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ABSTRACT 

A large sample theory is presented for birth and death queuelng processes 

which are ergodic and metrically transitive. The theory is applied to 

make inferences about how arrival and service rates vary with the number 

in the system. Likelihood ratio tests and maximum likelihood estimators 

are derived for simple models which describe this variation. Composite 

hypotheses such as that the arrival rate does not vary with the number 

in the system are considered. A numerical example illustrating these 

results is presented which Includes the testing of both true and false 

composite hypotheses. 



PROBLEMS OF STATISTICAL INFERENCE FOR BIRTH AND DEATH 

QÜEUEIHG MODELS 

I. Introduction 

The orientation In queueing theory Is to start with a model and determine 

the behavior of a system from It.  In applications, however, one has the problem 

of deciding what model is appropriate from observing the behavior of a system. 

For queueing processes, the problem has been untouched in the literature 

except for Clark [3], while for Markov processes, much has been done. A large 

sample theory based on mudLmm likelihood for Markov processes has been developed 

in a monograph by BUlingsley [l], while his paper [2] contains a large biblio- 

graphy.  The results parallel the classical large sample theory as presented in 

Wilks [6].  Birth and death queueing processes are also Markov processes, and 

the theory in BUlingsley directly applies.  In this paper, the theory is ap- 

plied to make inferences about how arrival and service rates vary with the 

number in the system. 

The birth and death processes considered here are restricted so as to be 

ergodlc and metrically transitive. A likelihood function is developed based on 

observing a system continuously over some interval of length T .  Relations 

which are needed to work out results for particular models are developed, and 

limit theorems from BUlingsley are presented.  Estimators and hypothesis tests 

axe  derived for three simple models, as well as their asymptotic properties. 

All the models considered will have only a finite number of parameters. 

Of particular interest are composite hypotheses such as that the service 

rate does not vary with the number in the queue. A composite hypothesis can 

be tested by first nesting it in a more general hypothesis. Methods for doing 

this are discussed at several points in the paper. A numerical example 



Illustrating these results Is then presented, which includes the testing of both 

true and false composite hypotheses. 

More general models for the variation of arrival and service rates with 

the number in the  system are considered in an Appendix,   as well as other ideas 

for further research. 

II.     Definition and Characteristics of the Process 

A queuelng process with Poisson arrivals and exponential  service is a 

birth and death Process.     If the number of customers waiting in the  queue plus 

the number in service is    J  ,  we say the system or process is  in state    E.  . 
J 

■When the  system is in E      arrival and service rates will be denoted by    Tv.     and 
J j 

p,      respectively.     Hence,    ^    and    |j.    may be functions of    E    ,  but given    E    , 

they do not vary with time.     (They are time homogeneous.)     If a customer arrives 

while the system is in state    E.   , we have transition    E, —♦ E,       .     Similarly, 

if a service is completed while in state    E.   , we have transition    E    —•£.,. 
J J    j-l 

In all models, the variation of X. and \JL      with E, will be expressed in 

terms of a finite number of parameters,  0' = (©.. ,©,.., ,9 ) .  We will assume 

the following throughout this papery 

1. HQ = 0 

2. p... s, 0 for J « 1,2,... 

3. ^j > 0 for e11  integral j < M , where M may be infinite 

k. Vj - 0 for J =. M , M + 1 ,...,  if M is finite 

5.  The mean recurrence time for each state is finite. 

Assumptions 1-1». prevent the existence of two disjoint non-null irreducible sets of state 

That is, the process must be metrically transitive.  Should metric transitivity 

In this paper, Ö denotes a column vector, while its transpose 0' , denotes 
a row vector. 



not hold, the theory will apply to each irreducible subset of states considered 

separately. With the addition of Assumption 5, the process will be ergodic. 

Conditions on the {V)  and {|j,.)  for Assumption 5 to hold are known, but of 

little importance here since the dimensionality of the parameter space is not 

affected, and the mean recurrence times will obviously be finite for most ap- 

plications.  In order not to violate Assumption 5, we must choose models with 

the property that for some 6' there exists a neighborhood such that any G' 

belonging to that neighborhood defines a process which is ergodic and metrically 

transitive. A queueing model which is not ergodic is the following: 

s2 Vj = a(j)' 

Uj-bJ 

J ■ 0,1,... 

j = 1,2,.., 

a,b > 0 

where the unknown parameters are 9' = (a,b) . 

Ergodiclty and metric transitivity quarantee that large sample theory is 

meaningful.  Suppose the system is in state E. at t = 0 . We represent the 

probability that the system is in state EL  at t by P[E. (t) | E.(0)] = P., (t) 

Under the above assumptions. Lim P., (t) ■ P. > 0 , independent of j , such 
t-»00 Jk 

that  [P, )  is the unique stationary distribution for the process,  2 P, = 1 
k=0 * 

Other properties of birth and death processes are discussed in Feller [5]. 

