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Chapter I: Preliminary Discussioii

Let (Q,F,P) be a probability measure space on which is defitied

a family of real valued raodom variables (r.v.'s) (X(t); teT) where

T is a subset of the real line. We will always assume E(IX(t)I) < oD

for every teT. Let tF(t); tfT) be a family of sub a-fields of F

with F(s) = F(t) for every s, teT with s < t. The family of r.v. 'S

WXt); teTI is said to be well adapted to the family of sub a-fields

(F(t); teT) if X(t) is F(t) measurable for every trzT, and we will

theii write 1X(t), F(t); teTj to indicate this relationi. The family

(X(t), F(t); tUT) will be referred to as a stochastic process.

After specifying a particular process LX(t), F(t); teT) we will

often refer to it as the 'X-process," in order to simplify writing.

i many cases F(t) is the minimal o-field with respect to (w.r.t.)

which the family of r.v.'s (X(s); seT, s < t) is measurable. We

will deaote such a-fields by.8(X(s); scT, s < t).

A process LX(t), F(t); teT) is called a martingale process if

for every s, teT with s < t, E(X(t)IF(s)) a X(s) with probability

one (as$., ace.), and is called a semi-martingale (super-martiagale)

process if E(X(t)IF(s)) > X(s) a.s. (E(X(t)IF(s)) :SX(s) a.s.).

This can be restated as follows: Let

,1,(A) J'X(t,w)dP(w) for AeF(s)

Then by the Radoo-Nikodym theorem, there exists an F(s) measurable

function which we deniote by E(X(t)IF(s)) such that

I.
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s (A)- fX(t,w) dP(a)- f E(X(t) IF(s)) (w)dP(w) for A F(s)

Furthermore E(X(t)IF(s)) is unique except on an F(s) set of measure

zero.

The process [X(t), F(t); teT) is then a martingale if for every

s,taT with s < t,

J- ]ow)dP(w) for

Correspondingly we can say the process is a semi-martingale if for

every s,teT with s < t,

f X(s,.)d( x) f.X(tw)dP(w) for every AeF(s)

and the process is a super-martingale if for every s,teT with s < t,

fAx(s)dP() > fX (t,)dP() for every AF(s)

We will assume from now on T is a closed interval, and hence

it is no further restriction to assume T is the closed unit interval

(0,11. This will be assumed throughout the thesis.

We can think of a process (X(t), F(t); teT) as a function X

of two variables defined on the space TXQ. For each fixed tT,

X(t,-) Is a r.v. defined on (1,F,P,) and is measurable w.r.t. F(t),

and for each fixed axQ, X(-,w) is a real valued function with domain

T. A sample functioi of the process is simply a member of the family

(X(',wo); efe) of real valued functions with domain T. We will be

interested in analytic properties of the sample functions. However,

in order to make probability statements about analytic properties

of the sample functions, we must have separability of the process

w.r.t. the class A of (finite or infinite) closed intervals. The

process is said to be separable relative to i if there is a
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denumerable subset To of T and a set AeF with P(A) - 0 such that if

AcC , and I is an open interval, then

[X(t,w)eA; tcIfT] 0 [X(s,w)eA; teIAT0 ]r A

where [X(t,w)eA; teIAT] - (wi X(t,w)eA; teifTj. In general we

will let [''.] denote the set of all aoe" such that "..." is true.

Separability w.r.t. A implies that if I is any open interval,

then

sup X(t,to), inf X(t,w) and I-im X(s,w), lim X(s,o)
teIAT teIAfT s-> t s->t

are all r.v.'s.

We remark here that any process (X(t), F(t); teTj which is

a.s. sample continuous is separable w.r.t. CA . By a.s. sample

continuity we mean there exists a set AeF with P(A) - 0 such that

if ) )A, then

lim X(s,w) - X(t,w) for every tT.
s->t

Further, if T is a denumerable dense subset of T, then it is a

separating set.

We proceed now to the definition of a quasi-martingale process.

Definition 1.1.1

The process (X(t), F(t); tcTj will be called a quasi-martingale

process if there exists a martinga!e process fX,(t), F(t); teT) and

a process LX2(t), F(t); tET) with a.e. sample function of bounded

variation on T such that

P(tX(t) - X1 () +X2 (t); tcT]) - I

When we say the process (X,(t), F(t); teT) has a.e. sample

function of bouided variation o, T we mean that except for a,



4.

with P(A) - 0, X2(,Iw) is a real valued function of bounded variation

over T.

From now on we will always write [X] I or simply X , for the

martingale, and [X]2 or simply X2 for the process of bounded varia-

tion in the decomposition of the quasi-martingale X. It is hoped

that this will not be confused with the bracket notation used to

indicate subsets of 0~.

We now give some simple examples of such processes.

Let (Z(t), F(t); teTI be the Brownian motion process with

T - [0,11; i.e., the process has independent, normally distributed

increments with E(Z(t)-Z(s)) - 0 and E(IZ(t)-Z(s)l 2) a ar t5

where a > 0 is fixed and s,teT. We assume Z(O)- 0 a.s. so that the

process is a martingale process. We further assume

F(t) -tI(X(s); Wc, s < t). Let X(t) - exp[Z(t)vl for every taT,

where v is an arbitrary positive real number. If u > 0 and t + u < 1

E(X(t~u) IF(t)) - E(exp[Z(t+u)v] IF(t))

- E(exp[(Z(t) + Z(t~u) - Z(t))v]jF(t))

- eXPLZ(t)v] E(exp[(Z(t~u) - Z(t))vl)

- X(t) exp[O v 2u/2 I

If welet

X2(t) 02' 2 V X(s)dS for every teT,

0

then the process (X2(t), F(t); tW) has a.e. saumple function of

bounded variation on T. That X2(t) is defined follows from the fact

that the Brownian motion process is a.s. sample continuous. We show

the process (X1(t) a X(t) - X2(t), F(t); tal) is a martingale.

Again assume u > 0 and t + u < 1, then
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E(X1 (t+u)jF(t)) - E(X(t+u) - X2(t+u)IF(t))

- X(t) exp[ 2 v2u/21 - E(X2(t+uflF(t))

Now t+22

E(X2(t+u)IF(t)) - E(J a V xp[Z(s)v]dsF(t))

22 2 2

M x2 (t) + I = E exp[Z(ts)v] xpa vs/ds
0

M X2(t) + X0t=(exp [Zcv vx~ vu12]-l)

Then E(X1 (t+uflF(t)) - X(t) expia v 2u/2]- X2(t)

-X(t)explua v 2u/21-1)

- XWt - X2(t) - X1(t) a.s.

Hence the X- process is a quasi-martingale. That

U 2 2
E(f =O exp[Z(t+s)v]dsIF(t))

fua20

=~2 . E(exp[Z(t+s)v) F(t))ds
0

follows from the existence in this case of a conditional probability

and we are thus only changing the order of integration which is

permissible here. (One can also prove it directly by observing the

Riemann-Stieltjes sums and noting these sums form a uniformly

integrable sequence.)

In this example we have really just considered a continuous,

convex function of a martingale process, expLZ(t)vl, and hence we

have a semi-martingale process. The following will give a simple
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class of examples where the quasi-martingale need not be a semi-

martingale.

Let (X(t), F(t); teT) be a process with independent increments

where F(t) - 1(X(s); sET, s < t). Let E(X(t)) - m(t). If s < t,

then assuming m(O) - 0,

E(X(t) IF(s)) - X(s) + m(t) - r(s)

Define X2(t) - m(t) a.s. and Xl(t) - X(t) - X2 (t) for every teT.

Then (X1 (t), F(t); teT) is a martingale process and therefore the

process (X(t), F(t); teT) will be a quasi-martingale process when

m(t) is of bounded variation on T.

We will now mention some work which has been done by P. Meyer (3)

on the decomposition of a continuous parameter super-martingale

EX(t), F(t); tf[O,oo]) into the difference of a martingale process

(Xl(t), F(t); tE[O,oo]) and a process (X2(t), F(t); tE[O,a] which has

a.e. sample function monotone non-decreasing. The results obtained

by Meyer are the following: Let (X(t), F(t); tc[O,cv]) be a uniformly

integrable, right continuous super-martingale. Then the process has

the stated decomposition if and only if it is of class D on [0,oo],

I.e., if and only if the family of r.v.'s (X ; .r7), where 7 is
1"

the class of all stopping times for the process, is uniformly

integrable.

It has been shown by Johnson and Helms (4) that there exist

uniformly integrable, right continuous super-martingales

(X(t), F(t); tc[Oool) which are not of class D. They have further

shown that if in addition the super-martingale is a.s. sample

continuous then it has the stated decomposition if and only if
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lim rP([ sup IX(t,w)l > r]) - 0
r->co 0< t< oo

The problem of decomposing a process (X(t), F(t); tW) into

the sum of a martingale process aod a process having i.e. sample

function of bounded variation on T parallels the above described

decomposition of a super-martingale. For if we assume

(X(t), F(t); te[O,ooj) is a uniformly Integrable super-martingale,

we may as well assume we have the super-martingale

(X(t), F(t); tE[O,l]). Then If we have the above decomposition, the

process haviny monotone non-decreasing sample functions has a.e.

sample function of bounded variation on [011.

We will obtain necessary and sufficient conditions for a process

tX(t), F(t); teT) to have the decomposition

P(EX(t) . xl(t) + X2 (t); teT]) - I

where (Y1 t), F(t); teT) is an a.s. samtple continuous martingale and

the process (X2(t), F(t); teT.1 has a... sample function of bounded

variation on T, and further if V(w) denotes the total variation of

X2 (,w0) over T, E(V(w)) < co
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Section 1: Random stopping

Let (X(t), F(t); tET) be a stochastic process defined on the

probability space (iF,P). We will be interested in obtaining a

sequence of processes (X y(t), F(t); tcT), v = 1,2,..., where each

process in the Sequence has some specified property, such that

P([X(t ,M X(t) for some teT]) -> 0

a s v -> cD.

For example, we may want to define a sequence of processes

(X V (t), F(t); tW) v . 1,2,... such that

sup Ix V(t,w)I < o for every v w 1,2,...
t'W

and

P(EXV(t) 0 X(t) for some teT]) -> 0

as Y -> cD.

Such sequences are usually obtained by a random stopping of the

process tX(t), F(t); tW). Therefore, we will consider briefly random

stopping of a process (2, Loeve, pp. 530-535).

Let (X(t), F(t); tW) be a process defined on the probability

space (fl,F,P) and let t(w) be a r.v. defined on (Qa,F,P) with range T.

If for each teT, [(r(w) S tJEC(t) (and hence [r((w) < t'F(t)), the

r.v. .r(W) IS called a stopping time of the X-process. If the

X-process is as. sample right or left continuous then we can define

anew process tX 7(t), F(t); tGT) by randomly stopping the X-process

accordiog to the stopping time T-(w). More precisely, if the

X-process is as. Sample right contisiuous, define

8.
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X (t,W) - X(t'W) t < 'r(W)

- X(T(u),W) t > 7Mw

a nd then using right continuity of the process and the fact that

[-r(w) :5 t]F(t) it can be shown X T(t) is F(t) measurable for every

teT.

Actually, if one only requires [7(ua) < tjE-F(t), and defines

X (tAu~ - XMt'u) t < *r W)

- X(T(W),W) t > r40)

then X T)W will be F(t) measurable if the X-process is either a.s.

sample right or left continuous.

The following is a standard theorem which we state here since

it will be used extensively (2, Loeve, p. 533).

Theorem 2.1.1

If LX(t), F(t); taT) is an as. sample right continuous semi-

martingale, (martingale) and if T is a stopping time of the process,

then the stopped process (X (t), F(t); tW) is also a semi-

martingale (martingale).

The next two theorems will also be used extensively in later

work so we will prove them in some detail.

Theorem 2.1.2

Let (X(t), F(t); teT) be an as. sample continuous process.

There exists a sequence of processes JX, (t), F(t); We), Y-0,1,2,...,

each process in the sequence being a.s. sample equi-continuous,

such that
P([Xy(t) ,f X(t) for some teT)) <2-
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Proof:

By a process being a.s. sample equi-coitinuous we mean the

following: There exists a set A with P(A) - 0, such that if . > 0

is given, there exists a b > 0 such that

JX(t,w) - X(s,w l < e when It-sl < 6

for every w4A. (That A does not depend on tET follows from the

fact that T a [0,1].)

We now prove the theorem.

Let (e n; n > 0) be a sequence of real numbers with-n.Fo ah -O e

O> e> ... > e >...> 0 and lim en 0. For each n >0, let

(5nvl v > 0) be a sequence of real numbers with

5nO> nl>...> ny >...> 0 and Ilm nv, 0. The en's are arbitrary

and the 6nv 's are to be chosen as follows: Because of the a.s.

sample continuity of the X-process, for each cn, nmOl,.., we can

find a ny >0 such that

P([ sup Ix(t,,) - X(s,U)J > en1) < 2-(n+v)
It-sl_< .

for each v a 0,1,....

Let ny (w) be the first t such that

sup IX(s,M) - X(s',w)I >n

Is-s '1 5nV
SS' < t

If no such t exists we define Tn (w) - I. Then for each nvmOpl,...,

0 < r nv(0) :S I a.s. Tn (w) is a stopping time of the process for

every n,vO,l,.., since for any tt(0,l

rnv(w) > t] - [ sup IX(s',"w) - X(sw)I < fn)
Is-s'< 6nV
SS' < t
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Def ine,

v (w) T nf n(w) v - 0,1,.

