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MONTE CARLO METHODS AND THE PEET PROBLEM 

I. Introduction and Summary 

Project schedules of many kinds can be represented as a directed acyclic 

network in which activities of the project correspond to the arcs in the network 

with lengths equal to the duration of the activities. The structure of the 

network represents the order in which these activities may be performed, and 

the duration of the total project is simply the length of the longest path 

through the network.  If the relevant activity durations were known with 

certainty, finding the longest path (often called critical path in this context) 

is a trivial matter even for very large networks. Unfortunately in many pro- 

jects, especially research and development projects, the time durations for 

various activities are known only with a high degree of uncertainty.  It was 

to cope with this aspect of network planning that the PERT system was created. 

The approach vas then to consider the arc lengths (activity durations) as 

random variables with known distributions. This approach gives rise to two 

important problems. The problem of determining the distributions for the 

arcs and the problem of simply solving the model, i.e., finding something that 

corresponds, in some sense, to the project duration and critical path in the 

deterministic case.  Both these problems were avoided to some extent by 

approximating the stochastic problem by a problem of the deteiminlstic form. 

The purpose of this paper is to try to characterize the qualitative aspects of 

individual networks which Indicate whether the reduction of a stochastic 

longest path problem to a deterministic one is adequate and to 

Parts of the material In Sections 2-7 and the Appendix were written while the 
author was a summer consultant to the RAND Corporation and appeared In slightly 
different form in [12]. The author Is grateful to T. E. Harris, B. L. Fry, F. S. 
Pardee, E. Scheuer, K. R. MacKrimmon, and C. A. Ryavec, all of RAND Corporation 
for their helpful discussion and encouragement In the preparation of this paper. 



some extent, to estimate the magnitude of the errors involved. 

To accomplish this, we turned to Monte-Carlo simulation. A bonus from 

this approach was the realization that Monte-Carlo solution techniques could 

be used to solve PERT networks more accurately and to gain estimates for 

quantities not obtainable from the standard PERT approach.  In particular, 

the "criticality" of an activity, i.e., the probability of an activity being 

on the longest path, can be calculated. This appears to be an exceedingly 

useful measure of the degree of attention an activity should receive by 

management, and is not as misleading as the critical path concept now used. 

In Section 2, we characterize in more detail the PERT model and define 

relevant terms.  In Section 3 the solution technique now used is analyzed 

and the important assumptions emphasized. Section 1+ describes the use of 

Monte-Carlo simulation and Section 5 describes the statistical analysis used. 

Section 6 relates shortcuts for the computation, one of which has the novel 

feature of reducing cost by increasing the variance of the estimate.  Section 

7 evaluates the utility of simulation for solving networks, and the Appendix 

illustrates many of the points with examples, 

* 
2.  The PERT Model 

We are given a finite acyclic directed network of arcs, which we call 

activities, and their nodes, which we call events.  Associated with each 

activity is a non-negative random variable, which we call its duration. 

There axe two special events, the initial event and the terminal event, such 

that no activity leads into the Initial event or out of the terminal event 

and such that each activity is contained in a directed path leading from the 

initial event to the terminal event. We usually assume that the durations 

have Independent distributions, each with a finite range. A realization of 

For further details see References 1, k,   5, and 7. 



the network is the network with a fixed value for each of its durations. For 

a particular realization of the network, we call a longest path from the 

initial to the terminal event a critical path and its length the project 

duration. We often speak also of the random variable corresponding to the 

project duration and of its distribution. 

3. The FERT System* 

The basic data required for the PERT system is the distribution of the 

activity durations.  It is here that the approximations are particularly 

gross, if to some extent unavoidable. The data for these distributions are 

obtained from technical people who have had some experience with the type of 

activities involved, although in research and development projects, for 

example, the activity in question may never before have been attempted.  The 

most one can expect are estimates for a few parameters of the distribution, 

commonly the range and the mode.  Since, as will be seen later, only the mean 

and variance of the distributions are used in current calculation methods, 

the character of the distribution is treated somewhat cavalierly.  The 

distribution is assumed to be a beta distribution with standard deviation 

equal to l/6 the range.  These are of course highly arbitrary assumptions 

and should not be taken too seriously. 

