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FEASIBILITY STUDIES OF POYNTING VECTOR MEASUREMENTS 

ABSTRACT 

Feasibility studies of Poynting vector measurements were under¬ 

taken as a result of previous studies concerning methods of improved 

measurements in the near field of radiating sources. In previous reports 

it vas indicated that a nev type of near field measurement, the Poynting 

vector measurement, has some distinct advantages over presently used methods. 

The present study concerns itself nth the feasibility of those measure¬ 

ments and a demonstration of the principle involved. 
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SUMMABY 

An experimental setup vas obtained that enabled measurements of 

near-field properties of radiating sources. The radiating sources, 

acting as electric and magnetic point sources, consisted of small monopole 

antennas and semicircular loops. Most measurements vere conducted in the 

100-300 Me range. Using a Poynting sensor as the receiving element 

measurements of the electromagnetic field vere performed as a function of 

distance from the source. The measurements included magnitude measurements 

of the E and H components and. their relative time phase. Results agreed 

closely vith predicted curves. In particular it vas possible to obtain 

Poynting vector measurements in the near field and thus demonstrate, in 

principle, the feasibility of such measurements. 
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1. THE PRINCIPLE OF POINTING VECTOR MEASUREMENTS 

1.1 Introduction 

The present chapter provides a background of the basic theo¬ 

retical considerations underlying Poynting vector measurements. After 

a brief discussion of the Poynting vector itself the electromagnetic 

field components of electric and magnetic point sources are introduced. 

Their phase properties, associated impedances and the resulting pover 

density are discussed from a theoretical point of view. 

1.2 The Poynting Vector 

Since most of this report concerns itself with the Poynting vector 

and its measurement it is desirable to start vith a brief description of 

this concept. 

The energy equation for an electromagnetic field can be obtained 

from Maxwell's equations 

V* H = J + |2 (1.2.1) 

VXE = -I (1.2-2) 

where 

E - Electric field 

H - Magnetic field 

J - Current density 

B - Magnetic induction 

D - Electric displacement 
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Foilwing Stratton ve can obtain pover per unit volume from 

the scalar multiplication of E and J: 

E • J * E • (7* H) - E • (1.2.3) 

using the identity 

V* (E X H) = H - (7x E) - E . (7x H) (1.2.4) 

and substituting in eq. (1.2.3), using eq. (1.2.2), ve obtain 

E . J = - F ÔD + h . ÔB 
E • s+ H st - E X H (1.2.5) 

Integrating over a volume V bounc. by a surface S ve obtain 

E • J dV = -j 

V -V 
E-l +HH dV - E X H da (1.2.6) 

This result vas first derived by Poynting in 1884. The vector 

P = EXH (1.2.7) 

is defined as the Poynting vector. 

The left hand side of eq. (1.2.6) represents the total pover 

dissipated in the volume V. The first term of the right hand side represents 

stored energy inside volume V. The time average of the stored energy of 

sinusoidal fields is equal to zero. The second terra on the right hand side 

of eq. (1.2.6) represents an electromagnetic energy flow across the surface 

bounding V. 
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The surface integral of the Poynting vector has thus a veil 

defined meaning. The Poynting vector itself, has the dimension of pover 

density, i.e., power per unit area. 

1.3 The Electric Point Source 

We will consider two types of point sources. The electric type, 

associated with an infinitesimal electric dipole, and the magnetic type, 

associated with an infinitesimal magnetic dipole. We will use complex 

notation as well as real time notation so as to he able to compare the 

two. 

In spherical coordinates (see fig. 1.3*l)> the field of an electric 
* 

dipole in complex notation is 

z 

elect 
dipol 

^ y 

X 

Figure I.3.I The Electric Dipole. 

Ref. 20, p. 207; Ref. IT, p. 498. 
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cos e (1.3.1) E r 4jte JUP 

JMJ¿ 
Vite sin 0 (1.3.2) 

Tit 

i 

L 

sin 0 (1.3.3) 

jM j - electric moment 

i 
t = t - pr 

CD 

p = = —■ 

L 

-L ho) 
dZ 

magnitude of dipole moment 

wavelength 

dielectric constant 

radian frequency 

distance from source. 
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In reel-time notation we can rev-rite the above equations as 

follows : 

E -ä: r íjtê cos 9 

i i 
2 cos cct 2 sin cut 

M2 ~ (lr)3 (1.3.^) 

E- 
4ne sin 9 

i i i 
sin cot ^ cos cot + sin cut 

(ßr)2 (gr)3 
(1.3.5) 

„ cu,M|p2 

V —ÇT" sin 0 
i i 

sin cut , cos cut 

~ “777?" (^r)£ 
(1.3.6) 

1.3.1 Associated Impedances and Phase 

Dimensionally, the ratio of E and H is an impedance. This 

concept of impedance holds in a retarded field and can be applied therefore 

to the above equations. We can define the following two impedances 

and 

E9 
Z9ciT r 

9 

Prom equations (I.3.I) to (1.3.3) ve obtain accordingly 

Orf , 1 ’ 

l+(pr)c Jpr |l+(ßr)y] 

# 

(IJ.?) 

(1.3.2) 

(1.3.9) 

Ref. 15, p. 305. 
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end 

o i? cot g 
\iê IpT (1.3.10) 

It is obcervec. that the impedance is purely imaginary and Zg is 

complex in the near field and appioaches the real value ^u/e as r 

approaches infinity. 

Equation (1.3.7) can also be put in the following form 

where 

N- ^ 
iuCT 

[l + (iJr)2] 

and 

Y = - arctan-? 
(6r)3 

(1.3.11) 

(1.3.12) 

(1.3.13) 

Later sections of the report will deal with ways to actually 

measure the impedances associated with a point source. 

A case of subsequent interest is obtained when a constant phase 

Yq is introduced in the E component. If this is considered, eq. (1.3.13) 

has to be modified and attains the form 

Y = y ' arctan (1.3.1^) 



7 

1.3.2 Associated Power Flov 

There are tiro types of power flow and consequently tiro 

Poynting vectors associated with the electric point source. One is in 

the radial direction and given by 

% = (^5) 

the other is directed towards the Z-axis (fig. 1.3.1) and given by 

P = E H rep r <p (1.3.16) 

The instantaneous power can be obtained from equations (l.3-l0 

to (1.3.6) 

%nst. (Urc) er 

■ i 
. 2 . ' 2 sin cot cos cot , sin cot - -+ 

2 i 2 1 1 1 
cos cot - sin cot , sin cot cos cot 
" 3-+ —- (ßr)‘ (pr)- 

(1.3.17) 

and 

P = 
^inst. 8ir^ er^ 

sin 0 cos 0 
2 2 ' 

. ,.>4. ' cos cot - sin cot - sin cot +-s- + n -vt ur 

1 11 sin cot cos cot 

^ (ßr)S . 
(1.3.18) 

i 
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The average power density per cycle for an electric point source 

is accordingly: 

09 ■y- y- sin 0 * 
•> r. ¿ ¿ e j e.' Jt r 

(1.3.19) 

and 

PTU * 0 IV (1.3.20) 

The average power per cycle can be obtained directly from 

equations (1.3.l) to (1.3.3), since 

&' Re E0 H 0 V Re 
* 

E„ H 
0 9 (1.3.21) 

Complex notation is simpler to use but it yields of course, only the 

average value per cycle and not the instantaneous value. 

