flow field tehind the shock is still 

incorrect.  For the cratering protlem this is shown *   to be a 

fairly good approxlBiation. 

We recall that the density ratio was giver, by the expression 

/     7+1 p2/pl = 7=1 

This  can be rewritten as 

Po/Pl + 1 
7 - 

Pp/P-,   -1 (^.25) ^"l 

Thus if the shock speed were such as to cause a density ratio of 1.2, 

then the solution is assumed to be the self-similar solution for 

7 = 11. 

Note that as pp -» p  the value of 7 becomes infinite.  (As 

the shock wave decays to a stress wave 7 -» ao . ) 

If the shock speed E  is considered as the independent variable, 

then Eq. (i»-.25) becomes 

(2S - 1) R + c 
7 =  .  . (4.26) 

Rs - c 

The relation R = c + Su„ used in this equation has been shown 

(22) 
to approximate the Hugoniots of several metals very well. 
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We new turn our attention to the energy integral Eq.   (3-25). 

R 

E =   f       (^5-)+ | u2) p4Är
2ax 

Ro 

R 

f    [<!' f?r * I <|)   42-- c-^ 
R o 

but 
~ aR • R .    0        0 R    2 

h = V   '     air = Rs = a<T^   <RS) = a^-T) 

also r    = |  t 

Using these relations and substituting where appropriate into Eq. 

(1^25), we find 

E = R 2 R 5 F(7)   , (4.28) 

where |. p 

bo 

Solving ('(•^T) for R  we find 

,   1/3 

8   F(7) R8
2 

Since 7 is a function of R hy Eq,. {h.26)  this expression hecomes 
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8   K[r(B.,S)]l/ 

Equation (if.50) describes the shock radius in terms of shock speed 

and  is a very useful relationship. By  considering E as a free para- 

meter Eq. (,h.30)  could be used to fit test results. On the other hand, 

the expression could be solved for E and estlniates could be made of 

the percent of available energy present in the solid. 

If equation (if.50) is solved for R = R (R ) and the identity s   s s 

R 
r
S dR 

t = j   ^2.  + k (4.31) 

R    s 
s 

is used, we obtain an expression for R = R (t). The value of k is 

determined fron consideration of the "delay time" discussed in Section 

With the relations R = R (t) and R = R (R ) at our disposal 
S     S S    8  S 

it is possible to obtain the distributions of velocity pressure and den- 

sity throughout the solid. The cavity radius versus time curve can 

also be found. However, the procedure used in Section k.3  would have 

to be modified. 

We recall that in solving the problem for constant 7    that we con- 

structed one solution curve P = P(U) which described the functions 

for all |. In the case when 7 is allowed to vary continuously, an 

Infinite number of solution curves must be constructed. 
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The obvious way to avoid this is by considering small increments 

of time At at the end of which the shock speed is calculated. This 

value of R  is used to calculate the corresponding 7 from Eq, 

{k.25)  and for this instant the distribution of velocity, pressure and 

density as well as the particle velocity on the cavity surface. This 

would be continued to the limit of validity of the equation of state 

or by using some other criterion which terminated the solution. 

4.6.  Summary and Conclusions 

In this chapter we have attempted to study the cavity formation 

process in several metals by determining how the important physical 

variables of cavity radius, velocity, pressure, and density vary with 

time and position near the cavity- The most prominent general feature 

of the whole process is the short time of the "shock" regime as compar- 

ed with the total time of the expansion.  One general criterion for 

the end of the shock is furnished from the time when the super-sonic 

velocity of the shock front drops to sonic i.e., at the point P in 

Fig. 5, where the slope attains the value for elastic disturbances in 

the material. There is some concern whether the self-similar solution 

can be used beyond this point since it would predict a subsonic shock 

velocity.  However, it could mean that a large plastic wave is devel- 

oped which travels at a speed less than the elastic wave velocity. 

This transition region is highly uncertain. This situation has occurr- 

ed after 0.5 microsec. 

