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ABSTRACT

A method is presented for computing stresses in the vicinity of a long
cylindrical cavity in an infinite, elastic, isotropic, homogenous medium
when the cavity is enveloped by a plane stress wave traveling in a direction
perpendicular to its axis. Hoop stresses around the cavity boundary were
computed for the passage of a wave of dilation and a wave of pure shear;
the stresses in the medium away from the boundary were computed for a
wave of dilation. Initially the stress behind the incident wave front was
considered to be constant, The effect of a stress decay behind the front
was then computed by using the Duhamel integral for the case of an

incident wave of dilation.

The method of solution of the problem involves supexposition of the
stress f{ield of an incoming plane step wave and a stress field corresponding

to waves which diverge from a line source,
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I. DESCRIPTION OF THE PROBLEM

The purpose of this investigation 1s to determine the stresses in
the region of a cylindrical cavity in an infinite, elastic, isotropie, homo-
geneous medium when the cavity is enveloped by a plane stress wave traveling
in e direction perpendicular to its axis. Stresses due to incoming dilata-
tional waves and to incoming shear waves were considered. Initlally the
stress behind the incident wave front is considered to be constant, but some
consideration is given to the effect of pressure decay behind a shock front
through the use of the Duhamel integral. The problem is one of plane strain;
that is, each section perpendicular to the axis of the cavity is in the same
state of stress, there is no displacement in the direction of the cavity
axis, and only three stress components must be computed. Some consideration
is given to the variation of the parameters which define the properties of
the medium.

The practical problem corresponding to the dynamic elasticity pro-
blem described above concerns the effect of stress waves initiated by nuclear
explosions on underground protective installations. Although any practical
problem of this type cannot exactly reproduce the conditions of the theoreti-
cal problem, it may be reasoned thet under certain conditions, particularly
under those for which such protective construction is likely to be built,
fairly good agreement may be expected. For example, rock is neither iso-
tropic nor homogeneous, but a protective structure would be constructed at
a site where the rock is as sound and unstriated as possible. The assump~
tion of an infinite medium is more reasonable than it might et first appear.

For, in this case a protective structure would surely be several diameters




below the ground surface, and since the maximum hoop stress is reached at
about four to five transit times after the wave reaches the opening, reflec-
tions from the surface will not interfere with the peagk stress. Probably
the most severe restriction is that of linear elasticity. However, many
rocks approach this property in the lowexr range of their stress-strain
diagrams. The actual opening is not likely to be a perfect cylinder; never-
theless, current mining procedures can produce an opening which approximates
8 cylindrical shape quite well.

The importance of this prcblem has been recognized by several
earlier investigators. In Ref. (1) a study was made of the stresses in the
medium using a "high frequency" approximetion similar to the approach used
in geometrical optics. This method does not allow the solution to be
carried out for sufficient time to obtain the maximum stresses. Reference
(2) considered the stresses around a hole in a thin plate when enveloped
by a plane stress wave of harmonic variation in time and space behind the
wave front, i.e. the plane stress problem corresponding to the plane strain
problem treated herein. Reference (3) presented & solution to the problem
investigated in the present report obtained by using an integral transform
in time of the displacement potentials. The resulting equations were then
solved in terms of Hankel functions. Considerable difficulty is encoun-
tered in this method in the computation of the inverse transform. In the
present work an entirely different method of solving the partial differential
equations, which has several advantages over the previous method, is presented.
The results of the two analyses will be compared in Chapter VI. In Ref. (&)
the method of Ref. (3) was used to solve the same problem again and was

extended to include stresses away from the boundary. Also possible failure




rechanisms based solely on the elastic stress state were discussed. Results
were presented in the form of contour maps of principal stresses at each
time interval.. The angle of minimum principal stresses and angles of
possible failure planes are also presented. In Ref. (5) the solution to
the same problem was formally carried out by a method quite similar to that
used in Refs. (3) and (k). The theoretical derivation of the equations
was reported in Ref. (5), but numerical results had not yet been cbtained.
The problem has also been considered experimentally. In Ref. (6)
a combination of photoelasticity and grid analysis was used to determine
the stress distribution on the boundary of holes in a plate of low modulus
material. The shape of the holes and duration of stress wave were varied.
The method results in a stress field of both dilatational and shear waves
with a rather long rise time at the front of the wave. Reference (7)
contains the results of a large number of experiments made by detonating
an explosive charge at the surface of blocks of brittle material which con-
tained openings of various shapes. The medium, shape of opening and distance
from a free surface to the opening were varied. These experiments are

useful in predicting the type of failure to be expected.




JI. METHOD OF ANALYSIS

The basic method of solution of the problem involves superposition
of the stress field of an incoming plane step wave and the stress field
corresponding to waves vwhich diverge from a line source. The diverging
waves are chosen so that the radial and shear stresses due to the two waves
combine to produce a traction~free cylindrical boundary centered on the line
source. This cylindrical boundary is then the boundary of the cavity.

A solution to the scalar wave equations corresponding to a
cylindrical wave diverging from a line source may be found in Refs. (8) and
(9). This solution can be applied to the dynamic elasticity problem by con.
sidering the displacement potentials to be represented by Fourier series
expanded in 9, with the coefficients written as functions of radial dis-
tance and time. These series are substituted into the wave équations,
resulting in hyperbolic partial differential equations in two indqpended%
variables which must be satisfied by the coefficients of each term of the
series. The general solution of these differential equations is then
written in integral form; therefore, the boundary conditions result in
integral equations.

In order to sotisfy the boundery conditions, the sum of the
stresses due to the diverging wave and the incident stresses expanded in
Fourier series were set equal to zero at a fixed radius from the line
source. In general this results in two linear integral equations, one from
the radial stress condition and one from the shear stress condition, whigh
must be solved simultaneously for two unknown functions appearing in the
integrands of the integrals mentioned sbove. The integral equations were

solved numerically in order to determine these unknown functions.




A program for solving the simultaneous integral equations and com-
puting the various stresses at the boundary and in the medium away from the
boundary was written in Fortran language for solution on a CDC 1604 digital
computer. This program will be described in Appendix C.

In order to check the results obtained from the computer, the
same basic equations were solved by another method. Each of the Fourier
coefficients of the displacement potentials for the diverging wave and the
incident stresses was expanded in a Taeylor series about zero time. By
considering only the first few terms of the series, it was feasible to
carry out the computations by hard. The results thus obtained are only
velid when the variable in the Taylor expansions, time, is small. For this
reason the method is called the short-time solution. This additional solu-
tion is useful as a check on the computer solution at early time and
also gives the initial values of the unknown functicns in the integral
equations, which are needed in the machine solution. As & further check
on the computer solution, the static stresses on the boundaries and in
the medium were compared with those obtained from the machine solution at
very long time.

This general method of solution was applied to the problems of
an incident wave of dilatation and an incident wave of pure shear. Fur-
ther details of the representation of the incoming stress field and of
the stress field diverging from a line source are described in Sections
3.1 to 3.4 The equations resulting from the combination of these iwo
waves to Obtaln the boundary equations are derived in a form suitable for

use in a computer in Sections 4.l and k.2.




The diverging wave which has been determined at the boundary, of
course, continues to travel outward and becomes the reflected and diffracted
waves. To find the stress in the medium away from the boundary the same
superposition procedure may be used, except that the effect of change of
radial distance of the diverging wave must be considered. The computer
solution for stress in the medium due to a plane wave of dilastation is

vresented in Section 4.3.




I1I. DERIVATION OF EQUATIONS

1 Fourier Analysis of Incident Wave of Dilatation

First censider a plane step wave of dilatation traveling in the
regative x direction, with a stress g, -~ the dirextion of wave propaga-

tion. It may be shown that the stresses in the y and z direction are

where v is Poisson's ratio  For :onvenience v will be used as defined by

VeI 5.1

In the following work tensile stresses will be considered

Concider the strecses cn a 2ir2le of radius a(in cylindrical
cocrainates) being enveloned ty the wave front descrited above, with

nd [N

c, and with no 2avity «n ke redaum.  Beferraing to Fig. 2.1 the radial

&

stress oy, Shear strels Tea and heop ctrecs J9a tehind the front may be

Written voung tre seneral rulos of trarctonation of otress,

Ogg = 7 (oin™ 8 2+ 4 200 B)

Sin2e aad &
O T BA

7 are evaen an 8 wnile o iz vdd in 6, the
ah

r8

Foariey zeried correspending o theoso exprasiions an te wratten:




a(t) Lo N
o == 4 a (t) cos nd
T 2 n
n=1
[v¢]
O = }: bn(t) sin n@ > 3,3
n=1
a (t) b
Ugg =~ 5 + EL dn(t) cos nb
n=1 J

The ceoefficients in these series may be evaluated from the
folleowing integrals where Bl defines the extent to which the wave has
erveloped the circular boundary as shown in Fig. 3.2, and therefore is a :

function of time

e .
2 1
a(t) == D/‘ a,.. (8) cos ng d8
o
. M
b (t) == h/‘ 0,o(6) sin n9 d8 L. 5.4
o
2 [
a(t) == H/‘ 3g (6) cos no @8
©

If time is measured from the instant that the wave touches the
boundary, the plane dilstational wave with a velozity of propagation Cl
will travel in the time %

Clt =a (1l - 208 Gl)

{rom which

e, = o5t (1-tC, /a) 3.5
for 0 <tc,/ax2
and 9l =1
for . fa>2 .




Carrying cut the integrations in Egs. 3.4, one obtains the follow-
ing expressions for the Fourier ccefficients as a function of time:

C.

r < L
For S o<, i

a°;t) = %[91 -(i%;—)- + Q‘-&ﬂ sin eel] 3.6
e (8) = & [(1-3)(S§g£§3“’61+ S%g£§§ﬁ)91)+e(1+;)5523221] 3.7
v (t) = - o (1-3)[stgfi;n)el - Si?éi;;)el] 3.8
d°,§,t) = = [(1-9-3)61 + -(-;—,;,ll sin 291]

a0 = 2 [am Q2 2] s

For t > 2a/C,

3,(t)  5(143)
2 - 2
a(t)=0, nfz, ays) -2l
b(t) =0, n#2, ty(e)=-3 Loy 3.10

dg(t) o{1+v)

n#a dﬁ(t) = - Eil;gl

-7

i
<
-

d4.(t)

Equations %.% and 7. corbined with Eqz. (.t to .10 give the
vime deypendenze of the free field inzident stresses on a cylindrical boundary
with radiur a. The variation of the first three of these cocefficients with
tire i: shown in Fig. 7.3 for a value of v = 1/3 and with o = 1 O. The

-

acouracy with which the first three terms of a Fourier series represent the




10

stress variation with angle around the opening at two times may be cbserved

i T S i
in Fig. 3.k. In this figure the veriation of Opps Opqs and %0

is shown for the times tcl/a = 0.5 and 1L.0. Also showm on this figure is

with angle

the actual variation of these stresses for comparison. It may be observed
from these curves that the representation is not as good for the earlier
time as the later, as would be expected. For this reason the method pre-
sented is not applicable for early stress computations unless a larger
number of terms is used in the Fourier series. The representation for the
incomng wave is exact, however, for all times after the wave has enveloped
the boundary. Also it may be seen that the representation is much better
for Orr and %9 than it is for 98" Since the diverging wave form is

determined by the incident boundery stresses Orp and ¢_,, the determination

8
of the diverging wave should be fairly accurate.

3.2 Fourier Analysis of Incident Shear Wave

Consider the case of a plane step wave of pure shear with magni~
tude of stress T traveling in the negative x direction. Stresses on a

¢ylindrizal boundary behind the front may be written,

Opp = ¥ sin 20
G5 = 7 203 20 . 3.11
666 = - ¥ uin 20

where positive shear is defined in Fig. 2 ©. A tilde will be placed over
those quantities associated with an incident shear wave in order to
distinguish them from the corresponding quantities associated with an ineci-
dent wave of dilatation. The Fourier series corresponding to these expres-

sions are,




11

o0
8. = Z bn(t) sin n@
n=1
g(t) ¢
.= 2 + & (t) cos no 3.12
rf 2 n *
n=1 j
o )
Ggg = }: dn(t) sin no
n=l

The Fourier ccefficients, found in the same manner as for waves
of dilatation, are

for t < 2a/C, .

5.(4) - 2 sin(2-n)92 ) s:\.n(2+n)62
n % (Z-n) (2+n)
sin(2-n)e sin(2+n)8
oz 2 2 X
an(t) = X [ Zn) + (2+n) ] 3.13
3 (8) = - z sin(2-~n)92 ) s:.n(2+n)92
n'’ n (2«n) (2+n) |’
for t > ’Ba/C2
Sn(t) =0, n#2, by(t) =7
N . 3.1k
an(t) = 0, n#z, 52(t§ = 1
d(t)=0, itz a(t) = - 7

where C, is the velocity of propagation of a shear wave. The angle 62

may be written az follows by referring to Fig. %.)

