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MODIFIED TABLES FOR THE DESIGN OF OPTIMUM DIPLEXERS

G, Veltrop
B.

Wilds

R.
R.

1, ABSTRACT,

A set of modified tables for the design of
quasi-complementary Chebyshev filters for
diplexer use is presented. Use of the tables
in conjunction with the straightforward de-
sign procedure outlined makes it possible to
design optimum diplexer circuits. Mathe-
matical and experimental verification of the
validity of the modified values is discussed.

2. INTRODUCTION,

Diplexers are widely used for splitting a broad frequency band into
two smaller bands of arbitrary width using selective filters, The
design method described herein calls for the use of singly terminated
low-pass and high-pass filters, As pointed out by Matthaeil, the use
of singly terminated filters circumvents the problems of modifying
the diplexed ends of filters designed for resistor terminations at both
ends, The compensation or annulling networks used with doubly ter-
minated filters are not required. Singly terminated low-pass and
high-pass filters designed from the Butterworth element values and
denormalized to the same cut-off {requency are complementary. This
is not the case however, for Chebyshev filters. Therefore, tables of
modified element values for the design of diplexers with quasi-
complementary Chebyshev filters have been derived. The validity of
the modified values has been verified mathematically and experimen-
tally for a diplexer consisting of 10-element, 0.25-db ripple Chebyshev
low- and high-pass filters.

Although this report is concerned only with a single diplexer, the
method could be extended to yield a number of contiguous channels to
form a very broad band multiplexer.

1 See list of References in Section 9,

-1 -
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38 QUASI-COMPLEMENTARY CHEBYSHEV DIPLEXERS,

Perfect diplexing can be theoretically obtained with filter element
values corresponding to the tables for singly terminated Butterworth
filters or maximally flat filters. A low-pass/high-pass diplexer de-
signed using these table values yields complementary impedance or
admittance functions at the common junction at all frequencies in-
cluding the region of crossover. For example, the normalized element
values in farads and henrys for a three-element maximally flat, singly
terminated, low-pass filter (r = 0) are given by Weinberg2 as

0 |

'
Cl’ L1 LZ, C‘2 C3, L3

0.500 1.333 1.500

The corresponding high-pass filter can be obtained by replacing each
inductance with a capacitance equal to 1/L farads, and replacing each
capacitance with an inductance equal to 1/C henrys. Using these
values, a constant conductance diplexer (Figure la) or a constant
resistance diplexer (Figure lb) can be formed.

The diplexer of Figure la has an input admittance at the common
junction of 1 4+ j0 at all frequencies, and the dual circuit of Figure 1b
has an input impedance at the common junction of 1 + j0 at all fre-
quencies. Each circuit has the same insertion loss function with the
3-db crossover point at w= 1 radian.

Frequently, it is desirable to form diplexers using Chebyshev or
equal-ripple element values to take advantage of the greater selectivity
that can be obtained. Also, the element values using Chebyshev tables
of moderate ripple values can often be realized more easily with prac-
tical construction techniques. However, in the design of diplexers,

the Chebyshev table values for r = 0 do not produce perfectly com-
plementary low-pass/high-pass filter pairs as do the table values for
maximally flat diplexers.

A shunt-connected diplexer is shown in Figure la. At the crossover
frequency, the power should be split equally between the two outputs
and there should be no reflected power. To accomplish this, itis
obvious that the normalized input conductance of each filter must be
0.5 at the common junction and the individual susceptance values of
both filters must add to zero. An example is given to illustrate what
does happen with a diplexer designed from unmodified Chebyshev
tables. The admittance characteristics of a filter pair designed from

= B 5
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3. -- Continued.

the r = 0 tables, 0,25-db ripple, and n = 10 reactive elements were
computed and are shown in Figure 2. The conductance of each filter
remains nominally at 1.0 throughout the pass band up to the crossover
frequency (w= 1 radian) and then drops virtually to zero in its stop
bahd. The sum of the two conductance values at the common junction
remains nominally at 1,0 throughout the entire frequency range except
in the vicinity of crossover. At «w= 1 radian, the net conductance
reaches a maximum of about 2.0. Both filters have reasonably smooth
susceptance characteristics which rise to a peak at the frequency where
filter conductance is 0.5, The net susceptance at the common junction
does add to zero at w= 1, but there is a small amount of residual sus-
ceptance over the remainder of the {requency range with maxima

just on each side of crossover. The theoretical performance of this
diplexer is not too bad. The input VSWR remains below 1.2 over most
of the band-pass regions and rises to about 2 to 1 at crossover. This
indicates a crossover loss of about 3,5 db to each channel.