We note that the highest pressures and densities in the metal are 

located Just behind the shock front, and trail off with decreasing 
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radius to minlmim -values at the cavity boundary. We note that the equa- 

tions of state (Fig. k)  which have been used for the calculations have 

a lower limit of about p = 100 Kb. This could also be used as a cri- 

terion for shock termination (point D, Fig. 5). This point is reached 

in 0.7 H sec. These conditions thus determine a roughly parallelogram 

shaped region ODPE in the r,t-plane for the validity of the assumed 

theory. Note that the cavity has only expanded 0.1 cm during this 

period, which Is about l/50 of the total observed increase in radius. 

We are thus justified in referring to the shock process as impulsive, 

i.e., the later stages of the process are insensitive to many features 

of the shock part. Hence, the self-similar solution remains valid at 

least for the analysis of the shock zone. 

The asymptotic characteristics of the solutions are thus not of 

direct physical interest since they do not apply to the problem much 

beyond the region described above.  The expansion zone, headed by a 

wave travelling with the dilatational wave velocity goes on for at 

least 100 ji seconds, during most of which the metal continues to move 

by fluid or plastic flow. 

The final cavity radius attained is of great interest to the 

general problem as this value is directly observable on the specimens 

after blast.  In principle the prediction of this radius should afford 

a test of any theory, but the matter is not so direct as this, since 

several theories are involved.  It is now evident that the cavity for- 

mation process is complicated.  It starts Tinder one theory (in which 

the state of the metal is fairly well established) but terminates in a 
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different state of the material, about vhlch Infoimation Is almost com- 

pletely lacking. Several mechanisms have been suggested for terminat- 

ing the cavity expansion: 

(1) an energy-level criterion 

(2) a temperature criterion 

(5) a yield-point criterion 

Criteria such as (2) or (3) are tempting because they tend to pro- 

vide fairly definite marks as to when the material "freezes", either 

when a given temperature, or a given pressure is reached. However, our 

knowledge of materials under these conditions is still too incomplete 

to solve this problem.  The total energy of the moving material appears 

to stop increasing after the expansion phase has begun, so there is no 

change in energy.  Furthermore, any quantitative use of energy balances 

would require careful accounting of all the energy losses as well. 

It was shown that in the self-similar approach the only difference 

in the approach used for different materials was the material constant 

7. Also there is considerable difference in the behavior of materials 

whose value of y    is less than 7 compared to those having a value of 

7 greater than 7, due to the completely different behavior of the 

solution curve.  (See Fig. 10) One must be reminded that these compari- 

sons are valid only under the assumption that the equation of state 

used in this analysis is valid in the stated range of pressures. 

In the previous section a procedure was discussed for extending 

the regime in which a self-similar type solution is valid. 
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Application of this theory to the problem of cavity expansion in 

metals was described in some detail without presenting numerical re- 

sults. 

In considering the application of this theory to other materials, 

the only difference to be encountered would be the initial value of 7 

used. 
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CHAPTER V 

EXPERIMENTAL PROCEDURE AND RESULTS 

5»1' Description of Specimens and Experimental Arrangement 

The experiments reported on in this chapter were performed at the 

Ballistic Research Laboratories of Aberdeen Proving Grounds, Aberdeen, 

Maryland. The writer acted as an advisor on the test program and par- 

ticipated to a minor extent in the testing.  Some of these results will 

(23) 
appear in a Joint paper v ■" with a member of the Ballistic Research 

Laboratories staff to be published later. 

The specimens chosen for the tests were spheres made of 2k  ST and 

6o6l-Tl4. aluminum alloys. The first series of tests were made using 

spheres whose outer diameter was nominally eighteen centimeters. The 

second series was made using spheres of 25 cm outer diameter. The 

Inner cavity in both cases was JA centimeters.  (See Fig. ll). The 

exact dimensions are given in Table 2. A threaded well was machined 

in the spheres in which a threaded plug with a hemispherical cup ma- 

chined in the end was inserted. This arrangement offered essentially a 

condition of an isolated cavity inside a metal sphere. A small diameter 

hole drilled through the axis of the plug provided a means for running 

the firing line and lonlzatlon probe to the cavity. The end opposite 

the hemispherical cup protruded from the sphere and served as a means 

of mounting the specimen. 

The explosive used was a 52 gram sphere of Pentolite which fitted 

snugly into the cavity in the aluminum sphere. 
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FIG   II  -SMALLER   SPHERE - PRE SHOT 
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The permanent deformation of the inner and outer surface of the 

sphere as well as the material damage were of primary concern in the 

experiment.  However, there were other quantities that were of great 

interest such as free surface velocity time curves j time of arrival of 

first disturbance and maximum deflection and shock velocity time curve 

through the material. 