-

for 0 < tC,/a < 2.0
and 6, =m=x

for wCy/a > 2.0
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3.3 Derivation of Equations for Diverging Wave (Incident Dilatational Wave)

The equilibrium equations may be expressed in the following form

for an elastic medium

=3
]
o

(Mu)%ﬂxveu- p i

()\w)%?--bpvzv—p'\?:O 3.15
(x+p)g—i+pv2w-pw=o

where A is the dilatation given by

du + ov . ow

AExtwt®:

and u, v, and w are displacements in the x, y and z directions. It is
convenient to introduce the following representation for the displacement

vector Ul in terms of a scalar potential ¢ and a vector potential i
u = grad @+ eurl ¥,

Then grad @ represents the irrotational part of the displacement and

curl ¥ represents a displacement corresponding to no dilatation. Observing
from the physical problem that there is no variation in displacement

with z along the cavity axis and that there 1s, therefore, only rotation

about the 2 axis, one may write the following rimplified expressions

grad g = gg'ﬁ + g%

- oF
Curl § = gi'% -

o>

<
>




Therefore

i-(@+Sha + (@ - PHe

setting ¥, = V.

The displacements u, v, and w may be written then

op _ oy
V=§$-& 3.16
w=0

The equations of motion (Egs. 3.15) will be satisfied if the potentials

¢ and v satisfy the following two wave equations,

2 e

Cl V2 Q=9
5.17

Cg Ry =,

where the velozities of the dilatational and shear waves are given by

2 AN+ 2u 2 _u =
Cl-—_p and C, = 5 5.18

Ir. polar coordinates the displacement components of Eqs. 3.16 are given by

NF
L}
g
s
4
24 Laad
o/
D=

13 oy
u = -5 3.19
u = Q

4

where u, is taken positive in the direction of insreasing r and ue is posi-

tive in the direction of increasing 8

13




1)

In Ref. (8) the following general solution to equations of the
type represented by Eas. 3.17 is given. First the potential (displacement

potentials in this case), @ and vy, ere taken in the following form:

o0

= Z " fn(r,t) cos nd

n=1

8
|

35.20

©

Z rngn(r,t) sin ng,
n=l

<
1l

These particular forms for the displacement potentials were chosen because
they satisfy V2q> = 0 and vzxy = 0, a "homogeneous" part of the differentisl
equations if i‘n(r ,t) and gn(r ,t) are assumed constant. These functions of
r and t must be chosen so that the equations with @ and ¥ on the right are
satisfied. Since the displacements u, caused by the incident wave of dila-

tation are even in 6 while the displacements are odd in the 6, ¢ is

Y
chosen even and ¥ odd so that Eqs. 3.19 will result in displacements of
the same form vhen ¢ and ¥ are substituted into them. Therefore this
form for representing the diverging wave is only suitable for use with
an incident wave of dilatation.

Substitution of Eqs. 3 20 into Egqs. 3.17 gives the following

differential equations to be satisfied by the Fourier coefficients,

2
02 (B fn_'_.?nﬂ. af_‘g) - F
1ar2 T r ' T 'n
5 5.21
2 (a n | 2mi1 égn) _
aara r r ' =8,
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Tne solution to these equations may be written in terms of the solution

for n = O as
P - Rt S - T
WG ) Lo -Gy 6. 5.22

In Section B.1 of Appendix B it is shown that Eqs. 3.22 do indeed satisfy
Egs 3.,21. The next step is to find fo and go. This may be done in the

following way. Consider the first of Eqs. 3.21 with n = O.

2
ot orf
2 o . 1 [] .
Gz *r &) fo )2

This is recognized as the wave equation in cylindrical coordinates for
the case of symmetry about the z axis. The form of fo vhich satisfies
Eq 3 27 umay be cobtained through the following reasoning. It is known
that the form of the displacement potential for a spherically symmetricel

point source wave is

£ ::!'-f(t'-—-p—)
] o clv

L]

The displacement potential for a line source may be found by integrating
the displacement potentials for all point sources uniformly distributed
along the 2 axds frem 2 = ~ to 2 = 4, each point source having the same
varaaticn with time. Then the symmetrical line scurce displacement

potential may be written

$ee

. - Lerp. 2

10-— f px (t Cl) dZ' 3.2&
=

This same form of displacerent potential 18 used in Ref. 9 in

the investigabtions of supersonic fluid flow around a long wing.
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In Fig. 3.6 the coordinate system is shown. From this figure it
o
may be seen that p is equal to Jra + z°. Therefore » EqQ. 3.24 may be

written in the following form
o

r2 + 22 dz
£, = f £ (t - g ) 3.25

v 1 4; +ZE )

At this point the variable u is introduced such thet

2 2
r cosh u = r + z =p

or
u = cosh™* (-i'_— \11’2 + 2 ).
Taking the derivative of both sides gives

du = dz .
2+ 22
By introducing the above identities, Eq. 3.25 may be rewritten in the

following form,

u=-+4oc ©
£ =2 £(t - == cosh u)au = | F(t - £ cosh u)du. 3.26
o c c
u=0 1 1

In a similar manner the displacement potential for a symmetrical shear

wave becomes
Ue=foc

N =f c(t ~ -61:- zosh u)du, 3.27
uz=o0 2

.ombining Egs. %.26 and .27 with 7.20 one obtains

)
1

13"
, { ro
a- T g) F(t - EI cosh u)du
3.28

x
£

to
(']; B)n G(t - = cosh u)du
T \ror Ty =
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From Egs. 2.28 and Eqs. %.20,
[>r]

Z ot ; 5_) f F(t - —3—: cosh u)du cos nd

n=0
€0

"= G(t - = cosh u)du sin nd ,
n;r (rs—-)f (% 2‘cc>s u)du sin

3
0

3.29

<
i}

Considerable simplification can be effected in the solution by

noting that Eas. 3.29 can be written in the following form !

© n e
= [Z hl—%— f Yt - -CL cosh u) cosh nu du] cos nf

n0 &1 0 t
3.30

o n e
= ‘-Zﬁ'_lL f 6" (t - << cosh u) cosh mu du]sin nf,
ety Ca

where the superscripts on F and G indicate the order of the derivative.
The proof of the conversion from Egs. 3.29 to 3.30 is shown in Section B.2
of Appendix B.

In terms of displacements, the stresses at any point in the

medium may be expresced as follows:

- Bur
Opr = Mo+ ar
e ) 5.31
?:*ue I
099-’A+—(va—9——+u)
where

A = 225 + 25 + 232 =

ar r ¢8

‘ue 1 bur Uy
e "8 ‘T T




By substitutirg into these equations the displacements given by

Egs. 3.19, one obtains the stresses in terms of displacement potentials.

Q
]

rr

a

i}

8

%e

Substitution of

qs. 3.32 glves

n

[+
T

-

Q
(]

rd

Q
i

08

where

W=

2
o) A A
(“2")'3;3"‘;%*'5

3 Py 1 Py 1
Maﬁ 2511y,
21

Br

the ge

the ge

(v - éi cosh u) and W =

2y %y _ 2 D
T k]

T

Elee
no

H

= 4 —L 4

PR

Hml‘_.

T orod F 2

2
(A+J%<g gH 20) o _ 2y, 2y
362

neral expressions Tor ¢ and ¥ (Egs. 3.30) into

3.32

neral expressions for stress in the diverging wave.

) uy
n
E:[K:El— n+2(ql)[(eu coshu + ) cosh mu] du
0

n+e
n=0 Cl
( )n “e "
-i+2 \é‘ Gn+b(ﬂ2) {u sinh 2u sinh nu]) du] cos nd
C
n n+2
Z [ n+’.2 F (m ){u sinh 2u sinh nu} du
=0
n “2
L:%%g L/‘ n+a(n0) [ cosh Zu cosh nu) du] sin nd
02 ')
o
Froayn AL Y
E: Lilll; JF Fn+2(n ) (A - 2 sinh™u) cosh nul du
n DOt x 1
n=0 "1 -
-1)" Ve n+2
/1 ¢""“(%,) (1 sinh Cu sinh nu) duj cos nd
C n+2 &4 2

(v - éﬁ zosh u),
2

335

3.34

3.35

3.36
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The integration limits on Egs. 3.24 and therefore on Egs. 3.30
extend to 4 since there are point sources all along the z axis. The wave
emanating from each point source is considered to have the same variation
in time. Therefore, at any finite time only the point source waves out to
a finite value of z have re#ched the point in question provided they all
started at the same finite time. For & finite time the integration in u
need only extend to the value corresponding to this value of z.

By substituting Eqs. 3.30 into Egs. 3.19, the general expressions

for displacements may also be found.

u = }Z [ (-1)"r n+2(nl)[sinh (Len)u | sioh(l-n)uy . oo

b c n+2 2(1+n) 2(1~n)
n=0 1
(s [ Ju _ sinh(1-n)
-l)Tr n+2 sinh{l+n)u sinh(l-n)u
+ o neo \4‘ G (nz)[ °(l+n) 2(l-n) ]Sinh u du]COS ne
3.37
k-] ul
- -1) r n+2 sinh(1+n)u _ sinh(il-n)u
n=0
n .;
(-1)'r n+2 sinh(1+n)u oinh(l-n)u -
+ o e G (n:)[ 2(l+n) + 2(1 n) sinh u dulsin n8 ,
o ]

<

These expressions for stress and displacement in a wave diverging
frem a line ccurce are only cuitsble for elimination of the boundary stresses
due to an incident wuve of dilatution since the variation in 6 has the same

foru in the two cazes.
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3.4 Derivation of Equations for the Diverging Wave (Incident Shear Wave)

The displacements in the medium caused by a plane incident shear
wave with a constant state of stress tehind the front are odd in € in the radial
direction and even in the 8 direction. In order thet the displacements
caused by the diverging wave (Eqs. 3.19) might have this same variation
P should be odd and ¥ even in 8. The displacement potentials in this case
are then the same as for an incident wave of dilatation except for the

variation in 9, and may be written as follows by analogy with Eq, 3.29:

[ 400

P = z rn(% g—;)n [ F(ql) du sin n9
n=0
o ™

¥ = 2 rn(% %I-;)n [ G(ne) du cos n8,
n=0

These expressions may be written by analogy with Eq. %.30

) +c0
n

o = z [i-—il— f Fn(ql) cosh nu du] sin né

=0 Cl 0

© oo 3.38
- Y
Vv = z [-(-—:;)—- Gn(qz) cosh nu du] cos 08 ,

n=0 Ca

Substitution of Eqs. 3.38 intc the general expressions for

stress in terms of displacement potentials (Eq. 3.32) gives, -

® u
W1 1
Br = Z [L:i%é f sz(nl)[(ﬁu coshu + N)eosh nu] du
n=0 cl 0
n 2
+ % f Gma(na)[u sinh 2u sinh nu] du] sin nb
C 0

2
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The two equations resulting from these boundary conditions are to be solved
for the functions F“*E(ql) and Gn+2(r|2)=

For an incident wave of dilatation the btoundery equations may
be found by combining the first two of Egs. 3.3 with Egs. 3.33 and 3.34

and applying the resulting conditions at the radius r = a.

a(t) < N (-1)" LI 2
0= + a (t)cos nb + o, )[(21 cosh™u#N\)cosh nuldu
2 n c n+2 AN
n=1 n=0 ~L
n u2
- %f Gma(na)[p. sinh 2u sinh nu]du] cos nb
C, - 0
© 3.41
= 2 n ul
= 2
0= Z‘b (t) sin no +Z [.\_1)__ f Ft (ql)[u sinh 2u sinh nu] du
n c n+2
n=l n=0 1 0
n u2
G Gm'a( )i cosh 2u cosh nu} du} sin nd
o 2 % i~
2

In & similar manner the boundary equations for an incident shear
wave may be found by combining the first two of Zgs. 3.12 with the first

two of Egs. 2.39.

v
a M
0= Z b (t) sin nd +Z[-(——;-_% f Fm“('ql)[,?u cosh2u+).)cosh nu] du
n=0 n=1 "1 Q
ty
n 5 ~
+ i‘_:;%,-)- [‘ GnM(n?)[u sinh &u sinh ru) du] cin nf
&
~ : - 3 % Lo
a (%) b 3 hot o _ -
0=-2— 1 a (%) cos nd + (GO F'*“(q, )[-psinh 2u sinh nuldu
2 ', n c n+2 L
n:l n=0 1
1,
Y 1 2
g-l! n+2
- e ‘[ G (“Vz) [z cosh 2u cosh nu} du] cos nd
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The two equaticns resulting from these bourdary conditions are to be solved
e
for the functions Fn+2(ql) and Gm“‘(qz),
For an incident wave of dilatation the boundary equations may

be found by combining the first two of Eqs. 3.3 with Eqs. 5.33 and 3.34

and applying the resulting conditions at the radius r = a.

