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Chapter I: Preliminary Discussion

Let (Q,F,P) be a probability measure space on which is defined
a family of real valued random variables (r.v.'s) {(X(t); teT) where
T is a subset of the real line. We will always assume E(|X(t)|) <
for every teT. Let {F(t); teT) be a family of sub g-fields of F
with F(s)C F(t) for every s, teT with s < t. The family of r.v.'s
{X(t); teT) is said to be well adapted to the family of sub g-fieids
(F(t); teT) if X(t) is F(t) measurable for every teT, and we wiil
then write (X(t), F(t); teT) to indicate this relation. The family
(X(t), F(t); teT) will be referred to as a stochastic process.

After specifying a particular process (X(t), F(t); teT) we will
often refer to it as the "X-process," in order to simplify writing.
In many cases F(t) is the minimal o-field with respect to (w.r.t.)
which the family of r.v.'s (X(s); seT, s < t) is measurable. We
will de.ote such g-fieids by,ﬁ (X(s); seT, s <t).

A process (X(t), F(t); teT) is called a martingale process if
for every s, teT with s < t, E(X(t)|F(s)) = X(s) with probability
one (a.5., a.e.), and 1s called a semi-martingale (super-martingale)
process if E(X(t)|F(s)) > X(s) a.s. (E(X(t)|F(s)) < X(s) s.s.).

This can be restated as follows: Let
b, ) = _/ X(t,0)dP@@) for AcF(s)
4 A

Then by the Radon-Nikodym theorem, there exists an F(s) measurable

function which we deiote by E(X(t)|F(s)) such that
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W - fo(t,m)dp(w) - AE(X(t)IF(s))(w)dP(m) for AcF(s)

Furthermore E(X(t)|F(s)) 1is unique except on an F(s) set of measure
2ero.
The process (X(t), F(t); teT) is then a martingale if for every

s,teT with s < t,

‘/‘x(s,m)dp(w) . ‘/‘x(t,w)dP(w) for AcF(s)
A A

Correspondingly we can say the process is a semi-martingale if for

every s,teT with s <t,

fx(s,a)dl’(w) < fx(t,m)dP(w) for every AcF(s)
A A
and the process is a super-martingale if for every s,teT with s <t,

f X(s,@)dP (@) > f X(t,@)dP(w) for every AcF(s)
A A

We will assume from now on T is a closed interval, and hence
1t is no further restriction to assume T is the closed unit interval
(0,1). This will be assumed throughout the thesis.

We can think of a process (X(t), F(t); teT) as a function X
of two variables defined on the space TXQ. For each fixed teT,
X(t,*) 1s a r.v. defined on (3,F,P,) and is measurable w.r.t. F(t),
and for each fixed wefl, X(-,w) is & real valued function with domain
T. A sample function of the process is simply a member of the family
(X(:,w); weR) of real valued functions with domain T. We will be
interested in analytic properties of the sample functions. However,
in order to make probability statements about analytic properties
of the sample functions, we must have separability of the process
w.r.t. the class DA of (finite or infinite) closed intervals. The

process is said to be separable relative to & if there is a



denumerable subset TO of T and a set AcF with P(A) = O such that if

Ac C& , and I is an open interval, then
[X(t,w)eA; teINT) N [X(s,w)eA; teInTo]C A

where [X(t,w)eA; teINT] = (w| X(t,w)eA; teINT). In general we
will let [:--] denote the set of all wefl such that ":-." is true.
Separability w.r.t. (ﬂ implies that if I is any open interval,

then

sup X(t,w), 1inf X(t,w) and Tim X(s,w), Hm X(s,0)
teINT teINT s>t s>t

are all r.v.'s.

We remark here that any process (X(t), F(t); teT} which is
a.5. sample continuous is separable w.r.t. dA . By a.s. sample
continuity we mean there exists a set AcF with P(A) = 0 such that
1f w§A, then

1im X(s,w) = X(t,w) for every teT.
s=>t

Further, if TO is a denumerable dense subset of T, then it is a
separating set.

We proceed now to the definition of a quasi-martingale process.

Definition 1.1.1

The process {X{t), F(t); teT} will be called a quasi-martingale
process if there exists a martingale process (x'(t), F(t); teT) and
a process sz(t), F(t); teT) with a.e. sample function of bounded
variation on T such that

P{[X(t) = xl(t)+x2(t); teT]) = |

When we say the process (xz(t), F(t); teT) has a.e. sample

function of bounded variation on T we mean that except for weA,



with P(A) = O, Xz(',w) is a real valued function of bounded variation
over T.

From now on we will always write [x]' or simply )(l for the
martingale, and [)(]2 or simply x2 for the process of bounded varia-
tion in the decomposition of the quasi-martingale X. It is hoped
that this will not be confused with the bracket notation used to
indicate subsets of Q.

We now give some simple examples of such processes.

Let (Z(t), F(t); teT) be the Brownian motion process with
T=([0,1]; 1.e., the process has independent, normally distributed
Lncrements with E(Z(t)-Z(s)) = 0 and E(|2(t)-Z(s)|2) = o?|t-s]
where o > 0 is fixed and s,teT. We assume 2(0)= 0 a.s. so that the
process is a martingale process. We further assume
F(t) —3(!(5); seT, s < t). Let X(t) = exp{Z(t)v] for every teT,
where v is an arbitrary positive real number. If u>O0and t +u<l,

E(X(t+u) |F(t)) = E(exp[Z(t+u)v]|F(t))
= E(exp[(Z(t) + Z(t+u) - Z(t))V]|F(t))
= exp(Z(t)v] E(exp[(Z(t+u) - Z(t))v])

a X(t) exp[azvzu/2]

If we let ¢

22
Xz(t) -j QzL X(s)dS for every teT,
0
then the process (xz(t), F(t); teT) has a.e. sample function of

bounded variation on T. That xz(:) is defined follows from the fact
that the Brownian motion process is a.s. sample continuous. We show
the process {xl(t) = X(t) - X,(t), F(t); teT) 1is a martingale.

Again assume u > 0 and t + u < |, then



E(X|(t+u)|F(t)) = E(X(t+u) - Xz(t+u)|F(t))
= X(t) expla®viu/2] - E(X,(t+u) [F(t))

Now
+u, o

t
2
E(X,(t+u) |F(8)) = s(jo TV expl2(s)v)ds|F(1))

u

2.2
- x0 + [ L e(explz(ees)v]|F(e)as
0

Y22 22
- xz(t) + g—%— exp{Z(t)v] exp[o v s/2]ds
0

= Xz(t) + X(t)(exp[ozvzuIZ]-l)

Then E(Xl(t+u)|F(t)) = X(t) exp[ozvzu/2]- Xz(t)
-X(t) (exp[a2viu/2] -1)

= X(t) - Xz(t) - xl(t) a.s.

Hence the X- process is a quasi-martingale. That

v 22
E( | - exp(Z(t+s)v]ds|F(t))
0

v 22
- [ LF etomplz(eenvl|F(e))as
0

follows from the existence in this case of a conditional probability
and we are thus only changing the order of integration which is
permissible here. (One can also prove it directly by observing the
Riemann-~-Stieltjes sums and noting these sums form a uniformly
integrable sequence.)

In this exampie we have really just considered a continuous,
convex function of a martingale process, exp[Z(t)v], and hence we

have a semi-martingale process. The following will give a simple



class of examples where the quasi-martingale need not be a semi-
martingale.

Let (X(t), F(t); teT) be a process with independent increments
where F(t) = ﬁ(x(s); seT, s <t). Let E(X(t)) =m(t). Ifs<t,
then assuming m(Q) = 0,

E(X(t) |[F(s)) = X(s) + m(t) - m(s)

Define xz(t) = m(t) a.s. and x,(t) = X(t) - xz(t) for every teT.

Then (xl(t), F(t); teT) is a martingale process and therefore the
process (X(t), F(t); teT) will be a quasi-martingale process when
m(t) is of bounded variation on T.

We will now mention some work which has been done by P. Meyer (3)
on the decomposition of a continuous parameter super-martingale
{x(t), F(t); te[0,00])} into the difference of a martingale process
[X|(t), F(t); te[0,00]) and a process {Xz(t), F(t); te(0,0] which has
a.e. sample function monotone non-decreasing. The results obtained
by Meyer are the following: Let (X(t), F(t); te[0,00]) be a uniformly
integrable, right continuous super-martingale. Then the process has
the stated decomposition if and only if it is of class D on {0,00],
i.e., if and only if the family of r.v.'s [xT; 1€ T}, where T is
the class of all stopping times for the process, is uniformly
integrable.

It has been shown by Johnson and Helms (4) that there exist
uniformly integrable, right continuous super-martingales
(x(t), F(t); te[0,00]) which are not of class D. They have further
shown that if in addition the super-martingale is a.s. sample

continuous then it has the stated decomposition 1f and only if



Hm rP([ sup |X(t,@)| >r]) =0
r=>00 0<t< oo
The problem of decomposing a process (X(t), F(t); teT) into
the sum of a martingale process aind a process having a.e. sample
function of bounded variation on T parallels the above described
decomposition of a super-martingale. For if we assume
(x(t), F(t); te[0,0]) 1s a uniformly integrable super-martingale,
we may as well assume we have the super-martingale
(x(t), F(t); te[0,1]). Then if we have the above decomposition, the
process haviny monotone non-decreasing sample functions has a.e.
sample function of bounded variation on [0,1].
We will obtain necessary and sufficient conditions for a process

(X(t), F(t); teT) to have the decomposition
PUIX(E) = X, (£) + X,(1); teT]) = |

where (x| (t), F(t); teT) is an a.s. sample continuous martingale and
the process [xz(t), F(t); teT} has a.e. sample function of bounded
variation on T, and further if V(w) denotes the total variation of

xz(-,w) over T, E(V(w)) <



Chapter II

Section 1: Random stopping

Let {X(t), F(t); teT) be a stochastic process defined on the
probability space (Q,F,P). We will be interested in obtaining a
sequence of processes [xv(:), F(t); teT), v =1,2,..., where each
process in the sequence has some specified property, such that

P([xv(t) ¢ X(t) for some teT]) —> 0
as v —> .

For example, we may want to define a sequence of processes

(Xv(t), F(t); teT) v = 1,2,... such that
sup |Xv(t,u0| < for every vml1,2,...
t,w

and
P([xv(t) ¢ X(t) for some teT]) —> 0

as v —> .

Such sequences are usually obtained by a random stopping of the
process (X(t), F(t); teT). Therefore, we will consider briefly random
stopping of a process (2, Loeve, pp. 530-535).

Let (X(t), F(t); teT) be a process defined on the probability
space (R,F,P) and let 1(w) be a r.v. defined on (§,F,P) with range T.
If for each teT, [+(w) < tjeF(t) (and hence [r(w) < t,eF(t)), the
r.v. r{w) is calied a stopping time of the X-process. If the
X-process is a.s. sample right or left continuous then we can define
a new process th(t), F(t); teT) by randomly stopping the X-process
according to the stopping time t(w). More precisely, if the

X-process is a.s. sample right continuous, define



x_r(t,d)) = X(t,w) t < r(w)
= X(r(w),w) t>(w)

and then using right continuity of the process and the fact that
[r(w) < t]eF(t) it can be shown XT(t) is F(t) measurable for every
teT.

Actually, if one only requires [+(w) < t]eF(t), and defines

XT(t,w) = X(t,w) t < (W
- X(r(@),0) t 2 r)

then xT(t) will be F(t) measurable if the X-process is either a.s.
sample right or left continuous.
The following is a standard theorem which we state here since

it will be used extensively (2, Loeve, p. 533).

Theorem 2.1.1

If (X(t), F(t); teT) is an a.s. sample right continuous semi-
martingale, (martingale) and if ¢ is a stopping time of the process,
then the stopped process (XT(t), F(t); teT) is also a semi~

martingale (martingale).

The next two theorems will also be used extensively in later

work so we will prove them in some detail.

Theorem 2.1.2

Let {X(t), F(t); teT) be an a.s. sample continuous process.
There exists a sequence of processes (xv(t), F(t); teT), v=0,1,2,...,
each process in the sequence being a.s. sample equi-continuous,

such that
P([X,(t) # X(t) for some teT]) < 27



Proof:

By a process being a.s. sample equi-continuous we mean the
following: There exists a set A with P(A) = 0, such that if € > 0
is given, there exists a & > 0 such that

|X(t,w) ~ X(s,w)| < € when |t-s] <&

for every wdA. (That A does not depend on teT follows from the
fact that T = [0,1].)

We now prove the theorem.

Let [en; n > 0) be a sequence of real numbers with

€ > €,> ...>€>...20and lim ¢ = 0. For each n > 0, let
0 i n n n -

(5nv, v > 0) be a sequence of real numbers with

~ ]
5n0> 5n|>...> °nv>°"> 0 and '3'" bnv' 0. The €, s are arbitrary

and the 6nv's are to be chosen as follows: Because of the a.s.
sample continuity of the X-process, for each €. m=0,1,... we can
find » 5nv>0 such that

P(L sup  X(t,a) = X(s,@)| > ¢ ]) < 27 (™)
lt-si<s,, "

for each v = 0,1,....

Let -rnv(m) be the first t such that

sup | X(s,w) - X(s',w)| > €, -
55 <s,

s,s' <t

v

If no such t exists we define vnv(w) = 1. Then for each n,va0,1,..

0< 'nv(w) <1as. 'nv(“’) is a stopping time of the process for
every n,va0,l,... since for any te(0,1]

[Tnv(w) >t] = [I sup |X(s',w) ~ X(s,w)| < cn]

v



Define,
Tv(w) - igf -rnv(w), vae0,l,....
Then for each v = 0,1,... 0< Tv(m) <.
Tv(w) will be a stopping time for the process if [-rv(w) < t]eF(t)
for every teT. Actually it is sufficient to require that the set
[-rv(w) < t] differ from an F(t) set by a set of measure zero.

(1, Doob, p. 305) (As was mentioned, we could require only that

[Tv((l)) < t]eF(t) for every teT, which is obviously the case since
©
[r,@ <t] = r90[1,“,&») <t].)