The general shape of the admittance characteristics is typical of
Chebyshev filter pairs for any ripple value and any number of reactive
elements, Of course, the steepness of the conductance characteristic
and the peak value of the susceptance characteristic do change with
ripple value and number of elements. It is also interesting to note
that there is very little ripple in either the conductance or susceptance
curves, certainly much less than would be present in a doubly termi-
nated filter designed from r = 1 tables.

Closer examination of the admittance characteristics shows that nearly
perfect diplexer performance can be obtained by modifying the element
values of the low-pass and high-pass filter to place the 0.5 conductance
points of both filters at the crossover frequency. This amounts to
shifting the cut-off frequency of the low-pass filter down and the cut-off
frequency of the high-pass filter up by an appropriate factor. It be-
comes apparent that, when this modification is performed, the sum of
the input conductances at the common junction remains nominally at

1. 0 throughout the crossover region. Also, the susceptance curves
are shifted to provide fairly effective cancellation over the entire fre-
quency range.
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MODIFIED TABLES FOR THE DESIGN OF OPTIMUM DIPLEXERS

R. G, Veltrop
R. B. Wilds
1. ABSTRACT,

A set of modified tables for the design of
quasi- complementary Chebyshev filters for
diplexer use is presented. Use of the tables
in conjunction with the straightforward de-
sign procedure outlined makes it possible to
design optimum diplexer circuits. Mathe-
matical and experimental verification of the
validity of the modified values is discussed.

2. INTRODUCTION.

Diplexers are widely used for splitting a broad frequency band into
two smaller bands of arbitrary width using selective filters. The
design method described herein calls for the use of singly terminated
low-pass and high-pass filters. As pointed out by Matthaei’, the use
of singly terminated filters circumvents the problems of modifying
the diplexed ends of filters designed for resistor terminations at both
ends, The compensation or annulling networks used with doubly ter-
minated filters are not required. Singly terminated low-pass and
high-pass filters designed from the Butterworth element values and
denormalized to the same cut-off frequency are complementary. This
is not the case however, for Chebyshev filters, Therefore, tables of
modified element values for the design of diplexers with quasi-
complementary Chebyshev filters have been derived. The validity of
the modified values has been verified mathematically and experimen-
tally for a diplexer consisting of 10-element, 0.25-db ripple Chebyshev
low- and high-pass filters.

Although this report is concerned only with a single diplexer, the
method could be extended to yield a number of contiguous channels to
form a very broad band multiplexer.

1 See list of References in Section 9.
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38 QUASI-COMPLEMENTARY CHEBYSHEV DIPLEXERS.

Perfect diplexing can be theoretically obtained with filter element
values corresponding to the tables for singly terminated Butterworth
filters or maximally flat filters. A low-pass/high-pass diplexer de-
signed using these table values yields complementary impedance or
admittance functions at the common junction at all frequencies in-
cluding the region of crossover. For example, the normalized element
values in farads and henrys for a three-element maximally flat, singly
terminated, low-pass filter (r = 0) are given by Weinberg? as

! t

1
1’ L1 LZ’ C2 C3, L3

0.500 1.333 1.500

C

The corresponding high-pass filter can be obtained by replacing each
inductance with a capacitance equal to 1/L farads, and replacing each
capacitance with an inductance equal to 1/C henrys. Using these
values, a constant conductance diplexer (Figure la) or a constant
resistance diplexer (Figure 1b) can be formed.