Then for each v 0,1,... 0 < T(w) < I.

TV(w) will be a stopping time for the process if [rV(w) < t]EF(t)

for every teT. Actually it is sufficient to require that the set

[TV(w) < t differ from ai F(t) set by a set of measure zero.

(I, Doob, p. 3u5) (As was mentioned, we could require only that

[T (w) < t]cF(t) for every teT, which is obviously the case since

00

[TV(4)) < t= U Ln nv (u) < Q
n=O

If te[0,1), then

P([rnV (a) :S t for infi.itely many n])

rps 00n n- 00marw0 non n- oo f

< lim L P([rM,(W) < ti) < I 1m L P(I.mv(W) < 13)
n-> c n->oo n

O

< im L P([ sup IX(t,w) - X(s,a)I > rm]
-> co mn- It S 5m

< 1Im 2"(ne v -1) 0
n-> oD

If Av(t) - [rnv(W) < t for infinitely many n]. Then for

04AY(t), ,v,(w) < t Implies Tnv (w) < t for some n. We have

P(A V(t))= 0 for every te[0,1) and every v a 0,1,.... Letting

-AY(t) J - AQ (t), we have

[ (W) < tI - ['1.nf Tn() < t]
I'
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,,([inf T nv(w) < tin -,(t)) U([inf , nv(u)) :S tinl,-A V(t) )

n n

o(Ul[Tn1V(u) :S M] UJ (Li.nf T IV(uw) S_ t] r) AV(t)))

n=1 n

CO
so T ,V(W) s t] - (U LT.(w() < tl) - [inf Tnv(u) < tfA V (t)

n-I n

C AV(t). Hence [rV()) < t] differs from the F(t) set

O
U r(w) < t] by a set of measure zero.

Define X V(t,1w) - X(t,1w) if t < 7 V (0)

a x(TV(W), ) if t > ,V(W).

Then for each v - 0,1,..., XV(t) is F(t) measurable for every teT

and the process (X V(t), F(t); teTJ is a.s. sample equi-continuous.

For given any e > 0, if en < e, then for a.e. w,

Ix V(t,a)) - X V(s,W)I < C 1f It-sI< 6 ny

Also

P(QXY(t) 4 X(t) for some tcT])

- P([r(W) < I11) P([inf , nv 0) < I])
n

CO

- P( U (ETonv(() < 1) < 2 "  2"

The theorem is now proved.

Theorem 2.1.3

Let JX(t), F(t); teTJ be an a.s. sample continuous process. There

exists a sequence of a-s. sample continuous, uniformly bounded

processes tXV(t), F(t); teT), v . 0,1,... such that
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P([XV(v) 0 X(t) for some teT]) -> 0

as v -- > oD.

If in addition the X-process is such that

lim r P([ sup IX(t,w)l > r]) - 0
r-> oD t

then E(JXv (t) - X(t)j) ->0 as v ->cofor every teT. If the

X-process is uniformly integrable,

sup E(IXV(t) - X(t)I) ->0 as v -> o.
t

Proof:

Define T V (W) to be the first t such that sup IX(s,w)l > v.
s<t

If no such t exists, let T v (w) - I. Then clearly 'v (w) defines a

stopping time for the process for every v a 0,1,.... Since the

process is a.s. sample continuous on the closed interval [0,11,

a.e. sample function has an absolute maximum.

Define XV(t,w) - X(t,w) if t < Tv (w)

- XC, (W),W) if t > T1=1.

Then for each v . 0,1,..., the process (X v(t), F(t); tT) is uniformly

bounded by v and is a.s. sample continuous. We have

P(EXv (t) 0i X(t) for some teTI) - P([T(w) < I]) < P([supjX(t,w)> v])
t

->0 as v-)€C

Assume now that lim r P([sup IX(t,w)l > r]) 0 0. 1hen
r-> oo t

[Clxv(t) - MOD~l -j Jxv(t) - x~t)jdP + J xv(t) - x~t)jde

[rV (W) > t] I[E1=w< t I
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-f XV(t) - X(tfldP < f IX,(t)IdP + J' IX(t)IdP
IT V(W)< t I [. V(,W)< I ) ITv (U) < ]

<vP([TV(W) < 11) + J IX(t)IdP .

IT V(0)) < I

The conclusions are now apparent.

We note here that if we have n processes (X (t), F(t); teT)

i I,...,n satisfying the conditions of Theorem 2.1.2 or 2.1.3, we

can find n sequences of processes JXiv(t), F(t); teT) having the

specified properties aid such tnat

P([x v(t) 0 Xi(t) for some i < i < n or teT]) -> 0 as

V -> o.
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Section 2: Decomposition theorem.

Let (X(t), F(t); teT) be any real valued process wl.th

E(IX(t) j) < co for every teT.

(2.2.1) Let LTT-n, n > I) be a sequence of partitions of T. We

denote the points of Trn as follows:

0 m n,0 < O n, < ... < tn,N +1 
n

Assume iITnl - max It n,j+- tj -> 0 as n ->co and let
O<j<SN n

1 2 n 11ln~

If m > n,nTT n' and we will let

1Tnm,j -nTTmrfltn,j, tn,j+ll so that

N

1 min IlTjM 0 nm, j

The points of T"nmj for j - 0,...,N n will be denoted as follows

in,j a tnmj,0 < tnmjl < ... < tnmj,knmj+" t n,j+l •

We will always separate with a comma the variable subscript which

denotes an arbitrary point of the partition and the subscripts

indicating to which particular partition we are referrring. The

variable subscripts will be written last.

If TT is a partition of a closed interval [a,1] C T with points

1-a 0 < aI < ... < a V - P we will lot

ai(X) - X(a,+,) - X(ai) 0 < i < v

Then, for example,

Snj n,+l tn,j 0 < j :S Nn



Anmj,k(X) - X(tnmjk+l) - X(tnmj,k) 0 < k < knmj

we will also write F for F(ai) and we let

c1 (x) - E(A1 (x) IF 1 ) 0 < i < v •

Then, for example

Cn,j (X) - E(A n. (X)IFn,j ) 0 < j < Nn

Cmjk nmj,k nX
) (mj,k ) 0 nmj

We will often write L C i(X) for Y C(X). Then, for example, we

can write
tn knmj

, Cm,(X) 2 L. Cnmj,k(X) L Cnmjk(X)"

rrm rn lTnmj 1-O k .0

We will also use the following notation throughout.

For each tET, let 1Tn(t) - Trnolti. For each s,teT with

s < t, we write

t(S, 0 TT(t) - (s)Ulargest element in TT (S)

so that

7T(t) -T (s)U TT.(s,t).

Then, for example, if 0 a a0 < a i < ... < av+l = 1
v

C. (X) ,- C .(X) for every n , 1,2,....

L 2, n~j n,.,
1-0 7rn(a 1 ,al.|) T"

We define (Xn(t), Fn(t); tcTJ, n - 1,2,... as follows:

(2.2.2)

F(t) F(t n,j) if t < t < t 0 0 j < N +1.

Xnt ), t n,J i _ nj+l - -
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We also define (X2n(t), Fn(t); t T), n - 1,2,... as follows:

X2n(t) - j C M(X) for every teT.

Tr t)

(2.2.3)

Fn(t) - F(t .) if t n j < t < t n,j+ 0 < j < Nn + 1

or what is the same

k-J

X2n(t) L ) C n(x) if t < t < tn,k+l 0 < k < N n 1.
j=O

(2.2.4)

If we let Xn(t) - Xn(t) - X2n(t) for every teT, the process

(XIn(t), Fn(t); t6T) is a martingale. Clearly, the process

(X2n(t), Fn(t); teT) has a.e. sample fuaction of bounded variation

on T since a.e. sample function takes on only a finite number of

distinct values. Then each process (Xn(t), Fn(t); teT) is a quasi-

martingale.

If we assume the X-process is continuous in the mean, then it

is the limit in the mean of a sequence of quasi-martingales,

(Xn(t), Fn(t); tWT), n > I. Further, if for each teT, the sequence

(X2n(t); n > 1) converges in the mean to a r.v. X2 (t), then the process

(Xl(t) , X(t) - X2 (t), F(t); tET) is a martingale. For any tsT, let

kn(t) denote the last k such that tn, k < t.

Let steT, s < t, and let A F(s). Then

J xI(t)dP" J X(t)dP - JA X2 (t)dP
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n-WaoTn(s) 7n (,t)

-AX(t)dP - JAm X2 sd JX)d + CC1 ((X))d

T,(s, t)

Now C.(X))dP Jk(s C (X)IF(s))dP

" A C"k()Xd A njt=)- ()d

and hence

, T(s, t) Tst

since t n, kt ) ) t , t n k(S)+l k s and t n,kn(S)+ I - t l, kn(s) 0

as n -- > o.

So we have

JA XI(t)dP " j X(t)dP 2(s)dP - A X(t)dP + JAX(s)dP

- j X, (s)dP

This however still tells us nothing about the process

(X 2(t), F(t); t.T) even when it exists. We now look for sufficient

conditions for the X2 -process, when it exists, to have a.e. sample

function of bounded variation oti T.
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The followig lemma, thougn trivial, is a key starting point.

Lemmna 2.2.5

If (TTn; n > 1) is defined as in 2.2.1, then for any process

(X(t), F(t); teT)

E(/ IC (x)I)

is monotone oon-decreasi.g t1o i.

Proof:

Let m > o. Then TQTTm and we can write11 M
E( IC,(x)I) - E( ICnmjk(X)I)

rrM Tn Trimj

- E(. E(. IC nmj,k(X)I IFnj))

Trn Trnmj

> E( L IE(2' Cnmj,k(X))IF nj)I) - E(L IC,,(x)l).

lTn / nmj 7n

We make the following observation:

Let (X(t), F(t); tWT) be a quasi-martingale with [X)l- X, and

[X] 2 - X2. If a.e. sample function of the X2 process is continuous,

then

V(W) - uIm j ltnJ(X2)I
n-> oo 77n I 21

Is the total variation of X2(.,w)) over T for a.e. w, and it is a

random variable. Assume E(V(w)) < oo, then

E() ICnj (X)I) - E( ICn,. X2)I)

Tn 7,1
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<E( IZ~nlj (x 2) E ( (a()) )< oo,

1r
and hence irm E(L cnj(x)I) < 0o

,->oo T n

In fact, if 7 is any partition of T, there exists KX, independent

of Tr, such that

E( I ci(X)) <_ X < Oo .

In view of this anid Lemma 2.2.5 we restrict out attenition to those

processes satisfying the following condition.

(2.2.6)

There is a sequence of partitions (Tfn; n > I) of T, as defined

in 2.2.1 such that

lil E( ICn~j(X)I) < Kx < oo •n Trn

We could as well require the existence of a constant Kx such that

for any partition T of T, E( ICi(X)I) <Kx •

Lemma 2.2.7

Let the process (X(t), F(t); teT) satisfy condition 2.2.6 and

lot (X2n(t), Fn(t); tT), n > 1, be defined as in 2.2.3. If the

process (X2(t), F(t); tWT) is such that

P([lim Xzn(t) - X2 (t); teT]) - I
n

then the X2-process has a.e. sample function of bounded variation

over T. Furthermore, if the X2-process is a.s. sample continuous,

the total variation V(w) of X2(,w") over T is a r.v. and
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E(V(w)) < lrm E(L ICn (X) I) <Kx
n->oo0 7Tn J

P roof:

By 2.2.b, KX ? im E( ICn j(x)I)
n-> OD T

> E( im L Cn c.j(X)I), so that if we let Kx(t) li j IC,(xfl,
n-> 0O Tn  n-> o T n

then Kx() is a.s. finite and integrable.

If 0 - a0 < a I < ...< ak+lm I is any partition of T, then

k k

L ulx2) L I 1 r Cnj (x))I
10 1-0 n-,> GO Trn(a±,ai,)

k
< n..im /_, M ~j I = 11_mR (~,jX)l I KX(,W) < 00

i-0 TTn(ai,a+I) n-> C ,rn

for a.e. a. Since the partition was arbitrary,

S# I~i(x2) l < Kx(,w) °.s.

If the X2 -process is a.s. sample continuous, V(tu) is a r.v.

dominated by KX(to) and hence E(V(w)) < E(KX(w)) < Kx < c. (In fact,

V(w) will be measurable if a.e. sample function has at most jump

discontinuities, for eve.a 1,, this case

V(W) . ur I.Jn (x2)l a.s.)n-> nj

n

By our previous remarks and Lemma 2.2.7, if the process

(X(t), F(t); teTJ is continuous in the mean, satisfies condition

2.2.6 and if (X2n(t), Fn((t); tET), n > 1, defined as in 2.2.3, is



such that there exists a process LX2 (t), F(t); tcT) with

P([ irm Xn(t) 2 , X2 (t); tT]) 1
.I-> co

a.id also

E(IX2n(t) - X2 (t) I) -> 0 as n > aD

for every teT, the X-process will be a quasi-martingale with [X] 2, X2 .

These are the basic coudl.ttons we will seek to satisfy in obtaining

first sufficient conditions for a process (X(t), F(t); teT) to be

a quasi-martingale.

We will need tne following tneorem.

Theorem 2.2.0'

Let EX(t), F(t); teT) be a second order process. Let [czl3 be
a closed sub interval of T and let u aa 0 < a I <...< an+ I - 13 be a

partition of [J.,s]. Let e > 0 be given. If

C=, sup'[ max IX(O,w) - X(ak,w)I] < C
O<k< n

m n_

then P([ max IJ Ck(X)I > el) <EI C k(X) 2 )/(e'e ,l)2
m<n k-0 k-0

where sup' denotes the essential supremum. (i.e., the supremum over

all u4A, where P(A) - 0.)

