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ABSTRACT

A method is presented for computing stresses in the vicinity of a long

cylindrical cavity in an infinite, elastic, isotropic, homogenous medium

when the cavity is enveloped by a plane stress wave traveling in a direction

perpendicular to its axis. Hoop stresses around the cavity boundary were

computed for the passage of a wave of dilation and a wave of pure shear;

the stresses in the medium away from the boundary were computed for a

wave of dilation. Initially the stress behind the incident wave front was

considered to be constant. The effect of a stress decay behind the front

was then computed by using the Duhamel integral for the case of an

incident wave of dilation.

The method of solution of the problem involves superposition of the

stress field of an incoming plane step wave and a stress field corresponding

to waves which diverge from a line source.
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I. DESCRIPTION OF THE PROBLEM

The purpose of this investigation is to determine the stresses in

the region of a cylindrical cavity in an infinite, elastic, isotropic, homo-

geneous medium when the cavity is enveloped by a plane stress wave traveling

in a direction perpendicular to its axis. Stresses due to incoming dilata-

tional waves and to incoming shear waves were considered. Initially the

stress behind the incident wave front is considered to be constant, but some

consideration is given to the effect of pressure decay behind a shock front

through the use of the Duhamel integral. The problem is one of plane strain;

that is, each section perpendicular to the axis of the cavity is in the same

state of stress, there is no displacement in the direction of the cavity

axis, and only three btress components must be computed. Some consideration

is given to the variation of the parameters which define the properties of

the medium.

The practical problem corresponding to the dynamic elasticity pro-

blem described above concerns the effect of stress waves initiated by nuclear

explosions on underground protective installations. Although any practical

problem of this type cannot exactly reproduce the conditions of the theoreti-

cal problem, it may be reasoned that under certain conditions, particularly

under those for which such protective construction is likely to be built,

fairly good agreement may be expected. For example, rock is neither iso-

tropic nor homogeneous, but a protective structure would be constructed at

a site where the rock is as sound and unstriated as possible. The assump-

tion of an infinite medium is more reasonable than it might at first appear.

For, in this case a protective structure would surely be several diameters
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below the ground surface, and since the maximum hoop stress is reached at

about four to five transit times after the wave reaches the openingý reflec-

tions from the surface will not interfere with the peak stress. Probably

the most severe restriction is that of linear elasticity. However, many

rocks approach this property in the lower range of their stress-strain

diagrams. The actual opening is not likely to be a perfect cylinder; never-

theless, current mining procedures can produce an opening which approximates

a cylindrical shape quite well.

The importance of this prcblem has been recognized by several

earlier investigators. In Ref. (1) a study was made of the stresses in the

medium using a "high frequency" approximation similar to the approach used

in geometrical optics. This method does not allow the solution to be

carried out for sufficient time to obtain the maximum stresses. Reference

(2) considered the stresses around a hole in a thin plate when enveloped

by a plane stress wave of harmonic var..ation in time and space behind the

wave front, i.e. the plane stress problem corresponding to the plane strain

problem treated herein. Reference (3) presented a solution to the problem

investigated in the present report obtained by using an integral transform

in time of the displacement potentials. The resulting equations were then

solved in terms of Hankel functions. Considerable difficulty is encoun-

tered in this method in the computation of the inverse transform. In the

present work an entirely different method of solving the partial differential

equations, which has several advantages over the previous method, is presented.

The results of the two analyses will be compared in Chapter VI. In Ref. (4)

the method of Ref. (3) was used to solve the same problem again and was

extended to include stresses away from the boundary. Also possible failure
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mechanisms based solely on the elastic stress state were discussed. Results

were presented in the form of contour maps of principal stresses at each

time interval. The angle of minimum principal stresses and angles of

possible failure planes are also presented. In Ref. (5) the solution to

the same problem was formally carried out by a method quite similar to that

used in Refs. (3) and (4). The theoretical derivation of the equations

was reported in Ref. (5), but numerical results had not yet been obtained.

The problem has also been considered experimentally. In Ref. (6)

a combination of photoelasticity and grid analysis was used to determine

the stress distribution on the boundary of holes in a plate of low modulus

material. The shape of the holes and duration of stress wave were varied.

The method results in a stress field of both dilatational and shear waves

with a rather long rise time at the front of the wave. Reference (7)

contains the results of a large number of experiments made by detonating

an explosive charge at the surface of blocks of brittle material which con-

tained openings of various shapes. The medium, shape of opening and distance

from a free surface to the opening were varied. These experiments are

useful in predicting the type of failure to be expected.



II. MrTHOD OF ANALYSIS

The basic method of solution of the problem involves superposition

of the stress field of an incoming plane step wave and the stress field

corresponding to waves which diverge from a line source. The diverging

waves are chosen so that the radial and shear stresses due to the two waves

combine to produce a traction-free cylindrical boundary centered on the line

source. This cylindrical boundary is then the boundary of the cavity.

A solution to the scalar wave equations corresponding to a

cylindrical wave diverging from a line source may be found in Refs. (8) and

(9). This solution can be applied to the dynamic elasticity problem by con-.

sidering the displacement potentials to be represented by Fourier series

expanded in 9, with the coefficients written as functions of radial dis-

tance and time. These series are substituted into the wave equations,

resulting in hyperbolic partial differential equations in two independent

variables which must be satisfied by the coefficients of each term of the

series. The general solution of these differential equations is then

written in integral form; therefore, the boundary conditions result in

integral equations.

In order to satisfy the boundary conditions, the sum of the

stresses due to the diverging wave and the incident stresses expanded in

Fourier series were set equal to zero at a fixed radius from the line

source. In general this results in two linear integral equations, one from

the radial stress condition and one from the shear stress conaition, which

must be solved simultaneously for two unknown functions appearing in the

integrands of the integrals mentioned above. The integral equations were

solved numerically in order to determine these unknown functions.
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A program for solving the simultaneous integral equations and com-

puting the various stresses at the boundary and in the medium away from the

boundary was written in Fortran language for solution on a CDC 1604 digital

computer. This program will be described in Appendix C.

In order to check the results obtained from the computer, the

same basic equations were solved by another method. Each of the Fourier

coefficients of the displacement potentials for the diverging wave and the

incident stresses was expanded in a Taylor series about zero time. By

considering only the first few terms of the series, it was feasible to

carry out the computations by hand. The results thus obtained are only

valid when the variable in the Taylor expansions, time, is small. For this

reason the method is called the short-time solution. This additional solu-

tion is useful as a check on the computer solution at early time and

also gives the initial values of the unknown functions in the integral

equations, which are needed in the machine solution. As a further check

on the computer solution, the static stresses on the boundaries and in

the medium were compared with those obtained from the machine solution at

very long time.

This general method of solution was applied to the problems of

an incident wave of dilatation and an incident wave of pure shear. Fur-

ther details of the representation of the incoming stress field and of

the stress field diverging from a line source are described in Sections

3.1 to 3.4. The equations resulting from the combination of these two

waves to obtain the boundary equations are derived in a form suitable for

use in a computer in Sections 4.1 and 4.2.
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The diverging wave which has been determined at the boundary, of

course, continues to travel outward and becomes the reflected and diffracted

waves. To find the stress in the medium away from the boundary the same

superposition procedure may be used, except that the effect of change of

radaal distance of the diverging wave must be considered. The computer

solution for stress in the medium due to a plane wave of dilatation is

presented in Section 4.3.



III. DERIVATION OF EQUATIONS

I Fourier Analysis of Incident Wave of Dilatation

First consider a plane step wave of dilatation traveling in the

rLegative x direation, with a Ares2 a., ;_ the dire:tion of wave propaga-

tion. It may be shown that the stresses in the y and z direction are

V
a -. T

V•z ' x

where v is Poissonlo ratio For :onvenienze v will be used as defined by

15.1

In the follow'ing work tensiie .ztrssez will be considered

positive

Concider the ztrezLes cn a zirzle of radius a(in cylindrical

cocrainates) being enveloped by the wave front described above, with

7.C _c, and with no :au-ty •n tz:e rý.,.djum. Peferring to Fig. 0 .1 the radial

stre.,, arr, shear •tr•Q: . nd hYrp , .arc s •., behinA the front may be

written uwinr tl-k :'rin'r& r-.> ti-n:: r.ati¢n cf ýtres.,

•rr * -,

90 re .no .>

aF a (-o 7 in 0 + c.:2

6in-, rarcid ar p ire everr, in 7,:i1' r dd in 0, the

Fourier Leriez :orrezpcnding týo h.-.:u txr,:.zion: ;ii te written.
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a°(t) •

arr = - +Z an(t) cos no

n=l

bn(t) sin no L 3

n=1

d +(t) d(t)Cos no

n=l

The coefficients in these series may be evaluated from the

following integrals where 01 defines the extent to which the wave has

enveloped the circular boundary as shown in Fig. 3.2, and therefore is a

function of time

a =t 2 a (e) cos nO doan(t) it • rr

0

b(t) = 2 aor(e) sin nO dB o 5.4
0

d(t) = 2 J e (0) cos nO do
0

If time is measured from the instant that the wave touches the

boundary, the plane diletational wave with a veloity of propagation C1

will travel in the time t

C t a (1 - zos 01)

from which

I= 0o3"I (l-tCI/a)

for 0 < tCl/a< 2

and 01 =n

for tc 1 /a > 2
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Carr-jing out the integrations in Eqs. 3.4. one obtains the follow-

ing expressions for the Fourier coefficients as a function of time:

For < C-- I

a (t) [ ')• .X ne 1a =(t ae[1 ) (sin) sin 20 3
-n)el + sin(2+n)Ol in nj 3S(t = L )+(+)

(t) sn(2n)1 - sin(2icn)Oel

do(t) a= - 1
- = :2 (14)e1 + iLIsin 2e1

( F in ne - ,,:a sin(2+n)e 1  sin(2-n)31 -9

d(t) = 1 ( ____ n + (2-n) )J 3.9

For t > 2a/C1

ao(t) a(= 4)
2 2

an(t) 0 O, n 2, a -(t)

bn(t) 0 , n ,/2, t2(t) = - 3.10

d 0(t) a( 4
1 21

dn(t) 0 , n 2• d,(t)• = - •

Equations. and -'. .crmbined with Eq- -. 6 to f.13 give the

timc derenaenze of the free field inzident streoseo on a cylindrical bounrary

with radiu- a. The vaxiaition of the first three of these coefficients with

tim~e i- showTn in Fig.. ,.5 for a value of , = 1/5 and with o = 1 0. The

accuracy with whizch the first three termz of a Fourier series represent the
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stress variation with angle around the opening at two times may be observed

in Fig. 3.4. In this figure the variation of rr' are, and a with angle

is shown for the times tc 1 /a = 0.5 and 1.0. Also shown on this figure is

the actual variation of these stresses for comparison. It may be observed

from these curves that the representation is not as good for the earlier

time as the later, as would be expected. For this reason the method pre-

sented is not applicable for early stress computations unless a larger

number of terms is used in the Fourier series. The representation for the

incoming wave is exact, however, for all times after the wave has enveloped

the boundary. Also it may be seen that the representation is much better

for arr and aro than it is for aee. Since the diverging wave form is

determined by the incident boundary stresses arr and are' the determination

of the diverging wave should be fairly accurate.