The procedure in current use for solving PERT problems is as follows: 

(a) Reformulate the problem as a deterministic problem, using the 

expected value of an activity duration as its deterministic length, 

(b) Find the corresponding critical path P_, . 

(c) Use the associated project duration £      as the mean of the project 

*■ 

Actually, an approximation for the mean is used which can lead to an error 
as large as 1$ of the range.  See [1, p. C-10, 11], 

'For a more complete disnussion of the problems raised in this section see 
Reference 5. 
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duration distribution; and use the sum of the activity variances along the 

path as the variance of the true project duration, which is then assumed to 

be normal. 

(d) Calculate the probability that schedule dates will be met. 

The assumptions used to justify this approach are mainly the following: 

(A) A critical path P_ of the derived problem is assumed to be "enough 

* 
longer" than any other path so that the probability of a realization having 

a different critical path is negligible. 

(B) The critical path P  has enough activities so that a central limit 

theorem applies. 

We note, however, that assumption (B) is not needed for calculating the 

expected length of the critical path or to calculate its variance, but is 

used only for making inferences about probabilities of meeting schedule times. 

To illustrate what can happen when these assumptions are not satisfied, 

we consider the following simple network: 

\ 

A2 

Here the arc durations A,  and A  are normal/ with means |a  , p.  and 

2   2 [2] 
variances o , a0 > respectively.  Clark   shows that for the random variable 

* 
A very loose measure of this for Individual alternative paths can be obtained 

using Tchebysheff's inequality. 

'We should realize, of course,that strictly speaking we should not use normal 
distributions because they do not have finite ranges. 



which is the maximum of A^  and A , the mean is given by 

MJJ - l^ • (o) + p-g « (-a) + a0(a)  , 

and the variance hy 

aM = W + aV * ^ + ^2 + ö2^ * ^ + ^ + ^2^ a^a) " ^  ' 

where 

i   rx   -t2/2 i    -t2/2 

♦ (x) = —■ /   e *   dt  ,  0(t) = -^ e * 

r2—2    ^ -^2 a = l/ai+ a2   '   a = —r— ' 

and |j,M and cfw are the mean and variance of the distribution of the 

maximum. Assume for simplicity that |JL ■ l-U J then a * 0    and 

M« ■ M^. + iX/J&t) Ja-,   + O .  The usual procedure (p. 5) gives ^ "■" M 

22' ; rs 
So as o  or op increases, we can make the difference, A ■ (l//27T)j/o. 

between the correct mean and the mean calculated using the PEKT approximation 

arbitrarily large.  Similarly, we have 

+ ö
2' 

0M(Ö1+Ö22)  ' 

2     2      2 
where the above procedure would consider OM "=" 0," or a    , so that the 

estimate could be lOO1^ too high or arbitrarily too small.  Similar exercises 

could be indulged in for other distributions than the normal. The point is 

simply that it is trivial to construct examples violating  (A) for which 

■5- 



If 
the above technique will yield almost arbitrary errors. 

More interesting questions are: What does "enough longer" mean? and. 

Given a network, how can we discover if (A) is satisfied? Two factors enter 

here; one is the "closeness" of two paths, and the other is the number of 

paths that may become critical.  Even if each alternative path has a small 

probability of being critical, if there are enough of these alternative paths 

the error can accumulate significantly.  In comparing two paths for 

criticality, the following considerations are important: 

(a) The means of the path lengths. 

(b) The variances of the path lengths. 

(c) The correlation of paths, i.e., the activities the paths have in 

common.  Examples to illustrate these factors are given in the Appendix. 