€0

a (t)
0= 02 +z a (t)cos ng +Z [L;}é IH'2(1';]_)[(?;_'. cosh™u\)cosh ma)au
C
n=1 n=0 -1 O
Ve
- %f Gn+2(na)[u sinh 2u sinh nu]du] cos nf
Cs
i 3.4
o (]
" s
0= ) b (t) sin no + oL F(n. )[u sinh 2u sinh mu) du
n c n+2 ",
n=l n=0 1 0
n A2
- e
- '('—31'_3-5 f Gm'“'(na)[u cosh 2u cosh nu) du] sin nd
C
2 0

In a similar manner the boundary equations for an incident shear
vave may be found by combining the first two of Egs. 3.12 with the first

two of Eqs. %.39.

<] w0
n M
0= z bn(t) sin nd +Z[£—%£—i f m" )[ Tu coshZu. Yeosh nu] du
n=0 o e W

+ L.l) [ Gn+¢(m){11 sinh Su sinh ru) du] 2in n@

2 0
2,42

{t)  ©
: + Z a (t) cos né +Z[L——-L n+2(r|l)[-usinh 2u sinh nuldu

2 n+2
n—l n=0 l

(@]
it

n+2

CH n+2(’12) [p cosh 2u cosh nu] du] cos nf
2 (¢}




Tne rnumber of parameters involved in the solution of the problem
mzy be found from Eqs 3.41. The last two terms in each equation, which
give the stresses in the outgoing wave, contain only A and p as parameters.

But A\ may be expressed as

2y

AL -

By making this substitution for A, one may factor pu out of both terms,
lé;ving v as thefonly parameter that cannot be factored out. The actual
form of an(t), bn(t), and dn(t) may be seen by referring to Egqs. 3.6-3.10,
where it is found that the only parameter within each term is 3, g, the
incident stress, being a common factor of each term. Since v is a func-
tion of v (Eq- 3.1), Polsson's ratio is aleso the only parameter which
cannot be factored cut of these terms. In the actual machine computations
all terms were divided by u and the ratio & set equal to unity, i.e. p

was taken a3 the unit of stress. Then a single parameter sppears in the
solution, v. In the derivation of equations which follows, X and p are
retained in the equations so that it ic clear to what extent the variation
of there constants altersthe solution of the problem.

All thke constants rentioned thus far c2ocur in the equations for
hoop stresa and eguetions for the stress in the medium in precisely the
Lame Wiy ud mentiomed mbove. Therefore, the same comments may be made
concernming the parareters involved in theze computations.

The cume obaervations may be made concerning Egs. 3.42 for an
incident shear wave, except that T iz a common tactor in each term for

strecs due to the Inzident wave (EZgs. 3.1% and 3.1%) and v does not appear.

23
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The last two terms of each equetion are the same as before and again, p
may be factored out leaving v as the only parameter thai cannot be
factored out. In the corputer solution ':/u was set equal to wnity in
this case.

In the numerical solution of the problem, the fundamental unit
of length was taken as a, of velocity C1 (Cg for incident sheer wave), and
of stress u. These three units completely determine all the other units

required. In Egs. 3.kl the value of Cl is unity while the value of C2 is .
C
Where a is defined to be the ratio El . C1 and C2 are nevertheless
1

carried through the derivation,




IV. NMODIFICATIICQN OF EQUATTONS FOR COMPUTER SOLUTION

L .1 Equaticns for an Incident Wave of Dilatation

Consider the numerical solution of the boundary equations given
by Egs. 3.4l for an incident wave of dilatation. The first terms on the
right involving an(t) and bn(t) represent the stresses due to the incident
plane wave. These terms are functions of time and may be evaluated by
coemputing the time-dependent angle 9l from Eq. 3.5 and substituting this
angle into the appropriate expression for the Fourier coefficients given
by Egs. 3.6 -~ 5.10.

The last summaetions in Equ. .41 represent the stresses in the
diverging wave and contain integrals which must be evaluated to obtain the
stress It is important to note that these integrals are of the convolu-
tron type and therefere the integrations must be performed anew for each
value of time considered. At any time for which the stress in the diverg-
ing wawve 15 to be evalanted the integration can be performed numerically
provided £ll the previous wvalues of Fn+2('r|l) and Gm'e(rb) are known. It
15 thece functions, however, which must be found from the boundary condi-
tions. Thiw is poosible sine Zg.. 4.4l ecnstituter two equations with
twe unknowns.

In the numerical intogration prozess it i coavenient to take
equal .teps in the ind.pendent variable.  However, if vgual steps in w
and w. are taken, anequal sbepo in tice and unegual steps in movernent of
the outgeimg wave an spame will rezult. To aveld thi: tcrplication the

variable of integraticn will be changed

25
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Referring to Fig. 3.6 and the equation following Eq. 3.25 one may
write the limits on the integrals, v and u, for the time t,
rcoshulzpl=r+tcl

rcoshu2=pa=r+tce.

Solve for cosh ul and cosh u2

tC

l -
coshul—l+—;—..l+l;l
coshu2=l+-—r—-=1+g2.
Therefore Eq. 3.41 may be written, using the substitution
coshu=121+1¢, 4.2

with the limits El on the integrals involving F"*Z(nl) and {, on those
involving Gm'e(ne). These upper limits may be expressed as follows
from Eq. 4.1 for the varticular case r = a,

- tC t02

§l=—£‘-and§2= Y

By using the substitution of Eg. 4.2, one may write the arguments of

Fn+2('q1) and Gn+2(t;2) given by Eq. 3.36
=t -2 (1L+¢) and =t - (14 0). .3
" c; g e e,

In performing the numerical integration it is zconvenient to have the
1limits on all the integrals the same. This will be accomplished by chang-
ing the upper limit on the integrals of sz(nz) to agree with that for

Fn+2( nl) i.e. both upper limlts became El' To do this the varieble of




27

integraticn for the integrals involving Gn+2(n2) mist be multiplied by the

ratio of the limits

b bt
== = == = qa. .
L4

For simplicity the subscript on the upper limits will be dropped. Then the

upper limits for all the integrals is

tC
A
=% k.5
or, for the particular case r = 8,
n
Pl
Y

n+2
(

and the variable of integration ! for the integrals involving G no)

a3

will ce rupluced by al.

-~
=
o
23
3]

remaining explanation of the numerical sclution of Egs.3?.kl
it 1c sonvenient to consider a particular value of n in order to simplify
tre equations involved. The zase n = L will be concidered, however, the
derivationsy are guite .imilar for n equal to any other value except for
certain simplifications when n = 0

Conzider the integral portizns of Zqo.® 4l representing stresses
due te tho livergang Wave with a = 1 (there stresces are also given by

EQ..7 45 und % R)

r 1 1 .
a__ = !:—7 ,‘ F'oo(q ) [(20 2ask™u 3% ) rozh uldu
Ir i r~ e J PN

+

A
- /‘ G (n)n sinr lu cinh ul du] cox 8
IS -
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-1 3!
O = [ z f F- ‘(nl)[p sinh 2u siph uldu
Cl ¢
u—
+ ——}—,- G* {1, ) e 2ash Cu zosh u)du] sin @
CE' O

Also the hoop stress in the diverging wave oy be written by settingn =1

in Eq. 3.35.

-1 3! . 2
e f F! ’('ql)[(h - 2u zinh"u)cosh u} du
C ~

1 s

1 v

- =5 f G“'(ne)[p sinh 2u sinh u) du] cos 6

C}j 0

By using ihe substitution for zosh u in terms of ¢ as given by Eq. 4,2

these equations for stress may te writtun with the ceme upper limits on

("
all the integrals, [, as previously dis:ucsed.

-

r
i -~ - 7~ 2 ~ 3
0!‘!‘ = r.._l.? f F' l(ql)[(“-""—u) + (h+tpdlt o+ Epl” + cuﬁj ]dc
PR R
1 L.6
E .
\ L‘u P gy o)
+-—l-,; G ‘(n 1 wolilagt) (val/ )] adt] ces 8
B e
F
Ue "-—"':"];:‘ /‘F"’(n\)[%ﬁ(“*t‘ (14—?‘/.‘) } -if;
oole,s L W
- 4.7
) LEUME S ‘.'.‘-\ y .,zr:"
s (nfpedzolese Lov e I ':-df] “in 8

J-':v" Lo ot

g )R Bttty
Y ,

(2_(' 41 + f?E
LG

_L f(} (W) {J‘ﬁag(l'}‘ag) (1401";/:“1 ad{’] coz 8
0 - 2af 1 +atjz )

Q’}q
©
f
: i
=
ol
] Dc*ﬁm‘ v ‘1"‘- -~
<
=
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Turerical integration of these equations is hindered by the fact
that cne term of each stress equation has an integrable singularity at {
equal to zero. It is also necessary to assume the functions F“'(nl) and
G’ (q23 to be well behaved, however this assumption is justified for
small t by the short time solution which will be discussed ip Section 5.1.
Also there 1s an integrable singularity in F"’(nl) at the value of the
argument n = +a/Cl, however it turns ocut that this does not affect the
stresses obtained from the numerical integration. Consider as an example
the numerical integration of the first term on the right of Eq. 4.6, The
methed of integration to be used assumes all of the integrand except gl/e
in the dencminator to be linear between discrete values of {. Weighting
factors conzistent with a linear variation in § divided by §1/2 are com-
puted and applicd to the ordinates at each end of the interval in order to
find the value of tke intogral in the interval. The derivation of the
integration formula is chown in Appendix A This methcd of treating inte~
srals of the type encountered here is similar to a methed derived in
Ref {10) If ¢ is divided intc equal steps, Af, and the sbove idea applied,

the value of the integral between m Af, and (m + 1)al, for the first term

on the right of Eq9 . © ray be written
(rallat . - 3
- [' Fooun )‘ (N2u) + D0« EutT v ] Ar
E4 — -~
¢’ Yt R I R

1

R RN RS E N I (CEV

=

(5 o)y () [BUm 22y L et a1 ] 49

m+l
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where Ril on the right is egual to

oo (a2u) + O Gut + 6 €+ ut?

" 3 %.10
¢, NN

and m is the numbering of steps in Al starting with zerco at { = 0. For

brevity the follcowing symbols are used for the weighting factors in Eq. %.9.

A= 2(l+m)[(m+1)l/: - ml/e] - % [(m+l)3/2 - mﬁ/el
L1l
B, = % [(m+l)5/2 - m5/2] - 2m[(m+l)l/2 - ml/2]

It is shown in Appendix A that these weighting factors may be used for any
of the integrals involved in the stress eguations as long as the function
to be integrated is well approximated by a linear relation in { divided
by ;l/e in any interval.

It would only be necessary *o use the special integration scheme
for the first few steps near ¢ - ©; however, in the computer solution it 1s
convenient to continue to use i1t throughcout the range of integration. The total
integral may be expresced ar the swmation of all the integrals in the interwal
At as given by Eq. L.9.

The following abtreviations for quantities in Egs. 4.6 to 4.8 are

useaq:
L ab(l - a1+ at/2)]
Ry ® =z J ot
L ‘.'tf; STy
Foo bl » 001+ t/2) \
RB]. = ’_ 5 24'.1::.
-2 T+ Y2 o

¢ w1+ 5ot + 6”4 eo??)} “

L\@—a Ji o+ ai;? QEC?_
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P {—‘-—Z“.-M) Lty ]
J2 Vieg/z ¢}

& [mg(m ma;u]
D1 NJaa Jiwat/z ajc |
I

may be written as

pss equations given by Egs. 4.6 - L.3
= 0,1,2,..., by using the summations of

The sTress

fullows Tor any time, t = pdt, where ¢ =
Eq. 4.9 for the integrals und the abbreviations of Egs. 4.1 and 4.12

p-1
Z JX [(F..-(fl)) ’RA..) At (F () (R fl)m+13m]

n=0
»-1
16t 111
o YR [0 8D At ) G, s @
m=0
L.13
-1
- '\—‘ [or "’ ray e
Ieo - Vel l F (ql))n r(ﬁfsl) A *(F in ))n m-l(RBl m+lm |
-t
f—fl
v ) NaL| () (B0 A slor (1)), () B |[stn 0
Cpem REI mm*’ 27 'p-m-1 RBl m+lm |
n-0
R
-1
> Sﬂ\/:f_ (F" "ty (}x’ LA RE T (n)) (%) B
T A 2 Vi ou'r t 17 pem=1""D1 e 17 |
el ;
\ f——l R B U 19 N
- ~el l'u o N r " p1 )rA"+(G {n ’)c m-—l(Bm 1T c23 ©
r-0
-l
valuer ~F R ~wav e ~cmypatcl cnce and uzed e23ch tire tne into-
wre ~hozen anl steps AL are ased us

In order *hat the
3441 oteps In tir

grations are perfomrel
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given by
Cc
B 1
R
The use of Egs. 4,13 and 4.1k in numerical form permits the boundary
conditions given by Egs. 3.41 to be rewritten as follaows Tor the case n = 1.
In these equations the unknown values, (F* ‘(nl))p and (G"‘(ne))p, are removed

from the summations.