3.2 Fourier Analysis of Incident Shear Wave

Consider the case of a plane step wave of pure shear with magni-

tude of stress Z traveling in the negative x direction. Stresses on a

cylindrizal boundary behind the front may be written,

arr = t sin 2e

are = T co. 20 3.11

a 00 = - T Oin 2e

where positive shear is defined in Fig. 3 5 A tilde will be placed over

those quantities associated with an incident shear wave in order to

distinguish them from the corresponding quantities associated with an inci-

dent wave of dilatation. The Fourier series corresponding to these expres-

sions axe,



co

arr Z bn(t) sin nO

n=1

0°(t) 00

ara = t + n(t) cos 11 3.12

n=1
co

a• V (t) sin
n=1

The Fourier ccefficients, found in the same manner as for waves

of dilatation, are

for t < 2a/C2

= sin(2-n)e2 sin(2+n) 21n(t) = L(2-_n (2+n) J

rsin(2-n)% sin(2+n)%2
an(t) -LF(2-T - + (2+n) T I 3-.13

= sin(2,.n)e sin(2+n)O]n(t) = - L (2-__(T. 3

for t > 2a/C2

ýn(t) = 0, n 2, ý2(t) -

3.14

n
.• (t) = O, n 2, CI(t, --

n r

where C2 io the velozity of propagation of a shear wave. The angle e2

may be written a5 follows by referring to Fig. 3

82 = - - tC,/a

for 0 < tC,2/a < 2.0

and 0" =

for 'C 2 /a > 2.0
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3.3 Derivation of Equations for Diverging Wave (Incident Dilatational Wave)

The equilibrium equations may be expressed in the following form

for an elastic medium

+ VV 2u P o

( X +0 - p 0 5.15

(%+P) &+ V V2  - p 0

where A is the dilatation given by

6U + v + W

and u, v, and w are displacements in the x, y and z directions. It is

convenient to introduce the following representation for the displacement

vector u in terms of a scalar potential q and a vector potential

u= grad q) + curl I.

Then grad qp represents the irrotational part of the displacement and

curl T represents a displacement corresponding to no dilatation. Observing

from the physical problem that there is no variation in displacement

with z along the cavity axis and that there is, therefore, only rotation

about the z axis, one may write the following ýimplified expressions

grad qp A, 4 +T
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Therefore

Fx ~+ (F, gi

zetting z = 4.

The displacements u, v, and w may be written then

v = - ;-x 3.16

w=O

The equations of motion (Eqs. 3.15) will be satisfied if the potentials

q and V satisfy the following two wave equations,

3.17

where the velocities of the dilatational and shear waves are given by

c 1 = 2 and C_- . 3.18
P2 p

Ir. polar coordinates the displacement components of Eqs. 3.16 are given by

U 
1

U r + -

1 e 6ýr 3.19

U =0
z

where ur is taken positive in the direction of inzreasing r and ue is p05i-

tive irn the direction of increasing 0
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In Ref. (8) the following general solution to equations of the

type represented by Eqs. 3.17 is given. First the potential (displacement

potentials in this case), qp and q, are taken in the following form:

S= x rn fn(rt) cos no

n=l 3.20

x= rngn(rt) sin nB.

n=l

These particular forms for the displacement potentials were chosen because

they satisfy Ap = 0 and V2* = 0, a "homogeneous" part of the differential

equations if fn(r,t) and gn(r,t) are assumed constant. These functions of

r and t must be chosen so that the equations with ý and i on the right are

satisfied. Since the displacements u caused by the incident wave of dila-r

tation are even in 6 while the displacements ue are odd in the 6, T is

chosen even and * odd so that Eqs. 3.19 will result in displacements of

the same form when p and -q are substituted into them. Therefore this

form for representing the diverging wave is only suitable for use with

an incident wave of dilatation.

Substitution of Eqs. 3 20 into Eqz 5.17 gives the following

differential equations to be satisfied by the Fourier coefficients,

2C2 ('2fn .2n+l 'fn)

3.21C2 gn 2n+l •gn)

2 r 2 r Z1 =g
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The solution to these equations may be written in terms of the solution

for n = 0 as

i n 1 8n

fn ( ) f and g. r) go 5.22

In Section B.1 of Appendix B it is shown that Eqs. 3.22 do indeed satisfy

Eqs 3.21. The next step is to find f0 and g0 . This may be done in the

following way. Consider the first of Eqs. 3.21 with n = 0.

c2 2fo fo= .231 br 2o T

This is recognized as the wave equation in cylindrical coordinates for

the case of symmetry about the z axis. The form of f which satisfies0

Eq 5 25 .ay be obtained through the following reasoning. It is known

that the form of the displacement potential for a spherically symmetrical

point ;ource wave is

fs f (t - ) .
1

The displacement potential for a line source may be found by integrating

the displacement potentials for all point sources uniformly distributed

along the z axis from z = -- to z = 4, each point source having the same

ý:ariaticn with time. Then the symmetrical line socurce displacement

potential =ay be written

f. f (t" ) dz. 5,24

This zame forri of displacement potential is used in Ref. 9 in

the investigations of supersonic fluid flow around a long wing,
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In Fig. 3.6 the coordinate system is shown. From this figure it

may be seen that p is equal to Vr + z . Therefore, Eq. 3.24 may be

written in the following form

fr 0f (t 3r.2 + z 5dz

At this point the variable u is introduced such that

r coshu= r 2 + z2  p

or

u = cosh (r 2+ 2)

Taking the derivative of both sides gives

du = -z

By introducing the above identities, Eq. 3.25 may be rewritten in the

following form,

fo= 2f f(t - c cosh u)du =fF(t - cosh u)du. 3.26

u~o 10

In a similar manner the dizplacement potential for a symmetrical shear

wave becomes

go G(t r cosh u)du. 3.27

u=o

,ombining Eq:. 5'.6 and 3,27 with 5.22 one obtains

f -- ('! ý') F(t - r cosh u)du

1 )n 3.28

n r Trr
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From Eqs. 3.28 and Eqs. 7-20,

X= rn (n •) F(t - a cosh u)du cos ne

n=O0

7 rn (I •)f G(t - C cosh u)du sin nO 3

n=O 0

Considerable simplification can be effected in the solution by

noting that Eqs. 3.29 can be written in the following form

f 7( L-)- cash u)cosh nudlcos n

n=0 1 0

3.30

G nn C t _r cosh u) cosh nu du]sin n9,

where the superscripts on F and G indicate the order of the derivative.

The proof of the conversion from Eqs. 3.29 to 3.30 is shown in Section B.2

of Appendix B.

In terms of displacements, the stresses at any point in the

medium may be expressed as follows:

ýUr

rr - i

are = ) 3-.31

00"O = A + •-(e-q + Ur)

ee' r e9wh~ere

ýu U Ouýir 'r ;,O-

ZiUo I bur u07r A
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By substituting into these equations the displacements given by

Eqs, 3o19, one obtains the stresses in terms of displacement potentials.

2 2 2
0rr ý5 r' r A 1 rF7S r2

Ore ~U 9+; + 3.32

2 + e- ) .2 2

6r2 r r r2 ý r rU r2

Substitution of the general expressions for q) and 4 (Eqs. 3.30) into

Eqs, 3.32 gives the general expressions for stress in the diverging wave.

CO

arr = ZoLIln+2 f n+2(,l)(2" cosh2u + %) cosh nu] du

3.33

G f 12 ) [i sinh 2u sinh nu] du] coo ng

Cre =n=0 cn fl pn+2(r)[ Vinh 2u sinh nu] du

3 .3134

- G tn+2 cosh Lu cosh nu] dl sin nO
C2 n+20

ree = Li+ F n+2() [(. 21 sinh2u) cosh nu] du
n=O .1 - 3.35

+ n_)n 2 Gn+2() [ti jinh 2u ainh nul dul cos ne

where

ri = (t - r cosh u) and b=(t - rs- cosh u). 3.36u~ c 1 C2
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The integration limits on Eqs. 3.24 and therefore on Eqs. 3.30

extend to +o since there are point sources all along the z axis. The wave

emanating from each point source is considered to have the same variation

in time. Therefore, at any finite time only the point source waves out to

a finite value of z have reached the point in question provided they all

started at the same finite time. For a finite time the integration in u

need only extend to the value corresponding to this value of z.

By substituting Eqs. 3.30 into Eqs. 3.19, the general expressions

for displacements may also be found.

Ur m X [ C n)2 F(r n + 22(-n) inh u du

n-O

(.l)nr P2  n+2 ,2sinh(l+n)u sinh(l-n)u, . . 1
+ n+2 I G( 2  (ldn) . ..- )Jsinn du cos n2

3.37
CO_ • •3 Fn+2 ,,sinh(l+n)u 

sinh(1-n)uIuG :n= Cn+20 f 12) 2(+n) 2(1-n) snhud

n=0

+ (-_)nr - Gn+2 ,rs3nh(l+n)u sinh(l-n)ul uu]
+ n+2 f 2(l+n) 2(1-n), sinh ujsin n.

t 0

These e:v.rezzion, for s.tress and displacement in a wave diverging

from a line :ourze ,re only :uitable for elimination of the boundary stresses

due to an incident wave of dilatation sinze the variation in e has the same

for. in the two rai.
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3.4 Derivation of Equations for the Diverging Wave (Incident Shear Wave)

The displacements in the medium caused by a plane incident shear

wave with a constant state of atress behind the front are odd in 0 in the radial

direction and even in the 6 direction. In order that the displacements

caused by the diverging wave (Eqs. 3.19) might have this same variation

ý should be odd and ý even in 6. The displacement potentials in this case

are then the same as for an incident wave of dilatation except for the

variation in 0, and may be written as follows by analogy with Eq. 3.29:

0 +00

"Z r rj )n F( %) du sin n!

n=O

"r ( n G() du cos nO
n=0

These expressions may be written by analogy with Eq. 3.30

CO +CO

-i z if Fn( 1.) cosh nu dul sin nO
n=O C1  

0
C W 3.38

fL G"(~ cosh nu du] cos nO

n=O C 2 n

Substitution of Eqs. 3.38 into the general expressions for

stress in terms of displaajment potentials (Eq. 3.32) gives,

rr Lc n+2 Fn 2 (l)[(2g cosh u + X)cosh nul du

n=+ 1 0

_,n G + sinh 2u sinh nul dui] sin n
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The two equations resulting from these bour.dary conditions are to be solved

for the functions Fn+2 (l ) and Gn+2(n).

For an incident wave of dilatation the boundary equations may

be found by combining the first two of Eqs, 3.3 with Eqs. 3.33 and 3.34

and applying the resulting conditions at the radius r = a.

a°(t) ca n+ n "an+2J (l)[(2g cosh2u+%)cosh nu]du

o+n=1 n=o LC 0
u

(-_)n f 2 Gn+2(T)[p sinh 2u sinh nu•du] cos noCn+21 J_
C2  0

0= bn(t) sinn8+ Z J Fn 0 inh 2u sinh nu- du

n=1 n=0 1 0(_1 )n jr•2 Gn+2

c n j• G •+2 ( ozh 2u coch nul duJ in no
C2  0

In a similar manner the boundary equations for an incident shear

wave may be found by combining the first two of Eqs. 3.12 with the first

two of Eqs. 3.39.

"0 = Z Sn(t) sin n o + Z- -••n 1 F n+3(nL)[2gi cosh2 u+%)cosh nul du

n=0 n_-•Cn 0

+ Gn2 f n+2 (G2()[ sinh --u zinh ru] d •in no

rl +nF• n+2, "n•-jisinh 2u sinh nuldu
2 + an(t) cos no F+ 12t

n=f G=T U s
(_) 2 Gn+2(T.) [•cosh 2u cosh nu] d Cos no

02n+2 u
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The two equations resulting from these bou4.dary conditions are to be solved

for the functions Fn+ 2(•l) and G+2(t2)o

For an incident wave of dilatation the boundary equations may

be found by combining the first two of Eqs. 5.5 with Eqs. 3.33 and 3.34

and applying the resulting conditions at the radius r = a.

tO -O- + UF n+2no [cn+2f p (tI cosh2u+%)cosh nuldu

0 2)[ +ln au (-ith nuo +o r1

5.41

z Z f% ýn+2 h)[
n= l n=O k Cl+ 0

_,n+2 Gn+2()[s h o sinh 2u sinh nu) du

"n+2 f+ u

0= b(t) sin nO + Z[ Fn+2( % 2

ý nl[' Cos n+2os u]

n=l n=iL0  0

c n+-f Gn(rc)[4 cosh 2u cosh nu) du] sin nO
2 0

In a zimilar manner the boundary equation:; for an incident shear

wave may be found by combining the firt two of ,s. 5.12 with the first

two of Eqs. o.59.