Probably a large fraction of networks encountered in practice will satisfy 

assumption (A) at least to the extent needed for the desired accuracy, but 

general analytic methods of determining this are hard to come by because of 

the strong dependence on the particular network involved. The problems 

connected with assumption (B) are classical and will not be gone into here 

except to note that the probabilities assigned to meeting schedule dates 

depend on all the assumptions and are therefore especially unreliable. Never- 

theless, the current procedure is extremely simple and rapid, and any other 

solution method yielding significantly improved results must be expected to 

* 
This is not entirely true; for example, the estimate of expected project- 
duration time will always be optimistic under the above procedure.  This 
can be shown in several ways. One informative way is to write the problem 
as a linear program with a random constant vector, the components of which 
are simply the activity durations. Then the general results of Madansky [k] 
for stochastic linear programming problems can be applied. In particular, 
for any linear programming problem with a random right-hand side the answer 
obtained by using expected values is always too optimistic. This result is 
also established in [5]. Another connection between linear programming and 
PERT is the relation between sensitivity analysis and the short cut of Sec. 6. 



take considerably more computation time. 

The purpose of the PEBT system is to help management spot bottlenecks 

and overruns before they occur, so that corrective action can be taken before 

it is too late. Rnphasis is on providing a tool for "management by exception," 

that is, to point up t" e few activities that are particularly critical and 

require close managerial supervision.  Currently emphasis is put on the 

activities on the "critical path" in the network with the activity distribu- 

tions replaced by their means. 

Current PERT systems essentially give as output "early" and "late" times 

for each activity, and the probability of meeting given bench-marks or 

schedule dates.  Since these are expected values, a variance for these numbers 

is also given to indicate the reliability of the estimates. Generally in this 

paper we will restrict our attention to the expectation of the project 

duration, its variance, and the distribution itself. All the other commonly 

given output is obtained using essentially the same methods. 

One of the more misleading aspects of current PERT solution methods is 

the implication that there is a unique longest path.  In general any of a 

number of paths could be longest, depending on the particular realization of 

the random activity durations that actually occurs. Thus it makes sense to 

talk about a "criticality index," which is simply the probability that an 

arc will be on the longest path. Current solution procedures by their 

very nature cannot give any information on this. We see in the next section 

that Monte Carlo techniques can give answers to this and other questions. 

k.     Solving the PEBT Model Using Monte Carlo Techniques 

When we say that we "Monte Carlo" a PERT network, we simply mean that 

we apply the longest path algorithm to a long series of realizations each 

-7- 



one obtained by assigning a sample value to every activity drawn from its 

proper distribution. Each realization obtained in this way is considered as a 

sample value for the simulation. Given this information, we use standard 

statistical methods to estimate the distribution and parameters of Interest. 

This technique can be used in two basically different ways. The first involves 

a relatively small sample size and is used to test, for example, the classical 

type of hypothesis as to whether the true mean equals JL, ,  to  give some 

indication as to whether assumption (A) is violated. These statistical tests 

could be sequential and involve the application of standard statistical tech- 

niques.  This approach has the disadvantage that it gives only Incidental 

information about the distribution of the project duration. 

The second application of the technique offers more fascinating oppor- 

tunities, and that is what will be considered here. That is to take a large 

number of samples and Monte Carlo the network to actually obtain the answers 

rather than to run a check on traditional methods. 

In the Monte Carlo framework, the model can be generalized to some 

extent.  Including resource allocation would be complicated but could be 

accomplished, especially for certain cases. For example, if two activities 

use the same scarce resource, things could be set up in such a way that the 

first activity to start would have to finish before the second could begin, 

or, for three activities, the last to start might have to wait for the first 

two to finish. Alternatively, the three could be constrained to go one at 

a time, etc.  Correlaoion between activities could very easily be handled with 

Monte Carlo techniques. 

The data-collection problems are just as grievous when treated by Monte 

Carlo techniques as when treated by the usual methods, if not more so. 