A corollary to the above is the case where a phase shift y0 is 

introduced in Er> eq. (I.3.I) or eq, (1.3.^), relative to the H component. 

As will be shown subsequently this is an entirely practical situation. The 

net result is that the average power per cycle, obtained similarly to 

equations (I.3.I9) and (I.3.20) will now be given by 

F sin Y( 

09 P ! COS Y + e i To 
(¿r) 

(1.3.22) 

I 
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and 

2 cotan 0 
Sr- sin (1.3.23) 

It is noted that for Y0 “ 0 the previous results, equations 

(1.3.19) and (1,3.20) are obtained. The phase - 90° has here the 

physical significance that the power thus measured is the average reactive 

power associated with the electric point source. Using complex notation 

this average reactive power is given by the imaginary part of the complex 

Poynting vector. Proof from equations (1.3.l) to (1.3.3) xre obtain 

0cp imag. Im 
# 

E0 H 
0 <p (1.3.24) 

PiV imag. = 2 L‘l [Er Hv 
2 cotan 0 

pr 1 + 

(pr)¿ 
(1.3.25) 

To suimnarize then we have the l’ollowing concepts. The average 

real power density flow, i.e. the power per unit area is the power actually 

radiated by the source in the radial direction. It decreases as l/r2 which 

is a required condition for physical reasons since no power is assumed lost 

or created in the medium. This power is given by eq. (I.3.I9). 

An average reactive power is also associated with the point source. 

It is that power which flows back and forth across a closed sphere and 
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averages out to zero for each complete cycle. It comprises energy 

momentarily stored hy the electromagnetic field. This average reactive 

power is given by equations (1.3.24) and (1.3.25), or, if yo = $0°, 

by equations (1.3.22) and (1.3.23). The average pover as a function -:f an 

arbitrary phase Yo is given in equations (1.3.22) and (1.3.23). 

Once the physical interpretation of the complex Poynting vector is 

clarified, real uirne notation can be dropped in favor of complex notation. 

This will be done henceforth. 

1.4 The Magnetic Point Source 

The field of a magnetic dipole is, in complex notation* 

3 
1_ 
i-r 

•i 

where 

magnetic moment 

* 
Ref. 20, p. 233. 
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The spherical coordinate system used is shown in fig. 1.4.1. 

z 

Figure 1.4,1 The Magnetic Dipole. 

1.4.1 Associated Impedances and Fnase 

Similar to sub-section 1.3.1 we can associate two impedances with 

the magnetic point source: 

7 -t l-U -(^) -, 

^ \'e! i[l •• (ir)2+(^r)'î] 
a.ii.M 

and 

& ■*> 
S = 

> Hr 2 M 

¡i can 6 
(1.4.5) 



Equation (l.t.i) can be rewritten in the firm 

12 

(U.6) 

where 

ßr\j 1 + _ n 
l-(Pr)”+(ßr) 

I1 (.-r)" 
U - (br)¿ + 

and 

Y = arctan-7 
(i-r)3 

(l.t.5) 

Considering a phase y^ in the E component we obtain, analogous 

to eq. (1.3.11*), 

V Y + arctan o 
(,r): 

1.4.2 Associated Paver Flow 

Similar to eq. (1.3.21) we obtain the average radial po.er 

flow from the equation 

(1.4.10) 

The minus sign is required by definition of the outward flow. Compare 

fig. 1.4.1. Using eqs. (1.4.2) and (1.4.3) and introducing a phase 

shift Y. in the E-component, we obtain 
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(1.4.11) 

rhere 

(1.4.12) 

Again, siriilar to eq. (l.3*19)> P, stands for the average out- 

v»ará f 1 'V of power associated with a ;nagnetic point source. Equation 

(1.4.11) is analogous to eq, (1.3.22) and the same comments apply. Confer 

subjection 1.3.2. 

2. THEORETICAL CONSIDERATIONS 

2.1 Introduction 

This section deals !rith the theoretical aspects, from an 

elementary point of view, of the interaction effects that arise when dipole 

anc. loop antennas are usee1 as sensors of the electromagnetic field in the 

vicinity of a trensmitting antenna. 

In particular section ¿.2 is a summary of previous theoretical 

results and sections 2.3 and 2.4 a discussion of these results as applied 

to the case where the transmitting antenna comprises a short dipole. 

Ref. 1, p. 13-26. 
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2.2 Interaction Errors >f the Poynting Sensor 

Figure 2.2.1 illustrates an essentially two dioensional situation. 

A magnetic sensor , i.e., a small loop, is centered on the geometric 

center of an electric sensor , i.e., a short dipole. This combination 

of sensors is referrred to as a Poynting sensor . The Poynting sensor 

is removed a distance r from a transraitting antenna. (j) represents 

the input current to the transmitting antenna 

V 
t 

Figure 2.2.1 Poynting Sensor and Transmitting Antenn;. 

and V^. the source voltage. In the case of interest here the transmitting 

antenna comprises a short dipole parallel to the electric sensor. 

The following nomenclature is adapted: 

= self impedance of the transmitting antenna 

= self impedance of the magnetic sensor mm 

# 

#* 

Ref.. 1, p. 10-14. 

Ref. 1, p. 16. 
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Zee = self impedance of the electric sensor 

Z^m » mutual impedance between the transmitting antenna and «he magnetic 
sensor 

Zte » mutual impedance between the transmitting antenna and the electric 
sensor 

eu 

mi 

R , = 

m 

K 
m 

H 

E, 

mutual impedance between the electric and magnetic sensors 

load resistance of magnetic sensor 

load resistance of electric censor 

load voltage of magnetic sensor 

load voltage of electric sensor 

Z /R , mm' mi. 