If te[0,1), then

P([r @ <t for infinitely many n))

@ e o] [+ o]
=P Y [y, @ <t]) = m p(Ulr @ < t])

n=0 m=n n=->00 m=n
@« X
< 14 P([+ (W) <t])< 14 P({~ <1
% > mz_'n ) 8 2 e mz_‘n Uy @) < 1)
@®
< 14 P([ X(t,w) - X(s, >
€l L I Xl 2

< 1m 27l g
n=> 00
If A, (t) = ['nv(‘”) < t for infinitely many n]. Then for
a)tl\v(t), Tv(‘”) < t implies -rnv(w) <t for some n. We have
PIA(t))= O for every te{0,!) and every v = 0,1,.... Lstting

~Av(t) - Q- Av(t), we have

[.,.v(m) < t] = [inf 7nv(u)) < t)
0



12,

= ([inf 7 () < t]N '»Av(t))U(U:f T (@) S N~ (1))

n

oo
= Yty @ < eh U ([1‘:f (@ S 1N A (1),

Q
so [r, (@ <t} - (nL.JI (r,, @ <t]) = [1:f T(@ S tiNA (1)

c Av(t). Hence [-rv(m) < t] differs from the F(t) set
©

U [r,, @) < t] by a set of measure zero.

n=|

Define xv(t,w) = X(t,w) 1f t < TVG»)
- X(Tv(00,00 if t > Tv(uﬂ.
Then for each v = 0,1,..., xv(t) is F(t) measurable for every teT
and the process {Xv(t), F(t); teT} is a.s. sample equi-continuous.
For given any ¢ > 0, if €, <¢, then for a.e. w,
|Xv(t,w) - xv(s,m)| <e 1f |t-s|< anv .
Also
P([xv(t) ¢ X(t) for some teT))
- P(['rv(w) < 1)) < P([inf "nv(w) <1))
n
@

@
= PUY [, @) < 1)) ) )
n=0

The theorem is now proved.

Theorem 2.1.3
Let {X(t), F(t); teT} be an a.s. sample continuous process. There
exists a sequence of a.s. sample continuous, uniformly bounded

processes lxv(t), F(t); teT), v = 0,1,... such that



13.

P([X,(v) 4 X(t) for some teT]) —> 0

as v —> .

If in addition the X-process is such that

1im r P([ sup |X(t,@)] 2 r]) = O
r-> o t

then E(lxv(t) - X(t)|) —> 0 as v —> o for every teT. If the
X-process is uniformly integrable,

sup E(lxv(t) - X(t)]) = 0as v —>w.
t

Proof:

Define Tv(m) to be the first t such that sup |X(s,w)| > v.
s<t

If no such t exists, let Tv(w) = |. Then clearly -rv(w) defines a
stopping time for the process for every v = 0,1,.... Since the
process is a.s. sample continuous on the closed interval [0,1],
a.e. sample function has an absolute maximum.

Define xv(t,m) = X(t,w) 1f t < Tv(m)

- X(-rv(m),w) if t > Tv(m).

Then for each v = 0,1,..., the process {xv(t), F(t); teT) is uniformly

bounded by v and is a.s. sample continuous. We have
P((X,(t) ¥ X(t) for some teT]) = P([r, @) < 1]) < P([sup|X(t,®)2 v})
t

—> 0asvVv-—>o .

Assume now that lim r P([sup |X(t,@)| > r]) = 0. Then
r=> t

E(IX,(t) - X(8)]) -_/ 1%, (t) = x(c)ap +_/ Ix, (t) - X(t) |dP
[+, (@2 ¢] [+, (@<t]



4.

-f |x,(t) - X(t)|dP < f |x,(t)|dP + _/ | x(t)|dP

['rv(w)<t )| [Tv(w)< 1] [TV(‘“)< 1]

< vP([+, (@) <1]) + j | X(t)|dP .

[, @<1]

The conclusions are now apparent.

We note here that if we have n processes [xi(t), F(t); teT)
i1 =1,...,n satisfying the conditions of Theorem 2.1.2 cor 2.1.3, we
can find n sequences of processes {xiv(t), F(t); teT)} having the
specified properties and such tiat

P([xiv(t) ¢ xi(t) for some 1 <1 < nor teT]) —> 0 as

vV —>w.
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Section 2: Decomposition theorem.
Let (X(t), F(t); teT) be any real valued process with

E(|X(t)|) < o for every teT.

(2.2.1) Let [TTn, n > 1) be a sequence of partitions of T. We

denote the points of Trn as follows:

0= tn,O < tn,l< vee < tn,Nn+| = |
Assume = max t .,.,-t | —>0asn—>m and let
”TTn“ 0<j<N | n,J‘H n,JI
~7="n

TeTle LETeE
Ifm> n,'rrn': TTm and we will let
TTnm,j -]Tmﬂ[tn,j, t, jai) so that

N
m.- Ut

j=0 nm,j

The points of rrnmj for j = 0,...,N_ will be denoted as follows
?

< . . .
tnm_|, knﬂljﬂ. tn,J-!'l

t"n,_j = tnmj,o < tnmj,l<
We wili always separate with a conma the variable subscript which
denotes an arbitrary point of the partition and the subscripts
indicating to which particular partition we are referrring. The
variable subscripts will be written last.
If TT is a partition of a closed interval [a,B] € T with points

a-oo<a'<... <°v+l =3, we will let

Ai(x) = x(am) - x(ai) 0<i<v.
Then, for example,

B (x) = x(tn,jﬂ) - x(tn,j) 0<j <N



lo.

o (X) = x(

amj, k 0<k<k

tnm_j,k-t»l) N x(tnm_j,k) = nmj

we will also write F, for F(ai) and we let
C, (x) = E(a, (X)|F) 0<i<v.

Ihen, for exaluple
n,J n,J I n,J n

c (x) = E(Anmj,k(x)“-

nmj, k nmj,k) OSKSKMU-
v
We will often write Z' C, (X) for L ci(x). Then, for example, we

=0
can write

o N Komj
2.. cm,i(x) - 2_. L cnmj,k(x) - Z. Z. cnmj,k(x)'

M Ta Tan, 1=0 k =0
We will also use the following notation throughout.

For each teT, let ITn(t) - Tfnﬂ[o, t]. For each s,tecT with

s < t, we write
ﬂn(s,t) = ﬁn(t) - ﬁn(s)Ul‘.argest element in TTn(s))

so that
T () =TT (U TT (s,0).

<a <...<a = |

Then, for example, if O = a, 0 vl

v
\ \
Z‘ ll cn,j (X) = /L cn,j(x) for every n= 1,2,....

1=0 77 (a;,8,,) T,

n
We define (xn(t), Fn(t); teT), n= 1,2,... as follows:

X (t) = X(tn’j) ift . ct<t

& +1.
»J n et O ST SN

(2.2.2)

Fn(t) - F(tn’j) if t, St<t

1, j+ 0<j S_Nnﬂ.
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We also define [xzn(t), Fn(t); t T), n=1,2,... as follows:

in(t) - 24 cn’j(x) for every teT.
T, (0
(2.2.3)

F (t) = F(tn,j) if th,; St 0SjEN*],

n,j+l

or what is the same

kel
Xyt = ). Co 00 1F € Se<e L 0SKEN I
j=0

(2.2.4)
If we leot xln(t) = xn(t) - in(t) for every teT, the process

(x'n(:), Fn(t); teT) is a martingale. (learly, the process
(xZn(t)’ Fn(t); teT) has a.e. sample function of bounded variation

on T since a.e. sample function takes on only a finite number of
distinct values. Then each process [xn(t), Fn(t); teT) is a quasi-
martingale.

If we assume the X-process is continuous in the mean, then it
is the 1imit in the mean of a sequence of quasi-martingales,

[xn(t), Fn(t); teT), n > 1. Further, if for each teT, the sequence
(XZn(t); n > 1) converges in the mean to & r.v. xz(:), then the process
(X, (t) = X(t) - X,(t), F(t); teT) is a martingale. For any teT, let

l 2

kn(t) denote the last k such that t St

k
1
Let 5,teT, s < t, and let AcF(s). Then

/A X, (t)dP = jA X(t)dp - jA X, (t)dP
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- Joxwe - [ C) o o [C) e onar
Tals) TTa(s, t)

. jA X(t)dP - jA X, (s)dP -nl;mij( ), ¢, e,
rr,,(S,t)

Now j( )3 C,, ;(X))dp = /E(L C,,; (X |F(s))ap
Sl KON AT (s,1]
kn(F)-l

- J €a,kc (s) (K9P + JeQ, e 0l
A A juk (s)+1

- fA Coyic () DI4P + /A (X () = X4 ()P

and hence

I1m (L Co,; (X)AP = [ X(t)AP - [ X(s)dP
" @A T (5,1) 4 jA

since o,k () 157k (s)+ ¥ s and Cark (s)+1” tn,kn(s)_> 0

as n —» 0.

$o we have

/A X, (t)dP = jA X(t)dP - _/A Xy(s)dP - jA X(t)dP + jA X(s) dP

= ‘/A x, (s)dpr .

This however still tells us nothing about the process
(xz(t), F(t); teT) even when it exists. We now look for sufficient
conditions for the xz-proccss, when it exists, to have a.e. sample

function of bounded variation on T.
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The followinyg lemma, thougn trivial, is a key starting point.

Lemma 2.2.5

If (TTn; n > 1) is defined as in 2.2.1, then for any process

(x(t), F(t); teT)

EC/, e, ;0D
0

is monotone non-decreasing i n.

Proof:

Let m > a. Then TTnC:ﬂm and we can write

-

EC), 160, (D) = €C), ), 16 0D
Trm Trnn:\m_j

= E(), E() IS, (] IFD)
Trn 7Tnmj

>E(), ), S (IE DD = B lE, ().
ﬂn 7Tnmj TTn

We make the following observation:
Let (X(t), F(t); teT) be a quasi-martingale with (x]l- xl and
[x]2 = X,. If a.e. sample function of the X, process is continuous,

then

Vo) = m ) 18, 06|

n
is the total variation of xz(-,w) over T for a.e. w, and it is a
random variable. Assume E(V(w)) < 0o, then

E(), 16, ;001 =€) Ic, . (x)])

n m,
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SE() 18, ;)] S EV@) < oo,

n

d h 11 E c .(X <o .
and hence n_;go (2‘| n,J( )
n

In fact, if TT is any partition of T, there exists Kx, independent

of TT, such that
e(% e, (0]) <K <o .

In view of this and Lemma 2.2.5 we restrict out atteantion to those

processes satisfying the following condition.

(2.2.6)
There is a sequence of partitions {ITA; n>1) of T, as defined

in 2.2.1 such that

in E(). Ic,,; (0D S K< o0 .
n
We could as well require the existence of a constant Kx such that
for any partition 11 of T, e(%r le, (] <K, -

Lemma 2.2.7
Let the process {X(t), F(t); teT) satisfy condition 2.2.6 and

let (in(t), Fn(t); teT), n > 1, be defined as in 2.2.3. If the
process (xz(t), F(t); teT) 1s such that

P([1im in(t) = Xz(t); teT)]) = |
n

then the X,-process has a.e. sample function of bounded variation

2
over T. Furthermore, if the xz-procoss is a.s. sample continuous,

the total variation V(w) of xz(-,a» over Tis a r.v. and
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E(V@)) < nn_;mooe(L le, ;00D <K, -
n

Proof:

By 2.2.6, K, > 1im E() |C_ .(X)|)
T X n=> 2“ nsJ
n

> E(n-'_._;_ﬂm L IC,,; (®]), so that 1f we let K, (@) = Un %‘lcn’j(x)l,
n

n

then Kx(m) is a.s. finite and integrable.

If 0= 3, < a <...< a" 1 is any partition of T, then

K k .
LIs ) = ) 1 am () C,,; 00|
10 120 " ® 1T (a,,a,,,))
k - .
\ Y il
S ) ) I ()] = m ) | (K] =K@ <oo
n—_l> 2 ’j X
® 10 ﬂn(ai’ai-&l)n J > Trn "

for a.e. w. Since the partition was arbitrary,
s;;p 2_. |A1(x2)| SKx(w) a.s.
"

If the X,-process is a.s. sample continuous, V(w) is a r.v.

dominated by Kx(u)) and hence E(V(w)) < E(Kx(w)) <Ky <. (In fact,

V(w) will be measurable if a.e. sample function has at most jump

discontinuities, for evea in this case

)'
Viw) = nl;mwl" lAn,j (xz)l a.s.)
n
By our previous remarks and Lemma 2.2.7, if the process
(X(t), F(t); teT) 1is continuous in the mesn, satisfies condition

2.2.6 and if (xz“(t), Fn(t); teT), n > |, defined as in 2.2.3, 1s
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such that there exists a process (Xz(t), F(t); teT) with

P([ tim xZn(t) = Xz(t); teT]) = 1
">

axd also

E(|X, (1) - X, (t)]) =>0as n > @

for every teT, the X-process will be a quasi-martingale with [x]z- xz.
These are the basic conditions we will seek to satisfy in obtaining
first sufficieat conditions for a process {X(t), F(t); teT) to be

a quasi-martingale.

We will need tne following tneorem.

Theorem 2.2.3
Let (X(t), F(t); teT) be a second order process. Let [u,B] be
a closed sub interval of T and let u = a, < e <...< LI B be a

partition of [.,B]. Let ¢ > 0 be yiven. If

€8 sup'[ max |X(B,w) - X(ak,uOI] <e
P W To<k<n
m n,

then P([ max | ) € (X)| > ¢]) < E(lz_'ck(x”z)/(e-ea’p)
m<N =0 kmO

2

where sup' denotes the essential supremum. (i.e., the supremum over
w

all wgh, where P(A) = 0.)