III.  Observing the System 

It will be assumed here and in what follows that the system is observed 

continuously over some time interval T .  During T , the times at which 

customers arrive and services are completed are observed.  This is equivalent 

to considering the state of the system as a step function (not monotone) over 

time.  Suppose one starts to observe the system at t, ~ 0 and finds the 

system in state E  where j = x    Let the first transition,  E1 -* E. , 



(an arrival or completion of service) occur at t , where k ■ x .  Let the 

sequence of transitions after t^ occur at 'tT»,****n+i '  ^n ?'*•* an^ ^e* 

the nvunber In the system instaneously after t^^ be x. .  If t   ^ T and 

**+£>  T ' then one ^"^ the ^^ence (^^i)* (V^^* "'^n+l^n+l^ * where 

n Is the number of transitions observed during T . 

IV. Constructing the Likelihood Function 

In order to construct the likelihood function for the above sequence, we 

will first consider a single transition, x. —♦ x   . Note that because 

transitions are single step, | x. . - x ( ■ i , Let x - J and let 

T. ■ t. 1 - t , the time the system remains in state E. , upon entering at 

That portion of the likelihood function due to a single transition is made 

up of two components, the density function of time in state E. evaluated at 

T, ; and given T. , the probability that the transition at t    is the one 

observed (an arrival or completion of a service).  Given x. , the probability 

that Tj > T is simply the probability that both the next arrival and next 

service completion occur after T .  Since these events are Independent, 

Pt^ > T] = (e ^ )(e •L ) = exp -(T^-HJ^T  , 

Hence, the density function for T.  is: 

f(Ti) - (^ +1^) exp -(^i+p.1)Ti 

Note that we are using X, and p,  to refer to the state of the system E 
1      1 x. 

in ft .t  ] , and not to any particular transition.  Strictly, one should 

use X   and u.  , but this notation is needlessly cumbersome. 
xl      xl 

-h- 



It is not difficult to show that P^  ■ xi+l | T.] - >./(>*. + \I±)  , 

independent to t.   . Equivalently, the probability that the next transition 

is due to a service is pi./Cx. + ix.) . 

Hence, we obtain the portion of the likelihood function due to a single 

transition, dF. ■ ^(x., i * T. | x , ©) ,  in the following form: 

^i " tXi/^i + M-i)]^ + M-1)e3qp -(X^j)^ 

■ ^ exp -(Xj^-HJ^)^ for x. . ■ x. +l 
i+1   1 

for x. . ■ x. - 1 
i+1   i (1) 

The correct form depends on what was actually observed (an arrival or a service). 

Since the future behavior of a Markov Process depends only on the state of 

the system when last observed, the portion of the likelihood function due to 

a single transition, conditioned on the state of the system, is independent 

of the past history of the system.  Hence, the likelihood function of the entire 

sequency of n transitions is simply the product of terms such as (l).  In 

addition, there is the probability that the system started in state E  .  If 

the system is Initially observed at a random moment along the real line, 

P[x1 ] = P  , the stationary probability.  However, for large sample theory, 

the assumption of random entry is not critical.  Further, the portion of the 

likelihood function due to transition n + 1 occurring after T is 

P[Tn+1 > T - t  J m  exp -(T^^-H^n 1)(
T-tn i ) •  Hence, the likelihood function 

for the entire set of observations, Lf©.) , is the following: 

Ln(i) - Pt^] exp -(Vl^n+l^n+l) " ^i  ■ (2) 

It is convenient to deal with the log of the likelihood function InL (0) 

-5- 



As    T —► oo ,  n —» oo   with probability one,  and for large sample theory,  the 

first term in   lnLn(e) ,    lnP[x. ]   ,  can be ignored.    When this is done, 

InL (ö)    can be put in the following-very useful fdrm: 

\ 
" M 00 

lnLn(9)-    X   UJlnV     L     Y^J"     I    W^-    ' (3) 

J-0 J-l J-0 

where u. is the number of transitions E. —► E   (up) , d. is the number 
J                          J J+l        j 

of transitions E. -» E. 1 (down) , and y is the total time spent in E 

during T . 

V.  Useful Relations for Later Application 

In what follows V and |i  will be allowed to vary with the number In 
J      J 

the system in a way that can be functionally described in terms of a finite 

number of Independent parameters. Let 0' m  (9,^. ••>©,) be the vector 

representation of the parameters in Euclidean k-space. We have in general 

^i " h<(®) >  MM = 6 •(£.), suitably constrained as In Section II. 

In addition to the stationary distribution,  {P.) , we will need the 
J 

distribution (TT.), where TT., IS the probability that a randomly selected 

transition was out of state E. . With greater precision, define 

TT. ■ Lim (u + d )/n , which, for processes of the type considered here exists 
J   T-* 00  J    J 

with probability one. For an ergodic process, a limit such as TT. IS inde- 
J 

pendent of the starting state, or equivalently, of any distribution of starting 

states.  In evaluating this limit, however, it is conveneint to assume 

starting conditions are determined by the stationary distribution,  {P.} . 