Proof:

The argument is the following: Assume AeF, IAI > e, and A is

F measurable. Assume further IE(BIFlI < 6 < e. Then

J(A 2 + 2A8 + 82 )dP - fA(A2+2AE(BIF) + E(B 2 IF))dP

_> (A2A (BIF) + [E(SIF)] )dP
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> J(A2  62. 21AIB)dP- J (IAI-) 2dP
A

> (C-) 2 P (A)

Now we let
v m

Am (I Ck(X)I < e for v < m and I Ck(X)I > £e  for m I0,..,n.

k-O kPO

Then A eFm, since Ck(X) is measurable w.r.t. F for k - 0,...,m.

We also have Afl A. - for m ' j, aad

[max IL Ck(X)I>E] U A
m<n kmmO m

- kuO

Now n n m n

E(ICk(x)l2 ) " JA I L Ck(X) + L Ck(X)IdP

k-O MaO m kIO kWM*l
m n

For each m - 0,1,...,n, we let Am L Ck(X), Sm . Ck(X), and

k O knm+l

replacing A and F with Am and Fm and b with a , , the above argument

gives n1 nEq L C- k0 (X1, -6 c, ,)'d P
km0 mmvo Am,

m

a (6-, 1 ePQ max I LCk(X)I > l)
m<n o

and hence the theorem is true.

Corollary 2.2.9:

Let X(t), F(t); tWT) be a second order process which Is a.s.

sample equi-cotinuous. Let (Tr 1; n > I) be a sequence of partitions

of T as defined in 2.2.1. Given any e > 0, there exists an n(c) such
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that if n > n(C) then for every m > n,

k

PQ max max jCnmj,i(X)l 2 _ ])-- -- O<k<k
O<j<Nn O - nmj 1.-0

E('IL Cnmj,k(X) 2)/ ( - n)2

Tn TTnmj

where en - sup' max sup IX(t,tu) - X(s,<) <
W 0<j :Nn t .<Snt< t- - nIj- - n~j4l

(sup' denotes supremum over the set of equi-continuity).
U)

Proof:

Because of the a.s. uniform sample equi-continuity of the

X-process, given any c > 0 there exists .,(e) such that

sup' sup IX(t,w) - X(s,) I < E •
W) It-sI.55(e)

Let n(e) be such that IITTII < b(c) if n > n(e). Then

en - sup' max sup IX(t) - X(s)j < 6
Cw O<j<Nn  t nj-St<tnj+l

and for all m > n, sup' max max IX(t nj,k)-X(tnmj,k,)
) O<j<Nn  O<k,k'< k

-<- Sn - nMj

<f <C.
- n

Using Theorem 2.2.8, we then have the following:
k

PQ[ max max I Cnmj,i(x) I
O<j <_. N n O<k<kn j  i-'O

Nn k

P([ MdX I cn, im I>
J-0O - - nmj J.=O
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<E( L. I.. L nj,()1)('n

liTn rnmj

We w.ll need the following theorem.

Theorem 2.2.10

Assume (Xn(t); tT), n - 1,2,... Is a sequence of processes with

the following properties:

i.) There is a countable dense subset To of T, containing the

points 0 and 1, such that P lim Xn(t) exists for each teT.
n-> oo

ii) Given e, rj > 0, there exists n(eq) and 6(ci) such that if

n > n(cq)

P([ sup IXn(t) - Xn(S)l> c]) < i.

Then there exists a subsequence of processes (X n(t); teT)

k,, 1,2,... and a process (X(t); teT) such that

a) P([lim X n(t) - X(t); tET]) - I
k k

and

b) The X-process is a.s. sample continuous.

Proof:

We first show that conditiois I) and ii) Imply

TI P((sup IXn(t) - Xm(t)I > 61) - 0 for every .>0.
m, n-> oo t

Let ET ; v > 1) be a sequence of partitions of T with

OD

TI c T2 C ... aad U TV a T0 * Let E,T > 0 be given. First
v-)

choose nl(e,q), (ci) such that P(l sP X(t) - (s)I > )

<aS
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for every n > n1 (er). This can be done by condition ii). Now

choose v such that max itv,j+ - t Vj I < 5(c.n). Next, choose
J,

n V(c,i) such that

P([max IXn(t .) - x (t ,)I > ]) <n/
i n V'j m vYJ 3

for every m > n > nV (e,). This is possible because there are only

a finite number of points in TV and for each t VjeT V P lim Xn(t V*)
n->oo

exists. Now let n(e,j) = max inI(e,q)), nV(eTl)) and consider

P([sup IXn(t) - Xm(t)I > E])
t

- P([max sup IXn(t) - X(t)I > )
j t *.<t< t .

<P([max sup Ixn(t) Xn(tv,j ) I > f/3])
Stvj-t < tv,j+l

" P([max IX n(t Vj) - Xm(tv j)I > 6/3])

" P(Emx sup Im(tv,j) - X(t)I > e/3]) <

j t ~j.

J V, jst < tvlj~l

Now uim P([sup IXn(t) - Xm(t)I > 6]) = 0 for every a > 0 implies
n, m-> co t

there exists a subsequence X nk(t); teT), k > 1, a process

(X(t); tcT) and a set A with P(A) - 0 such that if a4A then

lim (sup IXn (t) - x(t)l) - 0.
k->co t k

We have now established a).

We now proceed to show the process tX(t); teT) is a.s. sample

continuous. Let Xk(t) = Xn(t) for every teT and k- 1,2,....
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For every n w I1,2..., by condi tion ii), we can find a kn and

a 6(n) such that for k > k
-n

P([ sup jx (t) - Xl(s)I > n']) < 2
It-sI S 6(n)

Let X (t) - X* (t) for every teT; n m 1,2,.... Let
n

A " sup x(t) - X(s)I > n"
n~ t-sls 6(n)n n

If Bk then A TimA and P(A*) 0.

If A4Bk, then for every n > k,

sup iX*( t) - x* (s)I <k 1It-sl< 6(k)n n

Now if UI&kUA*, and if e > 0 is given,

sup ix(t) - x(s) <_ 2 sup jX*(t) " x(t)l + su IX1(t) - x(s)I.

It-sJ :S 6 t It-si < 6

First choose ko(a)) such that 2 sup IX*(t) - X(t)l < u./2 for every
t

k > ko(o). This can be done since oA. Next choose k1 (w) such that
*ofe -I-
i*(w) and kl(w) < e/2. Then if k(w) - max (ko(w), kl(w)) and

5 <8(k i(W)), we have

sup IX(t) - X(s)l S 6
It-sl Se

Then for w4&U A*, P(A U A) * 0

irm sup IX(t) - X(s)I - 0
6->0 I t-sI < 5
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Theorem 2.2.11

Let (X(t), F(t); teT) be a uniformly bounded a.s. sample equi-

continuous process satisfying condition 2.2.b. Then the process is

a quasi-martingale with [X] 2 - X2 where X2(t) . P 1rm X2n(t) for
n-> 00

every tcT, and the processes (X2n(t), Fn(t); tET) n - 1,2,... are

as defined in 2.2.3. Further, the X2-process is a.s. sample

continuous and if V(w) denotes the variation of X2 (.,w) over T then

E(V(w)) < co.

Proof:

Because of Theorem 2.2.10, Lemma 2.2.7, and our previous remarks

we need to show the following:
OD

i) P lim X2n(t) exists for each t( 7U1 n IT
n-0- oo n=

ii) Given e, r > 0, there exists n(ciq) and 6(e~q) such that

if n > n(c,q)

P([ sup Ix2n (t) - X2n(S)l > e ) < n
It-s1 b(c, T)

and

iii) For each teT, the sequence (X2n(t); i > 1) is u~itformly

Integrable In n.

We first show ill) is satisfied by showing E(IX 2n(t)l) < K< oo

for every n > I and teT. We have

E(IX2n(t)l2) E(IJ C, j(X) 2)

7'n (t)

L 1( Cn~j~xl , / n,jX)/ Cn, k(X)
rn~t Trn(t) j
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- E( L  ICn,j(X) I2) + 2E(j Cn,j(X)E( L Cn, k(X) IFnj))
7Tn(t) TTan(t) k>j

<E(LM ICnM,j x) lln (x)1) + 2E( ICn,j(X) IIX(tn,j (t) -X(tn,j+i)I)
TTn~t TTn t)

where j(t) i.s the last j such that tn. < t.

Then

E(X 2_(t) 2) < OE(_ IC.j(xl) <6MxKx
17n(t)

where

Mx suplX(t,w)l and Kx> urni E(, LICnj(X)I).
tW n->00 77

We now prove 1) by showing

E(IX2n(t) - X2m(t)I ) -> 0 as n,m -> oo for every teT.

In so doing we will pick up an inequality which will allow us to

prove 1.) Immediately. If tdT, then there exists nt such that

te TT n for every n > nt. We assume now that m > n > nt. Then

x2n(t) - E( L Cnj,k(X) IFnj)

Trn(t) lTrnj
and

Let vm~(x) - nmj,k(X).

TTnrnj

Then

E(IXm(t)- X2n(t)I ) E(I (Vnm j " (Vnmj (X)IF j)) 12)rrn r W
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0 E( IVn .(X) - E (V .j(X) IF nj)I 2

M E( VnMj nX) 12n EL IE Vj ) IFn

7Tn(t) -nt

< E( L nj (X)12

E~(t nmj"'k )12I(VijX))~I2

-'Li 'nmj

+Ej I2nm( k (x)Ik 2)E mjl()F m~
Irn 7Tmji~

< E( ~ j max max 16 jk(X)E(* Cnmj,(X)I)j
T.nmj i

00S j < k~ nmJk '.n '.nmjk

+ 2E( max max IX(t )~ - X(tnmjk+])l ,' IC m(X)I)'
O<j SN n0< k<k nnjj nmJ, L1 nmj~

If C n sup' Omax su IX(t,uw) - X(s,w)I1, then

sup' max max IX(t nmJ, k~ -X(t nmj ,k' I<E.n
j~ S - nmj

for every m > n. Hence

E(I 2 M- X 2 '~ E('~ C nm < M1) 3rn K x-> 0 as

Tnf TTnj

m > n -> co . Hence 1) is proved.

To prove i), assume 6 < min it n ~ t n, j and then for
0<j SN nj nj

every m > n,
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P([ltsup Ix2m(t) - X2m(S)I > 31)
t-sJ < 5

k

< PQ max max
O<J<N O<k<k I"-0

-n - nmj i=O

< E( , , nmk (X) 12)/("E n)

Trn rnmj

< 3en K x/(en) 2 -> 0 as n -> aO

Hence if e,ri are given, we can choose n(e,1) such that 3cnKx/(-6En) 2

< ti. If we then fix n > n(e,1) and choose b(e,T) < II I, then

for every m > n,

P(Q sup IX2m(t) - X2m(s) I > 36]) < T,
It -s 1 ( ,)

Hence condition ii) is satisfied and the theorem is proved.
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Section 3: Main decomposition theorem:

In order to prove the main decomposition theorem we need to do

more preliminary work.

We now investigate the uniqueness of the decomposition of a

quasi-martingale process. We need the following lemma.

Lemna 2.3.1

Let (Y(t), F(t); tcT) be a martingale process having a.e.

sample function continuous and of bounded variation on T. Then

P([Y(t) - Y(O); tcT]) - I.

Proof:

Since the Y-process has a.e. sample function continuous and of

bounded variation on T, if V(t,w) denotes the variation of Y(.,tu)

over [O,t] then V(',tu) is continuous and monotone non-decreasing on

T for a.e. w. Further V(t,.) is a random variable measurable w.r.t.

F(t) for every teT. As in Theorem 2.1.3, we define T(t) to be the

first t such that

sup iV(s,)l >v or sup IY(s,a) I > v.
s<t s<t

If no such t exists let TV (w) - I. Clearly, TV (W) is a stopping

time of both the processes (Y(t), F(t); trT) and IV(t,w), F(t); tAT).

Define

Y V (t,w) - Y(t) if t < V (0)

=- v(v (,),W) if t > V (0).

By Theorem 2.1.1, for each v - 1,2,... the process Yv (t), F(t); teT)

is a martingale. Furthermore, for each v a 1,2,... the Y -process

has a.e. sample function continuous and of bounded variation on T.
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As in Theorem 2.1.3, for a.e. w , there exists v(w) such that

Y(t,W) . Yv(t,w) for every teT if v > v(w).

It is also clear that if Vv(t,w) denotes the variation of YV(',w)

over [O,t], then

Vv (t,W) - V(t,W) if t < ,(U)y

Sv(TV(W'a),) if t> TV(t).

This follows simply from the fact that for all s < t < TV(.9

Y(s,) - Y (s,w), and for t > Tv(W), Yv(t,uo) is constant. Also we have

sup IVV(t,") <_ , sup IYV(t,) I < Vv
tW t,W

We now show that for every v - 1,2,...

p([Yv(t) - Vy (0); tf.T]) - I.

Let (TTn; n > 1) be a sequence of partitions of T as defined In 2.2.1,

GO

and letrTm o n Let teT. Then there exists nt such that

te TTn for every n > nt.

Assume n > nt.