Two condenser type micrometers were used to obtain the free sur- 

face velocity and maximum radial deflection. These micrometers consist 

of a condenser arrangement in which the surface of the sphere consti- 

tutes the ground side and the other plate is placed a few tenths of a 

centimeter away.  (See Fig. 12). The output of these micrometers is 

recorded on cathode ray oscilloscopes which are triggered by a simple 

lopization probe inserted through the plug into the explosive detonator 

cavity. 

Quartz disc crystals are affixed to aluminum rods and threaded in- 

to the sphere to varying depths to measure the time of arrival of the 

disturbance through the aluminum sphere. The output from the crystals 

is recorded in the same way as the condenser micrcaneters. 

After the apparatus is assembled the condenser micrometers are 

calibrated remotely. The explosive is then initiated and the scope 

traces recorded with still cameras using polaroid film. 

5.2. Test Results 

Table 2 contains a tabulation of pre-shot and post-shot physical 

measurements of each specimen. The inner cavity and outer surface 

measurements are averages and do not reflect the asymmetric deformation 
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detected in the post-shot measurements. However, the values obtained 

from the recorded data presented in Table 3 do reflect this non-uniform 

deformation- The values in Table 2 indicate that the average increase 

in the outer diameter of the small spheres is about 3$ and about l^t for 

the larger spheres.  For the inner cavity the post-shot diameter was 

found to be about 75^ greater than the pre-shot diameter for the small- 

er spheres. The Increase for the larger spheres is, however, greater 

than 100^.  In Table 5 we see the values of the wave velocity agree 

well with the known elastic wave velocity in the aluminum.  It is also 

evident that the free surface velocity for the two materials is apprec- 

iably different. 

Figure 13 shows a typical plot of data showing the response of an 

18 cm sphere recorded through a condenser micrometer. Notice the de- 

finite tendency toward oscillation of the outer surface. Figure Ih  is 

an actual trace of the surface response of the 25 cm sphere recorded by 

the Polaroid camera.. 

5.3.  Discussion and Conclusions 

One of the most significant questions tljat we hoped the experiments 

would answer was how much the cavity size was influenced by the loca- 

tion of the outer boundary. More specifically, how large the sphere 

had to be to be considered an Infinite medium.  This was not answered 

quantitatively, but it was found that the location of the boundary was 

a significant factor. We notice that the post-shot cavity was consis- 

tently larger for the 25 cm sphere when compared to the l8 cm sphere. 

This might be explained through a coupling effect between the reflect- 
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ed elastic wave ana.  the plastic loading or unloading wave. Another 

possible explanation Is based on assuming that the motion Is quasi- 

(2k) 
static and fully plastic. Hill v  ' shows that the displacement of 

the inner surface increases with an Increase in outer radius. 

Figure 15 is a sketch of a post-shot section of the sphere. 

Notice the three regions marked on the sketch labeled A, B, C.  Sec- 

tion C is a narrow region surrounding the cavity in which there are 

few ciacks and during deformation the metal appears to flow much as 

a fluid. In region B the material exhibited many small shear and 

tension failures. Zone A appeared to be dominated by reflective ef- 

fects and showed several "scabbing" type failures. 

In all of the tests, the plug was blown out.  It was concluded 

that this did not effect the final cavity size significantly as the 

sphere had to expand throughout to free the plug. However, the pre- 

sence of the plug was concluded to cause the asymmetric deformation 

of the sphere. 

The quartz disc crystals used to signal the time of arrival of the 

wave were only able to measure the small amplitude waves. The crystals 

would not sustain the violent conditions in the shock zone. 
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Failures   due to 
Reflected   Wave 

-18.16 

Zone     A    — No   damage, other  than   that of 
reflected    wave 

Heavily   damaged Zone    B 

Zone 

Note — Dimensions    are    approximate 

C - "Fluid" zone 

FIG. 15 - SMALLER  SPHERE - POST SHOT. 
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CHAPTER VX 

CLOSURE 

6.1. Stmanary and Conclusions 

The 'behavior of shock tmvea in metals is a subject of current 

scientific and engineering interest. There has been a considerable 

amount of experimental research and a lesser- m&craat  of analytical 

effort in this field..  Same of the most successful approaches to the 

prohlems of shock waves in solids have been hased on the so-called 

"nydrodynamic'' modei. 