Z /R , ee' eA 
» 

the measured magnetic field at the P-ynting sensor perpendicular 
to the plane of the magnetic sensor 

the measured electric field at the Poynting sensor parallel t~ 
the electric sensor 

* 
the true magnetic field at the Poynting sensor perpendicular to 
the plane of the magnetic sensor 

the true electric field at the Poynting sensor parallel to 
the electric sensor 

effective length of the transmitting dipole (a function of the 
dipole length 2L) 

p D n 
i^ûit (-) where ^ is the radius of the magnetic sensor 

Ref. 1, pp. 8-10, 23. 

Ref. 1, p. 12. 
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Assuming Z = 0, it has been shovn that 
era 

E 
r 

tt e s-' Kiii a ♦ *e) d * V 

» 2tt \i "mi (1 + ^)(1 + V ’ 2te~ ^ (l + 1^) - Bei(1 * Ke) 

^ZttSei(1 + Ke) - + K«> 

(2.2.1) 

In addition, it has been shorn that 

V e a 
jHa 

' 1+K* 
(2.2.2) 

and 

^Ht 3 Ztt (2.2.3) 

Letting Re¿ = * the situation depicted in fig. 2.2.1 reduces 

to that of interaction solely between the transtiitting antenna ant. the 

magnetic sensor. Accordingly, (2.2.1) becomes 

ir " —-ï-r 0:.2.¾) 

In lika manner, E/E. for the case of interaction solely between the trans- 
Xi 

mitting antenna and the electric sensor becomes 

* Ref. 1, pp. 19 and 2k. 

*LSL 

Ref. 1, pp. 22-23. 
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s: 't 1 - zr R „(1 + K ) te' ve e¿' e' 

(2.2.5) 

Interaction phase and magnitude errors are defined by the 

relations 

Ig- J - 1 = interaction magnitude error of the electric sensor 

E 
ph ii-- = interaction phase error of the electric senaor 

Et 

H ¡ 
^-1-1= interaction magnitude error of the magnetic sensor 
i I 

JJ 

ph sw- = interaction phase error of the magnetic sensor 
flt 

Thus, by (2,2.1), the interaction errors of the electric and magnetic 

sensors forming the Poynting sensor are identical. As a result (2.2.2) 

shows that 

ph V - ph V = ph E, - ph H. + m (2.2.6) 

where 

Yo =ph 
1+K 

(2.2.7) 

In other words, the phase difference between the load voltages of the 

electric and magnetic sensors is identical to that between the true 

electric and magnetic fields E^. and except for the additive constant y„ 

Ref. 1, p. 24. 
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In adâiti.'/n, it is self evident from (^.2.1), (2.2.^), and 

(2.2.5) that for a given transmitting antenna the interaction errors of 

the electric and :r.gnetic sensors vill decrease as the self impedances of 

these devices increase. Conversely, for a given electric and/or magnetic 

sensor the interaction errors should decrease with an increase in the 

self impedance of the transmitting antenna. 

2.3 Interaction Errors In the Presence of a Short Dipole Transmitting 
Antenna. 

In the case where the transmitting antenne of fig. 2.2.1 comprises 

# 
a short dipole E and H are given by 

E = J 
Ifc(oM 

(1 + -A_ .1 ) Jte“!-'1’) (2.3.1) 

H - J 
M0)|X 1 —L (1 + _i_) 

2\r v jßr' 
J(o-pr) (2.3.2) 

by eq. (2.2.2) 

Ve ^1+Km^ 1 pr + j(ß2r2 > 1) 
Vm " " (i+K^Jja ßr TT j ß r 

ro 0 l - • a* 3) 

therefore, 

2 2 _ ± 

ph V - ph V = arctan ^-r——— - arctc.n Or + v = ^ e r m Or K ‘o 

= arctan l/ß^r^ + y. (2.3.^-) 

* 
Ref. 1, pp. 12-13. 
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vhere vo iß given by eq. (2.2.7) ^ is completely determined by the self 

impedances and load resistances of the electric and magnetic sensors 

comprising the Poynting sensor. 

Consider the case where Reji = ®, i.e., interaction solely 

between the transmitting dipole and the imgnetic senssr. By eq. (2.2.3) 

and eq. (2.3.2) 

J (?) 
-TT~F 
2 c ß r 

(1 + Ö0r)e“^r (2.3.5) 

As a rough approximation of the self inductance of the magnetic sensor 

* 
take 

L = m '2' ^ 
■’n 
-n (^r) •• 2 

0 J 
(2.3.0; 

where represents the radius of the wire farming the magnetic sensor. 

The self reactance of the transmitting dipole can be approximated by 

resorting to data of the type provided in reference I5, p. 364. Dimensions 

of a magnetic sensor and transmitting dipole approximating the devices 

used in experiments reported later in this report are 2L = .16 m, dipole 

thickness = .001 m, D = .06 m, r^ = .0005 m, and = 5oQ . At 400 me, 

neglecting the radiation resistances of the magnetic sensor and transmitting 

dipole, these values, via eq. (2.2.4), yield an interaction magnitude 

error less than 7# for r = 1.5 cm and essentially 0# for r > 6 cm. 

* 
Ref. 17, p. 26O. 
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2.k Remarks on the Impedance Concept 

The impedance concept described in section 2.2 as a model of 

interaction between antennas separated by distances less than a wave¬ 

length is rather crude. However, its simplicity and apparent ability to 

describe, at least in a semi-quantitative sense, the situations considered 

in this report seem to justify its use. A more rigorous and accurate 

analysis wiuld, for example, involve the overpowering task of solving the 

boundary value problem for each case considered. 

The model of interaction used is subject to several restrictive 

assumptions. Por example, the largest dimensions of the magnetic and 

electric censors should be much less than both iravelength and the distance 

between the sensor and transmitting antenna. In the example cited in the 

latter part of section 2.3 there is a violation of the second assumption. 

Yet, the results obtained are consistent with the experimental data shown 

in section 3. Moreover, (2.3.4) is verified to within very small distances 

of separation between the transmitting antenna and the Poynting sensor. 

The self reactance of a short dipole increases drastically with 

increasing wavelength. Therefore, referring to (2.2.1), the interaction 

errors of the Poynting sensor in the case of a short dipole transmitting 

antenna should decrease with decreasing frequency. However, for a fixed 

wavelength the self reactance of a short dipole decreases with increasing 

dipole length. As a result, the interaction errors of the Poynting sensor 

should decrease at a fixed frequency with decreasing dipole length. Again 

# 

#* 

Ref. 1, pp. 10, 12, 14. 

Ref. 15, p. 364. 
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these observations are confinaec by the results obtained in Section 3« In 

addition, it is readily apparent from (2.2.1) that the interaction errors of 

the Poynting sensor can be controlled by the load resistances of the electric 

and magnetic sensors. 