The diplexer of Figure la has an input admittance at the common
junction of 1 + jO at all frequencies, and the dual circuit of Figure 1b
has an input impedance at the comnmon junction of 1 + jO at all fre-
quencies. KEach circuit has the same insertion loss function with the
3-db crossover point at w= 1 radian.

Frequently, it is desirable to form diplexers using Chebyshev or
equal-ripple element values to take advantage of the greater selectivity
that can be obtained. Also, the element values using Chebyshev tables
of moderate ripple values can often be realized more easily with prac-
tical construction techniques. However, in the design of diplexers,

the Chebyshev table values for r = 0 do not produce perfectly com-
plementary low-pass/high-pass filter pairs as do the table values for
maximally flat diplexers.

A shunt-connected diplexer is shown in Figure la. At the crossover
frequency, the power should be split equally between the two outputs
and there should be no reflected power. To accomplish this, itis
obvious that the normalized input conductance of each filter must be
0.5 at the common junction and the individual susceptance values of
both filters must add to zero. An example is given to illustrate what
does happen with a diplexer designed from unmodified Chebyshev
tables. The admittance characteristics of a filter pair designed from

2
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3. -- Continued.

the r = 0 tables, 0, 25-dh ripple, and n = 10 reactive elements were
computed and are shown in Figure 2. The conductance of each filter
remains nominally at 1.0 throughout the pass band up to the crossover
frequency (w= 1 radian) and then drops virtually to zero in its stop
band. The sum of the two conductance values at the common junction
remains nominally at 1.0 throughout the entire frequency range except
in the vicinity of crossover. At w= 1 radian, the net conductance
reaches a maximum of about 2.0. Both filters have reasonably smooth
susceptance characteristics which rise to a peak at the frequency where
filter conductance is 0.5. The net susceptance at the common junction
does add to zero at w= 1, but there is a small amount of residual sus-
ceptance over the remainder of the frequency range with maxima

just on each side of crossover. The theoretical performance of this
diplexer is not too bad. The input VSWR remains below 1.2 over most
of the band-pass regions and rises to about 2 to 1 at crossover. This
indicates a crossover loss of about 3.5 db to each channel.

The general shape of the admittance characteristics is typical of
Chebyshev filter pairs for any ripple value and any number of reactive
elements. Of course, the steepness of the conductance characteristic
and the peak value of the susceptance characteristic do change with
ripple value and number of elements. It is also interesting to note
that there is very little ripple in either the conductance or susceptance
curves, certainly much less than would be present in a doubly termi-
nated filter designed from r = 1 tables.

Closer examination of the admittance characteristics shows that nearly
perfect diplexer performance can be obtained by modifying the element
values of the low-pass and high-pass filter to place the 0.5 conductance
points of both filters at the crossover frequency. This amounts to
shifting the cut-off frequency of the low-pass filter down and the cut-off
frequency of the high-pass filter up by an appropriate factor. It be-
comes apparent that, when this modification is performed, the sum of
the input conductances at the common junction remains nominally at
1.0 throughout the crossover region., Also, the susceptance curves
are shifted to provide fairly effective cancellation over the entire fre-
quency range.
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3.1 Modified Chebyshev Tables for Diplexer Design.

Since the cut-off rate of a filter is a function of hoth ripple value and
number of reactive elements, it follows that a separate modification
factor must be applied for each ripple value and n value. Matthaeil
has developed the general expression for the normalized input con-
ductance of singly terminated, low-pass Chebyshev filters:

-1

_ 1

= (1 +¢) 1+c cosh’ (n cosh 3 (1)
wl
1

Re Y

G
o

where
A
€ = [(antilog _%n_) -1] e (2)

Am is the equal ripple value in db, n is the number of reactive ele-
ments, w) is the radian cut-off frequency which is equal to 1 in the
normalized case, and @' is an arbitrary radian frequency greater than
l. For n odd, the factor {1 + ¢) is set equal to 1.