In Chapter III of this thesis the theory of self-similar motion 

is reviewed and discussed- The equations for spherical motion of a 

compressible InTiscid fluid subjected to a strong shock are solved.. 

One of the main contrlbutione of this thesis is contained in 

Chapter XV,. In this chapter the prohlem of the dynamics short time 

behavior of a ductile metal surrounding a spherical detonated charge 

of high explosive^, is solved for the first time. Tne problem Is ap- 

proached using the theory of self-similar motion presented in Chapter 

III.  The trajectories of the Shockwaves and cavity surface are ob- 

tained as well as values for the variation with time of pressure and 

velocity on the cavity surface.  Cavity formation in other metals is 

discussed and values for shock and cavity surface trajectories are ob- 

tained. Pressure and velocity variation with time on the cavity stir- 

face are also presented. 

A critical analysis of the theory of self-similar motion as it 

applies to shock waves in solids is presented^ The restrictions im- 
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posed on Its use Toy  equations of state and assumptions of constant 

shock strength are discussed. An equation of state called quasl-poly- 

tropic Is considered and its Incompatibility with the theory of self- 

similar motion exhibited. 

A method which accounts for one of the non-similar aspects en- 

countered at large times for spherical shock waves in solids is dis- 

cussed and its application to the cavity expansion problem outlined. 

The results of the analysis for aiumlnum show that the "shock 

zone" or range of validity of the self-similar solution is very small. 

The reasons for this are (l) after only 0.5 microseconds the shock 

wave velocity predicted by the self-similar solution has fallen to that 

of the elastic wave velocity In the material,  (2) in only 0.7 micro- 

seconds the pressure behind the shock front has fallen to 100 kb (which 

has been chosen as the lower bound for the range of validity of the 

equation of state of aluminum).  At this time the cavity has expanded 

0.1 cm which is only l/50 of the total Increase in radius. 

Thus the material behavior is referred to as impulsive, that is, 

the latter stages of the process are Insensitive to many of the fea- 

tures of the shock part. 

The final cavity radius attained is of great interest to the gen- 

eral problem as this value is directly observable on the specimen after 

blast. In principle, the prediction of this radius should afford a test 

of any theory, but the matter is not so direct as this, since several 

theories are involved. It is now evident that the cavity formation pro- 

cess is complicated. It starts under one theory, in which the state of 
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the metal Is fairly well established, but terminates under another, 

about vhlch there is little information. 

In applying the theory of self-similar motion to cavity expansion 

in other metals, it is seen that the only difference is the material 

constant 7  The behavior of the solution curves for variable 7 is 

shown In Flg. l6. For y = 7 the solution Is particularly simple (see 

Eqs, (k.2k)   ). 

In considering the application of the theory, vhlch takes into ac- 

count the variable density ratio across the shock front (see Sec. h.5), 

we see that a numerical approach can be successfully used to extend the 

self-similar theory. 

In Chapter V the results of new experiments were presented. These 

studies were made for the purpose of verifying the foregoing theory. 

Aluminum spheres of 18 cm and 25 cm diameter were subjected to an in- 

ternal blast from a 52 gm spherical charge of Pentolite. The result- 

ing surface motion and permanent deformation were presented and the ef- 

fect of the size of the sphere established. 

The Inner cavity of the smaller spheres was deformed from aai in- 

itial diameter of 5.40 cm to 6.0 centimeters. The cavity of the larg- 

er spheres, however, increased from a diameter of Ji.k  to J.k  cm. 

Other pertinent data is given in Tables 2 and 5« 

The actual cause of the difference in cavity size is not known. 

However, the possibility of coupling of the waves due to reflection 

from the boundaries is a possible explanation. Another possible cause 

is that presented by Hill <2*> in which the motion is assumed quasi- 
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static and the sphere completely plastic. Under these assumptions Hill 

shows that the inner radius Increases with the outer radixis, other 

thlnge remaining equal. 