In current solution methods, the output does not depend on the 

structure of the activity duration distributions but only on their means and 

variances. The Monte Carlo approach, in order to gain extra accuracy, does 

depend on the shape of the distribution. On the other hand, the M^nte Carlo 

approach has greater flexibility in that any distribution can be used for 

activity durations — beta, normal, triangular, uniform, or discrete in any 

sort of mix. This flexibility allows one, in particular, to try different 

distributions and observe the effect of neglecting or making highly arbitrary 

assumptions on the shape of these distributions. An example illustrating 

this point is given in the Appendix. 

It is in the area of computational accuracy, however, that the Monte Carlo 

techniques yield the greatest benefits. For example, the estimate for the 

mean using procedures of Section 5 is always low, whereas the Monte Carlo 

procedure gives an unbiased estimate. Again, while the earlier procedure is 

the least accurate in making estimates of the probability of meeting 

schedule dates, we shall see in the next section that the Monte Carlo technique 

yields very good answers indeed and in particular makes no recourse to 

central limit theorems. 

B'inally, with respect to output, this approach yields all the output 

of previous methods plus information on the "criticality indexes," or 

probabilities of activities being on the longest path. 

C> ^  M 

g.  Accuracy of Monte Carlo Techniques 

The only type of statistical analysis we shall investigate here is 

predicated on a fixed number of trials determined before sampling.  We then 

ask what is the probability that our estimators for the various parameters 

and distributions will be "close" to the correct ones. 

-9- 



!Hie first parameter we shall consider is the mean of the project duration. 

Each complete realization is considered as one sample observation, and the 

estimator we consider is the sample mean.  More formally, let X be the random 

variable (r,v.) corresponding to the project duration. Let X.  i = 1,...,N , 

be N independent r.v.'s each with the same distribution as X .  Then 

(X^,...,^) is our sample. The r.v. 

2X 
^     i 
H - — 

is the estimator of 

Exp {X) =ux 

Let 

a^ • Var fx)   ; 

then we have 

Var i\l)   = ö /N 

Since we shall be talking In teims of thousands of samples, the central limit 

theorem tails us that |j, is to a very good approximation normal with mean 

yi      and variance a /N , denoted Nor (\i    , a AO .  Clearly as N increases 

the uncertainty in our estimate of Exp (x) decreases.  Since the standard 

deviation, i.e., the square root of the variance, is a measure of spread 

with the same units as X , we see that roughly speaking the accuracy 

increases inversely with the square root of N . 

EXAMPLE: Suppose with probability 0.95 we want our estimate of the mean to 

be within a  /50 of the true mean.  That is, we want to choose N so that 

-10- 



*cK-ai<t<^+0£l  -0-95  • 

Now we have 

Pr {nx - 5|< & < Hx + 5^ } - Pr , ^ 
ß    Ü -Vx        N 

Jf 50 J 

and ., « 

H - M-x 

is distributed Nor (0,1) , which implies that one should choose t such 

that 

♦(t) - «(-t) = 0.95  , 

where M/^O  = 1.96 from tables of the normal distribution.  This gives 

N ft. 10,000 . 

In general, however, we do not know the variance of the distribution, so 

this also must be estimated. To do this, we use as our estimator 

s2.1^^-*)2    . 

2 2      2 
Assuming the distribution of X is approximately normal, NS /a      is X™-, > 

so we can get rough estimates of the error involved. [13] 

EXAMPLE: Suppose we wish to know with probability 0.95 that our estimate of 

O  is correct within 5^; that is, we wish to chose N such that 

Pr {0.95ö2 < S2 ^ 1.05a2) = 0.95  . 

-11- 



Bit 

2 
Pr {0.95a2 < S   11.05a2)  - Pr (0.95N< 5*L^1.05N) 

a 

For large    N , x^ ■,     is approximately    Nor  (N - 1 ,  2(N - l)) , whence we 

have, upon some more manipulations, 

.     •   :-  pr (o.95N < 24ll.05N). Pr{^^m<  (NS2/a2)  - N + 1 
a L  |/2N - 2 72N - 2 

^ 1 + o.05N| „ 0#95 

l/2N - 2   J   ■ 

where 

(NS2/o2)   - H+l 

|/2N - 1 

is approximately    Nor  (0,1)   .    Proceeding as before, we find 

1 +0.05N al>96      i 

Mi - 2 

which yields N * 5000 . 