Now

E(IYv(t) - Yv(O)I) - E(h '1nj (Yv)l2)
1"' t)

m E( amx I6nj (Y)lV (I, 0').
o<j <Nn

Since Y. and V. are uniformly bounded and Y. is a.s. sample continuous

we have
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E(IY (t) - Y(O) 12) : m- E( max In j(Y ) V V(l,u))
n->oo O<j <N n

E E( Tim 16n, (Y)IvV(I,)) o.
n-> o

Therefore

P([Yv(t) - Y (0); tE7T]) - 1.

Since IT is dense In T and Y V is a.s. sample continuous, we

have

P([Yv(t) - Yv(0); tET]) - 1,

and this is true for every v - 1,2.... .Since for a.e. a, when v

is sufficiently large YV(t,w) Y(t,w) for every teT, it follows that

P(QY(t) - Y(O); tsT]) - I

Theorem 2,3.2

If (X(t), F(t); tWT) is a quasi-martingale with the following

decompositions

P((X(t) - XI(t) + X2 (t); taT]) - I

P([x(t) - X(t) + X;(t); teT]) a I

where the X and X,, i m 1,2. are a.s. sample continuous, then

P(LX1(t) Xi(t) + (xY(o) X(O)); teT]) - I.

In particular, If Xl(O) - Xl(O) a.s., then

P(1XI(t) - X*(t); teT]) a I.

Proof:
L Y2Let YI " - Xl , Y2 u"X2-"X 2 "
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Then

P([Y(t) - Y2 (t); teT]) - I

and hence the process (Y1 (t), F(t); teT) is a martingale process

with a.e. sample function continuous and of bounded variation on T.

The conclusion now follows from Lemma 2.3.1.

Suppose now (X(t), F(t); teT) is a.s. sample continuous. Let

v > 0) be the sequence of stopping times defined in Theorem 2.1.2.

If we stop the X-process at 1'(W) then we will get a process which is

VVas. sample equi-continuous. Also let (r"(w); v > 0) be the sequence

of stopping times defined in Theorem 2.1.3. If we stop the X-process

at r"(w) then we will get a process vaiich Is unifomly bounded by v.
V

If -r (w) is the minimum of T;'(w) and T"(W), then T (a)) is again a
VV V V

stopping time of the X-process.

(2.3.3)

Define

V V

and let

x, V(t,w) - X(t,W) if t < T(V)

- x(t( ),w) if t > (4)

Then for each v - 0,I,... the X.-process is a.s. sample equi-

continuous and uniformly bounded by Y. We have

P([( () < IJ) <P([x () < I]) + e(im"(o) < I]) ---> 0

as V -> OD .

Recall that

(Tv (W) < 11 - lX (t) + X(t) for some tcT].
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Then there exists a set A with P(A) a 0 suchi tiiat for u/ there

exists v(W) such that if v > v(W)

X(t,) - XV (tw) for every teT.

If r P(lsup IX(t)I > r]) 0-> as r -> o , tien
t

E(iXV(t) - X(t) I) -> 0 for every trT,

for

E(XV () - x(t)I) Jxv(t) x(t)-dP + JXVlt) - Xlt)ldP

"I -Xv(t) - X(t)xdP < j l(t)jdP + j X(t)dP

[V, (W) < I ] I[ITV (W) < I v( )< ]

< fe( () < ) + JdIX(t)Ide J
[r(=)< 1]

The second term goes to zero since P([Tv (o) < II) -- as v -->o and

X(t) is iartegrable. The first term is bounded by

Ve(['r.((*) < 11) + VP(tTv'(W) < 1])

" v2-V + Ve(Q,;'(W) < 11)
V

< v2"V + vP([sup IX(t)I > v]) -> 0 as V ->oo.
t

We now prove another lemma which will lead us to the main teorem.

Lemma 2.3.4.

Assume (X(t), F(t); tWT) is a.s. sample continuous and is such

that

rP(sup JX(t)l >I r]) -> 0 as r -> c.
t

Let the sequence of processes (XV(t), F(t); teT), V > 0, be as defined
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1.n 2.3.3. If the X-process satisfies condition 2.2.b, then each

X,,-process also satisfies coadition 2.2.b and the bound K is inde-

pendent of v.

Proof:

We assume Urn E(~ 1Cn .(X) :SX< c and want to show

there exists K <oo such that lim E( iC,j (X)I) < K <oo for
n-> c W

every v > 0.

Let Tn . E() 1C~ .(X)I) and -~ E(~ 1C~ .(X )I) -First
TrIT

consider

?Tn rTv(w)-?tn~j] fln Ev(a')2 tn~jI

SL J IXV(tn~j41) -X(tn,j)IjdP S J (IX(tn,J+I)I + v ) d

u~ ] IX(tn,j+,)IJdP + vP([Lr1 (0) < 13)

Next consider N -z f CX)IdP - . ~ IC jC,(X)IdP)

Nn..i Nn
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C', f i (X) I)xfdP)

- ~ (f (~ E(-Sgn X(tn,k+1'nl nj~()F~)~P

[tn, k V M<tn, k4-1

N 1-1 Nn

> f E(-S.i X(t1 ,k+I),l (X) IF nj))dP)

N61-IN

s~nX~tn, +1)a i (X))dP)

Etn, k <TV4)<tnk1] kl

N -1

- f(IX(tn,k+l)l + [-ssn X(t n, k+I)X(1)1)dP)
k- tn, ksIr (to < %tn,k+IJ

Na-i

> (j (IX(tfl,k+l)I - IX(1)I)dP)

kO En,k- va)n,k+I

N -1
n

~,f IX(tl,k+I )IdP - IX(1)jdP

kO[t1  -t (0)<tn Tl (V() n,N1

N

- Z f IX(tnl,kIe.I)IdP f IX(1)IdP -f IX(1)IdP
100 [tl~~ TV (W) < t,,1 £tn,N -1 S V (o)< (T (CD,() < tn'1
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L f IX(tn,k+]) IdP - f IX(IfldP

k-O Lt n,k-< r.(a)) <tn, k+ I (~w 1

v~ -Tn = E k ICnl .(xV)D ICnl(XMD

- 2 .. i JIC(XfdP +4 J C, (X)IdP)

('c r ~ (X)IdP + ) f IC (X) IdP)

fa J n,J() Jd - f In,j)Jd

f I Icj (X)IdP

*k f (ICn,J(Xv)I - ICn,J (X)I)dP)-Q. f Icn,j (X)IdP)

~ (. I IX(tn,j+l) IN 4+ VP(.,.r,(w) < 11))
71-n it <STv(") njl
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- J IX(tnk+l)IdP J X(1)ldP)
tT; [n, k<- v(W)< t, ,k+1] [rV( <

V QP([rV(W) < 1]) + ] IX(l)IdP .

[V (U) <1]

Hence

•T < E( ,jx)l) + VP([rv (W)< I]) + f IX(l)IdP
v/ n -- j

TT.[( ()< l]

or T <KX + vP([ v(W) < 1]) + x(I)dP for every n. As

[ -rV (W) < 1 l

v >c, both vP([rV(w) < 1]) and f IX(I)IdP go to zero.

( -. (w)< I I

Hence if KV a lI1m E(, lc, ,A(X V )1), then Kv -> KX as V -> C.
n-> CD T.

Main Theorem 2.3.5.

In order that the a.s. sample continuous, first order process

(X(t), F(t); teT) have a decomposition into the sum of two processes

P(X(t) - xI(t) + x2 (t); tfT]) - I,

where (Xl(t), F(t); t6T) is an a.s. sample continuous martingale

process ad the process JX2 (t), F(t); teT) has a.*. sample function

continuous and of bounded variation on T with E(V(w)) < aD, where

V(w) Is the total variation of X2 (',o)) over T, it Is necessary and

sufficient that
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i) Irm rP([sup IX(t,",)I > r]) a 0, and
r->oo t

ii) For any sequence of partitions (Tr, n > I) of T with

11I7TII ->O0and7T CP7C:..

lir E(l.Cnj(X)I) <Kx <o
n-> Co Mxn->O 77"n

Kx being independent of the sequence of partitions.

Proof:

We first prove the necessity.

If (X(t), F(t); teTJ is a quasi-martingale with the stated

decomposition, we have already indicated that ii) is true. We need

then to prove i). Consider

rP([sup IX(t,w)I> r]) - rP([sup IX(t,w)- X(O,a)+ X(o,w)j > r])
t t

<_ rP([sup IX(t,,)- X(o,u)l I ? r/2]) + rP([Ix(o,) I >_ r/2]).
t

Now rP([IX(o,u)I >_ r/2]) < 2f IX(Ou) IdP -> 0 as r -> aD

[I X(O,a,) I>. r/21

Consider then

rP([sup IX(t,",) - X(O,u)I _ r/2])
t

- rP([sup I(X I (t,w) - x1 (0,w)) + (x(t,w) - X2(O,a))I > r/21)
t

< rP([sup IX (t,w) - XI(O,u)) > r/4])
t

+ rP([sup Ix2 (t,w) - X2 (O,()l > r/4]).
t

Now (Xl(t) - Xl(O)), F(t); t.T) is a martingale and hence by

Theorem 3.2, sec 11, Chapter VII of Doob, we have
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P([sup 1X1(t,w) - X, )(O,) > r/4]) <4/r E(1Xl(1) - XI(O))
t

->0 as r -> oD. By the same theorem

rP([sup IXI (t,w) - XI (O,w) I > r/4]) < f 4 If 1() - X1 (O ) jdP -> 0
t

[sup 1X1 (t)-X I (O) > r/41
t

as r -> o.

Consider now

rP([sup IX2 (t)- X2 (O)1 > r/4]) < rP([sup IV(t,w)l > r/41)
t t

< rP([V(I,w) > r/4]) < 4f V(I,w)dP -> 0 as r -> m,

[V(I,w)> r/4]

where V(t,u) denotes the variation of X2 (', ) over the interval

[O,t]. Hence, if the quasi-martingale (X(t), F(t); teT) has the

decomposition stated in the theorem. conditions i) and ii) are

satisfied.

We now prove the sufficiency of i) and ii). Let the sequence

of processes X V(t), F(t); tT) v ,, 1,2,... be defined as in 2.3.3.

Then P([X (t) u X(t); teTI) -I I as v -> co. By assumption i),

E(IXV(t) - X(t)I) -> 0 as v - co for every teT. By Lema 2.3.4,

each process X v(t), F(t); taT) v - 1,2,... satisfies condition

2.2.b, the bound K being independent of v. Then by Theorem 2.2.11,

each process has the decomposition

P([Xv(t) - Xlv(t) + X2v(t); tiTi) - I

where (XIV(t), F(t); teT} is an a.s. sample continuous martingale

process, and the process LX2 v(t), F(t); tT) has a.e. male function

of bounded variation on T. Further
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x2 (t) = P lie C (X ) for every teT
2vn-> o ralj VTr>o t)

and so if VV (tw) denotes tne variation of X. (,w) over [0,t] we

know by Lenma 2.3.4 and Lemma 2.2.7

E(Vv(t,w))<:S lim E( 1Cn J (xv) I) < K < a
n->oo 77n

for every trT, v - 1,2, ....

It is clear that -r (U)) < T2(W) <... a.s. Let v >v and let

X1*(t,w) = xI*(t,w) if t < rV (W)

- x V*( V ( )),W) i f t > TV W

xv (t,w) - x2v.(t,w) if t < V (W)

x2v*(TV(W), ) if t > TV (0)

By Theorem 2.2.1, Xv Iis a martingale, and clearly the X2v-process
*

has a.e. sample function of bounded variation on T. Further X a I nd

Xv are a.s. sample continuous.

Since

XV(t,w) - Xv *(t,w) if t < r (W)

- XV* (TV (0)) 1 f t > TV (0)

we have

PUXV(t) - xVM(t) + X2Y(t); tcT]) - I

p([X (t ) - Xl(t ) + X* (t); t-ET]) - I

w X2v - P lm , C j(X ) - 0 for every v -0,1,... so
n-> (0 n V
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that X2Y(0) - X2v*(O) - 0 a.s. And hence by Theorem 2.3.2, we have

P(X2 (t) - X*v(t); teT]) - 1

For a.e. w, i.e., except for u.A, where P(A) u 0 there exists a v(p)

such that for all v > v(w), T'(w) - I. Then for v > v(~)

Xi*(tw) - Xiv(t,w) for every teT. (i - 1,2)

We define, for 04A,

X2(ta) - Irm X2y(t,w) for every tET
V-I> 0D

X1(t,w) - Irm Xlv(t,w) for every teT.
V->oW

And hence for every u4A there exists v(u) such that if v > V(p)

X1(ta) - XiV(t,w) for every tGT. (1 - 1,2)

Now, for every v a 0,1,2,... and u4A

X iv(t,"W ) - X (t,W ) if t < v (to)

(i - 1,2)
M x (,v(w),w) if t > rv(W)

If V(tw) denotes the variation of X2(',w) over [Ot , V(tto)

Is finite since there exists v(p) such that

X2v(tW) - X2 (t,w) for all tGT

and hence V(t,) n V (t,w) for all teT.

Clearly

VV(t,W) - V(tW) if t < -(W)

- v(. (w),w) if t > r (w)

and

P(q li.m VV (t,w) - V(t,w); teT]) - I.
V-> OD
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Since T V (a) is a.s. non-decreasing in v, V (lw) V(T V(w),) is

monotone on-decreasing i.n v. But

lim E(VV(I,w)) < K,
V->CD

and hence by the monotone convergence theorem

lir E(VV(I,u)) - E(V(I,w)).
V->CO

Now

Ix2v(t,w) - X2(t)I - IX2(tw) - X2(tw)I if t < r Y(W)

- IX2(t,w) - X2( (w),W) if t > rV (w).