To determine the modification factor, the normalized input conductance
is set equal to 0.5 and the expression is rearranged to yield:

1+ 2e¢

>
n

cosh (-}1 cosh-1 ), n even , (3)

3db

and

: 1 -1 -\/T
w 3 db cosh (-; cosh :) , n odd. (4)

For the particular case of n = 10 elements and 0. 25-db ripple

(€ =0.0593), w'3 gp = 1.023. To obtain the modified low-pass table
values, each inductance and capacitance is multiplied by 1.023. This,
in effect, lowers the cut-off frequency of the filter tol_.—()—ZT of its

original value and places the 0.5 normalized conductance value at the
crossover frequency of w = 1 radian,
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3.1 -- Continued.

To obtain the modified element values for the quasi-complementary
high-pass filter, each modified inductance is replaced with a capaci-
tance equal to 1/L farads, and each modified capacitance is replaced
with an inductance equal to 1/C henrys. The effect of inverting the
modified low-pass values is to raise the cut-off frequency of the high-
pass filter to 1.023 times its original value and to place its 0.5 nor-
malized conductance value at the crossover frequency of w = 1 radian.
Since the low-pass to high-pass transformation procedure is a simple
inversion process, tables of modified Chebyshev element values are
given for the low-pass prototype filters only. Tables 1 through 4
present the modified element values for 0.1-, 0.25-, 0.5-, and 1.0-db
ripple, each for three to ten reactive elements,

3.2 Selectivity Characteristics of Quasi-Complementary Filter
Pairs.

If the sum of the conductance at the common junction is equal to 1.0
at all frequencies and the net susceptance is zero, then the fractional
power transferred to the output port of either filter is equal to its
respective normalized input conductance. Therefore, with the aid of

Equations (1), (3), and (4), expressions for the stop band insertion
loss may be written

1 2 -1 " 1 -1 1+ 2¢
IL = 10 log, Tag) l +€¢ cosh  |n cosh [w cosh — cosh '\/ - ] ;

- n even, (5)

2 -1 -
IL = 10 log), | 1 + € cosh® |n cosh [w" cosh—xl1 i .\/E] ,

n odd, (6)

where @ is an arbitrary radian frequency greater than 1, relative to a
radian frequency of 1 at the 3-db crossover point. The filter pair pos-
sesses geometric symmetry. Therefore, the stop-band insertion loss
of the high-pass filter may also be obtained from Equations (5) and (€)

by inverting the radian frequency w", since for the high-pass filter the

stop band will be at radian frequencies less than unity.

-7 -
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4. CALCULATED PERFORMANCE OF A DIPLEXER USING
MODIFIED ELEMENT VALUES,

To check the validity of the modified values, the same diplexer de-
scribed in Section 2 with 0.25-db ripple and n = 10 was designed from
the modified tables. Figure 3 shows the normalized element values
for the diplexer.

It is seen that the first element in the low-pass filter is a series in-
ductance so that the input susceptance of the filter in its stop band
will be small. Similar reasoning determines a series capacitor for
the first element in the high-pass filter. The input admittance of

both filters was calculated from .25 w. to 3 wc with an IBM 1620 com-
puter. From these admittance values, the performance of the diplexer
was computed as to input admittance and power split as functions of
frequency. Figure 4 displays the input conductance and susceptance
for the filter pair in the crossover region. The normalized total input
conductance is very near unity at all the calculated frequencies. Vir-
tual cancellation of the susceptances at all the calculated frequencies
was also determined. Power division (Figure 5) as a function of fre-
quency shows that a 3-db crossover is theoretically possible.
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Figure 4

Admittance Characteristics of a Diplexer
Designed from Modified Chebyshev Tables;
r =0, 0,25-db Ripple, n =10
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Figure 5

Insertion Loss Properties of an Optimum Diplexer
with 10-Element, 0,25-db Ripple Filters
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B MEASURED PERFORMANCE,

A diplexer with a 500-Mc crossover was designed from the normalized
element values given in Figure 3. Denormalization as to impedance
level and operating frequency is accomplished by multiplying every
resistance in the prototype by R (the impedance level of the network),