When this is done, we obtain for any interval, T , E[(u + d ) | T] *> (X + u )PT 
00 J    J J    J  J 

and E[n | T] ■ 2 (X« + MM)?^ .  It is now clear that 
j-0  J   J J 



^ ,  frj+>Vpj 

J^^j^p'j 

The average rate of arrivals must equal the average rate of departures which 
» OS 

we define as the average throughput,    B ■    2    ^ P    -    Z    M-«1*«  •    Thus, 
J=0    J  J      J-l    J -^ 

^J 2R 
(J  - 0,1,...)     . CO 

For  birth and   death models we also have the well-known relation: 

VJ = •"J^J^L (j    a   0,1,...)       . (5) 

For any specific model we can use these relations to determine the    (P.)     and 

the (TT.)    as needed. 
<J n 

Ignoring end effects,     InL  (6) -    Z    IndF  (9)   .    From  (l),    dF      has the 
i-1 

following form: 

(dFj^ |xi = j) - ^(o) exp -(7v3(e).HiJ(e))Ti 

• jxj (9)  exp - (Tvj (9 )-HiJ (9 ) )T1 

if    x.   ..   = x.   + 1 i+1 i 

if    x.   _   = x.   - 1 i+1        i 

Define Snu-ä^lnLn^) 

ä'n   "  (Snl""'^ 

'u    =^:—i 

Guv - äe%: lndJi   • U      V 

u = 1,2,...,k 

-7- 



Under suitable regularity conditions,  and from / cTjfx. .»T. | x ,0) ■ E(l) ■ 

where fl denotes the entire sample space, the following well-known results 

are obtained: 

and 

E(GU) - 0 

E(G ) - -a, uv 

(6) 

(7) 

From  (7), we see that the variance-covarleuice matrix of    G    , E(GG^)    is: 

ECGG') =o(i) -  (ouv) = (-E^))       • (8) 

VI.     Limit Thteorems from Billlngsley [l] 

THEOREM 1:   [l]    The asymptotic  distribution of    n -1/2 S  as T —• 00 is the 

multlvarlate normal with mean 9 and variance-covarlance matrix a(6) .  We 

write: 

n-i/2 ^ i^ R(0 , a(o)) 

A       -A A   . 
Next consider the maximum likelihood estimator, 9" = (9 ,,...,9 , ) , found 

—n .  ttU     nK 

by setting S ■ 0 .  Assume that for large n the estimator is unique. 

A 
THEOREM 2: [1] The maximum likelihood estimator,  9 , converges in probability 

as T —► 00 to the true vector of the parameters,  9 , such that: 

nl/£(i " i) ^ N(o , a'1(9))      . 

Specifically,  conditions on    dF^    which permit the Interchange of the order 
of the operations of differentiation and integration.     See Cramer   [U,  p.   67 
and 501],  or Billlngsley  [1,  p.   5 and kl]. 



o 
If we hypothesize that 0 Is some particular vector,  6  say,  such that 

the probability distributions of all random variables in the process are 

completely specified, then we have a simple hypothesis.  Given H- : 9 ■ 0 , 

the vector 9 is restricted to a single point, of dimensionality zero, in 

the k-dlmensional parameter space. A general way to test such a hypothesis is 

with the likelihood ratio, 

L (9°) 
nN— ' 

n -n' 

or equivalently, with minus twice the log of this ratio: 

2tMax 1111^(9) - lnLn(9
0)]  . (9) 

If the value obtained from (9) exceeds seme critical value, we reject HQ .  We 

would like to know the asymptotic distribution of (9) when H0 Is true, and 

also under alternative hypotheses. 

THEOREM 3: [1]  If H- : 9 = 9  is true, then minus twice the log of the 

likelihood ratio is asymptotically distributed as chi square with k degrees 

of freedom: 

2[Max 1111^(9) - lnLn(9
0)] ^ y£      . 

Suppose that H- is false, and some alternative, H^ : 9 » 9 , is true. 

Define the vector h as follows: 

9° - 91 + n"
1/2 h  or  h . n1^0 - ^)  • 

Now define the quadratic form. A2 = h'oCg1)^ , where A is the non-centrallty 



2 
parameter in the non-central X  distribution below. 

THKOJREM !(■: [1]  If ^ : Ö - 6° is false, but H.: © ■ ©  is true, then: 

2[Max lnLn(©) - lnLn(©
0)] ^ X^ A  . 

Suppose one imposes restrictions on the components of O , such that some 

of them are eQuaL» or axe  known, or are related to one another in such a way 

that given an appropriate proper subset of the {©u} , the rest can be solved 

for uniquely. When such is the case, one can represent the system in terms of 

a vector of k' independent parameters, ^ , sucli that k' < k . A model 

incorporating these new restrictions is said to be nested in the original 

model, and Is represented by (/) C \J . The components of ^ can be estimated 

and tested by methods used for ö above. In addition, the hypothesis that 

the restricted model is true under the assumption that the original model is 

true can also be tested. 

THEOREM 5: [1]  If the restricted model is true, and the hypothesis that 

rf a flT is also true, then: 

2[Max lnLn(e
0) - InL^©0)] - 2[Max lnLn(9) -Max InLji*)] 

+ 2[Max lnLn(^) - InL^)]  , 

where 9  is determined by ^ , and 

2 [Max lnLn(ö)- lnLn(e
0)] h  x^ 

2[Max InL^)- InLjf)]  ± x!, 
I 

2[Max lnLn(e) - Max InL^g.)]  ±* xj_k,       , 
e ^. 