3. NEAR FIELD MEASUREMENTS OF EIECTRIC AND MAGNETIC FIELD COMPONENTS 

3.1 Introduction 

Various concepts and properties of the near fiele of point sources 

were described in Section 1 of this report. The problem of testing those 

properties by actual measurements is discussed in this and the following 

section. The first requirement for such measurements is the development of 

appropriate field sensors. This problem was discussed and analyzed in 

previous reports and additional problems in Section 2 of the present report. 

As a result, it was decided to use as sensors small dipoles and loops, 

sensitive and accurate enough for near field use, yet unhampered to a large 

extent by interaction. Tho use of an image plane was found to be 

advantageous in demonstrating the principle of the measurements. The 

present section discusses the equipment and sensors used in those measure¬ 

ments. 

3.2 Practical Near-Field. Sensors 

From considerations reported in Section 2 of this report as veil 

as from earlier reports it was decided that dipoles short compared to wave¬ 

length and loops whose diameter is small compared to wavelength are usable 

as near-field probes of electromagnetic radiation. 
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Thie decision was based on the following specific points. 

1. The small electric and magnetic sensors can be used as true 

indicators of ihe electric and magnetic field components respectively. In 

reference 1, p. 14, it was shown that the load voltage of a small electric 

dipole is proportional to the total magnitude of E existing in the direction 

of the dipole. Similarly, the load voltage of a magnetic dipole was shown to 

be directly proportional to the magnitude of the total H existing in the 

perpendicular direction of the loop. Barring interaction, the sensors 

were considered as true field indicators. This assertion has been verified 

independently in other laboratories since the appearance of the above report.^ 

2. Interaction error is reduced compared to the half wave dipole. 

The interaction magnitude error and phase error between two sensors can 

essentially be neglected when separated by a distance comparable to their own 

dimensions. Interaction errors have been discussed extensively in reference 1. 

There appeared a number of difficulties using small sensors as 

field indicators. One of the difficulties is the sacrifice in sensitivity 

of the probe when its dimensions are reduced. Lach of sensitivity is not 

a primary cause for concern, since expected signals in the near field are 

relatively large. As a secondary symptom, however, due to the relatively 

more significant pickup through lead cables the effectiveness of the sensors 

was reduced. As shown in Appendix B the effect of finite gaps in short 

dipoles can no longer be ignored. 

Experiments were conducted to establish the practical limits within 

which small sensors can be used effectively. Experiments were performed in 

the 100-400 Me range. Small dipoles ranging in length from 2 to 20 cm 



23 

were used. Shielded loope ranging in diameters from 1 to 15 cm were also 

used. A balun tras usually employed in connection with the dipoles. The 

different experimental setups included dipole-dipole, dipole-loop and loop- 

loop measurements in free space. In all experiments of this type it vas 

found that leads were a major source of error and, in fact, interacted 

severely with other objects in the field. The effectiveness of the small 

sensors thus Impaired, a different approach was required. 

One suggested approach vas the introduction of an image plane, 

described in the following subsection. 

3.3 The Image Plane and its Sensors 

A successful simulation of free space that eliminated the effects 

of antenna leads vas provided by an image plane. 

The image plane consisted initially of a copper mesh 6 feet by 

6 feet. It was later found necessary to double its size. The initial 

experiment included measurements between two monopoles, one of which was 

fixed at one point in the plane, the other movable with respect to the first. 

One problem automatically eliminated by the use of n nopoles rather than 

dipoles was the balun. The monopole consisted in each case simply as a 

piece of wire extending the center conductor of the coaxial lead cable 

through the screen. One monopole served as a transmitting source, the other 

as a receiver. The amplitude of the received signal as a function of distance 

from the transmitting source is shown in fig. 3.3*1* The amplitude of the 

transmitter is held constant. Measurements were performed at three fre¬ 

quencies, 20 Me, 200 Me, and kOO Me. Two different dipole lengths were used: 

2 cm and 3 cm. Excellent agreement with the theoretical curve was obtained 

in all cases. The measurements at a distance of 1 cm varied, however, con¬ 

siderably due to the interaction of the sensors. 
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Tlie magnetic analog of the monopole over an image plane ie the 

semicircular loop. The principle of operation can be explaineâ from 

fig. 3.3.2. 

Figure 3*3.2 Principle of Operation of Semicircular Loop. 

As seen from fig. 3.3.2 the currents along the horizontal feecing 

line are in opposite ¿irection above and below the image plane anr1 therefore 

cancel with respect to an external object. The current in both semiloops 

are in the same direction and therefore the sesiiloop over an image plane will 

have the same electromagnetic field as a loop in free space. The practical 

advantage is the fact that lead wires, just as Li the case of the monopole, 

are conveniently below the image plane and therefore do not interfere with 

the operation of the loop. 

In practice, a shielded semiloop rras used to cancel effects of the 

electric field as in the case of a shielded loop in free space. 
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The directional properties of the cemiloop were obtainec. by 

measuring its radiation pattern. They were found to be identical to those 

of a loop in free space. Results of this measurement are shown in 

fig. 3.3.3. 

Measurements were taken, using a shielded semiloop and. a uon.pcle 

and another e.rperiment using two semiloops. In each case the amplitude vs. 

distance was measured, one sensor serving as transmitter, the other as 

a receiver of that signal. Results of these measurements are shown in 

figs. 3.3.^ and 3.3.5. 

As a result of the previous measurements it was established that 

the near-field sensors as described above conformed to expected behavior 

as field sensors and their mutual interaction was of negligible proportions. 

The basis for the development of more sophisticated sensors, as described in 

Section 4 of this report, was thus obtainec. 

3.4 The Instrument Setup 

The instrumentation required for amplitude measurements was 

relatively simple. One receiver of the type AN/URM-47 covering the fre¬ 

quency range of 20-400 Mc vas used. The signal generator ’.ras a Hewlett- 

Packard., Model 6O8A, covering the frequency range 10-500 Me. 

No arrangements were provided to obtain an impedance match between 

instrument and sensors. Such an impedance match over the frequency range 

of interest would have presented difficulties outweighing its possible 

benefits. 
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4. POWER AMD PHASE MEASUREMENTS IN THE HEAR FIELD 

30 

4.1 Introduction 

The measurement of individual electric and magnetic field components 

using small sensors in the near field, as described in the previous secti'ii, 

c nfirmed the anticipated behavior of both sensors and point sources. Usiug 

this as a basis, simultaneous measurements of electric and magnetic field 

components were attempted. Specially modified sensors and instruments 

were usee for this purpose. Additional information about near field measure- 

ments was thus obtained and compared to the theoretical results of Section 1. 

