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PREFACE 

This is one of a series of technical reports 

being issued by Arthur D. Little,  Inc.,  under 

Contract NObsr-81564 with the Bureau of Ships 

as part of the Project TRIDENT. 
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FOREWORD 

The object of this report is to explain some of the ideas in modern 
information theory and to show how they can be applied to certain problems 
in signal transmission and signal detection.   It is not intended as a text or 
reference work.   It evolved from several sets of lectures at various times 
and places to audiences of scientists and engineers who had no specialized 
knowledge of communications or information theory.   The earliest sections, 
which introduce the fundamental ideas of amount of information and channel 
capacity, may nevertheless be of interest to readers with less technical back- 
ground . 

We thank the Institute for Defense Analyses for permission to use 
herein portions of IDA Technical Note 60-19, "Modulation, Coding and In- 
formation Theory," which was written with the support of Contract NOSD-50 
with the Advance Research Projects Agency; our colleagues J. Kaiser, 
G. Sutton, and others at IDA, who heard and criticized a series of lectures 
on which the Technical Note was based; our colleagues at Bell Telephone 
Laboratories, Inc., and Arthur D. Little, Inc., who likewise criticized sub- 
sequent oral presentations; Hugh Leney, M.S. Klein, and Paul B. Coggins 
of A. D. Little, Inc., and Professor John Wozencraft of M.I.T., who read 
and criticized the manuscript; and Claude E. Shannon, E. N. Gilbert, J. R. 
Pierce, C. C. Cutler, R. M. Fano and others from whose publications we 
have borrowed liberally. 
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ABSTRACT 

This is an expository essay on information theory for 
engineers interested in communications,  sonar,  and radar 
who have no specialized knowledge of statistical communica- 
tion theory.   The fundamental concepts of information 
theory,  and in particular, quantity of information and channel 
capacity,  are defined and explained in simple terms.   These 
concepts are used to make a quantitative estimate of the 
performance of several common modulation schemes and to 
analyze the performance of search and detection systems. 
The effectiveness of repeated or prolonged observations on 
detection thresholds and reliability of detection,  and the 
relative performance of coherent and incoherent integration, 
are explained and illustrated quantitatively 
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I.   INTRODUCTION 

Some paradoxes and misunderstandings about information have arisen 
in recent years as the science of information theory has been disseminated.   The 
first misunderstanding is the belief that any intelligent person ought to know what 
the word information means. 

In any specialized study, new concepts arise which have to have names 
Sometimes we name the concept after a person:   Doppler shift, Plank's constant. 
Sometimes we give it a number or letter:   The first law of thermodynamics. X-rays 
Sometimes we make up a new word:   Meson, radio.   But often we use a common 
word:   Current, mass. 

When a new technical concept is named with a common word, the word 
acquires a new meaning.   It is impossible to use the word in a technical context im 
til that new meaning has been defined.   Pressing a suit does not mean the same thing 
to a lawyer that it does to a tailor.   And information does not mean the same thing 
to a communications engineer that it does to a police detective.   There is no reason 
to expect anyone to know what the word information means to an information theorist 
unless he has been told. 

In this report, we shall give the information theorist's definition of inform- 
ation,  and some examples of how the word is used in its technical sense.   In this 
way, we shall indicate why the concept is useful enough to be worth a name of its 
own, and attempt   to show that the concept has enough in common with a nontechnical 
idea of information that no real violence is done to the language in appropriating this 
word to name it.   Then we shall use the new concept as a tool to investigate the prop- 
erties of certain communication systems and detection systems. 

It is possible simply to state a mathematical definition of information   and 
proceed to demonstrate some of its properties.   However, such an approach is like 
ly to be unconvincing, because the definition itself does not indicate just why it was 
chosen     As an alternative, we shall discuss some reasonable and useful properties 
which we can hope a new definition of information will have, and use them to narrow 
down the search. 
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II.   GENERALIZED COMMUNICATION SYSTEM 

A generalized communication system is illustrated in Figure 1.   The 
first element of this system is an information source.   Although we have not yet 
defined what we mean by information, assume that the information source is a 
person talking.   The output of the information source is called a message.    If 
the information source is a person talking, the message is what he says. 

The next element in the communication system is a transmitter ■ The 
transmitter transforms the message in some way and produces a signal suitable 
for transmission over the next element of this system, the communication channel. 
The input to the transmitter is the message, and the output of the transmitter is 
the signal. If the transmitter is a telephone handset, the signal is an electrical 
current proportional to the pressure of the sound waves impinging on the mouth- 
piece of the instrument. 

The next element of this communication system is the channel. This is 
the medium used to transmit the signal from the transmitter to the receiver. 
While going through the channel,  the signal may be altered by noise or distortion. 
In principle, noise and distortion may be differentiated on the basis that distortion 
is a fixed operation applied to the signal, while noise involves statistical and un- 
predictable perturbations.    All or part of the effect of distortion can be corrected 
by applying the inverse operation or a partial inverse operation, but a perturbation 
due to noise cannot always be removed, because the signal does not always undergo 
the same change during transmission.   In practice, the gamut of perturbation runs 
from noise to distortion.   The input to the channel is the signal, sometimes called 
the transmitted signal.   The output of the channel is the received signal, supposed 
to be in some sense a faithful representation of the transmitted signal. 

The next element in this idealized communication system is the receiver. 
This operates on the received signal and attempts to reproduce from it the original 
message.   It will ordinarily perform an operation which is approximately the in- 
verse of the operation performed by the transmitter.   The two operations may dif- 
fer somewhat, however, because the receiver may also be required to combat 
the noise and distortion in the channel.   The input to the receiver is the received 
signal, and the output of the receiver is the received message. 

The last element of this communication system is the destination. This 
is the person or thing for whom the message is intended. 



III.   DEFINITION OF INFORMATION 

An intuitively and esthetically desirable definition of amount of inform- 
ation will be a measure of time or cost of transmitting messages.   When applied 
to a message source, the definition will give us a measure of the cost or time 
required to send the output of the message source to the destination.   When applied 
to a channel, in the form information capacity of a channel, it will give a measure 
of how long it takes to transmit the message generated by one message source, or 
of how many message sources can be accommodated by one channel.   We would 
like to be able to say that two comparable information sources generate twice as 
much information as one, and that two comparable transmission channels could 
transmit twice as much information as one. 

The moment we identify information with the cost or the time which it 
takes to transmit a message from a message source to a destination, an interest- 
ing new fact emerges:   Information is not so much a property of an individual mes- 
sage as it is a property of the whole experimental situation which produces the 
messages.   For example,  such utterances as:   "How are you?, " "Glad to meet 
you, " "Happy Birthday, " "Congratulations on the birth of your child, " "Best Wishes 
to Mother on Mother's Day," carry very little information.   These phrases belong 
to a very small set of polite stereotyped utterances, normally used in certain 
stereotyped circumstances.   The telegraph company has taken advantage of this 
fact by listing on its telegraph blanks some 100 stereotyped messages for use in 
appropriate stereotyped situations.   Tue customer chooses a message, and the 
signal transmitted by the telegraph company contains only the few symbols neces- 
sary to identify the particular message which has been chosen.   At the receiving 
office, a clerk reconstitutes the stereotyped message for transmission to the des 
tination.   The fact that such a stereotyped message contains less information than 
most utterances containing the same number of words is reflected in the lower cost 
to send such a message. 

In order to get an effective definition of information, then, we shall con- 
sider not only the message generated or transmitted, but also the set of all mes 
sages of which the one chosen is a member.   The message source may be con 
sidered as an experimental setup capable of producing many different outcomes 
at different times or under different stimuli, and the messages as the outcome of 
one particular experiment. 

Consider an experiment X whose outcome is to be transmitted (see 
Figure 2).   We will be particularly interested in cases in which the outcome of 
experiment X is an honest message, say written English or a television picture 
but for the moment consider experiments in general.   First of all, suppose ex 
periment X has n equally likely outcomes.   In this special case the definition of 
information evolves naturally from the following argument. 

atthur JD.lUttlcJrtr. 
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The information in the message about X will be some function f(n). 

Suppose X is a compound experiment (see Figure 3) consisting of two independ- 
ent experiments , Y and Z, which have n^ and n2  equally likely outcomes.   The 
total number of outcomes of the compound experiment is the product of nj and n2 , 
Transmitting the outcome of X is equivalent to transmitting the outcomes of Y 
and Z separately.   Thus the information of X must be the sum of the informa- 
tions of Y and Z that is^ 

f(n)=f(n1) +f(n2) 

where 

n   = n1n2. 

This functional equation has many solutions.   For example, f(n) 
might be the logarithm of nj or f(n) might be the number of factors into which 
n may be decomposed as a product of primes.   However, there are other re- 
quirements of f(n).   The time required to transmit the outcome of experiment 
X will certainly be an increasing function of n.   Hence, we need consider only 
those solutions of the functional equation which are increasing functions of n. 
The only such solutions turn out to be constant multiples of log n, that is, 

f (n) = c log n. 

The simplest possible experiment we can imagine is one which has 
two equally likely outcomes, like flipping a coin.   We use the information asso- 
ciated with such an experiment as the unit for measurement of information and 
call it one bit     When this unit has been defined, the information in an experi- 
ment with n equally likely outcomes is then precisely log   n bits. 

Let us now test this definition of information and see if it does the 
things that we expect from it.   For example, what is the information associated 
with an experiment whose outcome is certain?   The experiment might be, for 
example   to see whether the sun will rise between midnight and noon tomorrow. 
There is only one outcome possible: 

n   =   1. 

The information associated with this experiment is 

H   =   log2  1 = 0. 

When the outcome of the experiment is a foregone conclusion,  the information 
carried by the conclusion is zero. 

attbur 31.luttlc.ilnr. 
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What is the information associated with an experiment which has 
eight equally likely outcomes?   According to our formula, the information 
should be equal to * 

log 8=3. 

That is, it should have just three times as much information as that associat- 
ed with flipping a coin. We can show that this is indeed the case by exhibiting 
the following code.   Let the eight equally likely outcomes be identified as 

HHH 

HHT 

HTH 

THH 

HTT 

THT 

TTH- 

TTT 

The form of the code makes it obvious that the outcome of this ex- 
periment can be associated uniquely with the outcome of a succession of three 
coin-flipping experiments, and conversely.   From the point of view of trans- 
mitting the information, it makes no difference whether the code word repre- 
sents the outcome of three coin-flipping experiments or of one experiment with 
eight equally likely outcomes.     Therefore , the information contained in one 
experiment with eight equally likely outcomes is three times that contained in 
an experiment, like flipping a coin, with two equally likely outcomes, that is, 

H   =  log 8   =   3   =  log 2  +  log 2  +  log 2. 