"CO 2OU n
0 b(t)sinn9+ n F coh)u+%-)cosh nul du

n=0 n nO i 0

+ L-- 1 2 -l 
1

+ •n+, f " Gn+2(r 1 12) [ sinh 2u z cnh ru l du j -in ne

2 0
a0(t) cc r 1 n+2(,~~rh2
0+Z 7Lt)cos nG+Ztj+ F )gsn2usinh nuldu

u2

-_,)n 2 f n+~2(,2) ~cosh 2u cosh nul djcos nO
02 0
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The number of parameters involved in the solution of the problem

may be found from Eq& 3.41. The last two terms in each equation, which

give the mresses in the outgoing wave, contain only X and p as parameters.

But X may be expressed ar.

21,

By making this substitution for X, one may factor j out of both terms,

leaving v as the only parameter that cannot be factored out. The actual

form of an(t), bn(t), and dn(t) may be seen by referring to Eqs. 3.6-3.10,

where it is found that the only parameter within each term is v, a, the

incident stress, being a common factor of each term. Since ; is a func-

tion c± f v (Eq- 5.1), Foizzon's ratio is also the only parameter which

cannot be factored out of these terms. In the actual machine computations

all terms were divided by p and the ratio _ set equal to unity, i.e. Pp

was taken az the unit of stress. Then a single parameter appears in the

solution, v. In the derivation of equations which follows, ) and p are

retained in the equations so that it is clear to what extent the variation

of these constqnts alternthe solution of the problem.

All the :cnstaqjtz nentioned thus far ozcur in the equations for

hoo.p atr.Ž,• .nd .qutionn for the stress in the medium in precisely the

Lsn! ui': • nt orid an',-.>ve. Therefore, the same ccmments may be made

concerning the parrmeters involved in these computations.

TIhe v~r• ob:crvation. may be made concerning Eqs. 5.42 for an

incident shear ý,ave, except that ; is a common factor in each term for

stress due to the incident wave (tqs. 3,1ý, and 3.14) and v does not appear.
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The last two terms of each equation are the same as before and again, p

may be factored out leaving v as the only parameter that cannot be

factored out. In the computer solution v/, was set equal to unity in

this case.

In the numerical solution of the problem, the fundamental unit

of length was taken as a, of velocity Cl (C, for incident shear wave), and

of stress p. These three units completely determine all the other units

required. In Eqs. 3.41 the value of C1 is unity while the value of C2 is a.

Where a is defined to be the ratio C C1 and are nevertheless

carried through the derivation.
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IV. MODIFICAIION OF EQUATIONS FOR COMPUTER SOLUTION

4.1 Equations for an Incident Wave of Dilatation

Consider the numerical solution of the boundary equations given

by Eqs.3.41 for an incident wave of dilatation. The first terms on the

right involving an(t) and bn(t) represent the stresses due to the incident

plane wave. These terms are functions of time and may be evaluated by

ccmputing the time-dependent angle e1 from Eq. 3.5 and substituting this

angle into the appropriate expression for the Fourier coefficients given

by Eqs. 3.6 - 3.10.

The last summations in Eqs. 3.41 represent the stresses in the

diverging wave and contain integrals which must be evaluated to obtain the

stress It is important to note that these integrals are of the convolu-

tion type and therefore the integrations must be performed anew for each

value of time considered. At any time for which the stress in the diverg-

ing wave iz to be evaluated the integration can be performed numerically

provided all the previou,: values of Fn+2(T 11 ) and Gn+2( 2) are known. It

is these functions, however, which must be found from the boundary condi-

tion:. Thi ,; po::ibio ..in.e Zq. .. '"41 ccnztitute. two equations with

two unknowno.

In the r~nuri'Li irt..ý'riration pr-ce-z it i. convenient to take

equal •tepr in the indrý.rrmnt variable. Hoever, if equal steps in u1

and u- are taken, .neqiaLt in tine and unequal :tŽpJ in mc1ve.ent of

the outrcing wave nrj :•pc, wii rcwi lt. To avoid th:. -:•c.plication the

variable of integratieri will be zhanged
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Referring to Fig. 3.6 and the equation following Eq. 3.25 one may

write the limits on the integrals, u 1 and u2 for the time t,

"r cosh u, = P1 = r + tC1

"r cosh u2 = p2 = r + tC 2 .

Solve for cosh u, and cosh U2

tC 1
cashu 3. +- 1 +•

4.1
tC2

cosh u2 = 3 +r = 1 + .

Therefore Eq. 3.41 may be written, using the substitution

cosh u = 1 + , 4.2

with the limits ýi on the integrals involving FI"*2(kT) and t. on those

involving Gn+ 2 (T,). These upper limits may be expressed as follows

from Eq. 4.1 for the particular case r = a,

tO1=-Iand ta2

By using the substitution of Eq. 4.2, one may write the arguments of

F n+2(l) and Gn+2(Tý) given by Eq. 3.36

r~ -(+ t) and : =t- r (i+ C). 4.3

In performing the numerical integration it is convenient to have the

limits on all the integrals the same. This will be accomplished by chang-

ing the upper limit on the integrals of G n+2(2) to agree vith that for

Fn+2 ( () i.e. both upper limits become t,. To do this the variable of
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integration for the integrals involving G n+2 (q2) must be multiplied by the

ratio of the limits

4.4

For simpliclty the subscript on the upper limits will be dropped. Then the

upper limits for all the integrals is

tC

r 5

or, for the particular case r = a,

a

and the variable of integration , for the integrals involving G +2(T

will c' r pluccd by ct.

In the remaining e:.planation of the numerical solution of Eqs.3.41

it iz convenient to consider a particular value of n in order to simplify

the equationz involved. The caze n = I will be considered, however, the

deri'.atior,. are quite .inilar for n equal to any other value except for

certain simplifications when n ý 0

Consider the integral portsnhý of qz.7 4l representing stresses

iu,x , tc • .1. "':e with n - 1 (thk;.• ztre•ze:. are al-o given by

Eq~.. 5 2.ind )

•r :i -- t. , F ( 1) •2• o:h-u ÷,) oAq uldu

./ ( .[•• n: u io ]a oJ 0
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0 F- -(T11)[11F .inlh 2u zdinh uldu

u
- -- G: )[g cozh Lu cosh u~du] sin e
C,"

Also the hcnp ntrezs in the diverging wave :nay be written by setting n I

in Eq. 1.35

F -- u cosh u du

-e C--

f GI r'ira 2u zinh u] du] Cos e

By uzing the .ubstitution for zor., u in terrni of t as given by Eq. 4.2

theze equaticn3 for ztres z r.ty be ur.ittvn .- •th the oarne upper limits on

all the integralz, , az previously dizuzu-:ed.

S F, .2 3

F' "''(, 1 )'• I t + t L
r r 4c - - F 7 7 .

+ . F G•G I ad ccz e
+ :. c ' n•) t . .. .t/

rO -, u
c. " • r- . + • - :ir

"~ 4.7

o~ =j~JF~ti) ,-, (x-h.' r + ,_.- 4&" I

+1  -, + 6V d(
I•o =. F. . # (14a t/ 2 f']

-G (dt' coo 9
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Numerical integration of these equations is hindered by the fact

that one term of each stress equation has an integrable singularity at t

equal to zero, It is also necessary to assume the functions Fll'(Tl) and

G-" (n2) to be well behaved, however this assumption is justified for

small t by the short time solution which will be discussed in Section 5.1.

Also there is an integrable singularity in F' (Tl) at the value of the

argument il = +a/C1, however it turns out that this does not affect the

stresses obtained from the numerical integration. Consider as an example

the numerical integration of the first term on the right of Eq. 4.6. The

methed of integration to be uzed assumes all of the integrand except t1/2

in the dencminator to be linear between discrete values of t. Weighting

factors conzistent with a 12.ne-ar variation in ý divided by tl/2 are com-

puted and applied to the ordinatez at each end of the interval in order to

find the value of the integral in the interval. The derivation of the

integration formula is shown in Appendix A This methcd of treating inte-

grals of the type encountered here is similar to a method derived in

Ref (10) If t is divided into equal steps, Aý, and the above idea applied,

thý -.alue of the integral between m A&, and (m + 1)6t, for the first term

on tho- right cf Eq na ry be written

F L

- -n"F -(•-912 1/2] I .nlY/2_r 1/-2

+~~~~~ (F;1l1l(~) ~~52m/2] 2n 14l/.1'2]jI
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where RF on the right is equal to

(X- -4.lo"Al1
F= (X+21i) +(+6.e+c,41

and m is the numbering of steps in At starting with zero at 0 = 0. For

brevity the following symbols are used for the weighting factors in Eq. 4.9.

A z /2 2 3/2 m/2Am = 2(l+m)[(m+l) - rn -I [(M+1) - m,
4.11

B= [(m+l)/3/2 _ M 121 - 2m[(m+l)l 1/2 - ml/2
B m 3• -

It is shown in Appendix A that these weighting factors may be used for any

of the integrals involved in the stress equations as long as the function

to be integrated is well approximated by a linear relation in t divided

by •1/2 in any interval.

It would only be necessary to uze the spe.,ial integration scheme

for the first few steps near t - 0; however, in the computer soluzion it is

convenient to continue to use it throughout. the range of integration. The total

integral may be expresz.ed a., the zlz.,ution of all the integrals in the interval

At as given by Eq. 4.9.

The following abheviationo for quantitie.z in Eqs. ".6 to 4.8 are

used:

L !2- +1 T ctj2 3 >1

%3I- 2a~4 7,4.3
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T~i-e strezs equations given by Eqs. 4.6 - 4.3 may be written as

fjI.wz for any tifr, t - rlt, where p z 0,1,2,..., by using the summations of

Eq. 4.9 for the integrals and the abbreviations of Eqs. 4.11 and 4.12

(F 1R

r,-,I ,,B ('1( 2]rr F 1,-M -- 1 Al m+1m

M --0D-1

+ 7J' ri [ ) ( ) +(G. Brjoj

4.13

r-d r,,'(• MI -'•- B1a ,:"M+=z e
r.-

L.14.

Di 1. n-- DI I+

r D! rDi =,lB I11

1r, order •hat +.Ye 1- - -' E --iŽ t -:- it-I, n n.e _inr .i eaIn-h tirie tn iltc-

grationr are perforrne, .iai - tepz in tiý-z -. re . -hc -A.i steps A, are iel As
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given by
C1

g =At

The use of Eqs. 4.13 and 4.14 in numerical form permits the boundary

conditions given by Eqs. 3.41 to be rewritten as follows for the case n = 1.

In these equations the unknown values, (F' I(q!))p and (G'''(ri))p, are removed

from the summations.

0 = (al(t)) + Jt [(F... (.l))( F FI A + (G- (b) p(RAI)oAO
P~ Al' o

p- 2

S(R) 4(G''O())_ (RG r'.1] (B mAm-)L L ')p-m,-1 Am+ 2 Mpl mu m --
m=O

+r)[o(RAIp + (G'(r1))p,(I1i) Bp.1  4.16

0 (b 1 (M)) + O (F'' F1  I A .(G' (71 Gk~'~

p-2

+ J J ( F (F ... ,,J G (Bm4A.-l)
m=0

+ ,G)), (T I G 4.17

These equations are to be applied at r i.

The stress caul.ed by thv in. ident wavoie, a, (t) and b,(t), iz a

known funtien of time and tr.erefore may le evaluated at time.• pat. if a11 the

previou6 value- of F* r,) ara G'''I j) ai-,- k~n-; - tr " c. rC4h

summations are computed except for the terms involving (F'-( 11 1))p and (G' "i 2)1 P.

The values of these unknowns may then be found from the resulting equations.