Proof:
The argument is the following: Assume AeF, |A| 2> ¢, and A is

F measurable. Assume further [E(B|F)| < & < €. Then

j (A%+ 288 + 8O)dP = f(A2+2A£(B|F) + (8|F))ap
A A

> f(A2+2AE(B|F) + (E(8]F)12)aP
T VA
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v

f (a%+ 8°- 2|A|5)dP = j (|A|-5)2dP
A

71N

> (e-8)lP@a) .
Now we let
v m
A - [|2_,ck(x)| <e for v<mand ILCK(XH >¢] form=0,...,n.
k=0 k=0

Then A ef , since C, (X) is measurable w.r.t. F_ for k = 0,...,m.
m m k m

We also have A N A. = ¢ form¢ j, and

[ max Q.C (X)|> €] = U A

m<n

Now a

euLc 0% = ) j lL c 00 + ), € 00|% .
Ap k=0 ko |
n

N

For each m= 0,1,...,n, we lat A = Lck(x), Bm- L ck(x), and

k=0 iommé |
replacing A and F with A and F_and 5 with ¢_ _, the above argument
m m a,p
gives n “
&), cm1h 2 _/ (c-¢, ) P
k=0 m=0
m
- (ee, ) P([ max |Z_,c (x| > ¢})

ll|<
and hence the theorem is true.

Corollary 2.2.9:
Let (X(t), F(t); teT) be a second order process which is a.s.
sample equi-continuous. Let [ﬂ'n; n > 1) be a sequence of partitions

of T as defined in 2.2.1. Given any € > 0, there exists an n{c) such
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that if n > n(€) then for every m > n,

K
P([ max max ILC LX) > e])
. nmj, 1 -
0<J SNn 0sks knm_i i=0

SEQ 1), Cong k@1 (ee)?
’Tn ’Tnmj

where € = sup' max sup [X(t,w) - X(s,w)] < €
® 0<j<N t <s,t<t .
i LI PN o = n,j+l

(sup' denotes supremum over the set of equi-continuity).
@
Proof:
Because of the a.s. uniform sample equi-continuity of the

X-process, given any € > 0 there exists ©(€) such that

sup' sup |X(t,w) - X(s,w)} <€ .
@ |t-s|<5(e)

Let n(e) be such that ||IT || < &(e) if n 2 n(c). Then

€ " sup' max sup |X(t) - X(s)| < ¢
® 0<jSN, tnj<_ s,tgtnj“
' -
and for all m > n, sup max max Ix(tnmj,k) x(tnmj,k')l

. )
®  0ZjSN 0Skk'Sk .

<€ <e€.
-n

Using Theorem 2.2.8, we then have the following:

K
P{{ max max |2‘ cnmj j.(X)l > ¢)])
0Si SN, OSkSk . 1o )
Nn K
<) P c . .(x)]>
< ), U mex |, Cong, 101 2 €D)

j=0 =" ="nmj 1i=0
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2 2
nmj,k(x)l )/(e-en) '

<e() 1), ¢
TT; TT;nU
We will need the following theorem.
Theorem 2.2.10
Assume (X (t); teT), n = 1,2,... is a sequence of processes with
the following properties:
i) There is a countable dense subset T0 of T, containing the

points O and 1, such that P 1im xn(t) exists for each teT.
n—> 00

11) Given €, 1§ > 0, there exists n(e,n) and d(€,n) such that if

n2 "(e;n)
P([ sup Ixn(t) - xn(5)|> €]) <n.
|t-s] <s(e,n)
Then there exists a subsequence of processes [xn (t); teT)
k
k= 1,2,... and a process (X(t); teT) such that

a) P([1im X, (t) = X(t); teT]) = 1|
Kk k

and
b) The X-process is a.s. sample continuous.
Proof:
We first show that conditioas 1) and 31) imply
Tim  P([sup [%,(t) - X (t)] >¢€]) = 0 for every € > 0.
m, n~=> 00 t
Let [Tv; v > 1) be a sequence of partitions of T with
@®
Tl cT,c ... ad vu-l Tv = To- Let €,n > 0 be given. First
choose n,(e,q), >(€,n) such that P([ sup !Xn(t)-xn(s)|>§- 1
[t-s|<a(e,n

2
<3
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for every n > "l(e’")’ This can be done by condition 1i). Now

choose v such that max |t t, jI < 5(e,n). Next, choose
H J

v,_j+l-

n,(€,n) such that

P([m§x |xn(:m.) - X (t
J

a8y, ) > §1) < s

for every m > n > nv(e,n). This is possible because there are only

)

a finite number of points in T, and for each tv,jeTv’ Pnl-;n;o xn(tv,j

exists. Now let n(e,n) = mex [nl(e,q), nv(e,n)] and consider

P([sup |xn(:) - xm(t)| > ¢€))
t

= P([max sup |xn(:) - xm(t)| > €])
] tv:.js ts tV:j"'l
< P([max  sup X, (t) - xn(tv,j)l > €/3])

] tv:.ist S tv:.i*l

+ P([m?x Ixn(tv,j) - xm(tv,j

)| > €/3))

+ P([max sup Ixm(tv,j) - xm(t)| >e/3]) <

J tV;jSt S tV)J.""

Now lim P((sup lxn(t) - xm(t)l > €]) = 0 for every € > 0 implies
n, > 0o t

there exists a subsequence [xn (t); teT), k > 1, a process
k

{X(t); teT) and a set A with P(A) = 0 such that 1if wgA then

lim  (sup |xn (t) - x(t)|) = 0.
k=>o t k

We have now established a).
We now proceed to show the process {X(t); teT) is a.s. sample

continuous. Let x;(t) - xnk(t) for every teT and k = 1,2,....
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For every n = 1,2,..., by condition 1i), we can find a kn and

a 5(n) such that for k > kn

-1 -n
P X/ - X/ > <2 .
([It-:TpS a(n)l K8 = X ()] >n7])

» »
Let Xn(t) - X, (t) for every teT; n= 1,2,.... Let
n

* * »* -1
A = X (t) - X >
n [It-:tl‘ps 6(n)| A1) = X (s)| >n )

*
If 8

(¢ o]
@® . * * *
« U A, thenA =« TIma = |J B and P(A) = o.
k n n k

*
If mdsk, then for every n > Kk,

sup |X:(t) - X:(s)l < Kl

|t-s|<a(k)
*
Now if ofAUA , and 1f € > 0 is given,

* » *
|t-:Tps f>|X(t) -X(s)| <2 s:p ka(t) - X(t)] +'t_:.l;p$6|xk(t) - Xk(s)l.

First choose ko(o)) such that 2 sup |x:(t) - X(t)| < €/2 for every
t
k > ko(w). This can be done since wfA. Next choose kl (w) such that
» -1
«mkl(w) and k, (w) < €/2. Then if k(w) = max [ko(w), k| (w)) and

5 < s(kl (w)), we have

sup x(t) - X(s)] < €
Jt-s] < 5

Then for wfA Y A", P(AU A') = 0

14im sup |X(t) - X(s)| =0 .
5> 0 |t-s| <5
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Theorem 2.2.11
Let {X(t), F(t); teT) be a uniformly bounded a.s. sample equi-
continuous process satlsfying condition 2.2.6. Then the process is

a quasi-martingale with [X], = X, where X, (t) = P 1im X (t) for
2 2 2 h=> 00 2n

every teT, and the processes [in(t), Fn(t); teT) n= 1,2,... are
as defined in 2.2.3. Further, the Xz-process is a.s. sample
continuous and if V(w) denotes the variation of xz(-,w) over T then
E(V(w)) < .
Proof:

Because of Theorem 2.2.10, Lemma 2.2.7, and our previous remarks

we need to show the following:

®

i) P lim X, (t) exists for each te (J ” - ”.

n n
n-> 00 nml|

11) Given €, n > 0, there exists n(e,n) and 5(e,n) such that
if n > n(e,n)

P( X, (t) - X, (s)] >¢) <
[lt-sTugs(e,q) | 2n 2n'? > "

and
111) For each teT, the sequence [xzn(t); a2 1) 1s uaiformly

integrable in n.

We first show i1i) is satisfied by showing E(lxzn(t)lz) < K< o0
for every n > 1 and teT. We have

B(Ix,, (01D = 1), ¢, ;1D
7.0

=e(), e, 0% e2)  c () € )
T, (t) T,(0) k>j

n



29,

=E(), o, ;1D s (), JWE() © (F,))
m,(t) T, (t) k>

<E(), o, ;mlla (0] + 28(), 1€, s TIXCE )=ty 5 4)])
17, (t) 1T, (%)

where j(t) 1s the last j such that tn_j <t
J

Then

E(|x2n(:)|2) < OME( ) |6y, 5 01) < oMKy
T, (&)
where

M, = sup|X(t,w)| and K, > 1im E(Z'lc X)) -
X t,w X n—>00 n»J

Th

We now prove i) by showing

E(Ixzn(t) - xm(t)lz) —> 0 as n,m —> oo for every teTT .

In so doing we will pick up an inequality which will allow us to
prove 11) immediately. 1If :JI’, then there exists n, such that

te TTn for every n > n_. We assume now that m > n > n,- Then

EC), Comp k®IF)
Trn(t) Trnmj

t

]

x2n(t) =

and

>,
o

x2m(t) - cnmj,k(x) )

=

TT,(8) T
Let vnmj {(X) = Z‘ ij,k(x).
nmj
Then »
E(IXg ()= Xy (01) = EC1 ) (V= B (OIF, 1%
. (t)
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EC), W 0 - 0 [F D1

T, (¢)
() V1D - RVl 1)
T7,(t) T7,(t)
SE(), 1%
m,
-6, 1y, 1)
Trn rrnmj i ]
+ zs(Z 2_‘ cnmj)k(x)e(z Comj, 1 P 1F s )
T T 1>k
SE( max  mex o (0]) ). 1oy )
0L <N, Ogksk, . . o
' ze(os?agu osm:x<_k .Ix(tnu’*') ) x(tnmj,k'ﬂ)'Z‘ Z: Icnmj,k(x”)'
n nmj n/inmj
If ¢ = sup’ max sup | X(t,w) - X(s,w)|, then

w 0<_J<_Nn tn’j_<_s,t$ tn,j-l-l

sup’'  max max | x(t

. ]
® O0LJSN, 0<kk'Sk .

nmj,k) B x(tnm_i,k')I < n

for every m > n. Hence
e

E(1Xy(8) = X, (1% S E())) ¢
TTn ﬂmnj

m>n—>00 . Hence i) is proved.

2
rmu.,k(x)l ) < 3¢ K, —> 0 as

To prove 11), assume 5 < min Itn,j-fl' tn,j' and then for
0SJSN,

every m > n,
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P([lti:T$6lx2m(t) - Xy (s)| > 3e])
k

< P([ max max |}_| cnmj,i(x)l > ¢€])

0<ijs Nn 0< k<-knm_j i=0

SE 1) Cong 01 ee )’

Trn Trnmj

2
< 3enKx/(e-en) —>0asn—>ow®

Hence if €,n are given, we can choose n(¢,n) such that 3€nl(x/(e-en)2

< n. If we then fix n > n(e,n) and choose &(e,n) < ||n:‘||, then
for every m > n,

P X - X >3]) <y .
([ltiz?SG(e,n)lzm(t) (8| > 3€]) <

Hence condition 11) is satisfied and the theorem 1s proved.
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Section 3: Main decomposition theorem:

In order to prove the main decomposition theorem we need to do
more preliminary work.
We now investigate the uniqueness of the decomposition of a

quasi-martingale process. We need the following lemma.

Lemma 2.3.1
Let (Y(t), F(t); teT) be a martingale process having a.e.
sample function continuous and of bounded variation on T. Then

P([Y(t) = Y(0); teT]) = 1.

Proof:

Since the Y-process has a.e. sample function continuous and of
bounded variation on T, if V(t,w) denotes the variation of Y(:,w)
over [0,t] then V(:,w) is continuous and monotone non-decreasing on
T for a.e. w. Further V(t,:) 1s a random variable measurable w.r.t.
F(t) for every teT. As in Theorem 2.1.3, we define 1v(t) to be the

first t such that

sup |V(s,w)| > v or sup |Y(s,w)| > v.
s<t s<t

If no such t exists let TVG») = 1. Clearly, 1vﬁn) is a stopping
time of both the processes {Y(t), F(t); teT) and (V(t,w), F(t); teT).
Define

Yv(t,m) = Y(t,w) 1f t < Tv(w)
= Y(fv(w),w) if ¢t > -rv(w).

By Theorem 2.1.1, for each v = 1,2,... the process (Yv(t), F(t); teT)
is a martingale. Furthermore, for each v = 1,2,... the Yv-procass

has a.e. sample function continuous and of bounded variation on T.
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As in Theorem 2.1.3, for a.e. w , there exists v{(w) such that
Y(t,w) = Yv(t,w) for every teT if v > v(w).

It is aiso clear that if vv(t,w) denotes the variation of Yv(-,m)
over [0,t], then

Vv(t,w) = V(t,w) if t < Tv(‘”)
= V(r,(@),w) 1f t> 1 (@).

This follows simply from the fact that for all s St < Tv(‘D),

Y(s,w) = Yv(s,w), and for t > -.-v(w), Yv(t,w) is constant. Also we have

sup |V (t,@)] <v, sup |Y (t,@)] SV, .
to ¥ e v v

We now show that for every v = 1,2,...
P(LY,(t) = v (0); teT)]) = 1.
Let UTn; n > 1) be a sequence of partitions of T as defined in 2.2.1,

e )
and IetTT- U ITn . Let teTr. Then there exists N, such that
n=}

te TTn for every n 2 n,.

Assume n 2 n, .
Now

EY, (0 - v @D = &), 18, 01D
T ()

< E( s (v)], o (v)])
= ogign, B erfn(:)l i

<E a (v )v (i .
< (oé'?xgun 18,5 (Y, (1,0)

Since Y and V are uniformly bounded and Y is a.s. sample continuous

we have
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2 —
E(|Yv(t) - Y, (@9 < n‘—;n;o E(OQ?XS.N,, |An,J.(Yv)|VV(I,w))

< e(nzﬁw |An’j(YV)|VV(I,w)) = 0.