The damage suffered by the spheres is seen to he rather sharply 

delineated into 3 categories- The first is the zone immediately next 

to the cavity.  In this zone there were few shear cracks and the ma- 

terial appeared to have been deformed in a fluid-like manner. 

In the second zone this was not the case. There were numerous 

shear and tension cracks and damage was severe. 

The outer zone was dominated by reflective effects. Most of the 

failures in this zone were "scabbing" type failures 

Another interesting fact determined from the experiments is that 

there is definitely some oscillation of the sphere. 

In all the tests the plug was blovm out.  It was decided that this 

did not affect the cavity size to a great extent, since it only occurr- 

ed after the sphere had expanded sufficiently to allow its release. 

6.2. Suggestions for Further Research 

It is obvious in considering the analysis of later stages of the 

cavity expansion process that a criterion is needed for marking the end 

of the self-similar solution. 

Several such mechanisms have been suggested such as temperature, 

material strength *  ' and energy ^ ' but none are completely satis- 

factory. 

To obtain a better approximation of the actual material behavior 

for later time, one must account for the non-similar aspects of the 
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flow. For this reason It Is suggested that some numerical results be 

obtained using the theory described in Section 4.5» 

In order to obtain an exact analytical solution, the boundary con- 

ditions on the inner cavity surface must be prescribed for all values 

of time. This will require a detailed analysis of the effect of con- 

finement on the detonation pressures cf the explosive, and also con- 

sideration of pulsation of the exploded gas. 

There remains the problem of defining the equation of state of a 

solid throughout the range of pressures encountered in the blast wave 

problem. This problem Is complicated by phase changes and other com- 

plicated mechanical behavior. This should continue to be an area of 

great effort. 

There are several questions that can be answered by experimental 

investigations which would facillltate the formulation of a satisfact- 

ory theory. 

(1) What part do the reflected waves play in the final cavity size. 

This could be answered using a flash x-ray or some similar device. 

(2) What is the actual Initial detonation pressure exerted on the 

metal. 

There is need for a pressure sensing device which will survive the 

extreme conditions experienced in this test. 

(3) How much time is required for the cavity to assume its final con- 

figuration . 
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APPENDIX A 

SINGULAR POINTS OP OBDINARY DIFFERENTIAL EQUATIONS 

The Singular points of an ordinary differential equation dv/dx ■ 

f(x,v)/g(x,v) are defined to be those points for which dv/dx = jr . 

It is necessary to study carefully the singular points of the dif- 

ferential equation (Eq. (3,20) ), || = ^ff^/ps^ü)^ ' ^ OTäer t0 

construct solution curves using numerical methods. 

Poincs.re shewed that the differential equation 

dv _ ax + ^ +  f2Jx^) (A.l) 
dx   ex + dv + g (x^d) 

in which the constants a, bj, c, d are such that A = ad - be / 0 

2   2 and in which f  and gp vanish like x + v-- as x,v -> 0, has as 

its only singularities those of the much simpler equation 

dv m    ax+ bv    _ (A 2) 
dx    ex + dv 

It is obvious that these occur only at the origin (x,v) = (0,0). 

However, in order to study a singular point (U . P ) a change of var- 

iables can be made by letting x = U - Uo>  v = p - Po. Thus in the 

neighborhood of an isolated singularity (U0,P0) the differential equation 

(3.20) can be written ~   = 5i_t_Jf . J^Q  tehavior of the solution w  ' dx    ex + dv 

curves in the neighborhood of the point is then determined by the val- 

ues of a, b, c, d. 
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i The singular points of Eq. (3.20) will now be determined and class- 

(25) Ifled according to the notation and criterion of Stoker 

ting Eq. (3.20) 

Rwrit- 

dZ= P[N(U) ±  PQ(ü)] 
dU    R(ü) + PS(U) (A.3) 

By inspection of Eq. (A.3) we find 

(si) U = 0 > P = 0 

(S2) u = a > P = 0 

(S3) 0-1 > P = 0 

The location of (S^) is deteimined hy the condition 

IS}-«-- 
This statement leads to the cubic equation 

U5 + AgU2 + A^U + Ao = 0 

where 

Aj = 27 (1 - 37) 

A2 = 37
2 (37 - 1) + 7(7 - 5«) - 7(3B + Uß) + 6 + 2ß 

Aj^ = 7 (306 + 6aß - 2ß - ta) + (2 - a) (B + 2ß) 

Ao = - 2a (6 + 2ß) 
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For aluminum (7 - 7.6) the point (Sk)    is given Toy ü = O.O916, 

P ■ 0.02884. The remaining roots are imaginary. 