-10- 



where the last two expressions are asymptotically independent. 

In the remainder of this paper, the theory is applied to birth and death 

problems of interest. 

VII.  Application of the Theory of Particular Models 

MODEL 1: Vj > 0  »  J - 0,1,.. .,M-1    ^M " 0 

M-j > 0  >      J " 1,2,...,M     MQ - 0 

As mentioned earlier, restrictions must be placed on models we consider 

to explain the variation of the {^J and the (p, ) Vith J so that there 

Eire only a finite number of unknown parameters.  Model 1 aceompllsheB this by 

truncation, so that the number of the system cannot exceed M . There are 

2M unknown parameters (Tw) and {|JL.} in all, which are required only to be 

finite and positive. 

The maximum likelihood estimators are determined from Equation (5), which 

for this model has the form: 

M-l M M 

inl^i). £ u^ln^  ^  djlrpj-  ^ r/V U-j)      (l0) 

J-0 J=l J=o 

Differentiating with respect to each of the unknown parameters, we get: 

('Q.nL        u, 
n __    j .    v          —    O 

^j     h 
•Tj -0 

and therefore 

for  J a 0,1,...,M-l (11) 

-11- 



älnL        d. 
__JL. JL.r   -o 

and thierefore 

d 
M.    - -i for    im 1,2,...,11      . (12) 

There Is nothing particularly surprising about (11) and (12).  The estimate of 

■X  is the number of arrivals while In state B. divided by the total time AJ J 
spent in state E. .  The analysis does not stop here, however, 

j 

For the variance-covarlance matrix of the estimators, we begin with 

Equation (l) and G^ - Väöu 1°^ >  «a«1 8iven \ m & ohtaln: 

X ' ^h - Ti       %<"       ' Ti for xi+i"
J +1 

% " " Tl Q^ - lMi  - Tl ^    Xl+1 " J  " 1 

emd all other    G^ - 0 . 

The procedure to determine the varlance-covariance matrix of the {p^) , 

a(e) , will be first to determine a(0 | x.^)    for (7).  Then, from 

E(GL I x.) = E(G ) - 0 for all u ,  E{a(ö \ x.^]  " a(ö) .  We continue to 

condition on x. ■ j : 

VJ = 'lAJ VJ "0 f0r Xl+1 " ^ + ' 

GVJ " 0 VJ " '^ ^ Xi+1 = *'1 

and all other    Guv ■ 0 . 

-12- 



• » 

As shown earlier,    T(x± ^J+ljx^j)» ^j/frj + ^j^  •     Now 

for    J - 0,...,M-1 

for    J = 1,...,M ,  and    Cov(Gu>Gv | xi - J) - -E(Guv | a^ - J) - 0    for all other 

(u,v) pairs.    Also,    v(Ox   | x1 ,* J) » 7(0^    | Xj,  ^ J) - 0 . 

We now obtain: 

M ^ 

V(G ) - E{V(G i xi. k)) - Y. V(axi i xi - k)7lk ■ orro 
J        J k-0    J J J   J 

for j - 0,1,...,M-l 

V(G ) - E[V(G  | x. « k)) = —/■>  i ,, \ 

for j »1,2,...,M , and Cov(Gu,Gv) - 0 .  Hence, using Equation (h), 

P 

^X)mz& for t-0'1""'*-1 

P. 

■ 

Since all the covariances are zero,    a(ö)    is a diagonal matrix.    Let 

G'  -  (G    ,...,G.       »V»"-»^)   »  then   0(i> - d/^CViJ5    Where 

-15- 



•    » 

r " (P0/X0'""PM-l/\-l'Pl/Ml"--'VklM) '  NOW O'1®  = (oUV) " 2R(BiJ/'ei) ' 
and letting 0' - (^0,.. ^^^»(J^,...,^) , we have by Theorem 2: 

nl/2(i - i) ^ N(o ^ a'1®)     - 

Since a~ (©) Is a diagonal matrix, the maximum likelihood estimators are 

asymptotically independent. If we let V (X) be the asymptotic variance 

(the variance of the asymptotic distribution) of X , then: 

2X,R 

v„(»-1/a^ - V - -fj for J » 0,1,...,M-l     (15) 

Vas{n"l/2^ " ^ 

^jR 
for J - 1,2,...,M (1^) 

Suppose we hypothesize that 6 is some particular vector, 

6° - (T^,...,^,^,...,!^)' • If H0 : Ö - ©0 is true, then by Theorem 3, 

2[Max lnLn(9) - lnLn(0
O)] -^ x|M 1'2M 

where 2M is the number of parameters (components) of 0 . For this model, 

we obtain: 

2[Max InL 
9 

M-l M 

.n(i) - lnLn(i
0)] = X Ujln^A^Tj) + I    V^V^j) 

j=0 j-1 

M 

I rjOv^Hj) -n 

J-o 

which is computable from the sample.    We determine a critical region such that 

-14- 



Pfogj^. c) m a ,  then reject HQ : 6 = 0  if the number obtained from (15) 

exceeds c . 