Therefore

P(LY,(t) = ¥ (0); tefT]) = 1.

Since LA is dense in T and Yv is a.s. sample continuous, we
have

PILY,(8) = ¥,(0); teT)) = 1,

and this is true for every v = 1,2,... . Since for a.e. w, when v

is sufficiently large Yv(t,m) = Y(t,w) for every teT, it follows that

P([v(t) = Y(0); teT]) = 1 .

Theorem 2.3.2
If (X(t), F(t); teT) is a quasi-martingale with the following
decompositions

P([X(t) = X, (t) + X,(t); teT]) = |
PIIX(t) = X)(t) + Xy(t); teT]) = |
where the X, and x:, 1 a1,2, area.s. sample continuous, then
P(LX, (8) = X\ (1) + (X,(0) - X[(0)); teT]) = 1.
In particular, 1f X, (0) = X, (0) a.s., then

PUX(E) = X[(8); teT)) = 1.

Proof:

* »*
Let Y, = X, =X, , Y, = X, = X,.
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Then

P([Y,(t) = Y,(t); teT]) = 1

and hence the process [Y‘(t), F(t); teT) 1s a martingale process
with a.e. sample function continuous and of bounded variation on T.

The conclusion now follows from Lemma 2.3.1.

Suppose now (X(t), F(t); teT) is a.s. sample continuous. Let
[-r"’(m); v 2 0} be the sequence of stopping times defined in Theorem 2.1.2.
If we stop the X-process at T‘;((D) then we will get a process which is
a.s. sample equi-continucus. Also let {r";(a)); v > 0) be the sequence
of stopping times defined in Theorem 2.1.3. If we stop the X-process
at 73(4») then we will get a process wiich is uniformly bounded by v.

If Tv((D) is the minimum of -r"l(m) and T;;((D), then Tv(m) is again a

stopping time of the X-process.

(2.3.3)
Define
7, (@) = min (1 (0), r7{w))
and let
Xv(t,w) = X(t,w) 1f t < Tv(w)
= X( -rv(w),u)) if t > -rv(w) .
Then for each v = 0,1,... the xv-prouss is a.s. sample equi-

continuous and uniformly bounded by v. We have
P([r, ) <1)) < P([T:,((D) <1]) +P([rjw) <1]) —>0

as vV —> .
Recall that

(v, @ < 1] = (X (t) $ X(t) for some teT].
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Then there exists a set A with P(A) = 0 such tuat for wfh, there

exists v(w) such that 1f v > v(w)
X(t,w) = xv(t,w) for every teT.

If r P([sup |X(t)| > r)) —> O as r —> o , tnen
t

E(]x,(t) ~ X(t)|) —> 0 for every teT,
for

E(IX,(0) - X(O)]) = j 1%, (8) - X(t)|aP + J’ Xy (t) - X(t) |dP
[Tv(w)<l] [-rv(w)-I]

- | Xy (t) - X(t)]dP < j |, (t)|dP + j | x(t)|dP
[r, () <] (v, (@<1] [, (@<1]

< WP([r (@) < 1) + IX(t) |dP .
[, @< 1]

The second term goes to zero since P([Tv(w) <1]) —> as v —> oo and

X(t) is iategrable. The first term is bounded by

vP([T‘;(m) <)) + vP([T""(w) < 1))

IA

vV o+ vP((rw) < 1))

< vt o+ vP({sup |X(t)| 2 v]) => 0 as v —=>oo.
t

We now prove another lemma which will lead us to tihe main tneorem.

Lemma 2.3.4.
Assume (X(t), F(t); teT) is a.s. sample continuous and 1s such
that

rP({sup |X(t)] > r)) => 0 as r = o.
t

Let the sequence of processes (xv(t), F(t); teT), v > 0, be as defined
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in 2.3.3. If the X-process satisfies condition 2.2.6, then each
X, -process also satisfies condition 2.2.0 and the bound K is inde-
pendent of v.
Proof:
We assume |im 5(2_' |c (x)|) <Ky < and want to show
n—> 00

n

there exists K < oo such that Iim E(Z’ IC (x)|) < K < oo for

n=> o
every v > 0. ) " -
Let T = E() lc, ;O01) and [T = () |c, [(x)]) - First
n n
consider
}_'j (|cn’j(xv)|- |cn’j(x)|)dp < L j I, j(x )- cn,j(x)|dp
My (@2t ] M, (@ ) i)

), [ It - X, e ), [ Uxtagel+v) e
m

a7y (m)_>_ t J] n [t T, @) <tn,j,,l

-). j IX(ty o) 1P+ vP([r, ) < 1]) -
Trﬂ [tn,j STVW <t“1j'."]

Next consider

Nn j‘
L[ e e = ) . [ e, w0l )
T Tn@<e, 1 50 im0 (e, & 0,@ <t )

"ot My
=), Q[ 1e, e )

k=0 jmke+] [t <'r(‘°) <t k"'l]-
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N

"
(), e, ;e

k=0 <
[tn,ks Tvon) tn,k+|] Juktl

Nq.

LY

<
[tn,kS 1V@n) tn,k+ll

Nn-l

Iy

[tn,k
Nn'l

Lo
k=0 (t

N -1
n

f Tv(w)< t

< <
n ke rdhﬂ t

o
(), |EC-sgn X(t, )8, S (X)IF ) ])aP)
j-k+|

Nn

(), Esgn X(e, )8, (K], ))dP)
] j-k‘f‘
n, k+l

Na

(), -sam X(, )8, ;00)eP)

] j-k‘l‘l
n, k+l

L RG]+ Dosen X(s, XD

k=0

Ny=!

[tn,k‘<'

Tv@D) <t

n,k+|]

Z‘ (.[ (lx(tn,k-o-l)l - |x(1)|)dP)

k=0

N -}

ii

k=0

[ty S @ <t, !

f |X(tn;k+|)|dP -j |x(1) |dP
[tn,

ki Ty () <tn,k+|] [Tv(ﬂ)) < tﬂ,N )

(]

N
A
Z, f |XCt, or? P -j |x(1) |aP -f |X(1)|dP

O e, S @<t ) L5y ST @<I] (@) <t ]
) b4 ’ N )

1]
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Z,f |x(t, k,,,)ldP - f |x(1) {aP .

[tn, kS H@ <ty ) [, ) <1]

M N N
vin " Ta = € (}_4 lcn,j(xv)l) - E (2.4 Icn,j D

" T

Z, _/ IC (xV)IdP +‘/‘ |°n,j("v)|"’)

m, (v, (w)<t i (r,@2 ¢ ]

- 2:‘ (_/ lc, ;0 e +_/ Ic, .(X)IdP)

Mo (r@<e, ) I @2 t, ;)

e, olee =) [ 1c, e
(r,@2¢ ] T (@2t )

-n,j n)

=\l\4

-

- L f |cnj(x)|dr

Mo (r,@2¢, )

<) [ Ue, @1 1c, @b - () [ e, o)
M (r@2t, ] To (r,@2t, ]

[ el s v, @ <)
l

t J'<" Tv(w) < tﬂ,j‘”l
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-(LJ IX(t, ) 0P - j 1X(1) |dp)

Trn [tn,k< Tv(m)< tn,k-i-l] l"TV(“))< 1

- W(lr (@) <1]) + j IX(1) |dP

[+, @ <1]

Hence ]
IS E(Llcn,j(x)n + vP([r,@)<1]) + f |X(1)]dP .
.

n [-rv(a))< 1]

or an < Kx + VP([Tv(uﬂ <1]) + J[ |x(l)dP for every n. As
['rv(w) <]
v —> w, both vP([Tv@n) < 1]) and ~/\ |x(1) |dP go to zero.
['rv(‘D)<|]
Hence 1f K = lim E(Z‘ |cn’j(xv)|), then K ~> K, as v —> .

n=>am
]

Main Theorem 2.3.5.
In order that the a.s. sample continuous, first order process
{x(t), F(t); teT) have a decomposition into the sum of two processes

PCIX(t) = X, (t) + X,(t); teT]) = 1,

where {xl(t), F(t); teT) is an a.s. sample continuous martingale
process and the process [xz(t), F(t); teT) has a.e. sample function
continuous and of bounded variation on T with E(V(w)) < ®, where
V(w) is the total variation of xz(-,w) over T, 1t is necessary and

sufficient that
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1) 1m  rP([sup |X(t,w)| > r]) = 0, and
r=>00 t

i1) For any sequence of partitions [TT;, n>1) of T with

NT I =>o0and IT,C]],C

1im E(Llc (X)) <K, <
n—->® nJ X
n

K, being independent of the sequence of partitions.

X

Proof:

We first prove the necessity.

If (X(t), F(t); teT) is a quasi-martingale with the stated
decomposition, we have already indicated that 1i) is true. We need

then to prove i). Consider

rP([sup |X(t,@)|> r]) = rP([sup |X(t,w)- X(0,w}+ X(O,w)| > r])
t t
< rP([sup |X(t,w)- X(0,w)| > r/2]) + rP([|X(0,w)| > r/2]).
t

Now rP([[X(0,w)| > r/2]) € Zf X0, |dP S 5 as r = o .
U |2 rr2)

Consider then

rP(lSt:P |X(t,w) - x(0,w)| > r/2])
- rP([S:p | (X, (t,@) = X, (0,w)) + (X,(t,0) - X,(0,@))| > r/2])
< rP([S:P 1%, (t,@) - X, (0,w)| > r/u])
+ rP([S:p [X(t,0) = X,(0,0)| > r/u]).

Now [(x'(t) - x'(o)), F(t); teT) is a martingale and hence by

Theorem 3.2, sec 11, Chapter VII of Doob, we have
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P([SUP Ix'(t)w) - xl(o;w)l 2 r/“]) S“/l" E(le(l) - x'(O)l)
t

—> 0 as r —> . By the same theorem

rP([sup |X, (t,0) - X, (0,w)| > r/b}) sn_[~ X, (1) - X, (0)|dP —> 0
t
(sup |x|(t)-x|(o)|2 r/4)
t

as r —> .

Consider now

rP([sup [X,(t)- X,(0)| > r/4]) < rP([sup |V(t,w)| > r/b])
t t

< rP((v(1,0) > r/4]) < uf V(1,0)dP —> 0 as r —> @,
(v(1,w)> r/l)

where V(t,w) denotes the variation of Xz('ﬂn) over the interval
{0,t]. Hence, if the quasi-martingale {X(t), F(t); teT) has the
decomposition stated in the theorem, conditions i) and ii) are
satisfied.

We now prove the sufficiency of i) and 1i). Let the sequence
of processes [xv(:), F(t); tcT) ve 1,2,... be defined as in 2.3.3.
Then P([xv(t) = X(t); teT]) ~> | as v —> . By assumption 1),
E(va(t) - X(t)]) => 0 as v —> 0 for every tcT. By Lemma 2.3.4,
each process {xv(t), F(t); teT) v =1,2,... satisfies condition
2.2.6, the bound K being independent of v. Then by Theorem 2.2.11,

sach process has the decomposition
P([xv(t) - x'v(t) + x2v(t); teT]) = |

where (x'v(t), F(t); teT) 1s an a.s. sample continuous martingale
process, and the process [xzv(t), F(t); teT) has a.e. sample function

of bounded variation on T. Further
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-

xzv(t) =P n-l_;mm 2_‘ (:n,.j (XV) for every teT
m.()

and so if vv(t,w) denotes tne variation of XZV(~,u>) over [0,t] we

know by Lemma 2.3.4 and Lemma 2.2.7

E(v, (t,@)) < lim E(Llcn,j(xv)l) <K<m

n=> 0o
n
for every teT, v = 1,2,....
*
It is clear that T‘(w) < 1’2(0.)) <...as. Letv >vandlet

*
x|v(t,w) = xlv*(t,w) if t < Tv(m)

le*(-yv(a)),m) if t > -rv(w)

*
XZV(t,w) XZV*(t,w) if t < -rv(u))

XZV*(vv(w),w) if t> fv(w) .

* *
8y Theorem 2.2.1, xlv is a martingale, and clearly the xzv-process

*
has a.e. sample function of bounded variation on T. Further xw and

#*

sz are a.s. sample continuous.
Since
Xv(t,w) = Xv*(t,w) 1f t < Tv(w)
- xv.(fv(w),:) ift> Tv(ﬂ))
we have

PCLX, (8) = X, (t) + X, (¢); teT]) = 1

P(LX, (1) = X}, () + X3, (0); teT]) =1 .

—

Now XZV(O) aP lim Z, cn,j(xv) = 0 for every v = 0,1,... so
n~>w
()
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that va(o) - x2v*(°) » 0 a.s. And hence by Theorem 2.3.2, we have
»*
P([XZV(t) - sz(t); teT]) = 1 .
For a.e. w, i.e., except for we), where P(A) = O there exists a v(w)
such that for all v > v(w), Tv(w) = |. Then for vy > viw)
xiv*(t,w) - xjv(t,w) for every teT. (i = 1,2)
We define, for wfi,

X, (t,w) = 1im X, (t,w) for every teT
2 2v
v=> 00

X, (t,w) = 1im X, (t,w) for every teT.
1 lv
v=>

And hence for every wfA there exists v(w) such that if v > v(w)
Xi(t,m) - Xw(t,w) for every teT. (i =1,2)

Now, for every v = 0,1,2,... and ofA
Xiv(t,w) = xi(t,w) if t < -rv(m)

(1=1,2
- Xi(Tv(tD),w) if t> Tv(w)

If V(t,w) denotes the variation of xz(-,u)) over [0,t] , V(t,w)
is finite since there exists v(w) such that
sz(t,w) - xz(t,w) for all teT
and hence V(t,w) = vv(t,w) for all teT.