For the "crlticallty index," one is simply saitrpiing from a binomial 

distributionr ' The estimator is the ratio of the number of sample'realizations 

for which the arc is critical to the total sample size. The mean is • NP   : • 

and the variance NP(l - P) , where P is the probability of being critical. 

Since the number of samples is fixed, the estimator is simply a sum of 

independent random variables and therefore asymptotically normal. 

-12- 



EXAMPLE: Suppose with probability 0.95 we want our estimator of P to be 

correct within 0.01. Now (p - P)/ ./P(l - P)/N is asymptotically 

Nor (0,1) , where P Is our estimator. We want 

Pr { | P - P| > 0.01} - 0.95  , 

or 

Pr|    -0-01  <   g-p  <-^0l  1.0.95  . 
L ^P(l - P)/N  ^P(l - P)/N  ^P{1 - P)/NJ 

Since P(l - P) <. lA , if 

Pr i -0.02/N< ■ * ~      ~<  0.02/5" V = 0.95 
L    '       Mi - P)/N    ^ J 

the resvat will be even better. This Implies 

.02^1 =1.96  ,  or N » 10,000 

Finally, we look at estimates of meeting specific schedule dates. For any 

given fixed schedule date, the problem is again sampling from a binomial 

distribution, and the previous analysis goes through.  On the other hand, we 

may not want to limit our attention to any fixed date, and may want to 

know the accuracy for any date we choose; i.e., we may want to know, in some 

sense, how well our sample'project1 duration distribution "fits" the real 

one.1' If we are willing to assume that the project duration cumulative 

•"' distribution function is continuous, we can make probability statements about 

the greatest absolute differences between the sample cumulative distribution 

function (c.d.f. ) and the true one Independent of the distribution itself. ^ -'* 

-15- 



*, 
; 

Kolmogorov in 1935 gave the asymptotic results that are tabulated, for 

example, in [8]. 

population and F  is the sample cumulative function.  We find tabulated 

EXAMPLE: Let Dn - sup | Fn - F | , where F is the c.d.f. of the parent 

population and F  is the 

'i    in tables Z , L(Z) , where 

' -v    ■ :   v   *• -..v..   .;.-.    '■   --^ ..."■■■• 

L(Z) =1 lim PR {jG" Dn 1 Z) 
: -. 

n*oo 

Suppose with probability 0.95 we want the maximum deviation to be less than 

0.01 .  We find for L(z) = 0.9505 that Z = 1.56.  Solving for N in 

JN (.01) =1.56 , we find N = 18,500 . 

The statistical analysis for other outputs of interest is carried 

through using the same methods found in this section. 

6.  Computational Short Cuts 

As in most Monte Carlo applications, there are techniques available for 

reducing computational expense in solving PERT problems.  In solving PERT 

problems using Monte Carlo methods, most of the time is consumed in generating 

random numbers.  Our approach will be to avoid sampling activity duration 

distributions that are rarely if ever on the critical path.  These activities 

do not significantly .affect the solution. The trick of course is to find 

• ■.  .-■. . -V' . • 
these activities. Two methods will be outlined here. The first is an 

r analytic approach, based on a suggestion of Kenneth Mac Crimmon, and the 

second is a statistical approach. 

Because the distributions of the activity durations have finite ranges, 

it may turn out that many paths can never be critical. One way to discover 

this is the following: Consider the realization obtained by setting all the 

-Ik- 
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activity durations at the lowest point of their ranges, and find the 

corresponding critical path P and path duration i . Now set all the 

activity durations not on the critical path at their highest value.  Then 

only the activities used in paths with length strictly greater than i    can 

ever be critical.  The remaining activities may be eliminated. References 

[9,11] give algorithms for finding these paths. This procedure does not, in 

general, remove all the arcs that can never be critical; moreover, if the 

number of paths longer than i    is very large, then the algorithm for finding 

them can become quite unwieldy. 