Since the first value of time thae. can be considered with these equatiors is

t = At, it is necessary to find the values, (FI';(q 1 ))° and (G"1(r12 ))o, by some

other means. Then the values at T, = At can be compated. Knowing the values of
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the functions at t 0 and t =,t, those at t = 2At m~ay be computed, and

Tne short tir~e solution by which the initial values of' Fl' ' (Tj) and

(r)were fc~uid is discussed in Chapter V, where the values are given as

(G 7 )oý0. 4. 18

For machine solution Eqs. 4.16 and 4.17 may be written

FF. (n) (Rý)oA (G''..%) ýR)0 A = - (SA1)P 4.19

(F'" p (P1)0Ao + (G ... 2))(B%1) A0  = (B)

whrce

'AIl ~~ p-'i,-l Al r.+ 2 p-r-1A m+ m M+-

+~ G('*~1 )(L 1 .('t) R)IB 1  4.20

4b oG' '(~hJ) Mj- ](B~ A +)

ilý +h *.'a) L an ' ii G... arm ir,:-wri ;p tyive'

¶ ~ * ~~ r : iý hi - L: tr,. 'jti -rc r :rier p:-rt' m,

t.;.n r~iL 'ro ~rg vi t h ' ý: h ýr crti n~ i t i~ rces -ai t: write

Eq 4.1¶ f~r the- dtr~ ie t_- thit lvergir.iý wzi';- i, +-,e fa k~ hat, -4- L--15

cijt _)f the_ zLr't:. -I Ih -n~,- *. Ile a.~ r -~7u 3ie
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the sumnation. Also the stress due to tre incident wave, (d!(t)) p, is added

%o that caused by the diverging wave.

a (d (t))+ fa• f (F'' (T ))p (R )o A (G" AUe + I IDDoo ('12))p(D)l o]o

+ j [ (F" II(1))p.l(RDF)m+l + (G(1 2 ))p.m.( I (Rpl)m+l)(Bm+A+i)
m=-O 4.21

+ ,[A [(F'-' ( - +))o( l (G' ' ( +pJ

To compute the incident stresses at any time it is desirable to have

the variable, t, in al(t), bl(t), and d1 (t) written in terms of t = pat. This

may be done by dividing the time required for the wave to travel one radius

into N steps and starting time when the plane wave first reaches the side of

the opening. Then the ratio p/N is equal to tCj/a where p is the step number

corresponding to the time t = p~t, until the wave reaches the back of the

opening. Therefore, Eq. 3.5 may be written

Cos (i - pIN). 4.2

Once 0I is known Els. 3.6 through 3.10 may be evaluated. For the

case n 1 and p < 2N these equations became

a (t) = (3 + -) sin 0 + sin 3V

b(t) =-( -v) ni - 79,•

1 272

11(t) = :2 -o

and for p > 24

a1 (t) = 0, b 1 (t) = 0, d 1 (t) 0. 4.24

The case n = 0 is considerably simplified by the absence of a Thear

wave throughout the computation. There is only one equation then to compute
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'(ki); G"(ij) dces not appear. For the case n = 2 the derivation is com-

Fletely siniliar to th-it for n = 1.

The euatior.s for n 0 are as follows:

(F"(rl))p(RAF1)o Ao (LO-) / (S Adp 4.25a

p-2

F ) B4.25b
+ (F"(re1I))(R~o)p B p-iIi.

W. F 1 A
(- P- +-,'&t 1(F"(rj))P(R Do A

P -2,

7 1 W(Ii' (R F(~ 1  (B +A)

+ (F"(,Fj),oR BL .25C

F + + + .+ 1
c * 4.25d

RF +_ +_f

f,:r p <_Z

?A - -

W, ____ 1 5

f~ r -

+u(t



Ti-e euaitl::.3 icor the casp~ r. =2 are as fAllows:

4. 26a

A2A, (G P( A--1T  Bi

[IV F. TV
.8A2'(F h, i~f (B +Ac ~) (~A

4.26b

(s ~r~ cIV~r 1  F (IV GT) ( ~ j(BnAni

+ (FIV (T., BF I"

-i (IUt F IV. 0~1V 1~))FD. ,Bl G ~IV T, 11(2/G zA

pA Lp 2 D-"2 1D
+ r,__t(F ____R_+_______ +

-C)
IVa
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-I, -____4.26-1

(FIri). C*1a/((%+Z4±)sr, (G IV (rl))o 0 4.26e

F .r r <

[(-V -I+('-)6i ~ + I~ (J..i) sin 40)

t 1r - 4.26f

* .* i- ~ V_')' Cu-C V) (V -l s~5~in:4a ~ *

1-.(1

v), i tj:z'~ 2 _W - V .- .. 1i.:

-> ~ ~ ~ ~ ~ ~ ~ ~ ~ ý 1212 *f-c- i ~c -*r-2-2 ruI
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boundary are s.-al! and go to zero at one transit time. Since the stresses in

the outgoing waves are determined by these incident stresses, it is reasonable

to expect that they should also be small and die off quic4ly after one transit

time similar to the stress for n = 1, which also goes to zero at the back of

the opening. The final stresses ccmputel by using the first three modes will

be presented and discussed in Chapter VI.

4.2 EQuations for Incident Shear Wave

The numerical solution of the boundary equations for an incident

shear wave (Eqs. 3.42) is quite similar to the procedure discussed above for

an incident wave of dilatation. It may be seen from Eqs. 3.13 and 5.14 that

the incident stress on the cylindrical boundary does not depend on Poisson's

ratio. It may be observed, however, from Eas. 3.42 that the stresses caused

by the w"':es which diverge fror. a lin,i zeurce do depend onr Poissci.'s ratio

since these equations contain both % and ji.

It is again convenient to consider the solution for a particular

value of n in order to simplify the explanation; the value n = 1 will be used.

Also since the derivation is so similar to the caz~e just conzidered, the dis-

cuszion will be somewhat abbreviated.

Consider only the integral terrz, in Eqs. 3 42 whioh reprerLnt thc:

stresses in, the divergir.ng wave, and le' i, (r-l: givch, by i._" first two cf

V= (ri1 )( (2gi ccsh 2 u+X.) cosh .x] du

1 0

u2
_Ii G.. '(t,2)([. 5inh 2u Ginh u) dux sinl 0
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U1

Gr8 4 F'' '(qI)[,M sinh 2u sinh u] du 4.27

u2

S G-...( n2)[i cosh 2u cosh u] du Qos 0
f2

Also the hcop stress in the diverging wave may be written by setting n 1 in

the last of Eis. 3.39.

U.
1

3~ f F'. 71)2 sinh Lu 1ý ) cozh u) du

u2 4.28
+ G ... (rl.•)[lg zinh 2u sinh u] du sin 0

C 2

Agiin the substitution for cash u in terms of ý as giver, by Eq. 4.2 will be used,

uni -hu upper limitz crn the F'''( 11) and G'' (r12) integrals become

týCl - tC2

and g

In this cas• it is ccnvunient tc have the apper limit on the integrals involv.1ing

F... (-.j,) agree with that on the integrals involving G' ''(1 2 ). In order to

chunr the lipr.er linit to •2 o:, the F''' (T1 ) integrals, the variable oA' integra-

_i_* he r:_iltidli-'A by h rati- of the cld to the new limits)

•- cl I

C _

Fcr zinpŽii'zity thti :'ibscript will be Jropfl on the 4'rer lizt; thur, the lirit

+'cr t he integralz tez...

a

Tine absve eatiatb.s for strez.- may ther. bet writte as fcllcw4z-
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2.2

+ G' (T12~) gGŽ±(1's tN(1i

+ j G' -it zin -t

C-

1 FlI I I ( ..

re ~ n+1 .rvI~a ~irIxAr~;b pi~. .~r.yb

(G (,, nýl 7



where

Ri- : 7_ 733
R. (•..+ ,F

Di 
j

1:: ri:Pl•u rhe_ .r•tir•.,i. E•. 5.4£ with the au~ti::,• cf

Eu - '. iA f,, -, .t A : , (F'"(rQ) u:I (G'"' (j s))•, si . -

xt• :. *b ' :i:.'ir. ,_u ti: f,:.r thc '3ie -; :

r(2 (t))

, -',• )) ({• ) A, 4 ({ t"'(,,_)•(pJ A s -- ,m

.. ý+, LO• (1+0.)•

~4.3

w ( ar:. . (7) • :e nir, b: r n in 'he fir.-' *w cf E-x:. 5,1J

f:r "C "- < rI by E>.. .<. ::r 'C a -
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[ (F - (-hit., .. 01J(B+
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+ [(F.. B

Al~ I W. -A.5t -T EIZ

+~ [(A, (~)~:~1rB~.

ex~~~r~c~D. r'~ B:~ rr- Ir: ~ ~ b c~± h utca.31

anir by E 1z. 7.I.+ fcr t0J ' 2

1 3

The rezultz ca thc ,i.L:-: LA-.c' -i ~rh:

ran the ~corresponding e~uaticrns for the ca~e iiL u.Lre in Fi- f .



0 = 0 and V = 1/5. The mode, n = 0, does not contribute to the hoop stress

at the b-uxdaaj in an incident shear wave.

4 Equations for Stress in the Medium

Consider the stress field at some point away from the boundary but

behind the incident wave front. The stress at this point consists only of the

incident stress if the reflected wave has not reached the point, and the

combination of the reflected and incident stresses if the reflected wave has

reached the point. In Section 4.1 the equations found in Section 3.1 and 3.3

for an incident wave of dilatation were applied at the boundary in order to

find the functions Fn+2(rl) and Gn+2(q 2 ). Each of these is a function of a

single argument given by E4s. 4.3. These arguments are in turn functions of r

and t. In order to find Fn" ( 11) and Gn+2
(T1 2 ), a particular value of r, r = a,

waz taken where the stresses were known. Once these functions have been

dAtermined, any value of r may be considered in the arguments, and the

".-Arlation with t can be directly ccmputed.

For convenience the case n = 1 will again be considered to illustrate

the nethol of cclputation. The general expressions for stress due to the

iiverIginL wve eiven by E4z. 4.6 thrcugh 4.8 may te used to ccmpute the stress

,At any r:,int in the r.ediur with the jppur lir.it giver, by E%. 4.5. This upper

iL-.1 iý. h:',ni.'-t, h:wK'.er, b ize it ••za1d to vulues of rI and zA, less

trtin -I/C, and -a/C-, rezy.!tively, i,. -he range of integration. These values

repre;,rnt tir.e f;r whi-h t.e roflctel wave, have not reached the radius it,

S..• .' .. i~ lir�,it . :ni•ent t,. :.-,e th, ipper linit which corresponds to

the fir~t value f andj) ani G..(. ) which iz nor zerc.. These iL.,'At m.ya

be clŽainel frc-m the arg=.Žnts5 III ani • CcnAder first the integrals involvizrg

P '() when a new var tN 1 is intrcJui.'e1

1 c
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Th- . t iz i re *i"ne e.apzel ý.ter the reflected wave reached the radius r,

and t is the total time elarsed. S tiving tcr t

- r
rT t -: - ÷ l -l C -C .

Su.tbstitute this into the first cof Eis. 4.3,

- a rTIl t It 1 CI  Cl 4.36

The upper limit cn r, •i' mst be chosen so that TI1 becomes -a/C1 . Then

r 4.37

The variable of integration •, then, has the upper and lower limits

0 1 r

In thc zur.' wuy, thte linits on th,. interJAlz involving G'''(•) ray be found

frcm n, The time variable t2 may b-.- def inei az

r-__ 38

" Cror - +---Ž C., C5

bittiIi~thiz irntc ,~ .I :rJc El.. .. und. re--ailinc: tntat eomcCt

in te, interrals, ,., .~ :.

- a r

The upper limit crnn beccmes

-- r

t'2C2 t2C1

e2 r -*.r

and v varies in the interval
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_< t; <_ t 2- CI
_ 2 r

I:,. t.e machirnke ecrpuations, where discrete tire steps are used,

:,e ýc.tal tire iz given as before by t = pn~t. Also the radius may be written

r = a + rjAt C

Frcm Eaz. 4.35 and 4.35

S(p-n/)eat.