= (o (00}, VBT [0 D0 Do (6 ()RS ) ]

n

p-

1\4

1 F [ B G’
JZ-C[ Oy gt (B D @ T (0)d oy (B ml] (B Anay)

m=0

BE [, ¢ @ ] 8 025

0 = (b)(t)), +at [(F'“(nl)p(f%]31 oo (G in ) (Rm ¢ ...J

p-2
t F . - .
*Z It [(F (1) o P g+ 187 0 PR | B )
m=0
e AY (E ) (R - (6 e (LR L7

These equations are to be applied at r - 4,

Tre stress caused oy ihe in.ident wave, {.e., al(t) and bl(t), iz a
known funsticn of time and trerefore may te evaluared at 4imes pAt. If all thre
previous valus=z of F”‘(nl) 1% G"'/qd) Aars Koo teen b o owaluel of rthe
summations are computed except for the terms invelving (F'': (nl)) and {(g'’ ‘qg)\p.
The values of these unknowns may then be found from the resulting equations.

Since the first value of %ime *tha® can be considered with these equatiors is
t = At, it is necessary to find the values, (F"‘(ql))c and (G"’(ng))o, by some

other means. Then the values at © = At can be computed. Knowing the values of
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the functions at t = 0 and + = At, those at t = 2At may be computed, and

U Ohi.
Tre skort tire solution by which the initial values of F''! (nl) and

3+ *1(x,) were found is discussed in Chnapler V, where the values are given as

—205 /[n(x+2u) ]

il

(1 (n,)),

0. 4.18

1

(6" (),

For machine solution Eas. %4.16 and 4.17 may be written

(BRI ] LRI ] (al(t))
(B () (B ), A + (61 (), A, = = —==® - (5), k19

G (v, (£))
(Frt(n))), (Ry)g A, + (6"1" (1)) (Rpy), A, = - ————RJ&_ - (85);

whaore
P2
ERVID YN [T PN SR LU M C S I T RTY
Al'y - r-n-1l nl m+l 2/ /p-m-1""Al'm+1 m+l
-0
i G L.20
RO RCAV IR CI RN S RE NN
-z
- . -
(:bl)p i [L [[(F“'( i) p-r -L(r‘El par ¥ 18 h‘;))p-n-l(REl)zml (B_+A, 1)

0

. 3 l
. [(f"'(,l)))(ﬁgl)r + (G"'(‘Q))Q(RBL)F] Bp-lJ

Tree als the owulaes SF R '(ql) ard 6" (%) are Enzwn oap *o oa given

#ima, % GL opostiTlr ot Vied i hoop ctrecn wt thic tire. In order Lo operform
o sXrratizns Yor U,,,} alzng with *he cther owrmations it is necessary to write

A

Eg 4.9 fr the otreze dwe to the divergins wave in fne save Torm that Iy L0132
And @ s wWEre ArEttoo,  aving fro o cermodncclving (F7 .1\) and (“”(T'—‘))p

cat of the sworatita Coaca e gnrkocer o L UTanody Shes forr can Lo omddeld <o
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the sumration. Also the stress due to trne incident wave, (dl(t))p, is added

to that caused by the diverging wave.
- (SIS} F LI G
0gg = (2 (D), + VBT ((F () () A, + (6 () (B A ]

G

-2
+ By ,E [ () y Ry (@ () (R D 1€

m=0

Bm“%n+l)

L.21

p-m-1

(Rpy)p + (6" () (B3 ) 1 B )

+Jag (711 (n))

o]

To compute the incident stresses at any time it is desirable to have
the variable, t, in al(t), bl(t), and dl(t) written in terms of t = pAt. This
may be done by dividing the time reguired for the wave to travel one radius
into N steps and starting time when the plane wave first reaches the side of
the opening. Then the ratio p/ll is egual to tCl/a where p is the step number
corresponding to the time t = pAt, until the wave reaches the back of the

opening. Therefore, Eq. 3.5 may be written

9, = cos™ (1 - p/H). h.22

Once 91 is known Ejs. 3.6 through 3.10 may be evaluated. For the

case n = 1 and p < 2N these equations became

It

al(t) +d {(5 + V) sin Ql + Llézl sin 3&]

2n |,
b, (t) = oA (1 - ;) sin . - L ain 2@ k.23
1 on - 1 3 71

- 1-v .
dl(t) = 2= [(5v - Y sine - Lﬁ\ sin f*l] R

i

and for p > 2N

al(t) 0, bl(t) =0, dl(t) = 0. L. oL

The case n = 0 is considerably cimplified by the absence of a chear

wave throughout the c¢omputation. There is only one eqguation then to compute
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(SAO)p

3 N g F
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1 (v) -
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re eJqudti>.s Tor the case n = 2 are as fullows:

1w ) (F. A ( ( (. ) A ("f(t))y (P)
Froifn,") (R,.) A Gv;t{‘ = - = - (3,
(Tll I A;')Q O * "; } ag ‘Az v
() [ 4. 26a
~ (b, (t
. v 2
) RG:), A+ (@0 (R A - - = £ - (sk,),
3
r-
N F LIV (s8 b
Spa) P __>_, {’F (n, ))p-"'-l Rpadmey * (& {0, ))v ~ri-1 A°)rr+l_l (B r,a)
m=0
.
i F . LIV G
e s e w8 Ts,
5 k.26b
-z

(Spztyp - L [(FIV( '1)); - 1“‘% Yoy Ay ))r "-l(RgE)m-rlJ (B )

»
Hi%

L,'

g ., _,I'v' 3
. [(Fl‘v(r,.‘))__\ag_.)g .73 (v,:)}.(rxv.);] Bp_\

) —~[. v LF L 1v G
gy -ty B [, A 6 68, A

J3I

B=2
Iv . LIV
NEL ) [(F S S AR L TO I ¢ - W ](sbm )

""" (2T
.20
3 iv - v - -
* u{. [:(F“L (ﬁl)):{RE;); * '_,‘ (y‘h)J(Eg_)I} EI-‘L il
H” Ly V&71-*‘-§¥;‘§d)]_f_g.(jz.,;-:pg“Iu
Hd ; C-;J'j: "‘A+§/..
R - - &acfiwcz )l/"(ly ) ]
- . cxc Jia
R - r&lmu;,(a)l_w‘ “;)‘}
“ ¢t J2

1




57

RD, - - ’i(“*“‘g*‘“”; ) }a L.263
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boundary are srull and go to zero at one itransit time. Since the stresses in
the cutgoing waves are determined by these incident stresses, it is reasonable
to expect that they should aliso be small and die off quickly after one transit
time similar to the stress for n = 1, which also goes to zerc at the back of
the opening. The final stresses ccmputed by using the first three wodes will

be presented and discussed in Chapter VI.

k.2 Eauations for Incident Shear Wave

The numerical solution of the bcundary equations for an incident
shear wave (Eas. 3.42) is quite similar to the procedure discussed above for
an incident wave of dilatation. It may be seen from Egs. 3.135 and 3.1k that
the incident stress on the cylindrical boundary dees not depend on Poisson's
ratio. It may be observed, however, from Ejs. 3.L2 thut the stresses caused
by the waves which diverge from 4 line scurce do derend on Foissci's ratio
since these eguations contain both X\ and p.

It i ugain convenient to consider the solution for a particular
value of n in order to simplify the explanaticn; the value n = 1 will be used.
Also since the derivation Is $o similur to the case Just considered, the dis-
cussion will be somewhat abbreviated.

Consider enly the integral terrs an Egs. 3 42 which represunt the
stresses ir the divergirg wave, and le® un =~ 1 {ulo> given by *he first twe of

Eqs  3.39).

1

*1
T = =1 ‘/\ FUUo(m, M (2 ccsh2u+h) cosh u] du
rr 3 ) 1
)
1
u,
1

-3 G"'(nw)[p sinh 2u sinh u} du} sin @
N “
02 o
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gt
~ 4 - s ;
G = { IE.Q/\ F '(ql)[p sigh 2u sinh u} du L.27
- C Q
1
uf‘
a
i B
+ —-5-‘/w G"'(na)[p cosh 2y cosh u) duJ cos @
C2 <

Also the hcop stress in the diverging wave may be written by setting n = 1 in !

the last of Eas. 3.39.
u

1
;au = [ 1% \/ﬁ F"'(nl)[eu sinhfu %) cosh u] du
7/
- C1 0
U %.28
¥ -1—5 f G'**(n,){¢ sivh Zu sinh u] du] sin 6
cp Yo

Again the substitution for cosh u in terms of £ as given by Ej. 4.2 will be used,

and the upper limits on the F"'(nl) and G"'(na) irtegrals beccme

+C tC
4 1 ~ 2
8y == wnd Sy == .

In thic ecasz it is convenient to huve the upper limit on the integrals invelving
F"'(nl) agree with that on the integrals involving G"'(nz). In order to
ctange the upper linit teo §2 0L the F"'(nl) integrals, the wvariable of integra-

Cieeoriast Te paltivlisd by the ratis of the old to the new limits,

. c
o5,
E e, a B

For simplizity the subseript will te drepr:ad on the upper limit; thern the limit
f'or *he integrzls bteoomzs

re
L.

Ine above epatisis for stress rav then be writlen sz follows:
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Y =0and v = 1/3. The mode, n = O, dces not contribute to the hoop stress

at the boundary in an incident shear wave.

%+ 3 Eguations for Stress in the Medium

Consider the stress field at some point away from the boundary but
behind the incident wave front. The stress at this point consists only of the
incident stress if the reflected wave has not reached the point, and the
combination of the reflected and incident stresses if the reflected wave has
reached the point. In Section L.l the eguations found in Section 3.1 and 3.3
for an incident wave of dilatation were applied at the boundary in order to

find the functions Fp+2(nl) and ¢"1e

(na). Each of these is a function of a
single argument given by Eaqs. 4.3. These arguments are in turn functions of r
and t. In order to find Fn+2(ql) and Gn+2(n2), a particular value of r, r = a,
waz taken where the stresses were known. Once these functions have been
doetermined, any value of r may be considered in the arguments, and the
wariation with t can be directly compated.

For convenience the case n = 1 will again be considered to illustrate
the rmetheld of cemputation. Trne general expressions for stress due to the
liverging wuve given by Ejs. 4.6 through L.8 may te used to cocmpute the stress
4t any point in the redium with the uppur limit given by E3. 4.5. This upper
limit ic inesnvenient, howewver, becaice % leads to values of Ty and Ty less
A A '3/01 and -a/CE. respeatively, in “he range of integration. These values
represent tire Sipe whish the reflected waves have not resched the radius iu
Yoot Lroe It AL mors congendent 1o oise the aprer limit which correspends to
the fir:t wvalue of F"’(ql) uand G"'(qa) whish is ro* zerc. These limis ray
be obtzined frem the argumsnis K urd e Censider rirst the integrals involving

F 'y whern 2 new variable to 1o introduced
4

"1
o=t = {r-a) . L,z
t; = * G i

1
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Then v, iu “he time eiapsel after the reflected wave reached the radius r,

1

ar.d t is the total time elarsed. Srlving tor ¢

. T r El
R -l
1 G, &

Substitate this into the first of Eas. 4.3,

A -
tl - C ;l ] gl - l§-57

Y 5 g < ;l = .

Ir. the sume way, the lini*s oa the inteprals Invelving G"'(n,) may be fourd
[

frem v, The time variable t., may be defined as
- ~
- r-u
t, =t - .
> c, 4.38
2
- r u
or A
g ¢, ¢, '
Substituting this inte *pe gwerond of Eilse «d und rezalling tnat § besomes of

T »«—x:-—-l
=g %
B B
'02 2cl

. =

2 ar r

and { varies in the interval
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0t =S,

I the rachire computations, where discrete tirme steps are used,

wie total tire is given as before by = pAt,. Also the radius may be written

r=a+r.'lstcl.

Frem Bas. 4.3 and .38

17 (p-n)at
-{.2 = (p-n/2)at .

I1. gereral the variuble § ruy be written

TCI

t - - L. LY

where T varies from zers o ?1 or t‘2 ard may be expressed in general as T = mAt,

Toing the atove substituticns, Eis. «.30 ard L.39 beccme

N - (r-n)at - u./C-l - mit

M., = (pen/2)or - 4/C, - mat

where

0 << (p-n)
stotEe ooitaticn for roand
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Frem Bioe w037 znd 4.a0 ther upper limits o tne F'"(r.l) and G'''(n.) integral

»~

Levr e t¥gs ¥ e
LAY Lo Wi PR

7 {1-1)ox ¢, - (p-n, )l Cl .
D un, A CL ’ E a+x£ncl ° T

ey
[#]

Siree & wartes witn raliuz, *he qianti*ies R




values of R Lave been ccerputed for a particular radius, the eguations for
stress in the swmation form given Yty Egqs. 4.13 through 4.15% ray be used with
the appropriate limits.