What happens if the various outcomes of the experiment are not equally 
likely?   It is not immediately obvious that the definition of information can be ex- 
tended.   However, we can make a good try in the following way.   Let us assume 
a situation (see Figure 4) where the experiment has n equally likely outcomes, 
grouped into two groups, an upper group of nl and a lower group of n2,  such that 

nl   +  Hj  =   n 

•"All logarithms are to the base 2 unless the contrary is specified. 
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Let us assume that we are not really interested in the particular message gen- 
erated by the experiment, but only in whether the message is of the upper or 
of the lower group.   We then have a situation where the significant output is one 
of two messages, having probabilities 

for the upper message, and 

Pi - ni    +   n2 

P2   = 

n2 

i^    +  n2 

for the lower,  respectively.   One way to find out how much information is asso- 
ciated with this is to start with the information associated with the n equally 
probable outcomes, and subtract the excess information with the ^ or n, possible 
messages in the two sub-groups.   The information associated with one message 
among n equally likely messages   is 

logn 

The information associated with one message among nj^ equally likely messages 
is 

log nj 

This occurs not all the time, however, but only for a proportion of the time 
equal to n j/n.   The information associated with one of nj equally likely messages 
is 

logn2 

and this occurs for a proportion of the time equal to ^/n. 

Performing the arithmetic,  we get 

n n 
H   =   logn-—^—   logni —   log n2 

=   "Pi log P1   ■   P2   logp2. 

I 
I 
I 



Since Pj^ and p2 are less than unity, their logarithms are negative.   Thus, one 
can see that the information H is positive. 

This argument suggests a form for the amount of information in a 
message generated by experiment X having n possible outcomes which are not 
all equally likely.   Let the various outcomes have probabilities pj, p 2,   . .  ., 
pn.   In this case, the amount of information in the message generated by the 
experiment X is defined to be 

H(x)  =   -p, log p   - p   log p   - .. . -p   log p *■*.£.£. n n 

n 

=    ü  "Pi  iogPi 
1=1 

This sum bears a formal resemblance to a quantity called entropy in statistical 
mechanics.   For tliis reason H(x) is also called the entropy function of p^ p2, 

"  "   " Pn" 

Let us now look at this definition to see if we think it is appropriate 
as a measure of information.   First of all, when the n outcomes are equally 
likely, 

1 
Pi   =     n 

log   p.   =    logn 

X    -V0^i    =   2      'n 
1=1 i=l 

=  log n 

logn 

as it should. 

It can be shown that for a fixed number of outcomes, the case of 
equally likely outcomes is the one in which H(x) attains its maximum value. 
This fits our intuitive notion very well:   If all outcomes of the experiment are 
equally likely,  the message gives a maximum of information; but if we have 
some a priori information that one outcome is more probable than another, then 
carrying out the experiment does not give quite so much information. 

artbur ZD.HittlcJnc 
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What if the experiment X consists of two independent experiments 
Y and Z?   (See Figure 5.)  Here the arithmetic is quite complicated, but ultim- 
ately one finds 

H(x)  =  H(y)   f  H(z) 

hi words, the information associated with X is the sum of information of its 
constituent experiments Y and Z.   If Y and Z are not statistically independent* 
(see Figure 6), then 

H(x)   <   H(y)  +  H(z) 

This again is reasonable. Some of the H(y) bits of information about the Y ex- 
periment give information about the possible outcome of the Z experiment and 
so are counted twice in the sum H(y) + 11(2). So far, the definition of informa- 
tion which we have come up with seems satisfactory. 

Let us recapitulate briefly.   We started out with a model for a com- 
munication system which had an information source at one end and a destination 
at the other end.   We have been looking for a definition of information which 
would be proportional to the time or the cost it takes to transmit the message 
from the message source to the destination.   In order to get a firm hold on the 
problem, we successively restricted the information source until it was capable 
simply of putting forth n equally probable messages.   In this case, we success- 
fully defined information as log n.   We have generalized this definition slightly 
to the entropy function, which defines the amount of information generated by a 
message source capable of generating one of a finite set of n messages with 
known probability distribution.   We have verified that this definition of informa- 
tion fulfills some elementary intuitive notions of how a measure of quantity of 
information ought to behave. 

In a way, it does not seem that we have gone very far.   The message 
source that we considered is extremely restricted, for it allows nothing more 
general than signals made up of discrete> uniquely distinguishable characters, 
such as teletypewriter messages.   It does not include any message represented 
by a continuous wave form, such as the sound pressure of speech or the video 
signal which will generate a television picture.   But surprisingly, the major 

*Imagine the experiments Y and Z performed many times, and suppose that 
the results of the Y experiment are classified into sets according to the outcome 
of the Z experiment.   Examine the probability distribution of the results of the 
Y experiment in each set:   if the distribution does not vary from set to set, 
Y and Z are statistically independent.   In plain but less precise language, the 
expected result of Y is the same whatever the result of Z. 

10 



I 
hurdle in defining quantity of information has already been passed.   In spite of 
the fact that speech waves and television video signals are continuous signals, 
in any real life situation it is possible to distinguish only a finite number of 
tones or of picture intensities.   The case of continuous messages can be re- 
duced to the case of discrete messages already discussed above, and the defini- 
tion of quantity of information can be directly adapted to this use. 

11 

arthur ai.\ittlc,3!nr. 
S-7001-0307 



EXPERIMENT X 

EXPERIMENT   Y 
H(y) 

INDEPENDENT 

EXPERIMENT Z HU) 

H(x) 

FIGURE 5        ILLUSTRATING THE SUMMING OF INFORMATION 
FROM TWO INDEPENDENT SOURCES:   H(x) = H(y)+ H(z) 

EXPERIMENT X 

EXPERIMENT Y 
H{y) 

NOT INDEPENDENT 

EXPERIMENT Z 
H(z) 

H(x) 

FIGURE 6        ILLUSTRATING THE SUMMING OF INFORMATION 
FROM TWO NONINDEPENDENT SOURCES: 
H(x) < H(y) + H(z) 

12 



1 

IV.   APPLICATIONS TO DISCRETE CHANNELS 

Let us now look at some applications of the definition of information 
which has just been stated.   Let us suppose that the experiment under considera- 
tion is that of shuffling a deck of 52 cards, and that the message is the particular 
order of the cards in the deck after shufQing.   We shall define a perfect shuffle to 
mean that all of the possible orderings of the 52 cards are equally probable.   Let 
us see how much information there is in a perfect shuffling experiment.  The num- 
ber of possible arrangements of the cards,  according to well known formulas in 
combinatorial analysis,  is 52.' *   The amount of information associated with this 
experiment is 

log 52.'   =  225.7 bits. 

Now let us look at another kind of shuffling experiment: Cut the deck 
into two packs,  top (T) and bottom (B), at a random place, and then interleave T 
and B together.   The interleaving operation consists of 52 steps,  at each of which 
the bottom card of either T or B falls onto the top of the shuffled deck.   The shuf- 
fle is completely described by a sequence of 52 letters T or B.   (The i-th letter is 
T if at the i-th step the card fell from the bottom of packet T.)  The position of the 
cut may be found from the sequence by counting the number of T's.   There are 
only 2     possible sequences of T and B, and hence only 252 possible outcomes of 
the shufflingexperiment.  Even if we suppose all these outcomes to be equally 
probable,  the maximum amount of information associated with this shuffling ex- 
periment is log of 252 , or 52 bits . 

Suppose we now ask the question,  how many times do you have to cut 
and interleave a deck in order to achieve something approximating a perfect 
shuffle?   We learned earlier that the information associated with a sequence of 
independent experiments is not greater than the sum of the informations developed 
by the experiments independently.   Each cut and interleave shuffling operation 
generates at most 52 bits of information.   A perfect shuffle generates 225.7 bits 
of information.   Therefore,  no sequence of fewer than 5 cutting and interleaving 
shuffles could possibly generate a perfect shuffle.   We can say with confidence 
that to shuffie a deck fairly by cutting and interleaving, you must repeat the 
operation at least five times.   There is no guarantee,  of course,  that this will 
produce a perfect shuffling operation:   All we have found out is that if you cut and 
interleave fewer than five times,  it certainly will not produce a perfect shuffle. 

»n'.   =   n(n-l)---3.2.1,  e.g.,  3'.   =   3.2.1   =   6,  4'.   =  4.3.2.1=24. 

13 
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As another example, let us consider the information content of ordinary 
written English.   To simplify the problems,  let us Calk about "telegraph English, " 
which has no punctuation, no paragraphs,  no lower case letters, and so forth. 
In this case, we have 27 symbols, the letters a to z and a space. 

To get an upper limit to the amount of information, we can simply 
assume that all 27 symbols are equally probable.   This sets an upper limit to the 
amount of information of log 27 = 4.76 bits per letter. 

This estimate is certainly pessimistic, because we know that the letters 
are not equally probable.   By carrying out a count of letters in a sufficiently large 
sample of text, we can get an idea of the relative probabilities of spaces and letters 
in English text.   Using this data, we can apply the formula we have developed to 
find out that the information in English text is not more than about four bits per 
letter. 

This estimate can be refined somewhat with observations taken from 
cryptography.   Consider the construction of a substitution cryptogram.   In such a 
cryptogram, for each letter in the alphabet some other letter is substituted.  The 
table which tells which letter is substituted for which is called the key, and it is 
not hard to find that the number of possible keys is 26'..   If we view the cryptogram 
(see Figure 7) as a compound experiment X whose two parts are Y, the communi- 
cation of the clear text,  and Z, the choice of a key from one of 26'. possibilities, 
the total information associated with this compound experiment is no greater than 
H(y) + log 26'. bits .   We understand that substitution cryptograms of 40 letters can 
usually be solved, i.e., that given a 40-letter CJ yptogram, the information in both 
the text and the key can be recovered.   Since 40 letters can contain no more than 
40 log 27 bits of information,  one concludes tliat 

40 log 27 ^ H(y) + log 26'. 

and hence that the information in a 40-letter English message is 

H(y) «C 40 log 27 - log 26'. —100 

The information in an English message is consequently no greater than 2.5 bits 
per letter. 

By using more and more refined arguments, it has been shown* that the 
information content oi ordinary English text is about one bit per letter. 

"See Reference 6 in the Bibliography. 
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V.   ENCODERS 

It is useful here to introduce the idea of an encoder.   An encoder may 
be described as a purely deterministic device which converts a message in one 
set of symbols into a new message, usually in a different set of symbols.   For 
example, a handwritten English message may be converted into a pattern of 
holes punched on a tape, then into a sequence of electrical impulses on a tele- 
type wire, back into English letters by a teletypewriter, and finally translated 
from English into French.   The first three of these four operations are revers- 
ible encodings.   That means that each incoming message can be encoded in only 
one way, and conversely, that no two different incoming messages are ever en- 
coded alike.   Translation from English into French, however, is not usually an 
encoding, because it involves random choices.   For example, the English word 
"robbery" may be translated into either "vol" or "brigandage."   Even assuming 
that all such choices were settled in advance, one would undoubtedly find some 
French words representing several English ones, for example, "vol" for both 
"robbery" and "theft."   Then the encoding would not be reversible. 

A reversible encoder transforms messages into encoded messages 
in a one-to-one way; one gets the same amount of information from the encoded 
message as from the original message.   One would like to conclude that a re- 
versible encoder driven by an information source is a new information source 
which generates information at the same rate as the driving source,   However, 
this conclusion requires further assumptions about the encoder.   For example, 
the encoder might just store the incoming message, and re-emit it at a slower 
rate.   Such an encoder would ultimately require an unlimited amount of storage 
space.   However, if a reversible encoder has only a finite number of internal 
states (for example, if it is made from a finite number of relays or magnetic 
cores or switching tubes with a finite memory), then the encoder output has the 
same information rate as its input. 