Ii. ger.eral th: variuble t may be written
TC 4.41

r

where r varies frn' zerc, to I or t and n.y be expressed in general as T n At.

,:&i,.itt aicn:,, E'z. . and 4.39 beccme

-l (-)t- aiCa - it

-- -/C -rt

wt~erv

C < ., (r-r.)

:c r _an:

Co < T - (-,a

Frc- E1:.. a.,n7 r,1 ,4 uir t-r 1imit 4iz tne anI G'"'r,) iner.ulz,

All[, Al-' W•' -l tDI,

•r-i)'. C, r •,a;;c

F -G -F ýG ar4

M __.;t te rezc-., Hin_ Al' 0. B new
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values of P Lav..• beern cc:-.ruted for a particular radius, the equations for

stress in the surar.ation form given b, Eqs. 4.1] thrýýugh 4.15 ray be used with

the appropriate limits.

If the above com.putational pro~elire is adopteJ and if the rame

steps in tire, bt, that were used at the bourndary are chosen, the set of values

of the argument of F' 'q' () used in the ccmptations i. the s-ne set as were

used when the original computations were carried out at the boundary. Therefore,

the limits of integration fall on known values of F''' (T1). This is not the

case with G' " (r 2 ), however, since the upper limit on m, as shown above, is

p-n/a. Then if m is allowed to vary as m o 0,1,2,... x•one of the values of q2

will be the same as at the boundary (see expression for rn2 above). It is

simpler to perform the integrations to known values of T12 (the same values that

were used to find the function at the boundary) realizing that these integrals

involving G'''(r12 ), H2 (r,t), do not correspond to the same times as the integrals

involving F'''(nj), Hl(r,t). After the integrations are performed and the

integrals are to be ccmbined in order to obtain the stress, H (rt) must be

shiftul It, time so that vaiuus of Hl(r,t) und R,(r,t) ccrreszonding to the same

total time are c.mbined. This shift will in rneral involve interpzdalaon in

T2ýr,t). A parabolic intery:lation wzi±, uz,:• fo£c thiL parja.,U.

rh-n general expres.ions fur . idue t- t'.v inzilet wave given by

E4G. 4.2ý mAl 4.24 are valil at any rudii ex:ivpt twat u, -,it le rei±fincl

Clt a - r cos e

a -tCI
!-es Cos

or otr machine use
a -p~tC1( 5

19 =Cos 4.4_1 ~~ a+nAtC1
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Jnsiiering the changes in Ul and in the integration limits, one has

-he o.ae bazi,- eiuations for stress in the medium as were used at the boundary.

The total stress is the sum of the stress in the diverging wave given by

EIZ 4.13, 4.14, ani 4.15 plus the corresponding stress in the incident wave

given by Eqz. 4.25 or 4.24.

p-n-i

p-n/cL-I
a' J[lt) (r,-t p[ (RAG) F ) pA mF~l(RA (BmF

I 4 (G''(T)m G)A + (G''(rG2) i)+i cos 9

p-n-i

P:-n-1

ar• ,{:(bt))p.r. • "ZY IF'" '(r,))p_(RF 1 )A (F''' (Tl) )pmi(4j) i~m+]