The present section describes the experimental setup and the 

resulting measurements of the near field properties of point sources. 

4.2 The Poynting Sensor 

A sensor capable of measuring E and H independently, instantaneously 

and simltaneously at a point in space will be called a Poynting sensor. 

From theoretical considérât!:ns discussed in Section 1 the short 

dipole anc. small loop antennas met the requirements of measuring instant¬ 

aneously E and H respectively at a point in space. The next step required 

to combine the two sensors so that they would not interfere with each 

other and thus providing the possibility of making simultaneous measurements 

of E and H at a point in space. 

As a starting point in the development of the Poynting sensor 

loop-dipole measurements of the kind, described in the previous section 

were carried out. The measurements were carried out both in free spc.cc 

and above an image plane. As expected, the signal received by the electric 
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sensor (dipole or monopole) when It was moved parallel to the loop, attained 

a maximum near the loop wire and a minimum when closest to the loop center. 

Measurements taken when both sensors were nearly overlapping were critical 

with respect to position. 

The object of the above measurements was to establish in practice 

a configuration in which the effect of one sensor on the other is minimized. 

The most satisfactory results were obtained in the case were the 

monopole was located directly in the center of the semicircular loop. The 

attenuation of the signal received by the monopole in this position was 

about 40 db below the maximum. This combination of monopole and loop 

seemed therefore to satisfy the initial requirements of a Poynting sensor. 

To further test the apparent property of negligible interaction 

between the semicircular loop and the monopole an additional movable mono¬ 

pole iras used. Previous loop-dipole and dipole-dipole errperiments were then 

repeated, using the movable monopole as the transmitting source and either 

the semicircular loop or the monopole part of the Poynting sensor as a 

receiver. In both cases the identical results to those described in figs. 

3.3.I and 3.3.1* vere obtained. 

From the above described measurements a Poynting sensor, consisting 

of a semicircular shielded loop and a center monopole, seemed to satisfy, 

within practical limits, the design goals set for such a sensor. A picture 

of the Poynting sensor is shown in fig. 4.4.1. 

The next and final step required a simultaneous measurement of 

E and H and the phase between the two as a function of distance from the 

radiating source. Phase measurements required instrumentation beyond that 
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described in subsection 3.¾. The necessary experiaentel setup is 

accordingly described next. 

k.3 The Instrument Setup 

For simultaneous ¡oeasurements of E and H two receivers of the type 

AN/UHK-47 were used. The input of one was connected to the semicircular 

loop and the other to the monopole located at its center. The condition 

for simultaneous and independent measurements of E and H at a point in 

space were thus essentially provided for. 

To measure phase between the two received signals the above re¬ 

ceivers had to be modified. Since they are heterodyne receivers, their 

internal oscillators had to be synchronized. In practice, the internal 

oscillators were disconnected and an external oscillator used for both 

receivers. The external oscillator was tuned to a frequency of 15 Me above 

the received signal. The 15 Me IF outputs of the two receivers were 

then fed. to a sensitive voltmeter capable of reading each output individually 

as well as their instantaneous difference. A block diagram of the experi¬ 

mental setup is shown in fig. 4.3.1. 

The most accurate measurement of phase at 15 ifc was found to be 

the triangular method necessitating three measurements: the RMS outputs 

of the two receivers and Vg and the instantaneous difference 

V1 - Vg between the two. The phase y could accordingly be obtained graphi¬ 

cally from the plot of the triangle as shown in fig. 4.3.2 or of course 

from the for-wla 

V 
-1 

*» COS 
Tl2 * V22 - (V1 

—svr~ (m.i) 



Poynting 

Figure 4.3.I Block Dicr;raa for Phase Measurements. 

Figure 4.3.2 Vector Diagran for Phase Measurements. 
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4.4 Phase Measurements 

The equipment ¿escribed in the previous subsection vas capable 

of measuring phase of an electromagnetic field with a resolution of about 

I9. The noise level made the measurement of phase at low signal levels much 

less accurate. Phase raeasurements vith the given setup provided no vay 

of differentiating between positive and negative phases. 

The first set of measurements included the Poynting sensor as the 

receiving element and an electric point source as the transmitter. The 

corresponding arrangement, including the image plane, is pictured in 

fig. 4.4.1. 

For practical convenience the transraitting monopole vac the 

movable element. The monopole vas moved in intervals, from a distance 

of about 7 cm from the center of the Poynting sensor to a distance of 

about 1 m from the sensor. Measurements were taken at 230 Me. At this 

frequency the border of the near field, defined as \/2ä, vas equal to a 

distance of 20.7 cm from the radiating source. This distance was right 

within the range of measurements. Keeping the transmitter power constant, 

the output signals of the Poynting sensor were measured at each interval. 

The magnitude of the E and H coapon.-nts of the electromagnetic field 

were already discussed in Section 3 and the results plotted in figs. 3.3*1 

and 3*3*5* 

The phase between E and H at each point in space can be pre¬ 

dicted for the electric source from equation (1.3.14), repeated here 

for convenience. 
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- Y0 - ««tan (^) (1.3.1¾) 

The value of Y0 is affected by nuneroue factors, the most im¬ 

portant of which are: 

1. A constant phase angle may be introduced by the 
two receivers. Tuning one or both of the receivers 
will affect this phase considerably because of the 
dependence of phase response of a receiver on 
tuning. 

In Section 1, theoretical account has been taken 
of this phase by the introduction of a phase shift 
between the E and H components. YQ ic that case was the 
corresponding relative phase shift. 

2. In Section 2, eq. (2.2.7), the dependence of y on 
the load impedances of the magnetic and electric 
sensor comprising the Foynting sensor was discussed. 
It is therefore evident that the receiving sensors 
do not have to be conjugately matched to serve as 
Foynting sensors. A mismatch, or any match, '’ill 
only affect the value of the constant phase Y0* 

3. If the Foynting sensor is so oriented in space as 
to measure E , para of the pliase angle will be due to Z , 
eq. (1.3.10). This phase angle will depend on orienta- Y 
tion and will be constant as long as the orientation of the 
Foynting sensor is not changed. 

There may be other factors affecting the value of vo such as 

the skin effect as discussed in Appendix A, or the effect of a finite 

gap as discussed in Appendix B, or possible unbalance of the feeding line. 