We also need to talk about an idealized noiseless channel for trans- 
mission of discrete messages.   An ideal channel has a finite list of symbols 
which it can transmit without error.   A certain time is required to transmit 
each symbol.   The times required to transmit the various symbols may not be 
the same. 

The combination of a channel fed by a source may be regarded as a 
new source which generates the message at the receiving end (see Figure 8). 
The information rate of the received message will depend on the transmitting 
source.   For example, suppose a channel can transmit English letters and word 
spaces at the rate of one symbol per second.   When the channel transmits 
English text, it has a rate, as we have seen before, of about one bit per second. 
If the same channel is connected to a source which produces letters and spaces 
independently, with probability 1/27 for each kind of symbol, the rate is 
log 27 = 4.76 bits per second.  The largest rate at which one can signal over a 
channel, for all choices of the source, is called the capacity of the channel. The 
capacity of the English letter channel just discussed is 4.76 bits per second, 
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In the example : of the English text source connected to the English 
letter channel, one feels that much of the capability of the channel is wasted. 
With an English text source as input, the channel transmits information at a 
rate much lower than that attainable with other sources. 

Is it possible to speed up the source and still use the same channel? 
The answer is yes, and an encoder provides the means for doing so.   It is 
possible to encode English text reversibly in such a way that the encoded mes- 
sages use fewer letters than the original messages.   Then the encoded text may 
be transmitted at a higher information rate than the original text could. 

In general, if we say that a channel has a capacity of C bits per 
second, we mean that the output of any source of information rate less than C 
bits per second may be transmitted over the channel by placing a suitable re- 
versible encoder between the source and the channel.   No reversible encoder 
will transform the output of any source having an information rate greater than 
C so that it can be transmitted through the channel without error. 

To illustrate how the encoding process works, consider a very simple 
example.   The source has two symbols:   A, with probability 4/5; and B, with 
probability 1/5.   Successive symbols are generated independently, at a rate 
of 80 per minute (see Figure 9). 

The information rate of this source is 

H  =  - 0.2 log 0.2 - 0.8 log 0.8 

=  0.72 bits per letter 

M  =  0.72  |° 
T 60 

=  0.96 bits per second 

So much for the source:   now for the channel.   The channel (see 
Figure 10) transmits two symbols, zero and one, without constraint, and re- 
quires precisely one second of transmission time to transmit either symbol. 
The channel capacity is thus one bit per second. 

The simplest encoder we can imagine is the one shown in the follow- 
ing table: 
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Weighted Number 
Letters Probability Digits of Digits 

A .8 0 .8 

B .2 1 .2 

1.0 

The total weighted number of digits is 

1.0 digits per letter = 80 digits per minute. 

An example of a stream of letters and their encoding digits is 

ABAAAABAAAAABABAAAAAAAABABA^AA 
010000100000101000000001010000 

With such an encoder, 80 digits per minute are generated, and the channel 
will not tolerate them.   A better encoder is shown in the next table. 

Weighted Number 
Letters Probability 

.64 

Digits 

0 

of Digits 

AA .64 

AB .16 10 .32 

BA .16 110 .48 

BB .04 111 .12 
1.56 

Here, instead of encoding one message letter at a time, we group the message 
in bunches of two letters, and encode the two letters together.   The relative 
probabilities of various groups of two letters vary over quite a range, as in- 
dicated in the second column.   In uider to gain efficiency in the coding, we use 
a short group of digits for a more common letter group, and reserve longer 
groups of digits for the less common letter groups,   The last column, weighted 
number of digits, is the probability of a given digit-group multiplied by the num- 
ber of digits in the group.   Summing the last column over all letter groups, one 
finds an average digit-group length of 1.56 digits for two letters, or .78 digits 
per letter.   The encoder turns out 62.4 digits per minute, still more than the 
channel will take.   The same stream of letters is now encoded thus: 

ABAAAABAAAAABABAAAAAAAABABAAAA 
10  0  0 110  0  0 110 110  0  0  0 10 10  0  0 
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The thirty letters are now encoded in 24 digits, 9 one's and 15 zero's.   The 
reader can verify that if the digits are run together without spaces, they can 
still be separated unambiguously into symbols from our finite alphabet.   Such 
a code is called segmented. 

We can carry this a bit further, as shown in the next table. 

Weighted Number 
Letters Probability 

.512 

Digits 

0 

of Digits 

AAA .512 

AAB .128 100 .384 

ABA .128 101 .384 

BAA .128 110 .384 

ABB .032 11100 .160 

BAB .032 11101 .160 

BBA ,032 11110 .160 

BBB .008 Hill .040 

2.184 

In this example, each group of three letters is encoded in a single digit-group. 
The more common letter groups are encoded in short digit-groups, and the 
less common groups in longer digit-groups.   Doing the arithmetic exactly as 
before, we find that the average digit-group length for three letters is 2.184 
digits.   This results in an average of .728 digits per letter, and the coder 
produces 58.24 digits per minute, which can be transmitted by the channel. 
We already know that the information content of this source is .72 bits per 
letter, and therefore, no reversible encoder could encode it in less than .72 
digits per letter on the average.   The encoder illustrated is only about 1% less 
efficient than the ideal.   The stream of letters given before is now encoded thus: 

ABAAAABAAAAABABAAAAAAAABABAAAA 
101   0  110    0 11101   0    0  100  101    0 

The stream of 30 letters is now encoded in 22 digits, 11 one's and 11 zero's. 
The fact that the number of one's and zero's grow closer and closer together 
is not an accident.   We know that the maximum capacity of a two-symbol source 
is reached only when the two symbols have equal probability.   Our coder must 
bow to this fact if it is to use the channel efficiently. 
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This encoder must have some storage capacity, and must introduce 
some delay.   For example, three incoming letters must arrive and be stored 
before the outgoing digit-group is identified.   Furthermore, the long digit-groups 
are transmitted more slowly than the incoming three-letter groups are generated; 
and signals must be stored until a string of AAA's allows the encoder and trans- 
mission channel to catchup.   In this simple example, no finite storage capacity 
will guarantee flawless performance, but the probability of exceeding a storage 
requirement of a few hundred symbols is extremely small. 

The above example illustrates the general coding theorem, which can 
be loosely expressed as follows:   Given a channel and a message source which 
generates information at a rate less than the channel capacity, it is possible to 
devise an encoder which will allow Lhe output of the message source, suitably 
encoded, to be transmitted through the channel. 
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VI. CHANNEL CAPACITY 

A. CHANNEL CAPACITY OF AN ANALOG CHANNEL 

In the coding theorem stated in the previous section, we have implicitly 
defined the channel capacity of a channel:   If a channel can transmit C binary dig- 
its per second (but no more), its channel capacity is C.   It is easy to apply this 
definition to a channel which transmits strings of zero's and one's at a fixed rate, 
as in the example above.   It is equally easy to apply it to a teletypewriter trans- 
mission channel which transmits sequences of letters and spaces at a rate fixed by 
the terminal equipment.   But this is not really very useful, because there has 
never been very much doubt about the capacity of such a channel.   Suppose we 
have a more general channel:   How do we determine its channel capacity? 

This question really hinges on a determination of how many distin- 
guishable signals the channel can transmit.   To answer this question, we would 
like to have a way of identifying individual signals and distinguishing them one 
from another.   What we really need is a catalog of signals. 

Let us take as an example a channel capable of transmitting continuous 
waves with a finite bandwidth, free of distortion,  but with uniform Gaussian noise 
of known power.   Let us now identify and catalog the signals which can be trans- 
mitted through this channel. 

We can get immediate help from the sampling theorem, a purely 
mathematical theorem now well known in the communication art, which will be 
stated here without proof (see Figure 11). 

If a funtion of time f(t) contains no frequencies higher than W cycles 
per second, the function is uniquely determined by giving its ordinates a series 
of points spaced 1/(2W) seconds apart. 

If we now let W be the bandwidth of the communication channel in 
question, we can identify any signal which the channel can transmit with a sequence 
of ordinates spaced 1/(2W) seconds apart.   If we take a piece of this signal lasting 
only a finite time, say T, then the number of ordinates falling in this time range 
is 2TW. 

We can now introduce some geometrical ideas to help us along with 
the cataloging process (Figure 12).   A quantity which is identified by one number 
can be represented as a point on the straight line.   A quantity identified by two 
numbers can be represented by a point on a plane:   This is the familiar procedure 
used to plot graphs     A quantity identified by three numbers can be represented 
by a point in three-dimensional space.   Similarly, our signal identified by 2TW 
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FIGURE 11        SAMPLING OF A BAND-LIMITED FUNCTION OF BANDWIDTH W 
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numbers can be identified with a point in a (necessarily imaginary) geometrical 
space of 2TW dimensions.   We imagine the 2TW identifying numbers to be the 
coordinates of a point, measured along 2TW mutually perpendicular axes. 

If we compute energy E in the signal,  we find,  except for a scale 
factor, * that 

p   = 1 V       2 
2W    ZJ    

Xn 

where xn is the nth coordinate, i.e.,  the nth sample of f(t).   If we compute the 
distance from the origin to a point in the space which represents the same signal, 
we find 

d -Jl ^ 
Thus 

d2  =   2WE 

=   2WTP 

wheic F is the bigaal power.   Iii oilier WüIUS,  in tills geometric visualization of 
continuous signals,  geometrical distance is proportional to the square root of 
the power.   The distance between two points in space is proportional to the square 
root of the power of the difference of the two signals which the points represent. 
Signals of power less than P all lie within the  sphere of radius d   =   •Jl'WTP. 

Now let us consider what happens to a signal as it goes through our 
channel.   In Figure 13, we follow the geometric analogy, but represent the space 
of 2WT dimensions as two-dimensional space.   A given input signal or output 
signal is represented by a point in the space.   The distance between two points is 
proportional to the square root of the power of the difference of the two signals. 
Assume that the signal power is P, and that the power addedby the noise in the channel 
is N.   Assume that we know the position of the point in space representing the 
signal before it is transmitted through the channel.   Where is this point at the 
output end of the channel?   We do not know exactly, but we know approximately. 
It is somewhere in a sphere of radiusN/2WTN centered around the point represent- 
ing the transmitted signal.   In the figure, this sphere is represented by a hatched 
circle.   Just as the area of a circle is proportional to the square of its radius, 
and the volume of the sphere is proportional to the cube of its radius,  so the 

''If the signal is electrical and f(t) is the instantaneous amplitude in volts, the 
scale factor is the real part of the circuit admittance in mhos.   All sums are 
over the range (1, 2TW), unless otherwise stated. 
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volume of this hypersphere is proportional to the 2WT power of its radius,  say, 

' 2WT 
V =   K( J2WTNJ 

\ / 
where K is a constant whose numerical value is not important here. 