m=O

" ja0 +(G' 1.(F A + ( F...pNJ) B sie

4.44

-r( A + (F'(1) %)I BM{et))N F l lriP-m-l F

r- -n/C4 -
(F .(O IG (G '( (R0  B Cos 0

~~~ L~D (G()p(ir.~ n ~ 2 P-rI-. DI m+1 MIt
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V. DI!TION OF THL SHORT TIf.E SOLUTION:

5.1 Zhort-Tine Solutian for Hccp Stress tt the i•.Iýry

TZ.e short-time soluticn to be described is uzeeftl for several

reasons: (1) it serves as a check on the machine solition of the problem for

a short time after -.1 plane wave reaches the opening; (2) it provides the

initial values of the function rn+2 (r1 l) and G42+(n2); and (3) it determines

the anulytiC character of the solution at short times, and gave insightsuseful

in developing the integration process. The functions Fn+2 (ql) and Gn+2  )

which were obtained in Chapter IV by numerical integration are now found by a

different technique, using the same basic integral equations. Therefore the

method does not check the derivation of these equations; it checks only the

solution of the equations for short time.

The same boundary equations given by Eqs. 3.41 for the case of an

incident wave of dilatation are again used. The functions Fn+2 (11) and

Gn+2,1,) are expunded in Taylor seriez. (with imŽ.own coefficients) about the

initial value. of r~l anl_2. Then the integratd of each integral as well as

the incident stre:ez are expanded in Tuylcr z eriez and the integrations

performed Dy satizfý'ing the boundary ,equatiens for each pzwer tf t it iL

possible te cvuluate the, unrinown e'fi ernt• in the t er!.,,s ft:r u/+r(1 ,) uri

, -1 , the 5triei for • (rq) url -r,2 ) are mciwn,

these fnuticionn, zy b: 1_sed to firi the h:-; 11rt.. •, tm.• ,YurL or tit.

stresses in the medium.

Consider Eqs. 4.6, 4.7 and 4.8 in which thL Ctrezsses in the diverging

wave are written in terns of ý in a form suitable for combination with an

incident wave of dilatation for the case n 1.
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It" the value of stress is required at some time, ti then the limits

.Ti ititegrat ici orf the F''V (Tl) and G'' '(I12) terms extend from

0 _< ý _ T where T = tCl/a . 5.1

9owever, ý may be made to vary frcmi zero to its upper limit by letting

t 3T 0_< 3ý 5.2,

Then T is a coihstant and the variable of integration becomes P with the limits

zero to otie. In order to expand the function F' (i) in a Taylor series,

consider the argument rll (El. 4.3),

Ti L ! - ( I + r, ) ý t .- - -- • .

fir r'. ,,', tv, ur.' whi,-h c'au es to become -a/C 1 .

fl,: ! 1h,: l • I -n t f 1 i•

C I ur

a i

'I

~ F' (na ~y III, 1x,'I. I it, yw-' ihr:wý r Tf T( -J, b~( t-p) ab.j -%Ga~m1,,, i- (• - ) - , - ',

' i
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2Z~ .....~~j
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1

a - - • I ( -• . . .} ÷B ( ) ( -) ""-3 +.

5r L4 p1

3 +

S A , + (- ) + ... ) ±A 5( -) ( ( + ... )+ d1

2C 
1

+ A, ( -•:I -1") 2 - • ' -I)' .+ 21 1_11-i +) d

V 1 ~~ a - a2 13ý- 5

+ i 1 Lz~E-- (/V Tb + 5aPý t + +"1

- 22

+ +l B + d"'

7 p3
[.F... + 5P'(ý-)(+ +

+ A .~ ~(-3 1W1t)+.. ,~)(&1~ 2 + .)]dO

+. 15 p2 11 3

'A)J± ft2 + -- P- +

C , 3 1 2 8

4~~a ~~y 13-ri I -ct a-a)
132

0) 0) a-ý) * -13~t-) .) + B5 ( t ( O-f3)5 + d13j

C ,~±C 3 'J4

+ B ~i-a) ) ~ )] 7
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rc.2A>

,.5.9

)7- 5.90

r -r

a +

T* , r -e i lýn

alsc- be writit -n i., ',m -:,f y :wt-r :f by f hii zerie: fc-rr-. of the
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trigo.cmetric functions. For n = I the incident stresses are given by Eq. 4.23.

In series form these become

1t 1 9L6Tb + 5.12
b (t) =+ a. 85 + 1 + .. 5.13

In order to satisfy the conditions of a traction free boundary, the

sum of corresponding boundary tractions for the incident and diverging waves

must equal zero. The radial and shear stresses due to the n = 1 terms of the

diverging wave are given by Eqs. 5.9 and 5.10, respectively. These stresses

are given by Eqs. 5.12 and 5.13 for the incident wave. A series for the total

radial stress at thu boundary results from the sum of Eqs. 5.9 and 5.12. A

similar .eries for shear stresz at the boundary results from the sum of Eqs. 5.10

a•i 5.13. If theshs. boundury stresses are to equal zero, each term of the series

m.Gst eqjiul zero. In thiL way the unknown constants in Eqs. 5.9 and 5.10 may be

evaluated zuccessively, rezulting in the following:

C3

C.4 Cl Ci

A1  +0..4421 .1a -.2ý a

A- -0.3936 --- B" +0.259. C

_a 3 a
c6

A,:+.76-- o 5 -. 9 •---0

E7 sujbztituting týcse 4iaruntities into Ejsz ;.5 and 1.-4, cne obtainr.

exzrrs ior's for F"'V'(Tj) and Gi 'rI )-



54

.T'l) = - a I.-o.2122 + o.4421 - o.35936C + o. 71' +÷

) 5.15

FIally, u j:wer series for the hc:,p tres in the diverging wave is

found by subt.iTuting the above ccnstantz iruto Eq. 5.11. The total stress at

any rolnt iz the su:, :f the incident and diverging stresses, that is the sum of

Eas. 5.11 anl ý5.14.

a [.a .06707 + 0.9374•-2 - 0.2754V' + 5.16

The prczedure outlined above for n ý 1 may be applied for other

values of r ir. the same manner except fzr certain simplifications when n = 0.

The #*-4r -:rn: f:r r, r. clewise h•.:p strez:ez fcr other values cf n are

for n 0
• " •['''r'•'+ 0.i116072 + 0.C016' 1•5+ .. ]5.17

fe r r.

a a 4W•t[-1.076T + 1+25. 1,61' - 3.-789 + .Z13

In Fig. r5.1 the rez,,lts ,-f the short tim.e soDlution given by e-'Ich o~f Eqz. ,i

thrcgh -5 for the first five r.-31ez are plittel %icno with the firzt three

I.ode3 gs ob5. inel in the c--snpter solutin. In the shDrtrte solutiL ion all

through~~~~~~~~~~~ --Z~ f--r th- -----e-oe rerotl ~rwihtefis he
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terms in T out to V/2 were carried in the computations, From these curves it

may be seen that a larger number of terms of the series must be used for higher

tnat for lower values of n to obtain comparable accuracy.

From the shape of F' ''hi) as shown in Fig. 4.1 agreement would not

be expected beyond one time of transit in view of the singularity at • 2.

On Fig. 5.1 the sum of the first three modes for a as computed in the machine

is compared with the sum of the first three and the first five terms as

computed by the short time method. Also shown on Fig. 5.1 is the first three

modes of the outgoing wave combined with the exact representation for the

incident stresses. These stresses correspond to an angle around the opening
o

of ' = 0 , cos nO = 1.0.

Thv pro.eiure just described is quite similar in the case of an

incident shear wave. The mode n = 0 does not produce a hoop stress. This may

be shown by observing that the first of Eqs. 3.13 for n(t) is always zero for

Sa 0. By placing this result into the first of the boundary equations

(E4. 5.42), :ne observes that F''(ri 1 ) is always zero for this case. Then the

ch:p stress in the outgoing wave given by the last of Eqs. 3.39 is always zero

since F'(r,1 ) -0 in the first integral and sinh nu= 0 in the second. The

ilmeii .iLo tim•, •, used in the inzident shear ccrputatiut,• i equal to

"C ' • rat,,,-r 1har, tC~'a aa u~e1 in the cae of an incident wave of dilatation.

Tne f, frr. oT thiz h:,r ztreoz it. the diverging wave only, has been ccmputed

ftr r, = 1 a•d •. Thi.e strezsez are,

-r ..

= or + -. O1975 + . .

f r r.. +5

+ -',~ '-
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The results of Eqs. 5.21 and 5.22 are shown in Fig. 5.2 with the

corresponding results of the computer solution.

5.3 Short Time Solution for Stresses in the Medium

In Section 4.3 the method of computation used in the computer

solution for stresses away from the boundary was discussed for the case n = 1.

The short time solution derived in Section 5.1 will now be extended to obtain

the stresses in the medium. As an example of the computation procedure, the

hoop stress away from the boundary in the diverging wave will be considered.

The equation for this stress is given in general form by Eq. 3.35. By setting

n = 1, substituting 1 + ý for coshu as given by Eq. 4.2, and using the limits

defined by E:is. 4.1, one obtains the general expression for hoop stress

C 0 42f fl+t/2

-1 f2 GII )FqI~)lU) dt] Cos e9 5.23

It is convenient in this case not to use the dimensionless time variable

until the last step of the derivation.

It is apparent that Eqs. 4.3 may be written in the equivalent form

r~ l = t a ndT C 1T C 25 2
2 1 1 r

where the dummy T ranges from zero to t. First consider the argument ql' This

argument may be written in the equivalent form

-~ a

r-a
where l t

-- -C - - -
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The tiime t represents the time after the reflected wave has reached the radius

r, and t varies from zero to t1l This variation in T may be accomplished by

setting

I = ti , o <_ P S5.25

By using this substitution, xl may be written

Ti Ti(1-) - a/Cl'

From this form of Ti it is seen that F''' (Tl) may be expanded about -a/C 1 in

powers of 1l( 1-P). Therefore, by using the coefficients given in the first of

Eqs. 5.15, F'''(r 11 ) may be written

C3

F'". (n) 1 • 0.2122 + 0.4421 a 1

Cl 2C 3

-o.3936 t (l-)2 + 0.1716 1 t3 (1-P)3 + 5.26
a 21a 3  1 .

In the remaining factors of the integrals involving F' ''(i) the variable t may

be written as follows using the substitution of Eq. 5.25

TCI 3t C1

r r

In .iew of this substitution for t in the fifth series of Eqs. 5.5 and of
F

Eq. •.26, the first integral of Eq. 5.23, aeg, may be written in series form:

a F _a • - -. 2122 + 0.4421, -E 1(l-)

2 ~C31

0-5936 t2 2 (I-P)2 + 0.1716 3(-R] 5  1- ~ 1 -a tIt3 (1-)+..

J - r -:l+! cl 61 f a .l- 2 5.27

+ 105 .+ 1 ( 1%- d1  .
12 r~ r
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This solution is restricted to the case v = 1/3 since this value was used in

the series expansions of Eqs. 5.5 and the ccmputation of the coefficients used

in Eq. 5.26.

In a similar manner the series expansion for G 'I (n.) may be

determined. From Eq. 5.24 the argument •2 may be written

- a
'q2 t 2 C 2

where

r-a

The time t2 represents the time after the reflected wave has reached the

radius r, and T varies from zero to t2. This variation may be accomplished

by setting

T = 0 T 2) 0 < 0< 1 5.29

The argument T2 becomes

n) = t 2 (1-P) - a/C

and the function G'' '(T 2 ) may be expanded about -a/C 2 in powers of t 2 (i-p) by

using the coefficients given by the second of Eqs. 5.15.

3 2

The variable ý in the integrals involving G' (12) of Eq. 3.23 may be written

in the following form,

• C2

r

By using Eq. 5.29 to vary r from zero tO t2 and, by letting C2 = ac1 one may

rewrite this expression
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1 T2 al
r

It follows from Eq. 5.30 and the above substitution for t in the sixth series
G

of Els. 5.5 that the second integral, a06 , of Eq. 5.23 may be written in

series form.

-2

C [-0.2150 :L (1-P) + 0.2594 _p)2
0002 3 a 7E2 -2 t2

09 a t2 (ýt2 2

-0.3989 +E3 (1-03 + r.ji~; - r
1 t2Cl

+5(-ap 2--1 + 7" at. C1. +"'l (-t--)• 5.31

The following equations result from performing the integrations on the right

sides of Eq. 5. 27 and 5.31, for the case X = IL, v = 1/4, yielding a -

vi-/

tC -- 21
Cy 0 7tý12 [+0Q.4244 - 0.5894 ti - + 0.4199 t-2 a

r a

0.1569 1 0.4598 El a-+ 0.3832 -t 1
- 2 SC 3

-0.1949 t3 C3 0.4377t + 0.2605 t3 12
a r r ar

- ....

G C3

G• °v-v2T -0 -.527 t o 2 -1 o+.36o4 t• 1
- 0.06974 73 A1 +.... 5.32

ar

The results obtained in Els. 5.32 and 5.33 may not be added directly. Equal
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values of t-1 and2 correspond to different times t, t 1 being the interval

after the reflected dilatation wave has reached r and t 2 being the interval

after the shear wave has reached the radius r. For this reason the two parts

of the hoop stress will be evaluated and compared with the machine

solution separately. Equations 5.32 and 5.33 may be written in terms of the

dimensionless times

tl i and 2 a-I

as follows

F [,a2
a -a + 0.424 4 - 0.5894t + 0.4199t

6 2r

0.1569• - 0.4598 1 a + 03832ta -

04377M a2 2 .26050 a2 0.04974t3 3 ]
"r r 2+r r 1...

=ee = t a • 0.52279 2 + 0.360q3 Ro11•-• .. 53
0.,0 -~ 0.117 2r 6l~ + . 5.35

In Fig. 5.3 the stresses given by Eqs. 5.34 and 5.35 are shown along

with the corresponding results from the computer solution for a value of

r = 1.25. It may be seen from these curves that the difference in the two
a

solutions is quite small out to ýl and •2 0.6.
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VI. RESULTS AND INTERPRETTION

6.1 Incident Wave of Dilatation

The results of the ccmputer solution for hoop stress at the boundary

due to three terms of the Fourier series representation of an incident wave

of dilatation are shown in Figs. 6.1 and 6.2. The most important information

which follows from an examination of these curves is aummarized in the

following table.

V Maximum Time of Static
Stress Max. Stress Value
a oo/s Transit Times a e/'

0 00 +1.29 4.8 +1.00
50 -3.33 3.3 -3.00

1/3 00 +0.1U 4.0 0

90 -2.93 3.7 -2.67

In Sections 5.1 and 5.2 a method was discussed which provides a

check on the machine solution of the basic equations at short time. After

several transit times have passed the stresses should approach the static

values as given above. This provides not only another check on the solution

of the basic equations but to some extent, on the formulation of the solution

to the problem. The static stresses in the case of plane stress are given by

the well knviwn Kirsch formulas, which are shown as follows in Ref. (11):

2 4 •2
icy = a (I - E-
rr 2 2)+2E 4 2 os2

r r r

+ ( (I + Ž) cos 20 6.1
r r

4si 22r

rO 2 r r
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These equations may be used to solve the plane strain problem by

superimposing on the stress field a the &tresses due to another stress field

acting in the perpendicular direction and of magnitude v a. By this means

the static solution for a., around the opening as well as stresses in the

medium can be found for all the problems considered, and in all cases the