So

sup Ix2(tw) - xzv(t,w)I - sup IX2(t,w) - X2('r,(),w)I
t t>, ()

< sup (v(t,,) - V(Tv(w),,w)) < V(I,w) - VV(1,W).
t>r (W)

And hence

E(sup JX2 (t) - X2v(t)I) < E(V(I,w) - VV(la)) -> 0 as v -- > .
t

Now since E(IXV(t) - X(t)I) -- > 0 ad E(IX 2v(t) - X2(t)i) -> 0 as

v o-> for every teT. We have E(IXiv(t) - xI(t)I) ->0 as

v -- oo and hence X! being the limit in the mean of a sequence of

martingales is itself a martingale.

We now make a few remarks concerning the decomposition in

Theorem 2.3.5.

First, the process LX(t), F(t); teT) is uniformly integrable in

t since the process LXi(t), F(t); tET) Leing a martingale process

closed ol the right is uniformly integrable, and (X2 (t), F(t); teT)

is uniformly Integrable because it is dominated by V(lw).
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Secondly, having already proved the decomposition we can easily

show

X2 (t) - P itm L C nj(X) for every teT.
n-> O0 TTn(t)

Let X V(t), F(t); teT) v - 0,1,... be as defined in the theorem,

so that for each v a 0,1,... X v is, by Theorem 2.2.11, a quasi-

martingale. Let P([XV(t) - Xlv(t) + X2 (t); teT]) - I where [XV1I - XlV

and (Xv12 - X2v. In Theorem 2.2.11 we showed

P([sup Cnj (x - X 2(01 > d) -> 0
t 'Tn(t )

as n -- > co for every e > 0. In Theorem 2.3.5 we showed

P(Esup Ix2v(t) - X2(t)I > a]) -> 0
t

as v -> co for every r > 0.

We will now show

P([sup I (Cnj (X) - Cnj (Xv))I > 1) - 0
t 1Tn(t)

as v -> oo uniformly in n.

Let e > 0 be given. Let X[...] denote the characteristic

function of the set [...3. Then

P([sup I (Cn, (X) - Cnj (XV) > )
t Tn (t)

"P([X[ v (W)< I, sup I .W (Cn, j(X) " Cn, j(X,)) > c)nr
a P(x~ () <I SU i2. (t),

+ V (.l $ UP I (Cnj (X) - cnj (X v)) I> 1)

n (t)
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Now the first term on the right is bounded by P(Erv(a)) < 11) which

we know goes to zero as v -> oD The second term is bounded by

f-n

P(E2.., jIl ICn j (X 2 C C j x2 v) I>

~rn

Le-J ICXI) - Xnj(t~ ) dP

Ga (X2 '2n&j~ 2v nji

I n -Vb (t ) u>es t (e)<

~ f Ix (t,+) - 2 (~~ 1 IdP

2.. ]~ I X2v(tl,jl) v(tj*)d

2V(l,to)dP 2 V~l~~d

The integral on the right goes to zero as v -- > O since P(-r,(iN) <I))

-~0 as v -> co, and V(l,uw) is integrable.
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Now if 1E > 0 is given,

P([sup . nj M X2(t) >])

t 7 1(t)

<P((sup I (lx) - c .(xv))I >€I3])

P([sup I ( M (Xv) "X2 (t) I > 6/3])

t Tj(t)

+ P((sup IX2Y(t) - X2 (t)I > E/31).
t

Given any q > 0, we can first choose v such that tne first and third

terms on the right are less tna 1/3 for every n a 1,2,.... For

this fixed v we can make the second term less than /3 by choosing n

sufficiently large.

Aai immediate corollary to the main theorem is the following.

Corollary 2.3.tb

If JX(t), F(t); taT) is an a.s. sample continuous semi-martingale,

then it has tne decomposition stated in Theorem 2.3.5 if and only if

1) irm rP((sup IX(t,w)l > rj) , 0
r-> oo t

In particular, if the X-process has a.e. sample function non-negative,

then 1) Is always satisfied.

Proof:

We need only show coadition ii.) is satisfied. If (11n; n > 1)

is a sequence of partitions of T as defined in 2.2.1, then
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E( I C (X)I) - E( IE( .j(X)F njj)1)

TTn Trn

- E( I jE(X(tn,,j)IF n j ) - X(t ,j)1)

rnr

M E( (E(X(Tn j+)IF nj) - X(tnj)))

71

- E(X(l)) - E(X(O))

If the X-process has a.e. sample fuiction non-negative,

rP([sup IX(t,w)I > r]) - rP([sup X(tw) > r])
t t

< f X(l)dP -> 0 as r ->O0 ,

[sup X(t,w)> r]
t

and therefore I is satisfied.

If we recall the example give, in Chapter 1, where

X - exp[Zv] v > 0,

Z being the Browaiao motioi process on [0,1], we see that tne

X-process Is ao a.s. sample continuous no,-negative semi-martingale

since exp[tv] is a continuous, coavex and non-negative function.

The corollary tells us tne X-process Is a quasi-martingale.

We note that when the X-process is a semi-mrtingale, our

conditions coincide with those jiven by Johnson and Helms.
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Section 4: Particular results:

In this section we concern ourselves with some special theorems

and results which will be used extensively in Chapter III.

We first prove a lemma which will be quite useful and which is

real ly just an observation.

Lemina 2.4.1

Let (Xi(t), F(t); tET), i - 1,2,...,k be arbitrary processes.

Let 0nn, n > I) be a sequence of partitions of T as defined in 2.2.1.

For each n - 1,2,... let f n ( ) denote a Baire function of k(N n+ 2)

real variables. Assume that for each i - 1,2,...,k,

(Xiv(t), F(t); tT), v a 1,2,... is a sequence of processes such that

P([X iv (t) - Xti(t) ; teT, I <i < k]) -> I

as v -> o. If for each fixed v - 1,2,...,

P lim fn (Xiv(tn,j ); I < i < k, 0 < j S Nn + 1)

- P lim I V T exists,
n--> o

then P lim fn(Xi(t n,j); I < i < k, 0 < J < Nn n I)

-P linm 7 - exists.
n->oo n

Moreover, P lir f exists and is f

V -> 0o

P roof:

We observe that fnv converges to fn in probability uniformly

in n as v --> co. For

sup P(EIT - TnI > o) - i - inf '([Ir.,- TnI < 01)
n n
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I I nf P([XIV (t nj) X tnj) I < i < k, 0 < j < N n l] 1)
n

< I - tnif P([X iv~ M- X (t); te T, I < i < k])

n

- - P([Xiv tM - X i(t); tET I < i < k1) -> 0 as v -> co.

Then P([IT,- T I > C]))_ P([ T -n- > 0o)

+ P([ITn - T I > ID) + P([Ifm- TIrm > 0]))

where F- > 0 i~s arbitrary. Let 5b > 0 be given. We first choose v

such that the first and third terms on the right are less than 5/3,

then for that fixed v we ca i choose n atid m to make the second term

on the ri~ght less than 5/3 because P llm ,,f'nv =-T exists forevr
n-> o-

v m 2 ... Hence

P lIm m T exi~sts.

n->O n

To show P lIm f exists and is f, onsider

e(ITe TI > ED) T-Pl cI) nvi > g-130)

+ P([I v- TI > E1) + P(IT - TI > 103])

where 6 > 0 is arbitrary. Let 5 > 0 be given. We first choose v

such triat the secotnd term on the right as less than h/3 for every n3

end for that fixed v we can choose n such that the first a.d third

terns o,i the right are less than o . The lemma is now coplete.

With this lemma it is easy to prove a useful theorem concerning

the decomposition of a particular type of sem-martngale.

Let s X(t) F(t); teT) be an a.s. sample co nuous secoad order
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2martingale process and let t a X . Then the process (t(t), F(t); teT)

is an a.s. sample continuous, positive semi-martingale and by

Corollary 2.3.b, t is a quasi-martingale. Let [t], = Jl and t1 2

E2" Then we know t2 has a.e. sample function continuous and of

bounded variation over T. Further, if V(w) denotes the total

variation of E2 (',w) over T, E(V(w)) < oo, and

92(t) - P lim C n J (Q) for every teT.
n->0 oD 7 (t)

Theorem 2.4.2

If [t2 (t), F(t); tWT) is the process defined above, then

t2-(t ) . P lim (A n,j(X)]2 for every teT.
n-> oo TTn (t)

Proof:

We know , 2 (t) -P r C, (L)
n-> co Tn(t)

- P lim L C (X 2 P lim L E(A n.j(X)]IF n,j)
n--> 

C" "n (t) n-> 00 T1n(t)

Assume first that the X-process is a.s. sample equi-conttnuous

and uniformly bounded. Then

E(I L ([tnj (X))2 - EQA n.j(X)]'IF nj))I 2 )

E( (IA .(xMI 4- IEQA .(xW)] IF .)I )1))
( nj njn,j. (t)



KE(/L 1L. (X) I') < E ( n; la .j(x)I I A .(11)j ) 2
C< -r.~

where c: S~lrp I~ ~ ) - C as -i o, Liecause m) z,.
<~ ja

.1oW ... L X-process i S i.s. 5 talipe co Il iOS secc..C

order ..c r o-cess.

Toieorc.o 2. 1) cl X i S a u.J 'urr. y boided a -s.I samp i equ4 -

CO-tldLOUS Mi- i. Ia 1., process.

For v u (,,.. i,~ te.i . i aS Lise 'iecciposi Lio,

a.id u'y viiat we -ev"e ISC sl.ow~i

t:~ ) P I im kX for c.iery -LcT.

We lov'. X 2 ct; II:Ic decoe1posi J.1

a.

es .4, iee i 1-c jroof of T..aore:n ,.

L;,, Lei viia

:or I.very O~
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Corollary 2.4.3.

Let (X(t), F(t); tET) and (Y(t), F(t); teT) be a.s. sample

cootinuous second order martingales. If (TT; ,o > 1) is a sequence

of partitios of T as defined in 2.2.1, then

P lim A W -n,. (Y) exists
.- > o o) M I, ( t )

for every teT and the process so defined, which we idicate by

(Z(t), F(t); teT) cao be taken to have a.e. sample fuactioai of

bounded variation aid continuous on T. Moreover, if V(p) denotes

the total variatioi of Z(.,w) over T, E(V(to)) < oo.

P roof:

We have

1. njXAI/4([& .(Y)+& (A 2 4 .(Y)-&A W 2()
a ni t ) Al (Y) (t n'j nlj 11'j flj

n (t) 7T,1(t)

- (/ ([A46,lxl+Y)] . An,j (x-Y)I 2 )
T,,(t)

Let - X+Y aad =- X-Y. Then 9 and " are a.s. sample continuous
2 -2

second order martingales, so t and 2 are a.s. sample continuous

positive semi-martinyales.

We write

j nj (Y ) 461, j() W 1/4[& 0,J(o)]2" 1 /4[46 1,J ( 1))

71n ( g0jY)n At) (/n (t)

and hence, by Theorem 2.4.2,
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P lrm A Lnj (y)Ai (X) _ 1I/4,i2 12 (t) - 212(t))
n-> -(t) ,

Let Z(t) - I/4(t2 12(t) - [ 212 (t)). Then the Z-process has the

stated properties since both [t 2 ead [ 212 have these properties.

We now discuss some other results which will be used in

Chapter III.

Suppose (X(t), F(t); teT) satisfies the coditions of

Theorem 2.3.5. Let [X] 1 a Xi and [X]2 - X2. Then X, and X2 are a.s.

sample continuous, X2(t) - P Imurn Cn j (X), and if V(a)) is
(,)

the variatioa function of X2 (-,o) over T, E(V(t)) < w.

Let (Y(t), F(t); t T) be an a.s. sample continuous process.

Then for a.e. w, the Riemann - Stieltjes integral

R Y(t)dX2 (t) - lirn m ,j)nj 2

0 n-> aO 1: i

n

exists, where tn,j < t aj < tn,J+ I .

We will show

RfY(t)dX2(t) " P Im Y(t*)Cnj W
f' n-> oD " n i j
0 r

It will be sufficient to show

RJYt)dX2 (t) a ". Y(t ,1,C Xjx)
0n--> OD Ifn

since P lim Y(t n)C (X) a P lim Y(t (x)
n>c' n,j n~j 00 n~j n~j

n



56.

where t <t j.<t

To see this, let -*A rr = [ tsup IY(t)- Y(s)j > l1r]

r,r' a 1,2,.... Because of the a.s. sample continuity of the

Y-process, him P(-A ,)-0 for each fixed r.

Assume n is such that 11riT 11 < I r' . Then

P(E1 EY~tn,J ) ~ nj )n,J M -
T,~

+ I~x,. E~Y(t )- Y(t .)c .xi > FED

n

+ P(-XA r,) l ) Y(t .j)- y)C~ (t) >)] F' )I

I P(*-A r,,.1) + .t I CY(t* )-Y(t 1)IC .(X)jdP
Snj nj n,j

n ar, r' j n j

.P (-*A r,r') + h/e hir E(L iCnj(WDI)

If iq > 0 is given, choose r such that )/car (KX) < tq/2, then choose r'

such tat P ,) < iq/2- Then for all n with Jj11<I/r'
suhtatP~Pr, r n /'

P(112. [Y(t*, )- Y(t~) Cn~ Ml) > 1) < 'I.
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We first assume the X2-process and the Y-process are uniformly

bounded. Then

P(IL Y(tl .)[An .(X2) - Cn~ M(xII> el

rn

1 /62 E(j Y(tnl .)L'n (X2) - Cnj( 2

-/ 2 E( IY(tn~ '2 'n~j (X2) - Cnlj (X2)I2

T

E( max 1N .(X (
-O<j<Nj n,j 21L (x)

Now max 16 .(X2)V is dominated by 2 V(w) where II
0O<JSNn 'i 2)I() X

sup 1X2 (t,tu)j and hence
t,W

7 rn p((jI Y(tnlj )[6n,j (X2) - nj(X >
n.(X)OD 

>en

- E E( T-im max IA .~j(X2)IVw) -0
el n-> W 0 'j <Nn~j

since ma A n,j (X2) 1 ->0 o a.5. as n -> co because of the

0 -<Nn
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a.s. uniform sample continuity.