Clearly
Vv(t,w) = V(t,w) if t < Tv((D)
= Vir,@),w) 1f t > 1 @)

and

P({ Vim Vv(t,w) s V(t,w); teT]) = I.
v=> o
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Since -.-v(m) is a.s. non-decreasing in v, vv(l,w) = V(Tv(m),w) is

monotone non-decreasing in v. But

1im E(Vv(l,w)) <K,
vV=> @

and hence by the monotone convergeince theorem

1im E(vv(l,w)) = E(V(1,w)).
v=> @

Now

%y, (6,0) = Xy(t,0)] = [Xy(6,0) = Xy(t,@)| 1F ¢ < 7, @)

= X, (t,w) - xz("’v(‘”):“’)l if t > ().
So

s:p Ixz(t,w) - sz(t,w)| -osup( ) Ixz(t,w) - Xz(-rv(w),w)l

W,
?V

S sup  (V(6) - V(r (),w) S V(L) - v (L)
t> 1 ()
And hence

E(sup |x2(t) - x2v(t.)|) < E(V(),w) - vv(l,m)) —>0asV—-—>wm.
t

Now since E(|X (t) - X(t)|) —> 0 and E(|X;,(t) ~ X,(t)]) —> 0 as

v —> o for every t€T. We have E(wa(t) - xl(t)l) —> 0 as

v —> oo and hence X, being the limit 1n the mean of a sequence of

!
martingales is itself a martingale.

We now make a few remarks concerning the decomposition in
Theorem 2.3.5.

First, the process (X(t), F{t); teT) is uniformly integrable in
t since the process (x,(t), F(t); teT) teing a martingale process
closed on the right is uniform!y inteyrable, and (xz(t), F(t); teT)

is uniformly integrable because it is dominated by V(1,w).
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Secondly, having already proved the decomposition we can easily

show .
X, (t) =P lim )_‘ C_ .(X) for every teT.
2 n~> 00 ")
T, (0
Let (xv(t), F(t); teT) v = 0,1,... be as defined in the theorem,
so that for each v = 0,1,... xv is, by Theorem 2.2.11, a quasi-

. martingale. Let r([xv(:) = xlv(:) + XZV(t); teT]) = 1 where [xv]l- Xy

and [XV]Z- X, In Theorem 2.2.11 we showed

PUswp 1), €, (X,) = Xy, (0] > ) —>0
AR A )

as n —> oo for every € > 0. In Theorem 2.3.5 we showed
P([sup |X2v(t) - Xz(t)l >¢]) =0
t

as v —> o for every € > 0.
We will now show

P(lswp | ). (€, ;00 =€ ()| >el) —> 0

as v —> o uniformly in n.

Let ¢ > 0 be given. Let x[ ] denote the characteristic

function of the set [...]. Then

Plisup | ), (€, .00 - ¢ ()] >e])

¢
- P, @<ty P 1), (€ 00 =€ N> d)
T, (t)
P((X c .(x) -¢c .(x >
* Pl [r, (@)=1] szplgf(t)(""‘ ) = € BN el

n
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Now the first term on the right is bounded by P([Tv(w) < 1]) which

we know goes to zero as v —> Q. The second term is bounded by

X, (@] TZr, 600 = € 00| > D

n

5 %Z, j Icn,j(XZ) B cn,_j (X2v)|dP
Ma [TV(w)-l]
.
<L) ets, ) -8, )IIF, e
Mo ([, @2 :”1

[ ]
m|—
o~

‘/‘ 1%(t0 se1) - xzv(‘n,jn”‘"' :
n [, @2

3

Z %, il

But xz(tn,jﬂ) - XZV(tn,jd-l) unless fv(m) < tn,j-bl’ so that

‘ =
<L j %50t ja1) = %oy (tn, jard 1P
T (r,@2 ¢, ;)

]
e 2., _/ | %y(t, Jol) zv(‘n,j+l)|dr
n [t n,J < Tv(m) n J"ll

-

. i) | woee - t [ wome

Mo 1, S n@<t, gyl (@<

The integral on the right yoes to zero as v —> @ since P([vv(m) <1))

—>0as Vv —>o0n, and V(l,w) 1s integrable.



Now 3f € > 0 is given,

P({sup |2L Cn J(X) - X2(t)|> €])
t TT ’
n

-

SP(sep | (€, 100 =€ (x| > ef3))
Coqr )

s P(lswp | ), €, (x) - Xy, (0] > en])
ARG

+ P([sup |X2v(t) - "2(‘” > €/3]).
t

Given any 1 > 0, we can first choose v such that tne first and third
terms on the right are less tnan n/3 for every n= 1,2,.... For
this fixed v we can make the second term less than 1/3 by choosing n
sufficiently large.

Ay immediate corollary to the main theorem is the following.

Corollary 2.3.0
If (X(t), F(t); teT) is an a.s. sample continuous semi-martingale,

then 1t has the decomposition stated in Theorem 2.3.5 if and only 1if

1) 1im rP({sup |X(t,w)| 2 r]) =0
r~> o t

In particular, 1f the X-process has a.e. sample function non-negative,

then 1) is always satisfied.

Proof:
We need only show condition 11) is satisfied. If [‘Tn; n>1)

is a sequence of partitions of T as defined in 2.2.1, then



4g.

E(), Ic, ;00 = £ |E@ [ (MIF, )
nn Trﬂ

- £(), lEX(t, j DIF, 5) - X(g, D)
W

n

- E(L (E(X(T
T

n

DIF, ) - X(x, )

n,j* 2J

= E(X(1)) - E(x(0)) .

If the X-process has a.e. sample fuaction non-negative,

rP([sup |X(t,w)| > r]) = rP([sup X(t,w) > r])
t t

gf Xx(1)dp —>0 as r —>oo0 ,

[sup X(t,w)> r]
t

and therefore i is satisfied.

If we recall the example given in Chapter I, where
X = exp[2v] v >0,

Z being the Browaian motion process on [0,1], we see that the
X-process is an a.s. sample continuous non-negative semi-martingale
since exp[tv] is a continuous, coavex and non-negative function.
The corollary tells us tne X-process is a quasi-martingale.

We note that when the X-process is a semi-martingale, our

conditions coincide with those yiven by Johnson and Helms.
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Section 4: Particular results:

In this section we concern ourseives with some special theorems
and results which will be used extensively 1n Chapter III.
We first prove a lemma which will be quite useful and which is

really just an observation.

Lemma 2.4.1

Let (Xi(t), F(t); teT), 1 = 1,2,...,k be arbitrary processes.
Let [Trn, n > 1) be a sequence of partitions of T as defined in 2.2.1.
For each n = 1,2,... let fn(~) denote a Baire function of k(Nn+ 2)
real variables. Assume that for each i = 1,2,...,k,

{xiv(t), F(t); teT), v=1,2,... 4is a sequence of processes such that
P([xiv(t) - xi(t); teT, 1 <1 <k]) =1
as v —> . If for each fixed v = 1,2,...,

Pnl_;mm fakyy(t, )i 1S1 Sk 0SSN +1)

=Pliim Ff_ =T exists,
n=> 00 nv v

then Pnl-;n; fn(xi(tn,j); 1€1<k 0<jSN + 1)

=P lim ?; = f exists.
n-> Q0

Moreover, P lim . exists and is f .
v=>00

Proof:
We observe that ?nv converges to ?n in probability uniformly

innasv—=—>ow. For

sup p((|?nv- T1>0]) =1 - tof r([|‘fnv- ?’n| <o))
n n
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1 - 1:f P([Xiv(tn’j) - xi(tn,j); 1 S1<k 0<j<SN+1])

IA

1 - inf P([xiv(t) = Xi(t); teT, 1 <1 <k])
n

| - P([Xw(t) - Xi(t); teT, 1 <1 <k]) —>0as v —>w.

Then P([[?’n~ Fm[ >el) < P([|?n- 'f'nv| > 0])
+P(LUF - T 0 > el) + PLF - 7| >00)

where € > 0 is arbitrary. Let 5 > 0 be given. We first choose v
such that the first and third terms on the right are less than 5/3,
then for that fixed v we ca choose n and m to make the second term

on the right less than 5/3 because P 1im ?;v = ?; exists for every
n—> @

V= 1,2,-.-- Hence

Plim F = f exists.
n—> !

To show P 1im F.  exists and is f, coasider
v—=>0

PULIF,- T > D) SPUIF,- F | >e3))

+ POUT - T | > e3)) + P(UT - T > e))

where € > 0 1s arbitrary. Let 5 > 0 be given. We first choose v
such that the secoad term on the rigint is less than 5/3 for every n,
and for that fixed v we can choose n such that the first aid third
terms oa the right are less than o/3. The lemma is now conplete.

With this lemma it is easy to prove a useful theorem concerning
the decomposition of a particular type of semi-martingale.

Let {X(t), F(t); teT) be an a.s. sanple continuous second order



52.

martingale process and let § = x2. Then the process (&(t), F(t); teT}
is an a.s. sample continuous, positive semi-martingale and by
Corollary 2.3.b, & is a quasi-martingale. Let [g]' = ;l and [g]2 -

gz. Then we know {2 has a.e. sample function continuous and of

bounded variation over T. Further, if V(w) denotes the total

variation of §2(°,uﬂ over T, E(V(w)) < 00, and

-

gz(t) = P lim 24 C_ .(¢) for every teT.

- n,J
n=> @ .'.Tn(t)

Theorem 2.4.2

If (&,(t), F(t); teT) is the process defined above, then
gz(t) = P 1im 24 {a .(X)]2 for every teT.
n—> 00 n>J
7. (t)

Proof:

we know &.(t) = P 1im L c (&)
2 n,J
n—-> @ "7“(‘)

-Pitm ) ¢ SOh =pam ) (s, 001

n=-> @ o " n=> oo
7.t 7, (t)

n:j) )

Assume first that the X-process is a.s. sample equi-continuous

and uniformly bounded. Then

2 2 2
e, G, 0% - eas on¥e, 01D

(), s, 01" - e, 001%E 017)
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where ¢ = sup 116 Ia . (&7 —> L as « =—> ®, because o> e

w : iJE“' EN]
w.5. <.dlorm saanie vqui-coult ity
dovi @sSune .6 X-process is &, &.5. saple coacinuods secc.w
order wérci.._a.e wracess.
le. [Xv(;), F(e)s teT) we oy defineu 4 2.5.5. Tae, o
Taeorc 2.1.1, cach xv is @ uaiformiy bouanded a.s. sampic equ'-
coatfinuous marci. jale process.

For ceco. va (L1,..., if § =X t.en & .uas Lue deccaposiiio.,
PR ] J v [

and Ly what we ..ove | iST S.0wW.

g, 8) =P dim B (XV)]A for cvery ceT.
- - X

a—> m .
L8

. 2
We ow § = X @5 cae decomposicion

anc

Fotin izv(t) = §2(K) vor ever, teT,

v—=>
€s was see 1. Luo jroof of T.ooren w...
v, Laima <. ..
P ' fTa) (5)4; = {1t
- X ;,:_‘ ':[) Iya .
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Corollary 2.4.3.

Let {X(t), F(t); teT) and (Y(t), F(t); teT) be a.s. sample
continuous second order martingales. If (17;; n > 1) is a sequence

of partitions of T as defined i1 2.2.1, then

P ii 2, A . (X) & .(Y) exists
l‘_>mw Ny J ( ) n,J ( )
T, (t)

for every teT and the process so defined, which we i.dicate by
{z(t), F(t); teT) can be taken to have a.e. sample function of
bounded variation a.d coatinuous on T. Moreover, if V(w) denotes

the total varistion of Z(-,w) over T, E(V(w)) < oo.

Proof:

We have

-

), B, 8, () = ) 1Aas, ((0es, (1P, (-8, 0017
1T, (0) T, (¢)

- ), mta el el
T, (0

Let £ = X+Y and £ = X-Y. Then § and € are a.s. sample continuous
second order martingales, so gz and E2 are a.s. sample continuous
positive semi-martingales.

We write

-

’ 2\ 2
L 8, =) ams, @ - ) s (D)

Ny )

IT, (%) . (t) T, (t)

and hence, by Theorem 2.4.2,
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Pitm )8, 8, (0 = A0 - [Ey00) -
n [0} Trn(t)

Let Z(t) = 1/4([¢ ] (t) - (¥ ] (t)). Then the Z-process has the

stated properties since both [§ ]2 and [E’z]2 have these properties.

We now discuss some other results which will be used in
Chapter III.
Suppose (X(t), F(t); teT) satisfies the couditions of
Theorem 2.3.5. Let [x]| = X, and [x]2 = X,- Then X, and X, are a.s.

sample continuous, X,(t) = P Iim L C,,; (X), and 1f V() 1s
n~—> @ q-r (t) n

the variation function of xz(',w) over T, E(V(w)) <.

Let (Y(t), F(t); t T) be an a.s. sample continuous process.

Then for a.e. w, the Riemann - Stioltjos integral
1

J[ Y(t)dx (t) = lim
0

,j l'l J (xz)

:\l\/J

*
exists, where tn,j < t"’j < tn,j+|'
We will show
|
fY(t)dxz(t) - P lim L Y(e, 0c, 0

n,J
° n—-> o n

It will be sufficient to show

jY(t)dxz(t) - ln L vt €, ()

n
since Pnl;mw Yz, )€, (X) = Pngmw)_' v(tm nj

0 ﬂ
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*
where tn,_] < tn,j < tn,j+l'

To see this, let ~A_ ., = [ sup [Y(t)- Y(s)| > i/r]
a [tes|< I/r'

r,r' = 1,2,.... Because of the a.s. sample continuity of the

Y-process, Iim P(~A_ _,) = 0 for each fixed r.
r'=> o0 rr

Assume o is such that ||ﬂ;_l|| < 1/r'. Then

PULI ), [Y(E] )= ¥(e, Dlc, (0] > D)

T
LR PRUCIN ERTON N LRACIR D)
r,r ﬂ;
B »
n

Se=b ) e [ 1) v 0 vle, Dl6, (M|
A

<P(~A_ ,) + /¢ .
r,r %‘/ IY(tn,J) Y(‘n,j)“cn,j(x)ld'

n “r,r!