stresses approach the static values quite closely after 5 to 7 transit times.

The results shown in Figs. 6.1 and 6.2 are compared in Figs. 6.3 and

6.4 with the corresponding results from Refs. (3) and (4). The hoop stress on

the boundary at e = 00 from Ref. (3) is shown in Fig. 6.3 to be quite different

from that given by Ref. (4) and the present work. Also the hoop stress at

0 = 900 from Ref. (3) is shown in Fig. 6.4 to be less than that given by Ref. (4),

but the difference is not as large as for 0 = 00. It is interesting to note

that all three computations give quite close results for the maximum values

of tensile and compressive stresses. In Ref. (4) the reason for the difference

in stresses given by Ref. (3) is explained. in using the Duhamel integral for

computation of the boundary tractions from the diverging step wave, singularities

of the same type as in the present work occur at values of tC 1 /a = 0 and 2.0.

For this reason great care must be taken in the numerical integrations in this

region. In Ref. (3) a constant time interval was used throughout this integra-

tion; however, as shown in Ref. (4) it is necessary to reduce the length of time

interval in the region of the singularities. It is suggested that the integra-

tion technique discussed in Appendix A wculd have been i•seful for the computa-

tions of Refs. (3) and (4) since the singularities have the general form of

t"I/2. The method discussed in Appendix A is a more accurate means of

accounting for the singularities than is provided by reducing the length of the

integration interval.

The hoop stresses at 0 = 00 and 90 from Ref. (4) agree with the

present work as closely as the curves in Ref. (4) can be read, except during
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the first transit time. With regard to this difference it should be recalled

that the incident stress was represented by three terms of Fourier series and

that diverging wave stresses were computed to correspond to these three terms.

Once the diverging wave stresses are found, they must be combined with the

incident stresses in order to find the total stresses. However, it must be

decided whether the three modes of diverging wave stresses should be combined

with the same three modes of the incident wave stresses or with the total

incident stresses which may be represented exactly. In Figs. 6.3 and 6.4 the

results of both methods of representing the incident stresses are shown. Both

Refs. (3) and (4) apparently used the exact representation of the incident

hoop stress; however, the hoop stresses shown in Figs. 6.1 and 6.2 as well as

the streszes in the mediw'r and the stresses caused by decaying waves found in

thu present investigation were computed using the first three modes of the

series representation for the incident stresses. It was not possible to

determine the cause of the disagreement between the results for hoop stress

from Ref. (4) and the present work during the first transit time when the same

incident stre.s wa! uu.ed. In view of the excellent agreement with the inde-

pendently computed short-time stresses, the present computer solution acquires

conAdteratle oreiibility at least for early times. Moreover, if one considers

th'. presu, ethAi of .olu-icn, it hardly seems •ossible that the hoop stress

cculd bc conricierably in Lrror diring the first quarter transit time without

causing a large difference at one transit time.

Tho use of thY total incmding wave causes the total hoop stress at

0 to have an improrer initial value. This may be shown in the following

way. For v I/3, 6 00 and tht incident stress a - -1.0, the incident hoop

stress is Va = -V/5; hwev~r, at the sane point the diverging radial stress must

--
equal art = a = +1 at t = 0 and therefore the diverging hoop stress aee-V rr=+
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since it may be argued that there is no sTrain in the 6 direction for e = 0 at

this time. Therefore the diverging wave should have an initial value of hoop

stress equal to +1/3 if all the modes were considered, and the initial value of

total incident and diverging stress at 0 = 00 combined should be zero.

In Figs. 6.5 and 6.4 the hoop ztresses at 6 = 00 and 90 are shown

using the first 5 modes as given in Ref. (4). By comparison of these curves

with those given for 3 modes, the magnitude of error may be estimated. The

error appears to be quite large at e = 00 for the first two transit times as

would be expected. At 900 the addition of two more modes makes very little

difference. Also the use of 5 modes gives the initial value of u0e at 6 = 00

much closer to the required value of zero.

By comparing Figs. 6.1 and 6.2 it may be seen that a reduction in

Poisson's ratio increases both the maximum tensile and maximum compressive

stresses.

In Figs. 6.5 through 6.8 is shown the variation of stress with time

at several radii for v = 0 and for v = 1/3 due to an incident wave of dilatation.

These curves show the free field stress until the reflected wave reaches the

point, at which time there is a sharp change. At some time after the reflected

wave passes the point, however, the stress approaches the long time or static

value consistent with the particular point. From these stress-time plots at

various radii it may be seen that the dynamic effect on the peak stress is not

as great away from the boundary as at the edge of the opening. The static

variation of stress with radius as found from Eqs. 6. 1 are shown in Fig. 6. 9.

Also shown in Fig. 6. 9 is the variation of radial and hoop stresses with radius

at several times.

In Fig. 6.1, which shows the radial stress vs. time curve for 6 = 00

and v = 1/3, an indication of the mechanism which might cause spalling is
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,,bserved. The Ltresses should be considered only qualitatively during the

transit of the wave across the opening since only three modes are used. At

rt a = 1.25 for example the stress drops verj sharply from -1.00 to -0.05 when

the reflected tension reaches the point. If the incident stress wave had a

decay behind the front, this drop in stress could easily produce a total

tensile stress arr. A sufficiently large tension would cause failure of the

medium. Since the slab bounded by the region of tensile failure and the free

surface of the opening has a particle velocity equal to the sum of that in

the incident compression wave plus that in the reflected tension wave (both

in the inward direction) it would tend to fly inward. This slab remains con-

tinuous with the adjacent material in a circumferential direction, however,

and the energy trapped in it must be sufficient to break it away to form a

spa"l.

From the results of an incident step wave it is possible to find

tne stresses caused by an incident wave of any other form using the Duhamel

integral.

Omn = (n d( (t d6

where aks) is any stress d'ie to a unit step wave, and a is the corresponding
MAL mn

stress d,- t: n.a arbitritry Atress wave Pit) To illustrate the use of the

Jahamel integral irud study the effect of a decaying stress wave the hoop stress

was computed at 0 - O arid 9D for v = 1/3 and a = 17.5 ft. The variation of

stress behind the wuve front was assumed to be of the following form

P(t) P( - e-) t Kt/to
0

where K is a constant anir.. is the total positive duration of the wave. Hoop

stresses are shown in Fig. 6.10 and 6.11 for P0  4C00 psi, t = 1.8 see.,0
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C1 = 17,500 ft./sec. and K -- ICO, 250 and 4CO. Also shown is the stress due

to a step wave with a stress of 4C00 psi. Ty, increasing K, the rate of decay

behind the shock front is increasel. YTne values of K used represent a rather

sharp decay which would be consistent with high stresses producel by a large-

yield nuclear weapon. The peak compressive stress at 0 = 900 is reached

within 5 transit times, or, in tern• of the wave velocity, only the first 6 ms

of the wave. In the case of the tensile stress the peak occurs within 5 transit

times or within 10 ms. after the wave reaches the opening. Therefore only the

very early portion of the wave history is pertinent in determining the maximum

stress. In 5 ms. the pressure has decreased to 5020 psi for K = 100 and to

1316 psi for K = 400.

In general only the maximum tensile and compressive stresses have

been shown since these stresses are critical in determining the failure of the

medium. The computer code which was written to compute these stresses can also

compute stresses at any number of evenly spaced angles around the opening and

at aty radius out from the boundary so long as the radius is an integral number

of distances AtC . This code is considerably less complex than that used by

the authors of Refs. (3) and (4). To solve a problem in which the stresses

are computed at 15 equiangular incre•rents around half the opening And for

sufficient time to reach the static soluticn reauires approximately 20 minutes

of machine tire for 3 modes. For a problem in which the stresses are computed

at 1/4 radius spacing for 4 radii cut fr:•! the bc-naary ard with the zame

angular increments requires approximately 50 minutes.

It is of particular interest to notice the effect of changing the

length of time steps in the computations. The following table shows the hoop

stress at the boundary for 0 = 90° and v = 1/3 at several times as the length

of time steps are varied.
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static stresses obtained in this way are fcund tr occur on the boundary at

45 and 135 measured from the directioýn of wave travel. These static values

of maximum hoop stress are shown in the above table.

Also shown in Fig. 6.13 is the hoop stress at 0 6 45 due to an

incident shear wave as shown in Ref. (12) for v ý 1/3. In Ref. (12) the

authors of Ref. (3) use the same method that they used to solve the incident

dilatational wave problem to solve the incident shear problem. Therefore, a

constant time step in the Duhamel integral near the singularities at tC/a = 0

and 2 was probably used as before. This would explain why the curve of

Ref. (3) does not agree with that from the present computation. The case of

an incident shear wave was not solved in Ref. (4).

Also Ref. (12) shows a hoop stress at e = 00 which is not found by

the present theory and which, in fact, can be shown to be nonexistant by a

simple symmetry argument. For, by inspection

x u + - and v are even in y.

Therefore

C~v COUand are even in y

This requires that

au .3v
u • , -C be CId in y.

Since and F are both odd in y, they ýire zero at y C', and as a consequence

the stresse, a rr and oUU are zero %t y -- C.

The passage of a shear wave across an opening results in a higher

concentration factor for both tension and compression than the passage of a

wave of dilatation and therefore may cause the more critical situation.

However, the intensity of stress in a shear wave is much less than the stress
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~i,, tAt !zJ~i't:. fk i- -A. -:i ir.1,z-_e I gru'ird shock, and may be absent

Alt,ýgetter fcr tte lirt-t grcifll ýrc. TLie effe--t aGr, the stress concentration

f&~crz~i'~ryr~gFciz:~'~natic, iZ, zmali a; shcwn by conparing the curves

The ýFte :ie written to solve the incident shear wave problem

for hcp z~rz 4t the tLurdury iz juite similar to that discussed for an

incident dilataticnal wave, ard therefore req~ires approximately the same

amo~unt of' time for soluticn on the mrachine. This code was found to be some-

what more ser~zi~ive to change.- in týhe time in~terval than was that for an

incident lil~atatiornal wave. The reazcn for this is probably the sharper slope

of tht. Fcourivr coefficientz, aAtI uni b (.t), in the series for incident shear

.tr:4. . tro,. wav,-, ':rt i. r.our t n frc,;-t .irJ, reur of th'e open~ing.

'_3 v in Pro)tv tivc Cc-n.tri~cticn

Tnt: r=,itt; hL1.:.qi~ic ~i be unei as a guide in the

.tAvk of vfrx't: _f 0' c. Crvr.ir.,z in. rock.. Amocng the first things

-t .- t ~.iJ- ir. :AI.' z1-it; th, tylo of ftiil,.rv t: b expected- For

~t~xn1e tht naxl-.ii-. ccspre.e zre , wiich C(c'rz at the ends of the

r* r v 1 : t , ir .iIlert of' dt ilat'ution, may cause

-. ~~~ -iid- >. '-Acr xitr illt'5 ztreoz, which

I t t- t. ýtc rprz. I -A ar Kh. wave frLnTA, ray Cause

1 11 j T,+r J,:,:,-e r-c zh wri i-h wc'fl d fall1 into

th ~ * I~;rr,ýn~h --fnter-iarl, _-.'A- is rCLc:k is much

7* ' ýr , 4-ý i cr t',ail.,rc -.l a~i t a free field

;r wftiz i- %_,' '-'A:wie ~Ir nf.A~i.are,. Thsthe ratio

of mA:'ir:i t .., n.T-A.-c. ic:4rec.7ive 6trezz beccnes: inrportant in

lte:ijiio, wnl-n A' 'y-,- I'Al 1r.:-.. _--ir. Ano-th':r tyre of damage
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and possibit fiiure ma,., c -.- r frm zlli.g whL,±h was dezcribed earlier. If

t.ie free fieli stress is nigl enough. che n.-teriaL ir. the entire region of the

opening may fail ani clcse tLe -Azi;. ý,i ,'A • if the opening were

sufficiently close to the center of burzt of a nuelear weayc.n. Constrction

of a lining within the cavity wculd afford sc-.e protectifr against spalling

or Icoze rok.

Though the maxi.n. Ltres3oQ in the region of a cylindrical opening

have been determined for a hczogeneous medium and ideal wave forms, there is

still considerable uncertainty in the practical case. The results obtained

may only be used as a guide For txample rcck contuins faults and/or joints

and therefore is oftein weaker than thu ccnventional strength tests would

indicate Furthermore rozk may be so cracked or zo damaged by the mining

operatien that it hus no tenzile Ltrength near the opening. Also the wave

form is surely altered in traveling throigh a nonhomogeneous medium and probably

dces not have a sharp front. The effect of a rize time wculd be to reduce the

dynamic stress concentration factor anl to redue the possibility of spalling

failure Frcrm this it c:!•y it by-- z•ý-e that considerable judgment is