If BL Is false such that © = Ö  say, then the power of the test can 

be determined as a function of 9° and 9 .  For h a n ' (9° - 9 ) , the 

2       1 
quantity A <■ h'a(9 )h is easily conrputed: 

• 

A2    n VS5: ^)2     PM-I^-I - 4i)2 ^i^ - £)2    pM(^-^)21 
 J K. ..+  J  +  J h... +  J  

*0 ^M-l ^ MM 

(16) 

Prom Theorem k we have: 

2[Max 1x^(0) - lnLn(9
0)] h ^ 

Given 9  and 9 ,  A  can be computed from (l6), and then the power of the 

test determined as Pfaow A ^ c^ * 

Nested within this model is the simple queue limit model where it is assumed 

that >, and p.. do not vary with the number in the system.  Suppose one owns 

a gas station and has an opportunity to enlarge his facility by buying adjacent 

land. How much additional business will he get? Does he lose business only 

when the facility 1^ full (state Ej.) , or are customers also discouraged by 

queue sizes less than M - 1 7 Without assuming any relationship among the u. , 

the hypothesis that V = \ ^ • • • ■ \|-i ■ ^ can te tested, where M ib the 

maximum number of cars the facility can hold.  Let gf1 = (TVJMTJM-O*« •• JM«) • 

From (10), the likelihood of the restricted model is: 

M-l M M 

InL^) - in*  ^T   uj +     y   djliHXj  -     £rjKl - 8jM)7. + ^] 
J-0 J«l j=0 

-15- 



•     • 

and 

M-l 

^lnLn(l).  £ «jA- (T-rM)-0 
J-o 

therefore 

M-l 

T - r M 

^ lnLn(^) - dj/^ - rj J ■ 1,2,,,.,M 

therefore 

-    ti 

If the restricted hypothesis: ^ = ... » >   = X is true, then by Theorem 5, 

2[Max InLfe) - Max lnLn(2L)]— X^.j,, - 3L,-1 
9 .^ 

where 

2[Max InL (§,) - Max lnLn(g[)] I ujln rtr^-V-1 UJ 
J=o V J=0 

(17) 

which is easily computable from the sample. 

MODEL 2: >. - ah(j) j = 0,1,...    and   g(0) - 0 

IXj - hg(j) 

-16- 



where a and b are unknown parameters, and h(j) and g(j) are assumed 

to be arbitrary but known functions of J . 

The advantage of the model Is that It Is not necessary to Impose a queue 

limit in order to keep the number of parameters finite.  Furthermore, informa- 

tion about a and b Is obtained throughout T , rather than only when the 

system is in certain states.  Hence, statistical Inferences will be more 

precise.  However, in order to use such a model, considerable information 

about the behavior of the system must already be at hand. When a queue limit 

is imposed by the nature of the system, then Model 1 is more general than 

Model 2. 

For Model 2, (3) takes on the following form: 

00 00 00 

lnLn(e) -  ^ UjlnahO) +  ^ djln bg(j) -  ^ rjLahCj) + bg(j)]  (l8) 

J-0 J-I J-0 

from which we obtain: 

00 /  ^ 

J-0 J-0 

I V I >-jg(J) 
3=a /  J=a 

(19) 

(20) 

1    with probability one,   for in ergodic  queues. 
00        / ^ 

Note that Lim Z u. / 2 d 
T*« j=0 V J=l J 

whatever goes up must come down.' For large samples, we can therefore replace 
00 00 

2 u. and  2 d  by n/2 . 
j=0 J      J-dL  J 

We now obtain the variance-covarlance matrix, starting again with the 

likelihood of a single transition: 

-17- 



^W+l'1-! ' Xl " J'^ " ■ll(j) eXP -(^(J)+tos(J))Ti 
if    xi+1 - J  + 1 

- bg(j) exp -(ah(j)+bg(j))T, 

and given x. - j , 

a&-i-*(i)\ ,   Gb =  - SU)\ 

Ga -  - hO)^ >        \-\-*W\ 
0»--? Gbb-0 

Gaa-0 ^--? 
aab = 0  ' 

Hence ^ 

If    xi+;L - J  - 1 

if    xi+1  - J   + 1 

if    xi+1 - J   - 1 

if    xi+1  - J   + 1 

if    x1+1 - J   - 1 

7(0, | x, . J) . (1/b2)    M*f%(i)      -   bL^iJlb6(J)J 

Cov (0 . Q, | Xj^ ■ J) ■ 0    and 

CO OD 

h(J)7r 
i 

J-0 J-0 
a[ab(j) + bgCj)] 

V(Gb)-     X     VfGjx.-Jkj-     ^ 
J-0 J-o 

btali(J) + bg(J)] 

Now from (4),    TT    ■ P.taliCj) + bg(j)]/2R ,  and we. obtain the simple result! 
J o 
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00 

j-o 2a2 

00 

V(V - ab I e^j " Z? d       2b 

Cov  (Ga,Gb) - 0       . 

Ibr    ©•  - (a,b)  , 

l/2a2 0 

a(©) - , 
0 l/2b 

again a diagonal matrix. 