If the above ecomputational procedare is adopteld and if the same
steps in time, At, that were used at the btoundary are chosen, the set of values
of the argument of F"‘(ﬂl) used in the computations is the s#me set as were
used when the original computaticons were carried ocut at the boundaxry. Therefore,
the limits of integration fall on known values of F"‘(ql). This is not the
case with G"'(ne), however, since the upper limit on m, as shown above, is
p-n/a. Then if m is allowed to vary asm = 0,1,2,... none of the values of My
will be the same as at the toundary (see expression for g above). It is
simpler to perform the integrations to known walues of 5 (the same values that
were used to find the function at the boundary) realizing that these integrals
involving G"'(qa), He(r,t), do not correspond to the same times as the integrals
involving F"'(nl), Hl(r,t). After the integrations are performed and the
integrals are to be ccrbined in order to ¢btain the stress, Ha(r,t) must be
shiftel In time zo thut values of Hl(r,t) und Ha(r,t) corresyonding to the same
total time are combined. This shift will in peneral involwve interpclation in
H2(r,t). A parsbolic interpolation wus usea foo this parrase.

The general =zpressions for strecs due *o the inzident wave given by
Ejs. 4.25 und é.2b are valil at any radiac exoept thad o it te redefinsi

{5;). Pror Fies 4.

1 1
a - tC
- -1 1
91 = pos ( = )
or ior rachine use
a - pAtC
91 = COanl 1 f 14.,,14.5




u
Cuxnsidering the changes in Ei and in the integration limits, one has

viie szere tasic ejuations for stress in the medium as were used at the boundary.

Tas total stress is the sum of the stress in the diverging wave given by

Ejs  4.13, 4.14, and 4.15 plus the corresponding stress in the incident wave
|

given by Eas. 4.23 or 4,24,

p-n-1
Aty 0, v ) VB [y, @A ) e ]
<0
p-n/a-l i
Y IE (@ ), B+ (0 ) 08, m T cos 0
=0
p-n-l
ro - {(bl(t))p-ﬁ ' %Ju—; I_(F'”(r‘l))p RB Yo * (F'”("l))p -m- 1(R131 m B m]
-n/a-1 i
Z N3 [(G' ' '(r‘e))p-n(Rgl)mAm + (" '(“a))p-m-l(Rgl)muBm] }sin 8
m=0 ) bbb

-n-1
Ty - {(ii(t))pd. * }: JZE L(F"'(ﬂl))p-m(RDl)mAm * (F'"(ql))p-m-l(RDl)m+le]
m=0
r-nfce-1

Z Yz ((""'(’h))p--% Db + (8 (i) (RS, B ,,] } cos 8




V. DERIVATION OF THL SHORT TIME SOLUTION

9.1 ZShort-~Time Soluticn for Hoop Stress st the Foandnry

Tne snort-time soluticn to bhe described is useful four several
reasons: (1) it serves as a check on the machine solution of the problem for
a short time aIter ke pglane wave reaches the opening; (2) it provides the

initial values of the function Fn+2(ql) and G °

(ny); and (3) it determines
the anulytis character of the solution at short times, end gave insightsuseful
in developing the integration process. The functicns Fn+2(nl) and Gn+2(n2)
which were obtalned in Chapter IV by numerical integration are now found by a
different technique, using the same basic integral equations. Therefore the
method dees rnot check the derivation of these equations; it checks only the
solution of the eqguations for short time.

The same boundary equaticns given by Eas. 3.4l for the case of an
incident wave of dilatation are again used. The functions Fn+2(nl) and
Gn+2(n2) are expunded in Teylor ceries (with unknown coefficients) about the
initial values of W and nl. Tren the integrand of each integral as well as
the incident stresses are expanded in Tayler series and the integrations
perforzed By satisfying the boundary cquaticns for each power of t it 1s
rossible tc svaluate the unkmown coeffisten*. in the series for ?n+e(ql) und
Gnig(ua) cunzeslmly. Onee the serdes for Fn+£(ql) ur.d Ch+2(n2) are kacwn,
theze functions zay be used to find the hoop s¥recs ot tie Loundury ar tle
stresses in the medium.

Consider Eas. k.6, 4.7 and 4.8 in which thu ctresses in the diverging
wave are written in terms of ¢ in a form suitable for cormbination with an

incident wave of dilataticon for the case n = 1.




b9
It the value of stress is required at some time, t, then the limits
o lutegraticn of the F! ”(nl) and G''* (1‘2) terms extend from
0<¢<T where T = tc)/a . 5.1
However, { may be made to vary from zero to its upper limit hy letting
t-BT , 02B=s1. 5.2

Thern E is a constant and the variable of integration becomes B with the limits

zero to one. In order to expand the function F'! '(nl) in a Taylor series,

conslder the urgument my (E1. 4.3), |
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trigorcmetric functions. For n = 1 the incident stresses are given by Eq. 4.23.

In series form ihese beccme

al(t) = - EJ%%ET 6 - é% T+ %% - %% Ej + ...} 5.12
bl(t)=+9—5‘/;f5-_—_%§-222+%35+...] 5.13
‘11(7.):-"—‘5{& a+%f-%§2+%%'§5+...] 5.14

In order to satisfy the conditions of a traction free boundary, the
sum of corresponding boundary tractions for the incident and diverging waves
must egual zerc. The radial and shear stresses due to the n = 1 terms of the
diverging wave are given by Egs. 5.9 and 5.10, respectively. These stresses
are given by Egs. 5.12 and 5.13 for the incident wave. A series for the total
radial stress at the boundary results from the sum of Egs. 5.9 and 5.12. A
similur series for shear stress at the boundary results from the sum of Egs. 5.10
and 5.13. If these boandary stresses are to egqual zero, each term of the series
mast eguul cere. In this way the unknown constants in Eas. 5.9 and 5.10 may be

evaluated successively, resulting in the following:

c5
-2 1 a
Fun(_!’i__)_‘____a G“'(-—):O
€7 mw Ca
c‘l‘ c;
A, = #0.ub2]l ~—=— ¢ B, = -0,21%0 — ¢
1 jall 1 i}
g H
¢l gt
A, = -0.3935 ——a B, = +0.250k —= o
< p'.’jc < uax_
c® c?
A, = +0.1T16 ~— ¢ B, = -0.3289 = o
3 wa” 3 ua§

By substituting *rese guantities in®o Eixs. ;.3 anid S.4, cne obtmins

exfressicns for ¥'0'(n,) wnd GF "{y.).
1 2




F

Fy) = _}21_ \ 2122 + 0.4421F - 0.3936E° + 0.17 165’ ]
" el Py 4

@) —:— { 3,2150C 40,2590 - L3999 « ]

Firally, 2 power series for the hoop stress in the diverging wave is

found by substituting the above constants into Ea. 5.11. The total stress at

any

raint

Eas. 5.11

values of

The

for

for

5
)
~t

for

In

thrcugh

LRy res

n -0

Lo«

iz vhe suam of the incident and diverging stresses, that is the sum of

“.. :oJ_g_{ 1.0670C + 0.9574E° - 0.2754T° + ... ] 5.16

The procedure outlined above for n = 1 may e applied for other

r in the sarme marner except for certiin simplifications when n = 0.

sitns for orro modewise hoop strezces for other values -f n oare
. o-ff [»O.?}jff + 0.1L60T° & 0.C0164f§5 + ...] 5.17

o - BN | =10 0T B55TE - sl E ] 2,10
oy, - qu(-l.%?of ¢ 15,2607 - 3..780387 + ] 5,20

Fig. 5.1 the recalts of the short tirme solution given by euch of Bas. <.1¢

5..0 for the first five wmodes are plotied aleng with the first three

r.odes 23 ob*tained in the computer solutiosn. 1In the shor* time solution nll
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terms in E out to E7/2 were carried in the computations. From these curves it
may be seen that a larger number of terms of the series must be used for higher
tnanu for lower values of n to obtain comparable accuracy.

From the shape of F"‘(nl) as shown in Fig. L.l agreement would not
be expected beyond one time of transit in view of the singularity at € = 2.

On Fig. 5.1 the sum of the Tirst three modes for Ogg &s computed in the machine
is compared with the sum of the first three and the first five terms as
ccmputed by the short time method. Also shown on Fig. 5.1 is the first three
modes of the outgeing wave combined with the exact representation for the
incident stresses. These stresses correspond to an angle around the opening
of 9 = Oo, cos nd = 1.0,

The procedure just described is quite similar in the case of an
incident shear wave. The mode n = O does not produce a hoop stress. This may
be shown by observing that the first of Egs. 3.13 for gn(t) is always zero for
n o= Q. By placing this result into the first of the boundary eguations
{E3. 3.42), cne oboerves that F"(nl) is always zero for this case. Then the
heop stress in the outgoing wave given by the last of Egs. 3.39 is always zero
Zinoe F"(ql) = 0 in the first integral and sinh nu = O in the seconi. The
{imencicnless time, E, used in the inzident shear compatatiuns is equal to
*C;’u rati.r than tC:fa as wsed in the cuse of an incident wave of dilatation.
Tre zepies forr of the hoop strezs in the diverging wive only, has teen ccmputed

for v o= 1 and 2. These strezges are,

= _ I _ .
o, = a%{-;.azgh + L.579orc - 1.0197;5 + . ] ERCE
A -4
firr o = ¢
YO | . e IR a7 -
098 = 0 —Z —).Orj«\_g + 15.”35;;§ - 1Tl ﬂ:,' + v . e D422
Jo b -
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The results of Egqs. 5.21 and 5.22 are shown in Fig. 5.2 with the

corresponding resulits of the computer solution.

5.3 Short Time Spolution for Stresses in the Medium

In Section 4.3 the method of computation used in the computer
solution for stresses away from the boundery was discussed for the case n = 1.
The short time solution derived in Section 5.1 will now be extended to obtain
the stresses in the medium. As an example of the computation procedure, the
hoop stress away from the boundary in the diverging wave will be considered.
The equation for this stress is given in general form by Eq. 3.35. By setting
n = 1, substituting 1 + { for coshu as given by Eq. k.2, and using the limits

defined by Eis. 4.1, one obtains the general expression for hoop stress

! A (n-bu) C6ut 250t
Fl t1 d
ji (nl)[ VeVt | 4

o _[4.3.
68 ~ 3
¢l

_if"’ e g (1) (et /2)] T
Cg . G (“2)[ Vot nt/e ]dg- cos 6 5.23

It is convenient in this case not to use the dimensionless time variable T
until the last step of the derivation.

It is apparent that Eqs. 4.3 may be written in the equivalent form

TCl r 102
rl‘l-.-_'t- (1 + T) and 7']2 =t - (—.:—‘ (1 + —r—‘) .24
2

Ql"t

1

where the dummy t ranges from zero to t. First consider the argument - This

argument may be written in the equivalent fomrm

=%

ok
fl

where 1 = $ - <o -
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The time ?i represents the time after the reflected wave has reached the radius
r, and t varies from zera to Ei. This variation in T may be accomplished by
setting

T =B, 0<B<1, 5.25

By using this substitution, nl may be written
ql = Ei(l—ﬁ) - 8/01

Freom this form of n it is seen that F"'(ql) may be expanded about -a/Cl in
powers of Ei(l—ﬁ). Therefore, by using the coefficients given in the first of

as. 5.15, F"'(nl) ray be written

c? c
1 1
F"'(ql) =-To [- 0.2122 + 0.hk21l = tl(l-B)
c2 . ¢
° >4
-0.3936 —32- B (1-8)% + 0.1726 ;ti (1-8)° + ] 5.26

In the remaining factors of the integrals involving F"‘(ql) the variable { may
be written as follows using the substitution of Eq. 5.25

¢ = ﬂ - B1C

r r

In view of this substitution for { in the fifth series of Egqs. 5.5 and of

Eq. 5.26, the first integral of Eq. 5.23, age, may be written in series form:

1 c
ohy = o f —ui [-0.2122 +0.4u21 2 %, (1-8)
o .
3 3
- 0. 59/6 t {1- 5) + 0. 1716 =3 t*” (1-{3)3 + ]
Bt.C
T 1 171 165 1 1 .
{5 = [-1+—E(——r ) + 263 1y 5.27
QBtlcl o

105(’311 ...]}(Ei_f-];)dﬂ.
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This solution is restricted to the case ;-= 1/5 since this value was used in
the series expansions of Eqs. 5.5 and the ccmputation of the coefficients used
in Eq. 5.206.