SP(~a )+ Ve W E() e ) -

n
If 5 > 0 is given, choose r such that 1/er (Kx) < n/2, then choose r'

such that PEA_ ) < /2. Then for ail n with Wil <ise,

P(LI Y, [¥(, )= ¥(e, D1 € (R >e]) <.
”ﬂ
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We first assume the xz-process and the Y-process are uniformly

bounded. Then

PULL), ity BB, () - € (0]]>e])
m

S R, Y D8, ) - € (11D
Ta

= e () e, DI ) - o )%

Up
o
I VRN AN T TR}
s
K .
< ECmax B (x)]) b, (X))
) : n,j 2 n,j 2
€ OSJS_Nn ﬂ-n
2
My
© 3 g, Pt e

a
Now max | nj (X,) V() 1s dominated by anzv(w) where szn

sup Ixz(t,w)l and hence
t,w
-

T P(L]), Yit, Do, () - ¢ (X]] >el)

n~-> o
m
X
< E( Tim max o . (X)|vw)) =0
= &2 n-> ogjgunl n,J 2

since max la, j(x2)| —> 0 a.s. as n —> ® because of the
2

0<j<N
=7="n
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a.s. uniform sample continuity.
If we now drop the condition of uniform boundedness on the
Xz-process, we can define a sequence of uniformly bounded processes

(xv(t), F(t); teT) v = 0,1,... as in Theorem 2.1.3 such that
P([xv(t) = X(t); teT]) —> | as v —> .

For each v = 0,1,..., the xv-process will be a quasi-martingale with

[xv]1 = X;,,» 1= 1,2, being the X, -process, 1 = 1,2, stopped at
TVG»). The X -processes have all the properties stated in Theorem 2.3.5.

Stil) assuming the Y-process is uniformly bounded and a.s. sample

continuous, we have just shown that for each v = Q,1,...
l -
nf V(6)dx, (t) = P 1im ) ¥(e

0 n—> 00 n;

J

")j)cn:j(xv).

For a.e. w, there exists a v(w) such that for all v > v(w),

xz(t,uo - XZV(t,uﬂ for every teT and hence

. 1
n [ viex, ) = [y s

v=> @ 0 0

If we now show that Zl.v(tn,j)cn,j(xv) converges to ZL‘Y(tn’j)Cn’j(X)

m, M,

uniformly in n, it will follow immediately that

{v(z)dxz(z) - Pngmw v(:n’j)cn’j(:&) .

Consider
P(LI ), ¥, e, (X)) - € ((¥]] > D)
ﬂ

n
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Seln@ < s [y v, e, o), w1l
L, @=111T,

<Pln@ <) +mge ) [ e, e (e .
Mo (@]

We know the first term gyoes to zero as v ~—>  and immediately after
the proof of Theorem 2.3.5 we showed the second term goes to zero
uniformly in n as v —> o .

We have now shown
| .

R[Y(t)dxz(t) - Pnl;";orzr‘ Y, )6, (0
n

when Y is uniformly bounded and X satisfies the conditions of
Theorem 2.3.5.

Suppose now Y is a.s. sample continuous but not necessarily
uniformly bounded. We can define the sequence of uniformly bounded
a.s. sample continuous processes [Yv(t), F(t); teT} v = 0,1i,...,

as in Theorem 2.1.3, such that
P([Yv(t) = Y(t); teT]) —> | as v —> oo0.

For each v = C,1,... we have just shown

]
n 0

when the X-process satisfies the conditions of Theorem 2.3.5. But
for a.e. w, there exists v(w) such that for v > v(w), Y{t,w) =

Yv(t,w) for ail teT, and neace
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1 |
o [y, a0 = (V00 as.

vV=> 0 0

Then by Lemma 2.4.1,
1

Plin ) Y, )6, () = RfY(t)dXz(t)-
m,

n->@ 0
We have now proved the following theorem.

Theorem 2.4.4:
If the process (X(t), F(t); teT) satisfies the conditions of
Theorem 2.3.5, and if (Y(t), F(t); teT) is any a.s. sample continuous

process, then

| -
RfY(t)dxz(t) P lin %r"v(t:'j)c"’jm
0

n=>00
n

*
where t .< t

<t ..,.
n,J 2J = n,jel

The next theorem follows almost immediately from Theorems 2.4.2,

2.4.4 and Lemma 2.4.1.

Theorem 2.4.5;

Let (X(t), F(t); teT) be a second order a.s. sample continuous
martingale. Let ¢ = Xz and let [;]2 = {,. Then if (v(t), F(t); teT)
is any a.s. sample continuous process,

Pitm ) v( )a ()% aP ia Lv(t' ) . (x3)

n=>00 nittn,j => 0o LTE ALY
, m,
|

- nj Y(t)ds, (t).
0
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Proof:
!

S
ve know P 1 ) ¥(t% e (x}) = R~/NY(t)d§2(t)
n-> o n,J" n,J
0
n
by Theorem 2.4.4. Assume first that Y is uniformly bounded and X
is uniformly bounded and a.s. sample equi-continuous.

If we look at the first part of the proof of Theorem 2.4.2, we

see immediately that

2 2
Pnl;ma’ Z—l Y(tn).j)[Aﬂ)j(X)] - Pnl;mm Zl Y(tﬂ).j)cﬂ:j(x )

7Tn Ta
)

- & [ ¥(0)az, (o).
0

Now assume X is an a.s. sample continuous second order martingale
and Y is any a.s. sample continuous process. We can find two

sequences of processes lxv(t), F(t); teT) and le(t), F(t); teT),

ve=0,1,2,... such that for every v = 0,1,... xv is uniformly

bounded a.s. sample equi-continuous, Yv is uniformly bounded and
P([Yv(t) = Y(t) and xv(t) a X(t); teT]) —> |

as v ~> @ . Since X satisfies the condition of Theorem 2.3.5, so

does X, for each v = 0,1,...

We let [xvlz = X,, for each v = 0,1,.... Then
}

R ) N0 <P e ) vl )i, )
0 T,

for each v = 0,1,..., as we have just proved. For a.e. w, there
exists v(w) such that if v > v(w), Yv(t,w) = Y(t,w) and azv(t,w) -

§2(t,w) for every t<T. And hence
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1
n a_[ Y, (6)de,, (t) = R.[Y(t)dtz(t) a.s.

Then, by Lemma 2.4.1,
|

. 2
Pnl;mm%_' Ve, )06, ;017 = R { v()dt,(0) -
n



Chapter III: Stochastic Integrals

Section 1: General discussion:

In this chapter we will define a stochastic integral for quasi-
martingales. The approach we use is that of 1imits in probability
of Riemann - Stieltjes sums.

Ito (5) and Doob (I, Chapter IX) have defined stochastic
integrals with respect to a particular type of martingale process.
Doob assumes the martingale (X(t), F(t); teT) has the property that

there exists a monotone non-decreasing function G(t) such that if s<t,
E(|X(t) - x(s)|®) = E(IX(t) - X(s)|%[F(s)) = 6(t) - G(s)

with probability 1.
For every second order martingale process (X(t), F(t); teT),

there exists a monotone non-decreasing function G(t) such that if s<t
E(|X(t) - X()]%) = 6(t) - 6(s)-
However, the condition
EC[X(t) - X(s)]%) = E(JX(2) - X(5)]2|F(s)) a.s.

is a real restriction on the martingale process. As Doob points

out, 1f G(t) = Const. t, and X is real valued and a.s. sample

continuous, then the X-process is necessarily a Brownian motion process.
Doob shows that if (Y(t), F(t); teT) is s measurable process,

i.e., measurable w.r.t. dtdP measure, and if

. 2
E(|Y(t)|%)d6(t) < @

0

]
Then the stochastic integral, D‘/‘ Y(t)dX(t), can be defined as the
0

03.
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limit in quadratic mean of a sequence of stochastic integrals of
"(t,w)" step functions, (I, Doob, p. 420).
If we let
.t
Z(t) = D‘/> Y(s)dX(s)
0
then the process {Z(t), F(t); teT) is always a martingale with

t
E(2(t)) = 0 4n t. Further, if  Z,(t) = oj Y4(s)dX(s), then
0

t
E2(02,() = [ E(V(s)¥(s))dals) -
0

These properties of the integral are very nice in applications
(See, for example, section 3, Chapter IV of Doob).

Unfortunately, the integral does not have some of the more
common properties that one associates with the ordinary Riemann-
Stieltjes integral. For example, with the Doob integral we have no
integration by parts theorem. Furthermore, one of the major defects
is the non-existence of a reasonable transform property. This is
indicated quite easily by an example in Doob.

If the martingale process (X(t), F(t); t T) is such that

i
D‘/ (x(t) - xX(0)]dx(t) exists, then it has the value
0

1/2[X(t) - X(0)}% - 1.1i.m. I/ZZ‘[A (%12
n~> nJ
ug
where 1.i.m. indicates limit in quadratic mean.
It is readily apparent that one cannot hope to obtain a theory
of stochastic integrals which parallels Riemann - Stieltjes integra-
tion if we use this definition of a stochastic integral. In the

next two sections we will define a stochastic integral and give some
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of its properties. Although the exposition is far from complete,
it is hoped it will illuminate the feasibility of obtaining a

Riemann - Stieltjes type stochastic integral.

Section 2: Definition of the integral.
In what follows we will again be assuming T = {0,1]. Let
{x(t), F(t); teT) and (Y(t), F(t); teT) be quasi-martingales with
P([X(t) = X, (t) + X,(t); teT]) = |
P([Y(t) = Yl(t) + Yz(t); teT]) = 1

where as usual, (X); = X, and (Y], = V,, 1 =1,2.

i

We assume xi and Yi’ i=1,2 are a.s. sample continuous.

Let [TTn, n > 1) be a sequence of partitions of T as defined in

2.2.1. We will show that

G.2.1) P L VALY, (e OTIX(E, ) K(E, )]
R
|
exists and we define ~/\Y(t)dx(t) to be this limit.
0
We will write

8,500 = (¥t ) = (e )]

and

B, N =120 )+ (e )

We will use freely the notation introduced in Section 2 of Chapter II.

We can write the sums in 3.2.1 in the form
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74,_-' En).j () An;.j (X)

First
L, AORSEE ) B ma, )+ ) B s (K) -
’Tn TTn TTI'\

Since Y has a.e. sample function continuous and x2 has a.e. sample
function of bounded variation on T, the limit of the second sum exists
a.s. and is the ordinary Riemann - Stieltjes integral of Y(:,w) w.r.t.
xz(-,m). We indicate this as follows
1 |
(3.2.2) af Y(t)dx,(t) = P Iim LEn’j(v)An,j(xz) .

n->

0 TTB

Consider now

LB, e, ) = ) vl 08, (X)) 128 (08, (K) -
rTh TTn UL

The second sum on the right can be further reduced to the following

Z‘ 28, (V) (K) + L 128, (e () -
T m,

Again, since x' is a.s. sample continuous and Yz has a.e. sample
function of bounded variation on T, the second sum goes a.s. to Zero.
We have now reduced the problem to showing the existence of

the limits
Pn-l;mooz‘ Mz, (V)8 (K), Pnl-;moozd Y, 08, )
L n

It was proved in Corollary 2.4.3 that if Y‘ and x‘ are a.s. sample
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continuous second order martingales, then

P lin Loz (08 (X)) = 1B+ X100 1Y X 1,(0),

Ma

the limit being a.s. sample continuous and having a.e. sample function
of bounded variation.

If [Y‘v(t), F(t); teT), (xlv(t), F(t); teT), v=10,1,... are as

in Theorem 2.1.3, then by Theorem 2.1.1 each x]v and Y, are uniformly

v

bounded a.s. sample continuous martingales and
P([Y),(t) $ Y, (t) or X, (t) ¢ X, (t) for some teT]) —> 0

as v —> o0. Hence by Lemma 2.4.1
P 14 Z'IZA.Y A ists.
n->mm / n,J( ') ﬂ,j (xl) ex
T,

Further, if 5, = [x'v-r xlv]2’ iy = [Ylv' xlvlz’ then

il

(3.2.4) Pnl_;mmz' 128, (V) 8 (X) = Pvgmm 1/8(8,, (1)- T,, (1))
n

We define
g .
(3.2.5) j dX¢Y = P Im L za (v A X)) -
n-> @
0 1,

If we now show P lim L Y(t j)Aﬂ j(xl) exists, we will have
n-> n ’
n
proved the existence of the limit in (3.2.1). To prove this we first

prove the following lemma.

Lemma 3.2.6.

If {(X(t), F(t); teT) 1s a second order martingale and
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(v(t), F(t); teT) is a uniformly bounded, a.s. sample continuous

process then

-

1im )_' Y(t_ ,)A . (X) exists in quadratic mean.
n_> o0 n’j n)j

n

Proof:

Let m > n. Then TTn oy Trm and we can write

Nl

Z, = Z.Y(tn,j)An,j(x) - 2.‘ Z, Yt 1B, kX
Trn ”-n”mj

and 2 = Lv(tm,i)Am,i(x) - L Z- Y(tmj,k)AnmJ:k(x) )
m, T, Mo

Then

Bz, 21D = (1), ) vl - ¥l DIa (013
ﬂnnnmj

= 60), ), vty - vty 1P 01D
n:\"nmj

because of orthogonality.

Let [er, r 2 0) be a sequence of positive rea! numbers with

< >¢, >..>0and lim € = 0. Aiso let & 1» r'>0) bea
r—> 00

sequence of positive real numbers with ao > o' e >0 and

lim Or.. 0.

r> o
Define

~Ar,r'(t) ol s-:"‘ll'sor. [Y(s) - ¥(s')] ¢ ,r,r' = 0,1,2,....

s,s' <t
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Because of the a.s. uniform sample continuity
PO (1)) =0 asr' —> oo for
’

every fixed r.

Now for fixed r and r', if t > t, then

~Ar’r.(t|)C ~Ar,r'(t0) and hence

AL () DAL (tg) when t) >t .