Thus for    n1'^! - 9)'  - n1/2^ - a ,  b - b)   , n1/2^ - 6)   ^ N(0 , a"1^)) 

where 

(21) 

Note that the form of this result Is Independent of h(j) and g(j) . However, 

this does not imply that the variances are Independent of h(j) and g(j), since 

for given T , the distribution of n depends on them. 

Hypotheses about a and b can also be tested by the same methods used 

in Model 1. If 0° - (a^b0)' Is hypothesized, but e1 = (a^b1)' is true, 

such that h m   *Jn(e_   " S. ) > then: 
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A2 - h'o(O) h = | 
V - bM 2 

(22) 

and 

2 [Max lnLn  (0)  - lnLn(©0)] — X2>A (25) 

Special Cases of Model 2 Which are of Independent Interest; Included In Model 2 

are many common queuelng models.  Some of these are listed belov: 

Model 2a;  The Infinite channel model, ^, =■ ^ , M-j » Jli. , for j m  0,1,... . 

This Is simply Model 2 with X m  a,h(j) ■ 1 , b - p, , g(j) ■ J . 

Model 2b; The C-channel model, >. = * >  M-j = JM- for J > 0,1,...,C-l 

(i, = qi for j = C,C+1,... .  This also Is Model 2 with * ■ a,h(j) = 1 , 

b - p, , and g(>3) = J for J < C - 1 , g(j) =.0 for j ^ C . 

Model 2c:  The machine-repair model, single repairman case.  Suppose there are 

M machines, each of which break down at rate > when operating.  The machines 

are in operation continuously except when they break down. The repairman works 

on one machine at a time, at rate p. . Let the state of the system, Ej , be 

defined as the number of working machines.  Then we have: Vj = j* for J ^ M , 

p. = |j, for j < M-l , p.. = 0 . Note that a service corresponds to a transi- 

tion E1 -► E.   while an arrival results in a transition E "* Ej.! • '1!hus 

we have a truncated C-channel model with the roles of X. and ji^ interchanged. 

Note also that this model is nested in Model 1 . 

Model 2d;  Model 2c with N reparlmen such that N < M , and each repairman 

works alone at rate \x  .  For this case: >. - JTv for 0 < j < M , p.^ = (M-l)p. 

for M-N<J^M, |x. =N|j, for O ^ j ^ M - N .  This model is also nested 

in Model 1, and represents the hypothesis that the rate repairmen work is not 

affected by the number of Jobs waiting.  Assuming Model 1 correctly represents 

the system, this hypothesis can be tested by the methods presented earlier. 
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Rejection of the hypothesis leads to the conclusion that the number of jobs 

waiting does affect the performance of repairmen.  It would be more 

efficient, however, to nest this model in a model more restrictive than Model 1, 

assuming that the new model is true. One such model is; >. = j>» , and 
J 

M-j = M-j for 0 ^ J ^ M . 

Comparing Model 1 and Model 2, we see that Model 1 is more general, but if 

the queue limit must be made large to be realistic, the number of parameters 

becomes correspondingly large. Under these conditions, tests lose power, and 

particularly for large j , the variances of estimators are apt to be large. s 

On the other hand. Model 2 is rather restrictive and requires a lot of a priori 

information to be useful.  A compromise is suggested.  Model 3 is such a 

compromise. 

MODEL 3: ^j > 0  for J - 0,...,M-1  ,  MM > 0  for J - 1,...,M-1 

7v = ah(j)  ,  |x. - bg(j) for J ^M 

For situations where large queues are possible, but the service facility 

performs well, relative to the load, such that the average queue length is small, 

this model will be quite useful.  The V and |JL  can be individually esti- 

mated for small J , where the system is most of the time, and lumped together 

for large j , without serious consequences. 

From (5), we obtain for this model: 

h  - UJ/rJ ' ^ -  dJ/rJ (25) 

as before, and 

00 

a m 

^»M 

00     00 

3=M  / J=M 

TjhCJ) (26) 
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•      r 

00 /SB 

9-1 djA rJ6(j) (27) 
J-M  / J-M 

In obtaining the variance-covariance matrix, all the covariances will 

again be zero.  The only part that is at all new is the determination of 

V(0 ) and VCd^) .  If x ■ J < M , G  and a.  are identically zero.  Hence 

we need only consider x. ■ J ^ M . 

Given x. «« J ^ M 

Ga"a_h(j)Ti      '       Ofe - "«(J)T1 lf    xi+lMj+1 

Ga - Mi)^ Gb - b " e(,5)Ti if Xi+1 - J " 1 • 

It is now clear that: 

00 .      . oo 

V h(j)7ri ! V v(Ga>- L tttwrktm - A: L h(J)pj 
J-M J=M 

v(Gb)- L bTsrnrrfajir - 2Rb I S(J)P
J 

J=M j=M 

and 

Va8{^n(*"a),     -2Ra/Z     h(j)PJ (a8) 

Vas( >rn(b - b)}    -2Rb/^     g(j)pJ (29) 

/ J-M 
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Many intereting possibilities are uncovered by notinc that Model 2 is 

nested In Model 3,  Thus, one can test the hypothesis that a particular h(j) 

and or g(j) applied to the lower states only. The number of states Included 

In such a test is determined by M .  Further, there is no need to require 

that M be the same for both the t>.J and the (p, ) , 

VIII.  An Example Using Data Generated by Simulation 

We would like to know how well the -theory, when applied to models such as 

those in section VII, can discriminate between those which reflect the structure 

of a system and those which do not.  An analysis of data generated by simulating 

a model of known structure will be of value here. 