Y is in effect a summation of all constant phases (with respect to 
o 

distance from source) due to any of the above reasons. The actual value 

of Y is obtained from experiments. It is the asymptotic value of phase 

at a large distance from the source. 
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In all of the above cases, care oust be taken that throughout 

the taking of measurements, vo is not changed. Once an instrument setting 

is obtained, it is only permitted to change distance between transmitting 

source and Poynting source. Almost any other adjustment, such as receiver 

tuning, will affect phase via yQ. This introduces a practical difficulty 

since the dynamic range close to the radiating source changes drastically 

with distance. Any adjustment of an attenuator runs the risk of affecting 

the phase behavior of the instrument. Care had to be exercised to prevent 

this from happening. 

From all of the above it is seen that the phase as a function of 

distance, eq. (1.3.14), is unaffected as long as reasonable care is taken 

during the measurements. The resulting phase function will be indicative 

of the source. 

In fig. 4.4.3 the phase measurements are given for an electric 

source. The magnitudes of E and H as a function of distance are plotted in 

fig. 4.4.4, All three of those measurements correspond closely to the 

theoretical curves of Section 1 and thus verify the assumptions made. 

The value of Y0 could be varied simply try detuning one of the 

receivers slightly. Measurements were accordingly taken at different 

values of v . 
o 

Figure 4.4.5 was taken with yo adjusted to 48°. Since no 

provisions existed in the given instrument setup to differentiate between 

positive and negative phase angles, i.e., E leading or lagging with 

respect to H, all phase angles were plotted as positive numbers. Equation 

(1.3.14) has to be modified accordingly since only magnitudes were 

obtained : 

i 
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Yo - arctan (^) (4.4.1) 

The corresponding theoretical curves and the measured points are given in figs. 

4.4.5 and 4.4.7. The variation of the magnitudes of E and H aa a function 

of distance are unaffected by the value of yq aa seen from a comparison 

of figs. 4.4.4 and. 4.4.6, where each corresponds to a different value of 

Yo¬ 

lo complete the set of measurements a magnetic source consisting 

of a semicircular loop was substituted for the electric source and measure¬ 

ments repeated. A picture of the corresponding setup is shown in fig. 4.4.2. 

As seen from eq. (1.4.9) the only expected difference from 

previous results is a difference in sign. The resultant theoretical curves 

and measured points are shown in figs. 4.4.8 and 4.4.9. 

The average power per unit area, i.e., EH cos 0, delivered by 

the dipole in fig. 4.4.1 is shown in fig. 4.4.XO. The experimental 

values for E, H and 0 are taken from figs. 4.4.4 and 4.4.3 with 

0 = Y0 - Y* Very good agreement is obtained except for the point of 

closest measurement at 7.5 cm. The discrepancy here results primarily 

from the measured value of 0 which also appears in fig. 4.4.3. Msasured 

values of 0 consistently seems to be in error at the closest distances. 

The reason for this is not completely understood at the present time, 

but it is believed to occur because of interaction. The distances are, 

however, closer than would be involved in any practical measurement pro¬ 

cedure. 
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4.5 Sumraaty and Conclusions 

The measurec! data agreed closely with theoretical curves. The 

fundamental properties of electric and magnetic sources are therefore 

subject to practical measurements. As shown in this report actual 

near field measurements of electric and magnetic sources is feasible and 

can provide the information regarding power flow in the far field. 

The phase measurements had the advantage of a relatively un¬ 

perturbed pattern in the near field. Most experimental and practical 

errors affected the phase only through a constant which, if care is 

exercised, does not affect the general shape of the phase curve. The only 

effect of different values of this constant is a parallel shift of the 

entire curve. In particular it is noted that the phase error of a 

Pcynting sensor due to interaction is cancelled as shown in eq. (2.2.6). 

The measurement of phase seems therefore a more accurate measurement in 

the near field than the measurement of either E or H. 

Depending on instrumentation designed specifically for the 

purpose, the actual values of the real or the imaginary Poynting vectors 

can be obtained directly. 

In this report, only a demonstration of the principle involved 

in Poynting and phase measurements was attempted. For this reason the 

image plane served a very useful purpose. For practical situations it 

will be necessary to develop a Poynting sensor which performs satisfactorily 

in free space, 

Additional studies and experimental evidence are necessary to deter¬ 

mine the applicability of Poynting vector and phase measurements to other 

than point sources and when exposed to other than simple sine waves. 



Appendix A 

INTERNAL RESISTANCE OF CYLINDRICAL DIPOLE ANTENNA 

A.l Introduction 

Most of antenna theory assumes that the antenna is perfectly 

conducting. In practice, however, the material of which a dipole antenna 

is made has finite conductivity such that internal impedance arises from 

this conductivity. Based on a simplified model, error in input impedance 

due to the finite conductivity is estimated in this section. 

A.2 Calculation of Internal Impedance 

If the conductivity of dipole material is finite, the current 

density at high frequencies is concentrated near the surface due to 

"skin effect". Therefore it is immaterial to distinguish whether the 

dipole is a solid or tubular cylindrical conductor as far as internal 

impedance is concerned. 

To calculate internal impedance it is assumed that current is in 

the axial direction only, and that current variation in the axial or 

circumferential direction is negligible compared to that in the radial 

direction. Then the internal impedance per unit length of circular 

cylinder, whose radius is a, is given ty1^21 

1 

(A.l) 

where 

ffl = 2 it f 

f » frequency in cps 

H = permeability of dipole material 
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a ■ 'conductivity of dipole material 

J0, ¿i * Bessel functions of first kind of zero and 
first order respectively 

For very high frequencies it can be approximated as 

«d ■ s'vi (1 ♦ J> <*-2> 

A good approximation is |i = u and e a a for most dipole antenna 
oo 

materials. The conductivity of standard copper (l.A.C.S.is 

7 *7 

5.8 X 10' mhos/m, of commercial grade copper is 5 - 10 X 10' mhos/m and 

of comnercial grade brass is 1 - 5 X 10^ ahos/m. 

Total internal impedance of cylindrical dipole antenna whose 

length is 2L is approximately given by 

WJXda 2zdL 

* a + oim (A*3) 

where 

Rd = internal resistance 

Xd » internal reactance 

For more exact total internal impedance effective dipole length instead of 

actual length should be used, but for simplicity the above form, which 

introduces a negligible amount of difference, is used. If the dipole is 

made of standard copper u = UQ = 4* X 10'7 henries/m and o = 5.8 X 107 mhos/m 

and accordingly 
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Za « 8.3 j Vf (l + j) X 10"® ohms M) 

A.3 Comparison of Internal and Radiation Resistances 

The calculated value of internal resistance Is compared with the 

radiation resistance of center driven cylindrical dipole antenna which is 

obtained by Schelkunoff and Priis.1^1 As shown in fig. A.l even at 

10 Gc the internal resistance of a dipole is negligible compared to 

the radiation resistance Ra if a/\ is larger than where \ is wave¬ 

length. It is noticed that, however, if the dipole is very thin, the 

internal resistance is comparable with radiation resistance when L/\ 

is less than ij. In particular, at 10 Gc it is shown that the internal 

resistance is greater than radiation resistance. Noting that, when dissipations 

in feeding line are neglected, the input resistance of a dipole is 

14 given by 

where 

^ = input resistance 

1^ » input current 

IQ = current amplitude on dipole 

internal resistance should be included for the calculation of input resistance 

when the dipole is very short and thin. 