Now

L L. E(m‘nmj,k)'Y(‘n,j”z"‘nmj,k(x”z)
Mo Tomi

n " nmj

NN 2 2
.L )_' j 1Y (e, 10 Ve, D151 (0] P
M Trnmj Ar,r'(tnmj,k)

) L _/ NI IR IO T "W
T ”nmj~Ar,r'(tmnj,k)

Let “Y - :u: IY(t’w)l- ThCl‘l
1

2 2
Iv(tnmj,k) Y(tn,j)l hnmj,k(x)l dP
Ar,r'(tnﬂu‘,k)

< kns j |Amj’k(x)|2dl’

Hh | S
"pr'( mj, K

- m: j |x(cmj,w)|zdr - wi j |x(tmj,k)|2dl’

Ar,r' tnmj,k At',r'(tmj,k)
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< tm$ _/ lx(tnmj,k+|)|2dl’ - uns IX(tnmJ k)IZdP -
B Cmg, ket e, e (Camj, J
Then
). Z _/ T BT Tk TSN ) Z4p
o Tomj 'tnmj,k)
< “":./ |x(1) | %ap
()

Let € > 0 be given, choose r such that ei E(|x(1) - X(O)lz) < ¢/a2.

Since P(Ar r'(l)) —> 0 as r' —> o for every fixed r, we can now
2

choose r' such that 4M$ ~/> ( |x(l)|2dP < ¢/2. Now choose n{¢)
A (1)
r,r

such that ||Tl'n(e) | < &,..- Then if m>n > n(e)

ez, -z | ) < e E(|x(1) - x(0)] 2 “’“v_[ [x(1)| Z4p
Ler(D

<€/ +e/2mc.
The lemma is now proved.

If (X(t), F(t); teT) is any a.s. sample continuous martingale

process and if (Y(t), F(t); teT} is any a.s. sample continuous process
then

PnL:Zo 24 Y(tn,j)An,j(x) exists .
T
For, if [xv(t), F(t); teT) ond [Yv(t), F(t); teT) v >0, are as
defined in Theorem 2.1.3, then xv is a uniformly bounded a.s. sample

continuous martingale and Yv is also uniformly bounded and a.s.
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sample continuous. Then by Lemma 3.3.5
nl;mm Z.. Yv(tn,j)An,J(xv) exists in quadratic mean for
T,

every v > 0, and hence by Lemma 2.4.1

!

T Z'Yt.A X) exists.
) vie, o, ) ex
1L

We now define

l =
(3.2.7) D [ Y(t)dx, (t) = P 11 Yt Ao . (x) .
A | n—>ma> IZ:‘ nJ o, jid

We have now established the existence of the limit in 3.2.1 and we

define
| 1 | |
(3.2.8) j Y(t)dX(t) = D_/ Y(t)dxl(t) + R_/ Y(t)dxz(t) +de(t)dX(t)
0 0 0 0
- P lim LG.(v)a (X) .
’d n,J
n—> Qo ﬂn

Clearly, if [u,B] 1s any closed sub interval of T, we can define

-

2 g | a
(3.2.9) j Y(t)dx(t) = Pn_;mw 2_' n’j(n Am(x),
* 77.“5)"

for the limit will exist when [‘ITaa a M2 1) 1s a sequence of
4

partitions of [u,p] with ||ﬂw,n|| > 0ad T 5, C )Tw,zc e

If [7Tn, n > 1) is a sequence of partitions of T as defined in

2.2.1 and if 7Tn(t) = TN (0,t], then
t Bl
(3.2.10) Y(t)dx(t) = P iim 2_‘ 2 .(Ma_ .(x) .
jo o fF ™
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Section 3: Some properties of the integral.

Let (X(t), F(t); teT) and {Y(t), F(t); teT) be quasi-martingales

with
P([X(t) = X, (t) + X,(t); teT]) = |

PLY(t) = ¥, (t) + ¥ (t); teT]) = |

where [x]i = X, and [Y]1 =Y, 1= 1,2, are a.s. sample continuous.
ot -
Let Z(t) = ] Y(s)dk(s) = P 1im ) B (N4 (X) .
A n=> (t)ﬂ;J n,J
s

Theorem 3.3.1.
The process {Z(t), F(t); teT), as just defined, can be taken to

be a.s. sample continuous.

Proof:
t t t

2(v) -_/ Y(s)dx(s) = oj Y(s)dX, (s) + "j Y(s)dx,(s)
0 0 0

t
+j dy(s)dx(s) .
0

t
First, the integral R‘/ Y(s)dxz(s) as a function of its upper limit
0
defines for a.e. w, a real valued continuous function on T.
t -
The 1ntegralj dY(s)dX{(s) = P 1im L 1/72 & '(YI) A
n,J n,
0

x,)
n—-> aD’T;(t)

J
= P lim l/8(§2v(t)- Eév(t)) where £, and Eiv are as defined in
v=> ®
3.2.4 is a.s. sample continuous by Theorem 2.2.10 since both S2v and
Eév are a.s. sample continuous for every v = {,2,....
It thus remains to show the integral



t -=
o [ ¥(s)ax,(s) = P Vi Z‘ Y(e )8 (X))
.[ n»mﬂn(t) n,J" n,)

as a function of its upper limit defines for a.e. w, a real valued
continuous function on T.

We first assume the x, and Y processes are uniformly bounded
and a.s. sample equi-continuous.

By Theorem 2.2.10 it is sufficient to show that given €¢,n > 0

there exists n(e,n) and 5(e,n) such that for all n > n(e,n)
(1) P sup 1), Y&, o, =2, Yl da (x)]>€])
|t-s| < &(e,n) Tl'n(t) nn(s)

< 1

First we show that if ¢,n > 0 are given, there exists an n(¢,n) such

that if n > n(e,n), then for all m > n,

Kk

P Y S Y N ¢

([Oggﬂn osn:xsknﬂ‘lj |1Z-l0 (tm"’i) ﬂﬂ\J,k l)'>€]) <
Now }
P y(e_. Ja . (X

T Ben, ofvzs, I12_.° i, 180, 1 %) P D)

L3

SPU o, o<t | 1):o[\r(z,,,,u.,,) ¥t Mag (K> «/2)
+ P([ogxsun Os'.:xsknmj Iv(tn,j)(xl(tmj,kﬂ) = xl (tﬂ,j)‘>‘lzl)
We have

P([ mex max ly(tn,j)(xl(‘nmu,k+l)' xl(tn,j))l > ¢/2))

0SJ<N, O<SkS ko
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< P([023X<N O<n'1<a:k lxl(tnmj,k-o-l)' x,(tn’j)| > e /2M,])
=< ="n" " ="="nmj

where M, = sup|Y(t,w)| .

M t,w
Because of the a.s. sample equi-continuity of the Xl-process we choose
a o >0 such that P([ sup |x|(t) - xl(s)l > e/ZHY]) =0 .

|t-s| <5,

If n (€) 1s such that for n >n,(e), ||')Tn||< 5, then

P([ max max |x|(t

)= X (t )| >e/2m,]) =0 .
0<j<N_ 0<k<k . k#1771, ) *
=J2%n V=" 2= "amj

nmj,

Observe that the partial sums
k

L0 ) = e D18 (X)), kw0, ok
i=a0

form a finite martingale sequence for every ; = O,I,...,Nn- Hence

k
P v(e . )-v(e )la_ . (X)]>
([o?fsnn Og‘gknmj'i):ol (om0, oy )P0
" K,
< P( Y(e . )-v(t )]a_ . (X)]|> ¢])
-.i):o lofl.n'.‘xf“nmjléo[ o 07 V0,3 Vo )P
" *mj
< 1sé Z‘ Z‘ E(Y(e i )" Y(tn,j)lzlﬁmj,k(".)lz) :
j=0 ke0

Now choose 52(e,q) such that

2
sup IY(t)- Y(s)lz < € T< n a.s.
[t-s| <5 (e, m) E(|x, () -x,(0)|)

Then choose nz(e,n) such that ||1Tn||< oz(c,q) for every n > nz(c,n)
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Then
Nn knm_j

2\ y 2 2
1/e Z 2_. ECIYCt i = Y 7180, (X)) <n
j=0 k0

Hence if n > max [nl(e,q), nz(e,q)), we have the desired result for

all m2n.
We can now show (1) is true.

Assume m > n and 6 < wmin it t Then

OSJ'SNn n’j'.'l- n).jl-

(2) P(l|t§:?<6|L Yty 08 X)) Yle, )8 (X)[> 3¢]
=7 () Ta(s)

k

<P ma max Z.,Y t . )He . (X > €l) .
= “oqiu 0< k<k | LYo, Y0y, 1 1) | > €D
=7="n =" ="nmj 1is=0

If n(e,n) = max lnl(e,n), nz(e,q)] is as chosen above, then we can

fix n > n(e,n) and let 5(e,n) < min Itn,j'l-l- tn,jl' Then (2) will
be less than n for all m > n. Hence
- t
A Lol 08 ) - °_/ Y(s)dx, (s)
IT,(v) 0

is a.s. sample continuous when Y and X, are uni formly bounded and
a.s5. sample equi-continuous. The desired result now follows by
stopping Y and x, according to the stopping time defined in 2.3.3

and then applying Theorem 2.2.10 and Lemma 2.4.1.

With what has already been shown, we can easily obtain conditions
under which the process

Z(t) -] Y(s)dX(s) 1is a quasi-martingale.
0
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Theorem 3.3.2.
Let (X(t), F(t); teT) and LY(t), F(t); teT) be quasi-martingales.

Let [)(]1 =X and [Y]i =Y, 1= 1,2, be a.s. sample continuous.

Further assume Y is uniformly bounded and YI and )(l are second order

martingales. If X

Z(t) -/ Y(s)dX(s), for every teT,
0
then the process (Z(t), F(t); teT) is a quasi martingale with
t t t
[Z]l(t) - DfY(s)dxl(s) [Z]z(t) - RfY(s)dxz(s) +/ dY(s)dX(s)
0 0 0

and [Z]1 =2, 1=1,2 are a.s. sample continuous.

Proof:
Since Y is uniformly bounded and xl is a second order martingale,

by Lemma 3.2.0

t
DfY(s)dx' (s) = 1im Z‘ (. )o .(Xl)

where the 1imit is in quadratic mean. So ll being the limit in
quadratic mean of a sequence of martingales is again a martingale.

We have further shown, in Theorem 3.3.1 that Z| is a.s. sample contin-
t
uous. Now R/ Y(s)dxz(s) defines a continuous real valued function

0
of bounded variation on T for a.e. w when considered as a function of

its upper limit. Also

t .
dY(s)dX(s) = P 1im L Wza (v)) 8 (X))
.é > ® ﬂ'n(t) n,J n,)

= 1B+ YA,00 - (- Y2,
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is a.s. sampie continuous and of bounded variation on T since xI and
Yl are second order martingales. Therefore 22 has a.e. sample
function continuous and of bounded variation on T. The theorem is

now established.

We now investigate some properties of the integral which parallel

the Riemann - Stieltjes integral.

Theorem 3.3.3:
Let {X(t), F(t); teT} and (Y(t), F(t); teT) be quasi-martingales

with [X], = X, and [Y]1 =Y, 1=1,2 as. sample continuous. Then
| ]

fx(t)av(t) +/ Y(t)dx(t) = X(1)Y(1) - X(0)Y(0) a.s.
0 0
Proof:
Observe

o (XxY) =& (X))o .(Y) + & (V) A . th
nJJ( ) nrJ( ) n)J(Y) n:J(Y) ")J(X), S0 at

-

L o, (xy) = LKn,j(x) 8,0+ ) 5, Ma, X
TTn ”ﬂ ﬂ-l.'l

Hence, taking probability |imits on both sides we have the desired
result.

One thing that one would expec: of an integral is the foilowing:
{x(t), F(t); teT) is a quasi martingale and if the function f is such

that -t
j £1(X(s))dX(s) exists
0

then ‘/‘f'(x(;,“ ‘X(s) = F(x{t)) - f(x(0)) .
0
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For the Doob integral this is not the case, as is illustrated by an
example from Doob (1, p. 443). If (X(t), F(t); teT) is such that
N
oj [X(t) - X(0)]dX(t) exists, then
0

| 2
oJ/ [X(t) -X(0)]dX(t) = 1/2[X(1) -X(0)]
0

< 1/2 lim ZJ[A (x)12
n,J
n"'>m”
n
where the limit is in quadratic mean.

Let . X(t), F(t); teT) be a quasi martingale with [x]1 - Xi,

i=1,2, a.s. sample continuous. Let f(t) = tz. Then
2 2 !
x(1)2- x(0)2 = ij(t)dx(t)
0

or

|
Ham-fUM)-jwumwu»
0

I -
For,/ X(0)4X(€) = 2 P lin ) e 5,008, (0

0 LUE

epitn ) oo (X)) =x(D? - x0)?.
n=> oo n»J
M

This property of the integral can be generalized to the following

extent.

Theorem 3.3.4.
Let (X(t), F(t); teT) be a quasi-martingale with (X], = Xy
i=1,2, a.s. sample continuous. If f is a real valued function of

a8 real variable and has a continuous second derivative, then

uum-fuM)zﬁvumwuﬂ-
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Proof:

We want to show

n—> 00

£(X(1)) - £(X(0)) = P 1im Z 5, (1 00a, (0
T

2

= P lim

lin £1(x(e, )8, ((X) + P it Z‘ \2a, (F0)8, ()

n—>m” J
n

AP

= P Iim

£ (X(t
n—> 0o n

Y 12 fren(e 2
e, )+ Pnl;u;o%uz (e, N8, ()
n

-,

*
where tn <t <t

*
3 S8, St e and where tn,_j depends on w.

We can write

() - (X)) = ) 8, (F(X)
L

ol

[} " * * 2
-%: LF1(x(e, 08, 00 + 172 £ (x(e) D8, 017
n

* * * *
where again t_ . < tn,j < tn,j-ﬂ » and where t i depends on w.

)J :
Hence, .
[Fx(D) - F(O) - ) B s ()]
Ut

172) ), L6, ) - £(x(e, TG, (01
nﬂ

2 ), I, ) - e Tlla, )
m

n
€ W 2
n %‘J lAntj(x)l
n

IA

IA
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where en(u)) = max sup | £ (x(t)) - £"'(X(s))].