In a similar manner the series expansion for G"'(na) ray be

determined. From Eq. 5.24 the argument na may be written

- a
Tlg:t - — - T
where
- r-a
t:t-.—-.
2 Ca

The time Eé represents the time after the reflected wave has reached the
radius r, and v varies from zero to Eé. This variation mey be accomplished
by setting

T=p 32, 0<pg<l. 5.29
The argument Ny beccmes

ny = t,(1-B) - a/C,
and the function G"'(na) may be expanded about -a/C2 in powers of Eé(l—B) by

using the coefficients given by the second of Egqs. 5.15.

°°i C - Ci -2 2
Gt .(,]2) =5 [-0.2150 = te(l-B) + 0.259% a-—a- ty (1-8)
05
- 0.3989 -—;-?g (1-8)° + ] ) 5.30
a

The varizble { in the integrals involving G"'(ng) of Eg. 5.23 ray be written
in the following form,

- 102
==

—

By using Eg. 5.29 to vary v from zero to t2 and, by letting C2 = aﬁl, one may

rewrite this expression
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It follows from Ba. 5.20 and the above substitution for { in the sixth series
of Eas. 5.5 tkat the second integral, 6(9}6 , of BEq. 5.23 may be written in

series form.

143 2
oSy =0 f 1% [—0.2150 = T,(1-B) + 0.250% —32* Eg (1-p)2
o] i a
¢ 3 r oBtCy
- 0.3989 = %3 (1-8)” + ] {C;‘ - I-u -
2 a\aoptc, -
apt.C, 2 apt.C, 3 7
s 5(—22) + (D) ]} 22 a8 5.51

The following equations result from performing the integrations on the right

sides of Eq, 5.27 and 5.31, for the case A = u, v = 1/4, yielding a = —L__

WL
pos 2
t.c c c
F 171 - —2 71
069 =g o7 [+O.h21+1+ - 0-5891‘ tl "'a— + 0'1“199 tl ;-é-
3 2
¢ c c
s 200 N 2 ey
- 0.1569 t7 > 0.4598 t, =+ 0 3832 t] o7
3 2 3
c c c
- 0.1949 ?? < - 0.u377 t"la < + 0.2605 t7 5
ar r ar
03
- 0.0k9TL 77 ;é— + } 5.52
= 2 3
t.C C
G _ 271 oo T2 1 D 1
%y Y [‘0'5327 ty gt 0:360k tg -3
ar
7
._3 1
- 0.1617 t5 2 B ] . 5.33

The results obtained in Egs. 5.32 and 5.33 may not be added directly. Egual




r
5= 1.25.

5.3 the stresses given by Egqs. 5.34 and 5.35 are shown along
with the corresponding results from the computer solution for a value of

— 1T
yalues of tl and &,

correspond to different times t, t
after the reflected dilatation wave has reached r and t

1

60
T. being the interval
after the shear wave has reached the radius

o being the interval
r.
of the hoop stress will be evaluated and compared with the machine
solution separately,
dimensionless times

For this reason the two parts

Equations 5.32 and 5.3 may be written in terms of the

¢ 5,6y and L - by
1 a 2 a
as follows
F 5,2
%e = 9 Vor

[+ 0.k2kk - 0.5894, + 0-4199§§
0.1569¢7 - 0.u598¢, 2 + 0.3832¢7 2 - 0.29u0¢7 2
2

1t
2
0.457765 5 + 0.2605L2 %5 - 0.0n97HL? 2 ]
I r
G

5.34
g
2
o9 =9V 2
In Fig.

2
a 2 a 38 3a
= [-0.5227§2 T 0.360&;2 - - 0.1617;2 =+ ...]. 5.35

solutions is quite small out to gl and Qa = 0.6.

It may be seen from these curves that the difference in the two
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¥i. RESULTS AND INTERPRETATION

5.1 Incident Wave of Dilatation

The results of the ccmputer solution for hocp stress at the boundary
due to three terms of the Fourier series representation of an incident wave
of dilatation ave shown in Figs. 6.1 and 6,2. The most important information
which follows from an examination of these curves is gummarized in the

following table.

v 8 Maximum Time of Static
Stress Max. Stress Value
Ggg/ 0 Transit Times AL
0 0° +1,29 4.8 +1.00
%°  -3.33 3.3 -3.00
1/3 o° +0.11 k.0 0
%°  -2.93 3.7 -2.67

In Sections 5.1 and 5.2 a method was discussed which provides a
check on the mechine solution of the basic equations at short time. After
several transit times have passed the stresses should approach the static
values as given above. This provides not only another check on the solution
of the basic equaticns but to some extent, on the formulation of the solution
to the problem. The static stresses in the case of plane stress are given by

the well kmown Kirseh fermulas, which are shown as follows in Ref. (11):

2 L 2
[ a [+ La
O =5 (=25 + 21+ Bp - ) cos 20
r r r
o ag o 2™
099;5(1+:2-) --é"(l-i-‘in) cos 20 6.1

Q
n

Y 2
O 75 ca
8= 3 (1 - ziﬂ +‘—;§) gin 20 .
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These equations may be used fo golve the plane strain problem by
superimposing on the stress field ¢ the siresses due to another stress field
acting in the perpendicular direction and of magnitude v o. By this means
the static solution for 990 around the opening as well as stresses in the
medium can be found for all the problems considered, and in all cases the
stresses approach the static values quite closely after 5 to 7 transit times,

The results shown in Figs. 6.1 and 6.2 are compared in Figs. 6.3 and
6.4 with the corresponding results from Refs. (3) and (4). The hoop stress on
the boundary at 8 = 0° from Ref. (3) is shown in Fig. 6.3 to be quite different
from that given by Ref. (4) and the present work. Also the hoop stress at
8 = 90° from Ref. (3) is shown in Fig. 6.4 to be less than that given by Ref. (k),
but the difference is not as large as for € = o°. It is interesting to note
that all three computations give quite close results for the maximum values
of tensile and compressive stresses. In Ref. (h) the reason for the difference
in stresses given by Ref. (3) is explained. In using the Duhamel integral for
computation of the boundary tractions from the diverging step wave, singularities
of the same type as in the present work occur at values of tCl/a = 0 and 2.0.
For this reason great care must be taken in the numerical integrations in this
region. In Ref. (3) a constant time interval was used throughout this integra-
tion; however, as shown in Ref. (L) it is necessary to reduce the length of time
interval in the region of the singularities. It is suggested that the integra-
tion technique discussed in Appendix A would have been useful for the computa-
tions of Refs. (3) and (4) since the singularities have the general form of
t-llz. The method discussed in Appendix A is a more accurate means of
accounting for the singularities than is provided by reducing the length of the
integration interval.

The hoop stresses at 8 = 0° and 90° from Ref. (&) agree with the

present work as closely as the curves in Ref. () can be read, except during
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the first transit time. With regard to this difference it should be recalled
that the incident stress was represented by three terms of Fourier series and
that diverging wave stresses were computed to correspond to these three terms.
Once the diverging wave stresses are found, they must be ccombined with the
incident stresses in order to find the total stresses. However, it must be
decided whether the three modes of diverging wave stresses should be combined
with the same three modes of the incident wave stresses or with the total
incident stresses which mey be represcnted exazctly. In Figs. 6.3 and 6.4 the
results of both methods of representing the incident stresses are shown. Both
Refs. (3) and (&) apparently used the exact representation of the incident
hoop stress; however, the hoop stresses shown in Figs. 6.1 and 6.2 as well as
the stresses Iln the medium and the stresses caused by decaying waves found in
the present investigation were computed using the first three modes of the
series representation for the incident stresses. It was not possible to
determine the cause of the disugreement between the results for hoop stress
froem Ref. (4) and the present work during the first transit time when the same
incident stress was used. In view of the excellent agreement with the inde-
pendently computed short-time stresses, the present computer solution acquires
considerabls oredibility st least for early times. Moreover, if one considers
ther present rethod of wolution, it hardly seems passible that the hoop stress
could be conciderably in error during the tirst quarter transit time without
causing & large differerce at one transit time.

The use of the totul inccming wave causes the total hoop stress at
¢ = 0° to have an improrer initial value. This may be shown in the following
way. For v = 1/%, 6 = 0° and the incident siress ¢ = -1.0, the incident hoop
stress is ;b = =1/%; however, nt the same point the diverging radisl stress must

ejqual O =0 = 41 at t = O and therefore the diverging hoop stress aeeﬁccrr=+

1
>
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since it may be argued that there is no strain in the & direction for @ = 0 at
this time. Therefore the diverging wave should have an initial value of hoop
stress equal to +1/3 if all the modes were considered, and the initial value of
total incident and diverging stress at 6 = 0% ccmbined shculd be zero.

In Figs. 6.5 and 6.4 the hoop stresses at 8 = 0° and $0° are shown
using the Tirst 5 mcdes as given in Ref. (4). By comparison of these curves
with those given for > meodes, the magnitude of error may be estimated. The
error appears to be quite large at 6 = 0% for the first two transit times as
would be expected. At 90° the addition of two more modes makes very little
difference. Also the use of 5 modes gives the initial value of % at 8 = 0°
much closer to the reguired value of zero.

By comparing Figs. 6.1 and 6.2 it may be seen that & reduction in
Poisson's ratio increases both the maximum tensile and meximum compressive
stresses.

In Figs. 6.5 through 6.8 is shown the variation of stress with time
at several radii for v = 0 and for y = 1/3 due to an incident wave of dilatation.
These curves show the free field stress until the reflected wave reaches the
point, at whichk time there is a sharp chunge. At some time aﬁ;er the reflected
wave passes the point, however, the stress approaches the long time or static
value consistent with the particular point., From these stress-time plots at
various radii it may be seen that the dynamic effect on the peak stress is not
as great away {rom the boundary as at the edge of the opening. The static
variation of stress with radius as found from Eqs. 6.1 are shown in Fig. 6.9.
Also shown in Fig, 6.9 is the variation of radial and hoop stresses with radius
at several times,

In Fig. 6.7, which shows the radial stress vs. time curve for 8 = Q°

and v = 1/3, an indication of the mechanism which might cause spalling is
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vbserved., The stresses shoald be considered only qualitatively during the
transit of the wave across the opening since only three modes are used. At
r’a = 1.25 for example the stress drops very sharply from -1,00 to -0.05 when
the reflected tension reaches the point. If the incident, stress wave had a
decay behind the front, this drop in stress could easily produce a total
tensile stress arr’ A sufticiently large tension would cause failure of the
medium. Since the slab bounded by the region of tensile failure and the free
surface of the cpening has a particle velocity equal to the sum of that in
the incident compression wave plus that in the reflected tension wave (both
in the inward direction) it would tend to fly inward. This slab remains con-
tinuous with the adjacent material in a circumferential direction, however,
and the energy trapped in it must be sufficient to break it away to form a
spall.

From the results of an incident step wave it is possible to find

the stresses caused by an incident wave of any other form using the Duhamel

integral.
= {s) T ap(x S
Gmn = dmn (t) ‘f _aéi{aém) (t - T)-‘ dt 6.2
O - -
where aéi) is awny stress due to 4 unit step wave, and amn is the corresponding

stress dus to an 4rblitrary stress wave P(t)  To illustrate the use of the
Duhiamel integral znd study the effect of a decsying stress wave the hoop stress
was ccmputed at v = OD and 900 for ; = 1/5 and 8 = 17.5 +. The variation of

stress behind the wuve freat wag sssured to be of the following form

P(t) = P_(1 - -E—) oKt/ ts
o)

where K is a constani and "o is the total positive duration of the wave. Hoop

stresses are shown in Fig. 6.10 and 6.11 for B = 400 psi, t = 1.8 sec.,




cl = 17,200 ft./sec. and K = 1C0, 250 and LCY. Also shown is the stress due

7

to a step wave with a stress of LOGO p3i. Ey increxsing K, the rate of decay

behind the shock front 1is increased. Tne values of X used represent a rather
sharp decay which would be consistent with high stresses producel by a large-
yield nuclear weapon. The peak compressive stress at 0 = 900 is reached
within 3 transit times, or, in terms ol the wave velocity, only the first 6 ms
of the wave. In the case of the tensile stress the peak occurs within 5 transit
times or within 10 ms. after the wave reaches the opening. Therefore only the
very early portion of the wave history is rertinent in determining the maximum
stress. In 5 ms. the pressure has decreased to 3020 psi for K = 100 and to
1316 psi for K = 4CO.
In general only the maximum tensile and compressive stresses have
been shown since these stresses are critical in determining the failure of the
medium. The computer ccde which was written to compute these stresses can also
compute stresses at any number of evenly spaced angles around the opening and
at any radius cut from the boundary so long as the radius is an integral number

of distances &*C This ccde is considerably less ccmplex than that used by

1
the authors of Refs. (3) and (L). To solve a problem in which the stresses
are computed at 13 eguiangular inerements around half the opening and for
sufficient time to reach the static soluticn rejuirss approximately 20 minutes
of machine time for 3 modes. For & problem in which the stresses are cemputed
at 1/4 radius spaeing for 4 radii cut f£rom the btearasry and with the same
angular increments requires approximately 50 minutes.