The output of this channel consists of a signal plus noise,  and has 
power approximately P + N.   If we consider the whole family of possible outputs, 
they lie in a sphere of radius/s/2WT(P + N).   In the figure,  this is represented 
by the large circle.   The volume of this hypersphere is 

V =   Kjsy^WT^-' w ' 2W1 

where K is the same unspecified constant as before.   Now let us assume that we 
have a number, M,   of transmitted signals such that the regions of uncertainty 
associated with them when they are perturbed by the noise are nonoverlapping. 
Then the large hypersphere contains M nonoverlapping small hyperspheres.   The 
volume of the large hypersphere is at least M times the volume of one of the 
small hyperspheres .   If we write down this inequality and solve for M we get 

/" "\ S \ II 12WT /  / \2WT 
K(72WT(P+N)j ^MK 72WTN 

2 WT 
//NTP\

ZVV1 TW 

The ratio P/N is the familiar signal-to-noise ratio    We can find the average rate 
of information transfer thus 

logM<^   TWlog(l+P/N) 

^    log M ^    W log (1 + P/N) 

This gives us an upper limit for the channel capacity of this channel. 

To get a more useful result,  we need a lower limit also.   In fact, the 
lower limit turns nut to be the same as the upper limit:   We have an equality in- 
stead of an inequality.   The details of the mathematical development are rather 
complex, and it is unnecessary to work them out here     However, we shall 
sketch the idea behind the pre of, because it yields some important results. 
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The idea is as follows.   Oie fixes a certain number, M,  of points in 
this space as signals,  without regard for spacing to avoid overlapping regions, 
x^ particular selection of M points constitutes a particular code for transmitting 
signals.   After having picked M particular points, one computes the probability 
of error at the receiving end.   This"Is the probability that a point in the space 
(observed at the receiving end of the channel) which is close to one code point is 
also close enough to another point so that it might be wrongly identified.   The 
probability of error is then averaged over all possible choices of codes.   After 
going through all the arithmetic, geometry,  and trigonometry, we obtain the 
following result: 

i logM^Wlog(l+P/N)  +   ^logEav 

where E     is the averaged probability of error.   (Note that E    <^ 1,  so that av o     r- J av 

log E     is negative.) 

We need to observe two things about this inequality.   First,  for some 
code choices, the error rate must be at least as low as the average error rate. 
Second,  if we make T sufficiently large, we can make 1/T log E     as small as 
desired, and hence we can make 

— log M 
i 

as close as we desire to 

W log (1  +  P/N) 

and still make the average error rate as small as we please.   Another way of 
saying this is 

l.u.b. <i  logMf     =   W logO   ! P/N) 

(where l.u.b. signifies least upper bound) for any value of average error rate, 
no matter how small. 

We define this bound as the channel capacity, and can assert with 
confidence that there exist codes which permit transmission at a rate as close as 
desired to the channel capacity. 

C   =   W log (1 + P/N) 

with an arbitraily small error rate. 
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Some secondary conclusions can be drawn from this argument.   First, 
the points which represent the signals in the code must be fairly well distributed 
throughout the space.   This means that the wave form of these signals will look 
more or less like noise, not like anytliing with systematic structure. 

Secondly,  in order to achieve high signalling rates and low error rates, 
it is necessary to use a space with a large number of dimensions and a large 
number of distinct signals.   For a model whose performance is reasonably typical 
of what can be done,  Fano* finds error rate and signalling alphabet size to be 
related by 

P(e)'^K 2 - va C/R 

where 

or 

P(e) is the probablility of error 

K is a constant of the order of unity 

v is the number of binary digits constituting a message 

2   is die nuiubei ui uistinct messages in the alphabet 

C is the channel capacity 

R is the actual signalling rate 

and a is a particular function of R and C of the following form: 

■R\       1       R 
a = a ^ ^ i 

AR 
C 4  ^    C ^ 

The model is a straightforward one in which the alphabet consists of two orthogonal 
signal wave-forms of equal energy, S, and equal duration,  T; and in each time 
interval of length T,  one and only one of the wave-forms is transmitted.    For 
example, to achieve an error probability P(e) = 10 "5 with a signalling rate 95% 
of the capacity, i.e.,  R/C = ,95, requires v ~25, 000 bits per message . 

*See Reference 4 in the Bibliography. 
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There is a third effect which is troublesome:   In such a coding system, 
the threshold effect gets very sharp.   As long as the noise power density is no 
greater than that assumed, the error rate is small, but if the noise power exceeds 
a certain level, then a point is reached very suddenly where the error rate jumps 
to a large value. 

Nevertheless, this formula is very useful, for it provides a standard 
of comparison against which transmission channels and transmission systems 
can be judged.   As we shall see presently, it also suggests ways to increase the 
channel capacity of certain practical types of communication systems. 

B.   CHANNEL CAPACITY OF SOME REPRESENTATIVE CHANNELS 

Let us now compute the channel capacity of some typical transmission 
channels.   First, what is the channel capacity of a 100-word-per-minute tele- 
type (TTY) channel?   This channel can transmit 600 letter or space characters 
per minute,  or 10 characters per second.   We saw before that the maximum in- 
formation associated with one such character is 4.76 bits, so that the capacity of 
this channel is 47 .6 bits per second - say 50 bits per second. 

What is the channel capacity of an audio circuit for the transmission 
of speech?   Being rother liberal, let us say that the signal-tn-nnise ratio P/N is 
36 db, and that the bandwidth W is 4500 cycles per second.   Such a channel is 
better than a telephone channel,  and comparable to an AM broadcast radio 
channel.   Working out the formula, we find that the channel capacity is 48, 000 
bits per second - let us say 50, 000 bits per second. 

What is the channel capacity of a channel used to transmit a video 
signal?   Being rather liberal again, let us say that the signal-to-noise ratio P/N 
is 30 db, and that the bandwidth W is 5, 000, 000 cycles per second.   Application 
of the formula in this case yields a channel capacity of 50, 000, 000 bits per 
second. 

Thus, a ^oice circuit has about 1, 000 times the channel capacity of a 
teletypewriter channel,  and a video circuit has about 1, 000 times the channel 
capacity of a voic:; circuit. 

But is i: possible to send the output of 1,000 voice circuits through a 
single video channel, or to send the output of 1, 000 teletypewriter circuits through 
one voice channel?   Not necessarily.   As a matter of fact, many channels designed 
for video transmission will transmit very nearly 1, 000 voice circuits, but no one 
has ever squeezed 1, 000 teletypewriter channels into one voice channel of the 
kind just described and we do not expect that anyone ever will accomplish this 
feat. 
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We are usually satisfied to get 16 teletype channels into such a voice circuit, but 
sometimes use more elaborate equipment to get 48 circuits.   By the use of ex- 
tremely elaborate terminal equipment, we appear to be able to get 100 or even 
200 teletype channels into such a voice circuit. 

There are three reasons for this limitation.   First, an actual voice 
transmission channel usually is not an ideal channel in the sense we have described 
it, uniform, invariant with time, with no perturbation other than random noise. 
Most radio and telephone voice channels have distortion and nonrandom noise, 
such as interference and cross talk, but of a nature which does not interfere with 
human voice communication.   These perturbations may disturb other kinds of 
signals, and hence effectively reduce the channel capacity.   Second, when we 
deal with discrete signals, we normally have a very small signalling alphabet, 
and at the same time demand low error rates.   For example, if we send in the 
form of pulses through an apparatus that detects the pulses one at a time,  so that 
v = 1, about five pulses are required for each character; and if we require a 
character error rate of less than 10"4, then the error rate for an individual 
pulse must be P(e)^'2.10'   .   Solving the above equation for R/C gives R/QvO.OS; 
i.e., the number of teletype channels which could be multiplexed through one 
voice channel is about 0.03 x 1000 = 30.   This value compares reasonably well 
with the observed value of 16, especially when we consider that the voice circuit 
for which the teletype multiplexer must be designed is usually a marginally 
satisfactory circuit having lower signal-to-noise ratio and smaller bandwith than 
the audio circuit described above.   This consideration does not prevail in con- 
verting from television to voice and back, for the human listener does not decode 
the speech one bit at a time.   He rather listens for whole phonemes,  syllables, 
words,  and even sentences before committing himself finally to a decision about 
what he has just heard. 

Third, there is some loss,  nevertheless, when a large channel is sub- 
divided, just as wood is wasted when a tree is sawed into planks .   However, in a 
system (such as the Bell System L-3 cable carrier transmission system) which is 
designed to carry voice or television signals,  the trade-off is at the rate of 600 
to 800 voice channels per television channel,  and most of the remaining discrep- 
ancy is accounted for by "Guard bands, " empty bands of frequency inserted be- 
tween adjacent channels to make channel separation easier at the terminals. 

Let us recapitulate briefly.   We have defined quantity of information, 
and the rate at which information is generated by a discrete source.   We have 
computed the information generated by certain kinds of sources.   We have de- 
fined the channel capacity of a discrete channel.   We have defined the channel 
capacity of a band-limited channel with Gaussian white noise,  and used the defini- 
tion to compute the channel capacity of certain kinds of channels.   We have stated 
in loose form a theorem about encoding,  to the effect that any channel can transmit 
the information from a source which generates information at a rate less than the 
channel capacity of the channel. 
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C.   COMPARISON OF VARIOUS PRACTICAL COMMUNICATION CHANNELS 

Let us now go back to the formula expressing the channel capacity of a 
band-limited noisy channel,  and do some manipulation   with it.   For example,  how 
much energy must be supplied to transmit one bit of information? 

Let 

P  =  signal energy in watts per cycle-per-second 

W  =  signal bandwidth in cycles-per-second 

Then 

PW  = signal power in watts 

Since 

C  =  channel capacity in bits per second 

then 

PW 
C 

Using the formula above for channel capacity C, one finds 

—^  =  energy in joules per ßit 

PW  =  N       ^/N_ 
C log ( 1 + P/N) 

where 

N =  noise energy in watts per cycle-per-second. 

In many practical situations, the noise energy per unit bandwidth is 
physically traceable to thermal effects,  and is related to temperature by the 
formula 

-23 
N  =  KT  =  1.37-10       T watts/cycle-per-second 

where K is Boltzmann's constant and T is the absolute temperature.   This rela- 
tion leads to the definition of an effective temperature or noise temperature 

T     =  N/K 
e 

even when the actual noise N may not be of thermal origin. 
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The number of joules required to transmit one bit is directly propor- 

tional to the noisiness or noise temperature of the channel, a relation which is 
quite understandable,  and also to a certain function of the signal-to-noise ratio 
P/N.   This function is plotted (Figure 14) as a function of the signal-to-noise ratio 
for easier analysis of its behavior.   It is a steadily increasing function of P/N. 
Its minimum value is 0.693, which is approached when P/N is zero, that is, when 
the signal is very small compared to the noise.   When the signal power density 
is as great as the noise power density, that is, when P/N equals one, the value 
of this function has risen from .693 to unity.   Beyond that point it rises very 
rapidly.   For the signal-to-noise ratios that we like to think of in communica- 
tions, 30 or 40 db,  this function exceeds 100.   The energy required to transmit 
one bit of information is 100 times greater when the signal-to-noise ratio is 
30 db than when the signal-to-noise ratio is less than zero db. 

This observation is not new, but it still comes as a shock to a great 
many people.   Many will insist that it is not in accordance with experience,   Why 
do we persist in using communication systems which use so much more energy 
than necessary to transmit information? 

There are three principal technical reasons why most communication 
systems do not approach this ideal. 