1
every inductance by _Z% , and every capacitance me . The
c

desired crossover frequency of the diplexer is f.. Measured perform-
ance was not as ideal as that predicted mathematically either as to
input VSWR or insertion loss. The VSWR characteristic shown in
Figure 6 exhibits rather prominent variations around the crossover
frequency, probably due to the steep slopes of the susceptances of
both filters in this region and the inability to achieve complete can-
cellation. Only slight departures in realization from the correct
values in any of the 20 elements making up the diplexer will degrade
the performance from theoretical, A 3-db crossover was not achieved
(Figure 7). However, 4-db crossover values were readily obtained.
With fewer elements, performance closer to theoretical is undoubtedly
obtainable. As the number of elements is increased, the crossover
characteristics of the filters become steeper, making realization for
ideal performance more difficult. The same thing is true for increasing
the ripple value of the filters.

e
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6 REALIZATION,

Coaxial split-block construction (Figuve 8) was used for the physical
realization of the 500- Mc diplexer. The inductances for both low-

and high-pass filters were made with 10-mil diameter silver wire
wound on a 4-40 nylon threaded rod. The series capacitors for the
high-pass filter were small discs of double copper clad teflon fiber
glass laminate (0.020'" dielectric thickness). These small series
capacitors were soldered between short segments of the center con-
ductor using indium solder. The nylon rod was threaded into the short
line segments as supports for the shunt inductances. The shunt capac-
itors in the low-pass structure were of the widely used coaxial type
with teflon dielectric. The centers of these capacitors were threaded
for the nylon rod which formed the support for the series inductances.

- 19 -
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7. CONCLUSIONS.

The modified tables presented here should be useful in the design of
diplexers where the sharp skirt selectivity of Chebyshev filters is
required. It has been the authors' experience that the practical real-
ization of diplexer circuits is facilitated by a design which is optimum
rather than approximate. The calculated and experimental results
given here are for only a single diplexer and one type of configuration.
The design procedure, however, is general and can be extended to
yield circuits consisting of a number of channels. There is no known
restriction on the type of physical configuration. Matched input di-
plexers should find wide usage in band splitting, harmonic suppression,
frequency multipliers, and solid-state circuits.

=2 18-
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WASHINGTON 25, D C 901

CENTRAL INTELLIGENCE AGENCY

ATTN = OCR Mait Room

2430 E STREET, NW

WASHINGTON 25, D C 1001

CHIEF OF STAFF

U S AR FORCE

ATTN - 0CS/0  AFOP-0D
WAsHINGTON 25, D C 1301

CHIEF OF STAFF

U 'S AIR FORCE

ATTN = AFRSTB

WwasHineton 25, 0 C 1201
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Deruty C/S FON MIL OPNS
DEPARTMENT OF TNE ARMY
ATTN = ORGN R&D BNANCH
ViASNINGTON 25, D C 1301

DiRecTOR

US NAYAL RESEANCN LABORATORY
COUNTERMEASURES Ba-=Cobe 5430

WASN INGTON 25, D C 1401

CENTAAL INTELLIGENCE AGENCY

ATTN = LiaisoN Div, OCO

2430 E STREET, NW

WaSHINGTON 25, 0 C 1501

US Atomic ENENGY COMMISSION
DiviSION OF MJLITANY APPLICATION
ATTN = CLASSIFIED TECH LIBRANY
1901 CONSTITUTION AVE, NW
WASHINGTON 25, D C 1601
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ATTN = AMORD/DE-E~E

WAsSHINGTON 25, D C 1701

CHIEF OF RESEARCH & DEYELOPMENT
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DEFENSE DOCUMENTATION CENTER
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ATTN = |ALOG=-ESE

ARLINGTON HALL STATION
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RADIO CORPORATION OF AMERICA [ ABS
ATTN = Li18RARY LAS 1

PNINCETON, NEW JERSEY 2901
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ATTN = LiBRARY

PO Box 73

EEXINGTON 73, MASSACHUSETTS 3001
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SYLVANIA ELECTRIC PRODUCTS, INC,
ATTN ~ DR EDWIN G SCHNEIDEN
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BEDFORD, MASSACHUSETTS 320

RAYTHEON COMPANY

RESEARCH DaviISION LIBRANY

SEYON STREET
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