It is of particular interest to notice the effect of changing the
length of time steps in the computations. The following table shows the hoop

stress at the boundary for € = 90° and v = 1/3 at several times as the length

of time steps are varied.
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Tire Lregs Leup ot recs o, lu at 099/0 at
fer transit a /o N a1 .
¢ ire 9. L2, fu=1.0 tC, /a=2.0
N AN -0. 7958 -1.8327
iR Ry -1, JEA -1.83%34
Y] RN ~0. 7832 -1.8%36
Lot -2 9EON -0.78%y -1.8336

Tne elfvet of woand e the wvostn 02 vice Step on the pesk stress is negligible.
At eurlier times the oftect iz larger, bat still unimportant from e practical
stardpoint. Tae value ot &O 3ters pere transit time was used for the computation
of stresses dw to an lncldent wive of dilatution. The incident shear problem
was found to be somewlut moce wensitive to changes in the length of time step,

s¢ £ steps per transit time was ueed in those ccmputations.

.2 Incident Sheur Wave

1n Fipo. ©.40 und © 14 ure shown the recults of the computer solution
Fir hoop otres . Cu the boandury due to three medes of un ineident shear wave

wioh regenltade of croees ve T moot drportunt Intormution shown by these

mactes 1o cwraurized o the tollowling tuble,

o Y Man s, o or Stutig
e e, Strecsy, THlue

o, Transit Tioew 0,97%

( 4 RN N PR 44,00
4 wiy K0 Y -4.GD

(WS LI F D L. 0D
A -t un _’t. "LCO

Thes rirecwd ey Phe cpending das to o Shour wave oboald uprrcach the statice

values ufter 4 do g tirs, doede atatis vadues ray be ottduawed using Eqs. 6.1
. . . . < )

Ty Sopesdngroin ool Tyresaie wnd foalide 2fress Yields mecting 900 apart.

In this way 4 Vield v pare “hear s creutod vrend the apening.  The paxdmun
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static stresses obtained in this way are fownd to cceur on the boundary at
l;,so and 1550 measured from the directiun of wave travel. These static values
of maximum hoop stiress are shown in the a2bove table.

Alsg shown in Fig. 6.13% is the hoop stress at & < 450 due to an
incident shear wave as shown in Ref. (12) for v = 1/3. In Ref. (12) the
authors of Ref. (3) use the same methcd that they used to solve the incident
dilatational wave problem to solve the incident shear problem. Therefore, a
constant time step in the Duhamel integral near the singularities at tcz/a =0
and 2 was probably used as before. This would explain why the curve of
Ref. (3) does not agree with that from the present computation. The case of
an incident shear wave was not solved in Ref. (k).

Also Ref. (12) shows & hoop stress at 6 = 0° which s not found by
the present theory and which, in fact, can be shown to be ncnexistant by a

simple symmetry argument. For, by inspection

_du , ov :
7xy * ¥ + 3 and v are even iny.

Therefore

g% and g_yu_ are even in y.

This reguires that

du v
U T E €, gy— - "y e odd in y.

Since Ty and Fy are both odd in y, they ure reve ut ¥ - O, and as a conseguence

the stresses O ard Oy Yre zere at oy o (v
The passage of a shear wave across an opening results in a higher
concentration factor for both tension and compression than the passage of a

wave of dilatation and therefore may cause the more critical situation.

Hovever, the intensity of stress in a shear wave is much less than the stress
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Lo owave of dilurutisn for o= sir induced grourd shock, and may be absent
wlrogether for the direet ground oroed., ‘Ine effiect on the stress concentration

Tartors ol warying Foiccoals ratic 1o small g3 shown by comparing the curves

s Fige o 12 und ool

AW

The computer ocde written to solve the incident shear wave problem
for hocp stress 4t the kourdaury 1o juite similar to thet discussed for an
incident dilatational wave, ard therefore remuires approximately the same
amount of time for soluticn on the machine., This code was found to be some-
what more sersivive to changes in ~he time interval than was that for an
incidert Avliatational wave. The reascn for this is probably the sharper slope

of the Fourier ccefficients, aq(t) and brlt): in the series for incident shear
* &

ST WOeL hnw Wuwe Tront Lo onoeur toe roat and reur of the openlng.

£ 3% Lse in Protective Ccnstructicn

Trne recults of thle luvestigsticn mey be used as & guide in the
stody of uffests Jf Ltre.s wave. o0 ofonings in rock. Ameng the first things
eo ter desxided dn sucho oo stady Lo the tyre of fuilure t> be expected. TFor
prurple the racl@am ccmpredsd ive J'ress, Which ¢ecurs at the ends of the

Loamstege porsloe L *0 v waee Tront tor dncident wuves of dilatution, may cause

AraanaTer C7 e mudinm dn tlecae veriony Trar =axir .o *ercile stress, which
CxIal. a4 : 1: It *he a. . uter pervpondicaizr tc the wave front, ray cuuse

vl n Paa v Y rraoe ce o0, crvestire locse rexh ownich would fall into

.
theo Ofriic . Sanoe ooy le Svreneth of rateriusls achous rcok is rmuch

Lo, “roan troee o nogaowo oo Ttve b, tancicn failare may coour at a free field

x

Stresn whach 1. not cufficlent 1o awase ~empressicn faliure, Thus the ratio

of ravirar ftemsile L fre.. to Lasinan NNIressive stresd beocnes imrortant in

N

Jeciding whizon of *hess *yroe of Tailure w.l c~2ur. Ancthor type of damage
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and rossible uwidure may ¢ our frem spalliLg whicoh was degeribed eariier. If
the free Tiell stress is nigh enough, the raterial I the entire regicn of the
orening may Tail and close tie cpening. Taloc rcadd ootur i the orening werse
suffiziently close to the center of burst of a rnuclear wearon. Construction
of a linirg within the cavity would afford scue protectisn against spalling
or lcose ro:k.

Trough the maximur stresius in the reglon of a cylindrical opening
have beer determined for a hermogeneous medium and ideal wave forms, there is
still considerable uncertainty in the practical case. The results obtained
may only te used as a guide. For example rcek contuins faults and/or joints
and therefore is often weaker than the conventional strength tests would
indicate  Furthermore rock mgy be so cracked or so dumaged by the mining
operuticn that it hkus no tensile strenpgth reur the opening. Also the wave
form is surely altered in traveling throigh &4 nonhomogeneous medium and probably
dces nct have a sharp front. The erffest of 4 rice tame wculd be to reduce the
dynamic stress concentratior. factor urld to reduce the possibility of spalling
failure  Frerm this diseccslicn 1t rzy b seen thut considerable judgment is
regquired in rmaking allowancws ror these uwcertuinties.

in Ref. (13) rany of *he practicul problems ensounters’ in the
arrlicaticn of theoreticul recults of the type obtuined in the present work
are dizrucgzed Also the vericis wave types dre disoussed uni a methed for
combinire tre effects of wrveld ofF lidataricn an Lo wavis waen Yoth oare

created by un air blast wave roving cu the suriface ib presented.




T
oL SoUnLUs IS
Srresan. i tne virir ity 0w sylicdriong cwvity due to two types
off Sirer s woval pave peen stilled. Aloo the effert of cranging the shape of
the stress wave behini tie front aus of varying the rrorerties of the material
have Yeon toooidersd  pros thees Jtudees rertain acnelusions may be made

acrrernity the metncdl of soluticn used to solve the problem under

sonsiderdt.on.
(1) Tre method off soluticn dvs:ruted L. the present work can be

rislencly ¢ solve the preblem under consideration.

Croap o wies o Lolution Rorouwoun it Step pasoe 1oopcwn, Lt ls possible to find the
LS SN ST S [ SFERA 5 N ol integral.

() Tre oncrt time sclation muy te used to check the initial

Gn S Chales SIlataln. Fvoasins 4 luarger nucber of terms in the
TUTAOT CRF Ao iI6S, e wondtaonl fiaid peocdtendet 1o upply to longer times.
PV Tral aoe % tiores Sodr. i toor Zliutiln UPFRc4le tO glve maximum
e T e A5 Chel Tatanty Lt fhes 2aVitY Wit ewdfiriuent doecuracy for practical

[ PS4 ST T, rasr te or iyt oaraliiv prencreson, however, it is necessary

A Y RN b 3 Lot AL vt times are
LTI A .
i
A R R N T Ci . tart.er Tuddess, wither by
TN d T e E i e e b o f bV T mothodotL other problezs. A
P | . - Ut L PO | AR T N
NS N 07 S TR coatop. ool -1 dn Apperdix € could
Yooowritt o r oL o mecral Wi wr i S TPDbvet rodes el t0 obtaln wny uccouracy
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(2} By using a large nurber of mcdes either with the ccomputer
solution or the short tire solution the gtresces at early time could te obtained
with sufficient accuracy tou make a complete study of the spulling problem,

(3) A complete study of varicu: wave forms such as effect of rise
time and decay rate would be possible. I wave forms with rapid changes in
stress were to be considered, it would be necessary first to obtain the solution
with more modes included.

(%) fThe problem of a cylindricel opening with a lining could be
solved by the method presented. Either the case of e thin lining or that of

& thick lining could be considered.
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Froo the Yor— ot voe otreen 2geatjcons for diverging waves writien
in terms ov b, Eis. 4.0 = W8 You geomploe, DUomwy oo send that one term of
each expri..icn Fus ono invegscobls Coraoaeivy nt & @ odue to the tern cl/E in
the dercminator. It ic spparent thut o trapezeldal or paratolie approximation
would rot sive o finite result in vwhe fir.t step of the numerical integration
even though the Litegral converges. A Integretion procedure was derived to
avoid *his dirficulty, und is deseribes In this appendix. After this procedure
had been ir uce for some tire, It wos found thut a very similar procedure was
deserited by Jetrreys uri Jeftreyo in Ber. (9).

Conslder the cecond irtepsul Involved In the computation of °r9 in
mode 1 given by Bl w7

(9 r E g 3‘5
J G0 l:‘(“‘v‘;"*‘ AL 1@1.(

v P AN 4
2 SNzt Nl a'it.‘.':: -

1
Lot wly e sntegra l esogt L4 I g wpproglruted W oo Lineur

reluticn in tr. Intereul L0 Teoer o
P 7’ (" - \
LG ) [g(f: mfu-u r + u f' -]i s ek o -, (Fet) il
SN NI J el J’L o
in the interval § = mal to § = (r+1)s§. With this substituticn, the integral

in this interval beccnmes,




[P

k/.,'.., c%— [e? i’:__lL;_ml (;-mag)] at

. . (m+1)at
) Ve, T T N o Y
: 05— § (£ %) - — A maf (2t <) A2
wAl
Srradpnrforwurd evaluation of this expression leads to the following value for

the left side of Eaq. A.2.

Jat "e,m {2(1+m)[(m+l)l’, 2.2y . % [(m+1)5/2-m3/2]}

[(m+l)3/2_m3/2 ] - an[(m.*_l).']./2_111:1./2]} ]

E-. 4
nt]

(ull’u

Triia weprescicr zives the walue of the integral between mA{ and
(m+1)AL 92 long us the values of &y, and &, 8¥e defined according to Eg. A.l.
Tne fur>ticns of m by which euch ordinate is multiplied differs for euch step,
cinre mockarges, bat will be the same for integration of F! "(ql) and G' ”(1]2)
terrs Adco, this exprecsion is not limited to n = 1; it is u genersl

intecraticn formula for which § is any function. Frem Ej. A.3 let

A - o (1) [(m+1)1,/.2_m1/'3] - %‘[(m+l)5/2-ﬁ:5’/2]

-
AL
o bR ‘A RN 5
B - :;[(E”)J/«._m,’) Sy 2m[(m+1)1' d_wl/g]
T 3
Wity “neoo sbtersvisticas the Integral to be evalusted ruy te writter
(mr1)5g ' 53
_;— JI ar "(n )[”Q*;KZE'}-@ ;‘-FECL g )] ad(
? - 'Y
5 et <L Vg Visat/z
:'\[L\r (G"'(T )) }’& " J . \T‘ )) LY B 4.5
] 2/ per R A peri=l1 n+l o ‘

where RS is the fa~t~r

1
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p(15ats60” %4207t )a
Jaa Jnsat/z o ¢

evaluated at § = oAl and R§+l is the sare fustur evaluated at § = (m+l)af.

In ccomputing the fagtors Am and Em, the small difference between
large numbers are involved when m gets fairly large i the computation is
made in a straightforward manner. Therefore these welghiing factors were also
written as asymptotic series which were uscd after m reuched a certain value.