If we now drop the condition of uniform boundedness on the

X2 -process, we can define a sequence of uniformly bounded processes

(X V(t), F(t); tfT) V - 0,1,... as in Theorem 2.1.3 such that

P([XV(t) - X(t); teT]) --> I as v ->co.

For each v - 0,1,..., the XV-process will be a quasi-martingale with

[XV]i - X I - 1,2, being the Xi-process, I = 1,2, stopped at

Tv (). The XV-processes have all the properties stated in Theorem 2.3.5.

Still assuming the Y-process is uniformly bounded and a.s. sample

continuous, we have just shown that for each v - 0,1,...

Rf Y(t)dX2v(t) - P lim n Y(tn' )cnj (Xv).

0 n o 77n

For a.e. w, there exists a v(w) such that for all v > v(p),

X2 (tw) , X2v(tw) for every tzT and hence
II

lir Y(t)dX2v(t) " fY(t)dX2 (t) as.
V>D0 0

If we now show that )Y(tnj)C n,J (Xv) converges to )Y(tn j)Cn,j x)

rrn rrn

uniformly in n. it will follow immediately that

y(t)dX2 (t)- P tim Y(t )C (X)

0 n> GO ftn'jC

Consider

P(11 L Y(tn~j-)[Cn, j (X ) " (x)j > a)

Trn
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<PQ (U)) <I]) + tI.,/E ()

rrn [Tv (0)--I]