For the simulation, the following model was used: 

>vj - V(J +1) J - 0,1,... 

H,j - 2 J = 2,3,... 

Results of the simulation (along with p (true) for comparison) were as follows: 

i ^J ^ rJ 
pj-r.Aj P (true) 

0 hk 0 10.54 .065 .075 

1 95 kk 50.76 .512 .291 

2 65 95 39.35 .21*2 .291 

5 51 65 52.34 .198 .195 

k 15 51 15.90 .098 .097 

5 5 13 10.66 .066 .059 

6 1 5 2.54 .016 .015 

7 0 1 •7? .004 .004 

250   250   162.80     1.001      1.001 
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Note that u. ■ d. . . This relationship must hold for all states 

except initial and final, and, ty chance, did for them too in this simulation. 
00 

It is not difficult to show that  2 P < .02 P  and hence is 
J-8 J       0 

negligible. We also compute the true throughput, R » U^p^ + kLg^1 " 'b " ^l 

-1.56 . 

Assume for concreteness that we have a 2-channel facility for which it has 

been observed that rarely are there more than k-  customers in the system at any 

time,  (it might be a gas station, a bank, or even a bordello.) We wpuld like 

to know how *  varies with J .  Specifically, for small J , does it decline 
J 

with j or remain constant? The economics of enlarging the facility are 

closely tied to this relationship. 

Hhe model we will assume in the analysis is the following: 

Kbdel M^ : H0 : ^^»^^j,^ > 0 

Tv ■ a/(j +1) im  5,6>... 

Note that there are 7 unknown parameters. 

^0 

true 9 
^.00 

est.  eq. 
(25) 

e 
^.17 

Vas eq. 
(13) 

as.5^2 
o/M- 
.11+6 

\ 
2.00 (25) 1.85 (13) .01+28 .103 

7v2 1.53 (25) 1.60 (15) .0285 .126 

1.00 (25) 0.96 (13) .0521 .179 

0.80 (25) 0.82 (13) .01+99 .280 

a k.OO (26) 2.68 (28) 2.81 .1+18 

V- 1.00 (20) 0.99 (21) .001+0 .061+ 
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Let us denote the estimate of a In this table by a. > 2.6o . 

Next consider another model. 

Model »^ : HQ : *. - a/(J +1) J - 0,1,... 

|jL=i^JL d ■■ 8y ?> • • • 

(this assumption is correct) and we obtain: 

a2 - U.00 

Va8(a2 - a> " •06k 

(C/|J.)/N ■ .061+ ■ (a/n)*   as well. a2 Äj 

We will now test whether model Mg Is correct noting that It Is nested in Mj^ . 

There were 7 unknown parameters under the original assumption, while there are 

two, ^ m  (a,p,) under hypothesis Mg .  Hence, from Theorem 5 we obtain: 

2[Max InL (6) - Max InL (gO] ^ 5U_2   if HQ IS true. 

From (3) and the naxlraum likelihood estimators, the L.H.S. becomes: 

I uJlnV £ Ujln^/C^l))-  £ uj-  £ VjAJ*1) 
JoO J=5 J-o      iJ«5 

^     Ujln^g/Cj  + 1))  +     £    Vj/<J  + 1) 

j=0 J-o 

5-52<S,.05-11-07     ' 
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Hence, we would accept this hypothesis at any reasonable a level. 

On the other hand, let us test an alternative hypothesis: Model M~ : E- : 

v- V =■ Xo =■ Tvz " ^1= ^ > unrelated to a , with the same assumptions about 

the {ji1) . (This model Is not correct.) This hypothesis Is also nested In 

the original one, but vlth three unknown parameters, ^l ■ CX,a,|x) , We have 

2[Max InL (©) - Max InL W)] -^ X?  . 

Using X - 2 u./ 2 Y"I ■ l.ß^ > ^^ L.H.S. becomes: 
J-0 J J-0 J 

k 

I 
j«o 

I 52>V05-9-49 

>
 X^,.00O5 

20 

Hence, we would reject M, at any reasonable a level. 

Although It Is obvious from the raw data that M, is untenable, it should 

be clear that these methods can be applied to more complicated cases where 

inferences by inspection are hard to substantiate. 
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APPENDIX 

IDEAS FOR FURTHER RESEARCH 

Models of Greater Generality 

These ideas can be extended by partitioning the {Ej into subsets, 

ITjUg,...,^ , such that If E e l^ , TVj - a^h^j) .  Similarly, partition 

(E.)  into D1,D2,...,Dn such that if Ej € ^ » l^j " '»^(J) •  If a11 

parameters are independent, one obtains: 

the 

si- Z UJ rL rjVj) (A-l) 

Ej^i /^^i 

51-     I     ^     /l     rJ6l(j) 
B6D1 /B^ 

*-- L *i /l   r'*<(i) (A-2) 

Sj6D1 /Ej« 

Vas O/n^ - ai)) , 2Ra1      /^     ^(3)^ (A-5) 

EJ6Ui 

VastVn(\ " V1 = ^i     /I     gi(J)PJ (A'k) 

/EJeDi 

All covariances are zero. 