As shown in figs. A.2 and A.3, the influence of internal 

resistance on input resistance is negligible when L/\ varies from 0.2 to 0.5 
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(that is full-wave dipole). Also, it is noted that in fig. A.2 the 

22 
curves obtained from reference ly and Wu's paper agree closely, and 

results given by Jordan^ which describe the ideal case agree only 

when dipole length is about half-wave length. 

A.4 Conclusion 

When half-wave dipoles are used, the internal resistance can be 

neglected even at frequency of 10 Gc, but if the dipole is very short, 

internal resistances are considerable. If the dipole is not very thin 

(say, &/\> l/lOO) internal resistance is negligible regardless of 

dipole length. 
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INFLUENCE OF GAP ON DIPOLE INPUT IMPEDANCE 
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B.l Introduction 

In this section It Is shown that the influence of finite gap 

on the input impedance of a dipole antenna which usually is assuaed infinite¬ 

simal is not negligible. Besides a simple assumption of the sinusoidal 

current distribution of a dipole, there are three distinct theories; namely, 

Hallen-King theory based on 6-gap model which leads to an integral equation, 

Stratton-Chu theory based on 6-gap spheroidal model which can give a 

rigorous solution of Maxwell’s equation and, finally, Schelkunoff’s theory 

based, on thin biconical model which is the only one that takes account of 

gap but neglects the end effect of cones. 

There have been investigations of the influence of a dipole 

gap by Infeld^ based on the Stratton-Chu theory and by King-Wintemitz^ 

based on the King-Middleton theory. Although the equation of the Stratton- 

Chu model is more rigorous than that of the King-Middleton model, the 

mathematical difficulty makes it impractical for numerical calculation. 

The work of Infeld will be briefly summarized and the detailed 

discussion will be based on the work of King and Winternitz. 

B.2 Influence of the Gap Width in a Spheroidal Model 

We can characterize the points in space by the spheroidal 

coordinates^ (,, Ij, 9 with: 

£ ^ I1! I S1* 0 liP <_2jt 
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A spheroid, is characterized by a constant coordinate Ç ~ The input 

admittance of a cylindrical dipole which has a length of 2h, diameter 

of 2a and gap width of 2d is given by^ 

Y jH Í1 21 f (C0 -1>B< “.A 
Ya * (wlo > 

X=0 

+1 

ml (l-']2)g('l)s/(ïl)dl| 

_d_ 

IC, (Co2-1»5/ fco» 

mho (B.l) 

Na 

i/o 
where k = ^ is wave number of surrounding medium which is air, 

L 
f = ï— is the distance between foci of the equivalent spheroid, 

^o 

V 
•+1 r -s 

fe ^ /ti\ (i-T) ) ¡s/ (n) 
V n 

dïl = 2 ^ rn+W+l)(Ml 
'-1 

is the normalizing factor and g(i]) is the function characterizing electric 
f+1 

field at the gap with i g(V| )dîl = 1. Constant coordinates Ç and T] 
J-l 0 0 

are related to the dimensions of the dipole L, a and d by 

The spheroidal function of first kind and the radial spheroidal function 

4 4 5 
of fourth kind R. are solutions of the general spheroidal wave equation ’ 

d_ 
dz (l-z2) a 

dz 

p i 
. 2 2 u 

1_Z 
y=o (B.2) 
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with c = fk and n = o, and are given by 

Voi) = pi2-d'1/2 f j“’1 (myr p^i(11) 
n=o 

(B.3) 

R,4 (C, c) = 
cCl AnJ 

n=o 

n-Z n=o 

1/2 (2) 
LAn(^ Hj (CS) 

n4f 
(B.4) 

where (11) is an associated Legendre function of the first kind and 

(?) 1 
Hv '(£) is a Hankel function of the second kind. Since S. (l¡) = o if 

n z 

¡L is odd, eq. (B.l) becomes with g(i|) = 6(1]) 

„ jkf.,. 2\ î (c02-i)h1,(Co)4<\)sL(°) 
0 Sû~ '"o' m=o (B.5) 

d_ 

K 
(c02-l) B^(C0) N, 

2m 

Equation (B.5) is identical with the input impedance of Stratton-Chu theory” 

if T) = o or d = o. 
0 

For large m, the eigen value of eq. (B.2) is very large 

compared to f' such that we can have following approximation for 

large m 

(1-1)/)3^0) 4¾) = ^ (1-1)/) 
1/2 

cos (2m + |) 'il0 (B.6) 

N2m = 2ffl (B.7) 
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anã 

<Co2-l> kLW ! ,.2,^ 
-- 5 «o -l> 

3T 
2 ^ 

K -1) 

(B.8) 

Now for sufficiently large M 

2> ? 4(o) a-o i: 
m=M+l 

dC, [((o2'1) 4(to>j^ 

1/2. « 1/2 o o ”* C0B f (2m + x) Ti_l 
(C02-l) (l-í!02) J —1 5' oJ 

m=M+l 

(B.9) 

Changing a summation to integral, eq. (B.9) becomes 

2 - 2>1/2 í [(211 + 1)1),,] 
(C0-D (1-D0 ) m 

> M 

o 1/2 :,1/2 
dm = (Ç0-l) (1-^) Ci(| 

Substituting eq. (B.10) into eq. (B.5) 

« «.’-ao-. » f 4“X oXm 
m=o 

_d_ 
"1^ R2m ^o^ 2m 

- £ <Od1/2 d-\2)1/2 « <5 \) 

(B.10) 
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C-l) 
1/2 «Lu 4 <i> 4(°) 

d 
(Co'-1) 4'C0) N, 2m 

jak 
60n i - (Í) 

21 
1/2 

Ci® (B.U) 

when d approaches zero the first term of the equation approaches 

jak 
“oÕ (c ¿ 4<Co) [4(°^ 

m=o „ i, 
d 
ar 
^0 

(Co2-1) 4 (Co) N, 
2m 

and the second term tends to infinity like a£n (—), Thus it shows that 
¿L 

unless the dimension of the finite gap should be involved in the antenna 

theory the series for input admittance diverges. In other words, input 

impedance becomes zero for infinitesimal gap which is contrary to practice. 