We know the first term goes to zero as v -> o and immecdiately after

the proof of Theorem 2.3.5 we showed the second term goes to zero

uniformly in n as v -> OD

We have now shown

Rf Y(t)dX2 (t) - Plim Y(tn'j)Cn' (X)

~~~n-rn I

when Y is uniformly bounded and X satisfies the conditions of

Theorem 2.3.5.

Suppose now Y is a.s. sample continuous but not necessarily

uniformly bounded. We can define the sequence of uniformly bounded

a.s. sample continuous processes LYV(t), F(t); t.T) V , 01,...,

aS in Theorem 2.1.3, such that

P((YV(t) - Y(t); t6T]) -> I as v -> oo.

For each v - 0,1,... we have just shown

P lim Y (t ,M R Y ltldXt)
n-> Go V n,j n,j ''2

'rn 0

when the X-process satisfies the condirtions of Theorem 2.3.5. But

for a.e. w, there exists v(w) sich that for v > v(w), Y(tw) ,

Y,(tw) for all t.T, and nea ce
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lrn Y v (t)dX2 (t)- (t)dX 2 (t) a.s.

0 0

Then by Lemma 2.4.1,n I'
P lm L Y(t nj)C n j (X) - R Y(t)dX2(t).
n->ODrrn 0

We have now proved the following theorem.

Theorem 2.4.4:

If the process tX(t), F(t); teT) satisfies the conditions of

Theorem 2.3.5, and if (Y(t), F(t); tWT) is any a.s. sample continuous

process, then

RfYt)dX W - Pna __Y(t. )Cn,j (x)
0 n->oo rTn

where tnj- tn,j :S tn,j+i

The next theorem follows almost immdiately from Theorems 2.4.2,

2.4.4 and Lemma 2.4.1.

Theorem 2.4.5:

Let (X(t), F(t); teT) be a second order a.s. sample continuous

martingale. Let 4 - X2 and let L12 - g2 Then if JY(t), F(t); tWT)

is any aes. sample continuous process,

-- 1 --

P~ ~ Vi ~ ( M i (tn, )Cn, (X2)

R Y(t)dt
2(t).

0
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P roof:

We know P lin Y(t* .)C n(X 2 ) - R Y(t)d,2(t)
nj n, 2(t

n->CO Trn  f

by Theorem 2.4.4. Assume first that Y is uniformly bounded and X

is uniformly bounded and a.s. sample equi-continuous.

If we look at the first part of the proof of Theorem 2.4.2, we

see immediately that

P lim k Y(tnj)[A nJ(X)] 2 a P lim . Y(tn j)Cn, (X2

n-> TTn n-> Tn

RfY(t)d 2 (t).

0

Now assume X is an a.s. sample continuous second order martingale

and Y is any a.s. sample continuous process. We can find two

sequences of processes (X,(t), F(t); tGT) and (Y,(t), F(t); tiT),

v - 0,1,2,... such that for every v - 0,1,... Xv is uniformly

bounded a.s. sample equi-continuous, YV is uniformly bounded and

P([YV(t) - Y(t) and Xv(t) - X(t); tAT]) -> I

as v --> aD. Since X satisfies the condition of Theorem 2.3.5, so

does Xv for each v - 0,1,...

We let EXV1 2 - Xzv for each v - 0,1,.... Then

Rf Y V(t)d 2v(tM - P Ii. Y V(tj )[. L%,j X 2
0 n-> oo Trn

for each v - 0,1,..., as we have just proved. For a.e. w, there

exists v(w) such that if v > v(w), Y, V(t,w) - Y(t,w) and 2v(tw) -

,2 (ta) for every tcT. And hence
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urn RfY (t)d 2 v(t) - RfY(t)d 2 (t) a.s.

V- o 0 0

Then, by Lenmma 2.4.1,

P lrn y(t nj) LA~ (X) ] 2 - Rt f Y(t)dt 2(t)n->oD n , 0,



Chapter III: Stochastic Integrals

Section 1: General discussion:

In this chapter we will define a stochastic integral for quasi-

martingales. The approach we use is that of limits in probability

of Riemann - Stieltjes sums.

Ito (5) and Doob (1, Chapter IX) have defined stochastic

integrals with respect to a particular type of martingale process.

Doob assumes the martingale (X(t), F(t); teT) has the property that

there exists a monotone non-decreasing function G(t) such that if s<t,

E(IX(t) - x(s)I ) - E(JX(t) - x(s) 2IF(s)) - G(t) - G(s)

with probability I.

For every second order martingale process [X(t), F(t); teT),

there exists a monotone non-decreasing function G(t) such that if s< t

E(JX(t) - X(s)i ) G(t) - G(s).

Iowever, the condition

E(JX(t) - X(s)I ) - E(IX(t) X(s)j F2(s)) a.s.

is a real restriction on the martingale process. As Doob points

out, if G(t) , Const. t, and X is real valued and a.s. sample

continuous, then the X-process is necessarily a Brownian motion process.

Doob shows that if LY(t), F(t); toT) is a measurable process,

I.e., measurable w.r.t. dtdP measure, and if

]E(IY(t) 2)dG(t) < cD •

0

Then the stochastic integral, Df Y(t)dX(t), can be defined as the

0

u3.
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limit in quadratic mean of a sequence of stochastic integrals of

"(t,w)" step functions, (I, Doob, p. 426).

If we let

' t

Z(t) - D Y(s)dX(s)

0

then the process tZ(t), F(t); teT) is always a martingale with

E(Zt)) 0 in t. Further, if Z0 (t) - Df Y0 (s)dX(s), then

0

E(Z(t)Z 0 (t)) f E(Y(s)Y 0(s))dG(s)

0

These properties of the integral are very nice in applications

(See,for example, section 3, Chapter IV of Doob).

Unfortunately, the integral does not have some of the more

common properties that one associates with the ordinary Riemann-

Stieltjes integral. For example, with the Doob integral we have no

integration by parts theorem. Furthermore, one of the major defects

is the non-existence of a reasonable transform property. This is

indicated quite easily by an example in Doob.

If the martingale process (X(t), F(t); t T) is such that

DJ LX(t) - X(O)]dX(t) exists, then it has the value

0

I/2[X(t) - x()]2 - I.i.m. 1I/2 [ (jx]2
n->o 7Tn

where I.i.m. indicates limit in quadratic mean.

It is readily apparent that one cannot hope to obtain a theory

of stochastic integrals which parallels Riemann - Stieltjes integra-

tion if we use this definition of a stochastic integral. In the

next two sections we will define a stochastic integral and give some



of its properties. Although the exPosition is far from complete,

it is hoped it will illuminate the feasibility of obtaining a

Riemann - Stieltjes type stochastic integral.

Section 2: Definition of the integral.

In what follows we will again be assuming T - [0,I]. Let

(X(t), F(t); teT) and (Y(t), F(t); teT) be quasi-martingales with

P((X(t) - X I(t) + x2(t); teT]) - I

P((Y(t) - Y I(t) + Y 2(t); teT]) - 1

where as usual, [X]i - Xiand [Y,- Y,, i a 1,2.

We assume X and YV i - 1,2, are a.s. sample continuous.

Let (17 , n > 1) be a sequence of partitions of T as defined inTn -

2.2.1. We will show that

(3.2.1) P lim L 12Etn,j+l +Ytn~j )itn,j+l -~nj)

exists and we define fY(t)dX(t) to be this limit.

0
We will write

a i .(Y) - [Y(tn ~) - Y(tn.)]

and

IN .J(Y) - 1/21Y(t .j~) + Y(tn~)

We will use freely the notation introduced in Section 2 of Chapter II.

We can write the sums in 3.2.1 in the form
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Aj (Y) 6,j (x)

7Tn

First

Is~~~ ~ n& M(ny n t an (x.i) + Is nA .(y)A (x2
rrn 77n T7r

Since Y has a.e. sample function continuous and X2 has a.e. sample

function of bounded variation on T, the limit of the second sum exists

a.s. and is the ordinary Riemann - Stieltjes integral of Y(,w) w.r.t.

X2( We indicate this as follows

(3.2.2) Rf Y(t)dX2(t) P lim (Y)anl (X2 )

n-> n 'n -> G r r n

Consider now

E n.(Y)An (Xl) " (X(tnlj)&n~j('l) + 1/2 An~j (Y) n . , (X •

rn 17n 1

The second sum on the right can be further reduced to the following

£1/2 46n~j (Y&An~j( Xt + 1l/2 46nj (Y2)&nJ(X 1)Trn Irn

Again, since XI is a.s. sample continuous and Y2 has a.e. sample

function of bounded variation on T, the second sum goes a.s. to zero.

We have now reduced the problem to showing the existence of

the limits

P lim )1/2A &,(Yi)A U(x ),) , " Y(tn j)A ,j (x)
n-> or n > oo

It was proved in Corollary 2.4.3 that if YI and X are a.s. sample
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continuous second order martingales, then

P ir 1/2 Ani (YI).ni (X) 1/8([Y1+ X] 2 (1)- [Y1 - X1 ] 2 (l))'
n->oo

rnn

the limit being a.s. sample continuous and having a.e. sample function

of bounded variation.

if (YIV(t), F(t); t-T), (XIV(t), F(t); teT), v - 0,1,... are as

in Theorem 2.1.3, then by Theorem 2.1.1 each X and YIV are uniformly

bounded a.s. sample continuous martingales and

P([YV(t) + Y,(t) or X1 V(t) + X,(t) for some teT]) --> 0

as v -> o0. Hence by Lemma 2.4.1

P lim 1/2A nj(Y 1) AnJ(Xi) exists.
n-> w Tr n

Further, if t2v - [XlIV + XlV] 2, P2v "[Yv- Xv1 ] 2, then

(3.2.4) P lim L I/2nA .(Y) a n (X ) P lim 1/8(42v1 1- 1-2v(i)).
11-> 00 n-j 1ODj2vrn

We define

(3.2.5) M~Y - P lim 1/2 An.i(Y I) a nji(X)

0 ' n - > c o 7 1

If we now show P liraL Y(tn~j )4 (X) exists, we will have
n.-> OD T n

proved the existence of the limit in (3.2.1). To prove this we first

prove the following lemma.

Lemma 3.2.0.

If (X(t), F(t); teT) Is a second order martingale and
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(Y(t), F(t); toT) is a uniformly bounded, a.s. sample continuous

process then

lm Y(tn) J  (X) exists in quadratic mean.
n-> 

orTn

Proof:

Let m > n. Then I n C "Tm and we can write

Znm a LY(tn,j)&n,.(x) LL Y(tnj )a nmjk(X)n 7,Trmj

and Zm - Y(tmi )m, ±(X) - Y(t nj,k)MnJ,k(X)

Then

- znl -(t 7 Y(t j,k)- Y(t,j)]Aj,k(X)

nrrrrn..E( iYltrnj,k)- Yltn,j)Il , nj ,k (X) I')

because of orthogonality.

Let Ear' r > 0) be a sequence of positive real numbers with

C0 > . > .. > 0 and lim ar 0 0. Also let (b6r, r' > 0) be a
r->co

sequence of positive real numbers with 0 > oI >... > 0 and

lim O0 InO.

Define

A r,r,(t) [ $, < r' Y() - Y(S') S Crl,r,r' - 0,1,2, ....

IS-S'I$ r
S'S' < t



Because of the a.s. uniform sample continuity

P (A r, t) -> M 0 as r -->oo for

every fixed r.

Now for fixed r and r', if t 1 > t0then

A r,ri(ti)= -A r, re(tO) and hence

E(IY(tj)- Y(t *j)I, IAr XI,

rn7nj Ar, r -(nmj,k)

lL L i ' mj,k) Yn,j) 12nmj k(X)I jdP

Let NY~ - :up IY(t,,w)I. Then

IY(t nm~)- Y(tn k,j jk (X)12 dP
A r,r .(tnm,k)

2n 1&J , k(X)Id
Alr,r s(t Iwj )

- N XtJkIIdP -4hy J IX(t rmj,k )I2dP
Ar,rI nmj ,k) r,r'( nmj,k)
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2_ I X('nmj,k+l) 1  Y'nmj2dP o 4"2  [ It )t, dP

Ar, r s(tnmj k+l) Ar, r' (tnmj, k)

Then

I I I IY(tnmj,k)" Y(tn,j)1 I&runj,k(X) 12dP

1Tnllmj A, r' (tnmj,k)

4 2 j IX(1)I2 dP

A .(l)r, r

Let e > 0 be given, choose r such that e E(IX(l) X(0)j ) < e/2.

Since P(A rr.(I)) -> 0 as r' -> co for every fixed r, we can now

choose r' such that 4M 2 IX(l) dP < e/2. Now choose n(e)
r,r' (1)

such that IIT n(C)II < 6 Then if m > n > n()

E(Z m - Zn12 ) < er E(IX(l) - X(o)1 2 ) + 4 IX(l)1 2dP

Ar, r')

< e/2 + W2 a e.

The lemma is now proved.

If (X(t), F(t); teT) is any a.s. sample continuous martingale

process and if (Y(t), F(t); t4T) is any a.s. sample continuous process

then

P lIm Y(tnj)A n j (X) exists-> o Tin

For, if X V(t), F(t); teT) and Y V(t), F(t); t9T) v > 0, are as

defined in Theorem 2.1.3, then X v is a uniformly bounded a.s. sample

continuous martingale and Yi is also uniformly bounded and a.s.
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sample continuous. Then by Lemma 3.3.5

lir YV(t n,j)An, J (X V) exists in quadratic mean for
n-> co Tn

every v > 0, and hence by Lemma 2.4 1

P lm n Y(tnj)nj (X) exists.
n-> o° *-

We now define

(3.2.7) Dj IY(t)dX (t) - P Irm ) Y(tnj )A n~ j (x

0 n

We have now established the existence of the limit in 3.2.1 and we

define

(3.2.8) J Y(t)dX(t) - 0J'Y(t)dXl(t) + RJy(t)dX (t) +jdY(t)dX(t)

0 0 0 0

a P I1 n -, (Y) an,. (x)
n-~> co Ir

Clearly, if [,] is any closed sub interval of T, we can define

(3.2.9) Y(t)dX(t) - P lir ka n_ ,j(V) An,j(M,

n-> co -7,up, n

for the limit w.il exist when (TT n ,n > I) is a sequence of

partitions of [",,| ,1,ith lI Tro, ni 1 n> o and rT",, '= Tr,,e, C ''

If [r'n' n > I) is a sequence of partitions of T as defined in

2.2.1 and if ffn(t) - ,tj, then

t -1

(321)J Y(t)dX(t) - P li h an M .() .X
n-> O 7 t) ' i0 Un )
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Section 3: Some properties of the integral.

Let LX(t), F(t); teT) and LY(t), F(t); trzT) be quasi-martingales

with

P((X(t) - x I(t) x X2(t); tc.T]) - 1

P(LY(t) a Y ItM + Y 2 (t); teT]) - I

where LX]i - and [Y], - Y1, i - 1,2, are a.s. sample continuous.

Let Z(t) - Y(s)dX(s) - P lrn E nj(Y) a .(x)M
0 n->~ 00 t

Theorem 3.3.1.

The process LZ(t), F(t); teT), as just defined, can be taken to

be a.s. sample continuous.

Proof:

Z(t) -JY(s)dX(s) - D] J (s)dX1 (s) + RJY(s)d X2(s)
0 0 0

4] dY(s)dX(s)

0

First, the integral R ] Y(s)dX 2(s) as a function of its upper limit

0

defines for a.e. w, a real valued continuous function on T.

The integralJ dY(s)dX(s) - P lim 1 /2 a ,(Y1)A~(i

0 n TrC n (t)

- P lim 1/8(t 2v(t)- T2v(t)) where t 2v and T are as defined In

3.2.4 is a.s. sample continuous by Theorem 2.2-10 since both 2vand

are a.s. sample continuous for every Y a 1,2,....

It thus remains to show the integral
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DfY(s)dXI(s) - P rI i Y(t n,.)A (xI )f n-> Oo r
0 Trn T1(t)

as a function of its upper limit defines for a.e. a, a real valued

continuous function on T.

We first assume the X and Y processes are uniformly bounded

and a.s. sample equi-continuous.

By Theorem 2.2.10 it is sufficient to show that given eq > 0

there exists n(E,q) and 6(eT) such that for all n > n(eq)

(1) P([ sup IT Y(tnj)nj (XI)- Y(tnj)n J (X ) I> hI)
I t-Sl <b(C TrnM Tn(s)

<I

First we show that if ev > 0 are given, there exists an n(e,) such

that if n > n(s,), then for all m > n,
k

PU max max IY(tnmj,i)&rIMj,kXl)>Gd) <
O<j<Nn O<k~ knmj 1-0

Now k

PQ max max L Y(t)nmj , . ,nmji(X )I> 6)
0 <J<N O<k<k

k

*_PQ max max iY(tnmj,i)-Y(t n,j)lanj, k(XI)I > e/2])
O<jSNn 0- k <knmj iMO

* PUL max max.)xe/)

(<J <N O<k k. nln,jlXl(tnmj,k~l) - XI(tn,j)l> l2])

We have

PQ max max IY(tnj)(XI(tnmj,kl)- Xl(tn,j)) I > 6/21)O<J<Nn <k< k nmj
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< Q max max 1X tim +I)- X I(tnfl > e/2M]j)
0 <j< Nn O<kk m~~ kn j v

where My- suply(t,W)I

Because of the a.s. sample equi-continulity of the XI-process we choose

a 61> 0 such that PQ[ sup 1X1(t) - Xsl> e/2HM,]) - 0
I t-s I< b

If Y )is such that for n > n, (E), 11 Tr nil< 61' then

PQ max max [X1 (tnm* k*4*1- X1(tnj)I > e/2Mf)) -0
0 jjNn <k -nmj

Observ, that the partial sums
k

LY(t.,nmjj) - j nJ ( Y(t *)14 ,(X) k - 0, -. ,km

form a finite martingale sequence for every j a 0,1,.. .,N n Hance

PQ max max I L Y(t jk )- Y~tn *)]An~ (~X l> 41)
0<JS<n 0Ck<k nmj i'

Nn k

<- P max I Y~ Y(t .)JA -(X~> 1

JO 0< k<k L1-0 , fljJ flmi , k~x)> 3
N. k -nm

-P jraj

j-0 k-0

Now choose 62 (,1) such that2

sup IY(t)- Y(S)I 2< E~X()X() 2)<' as
It-sI<S6 2(c,n) EII()X(~

Then choose n2 (6'1I) such that < 2 ,T)fr vr n)n(i 1
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Then Nn knmj

I/F2 2 E(IY(tnmj,k)" Y(t nj )121&nmj,k(X)1 2) < 1)

j-0 ks0

Hence if n >max (n,(,T). n2 (rmrl)) we have the desired result for

all m>n.

We can now show (I) is true.