The statistical approach is quite a bit easier and can be applied to 

activity duration with Infinite ranges. The approach here is to sample a 

relatively few times using all the activities and then stop and eliminate all 

activities that were never critical. For a given network the size of the 

initial sample determines the probability of making a mistake, that is of 

eliminating an arc that "should have" remained.  For instance, if the 

initial sample were 1000, then the probability that a given activity with 

probability 0.01 of being critical would not be critical is 

(0.99)    ■ 7.3 x ID-' .  Another way to prevent the elimination of the 

wrong activities is not to remove the activities at all but to use each 

random sample for the activities with low criticality for K realizations 

before drawing a new one.  In other words, draw new activity durations for 

th 
y. these arcs only every K  realization.  The same estimators as before are 

■ •. "',■*. respectively    unbiased ^estimators of the project duration distribution, 
'"'   " —   M, '    .„     •-rf'* ».'••■ 

i. its mean, and the criticality probabilities for the arcs.  The estimate for 
r,        - ' ■"*' •"'■■ ' ••• -■".ti *-'< ?' 
♦  * . • «.fc 

I • - . '      "the .variance of the project duration is no longer unbiased but is consistent. 

The variance Is not decreased but as a matter of fact is very slightly 

Increased. The savings are obtained by having to sample the "unimportant" 

-15- 



activities only (l/k)  the number of times that the more important 

activities axe  sampled. Under this approach it is not necessary to sepaxate 

only those activities that were never critical in the initial sample, hut 

more generally all those activities that were on the critical path less 

than some given number of realizations could be distinguished. 

Finally, consider a situation in which the exact distribution of the 

project-duration distribution is not desired, but only its mean and 

variance.  In this case an activity which is always critical can be replaced 

by a deterministic activity with duration equal to the mean of the original 

distribution.  The same procedure is gone through as before, except that 

the original variances of all the changed activities must be added to the 

estimated project-duration variance. 

Tj Feasibility of Method and Proposals for Future Investigation 

An experimental computer code has been coded by R.J. Clasen for the 

IBM 7090 computer to test the feasibility of ttonte  Carlo evaluation of PERT 

networks. Runs of 10,000 samples and up to ^5 activities were run. The code 

can handle 1000 activities and can generate uniform, triangular, and beta- 

duration-distribution functions. The output is the project-duration density 

function, and its mean and variance, and the critieality index for each of 
t 

the activities. 
V  •• ._      >     j-   -;■__ 
^"c--- " ; „7, --r-r. «.Experience with the program has Indicated that most of the time is con- 

„, ■        sumed generating random numbers, so that the running time is essentially a 

linear function of the number of random numbers generated — or, for fixed 

sample size, a linear function of the number of activities in the network. 

This is especially true for larger sized networks. For a 200-activity network 

and 10,000 samples, the running time would be about 20 minutes for triangular 

-16- 



distributions and about 5 minutes for uniform distributions. This is to 

be compared with analytic methods, the difficulty of which usually increases 

exponentially with the number of arcs. 

-IT- 



APPENDIX 

On all the simulations illustrated here 10,000 realizations were used. The 

first figure illustrates a distribution on which the arc distributions for 

most of the examples were based. Figures A-2 and A-5 illustrate the effect 

on the expected project duration of having two paths with approximately 

2 
the same length, u.  and a  represent the project duration mean and 

P      P 

variance.  In Figure A-3 the cumulative project duration distribution is 

plotted for M-., = 5 > 9.5 and 10. The shaded bar on the graph indicates 

a 95^ confidence band (see Sec.. 5).  Similarly Figures A-k and A-5 illustrate 

the effect of a multiplicity of paths of comparable length. The confidence 

regions are 95^ confidence intervals. Figures A-6 and A-7 illustrate the 

effect of correlation between alternate paths.  Since each arc in these first 

examples is intended to represent paths made up oi many activities, it 

would be perhaps more realistic to assume normal distributions for the 

arc lengths.  In this case the table of Figure A-2 can be redone using the 

[2] 
results of Clark.    This is done in Table A-l. 