A stuniiiary of the results of the classification of the nodes is as 

follows: 

Singular Point Classification 

51 (0,0) stähle node 

52 (ct,0) saddle point 

53 (1,0) stähle node 

Sk      (.0915, .02884)        unstable node 

From numerical calculations it appeared that the solution curve 

for 7 =7-6 should end at S2. However, this was a saddle point of 

the differential equation and curves starting near Sk never went into 

S2.  (Theoretically we know there is only one curve which does so and 

this cannot he found numerically.) In order to obtain a better approxi- 

mation to a solution curve joining' the points S2 änd S4 the following 

procedure was used. 

Near U = Qt we have 

p = po+(iWü-a)+ ••• <A^ 

Dividing both numerator and denominator in the differential equation 

(A.3) by U - a and putting 

m = P/ U-a (A.5) 

we may write 
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g.« [»(y? +^ (fß-^ 2y(v°})] (A.6) 
dU  ^  U(l-U) + (2ß + 3Ü7)m ^  ' 

We now seek a solution curve which approaches the point t£>OC with 

a definite limiting slope (i.e. be locally a straight-line). Letting 

U-» a in Eq.. (A.6), placing the resulting expression in (A.k),  and di- 

viding hy    (U-Ct), we obtain the following equation for m: 

[N(U) + m (2ß + 27 (ü - a))] /. „x m * m uil-U) +  Uß I W7)m ^ (A-7) 

Equation (A.?) has the following three solutions: 

1) m = oo 

2) m = 0 

5) m = {a-l)/3 

Thus there are three solution curves which pass through the point. The 

first two are the straight lines ü = Ot, P = 0 respectively, which 

are singular to the differential equation. The remaining slope is 

m = - 0.2 for a = 0.4. 

By proceeding along the straight line of slope m a short dis- 

tance toward S^ and using this point as the starting point for the 

numerical calculation, a very close approximation to the actual curve 

is obtained. 
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* APPENDIX B 

NTWKRICAL EROORAM 

The problem programmed for the computer vas to obtain the traject- 

ory of the shock front and particle paths as well as distribution of 

physical -variables from the differential equation and a starting point, 

(see Appendix A) together with boundary conditions and kinematic rela- 

tions . 

In order to avoid the difficulties caused by vertical or horizon- 

tal tangents,  the differential equation (A.5) was written in the follcw- 

Ing parametric form. 

ds 

J P^dffPQ)8 +   (R+PS)' 
(R + PS)        =    dU (B.l) 

ds 

7 P2(lh-PQ)2 +  (R+PS)2 
P(IWQ) =    dP <B.2) 

where 

dB=ydPß+d52      =     y 1 + (gj)2    dU (B.3) dlT 

Expressions (B.l) and (B.2) are well behaved except at S^ and S2, 

which are carefully avoided. 

The accuracy of the calculation is seen to depend on the choice of 

ds (other things remaining fixed). However, ds has no physical mean- 
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Ing and the density was decided to be a better parameter. Using the 

relation 

aD . . D[(R+PS)^_3ü((UV - P)]       äs 

y (N+PQ)2 P2 + (R+PS)2 

a program vas developed where the density Is the Independent variable 

and a physical constraint was maintained on the Integration. 
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TABLE If 

Program Symbol Table 

Program Symbol      Our Notation or Name       Mode 

A a FLT 
B ß ti 

C 6 n 

G 7 
ii 

U U ii 

P P M 

DS ds ii 

X 1 II 

D P 
II 

IMAX num. of Iterations FIX 
EP potential energy TVS 
EK kinetic energy » 

E E(t) 
N(U) 

tl 

FN (t 

FQ Q(U) It 

FR R(ü) II 

FS s(u) II 

FT P(H+PQ) 11 

FW R+PS II 

FX ds/y P2(»fPQ)2+(R+PS)2 II 

DP dP II 

DU dU II 

FX (u-a)r-7P M 

DX dt 
" 