First, the modulation system does not make efficient use of bandwidth 
in reducing power required. 

Second, the signal in its original form does not make efficient use of 
the channel provided, that is, the signal characteristics and the channel charac- 
teristics are not well matched. 

Third, the information content of the signal is not commensurate with 
its characteristics.   Most signals which it is desired to transmit contain a great 
deal of unnecessary detail, that is,  they are greatly redundant.    Redundancy 
may be useful, since it adds to the reliability,  or accuracy of the message,  but 
it is not usually present in a very efficient form. 

All of these technical objections could be overcome or alleviated,  at 
least in some degree,  but the ultimate decision faced by the communications sys- 
tem engineer is based not on the desire to transmit a bit with the least possible 
amount of energy, but on the desire to satisfy a particular communication need 
at the minimum cost,   hi most communication systems designed in the past, the 
cost of power has not been one of the principal system costs.   However,  when 
power does become an important part of the cost of the communication system, 
the designers will be driven to systems which operate with broader bandwidth and 
lower signal-to-noise ratio,  in order to make the best possible use of power. 
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In electronics systems involving the use of unattended equipment in 
satellites,  power becomes an important factor because it must be generated by 
solar batteries or by some other relatively uneconomical means—uneconomical 
not only because of initial cost,  but also because the power supply may take up a 
significant part of the total available space and weight.   In passive communication 
satellite experiments such as Project ECHO, power is once again one of the 
limiting factors in performance .   There is good reason to believe,  therefore, 
that designers of communication equipment for use in active and in passive 
satellite communication relay systems will try to exploit the advantages of 
broad bandwidth, low signal-to-noise-ratio communication in the future. 

In sending signals by radio, we can use various systems of modulation. 
These require various bandwidths and powers,  and have various advantages 
depending upon the signal characteristics and system requirements.   Let us see 
how close they approach the ideal of using only 0 693N joules to send a bit. 

We will consider first three comparatively well-known modulation 
schemes: single sideband modulation (SSB), frequency modulation (FM), and 
frequency modulation with feedback (FMFB). 

In single sideband modulation (SSB).   a constant radio frequency is added 
to all frequencies in the baseband (voice,  TV,  or other) signal.    For example,  a 
baseband signal a cos 2 T ft might be represented as a modulation wave 
oCOs2ic(f0 + f)t,   where fo is the carrier frequency.   Figure 15 a and d illustrates 
the spectra of such signals.    The rf bandwidth required is the same as the base- 
band bandwidth b    The signal-to-noise ratio in the recovered baseband signal 
is the same as the rf signal-to noise ratio (assuming that no noise is added in 
amplification).   That is, 

S   =  P 
N  _ N 

where 

S   =   baseband signal spectrum power density in watts per cycle- 
per-second (joules) 

and P and N are defined as before.   Thus 

C   =  W log (1 + S/N) 

=   W log (1 + P/N) 
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and 

PW     _ N P/N 
C log (1 + P/N) 

P/N 
=   (0.693N) 1.44 

log (1 + P/N) 

The system is less efficient than the ideal by a factor 

P/N 
1.44 

log (1 + P/N) 

For output signal-to-noise ratios required for good quality speech or television, 
this factor makes the system several hundred times less efficient than the ideal. 
The main advantage of SSB is its economy of bandwidth. 

In amplitude modulation (AM), the baseband signal a cos 2 n ft is 
represented by the modulated signal (l+cos^nft) (cos 2n fot).   By trigonometric 
identities this signal can be shown to be equal to 

(a/2) cos 2 - (f   - f) t+cos 2Tt f t+^/2) cos 2 TT:(f   + f)t 
o o o 

The AM spectrum is illustrated in Figure 15b.   The constant carrier term, 
cos 2 K f0t can be removed by filtering to get a suppressed carrier AM signal, 
whose spectrum is illustrated in Figure 15c. 

In AM, an rf band twice as big as the base bandwidth is required, be- 
cause two sidebands are transmitted.   At full modulation,  AM requires three 
times as much power,  and with ordinary signal statistics,  many times as much 
power,  as SSB.   However, when the carrier is suppressed, the system has the 
same power requirement as SSB, but still requires twice the bandwidth.   The 
chief advantage of AM over SSB is the circuit simplicity. 

In frequency modulation, the baseband signal n cos 2 rtft is represented 
by the modulated signal 

cos (2 7if   t + M cos 2"; ft) 
o 

This cannot be expressed as a finite number of cosinusoids.   How- 
ever, it can be expressed as 

V  J   (M) cos     2 - (f    +  n f)t 
/ .    n i o 

where J (M) is the Bessel function of order n and argument M. 
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This is illustrated in 15e for M = 2.   Now it is a mathematically valid and prac- 
tically justifiable observation that when |n|>M + 1, Jn(M) is very small,  and we 
can ignore those components.   This results in a practical estimate of rf band- 
width . 

B  =   2   (M+l)b 

Another way of justifying this heuristically is to say that the instantaneous carrier 
frequency varies from fo - Mf to fo +  Mf  and carries with it a local sideband 
pattern of width 2b, just as an AM signal does.   The estimate is rough, but is 
amply justified by its practical usefulness and validity, 

B   =   2(Af+ b)   =   2(M+ l)b 

If (P/N) is the rf carrier-to-noise power ratio,  the baseband signal-to-noise 
ratio (S/N) is 

| =   3(P/N)M2 (M+l) 

This formula looks abstruse,  and is somewhat difficult to derive, but it is really 
quite plausible, as can be seen from the following argument.   Suppose we imagine 
a system in which the total transmitted power (carrier power) is fixed, but the 
iiiOOUi-«^L±Uli    XilU^A   iVl    XO      Vd..L-LU-lJiC- . illV^    wUL^Ui-    ^Ji-    LI 1^    UOL^WL^J.    iO    *A   Ai.!^ lAO U-t. W     <J±    i-XiC 

frequency deviation of the carrier, and its amplitude is therefore proportional 
to M.   The signal power S therefore varies as M2 : 

S -   M2 

On the other hand, the spectral power density P of the transmitted signal is 
related to the carrier power P   by 

Hence 

P   = 

S 

P 

P P 
c c 

B       2(M + l)b       M + 1 

M   ^M + t) 

or 

S        P        2 
—  «  —   M   (M + 1) 
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There only remains the evaluation of the constant of proportionality.   A more 
detailed analysis shows that the correct value is three.   The analysis is com- 
plicated by the fact that the demodulated noise spectrum density of an FM channel 
is not uniform, but is proportional to demodulated frequency. 

For an FM detector system to work, it is necessary that the carrier 
amplitude be large in comparison with the noise amplitude.   It is not hard to see 
why: the discriminator must be able to follow unambiguously the coherent pattern 
of peaks and dips in the sinusoidally oscillating signal.   If the noise is too big,  a 
loop of the sinusoid will be cancelled out from time to time, or an extra peak or 
dip added.   Under these conditions, the discriminator will make an erroneous 
identification of phase and will skip or add an apparent full cycle.   Practically 
speaking, this hazard is reduced to negligible proportions only if the carrier-to- 
noise ratio is at least 

~  =   16,  or 12 db 
N 

As the index M is increased, the required rf bandwidth is increased; hence, the 
total rf noise is increased, and the minimum permissible transmitted power is 
increased.   On the other hand,  increasing the deviation makes the baseband 
signal-to-noise ratio greater than the carrier-to-noise ratio. 

The channel capacity at minimum power level is 

C   =  b log (1 + S/N) 

=  b log 

Hence, the energy per bit is 

2 71 1 +48MZ (1 +M) ! 

PB   -   (0.693N) 46(1+M) 

C    "   ^•"7""'   log   [1+48M2(1 + M)] 

The energy is greater than the ideal of 0.693N by a factor 

46 (1 + M) 

log i 1 + 48M2 (1 + M)| 

This factor has an optimum value of about 15, consistent with an index, M, of two 
and an output, S/N, of 600 or 27 db. Thus, ordinary FM is at best about 15 times 
less efficient in the use of power than the ideal.   The efficiency of FM is relatively 

39 

arthur ZD.IUttleJnc. 
S-7001-0?07 



.1 

insensitive to variation of index M from 1 to 4.   The corresponding range of signal- 
to-noise ratios is 20 to 35 db.   This range is of considerable practical interest for 
voice and many other analog signals. 

Figure 16 shows a block diagram of frequency modulation with feedback, 
called also Chaffee system or FMFB. 

In an FMFB system, we use the output of the discriminator to cause a 
beating oscillator partially to track changes in carrier frequency.   Of course, it 
cannot track perfectly, for in that case the output of the mixer would have constant 
frequency and there would be no signal for the discriminator to detect.   However, 
if a frequency change 5f at the detector causes a change |i6f in the voltage tuned 
oscillator, then the deviation M. in the intermediate frequency amplifier is reduced 
to 

M. 
i        1  + ji 

Here p. is completely analogous to the gain in the feedback loop of a linear ampli- 
fier, and the amount of feedback in db is 

feedback   =   20 log 0 g. db 

Thus we can cut down the intermediate frequency bandwidth B. to a value 

.    2 / M       A , 
\i + u     j 

Inasmuch as the IF bandwidth is less than the total rf bandwidth, the noise in the 
IF band is less than that in the rf band.   We will still need a 12-db carrier-to-noise 
ratio at the discriminator,  but the rf carrier-to-noise ratio can be less by the 
ratio of the IF bandwidth to the rf bandwidth. 

Another way of expressing this idea is illustrated in Figure 17.   The 
spectrum of the FM wave,  as described before, extends from f   - 3   to f   + 3.. 

o      f       o      f 
This spectrum is illustrated in Figure 17a.   However, over a short period of time 
an investigation of spectral energy density will show the energy to be concentrated 
about the instantaneous frequency in a band of breadth about 2b.   This is depicted 
in Figure 17b.   A filter of bandwidth 2b located at the right center-frequency would 
pass almost all the signal energy.   The effect of the feedback loop in the detector 
is to shift the effective center frequency of the IF filter almost in synchronism with 
the instantaneous frequency of the incoming carrier. 
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I 

The minimum allowable signal-to-noise ratio now becomes 

^ = 16 
MB. 

i 

An analysis like the one performed above leads to a required energy-per-bit of 

^   /    M ,\ 

c ' n    ..„>,»„.   M log |"l+48M2(l+T^-)J 

This energy is greater than the ideal by a factor 

46(IT^+1) 

log[l+48M2(l   + Y^J] 

This expression is only approximate,  because when M is very large, the minimum 
allowable discriminator signal-to-noise ratio is greater than 12 db.   When this is 
accounted for, this factor is found to go asymptotically to a theoretical value of 
two as M is increased.   Experimentally, it appears that one can achieve a value 
around three, i.e., that one can operate with only three times the minimum 
theoretical power requirement given by information theory. 

That is, it is possible to receive information with a receiver power of: 

P   =   3(0.693)CN 

=  3(0.695)CKT   watts 

where T   is the effective noise temperature, and K is Boltzmann's constant, 
e 

Phase lock reception is similar to the foregoing system except that the 
local oscillator is in effect made to track the received signal in phase. 