Assume m > n and 6 < .n .Itnj+l - tn, jI. Then
O<j<Nn

(2) P([ sup I Y(tm,i )am (X )L Y(tmi )& mi(Xl)l> 3f]I t-s <_.6 IWO~t TJr(s)

k

PQ[ max max IjY(tnmj, )&nmj, (Xl ) I > ]
O<j<N n<k<k O< n nmJ  Iwo

If n(e,q) - max Ln (e,q), n.,(c,r)) is as chosen above, then we can

fix n > n(e,q) and let (eT) <rain Itnj+ - tn,jI. Then (2) will

be less than q for all m > n. Hence
It

P lrm L Y(t nj). 1 (Xl) I Dj Y(s)dX I (s)
n-> (t) 0

is a.s. sample continuous when Y and XI are uniformly bounded and

a.s. sample equi-continuous. The desired result now follows by

stopping Y and XI according to the stopping time defined In 2.3.3

and then applying Theorem 2.2.10 and Lemm 2.4.1.

With what has already been shown, we can easily obtain conditions

under which the process
t

Z(t) Y(s)dX(s) is a quasi -martingale.

0
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Theorem 3.3.2.

Lot (X(t), F(t); teT) and LY(t), F(t); teTI be quasi-martingales.

Let (X], a X and [Y], - Y,, I. - 1,2, be a.s. sample continuous.

Further assume Y is uniformly bounded and YIand XIare second order

martingales. If

Z(t) -j Y(s)dX(s), for every teT,
0

then the process (Z(t), F(t); teT) is a quasi martingale with

(Z] 1(t) - DJfY(s)dX1 (s) [Z] 2(t) - RJfY(s)dX 2(s) +J dY(s)dX(s)
0 0 (

and [Zl1 a i i - 1,2, are a.s. sample continuous.

Proof:

Since Y Is uniformly bounded and XIis a second order martingale,

by Lemma 3.2.t)

of Y(s)dX1 (s) M lim Y (tn~ A~ (x1)
f n-> ooL jni

where the limit is in quadratic mean. So Z beigtelmti

quadratic mean of a sequence of martingales is again a martingale.

We have further shown, in Theorem 3.3.1 that ZIis as. sample contin-

uous. Now R]Y(s)dX 2(s) defines a continuous real valued function

0

of bounded variation on T for a.e. a) when considered as a function of

its upper linit. Also

]dY(s)dX(s) -P Iim 1/2 a .~ (Y I) 46 .~ (x1)
0 n->~( cc rn(t)

- /8(L(x 1+ Y 1) 
2

2(t) - L(lA Yl) 212(t))
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Is a.s. sample continuous and of bounded vari.ati.on on T since X1 and

Yare second order martingales. Therefore Z2 has a.e. sample

function continuous and of bounded variation on T. The theorem is

now established.

We now investigate some properties of the integral which parallel

the Riemann - Stieltjes Integral.

Theorem 3.3.3:

Let JX(t), F(t); teT) and (Y(t), F(t); tcTj be quasi-martin~iales

with [X]1. - XIand [Y], - Yi. i. a 1,2, a.s. sample continuous. Then

I (IJX(t)dY(t) + Y(t)dX(t) - X(l)Y(l) -X(O)Y(O) a.s.

0 0

P roof:

Observe

a .(xy) (X) a .(Y) + .(Y) A .(X), so that
n~j n, n~ini n~j

A~ n~j(Y) - LaEn .(x M a 1 (Y) + E .~i(Y) a (x) M

nT lTn 1Tn

Hence, taking probability limits on both sides we have the desired

resulIt.

One thing that one would expect of aii Integral is the following:

(X(t), F(t); teTi is a quasi martingale and if the function f is such

that j f'(X(s))dX(s) exists

0

the Jf'(X(.. 'IX(s) - f(X(t)) - f(X(0))
0
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For the Doob integral this is not the case, as is illustrated by an

example from Doob (1, p. 4+43). If (X(t), F(t); teT) is such that

DJ (X(t) -X(O)]dX(t) exists, then

0

- 1/2 lrn Z njA .(X)] 2

n- lo Tn

where the limit 1.5 in quadratic mean.

Let X(t), F(t); teT) be a quasi martingale with (Xji X-

2
i1 1,2, a.s. sample continuous. Let f(t) a t .Then

x(l)_ x(o)2  J2X(t)dX(t)
0

or

f(X(])) -f(X(O)) -Jf'(X(t))dX(t).

0

For, /2X(t)dX(t) -2 P lim 1 /2A 6 (X A~ M .4n I )
0.. n-j no Tj

-P urn a -~ (X X(l)2  X(O)

nj

This property of the integral can be generalized to the following

extent.

Theorem 3.3.4.

Let [X(t), F(t); tcT) be a quasi-martingale with (X], n 1

i n 1,2, a.s. sample continuous. If f is a real valued function of

a real variable and has a continuous second derivative, then

f(X(l)) - f(X(0)) f'(X(s))dX(s)
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Proof:

We want to show

f(X(])) - f(X(O)) - P l1.m S j .(f'(X))& nXM

-P Ir Lm f'(X(t .j))a~ .(X) + P I im 1/2 afni s (X ))A (X)3

Tin n

where t nj< t .j < t nj and where t n depends on t.

We can write

f(X(1)) -f(X(O)) - 6 %~ i Mnfx))

- .Lf(X(tnlj)DAn A (X) + 1/2 fb(X(t* )I4 (32
j))~ Inj ()

wher aga n t j <- n~j < nj+ I and where t nj depends oncD

Hence,

If(X(I)) - f(X(o)) E j ,. f'(X)4A, .(X)l

rn

-1121 L fl"(X(t,) f f"(x(t*,)IA~~()

In

11M 2

:5 2 if t nj f (~ n,.ji))lni(X

Tr
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where e (w) - max sup If"(X(t)) - f'(X(s)) I.
j t nj- S 't< n,j+l

Because of the a.s. uniform sample continuity of the X-process and

the continuity of the function f"('), .n(0))--- 0 a.s. as n -> oo.

2n

if [1A (X)] 2 converges in probability, then

lrn

Z L n.(f(X)) nli(X) will converge in probability to f(X(l))-f(X(O)).

rrn

Now

L n&njj(X2) l2 2

Tn n

Because of the a.s. sample continuity of the processes XI and X2 and

the a.s. sample bounded variation of the X2 -process, the second and

third sums go to zero a.s. as n -> Go. We have previously shown

the probability limit of the first sum exists. The theorem is then

proved.

A natural question at this point is what additional assumptions

on the function f or the quasi-martingale X will insure the process

(f(X(t)), F(t); trTj is a quasi-martingale.

Assuming f and X satisfy the conditions of Theorem 3.3.4, we have

f(X(t)) = f(X(O)) +J f'(X(s))dX(s)

0

We write

Jf'(X(s))dX(s) a P lim Zntj

0t n-->ooTn(t)
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Plim E n1n (f'(X))An (X).
n.-> co7Tn(t)

Since fP is continuous and X is a.s. sample continuous,

Pn im L nJ (f'(X))n,j (X2) - R Jf'(X(s))dX2(s)

Consider then

E. n~i,j ))nl (1 fL... n~j )n,J (I)

rn(t) ffrn(t)

+ L1/2 A .~i(f'(X))&A .(xI)L+ , / n,jlf xln,jlx1

rrnt)

Assuming f' is bounded and continuous, the first sum converges in

quadratic mean and therefore defines a martingale process. Last of

all, consider

1 l/2n .(f'(X))n (X) 1/2 f"(X(t* Ma 1xl 2
_ n,j--[n,j ()ITn(t) TTn(t)

When XIis an a.s. sample continuous second order martingale, we

showed in Theorem 2.4.5 that
I t

P lim 1/2 f"(X(t* .))[4 .(X )]2 mff"(X(s))d(s)
n' T° lnlt)o

where t - [XlJ 2 , provided f" Is continuous.

Then for each t4T,
t

f(X(t)) - (x(o)) + off'x(s))dx, s) + Rff'(X(s))dX2(s)

0 0

+ f ,"(x(s))dt(,)

0
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If we let

Lf(Xf 1 (tW - Dj f'(X(s))dX1 (s) for every teT, and

0

t rt

[f(X)]2(t) - f(X(O)) + Rff' s)d 2(s) +Jf(Xs d(s fr
0 0

every teT, then the process (f(X(t)), F(t); teT) is a quasi martingale

if the above conditions are satisfied and E(If(X(t))J) < oo for every

teT. We summnarize these results into the statement of the next theorem.

Theorem 3.3.5.

If f is a real valued function of a real variable with fV

bounded and f" continuous, and if (X(t), F(t); tW) is a quasi-

martingale with [X], - XI - 1,2, a.s. sample continuous andX

second order, then (f(X(t)), F(t); taT) is a quasi-iiwrtingale if

E(if(X(t))I) co for every treT.

Further

[f(X)] 1 (t) - Dff(X(s))dX (s) for every teT
0

Ef(X)1 2(t) - f(X(o)) + Rff'(X(s))dX2(s) + R J f"(X(s))dt(s)
0 0

for every teT, where t X 2

Assume now (X(t), F(t); tW) and (Y(t), F(t); We) are quasi-

martingales with [X]i - Xiand (Y], - Yj'i a 1,2, as. sample

continuous Assume further Y Is uniformly bounded and XIand YIare

second order martingales.

if Z(t) a Y(s)dX(s) for every trlT, then by Theorem 3.3.4,

0

we know the process JZ(t), F(t); W,) is again a quasi-martingale
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with the following decomposition.

[zll(t) - ZI(t) - DJfY(s)dX] (s)

0

[Z] 2 (t) ' Z2 (t) - RJ Y(s)dX,(s) + 1/8(t(t) - '(t))

0

where t - [(XI+ Yl) 2',2 t (XI - Yi)212

Let f be a real valued function of a real variable with f'

bounded and f" bounded and continuous. Then since ZI is a second

order martingale and ZVi , 1,2, are a.s. sample continuous, by

Theorem 3.3.4

t

f(Z(t)) - f(Z(O)) +J f'(Z(s))dZ(s) for every tcT.

0

We wish to show that

f(z(l)) - f(z(0)) -J f'(Z(s))dZ(s) .nf'(Z(s))Y(s)dX(s)
0 0

or symbolically, dZ - YdX.

We now write, assuming the existence of the limit,

/ f'(Z(s))Y(s)dX(s) - P lim nj(f'(Z)Y)an M(X)rn

Consider

"na l(f'(Z)Y)An,j (X) m n,j ( f (Z)Y)&nj (X2)

1n rn

+) f'lZ(t nj))Y(tn,j )Anj (X) + L 1/2 Anj (f'(Z)Y)Anj (Xl)

The third term can be rewritten as follows:
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S1/2 a n4i(f,(z)v)&nl (X1) 1/2Y(t )A dn'(f 6(z))An. (x1)
n1jn nrj

+L1/2 fl(Z(t .j))Al .(Y)Al .(X )

1 ~/2A .l(Y)&n .(f '(Z))&n (X1)
fin

1 /2Y(t .j)&~ .~(f,(z))A~ .(xI)

Trn
+ Lj1/2 f'(Z(t .~j))Anl M(Yan

rn
We will show that

1) P urn f'(Z(t .j))Y(tn~ .)A .~(XI)

-P lim fl(Z(t .j))Anl AZ1 )
n-> O n,.rn

2) P urn ~ (f'(Z)Y)& .(X) + 1/2 fl(Z(t D)a M6) (X1))
n~jnj ~ nj nJn-> a rr Anj 2)nj '

um imj 5 n- f()Anj(2 RJ f'(Z(t))dZ2(t)

n 0

3) P lin 1/2~ Aj(fI(M))Y (tn ),N .~j(XI)

-P lrn 31/2 A nj(f IZM )An .(Z1)
-> co 

nj



and finally

4) P lim 1I/26 .j(f'(Z))6n., (Y)6An .(X) - 0

E(I~~~ fzt .j)tn,j ) n,j ltn~j n Z)

7T Trn

22
=E( lznj )[nj n , (Xd 6 nj n

a E(IEfs(Z(tnjM2[~ nj )nj(X I)-a n (Z)] )

rn

2 2

f #~ E(L [Y(t.j)6 .1 )- Ani (ZI) 2

Irrn
where Mfe - sup If(Z(t'(0))I

t ,G)

Now E(IZ,(l) - )Y(tn~ .)6n (X')1 2)

lTn

a E(I a An~j(ZI) - Y(tnj )n,j(Xj)I 2)

a E(I L [6n, (Z1) - Y(tn .)6 .j (XI), 12)

so E( LI1 ni(Z1 ) - Y(t~ .)An,j (XI)I12) _> 0 as n co,~

Inrn

and 1.) is now proved.



To prove 2) we first observe that

P 11111 1/2 f'(Z(t jl nY) (X

Trn

P Ilfin 1 /2 f '(Z(t nj) )n Y) ' X1

Then we can wri te

R J f'(Z(t))dZ 2(t) - R J f'(Z(t))d(R JY(s)dX 2(s) + l/8(W(t- T(t)))

0 00

1

But 1/18 RJ f'(Z(t))d(t At)- T(t))

0

P irn ' £1/2 f'(Z(t, .))A ( 1)6n (X1
n-> oo- ~ n, nJ n,

and

Rff'(Z(t))Y(t)dX 2(M - P Ii~m En .(f(Z)Y)6A .(X 2).

0 n-> Drn Y

Hence 2) is proved.

Recall f" is bounded and Y is uniformly bounded. Now to prove

3) consider,

P lrn 1/2IZL~ .(f'(Z))Y(tn~ .a .(XI)

n lm 1/ j(~ nj n~i()~ j 6nj(I
n-n- r

a P tim £1/2 f'O(Z(t* M)) (Z1 )~~~) ( 1
n-> oD L n~,j n,j IYt~)nj(I



Now

E(j 1/Z fll(z(t* .))In, (Z1)Y(t, .)& .~ (X)

n1/ * 22

TnJ

rrn

E(I £ 1/2 f"$(Z(t )) (Z/2

Trn-

< ( [1/2 f 6(Z~t ))A (Z k 12
n,j n j )

7r7;

I L , (z L6 n) [(Z ~' Y(t~ 2~ Lnj(Xd /

TnJ

L n~jnJ nJ

1/2 prvn(IZes owed tE' /erm o6 the t yoe to l~ 2eoa

I/- 2Mf so~ c E ) Lni ~ proved.n~



To show 4) we observe

P Jim 1/2 a n. i(f'(Z))-nl (Y)Lnj .(X )

W P Ir im /2A .j(f,(Z))'An i(Y1)L A .(XI)

= P lrn 1/2 fl(Z(t n ~))6A .(y )"n .(XI)

- P jim 1/2 (Y~t . ) I .Y)a X)
n-..O Lf~ztn,j) nlj nj1i

0 0

We can now prove the following theorem.

Theorem 3.3.w.

Let tX(t), F(t); t.T) and [Y(t), F(t); teT) be quasi-martingales

with [X]i1 - Xi and [Y], n Yi, i 1,2, a.s. sample continuous. Let

f be a real valued function of a real variable with continuous

second derivative. If

Z(t) - Y(s)dX(s) for every teT,

then 0

f(Z(0) f(Z(0)) f'(Z(t))Y(t)dX(t)

0

Proof:

Let V - 1,2,......Let 7(w) be the first t such that



sup IZ(s,w)l?: v or sup JX(s,w)I v or supjY(s,w)j v.
s<t s < t s < t

If no such t exists, let ,V(w) - I.

Since X, Y and Z are all a.s. sample continuous

P([Z(t) + ZV(t) or Y(t) + YV(t) or X(t) + XV(t) for some tET]) -> 0

as v -> aD.

Clearly, T v is a stopping time for each of the processes X, Y,

and Z. Let X V, Y and Z be the processes X, Y, and Z stopped at Tv"

Then fur every v = 1,2,..., XV, Y V , and Z v are uniformly bounded by

v a.d are a.s. sample continuous.

We first show, for every teTt
Zv (t) - JYV(s)d)(s) - P lim E n,j(Yv)An,j(Xv)

0 11-> OD (t)

* it
Let Z (t) YV(s)dXV(s). For each teT, we can fi.nd a subsequence

0

of partitions (.17j(t); k > 1) such that

k

Z (t) = lim L k.(Y )A (X ) a.s.
k-> k(t) j V kj V

-- 7'(t)

If t < T (4), then
1k

Z (t) - lilm \ LAk, j(Yv)Ak, .(X )

L k,j(Y)AkjfX) - Z(t) - v( )

K-> 0 jlt)
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If t > Tr (w), then
V1

z(t) ia lk,j(Y)Ak, j(X)

Zk v

k-> o0 ki j t

- i k~j (Y)6 , j Mx
k-> co TT (, -rV ))

+lim 46k, j ( U)) ) (Y) 6k(Tv() M Z(T V()) z Z (t),

k->0 oo r Vk rV()

since Ir (i (Y)Ak, j(T ()) 0. Then Z z (t)
k-> kJ(rv(W)) () O V

a.s. for every tET, so that

Z, V(t) - P Ir m E ( nj(Xv)n-> co IT, M Y) ~

Actually, one can take

P(LZ* (t) - Z (t); teT, v 1, . .) - ,

for we get equality on an everywhere dense subset with probability

one, and since Z v and Z are a.s. sample continuous they must be

equal for every tFT with probability one.

Since for each v a,, ..., Zv Vis uniformly bounded and f, f'

and f" are continuous, f(Z v), f'(Zv ) and f"(Z v) are uniformly bounded.

But then

f(Zv(I)) - f(ZV(O)) - J Vf'(Z(t))YV(t)dX (t).

0

For a.e. w, there exists v(w) such that TV (w) - I for all Y > v(p),

and hence

f(Z(I)) -- f(Z(O)) J f'(Z(t))Y(t)dX(t) a.s.

0



The theorem i.s now proved.

Further properties of the Integral need to be investigated

extensively. Some of the theorems can be generalized somewhat, but

in an obvious way.

Some of the more pertinent questions which have not been looked

into to any great extent are the following:

i) Can the decomposition Theorem 2.3.5 be extended to processes

JX(t), F(t); teT) having a.e. sample function right (or left)

continuous? Here it is felt that condition i) of Theorem 2.3.5

may have to be replaced by the condition of uniform integrability

of the sequence of stopping tiies [T V (w); V > I), where TV(U)

is the first t such that sup IX(s,w)I > v • And i-f no such
s< t

t exists T (W) - 1.

ii) What functions f of a quasi-martingale tX(t), F(t); teTj will

again be a quasi-martingale? In terms of boundedness and

differentiability conditions on f it is felt that in general

f(X) need not be a quasi-martingale if f does not have a second

derivative. If one investigated f(Z), where f is the integral

of the Wierstrass function aid Z is the Browntan moton process,

one should get some Indication of whether tne second derivative

of the function f is necessary. O.ie could also look for other

conditions on f, such as convexity

iii) What processes are integrable with respect to a quasi-martingale?

Theorem 3.3.4 i.d.es that th. In !.rand may rot rove to be a

quasi -mar ti :;jjd.
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iv) Doob (I, pp. 2/J-Zl) has given solutions of the diffusion

equations on the real line. WIth the defini tion of a stochastic

integral yl.ven in this thesis, can the diffusion equations be

solved on a sufficiently differentiable manifold, possible a

twice differentiable manifold? It seems entirely possible this

is the case and should be possible with relative ease.
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