In all the models considered thus far, aJJ. the covariances have been zero, 

so that o(©) has been a diagonal matrix. Now we will investigate why this 

has been so. 

Sufficient Conditions for a(O) to be a Diagonal Hatrix 

The matrix a(©)  is diagonal <=*> £(0^) = 0 for every (u,v) such that 
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u ^ v** the covarlancecof the {G ) are all zero.  The result is desirable in 

that the variance-covariance matrix of the estimators, a" (£) , is simple to 

find and is also diagonal.  The estimators, being already asymptotically normal, 

are then also asymptotically independent. Results can be stated in a simple 

form. 

Now E(Guv) - E{E(Guv | x1 = J)} .  Hence,  E(GUV) - 0 if E(Guv | xi = J) = 0 

for all J . This will occur if dJF^ | xi is separable in the parameters, or 

equivalently If Indl^ \ x.^    is additive in the parameters.  We say dF. | x.  is 

separable in {öu)  If dF^ \ x±    can be expressed In the following form: 

^i^i - J8u^i+i » fil*! » eu) 

so that 8V(X
1+1  i  Ti I xi »  ev)    does I10"fc involve    u    unless    u ■ v .     If this 

is the case,  then: 

IndF. 1 I Xi =   I   lngu(Xi+l  '  Ti I xi  >   eu) 

and we say    IndF    | x^    is additive in the parameters.     When    dF    | x.     is 

separable in the    9    ,   then for 

d2lndF 
u ^ v ' Guv I xi = S S 1 = 0 ^E(Guv I ^J " 0 =^EKv^ " 0 

For all the models considedered thus far, arrival and service parameters 

occur together only in the exponent, and there as a sum.  Hence, they are 

separable.  Further, given the state of the system, at most one arrival and 

one service parameter appears in dF . 
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Not only have the likelihood functions been separable,  but the corresponding 

models have been linear.     That is,  the arrival and service rates have been linear 

functions of the unknown parameters.    The analysis of variance and regression 

are based on linear models, which are surprisingly adaptable in their ability 

to cover many situations.    Further,  deviating from linearity here results in 

considerable algebraic complexity.     Thus,  only linear models have been consid- 

ered.     Deviating from separability also increases complexity,   but to a lesser 

degree.     The nonseparable linear model is considered briefly below. 

General Linear Model 

,      a h  (j) 

y-i 

^J 

z^ 

where g (0) = 0 for all z .  From (2.5) we obtain: 

00 

lnLn(0) - ][ Ujln 
J=o 

oo 

I 

Y 

y=i 

00 

+  I  V n i 
z=l 

VaÜ) 

' Y 

I ayhyü) + 

y=i z=a 
(A-5) 

and 

SQ-ni^Ce) 

*r 
oo 

-z ujhy(J) 

J-0  2 a h (j) 
y=i y y 

A  rjhy(,3) '0 for y = 1»2'-"': 
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• 

am. (e) d,g,(J) 

z-1    z z 

Although the above equations will have to be solved numerically to obtain 

the maximum likelihood estamators,  the variance-covarlance matrix of the 

asymptotic distribution-is relatively easy to find.     Below we find   a(ö) 

Given    x1 = j , 

Ga.. - - y        2   a,h (j) 
y-i 

y y^ 

if   x1+1 - J + i 

VJ)TI if   x1+1 - J - i 

Ob   --bz(J)Ti. 
if     xi+1  - J + 1 

bz<J) 

Z z 

z=l 

If     x1+1  =  J   -  1 

therefore 

V(Ga   \\* i) m f? 
|   Z    ahjj)! fl      a h  (j) +    2    bzgz(j)l 
W   'yY"'J  W       ' y 

Zal 

and from: 

7T, 

Pj( z   ayhy(J) + _z,bz6z(J)i 

2R 

z=a 
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we obtain 

00 . 

V 
^^ 

J^)      2    ah  (J) 
y-i y y 

Similarly, 

Cov(G      ,0     |x    - J) 
ay        az      x 

therefore 

Y 
2 

f(i)\(i) 

^ Vy(j)   yL ayhy(J) + ^V.^) 

h„(j)h (J)p, 
Cov(G      ,  G    ) - 2R     2. Y  Y 

Similar expressions may be obtained for the    G,     .    Note that Cov(G    ,G.   ) =0 
Tt y      z 

Qaeuelng Processes of Greater Generality 

By restricting the class of queueing processes in this paper, it has been 

possible to apply work done in Markov processes to problems of Interest In 

queueing. The author has also obtained results for certain more general 

queueing processes, those which possess embedded Markov chains [7].  One 

important process of this type is single channel with Pols son arrivals and 

arbitrary service.  This work will be published at a later date. 
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