Some pulse transmission systems,  such as pulse position modulation, 
appear to be capable of as great a power efficiency as FMFB.   Whether or not they 
are competitive will depend upon equipment economy and,  in some cases, upon 
the kind of information that is to be transmitted. 

It should be noted that the channel capacities attributed to various 
modulation systems above are not binary digit signalling rates.   We have accepted 
at face value the value which the channel capacity formula gives for the demodulated 
baseband channel, and compared that with the rf power.   This comparison is still 
fair, however, if we are dealing exclusively with analog channels. 
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VII.   A NOTE ON PROBABILITY DISTRIBUTION 

In dealing with collections of numbers having properties of randomness, 
such as observations of electrical noise,  it is convenient to introduce certain 
concepts from statistical analysis.   In particular, let us assume we have a col- 
lection of numbers x ,  x , x x^,, and define the following: 

N 

m  =  the mean  = —      / ,    x 
N     fe=j      m 

N 
2 , 1    ^T1        2 2 

s     =  the variance = —    >      x     - m 
N   /j      m 1 

m=l 

The mean is what we call in plain language the average.   The variance 
is more esoteric: the square root of the variance,  s, is called the standard 
deviation,  and is a measure of the extent to which the numbers x^,, scatter from 
the mean value m. 

Under many circumstances the set of N numbers is taken from a much 
larger or infinite set,  called the population.   This set of N numbers is then called 
a sample.   The population mean |i and population variance  o2 are defined just as 

the number of elements, N,  in the sample is large, we are often justified in 
treating the sample mean m and variance s    as about equal to the population 
mean n and variance 0   . 

If each element xm of the population is the sum of a large number of 
statistically independent numbers then (with certain technical restrictions) the 
distribution of values of the elements Xjn will approach a particular distribution, 
called the Gaussian or normal distribution,  characterized thus: in any random 
sample of N elements,  the number of elements having a value between x   and 
x    +   Ax is approximately 

I— ~| 

N   Pi (x   -l-O/o  A x/o 
j  o —i 

where P(u) is the normal probability distribution function 

1 - u2/2 
P(u)   =      .= e 
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The normal probability dislribution has been extensively studied, and is a 
satisfactory model for a wide variety of statistical phenomena.   Sums and dif- 
ferences of normally distributed independent numbers are also normally dis- 
tributed.   For example, we can take sums of the elements x   M at a time, thus 

M 2M (k+l)M 
yo = E V yi = S V yk = E     x 

1 M+l kM+1 

n 

n 

Then the population of all possible values of y^ has a mean M \j, and a variance 
Ma2-   This and other properties of normal distributions will be referred to often 
in the next sections,  and are described and proved in texts on probability. 
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Vm.   DETECTION AS A COMMUNICATION PROCESS 

Detection of a signal such as a radar echo in a background of noise may 
be treated as a communication process also.   Suppose, for example, a situation 
exists where a signal s(t) may or may not be present in a background of noise n(t). 
Let us suppose for illustration that the noise is Gaussian with a uniform power 
density spectrum N up to a maximum frequency W, that the signal falls in the same 
frequency range, and that our observation is limited to the period of time O^t ^T, 
which is supposed to include all of the nonzero part of the signal s(t). 

Using the sampling theorem as before, we can represent the signal by 
a point in 2WT-dimensional space.   It is convenient to make a slight scale-change 
and represent a function f(t) by* 

2TW 

where 

k=l 

,(t)=   v/2W 

k^k 

sin 2TiW(t - k/2W) 
^' =    ^ "W   2rtW(t-k/2W) 

f.        =      ^L   f(k/2W) 

Figures 18 and 19 show graphically how a function f(t) is built up of such ele- 
ments cp. 

It is not hard to show that 
c 

q,   (t)(p„   (t) dt  =   0 if k  ? l 
1 if k   = -C 

Given two functions f(t) and g(t), we can define a scalar product 

2TW 

f(t) ■ g(t)  =        2        fkgk 

"Unless otherwise indicated all sums are over the range (1, 2TW) and all integrals 
over the range (-cc, «;). 
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From the above integral relation it follows that 

°? 2TW 

'A 

which provides an alternative formula for the scalar product.   Following this 
notation we let 

3(t)    =2   sk<Pk,    n(t)   =y  nv k      k 

We may call the total signal energy S, and we see that, in suitable units, 

s2 (t)  dt  =   S   = V 

The total noise energy is the product of noise spectral density, bandwidth, and 
time. 

p(t)dt =7^ NWT   =   | n^t) dt   =   >   n* 

ihe expected value of r^. for any k is therefore N/2.   To avoid a sticky prob- 
lem, we can assume the noise sample amplitudes n^ have expected value zero 
and variance N/2 and that they are independent and normally distributed.   This 
is a satisfactory definition of white Gaussian noise of power density spectrum N 
and bandwidth W. 

Now let us consider the detection problem where the noise field n(t) 
is present, and the signal s(t) may or may not be present.   We observe a 
received signal f(t) where 

f(t)   =  s(t)  +  n(t)   =y   (s    + n ) <p     when the signal is present. 

=  n(t) = ^V-1  n    <p when the signal is absent. 

Figure 20, a and b,  illustrates a pair of such wave-forms.     When no signal is 
present, the expected value of each coordinate f^ Is zero, and Its variance is N/2. 
When the signal is present, the expected value of f^ is sk, and the variance is 
still N/2. 

48 



10 

Ü 

w 
> 
w 

! 

I 

w 
o 

o 

§ 
D 
Ü 

49 Arthur ai.lLittlcJIrtr. 
S-7001-0307 



Now we introduce the geometrical concept of rotation of coordinates. 
The probability distribution of our observations is spherically symmetrical 
with respect to their centers, and hence retains the same form with a rota- 
tion of axes, i.e., the probability distribution of the new coordinate will still 
be normal with variance N/2 regardless of the new directions of the axes. 

For skeptics, we shall illustrate these concepts for the simplest 
nontrivial case, two dimensions .   Suppose x and y are given, statistically 
independent, with normal distribution about 0 with variance N/2.   Rotate the 
coordinate axes by an angle 9.   Then 

u   = x cos 9   +   y sin 9 

v   =   -x sin 9   +   y cos 9 

Let us look now at the mean* and variance of u: 

u   = x cos 9 +   y sin 9   = x   cos 9  + y   sin 9=0 

u2 =  (x cos 9   + y  sin G)2   =     xz   cos2 9 + 2 x y sin 9 cos  9 + y2 sin2 9 

Note that the assumption that x and y are independent means simply that xy = x y, 
which implies xy = 0.   Hence 

u2    =  N/2 

s2   =    u2 - T?=  N/2 

Similarly, the variance of v is N/2.   Finally, u and v are statistically independ- 
ent, for 

u v   =  (x cos 9 +  y sin 9 )    (- x sin 9 +  y cos 9 ) 

=  (-x2 +  y^ )   sin 9 cos   9=0 

*A horizontal bar over an expression signifies an average taken over a suitable 
range, usually an average over the statistical ensemble or a time average.   Under 
a wide range of circumstances of interest (those satisfying ergodic conditions), 
the ensemble average and the time average are equal. 
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Now let us choose a new set of coordinates so that one of the axes is 
parallel to s(t).   The representation of s(t) in the new coordinate system will 
consist of one term 

s(t) = \JT vi 

so that obviously 

\   =    Nfs"     S(t)- 
The noise is represented by 

2WT 
n(t)   =    X; nk'      w   k 

x=l 

where the prime is used simply to distinguish coordinates in the new coordinate 
system. 

Our problem is now that of distinguishing between 
2TW 

f(t)   =  s(t)  +  n(t)   = ( xTs- +   n')  V,   +    /_,     V  ^ ir ' signal Present■ 

2TW 

n(t)    =  n,' V/1       +      ^     n. 
k       ^k 

, signal absent. 

Obviously, there is no point in examining any term but the first.   We can isolate 
the coefficient of the first function, v1 , by using scalar products. 

f     =  f(t)    •   w (t)   =     \     f(t)   f   (t)   dt= -—= f(t)   s(t)   dt 

and test the hypothesis 

r^ 3 +       n signal present 

against 

f.  =    ni' signal absent 
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We know that ni is normally distributed aboutzerowith variance N/2just like any 
among the original components n^,  for we assumed a pure rotation of the 
coordinate system (even though we never explicitly found the new coordinate 
system).   The two distributions are illustrated in Figure 21.   The problem is 
reduced to that of identifying the quantity \[S- when perturbed by a noise with 
variance N/2.   The ratio of the signal to the standard deviation of the noise 
is 

d   = 
^ 

\[N/2 
= \ 

2S 
N 

For reliable detection d must be somewhat greater than unity.   If the probabil- 
ity that s(t) will be present is about 50%, and the penalty for missing it when it 
is present (which we call miss) is the same as the penalty for detecting it when 
it is not present (which we call false alarm or FA), then we would probably put 
the threshold of detection near 1/2 \[S.   This makes the error probability the 
same for the two circumstances.   They are shown in the first two columns of 
Table I.   In a true search situation, we are searching for a "needle in a hay- 
stack," and the signal is expected to be absent nearly always.   Cutting down 
the false alarm rate becomes an operational problem, and it is advantageous 
to raise the threshold.   The table shows two examples. 

In any case, a value of d of about 5 is needed, and we can nay roughly 

\ 
_2S 
N 

_2S 
N 

_S_ 
N 

32 

32N 
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TABLE I 

■ 

PROBABILITY OF FALSE ALARM ERROR AND OF MISS ERROR AS A 
FUNCTION OF THRESHOLD LEVEL AND SIGNAL-TO-NOISE RATIO 

Threshold 1/2 \| S "    XT^ ■  \lN/2 \fr -      2\|N/2 

FA Miss FA Miss FA d =\|2S/N Miss 

4 2.3 TO'2 2.3 TO"2 1.4 TO*3 1.6 TO"1 2.3T0"2 2.3-10 "2 

5 6.2-10"3 6.2T0'? 3.2-10'5 1.6 TO'1 1.4T0"3 2.3-10 "2 

6 1.4 TO'3 1.4 TO'3 2.9 TO"7 1.6 TO"1 3.2T0"5 2.3-10'Z 

7 2.3 TO'11 2.3 TO"* 2.0T0'9 1.6 TO"1 2.9T0"7 2.3-10-2 

8 3.2T0'5 3.2T0'5 2.6T0-12 1.6T0"1 2.0T0"9 2.3-in"2 

Let us compare that practical signal-to-noise ratio with the ideal 
case.   Suppose we are concerned with a detection scheme in which there are 
1,000,000 cells to look in.   If we look and find something, then we have poten- 
tially distinguished among about 106 possibilities, and receive potentially about 
20 bils.   We shall, therefore, expect to need 

S   =  20 x 0.693N   =  13.9N 

in signal energy. 

However, there is error rate to consider.   In a detection process, a 
rather liberal error rate is allowable, say P (e)^-' .01.   Referring to the previous- 
ly quoted formula 

-   v a   C/R 
P(e)~2 WK 

we recall that 2    is the number of binary digits constituting a message; by 
analogy, v =20.   Solving for R/C, one finds 

R/C ,41 

Hence, the amount of energy required in the signal to achieve an error rate of 
0.01 is really 

S = 20x 0.693 N/,41   =  33N 
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This agrees very well with the value 32N derived above.   The agreement is not 
fortuitous;   this case fits the hypothesis of Famrs model quite precisely. 