< < .
J tn,J —s’t—tn,yﬂ

Because of the a.s. uniform sample continuity of the X-process and

the continuity of the function f"(-), en(m)—> 0a.s. asn—>o.

If )_‘ [An J.(x)]2 converges in probability, then
2

Mo

2_‘ En j(f(x))An,j(x) will converge in probability to f(X(1))}-f(X(0)).

3

Now
L[A (x)]2 -Z[A (x)}2 +ZA (X)a (X))
n,J n,j 1 n,J 17 n,j 2
L T, .
— )
+) 18, N2
UL
Because of the a.s. sample continuity of the processes xl and xz and
the a.s5. sample bounded variation of the xz-process, the second and
third sums go to zero a.s. as n —» 0. We have previously shown
the probability limit of the first sum exists. The theorem is then
proved.
A natural question at this point is what additional assumptions
on the function f or the quasi-martingale X will insure the process

{F(X(t)), F(t); teT) is a quasi-martingale.

Assuming f and X satisfy the conditions of Theorem 3.3.4, we have
t
FX(R)) = FOR(O) + [ €' (x(s))ax(s) .
0

We write
14 -

FUK(s))AR(s) = P im ) B (6 (X8 (X))
‘é n->oo"n(t) n,J n,)
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+ P lim L & (f'(x))a (X))
n—> °°7Tn(t) n.J nJ

Since f' is continuous and X is a.s. sample continuous,
U .t
Pnl;moo%—‘ (:n,j(f'(x))an,j(xz) - a{ £ (X(8))dxy(s) -
n

Consider then
B,,jFrone, (x) =
m,(t)

J

f'()t(t,,,j))&,,,j (x)
(t)

A

e

' Z 128, (5008, () -
T, ()

Assuming f' 1s bounded and continuous, the first sum converges in

quadratic mean and therefore defines a martingale process. Last of

all, consider

el

Lo, 0, &)= ) 172 ex(e e, x1E
T, () IT, (1)

When xI is an a.s. sample continuous second order martingale, we

showed in Theorem 2.4.5 that
- t
» 2
Pl ) 1z k(e I8 (%)% = [ £(x(s))dt(s)
Hwﬂn(t) n,J n,J .[

where { = [Xf]z, provided f" is continuous.

Then for each te€T,
t

t
F() = (x(0)) + 0 [ £ (x(s))ax, () + & [ 6 (xoD)anys)
0 0

t
. f £(X(s))dt (s)
0
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If we let
t

[F00], (&) = fo'(x(s))d)('(s) for every teT, and
0

t t
[F001,(8) = £x(0)) + R [ £ (X(D)axy(s) + [ £"(x(s))dt(s) for
0] 0

every teT, then the process (f(X(t)), F(t); teT) is a quasi martingale
if the above conditions are satisfied and E(]f(X(t))|) < oo for every

teT. We summarize these results into the statement of the next theorem.

Theorem 3.3.5.

If f is a real valued function of a real variable with f'
bounded and f" continuous, and if {X(t), F(t); teT) is a quasi-
martingale with [)(].1 =X, 1=1,2, a.s. sample continuous and X,
second order, then (f(X(t)), F(t); teT) is a quasi-martingale 1if
E(|F(X(t))|) oo for every teT.

Further
t

[f(x)]l(t) - DJ[‘f(x(s))dxl(s) for every teT
1]

t t
[FO01,(0) = F(@) + & [ £ (K())axy(s) + R [ £0x(s))at(s)
0 0

for every teT, where ¢t = [xf]z .

Assume now (X(t), F(t); teT) and (Y(t), F(t); teT) are quasi-
martingailes with [x]{ = X, and [Y]’ =Y, 1=1,2, a3. sample
continuous Assume further Y is uniformly bounded and x‘ and Yl are
second order martingales.

Wt
If 2(t) = J/ Y(s)dX(s) for every teT, then by Theorem 3.3.4,
0
we know the process (Z(t), F(t); teT) is again a quasi-martingale
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with the following decomposition.
t

(2],(t) = Z,(¢) = DfY(s)Xm(s)
0
t

[21,(8) = 2,(8) = R [ Y(s)aky(s) + 1788 () - F(0)
0

where § = [(x"" Yl)zlz; E' [(xl' Yl)zlz .

Let f be a real valued function of a real variable with f'

bounded and f" bounded and continuous. Then since Zl is a second

order martingale and Zj, i=],2, are a.s. sample continuous, by

Theorem 3.3.4
t
£(2(t)) = £(2(0)) +_/ £1(2(s))dz(s) for every teT.
0

wWe wish to show that
| 1
£(2(1)) - £(2(0)) -j £1(2(s))dz(s) -ff'(z(s))v(s)dx(s)
0 0

or symbolically, dZ = YdX.

We now write, assuming the existence of the limit,

] A

£1(2())Y(s)ak(s) = P 1im ) & (£ (@Va, (%)
n—-> nJJ nJJ

Mo

O\

Consider

B (r@na, )= ) 5 (f@ma, [ KX)

g

BTN

DYGe, e )+ ) 1za (@S K) -
Mn

The third term can be rewritten as follows:

f'(Z(tn

2

L
A
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L8, (@08, (K = ) e 08 ()8, (X))
, T,

¢ )M )8 8, (X))

m,

- ) 8,008 (F@)a, (X))
M,

+ )_' 2Y(e, 08 (28, ()
™

$ ) EE D88, () -

I

We will show that

g Pnl;mw Z‘ f.(Z(thJ))Y(thJ)An)j (x')

T

) l,nl-;mc::o Z‘ f'(Z(t":J'))An:J (2))

T

D it () B (@S 0x) +) 12 (2, D8, M8, (K))
> © ’) »J 2J »J n,
T T
]

) Pnl;mmz-r Aﬂ).j(f.(Z))ANJj (Zz) - R_({ f'(Z(t))de(t)

Th

) Pl 7);_1/2 8, @Y, 08, (X))
n

!

- Pnl-;mm 2_‘ za, (£1@)8, (7))

1Tﬂ
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and finally

W P ln %:l/z A, SE@A, M8, () =0 .
n

To show 1) is true, consider

€ ), £, IY(e, D8 () <) £, D8 (2)]P)

, T,
- euLf'(zun,j))[v(tn,j)an,j(xl>- a, 2%
rrl‘\

= £() [F e, DIPLvee, 08, k)-8, (21
.

S Mg B D¥(e, 08 ()-8, (217
T

where Meo = sup |f(Z(t,w))| .
t,®

Now E(1Z,(1) - ) v(e, s (x|

L

. s(|L 8, ;@) -Lv(:n,j)an,j )13
T Mo

=€), 18, (2) - v(e, a1
i,

- &), I8, ;@) - Y(tn’j)An’j(x')lz) ~—>0 asn— o,
up

and !) is now proved.
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To prove 2) we first observe that

P 1im Z/41/2 f'(Z(tn’j))An)J.(Y)An}j(Xl)
n—> @
m,

=) V2 EE( )8 (e, (X))
n (DTr
n

Then we can write
1 1

. L
R [ £ @62, 00 = & [ 11 @)@ [ Vis)axy(s) + 186 (D) T(e))
0 0 0
] |
- & [ £ @YX, + 18 R [ FRmIEm - T)
0 0

1
But 1/8 Rj £1(2(t))d(E(t) - E(L))
0

= P lim Z_‘ 1/2 f'(Z(tn,j))An’j(Yl)An’J.(Xl)

n—> OO;T;
and
1 . A
R{f (Z(e))Y (t)ek, (¢) = Pnl;moogr" 5, (F@Ma, (x).
n

Hence 2) i's proved.
Recall f" is bounded and Y is uniformly bounded. Now to prove
3) consider,
Plim ) 1/24 . (F(2)Y(t .)a
n ) 12a (E @)Y, )

n—>
m,

(x,)

n,j

i .
- pnl;mm%uz e, Na, @Y ) (X))
n

[} »
- Pnl-1>mw %IIZ f (z(‘n,j))An,J(Zl)”‘n,j)An,j("1) .
n
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Now

EC ), /2 £ N8, (@)Y, )8 (X))

»J
T,
e engag ¥ 2,2
- et Nz (e 0150
M
- (] ) 1z e, e, (26, )= v 08 ) ]?)
m
<E() ) Dz e e, @ié)
Tn
| 2,1/2
e, (- v, s 1P
e
<€ nnr e s @i
UL
e/3() e, - v, s ).
Ty
suma 20 s @t €0 s, @) v e )
T, 7
- e €4z - 2@ €0 e @) ve s oY

n

where Hf" = Sup 'f"(l(t))l.
t,w

In proving 1) we showed the term on the right yoes to zero as

n —> ®. Hence 3) is proved.
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To show L) we observe

e L1128, (@)= 05, ()
M

- P iin ) 128 (E@)8, (e, (X))
n__>mrr ) ) b)
n

" ”2,)7‘- Pty o D)8, ()%, ;)

n

-

=P Hm 172 ) £'(2(t. A (Y, (X

i /L ((tn,J)) n,J(,) n’J(,)
e

| ]
- usj £1(2(2))d(E () - E(1)) - usj £1(2(£))d(E(t)- T(1)) = 0.
0 0
We can now prove the following theorem.

Theorem 3.3.u.
Let {X(t), F(t); teT) and (Y(t), F(t); teT) be quasi-martingales

with [x]i = X, and [Y]1 =Y, 1=1,2 as. sample continuous. Let

f be a real valued function of a real variable with continuous

second derivative. If
t
Z(t) = J[ Y(s)dx(s) for every teT,

then 0

|
£(2(1)) - £(2(0)) -f F'(2(t)) Y(t)dx(t) -
0

Proof:

let v = 1,2,.... Let Tvﬁn) be the first t such that
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sup |2(s,w)| > v or sup |X(s,w)|> v or sup|Y(s,w)] > v.
s<t s<t s<t

If no such t exists, let Tv(w) = 1.

Since X, Y and Z are all a.s. sample continuous
P([Z(t) % Zv(t) or Y(t) % Yv(t) or X(t) % Xv(t) for some teT]) —> 0

as v —> .

Clearly, T, is a stopping time for each of the processes X, Y,
and Z. Let xv, Yv and Zv be the processes X, Y, and Z stopped at T
Then for every v = 1,2,..., xv, Yv’ and Zv are uniformly bounded by
v and are a.s. sample continuous.

We first show, for every teT
t =
2,(t) = [ v, ()ax, (s) = Pl L B8, ()
0 7, ()

Let Z: (t) -~/>;V(s)dxv(s). For each teT, we can find a subsequence
0
of partitions [TTL(t); k > 1) such that
» N -
Zv(t) -kl_;mm 2_‘ Ak,j(vv)Ak,_j(xv) a.s.
17,(t)

and 2(t) = Vim ) B ;008,00 as.

k= 0 S5

M.t

If t < TVQ»), then

* \ -
= |1 a . TAVE.
zv(t) K-D?;o { k,J(YV) k,J(x
77L(t)

)

v

= lim EK,J,(Y)A"JJ(X) = Z2(t) = Zv(t)

5(—> o0 e
(o)
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If t > Tv((D), then

* -
z,(0) = tin ) B (Y8 (X))
- lin ) 5,08, (x)

K Ol )

+k-l-1>m°° Sk,j (Tv(u)))(y) Ak;j('rv(w))(x) - Z(Tv(u))) = Zv(t),

- *
s1.ncekl_;mm Ak,_j (rv(w))(Y)Ak,j("’(w))(x) = 0. Then Zv(t) = Zv(t)

a.s. for every t€T, so that

Z.(t) = P lim L 5 (v.)a (x) .
v "->w'n'n(t) n,j'vin,j'v

Actually, one can take
*
P(LZ,(t) = Zv(t); teT, v=1,2,...]) = 1,

for we get equality on an everywhere dense subset with probability
one, and since Z: and Zv are a.s. sample continuous they must be
equal for every teT with probability one.

Since for each v = 1,2,..., Z s uniformly bounded and f, f'
and f" are continuous, f(Zv), f'(zv) and f"(zv) are uniformly bounded.
But then .

f(z,00) - (2,0 = [ £z, ()Y, (0K, ().
0
for a.e. w, there exists v(w) such that Tv(ﬂ)) = | for all v > v(w),

and hence

]
F(2(1)) - F(2(0)) = jf'(l(t))Y(t)dx(t) as.
0



9l.

The theorem 1s now proved.

Further properties of the integral need to be investigated

extensively. Some of the theorems can be generalized somewhat, but

in an obvious way.

Some of the more pertinent questions which have not been looked

into to any great extent are the following:

1)

i1)

111)

Can the decomposition Theorem 2.3.5 be extended to processes
{X(t), F(t); teT)} having a.e. sample function right (or left)
continuous? Here it is felt that condition i) of Theorem 2.3.5
may have to be replaced by the condition of uniform integrability
of the sequence of stopping tiues [Tv@»); v > 1), where Tv@»)

is the first t such that sup |X(s,w)| > v . And if no such
s<t

t exists TV@») = 1.
What functions f of a quasi-martingale {X(t), F(t); teT} will
again be a quasi-martingale? In terms of boundedness and
differentiability conditions on f it is felt that in general
f(X) need not be a quasi-martingale if f does not have a second
derivative. If one investigated f(Z), where f is the integral
of the Wierstrass function and Z is the Brownian motion process,
one should yet some indication of whether the second derivative
of the function f is necessary. O0.e could also look for other

conditions on f, such as convexity

What processes are integrable with respect to a quasi-martingale?
Theorem 3.3.4 indicates that the in':crand may nrot rave to be a

quasi-martinga «.



iv)

Jao-

Doob (!, pp- 2/3-231) has yiven solutions of the diffusion
equations on the real line. With the definition of a stochastic
integral given in this thesis, can the diffusion equations be
solved on a sufficientiy differentiable manifold, possible a
twice differentiable manifold? It seems entirely possible this

is the case and should be possible with relative ease.
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