These series are as follows

A.6
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APPENDIX B
SOME FLOTERTIES OF THE DISPLACEMENT POTENTIALS

B.1 Ueneral Solution of the Wave Eouation in Cylindriecal Coordinates.

In Section 3.3% it is shown that two hyperbolic partial differential
ejuaticns in two inderendent variables result frem substituting Fourier series
for @ and ¥y into the wave equations. These differential equations are Egs. 3.21.

Tne relevant parts of the general solutions of these equations were stated as

Bgs. 3.22. It will new be shown that these solutions satisfy the differential
ejquations. Since both differential ejquations and both solutions are of the
same form, it is only necessary to show the validity of one of the solutions.

Then it is to be shown that forn =0, 1, 2, ...

.13\
Ih (r Br) L B.1
satisfinvs the eguation
2
-y . of
2 n an+l n o
Cy (—ar“ L B W B.2

I+ s first ussumed thut fh iz # solution to Ej. B.2. Then it will be shown
thut fx+1 Siven by BEa. B.l is also a solution, and therefore the general

)

stiaticn for any value ¢of n is given by Ej. B.1 provided fo is 2 splution with

re0 The expressict for t‘Hl is given by E3. R.1 w3
4
1 9 Y

¥ - - T .

“nel (l' ar’ hi B.3
a1 the lifferentiu) sjuation beccmes {by replacing n by r+l in Ej. B.2;

2 (‘j nel | zacs sy, - _—

1 3r2 r oar T Tntl o, ’

Subs*i*ute Ea. B.3 in*0o Ex. B L.

e Lat afn) =S 5 a__tn)] L& ié_f_"
1 e Ar r or 'r or Btd r or
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A 2., 2
c‘f (i n__2__a‘n+_g_f_r3) gmz(larn-ibfn)]
R IS 35 3 rd 3r2 r} ar r 'r 8-2 5 or
3
:lafnr
T atabr
> 2 Ha
211 9 n o 2orl 1 o fn 1 afn 1 o in
GlIr s * T G-I v - B.5
=S Y o) ot dr
However
3°r ar ar
i_n 1 n _ 28 1 Tn
r ar2 r2 r or ‘r or

=
o2 [;g_ (a in) L1 33) 13 9%,
liror 'y2 ror 'r ar ‘') T or 32

It is apparent that this is an identity since the same expression may be
cbtained by taking trne purtiul deriviative of both sides of Ej. B.2 with
respect to r and dividing through by r. Therefore Ej. B.3 satisfies the
iifferential eyuation und as o consequence Ej. R.l is a general solution for
any value of n provided fo is a solutien.

It was shown in Chupter III by o physicul argument that f‘0 has the
form given by By. 5.26. It 15 of interest to show directly that f, in this
form satisfiesz the differential equuation given by B3 B 2 with n - 0. Trat
is

oo

f = ‘/\ F(t - = cosh u) du B.6
o i C1
°
is a solution of
3%t ar ¥
of (—2+259) - —2 B.7
1 2 r or ’
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rrovided that all derivatives which appear are continucus in u and r.” Take

the derivatives of Bg. B.6

a, .,
E_ﬂ;é— f F(t —é—l—cosh u) cosh u du
1 o]

1

3°r ®
.__59_ ."% f (t - Z:I:— cosk u) cosh2u du
ar C o 1

U

3 oo .
2° + j F'(t - 5= cosh u) du .
ot o 1

Substitute these derivatives into Eg. B.T.

©
c? ‘- L f F'(t - = cosh a) cosh®u du

1 2 C
"0 e 1
20 «©
- F'(t - = cosh u) cosh u du =f F'(t - = cosh u) du
rC1 C1 Cl
< o

Tne seemmd term on the left may be integrated by parts as follows.

20

0
. ——,1,—- F (1t -~ 2 203k u) 2cshou du = + —,1,— F'(t - = cosh u) sinh u]
rs c rC C
1 o 1 1 1 (o]

X
S f F'(t - & cosk u) sinh®u du
c‘i 2 1

Tne first term on the right ejuals zero since sinh u = 0 at u = ¢ and

F(r - -é-— ccsh u) = O ag u tends tc infinity, for a disturbance which starts
1

* In the computaticns of Ghapters IV and V, the function F'(n,) is not con-
tinusis thrcagh 7., = -a/C.. In this case it is not difficu}it tc alter the
proof so that the result Wwill hold




at a finite time. Then

«©

- = F'(t - £— cosh u) cosh u du
1 ¢

[~}
- —l§ fF"(t - -é—'— cosh u) sinh®u du
c o] 1
1

By making this substitution into Eg. B.8 and otserving that (cosheu. - sinhzu)= 1,

cne obtains an equality.

(-]
2| L fF"(t - £ cosh u)\'coshau - sinhau) du
1 2 C
- C o 1
1
«©
= fF“(t - -(‘;— cosh u) du
o) 1l

B.2 General Form of ¢ and ¢y for Arbitrary n.

The general expression for the displacement potentials ¢ and Vv, as
given vy E3. 5.2, may be written in the much more ccnvenient form of Eg. 3.30.
The derivation is shown for the functicn @¢. For v the proof is the same.

From the first of Eqs. 3 29, the nth term of the series for o,

say @, may be written

9, = ﬂn(r,t) cco n¥ |
where N
Lo <]
n,1 a o - -
= e F{t - == a0y, SV . .
ﬂn r T 3¢/ j; {t Cl Coon U, du k.9

Tne term n + 1L takes the form

1 ntl r .
Qn*l = p :\; 31_') J; F(t - 5; cosh u) du
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by

Q -2 (}- 3" F(t - cosh u) du
n+l ar ‘r or’ o ¢, :

This expression may be written in the

_ a n ,1 B \n
T {5; -r G or’ |~
By comparing this expression with Eq.

_9 n
s'2n+l"§;;'nn-rnn'

The derivation of Egs. 3.30

eguivalent form

n/la n J r
r \;E)}];F(t--é—;coshu) du.

=S

B.9 it may be seen that

B.10

from Egs. 3.29 may now proceed by

mathematical induction. Let it be assumed that the first of Eas. 3.30 is

correct for nn . Then it will be shown that Eqs. 3.30 hold for nm

1

withn=0,1,, 2, . .. . Once this is shown it only remains to notice

that the expression is correct for n

may be written

Q, = Qn(r,t) cos né,

= 0. From the first of Egs. 3.30, (pn

-]
. a\n
a = 1) f F'{t - = cosh u) cosh nu du . B.11
n Cn ° C
1 A

1

8y performing the operation indicated

by Eg. B.10, one obtains

[--]
n
1] G andl_t - %— cosh u} cosh nu cosh u du
o

n+l n+l
Cl 1
<
n (-1} . r
-— ‘ F'{t - = cosh u) cosh nu du B.12
r c;n o Cl .

=

The second integral on the right may be written as fellows by integrating by

parts
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o0
. n
- n
.f_l.\__l)_ f F(t-z—coshu) cosh nu du =
r L C
c, o 1

n €
[%.L:%l e - %; cosh u)(%-sinh nu)] B.15

¢y o

‘3 i+lr g/‘ (e - E‘ cosh u)(— sink mu sinh u) du ,
¢

-

The first term on the right is zero, however, since sinh nu = 0 at u = 0 and
Fn\t - é— cosh u) = 0 as u tends to infinity. By using Eq. B.13, one may
1

vrite Eq B.12 in the following form

n+l
8., = i:%%i_— \/‘ Fn+l(t - %— cosh u) cosh nu cosh u du
' Cy o 1

e )+t n+l, r
F7(t - 5 cosh u) sinh nu sinh u du ,

n+l
c
Cy 0 1

or by ccombining terms

(-4
s yynekl
f = L:%%Ef__ ‘/‘ - l\t - é— cosh u)[cosh nu cosh u
c -

n+l
1 1

+ sinh nu sinh u] du .

Tne q.2nti*y in brackets is, however, oqual to 2osh {trl)u. With thiz sup-

stitution, the expression for §I is identical to Eg. 3.30 withn + 1

n+l
replacing n. The conclusion holds even for n = O since only the first term on
the right-hand side of Eq. B.12 appears in that case. It has thus been shown
that the first of Egs. 3.30 holds for n + 1 if it is assumed to be correct for

n, n=0,1, 2, «.. .




To complete the demonstration, it is only necessary to note that

the first of Egs. 3.30 is correct for n = O, since it is identical to

first of Eas. 3.29.

the
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an electronic digital computer. The computer used was a CDC 1604, The
sequence of operations performed by the computer in the solution of the

problem is shown in the fellowing diagrams.

A program was written in FORTRAN

APPENDIX C
DESCRIPTION OF THE COMPUTER PROGRAM

together with the appropriate eguations to be solved.

Read new datu and rework the problem

IStarLl

>

P

Read in Data:

1. Number of time steps per radius(N)

2. Total number of time steps(T)

3. Time interval at which stresses in the medium
are cemputed(I)

k. Number of radial steps cut from the boundary
that stresses are computed(R)

5. Number of egually spaced angles around opening
thut stresses are ccmputed(S)

6. Poisson's ratio

Compute F'' (ql), F"'(nl), G"'(qe), .+ + . from the
bounidary conditions, and compute the hcoop stress at
the boundary for n -~ 0, 1, &. Ccmbine the modewise
stresses and compute their vuristion with angle round
the opening. Prin* thecse stresses.

Cermpgate the radial, tungential, anl hoop str in
the mediun avay Sren the Soavddaay ucirg FrY(y
F"'(n ), G"'(n ), - « . . from the above ¢

Print these sbresses.

(o1
-
]

'
Ol

Pdvf.u

utations.

\/

|Stop|

8h

language to solve the problem on

The computations are indicated
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If m < &0 use Bas. L.11
If m > 60 use Egs. A.6
m=0,1,2,....T

Ccmpute A, and B_and store all the values

B G

Compute RFO R,., R IR and store.

Bas. 4.251, .10, 4.12, and %4.264.
g,mag,m,.o,l,a,...,'r,a; /N

® (), (@ i)y « - -
Bas. 4.2%e, 4.18, 4.26e

Compute initial values of ((F"(ql))o,

(,)> Ce
p < ga, Eis. b.257, 4.23%, L.26f

N
2
Compute summations (S O)p’ (SAl) , (s l) yreee
Eqs 4.25b, k.20, L.26Db.
=0, L, 2, ....0D
Compute incident stresses (a ) , (al)p,

= p > M, Ejs. L.2%g, 4.2k, 4.26g
|| eempute BTy, B (), (6 ()
o FU(n) . .. . . Eas. 4.2%, k.19, h.26a
o |
o Cempute g Jewise hgop stresses in the diverging
wave (g 0OV* (g )., (o “) and store.
i) '~n [=1=] I:’ gy he
= Eqac ‘\\o-.,.': B Jl, G262

with 9. (ouaT)p (Uuao) " (d )

Print these stresses.

Cormpute the total hoop stress at the boundary
for the thres mcdes und varistion of hcop stress

(o 99) * (11/ )} ces ¥+ [(0 ) + (d ] cos 28

¥ The superscript indicates the mede (n = 0, 1, 2).

The radizal and shear

stresses in the liverging wiave were alsc computed at this time so they
could later bve ccrmbined with the corresroniing incident siresses to

verify that the sums were zerc at the boundury.

85




Compute a new rudius
r _ 4 + L(I)atcy
a T L

a
Compute the new 25, say A8%'
05 =2 a5
r
Comrute Ri R Bgl’ RGl, e A e e s
Bgs. 4.25d, 4,10, 4.1z, L.263
o~ =mtd', m=0,11,2, ....1T
. Compute each summution separately in

the expressions for stress given by
Egs. k.Lk for n = 1, and similar
expressions for n = 0 and 2.% Store
these summations.

p=1I,21, 3, .. .. T

N
|

To obtain the stress in the diverging
wave ccmbine the summations involving
F"'(ql) with those involving G"'(qe)
in each expression for stress in

Egs. W44 (for n = 1)." Do the sume
for n - 0 und 2.

.T

For each radius, L =1, 2, 3,

Conpate the incidernt ctresses.

Cempute &, frem By, 4.43. Compute
a ) .

4 )p’ (dllp: (bl)P' (de)p’ « « . Jfrom

26+ I(L), Exs. 4.297, 4%.23, 4.26f

28+ I(L), Ba-. 4.05¢, 424, «.26g

Cembine outgeing and incident ¢
ror cachormode wd o teate the *o
stresses by combining the tnree modes
for each stress component. Cempute the
varistion of stress with angle around
the openitig. Print thece stresses.

P
P

IVAG

"3

resse
L

.t
Xk

For time cteps p - I, 2I, 3I, ...

A4

* As discussed in the text, the upper limit on the surmations involving
G''"(ny) actually used in the machine was not p - n/&, but p - n. Therefore
a shift in time must be made when these summations are combined with those
involving F"'(qi) in Egqs. 4.kk and similar equations to obtain the stresses.
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