Notice that an error probability of 0.01 still requires a low false 
alarm rate:   for the probability of a single false detection to be 0.01 in 106cells, 
the probability of a false alarm in each cell must be less than 10 "8. 

We see, therefore, that coherent detection, where viewed as a commun- 
ication process, achieves about as much as one could expect.   We need not look 
for new principles which will enable us to detect signals having less energy, but 
can devote ourselves to applying the conceptions of coherent detection and to engin- 
eering improvements to make the performance of such detectors live up to their 
design conception. 

We can, of course, deliberately use a scheme like the one described 
above as a communication scheme,   in such a case, it is usually impractical to 
search for one among a large number of signals „   Gostas* has described a system 
in which one of two signals, +s(t) or -s(t),  is sent.   Each one is "noise-like" in 
the sense of having no systematic pattern like a modulated carrier.   This particu- 
lar instance differs significantly from the model on which Fano's result is based: 
instead of sending energy S in one of 2V  signals, one sends energy S/4 in all of 
them, with a resulting change in energy by a factor 2V      .   This is only  an ad- 
vantage Li   v  =1.   However, for this 'particular case, which has a signalling 
rate R substantially less than the channel capacity C, the probability of error is 

P(e)   = 
2   C/R 

2Jix   log  2   C/R 

The improvement in the exponent appears to be due to the use of +s(t) and -s(t), 
instead of -t-s(t) and 0, as the antithetical pair of signals; it does not seem likely 
that device will work where a choice among more than two signals is contem- 
plated.    ForP(e) = 10"6, C/RC=rl6. 

*See Reference 5 in the Bibliography, 
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IX.   COHERENT AND INCOHERENT INIEGRATION 

In a communication system, the alphabet of transmission signals will 
ordinarily be chosen so that one or another reasonably efficient demodulation 
process can be used.   As we have seen, the efficiency of a detection system may 
be analyzed with the same mathematical tools.   However, the designer of a detec- 
tion system may not be able to control the signal or the environment enough to ap- 
proach an optimum or efficient modulation scheme.   An important example is that 
of a search process where the signal to be detected lasts a very long time, and 
where knowledge of its presence or absence is desired in a short time.  This cir- 
cumstance leadsto the idea of detection in a fixed or limited time, or, in the dis- 
crete case, of detection with a limited number of observations. 

Heuristically, it is clear that increasing the observation time or the 
number of observations cannot decrease the certainty of detection,  and should in- 
crease it.    We are thus led to ask, how much is the detection process improved by 
increasing the observation time?   We shall answer this question by suggesting a 
simple, plausible, and easily implemented criterion of effectiveness involving 
both observation time and signal-to-noise ratio, and show how increased observa- 
tion time can be traded for decreased signal-to-noise ratio. 

Suppose we have noise n(t) of bandwidth W, with a flat spectrum and 
rms amplitude N.   Suppose we have a signal of constant d-c amplitude 3.  If the 
noise is present alone,  the received waveform is 

f(t)  =  n(t) 

If the signal is present also, we have 

f(t)  =  n(t) +  S 

An example of such signals is shown in Figure 22.   In this example, N = 1, S =1. 
We would like to test the following detection schemes 

T 
r- 

i r- _ 

I.   Correlation Detector: |f(t)       S dt 

II.   Square-law Detector: 

0   T 

f(t)|   dt III.   Linear rectifier: 

to find the relation among the signal-to-noise ratio S/N and the integration 
time T. 
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First, use the sampling theorem to characterize f(t) as a sequence 

f     =   f(k/2W) k  =   1,2,  ---,  2TW 

n     =   n(k/2W) 

Figure 22 shows how the samples are related to the continuous function f(t).   The 
various samples f^ are independent and have a Gaussian distribution with variance 
N^ (to avoid another proof, we can define this as Gaussian white noise of band- 
width W).   To a high degree of approximation, we can replace the integrals (with 
appropriate constant multiplying factors) by sums: 

T 

I. 
I 

II. 
11 

III.     S 
III 

2TW 

A fk- 
2w r 
5 

f(^ 

1 0 
T 

2TW 
fk- 

2W    |     f2(t) dt 
^ 

i 
J 
0 

2TW 

1 

ifkF 

T 

0 

i(t) \* 

S dt 

We shall devote the rest of the discussion to the sums Sp Sjp and SJJJ, 

and try to see how they depend on the integration-time and signal-to-noise ratio. 
The constant 2W and 2W/S is a scale factor and is not important for the present 
discussion. 

2 
Figure 23 shows the samples f^, the squares of the samples f, ,  and 

the absolute values of the samples | ih 

Figure 22. 
for the noise, with and without signal,  of 

If we look at the signal f(t) at any instant; i.e., if we look at a single 
sample f, , it has 

k 

mean value u, 
s 

=  S 

^0 
=  0 

variance     a 2 
s 

=  N 

0o2 =  N 

if signal present 

if signal absent 

if signal present 

if signal absent 
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The two variances are the same, and we can ignore the distinction implied by 
the subscript.   We can use (^s - ^o) 1°  as a measure of effectiveness of a 
detection process.   For a single sample of the signal, this is just the signal-to- 
noise ratio S/N.   Figure 23a and b shows the samples fjj for the noise and for 
the signal plus noise shown in Figure 22.   Figure 24a shows the sum 

5i=S f
k = Z <s +v 

as a function of 2TW.   The expected value of S   is   p, 
is 

2TWS,  and its variance 

V Z/s + V| 
r \ 

(S +  n.) - (2TWS)' 

V   V   (S2   +  Sn.   + Snk + n   n)    -   (2TWS)2 

(2TW)2S2   +  0 +  0  + V   nf'    -   (2TWS)2 

V     2 

1   nk 

=   2TWN 

Repeating the computation with S = 0, we find that the mean value and 

variance of >    n,  are    M-     =0 and o    =   2TWN   . 
_,    k o o 

Figure 25a and b illustrates the distribution of observations to be 
expected after integration over a time such that 2TW  =  20 and 100 respectively. 
The observations are distributed according to the well-known bell-shaped normal 
probability distribution.   The center of the normal distribution curve is at the 
expected value |i, and the standard deviation is ö , the square root of the variance. 
In order to make an effective detector, it is necessary to set a threshold somehow 
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so that an observation will nearly always fall on one side of the threshold when 
the signal is present, and nearly always fall on the other side of the threshold 
where the signal is absent.   Inasmuch as the probability distributions overlap 
(the overlapping part is cross-hatched in the figure), there is no place to establish 
a threshold which will give error-free results.   A reasonable and useful measure 
of the effectiveness is the ratio of the distance between the peaks, n s - |i o.  and 
the width of the peak, measured by a .   When only one sample is taken, we have 
seen that the ratio is S/N.   When 2TW samples are integrated in a coherent 
detector, the measure of effectiveness is 

's    "   "o 2TWS-0     =v^  S 

TirwN 2 N 

i.e., the effect of integration over time T is equal to the effect of improving the 
S/N ratio by a factor V 2TW. 

2 2 
In a square-law detector, the sample is squared to get i^   =   nj, or 

(nj, + S)    (Figure 23c and d).   Let us examine the build-up of the sum, 

S     £   =  /_,   (s + n
k)2 ~   /     (S2  +   2S\ + nD (signal present) 

or   =    )     n* (signal absent) 

2 2 Its expected value is 2TWS    +  2TWN if the signal is present, and 

2TWN2 if the signal is absent 

  _    o   _JV 
for both cases. 
Figure 24b shows the actual growth of ^    f^ compared with the expected value. 

We could find the variance of SJJ by brute force.    However, it is 
easier to work indirectly,  and to define a new population whose members are 

zk  =  S2
+2Snk  + nk

2 

and find sample mean and sample variance,  and work indirectly to the sums. 

If we define 

nv   =   Nx
k 

63 

artbur l.llittlejnr. 

S-7001-0307 



then x^ forms a normal population of variance unity, with a probability distribution 
cc 

P(x)  =     J__       e 'x2  /2 dx P(x)dx  =  1 
J^ J 

2 
The mean value of x, is 

k 

.2 Xk     =     J       x2  P(X) ^= 1 

4 
The mean value of x,  is 

k 
—       P 
x* =    j    x» P(x) dx = 3 k      J 

- oc 

The mean values of x and x3  are zero, because P(x) is a syrrmetric (even) func- 
tion.   For n, , the means are 

K 

Z=   N2 
k 

Z=   3N4 
k 

Now for 

tVip» mpqn valiip is 

S2 +  2S n,   + n,2 

k k 

S2 +   2S   n,    +   nf 
k k 

2 2 
=  S    +  0 +  N 

and the expected value of the sum is 

h s 
^(s + n^2    =  2TW (S2 +  N2) 

2 
The variance of (S + n )    is 

64 



YJ
{s+\y' - (S+V22 

U3 22 3422 
S    + 4S    n    + 6S    n    4- 4SIL, + n'   - (S    + N  ) 

4 2     2 tt U 2    _2 U 
= S    +  0  +  6S   N    + 0 + 3N    - S    - 2S   >r   -   N 

= 4S2N2  +  2N4 

Hence the variance of the sum is 

n
2   = V (S + n?)    =2TW(4S2N2 + 2N4) as       / . k 

By repeating the computation with S = 0, we can find 

M,     =   2TWN2 

0 

2 =  2TWN'1 

o o 

Figure 25c and d shows normal distribution curves with these means and variances 
for 2TW = 20 and 100. 

An aggravating factor here is that the variance is different when the signal 
is present than it is when the signal is absent. Let us agree that we are most inter- 
ested in the case S/N < <   1.   Then 

2TW(4S2N2 +  2N4)r^2TW   •   2N4    =  4TWN'1 

independent of whether the signal is present. 