DD dp it 

PD PP 
It 

DEP It 

DEK It 

DO Pi 
II 

R R II 

St. ^7 initial U II 

St. 1*8 initial P II 

St. 5^ Initial p 11 

EX 1/a II 

T t ti 

V u it 

Pres P 
II 

DT dt it 
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TABLE  5   -   FORTRAN  PROGRAM 

COMPILE RUN      FORTRAN 
.     . C R-T   CALCULATION    PROGRAM 

100   DIMENSION    ID£NT(2) 
1 READ   BOO.AtB.C.G.OO. 1DENT 

800 FORMAT(5F10.0.2A5) 
2 READ    BOlfX.R.DO.IMAX.PRES 

801 FORMAT{3F10.0, I 10.1FIO.O) 
3 IF( tMAXl'k'n'Kn« 
4 PRINT   802 

802 FORMAT (1H1 ,'tOXt32HBRL-PA.STATE   PROJECT   BLAST   WAVES/ 
11H0.48X .15HR-T    CALCULATION/ 
11H0.15XtlOHINPUT    DATA) 

5 PRINT    803.IDENT »G.R.OCPRES.IMAX.DO 
803 FORMAT(1H0.10Xt11HMATERIAL   "    ,2A5/ 

11H0.10X.8HGAMMA    =    .1F5,2/ 
11H0.10X,17HINIT I AL   RADIUS   •    .1F5.3.3H   CM/ 
11H0.10X.18HINITIAL   DENSITY   .    ,1F5,3I6H   GM/CC/ 
11H0.10X,19HINIT IAL   PRESSURE   -    .1F5.1.9H   KILOBARS/ 
11H0.10X.20HN0.    OF    ITERATIONS   ■     .114/ 
11H0.10X.20HDENSITY   INCREMENT   ■=    ,1F6.3.6H   GM/CC// 
11H0.1X.1HI.7X.1HT.11X.1HR.12X . 1HV. 12X , 7HPRE S   »;B.9X.1H0.11X,1HU. 11X 
1,1HP.9X,1HX,11X.1HE//) 

6 U»A»(1.0-(&-1.0)/(G+l.0)I 
7 P.(A»A»(G-1.0I/(G+1.0) )*(1.0-(G-1.0)/(G + l.O)) 
8 D=(G+1.0)/(G-l .0) »DO 
9 EP = 0 

10 EK=0 
11 E=0 
12 DO   42       1=1. IMAX 

, 13 FN = G»U*(3.0*A-1.0-2.0»U ) + <3.0-AI*U-2.0»A 
14 FO=(2.0«B-(G-1.0)*C)/(U-A)+2.0»G 
15 FR = U»(U-A )»(1.0-UI 
16 FS=C+2.0»B+3.0»U»G 
17 FT=P»(FN+P»FQI 
18 FW=FR+P«FS 
19 FY'(U-A)»(U-A)-G»P 
20 FX=-DD»(U-A)/(D»(FW+3.0*U»FY)I 
21 DP=FT«FX 
22 DU=FW«FX 
23 EX=1.0/A 
24 T'(R/X)«»EX 
25 DX=X»FY»FX 
26 V-R«U/T 
27 PRES'l^/T )»*2»P»D»l10.0»«(-9 1 ) 
28 PRINT    804, I ,T,R .V.PRES»D.U.P.X.E 

804 FORMATUH    , 14 , 1 E 12 . 4 . IF 12 . 7 , 1 E 1 4, 5 . IF 14 . 5 . 4F 12 . 5 « 1 El 5 . 5 ) 
29 DT=!DX/( (-A/T + V/R ) »X ) 
30 IF(P143.31 .31 
31 T=T+DT 
32 R=R+V»DT 
33 U'U+DU 
34 P-Pt^DP 
35 X-X+DX 
36 D = u<-D0 
37 DCP=4.0»3.141593»P»D»(X»»4)»OX/(G-1.0 1 
38 DfK=4.0<3.141593»tU»U)»D«(X»»4)•OX/2.0 
39 EP=EP+DEP 
40 EK^EK+DEK 

/■                  41 E = LP+LK 
42 CONTINUE 
4 3 GO 7 0 1 
44 STOP 
45 END 
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