B.3 Influence of the Gap Width on Hallen Model 

Assuming « 1 where \ is wavelength in surrounding medium 

£ 
and £ « 1, three dimensional boundary value problems of cylindrical 

dipole as discussed in previous section can be reduced to one dimensional 

form and the integral equation for current distribution can be easily 

12 
found by induced potential method. King-Middleton solved this Integral 

equation by method of successive approximation and derived following ex¬ 

pression for the input impedance of a dipole with infinitesimal gap 

width 
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£ V1)/*“ 

Z0 - - 360* ^- (B.12) 
I «-(o)/»” 

naO 

where Fn(z) and Mn(z) are n ^ order term of the approximating series. 

The integral equation for the current distribution of a dipole 

antenna with the finite gap width 2d differs from that of Hallens primarily 

in the limits of integrals and phase of approximating functions. Thus the 

input impedance of this dipole can be written as 

Z¿ => - JöQjn 

F0(I,d) f Fo(d) £ Fnä(L)/*n + 0 (d) £ 0 d(L)/tn 
__n=l_n=l_ 

Ë *£(«)/«” 
n=o 

(B.13) 

where superscript d indicates the difference of integral limits from the 

definition of that function. For a small quantity of d we can expand the 

functions in equation (B.13) in Maclaulin series in powers of 2j4 . Hence, 

when 2jt^ « 1 and ^ « 1, the input impedance is given by 

zd = V'1 - 0.14) 

where correction factor e is given by 
/ 

d i 10 Gn<L)/tn , -V'X 

'7 F(l)/t t 2« i 
n=b 

Fn(°)-Fn(L) 

)j)n 

f Fn(l-)/tn 
rPo 

*i7F 
A. 

-32*t : L 0 (4)/(.° L 
n=o n 

r Mn(<j)/*" 
n=o 

(B.15) 
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Separating real and inaginazy parts of eçis. (B.12), (B.13) and (B.15) 

Zo “ Ro + J Xo 

zd * Rd + J xd 

e * e" - á «' 

The Input resistance and reactance of dipole antenna with gap become 

respectively 

R (1 - «") + X s' 

Rd " (1 - e’)k + (e')2 
(B.16) 

- «’') - «' 

4 " a . «"J2 + (C')2 
(B.17) 

Now if we know the values of 4. and function P (z), G.(z), and M (z). Z. T' n n n c 

can be calculated. \¡i is the approximation of a function 

+ (z) = 
rL 

/ » » e ^ j 1 g(z, z ) —=— dz (B.I8) 

where g(z, z ) is the current distribution function which is unknown and 

, ..S 2 11/2 (z - z ) + a . The best approximation of t) is given by 

i|i = 2 in — Y a (B.I9) 
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l8 

which is saue as the characteristic impedance of Schelicunoff's theory 

if it is multiplied by ^ times the characteristic impedance of the air. 

The functions ^(z) and Go(z) are given by 

Z I z 
F (z) = cos 2« r , G^(z) * sin 2n U-i o \ o I \ ! 

(B.20) 

and higher order function is given by an identical recurrent relation 

rL 

■ 

-L 

P .(z) - P .(L) n-1' 7 n-1' ' 

- 

Fa-lM - Pn-liL) 
J-L 

-J2n| 
' e ^ ' g(z, z )—=— dz 

A 
dz' 

Vl<*> - rn-l<L>] {'W - \ (B.21) 

In particular, assuming perfect conductor, F^z) and G^z) are given by 11 

^(2) = - (cos 2jc- - cos 2jt^) Än (1 - -^ ) 
L 

, 1 . z + cos 2it- ci (4rt k±l) + Ci {bn ) 

+ ¿ si {bn + J Si (4it 

1 . 0 z - sin 2n r- 
c A. 

Si (l+jt ) - Si {bn 
K K 



■-•loj 
CVJ 

r-4 |CJ 
•«-> 

|CM 

cos 2n ~ Ci (2« ) + Ci (2« b^l) 

+ j Si (2« ~p) + j Si (2n (B.22) 

- (sin 2n J- efa 2« in (l - íj) 

cos 2ft ^ Si (4« L+£) + si (4ft i-^) L - z> 

Si (4ft j) - J Ci (4ft 

Ci (4« ^1) + 2,) Ci (4ft I ) 

sin 2ft $ K a (½ lli) . a (4. ) 

SI (lw i-ii) . j Si (1,, L^i ) . 2J Si (4n i ) 

sin 2, |i \ï\[hlnV% -251 ^”K)j 

- sin 2ft ^ Ci (2ft ±4-* ) f Cl (2ft 

+ J Si (2rt i~5) + J Si (2ft —5) (B.23) 



where 

6k 

«<*) 

Si(x) 

l ■ COS u 
dû 

o 

X 

ein n 
du 

The function Mn(z) is given by the convolution of P (z) and 0(z) 

as 

) M (z) 
n 

n 
7 

L n 

P (z) 
n' 7 IV« - Z 

n i- n J Ln 
z (B.24) 

In particular 

and 

■ =« 2" X sin 2* Í - cos i sin 2, j (b.25) 

^(c) . P1(z) sin 2« f - F1(L) sin 2s |i 

+ 0^(1/) cos 2jt ^ - G^z) COS 2k ^ (B.26) 

A few tabulations of functions F^L), P^L), ^(o) and ^(o) can be found in 

literatures. ^ ^ 

B»1'’ Analysis and Conclusion 

The first and second order approximation of e as a function - 

has been shown by King-Wi.iternitz13 with J kept constant, but we are 
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Interested in the change of input impedance as a function of the gap width 

with £ kept constant. 

In fig. B.1, the input resistance for various sizes nf-dipoles are 

plotted as a function of r which are calculated using eq. (B.3). As 

shown in fig. B.l, the influence of dipole gap is negligible for a wide 

class of antenna thickness when the length is near the half wavelength 

and input reactance can be approximated by 

V * ^ L - <3 X. COt 2« —r  
r --T~— (B-27) 
Ao cot 2« £ 

For a shorter dipole it can be seen that correction for the input 

resistance is necessary for which no simple formula is found, as well as 

input reactance for which eq. (B.27) is still a good approximation. We 
K 

note that, however, the correction factor for the resistance «- is not 

L d a R° 
very sensitive for ^ when ~ and are kept constant. 

To treat the dipole problem completely we have to include the 

8 
influences of feeding lines, the unbalance of current on dipole and 

others. Also we cannot neglect the problem of the change of the 
9 

characteristic impedance of the feed line when connected to the dipole. 

The above problems will have to be considered when short electric and 

magnetic dipoles are used in free space. 
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