Using the same criterion as before, we measure the effectiveness of the 
detector by 

ls   "u o       _   2TW    [j(S2 +  N2 )   -   (N2 fl _ fs 
N      4~™ 

i.e., integrating a time T is equivalent to improving S/N by a factor   4/   TW. 
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_ n, 1 or n, + S kl k 
IS 

Now let us look at a rectifier.   The samples are rectified to get    1 

(Figure 23c and f), and the detector output after integration 

S
III 

=SKI 
Once again we examine the individual terms of the sum,  and ask, what are the 
mean and variance of f

k
? 

f        =      S + n        =    ! S + Nx, ! 
I    k i k ki 

J2K      J 
- x   /2 

! S + Nxi   e        '    dx 

x=S/N 

^J2n 

- (S + Nx)e'x2/2 dx +   -L- (S + Nx)e'X  /2dx 
J2n     J 

-S/N 

Here we can evaluate the integral approximately by a tedious but 
straightforward process,  as follows: 

0 S/N S/N 0 

Substitute +      j     for and analogously + for 

0 S/N     0 S/N 
Evaluate all integrals in (0, <=) and {<*>,  0) exactly.   Evaluate integrals in (-S/N, 0) 
and (0,  S/N) by using the approximation 

e-x2/2^ 1 

The result is 

2N 

i   kl~" J2K \ 

The expected value of the sum is 

1 + 
2N 

(S/N) <  1 

!S + n. 
2TW       //1XT        S

2N 

-1=- 2N  +   TTF 

V 
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when the signal is present, and 

|i     =   /   I n 
o       Z-J     k 

2TW 

'in' 
2N 

when the signal is absent.   The difference is 

2TW S 
"'     N s/2Tt 

What about the variance?   The mean square value is easy to evaluate; 
for the absolute value operation is trivial when the function is squared: 

S + n, 
2 2 2 

(S + n )     =   S    +  N 

One must be careful not to jump to conclusions, however.   The mean val". 
laboriously computed above must now be used. 

var   v i S  +  n, 
n      k 

) 
S + n, S + n, 

2 2 
-y S     +  N 

4N 
2n 

4S 1       S 
2 it        2^ 2 

N 

2N 
2TW     S'   + N 

If S/N   < < 1,  this is approximately 

0 
2  — 2TWN2 (1-1) 

Similarly 

2TWN    (1 - -) 

2S 

2 KN 

These probability distributions are plotted in Figure 25e and f for 2TW = 20 and 
100. 
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The measure of merit of the detector is 

^S    "    ^0 
2TWS 

S 
N 

Jin   ■ 
0 

x/zTW ,.1). N 

/ ( s        J   TW 
\ N <7      K - 2   / 

i.e., the effect of integration for a time T is equivalent to the effect of improving 

S   .        ..              , / TW 

— by a factor    4/ — 

Note that this is just a shade worse than      4/  TV/. 

The ratio is   4/  -—" or approximately 0.1 db. 

Table II summarizes the expected values and variances of the outputs 
of these three kinds of detectors.   The effect of integration with a coherent 
deteccor over a time T is equivalent to an improvement in the input signal-to- 
noise ratio of a factor   \/2TW.   This is sometimes stated as 3 db improvement 
per doubling of integration time.   The effect of integration with an incoherent 
square-law or linear rectifier detector over a time T is equivalent (when the 

input S/N is low) to an improvement in the signal-to-noise ratio of    4/ TW or 

4/   TW/(TI  - 2) respectively.   This is sometimes stated as 1.5 db improvement 
per doubling of integration time . 

There is another respect in which the square-law and linear rectifier 
detectors are inferior to the coherent detector.   The distributions in Figure 25 
and in Table II show that the expected value of the output of a coherent detector 
depends on the signal only, and the variances on the noise only;  whereas in 
square-law and linear rectifier detectors the expected values and variances de- 
pend jointly on signal and noise.   Now to a first approximation,  the best place to 
put the detection threshold depends on the expected value of the output, and not 
on the variance.   This means that the threshold can be set in a coherent detector 
independent of the noise.   This is not possible in linear or square-law detectors, 
for the output wanders back and forth as the noise level varies.   Unless the noise 
is very uniform, as, for example,  is thermal noise in a low-noise electronic 
amplifier,  some extra provision must be made to compensate for secular varia- 
tions in noise level. 
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These results were derived for a very particular signal waveform, a 
rectangular d-c pulse.   The conclusions are quite generally valid,  however.  The 
restriction to low input S/N is relatively unimportant in most practical cases, 
for the output signal-to-noise ratio in all three of these detectors,  and we can 
concentrate our attention on the "worst case, " where the signal-to-noise ratio 
is as low as the system can stand. 

What is the difference between coherent and incoherent detection?   In 
the geometric language in which we represent each of a family of signals by a 
point in a space of 2WT dimensions., coherent detection makes use of the direction 
of the point relative to the coordinate axes as well as the distance, whereas in- 
coherent detection uses the distance only. 

Is there any detection which is "intermediate" between coherent and 
incoherent?   Such systems have been described by Jacobs* and others.   In the 
system described by Jacobs,  a band of the spectrum is divided into a number of 
discrete equal   bands.   The signal is made up of bursts of energy,  not over- 
lapping in time, and each is confined to one of the bands.   Within each band, the 
energy is detected incoherently. 

Let us examine why this is partly "coherent."  Suppose the time dura- 
tion of a burst is T, the total bandwidth is W,  and the bandwidth of each of k 
bands is W/k = B.   Let us imagine the signal represented not by its amplitude 
samples but by its frequency components . 

TW 

f(t)  =  >     fa   cos (2 it n t/T) + b   sin(2rrnt/T) 
/ ,   I n n -J 
n=l 

(For convenience, it is assumed that the signal lies in the band of frequency from 
0 to W,  but it could lie elsewhere with appropriate changes in representation.) 
The coefficients a   and b   are the coordinates,  and the number of coordinates is 

n n 
2TW (give or take a few,  depending on whether we assume a d-c term and 
whether TW is an integer or not). 

Now let us look at a signal falling in a particular band,  say 

mB<   f   <   (m + l)B 

* "Optimum Integration Time for the Incoherent Detection of Noise-like Communi- 
cation Signals, " I. Jacobs,  Bell Telephone Laboratories,  Inc.,  Whippany, N.J., 
Presented at the 1962 Spring URSI Meeting, April 30 - May 3. 
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This is represenlable by 

(m+l)BT 

1(0   =     ) j (a   cos (2 7xnt/rn  +b   sin (2 rnit/T) 
'   ■ D n 

n = mB r+1 

involving only 2BT terms.   The receiver filters the incoming signal into a band 
mB <    f ^    (m + 1)B; and hence makes use of the fact that all components of f(t) 
lie in a given subset of the possible directions.   But after filtering, it uses an 
incoherent detector which makes no further use of the detailed relations among 
the components. 

When the parameters are duly proportioned,  this modulation and 
detection scheme is reasonaly efficient.   In the band in which it falls, the trans- 
mitted signal should have a spectral power density about three times that of the 
noise for most efficient transmission.    For most efficient performance,  the 
number of bands, k,  should be  hundreds, and the information transmitted per 
burst is log    k.   The burst length is of the order of magnitude 20/B, and the 
optimum is more or less dependent on the number of bands, k.   The amount of 
power required per bit is around 60 (.693 N) for k = 2 and falls to around 
10( .693N)forkof several hundreds.   On this basis, it is competitive with AM, 
SSB,  and FM,  and not much worse than FM with feedback. 

Why would such a modulation scheme be used?   The detailed signal 
structure required for coherent detection is destroyed or degraded by such 
phenomena as doppler shift,  which obscures small frequency shifts, or multi- 
path propagation, which destroys small time distinctions.   With a signal in a 
band of total bandwidth kB and time duration 20/B, we should require frequency 
discrimination approximating B/20 or time discrimination approximating 1/kB to 
make coherent detection possible,  whereas this system operates with much 
coarser frequency bands of bandwidth B and much coarser time segments of 
length 20/B.   In round numbers,  its frequency discrimination is 10 times coarser 
or its time discrimination 1000 times coarser than those required by coherent 
detection schemes depending exclusively on frequency discrimination or time 
discrimination,  respectively. 
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X.    CONCLUSION 

Where, now, has this comparison of modulation and detection systems 
brought us?   It has been shown that there is a minimum average energy required 
to transmit one bit of information in the presence of random noise of fixed in- 
tensity and uniform spectral distribution.   The degree to which amplitude modu- 
lation, single-sideband modulation, frequency modulation, frequency modulation 
with feedback, and a particular frequency-band-limited noise-pulse modulation 
system approach the ideal has been estimated, and all were found to require 
three to 100 times more energy per bit than the ideal minimum.   Detection of 
a signal in a noisy background , as in a radar, was viewed as a communication 
process, and it was found that the energy required per bit of effective informa- 
tion received is only slightly more than the ideal minimum. 

Implicitly, we have seen how to encode an information-carrying signal 
of relatively narrow bandwidth and high signal-to-noise ratio in  a new form 
having broad bandwidth and low signal-to-noise ratio.   When the formula for 
channel capacity was developed, it became obvious at once that channels having 
a high signal-to-noise ratio used more power than is necessary to transmit 
their information.   On the other hand, for a communication channel to be use- 
ful to the ultimate users, the received message must have a relatively high 
rnessage-to-noise ratio, that is, the error rate must be low.   In all of the more 
straightforward and naive ways of modulating and demodulating, the signal is so 
much like the message that to keep a high message-to-noise ratio, we must 
have a high signal-to-noise ratio. 

The derivation we gave of the channel-capacity formula suggests one 
relatively complex way to signal through a noisy channel without introducing 
errors into the message:   by using almost countless numbers of noise-like wave- 
forms as an alphabet of digital signals.   This solution to the problem is con- 
ceptually easy to handle, and on paper allows us to reach significant results. 
However, everyone seems to agree that this is an undesirable way to modulate 
and demodulate, or to code and decode, because it would require extremely 
complex equipment.   But now frequency-modulation-with-feedback is a way of 
making a trade among bandwidth, power,and signal-to-noise ratio which does 
not involve resorting to complicated digital codes. 

Other advantages besides saving of transmitter power arise from the 
efficient use of a communication channel.   For example, if we consider the 
efficient utilization of space in our signal-space of 2WT dimensions, we realize 
that in signal-space any noise is as good as any signal, and no signal is any 
better than any noise.   Thus, we find that in such a contextit is impossible to 
have especially obnoxious jamming signals.   There is no more efficient signal 
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for jamming than random noise, and we already know that under these circum- 
stances the system can be designed to operate with a very low signal-to-noise 
ratio.   We can see that to jam such a system successfully, we must put into the 
receiver more jamming power than signal power.   This makes jamming costly. 

There is another benefit from operating with a very low signal-to-noise 
ratio.   If we can really work a communications system so that the signal power- 
level is much lower than the noise power-level, we introduce the poösibility of 
signalling in such a way that it is hard to tell whether any signal is being trans - 
mitted at all.   We can thus indirectly make the jamming problem more diffi- 
cult again, for the jammer must first hunt around to find out where there is 
something to jam before he knows whether to waste his effort trying to jam it. 

By looking at seaching for the presence of a signal as a communication 
process, we have learned that there is a limit to the detectibility of a single 
signal in a noise background, and that this limit is described in terms of. the 
noise, energy density and the received signal energy.   The shape of the signal 
wave is not significant as long as it is fully known in advance to the detector. 
The process of measuring the correlation between the known signal waveform 
and the received wave is known as coherent detection.   If the signal waveshape 
is not completely known, certain kinds of incoherent detection, which vary 
according to the degree of ignorance of the signal waveshape, are possible. 
The less that is known about the signal waveshape, the more signal energy is 
required to assure positive detection.   If the signal is a single pulse or a burst 
of a sinusoidal wave, one can use very simple detectors which approach the 
theoretical limit of search performance.   Many signals which at first contact 
appear to be quite specific, such as, for example, the acoustic signal resulting 
from the spoken sound "ee," do in fact vary over a wide range, and are corre- 
spondingly hard to detect reliably. 

In summary, the ultimate limit to the rate of transmission of informa- 
tion in a noisy background, or to the detection of a signal in a noisy background, 
is primarily determined by the noise power density and the signal power or 
energy.   To approach this theoretical limit, the receiver must have precise de- 
tailed knowledge of the possible waveshapes of the transmitted signal.   In the 
absence of such knowledge, more signalling power or energy is required. 
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