required in making allowunc,.3 for theze ui.-ert•inties.

in Pef. (15) many L.f thi DracticýA. rrobPc=3 erounteze: in the

arpliczt ion of theoretical re_,.Altz cf the ty. obtained in the present work

are di. :unc;tI Also the veric. wave tyrez are di~cu.;sed Uri a method for

cz=sbin, rg • effects, o' w. A.,2. f Pi2 ,tl,' i,:t i j -°> wv.,:- wi r. 1, th -re,

created by an air blast wave r..oving on the aurface :a Irezented.
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vc c 4'' -,ý I'--. t 13 r..ssible to find the

~) Tc .Jrt :c~c =.iy 'c u;5k.-I t-, zbhec the initial

- .larger r ,-Ir-.br r of' terms. irk the

Th~cr 4i..: * i hi c~ .~.KI'apply to longer times.
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T rýI~ 1: ivrt . I. r ~i~'g ~ Iz#:Er t L,: necessary

- ;.:.~rti2c aire
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(2) By using a large xumber of mcaes either ,ith the computer

solution or the short time solution the: !tresoes at early time could le obtained

with sufficient accuracy to ma.ke a complete study of tlhQ zpalling problem.

(3) A complete study of varicu3 wave forms zuzh as effecT of rise

time and decay rate would be possible. If wave forms with rapid changes in

stress were to be considered, it would be necessary first to obtain the solution

with more modes included.

(4) The problem of a cylindrical opening with a lining could be

solved by the method presented. Either the case of a thin lining or that of

a thick lining could be considered.
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even thc,*,,. th.e Drtegral zvr veiu r tegratior, procedtire w~as derived to

avoid. *K.t. diffl,.uit:, a~nl 1s. dIec..ribtA In this appenidix. After this procedure

had been ir. fo ir zc'n.t- tir.', It wLZ :'i5 thatt a ver~y :sinilqer procedure was
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[(g+ (-g)• (2 •3/2) _(1+-g) /2 )]¢•+l)L A.2

Srr~ihtfcr.urd v:alwticri of this expression leads to the following value for

the left side of Ea. A.2.

~ A.3r [g 121.[ - ] -2_am [)(m+ /-/
3n(n+1)3/2_mI/2

ThL[z ,*'.:pr',,!cr� givez the value of the integral between rni and

(n÷)t a:z 1-ng ,-z thu values of gm and g,+1 are defined according to Eq. A.I.

Tnhe fir ticno of :n by which euch ordinate is multiplied differs for each step,

n ,h±r.e., but will be the same for integration of FVII(rj1 ) and G''N(2 )

terr-,s A.cc, this expre-olon is not limited to n = 1; it iL a general

t.:,-r~ticn Cforrnla for which g is any function. Frcm Eq. A.5 let

A +r.) ( (Tr+i)l/2-rjj -r[ (r+1)312-r,,/

.A 4

Wi~i,. Acr_:%iutic,;- tht_ integral to be evaluatel nay be writtkl

iG A 4 (G'j R-,-- A.5

where RG is the fa-t -rr.
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4- 1 Zt--12 Ci5 C5
1

evaluated at n-- and G is the saie f,Pti*r evaiaatcd at )

In computing the factors AV aid BlM, the small difference between

large numbers are involved when m gets fairly large if the computation is

made in a straightforward manner. Therefore theze weighting factors were also

written as asymptotic series which were uzca after m reached a certain value.

These series are as follows

A[ l_+ l-2 i+"+

1 1 1
Bm = 1 +- + 7m - ;7-. ....

2 %fi,6"
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APPENDIX B

SOCM.E FROZERTIES OF THE DISPIACR.EtNT POTRITIALS

B.1 G+-neral Solution of the Wave Eauation in Cylindrical Coordinates.

Ic. Section 5.5 it is shown that two hyperbolic partial differential

ejuaticrns in two independent variables result from substituting Fourier series

for T and v into the wave equations. These differential equations are Eqs. 3.21.

The relevant parts of the general solutions of these equations were stated as

Eqs. 3.22. It will now be shown that these solutions satisfy the differential

eauations. Since both differential eauations and both solutions are of the

same form, it is only necessary to show the validity of one of the solutions.

Then it is to be shown that for n = 0, 1, 2,

fn ( 'r fo B.1
n r

zatisfiez the equation

2 fn 2n+lr,B
1 ; -r - ' n B.2

It L. fir.At ,is...i th'At f is a solution to Ea. B.2. Then it will be shown

th fý give by Ea. B.1 is also a solution, and therefore the general

"•:r ýiny value of n is given by Ea. B.1 provilel f is a solution with

t- , ,pre.;ricr fcr f is given by Ea. P.1 z5

-,I r 3r* n.

'• th lifferet.tial *4uation beccnez (by replacing n by r.+l in Eq. B.2)

C +2 ÷ r 7--+--- = 'n--i B.4

JAbs i~ute Ei. B.5 irnto E4- B 4.

-2r1 rirL n J+5 d 'I
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2 )5,f 2 )2ffn 3 2n. (I f2f n I. ( n
I r- &3 r (8r2 r r r or2 r

r at 6r

C 2[l 3 2n1+1 (1 62fn I 4 6f63 n
[.r 5 r r 2 ZFJ r B.53r r r2 ~t 6r

However

1 a 2 fn I afn 6 3

r ar 2 r2& 3rr-T

Therefore Ea. B.5 may be written

2 [1 ( 6 )2 ia I n 1) i a 2 f

r r' 2 r-7r r- r rTr at 2

It i3 apparent that this is an identity since the same expression may be

obtained by taking tne partial deriviative of both sides of Eq. B.2 with

respect to r and dividing through by r. Therefore Ea. B.3 satisfies theý

differential eýyaution and as a ccnsequence E'. B.1 is a general zolution for

any value of n provided f is a zolaticn.

It was shown in Chapter III by dJ ihysical arglument that f haz the

form giv'::-r by Eq. 3.;6. It ij of interest ts show directly that f in thisC

form sutisf'ieZ the differential equation given by E: i 2 wilh n -. T--.

is

f = F(t -- r-cosh u) du B.6
0 f 1

is a solution of

2 2 __

C 2  2" f f0 B.71 ar2 rt2
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provided that ail derivatives which appear are continuous in u and r. Take

the derivatives of Ea. B.6

3f 0

F' (t cosh u) cosh u du

-Cf + f F"t
1 o

6 2 f F"(t cosh u) cosh2u du

r 1 ~( Fcs )d

C1 - F"t-Icshc ohud

1 0o

_ [ _ - -O-- .. ( --L cosh u) sinh uj

+1 f F'(t - rcosh u) sh u du
C

The first terr. on the right equals zero since sinh u 0 at u = 0 and

F"(t - r .csh u) 0 az u terids te infinity, for a disturbance which starts
GI

. In the cormjt-at cn& of Chapters IV and V, the function F"('1 ) is not con-
tinur,.is throigh Tr1  -a/,I' In this case it is not difficult to alter the

proof so that the result will hold
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at a finite time. Then

---- f F'(t - r cosh a) cosh u du

0

- ~f~ (t r cosh u ) s inh 2u du
rC1

By making this substitution into Eq, B.B and observing that (cosh 2 u - sinh2 u)= 1,

one obtains an equality.

C, f- "t i cosh u)kcosh 2 u - sinh2u) du]

1 c- f- u

= F"(t - cosh u) duI

B.2 General Form of (p and V for Arbitrary n.

The general expression for the displacement potentials p and V, as

given by Eq. 3.29, may be written in the much more convenient form of Eq. 3.30.

The derivation is shown for the fDincticn qc. For V the proof is the same.

From the first of Eqs. 5 29, the nth term of the series for cp,

say Tn, may be written

(P -- n(r,t) cc. no

where

o 1nn (r ý

Tne term n - 1. takes the form

rn Iln+ln J.o "rrSIrr F(t cosh u) du
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Qn+l = r r F(t - l Coshu du.

Thnis expression may be written in the equivalent form

00

By comparing this expression with Eq. B.9 it may be seen that

S n3f B.10
•n+l = Tr nn r n

The derivation of Eqs. 3.30 from Eqs. 3.29 may now proceed by

mathematical induction. Let it be assumed that the first of Eqs. 3.30 is

correct for fn Then it will be shown that Eqs. 3.30 hold for n n+1

with n = 0, 1, 2, . . . Once this is shown it only remains to notice

that the expression is correct for n = 0. From the first of Eqs. 3.30, %n

may be written

SQ fln(r,t) cos no,

1Fn - r cosh u) cosh nu du B.11
C11

By performning the operation indicated by Eq, B.10, one obtains

SnI rl) ~ ~coshu; cosh nu cosh udu

an-l -" + Cn~

n(-- n f Fnt- ircosh u) cosh nu du B-12
C 0 1

The second integral on the right may be written as fellows by integrating by

parts
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S- •cosh u)(-cosh u) cosh nu dui nh
Cl 01

Lhe Fn(, cosh hwv! sineh nu n B.13

FnQ•.. cos u)= 0as utens toinfnit. ByusigE.B!j n a

C 1  0

w'rite Eq B.12 in the following form

1nil F n+l (t" - rcosh u) cosh nu cosh u du

CI 1

S.Al 1 t- cOSh U) sinh nu sinh ui du ,

wr by cEmb.ning terms

Li,)nZl F +1 (t cosh u)L'cosh nu cosh u.d

(..n)nl n+_n r

n sinh nu sinh u du

The q.~ntt~y inl braoket. is, hz•wever, emls to _:o.1 •ri-1)u. With this suw-

stit~t ior, the expre.ssioni for £%nl is identical to Eq. . 530 with ni + I

replacing n. The conclusion holds even for n = 0 since only the first term on

the right-hand side of E4. B.12 appears in that case. It has thus been shown

that the first of Eqs. 5.50 holds for n + 1 if it is assumed to be correct for

n 0 1, 2,.
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To complete the demonstration, it is only necessary to note that

the first of Eqs. 3.30 is correct for n = 0, since it is identical to the

first of Eqs. 3,29.
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APPRD1X C

DESCRIPTION OF THE COPUTER PROGRAM

A program was written in FOiTRATI language to solve the problem on

an electronic digital computer. The computer used was a CDC 1604. The

sequence of operations performed by the computer in the solution of the

problem is shown in the following diagrams. The computations are indicated

together with the appropriate equations to be solved.

Read in Data:
1. Number of time steps per radius(N)
2. Total number of time steps(T)
5. Time interval at which stresses in the medium

are ccmputed(I)
E4. Number of radial steps out from the boundary
Sthat stresses are computed(R)
10
S5. Number of equally spaced angles around opening

that stresses are computed(S)
6. Poisson's ratio

0

Compute F'' (nI), F..(qi), G..r 2 ). ..... from the
"boundary conditions, and. cýmute the hoop stress at

0 the boundary for n ý- 0, 1, ". Combine the mcdewire
: -3 stresses and ccmpute their .-ariation with angle round

the opening. Print the-e ;treýseG.

0 CcmpIte + radial, tuiinonttal, I•i•u •t hr' .:,
Ste r..eiz, a1way frcr thl_ Voa0-', tire, F'1I
F'' '(•i), G''(T 2 2 ), ..... from the above computations.
Print these stresses. Sto
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O Ccmpute A. and B r and store all the values

If m < u0kse Eaý. 411A

If m > 60 use Eqs. A.6
m = 07 0, 1,2, .... T

F F GCompute R RA, ..... and store.

Eqs. 4.251, 4.10, 4.12, and 4.26d.
t = oi,, m = 0, 1,I2,..............A = VN

Compute initial values of ((F''(nI))0,
(F'.. (ril))O, (G''' (rL2)) 0. . . . . . .. .

Eas. 4.25e, 4.18, 4.26e

F F G
Compute suranatio S , (s()p, (S5l).....Eqs. 4.25b, 4.20, 4.26b.
m = 0, 1, 2, ..... P

Compute incident stresses (a0 )p, (a,)p,
E p < , E4s. 4.25f, 4.23, 4.26f

p >? 2N, Eqs. 4.21g, 4.24, 4.26g

_copute (F''(r 11)) , (F''' (T 1 ))1 , (G'' ('n2 ))p, 1
S v(j . .. Eas. 4.215a, P4.19, .26a

S Ccmpute mcdewize hoop stresses in the diverging
wayv % ,½, t ) , ( p and store.

SEqG. 4..ý': '.21, 4162

C,sznrte the tctal hoop stress at the boundary

for the three mcdes and variation of hoop stress
with V. (aT) p (o0 )p () +

[(u+) ÷ (,I ] cos f + [(a) + (d1)1 Cos 20

Print these stresses.

*The superscript indic-te.s the mode (n 0, 1, 2). The radial and shear
stresses in the diverging wave were also ccmputed at this tinme so they
could later be ccmbined with the correszonling incident stresses to
verify that the sums were zero at the biundr-iy.
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Compute a new radlus
r -a + L(I)LtCl
a a

Compute the new 4Z5, say 65'

r

F F.. Z
Compute RAO, Ril RA.2 ......
Eqs. 4.25d, 4.10, 41, 4-26a

5 = mW', m = 0, 1, 2, T....T

Compute each sum.mation separately in
the expressions for stress given by

*• Eqs. 4.44 for n = 1, and similar
expressions for n 0 and 2.* Store
these summations.

* p = I, 21, 31, T....T

To obtain the stre3.. in the diverging
wave combine the summations involving
F'' I(rll) with those involving G' ''(12)

in each expression fc-r stress in
E- Eqs. - ..44 (for n 1).* Do the Game

for n - 0 and 2.

. Conmpute the incidetr. r
SCcmpute JU frcm EI. 4.45. Ccjnpute

oU (a) 0)), (a2 .. . . from

p < 2+I (L) , E-jz' .t, , 4.26f
p, > 2N +1(L), Eq-.. 4.2g ~e4, 4.26,7

SConbine outgoing and incidert s.-treszes
tor -:,hi nA- i• i t -r j-* tJto Ct, !

Sstresses by ccnioining the tnree rcdea
4- for each stress component. Compute the
" variation of stress w4ith angle around
Sthe opening. Print these stresses.

*As discussed in the text, the upper linit on the sunmations involving
G'l''(q 2 ) actually used in the machine was not p - n/C., but p - n, Therefore
a shift in time must be made when these sumrations are combined with those
involving F"''( 1 ) in Eqs. 4.44 and similar equations to obtain the stresses.
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01

b 0.2

0.4

--- Short tirie solution
- -- Computer solution

o.6

0 0.1 o.. 0.3 0.4 0.5

Time, tCJa

Fig. 5.2 Cumpairiuon of the short-time anI the computer
solutiorns for hvop stress ut the bouniury in
the diverging• wave Jae to an irnident shear
W'Ave.
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if ++ : .... . . . ..

Cl,

03

0

0 0.i 0.2 0._", 11.4 0.5 o.6

Time, tCl/U

Fig. 5.•5 Coml+arison of tatu uthort-time uaid the -umpixter
solutionu for hoop streý; at r/a " 1.d5 due to an
inAdeht wave of dilatation (n -, 1/3, 0 = 00).
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-i:. It ard the present

wvrk using n =0, 1, 2
0.2

f . 4 i-g n0 - 05 for outgoing
nt/ u -adul incident hoop ttreieese

r._. It using nL 0,fr2 fur . u
/ outgoing and, actual incident

'. 0

o 2 Ref. 3 us4ng n 0,1,2 for outgoing
aind actual incident hoop otresses`

Pr.3aent work using it 0,1,2 for outgoing
I I urk acttual incident hoop Otresses

Pruent work using n 0=, 1, '2 for outgoing
:An-l first 3 m.,odes of in,.ident hoop stresses

0.6 - I I I I I
0 1.0 2.0 3.0 4.0 5.0 6.0

Time, tcl/ý.

Fig. b.. Comparison of the present ccmpututionj with those Qf Refs. (3)
anl (4) for hoop stre~s at u = 00 due to an incident wave of
dilatation (~1/3).
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