TABLE A-l 

•s.*» 
• ^«lt Vt 

*1 ^P 
2 

0P 

5 10   - 1 

8 

:   '9-.5- 

10.05 

;'10.55 

.896 

.705 
10 ":10.56 .681 

Similarly from the literature of order statistics (e.g., [10] Chapter 10) 

we can redo the table in A-U.  The results are tabulated in Table A-2. 
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TABLE A-2 

n 
^P 

2 

1 10 1 

2 10.56 .681 

5 10.81t .559 

-  5 
10 

11.16 

'll.54 

.1^7 

"»' 00 0 

Figure A-8 demonstrates how the sum of independent uniformly distributed 

random variables approaches normality.  This was done using the uniform 

distribution so the computations could be accomplished analytically.  In each 

sum the distribution is normalized to have variance 1. 

In Figure A-9 we see where an arc, 1-2, not on the "critical path," 

1-5-h,  in the PERT sense is, in the stochastic sense, more often critical than 

any other arc. 

Figure A-10 shows an example given in [l] p. V-2. The three numbers 

assigned to each activity are respectively the optimistic, most likely and 

pessimistic estimates for each activity. 

The expected project duration time using PERT is 66.0 with a variance 

of 60.27.  The Monte Carlo method using 10,000 realizations yields a mean of 

*  • '/ 
67.O ± .15 and a variance of 42.59 ±2. 

_The% distributions used for the activity durations were the beta distri- 

butions with end points and modes given by the three parameters indicated 

.0 The standard deviation was taken to be l/6 the range. in Fig 
* 
Actually when adjustment is made for an approximation used for calculating 

the mean of a beta distribution the PERT estimate is 65.5 

/ Expressions of the form X = N ± A denote the statement, "the probability 
that N is within A of X is greater than 0.95. 
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In Fig.A-11 a normal distribution with mean 66.0 and variance 60.27 

is compared with the distribution obtained by Monte Carlo. Figure A-12 

displays the network with the criticality index for each activity. The 

heavy line is "the critical path" calculated using expected values for the 

activity durations. 

Carrying through the analysis of Sec. 5 we see that with N ■ 10,000 

we can expect'with probability 0.95 that our estimated mean is within a ._„ 

of the true mean. Using as an approximation of CT  the square root of the 

estimated variance, we obtain 

öx/50 * /^J = •15 

Since the Monte Carlo estimate differs by 1.0 from the PERT estimate the 

difference is certainly statistically significant at the 95^ level. Finding 

the shortest and longest possible project durations by using for activity 

durations respectively the optimistic and pessimistic times we find that the 

discrepancy, 1 , is on the order of 1 — per cent of the range.  On the other 

hand, for the variance of the distrioutlon the variance estimated by PERT 

methods is 1. ^2 times as large as the Monte Carlo estimate, but as we saw in 

Sec. 5 the probability is better than 0,95 that the Monte Carlo estimate is 

within %  of the correct value.  Finally, in Fig. A-IJ the probability that the 

project will be completed by X is charted as estimated by the PERT 

technique and as estimated by the Monte Carlo method. With K a 10,000 in 

N(D ) = 1.56, we see that with probability 0.95 the sample cumulative 

distribution is within 0.0156 of the true distribution at every point, (SPR p. 15). 

We also note that activities 6-8 and 8-9 were never critical.  In fact, 

they cannot be critical, but the deterministic algorithm given in Sec. 6 will 
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not reveal this.  So in this case the statistical approach is clearly 

preferable. 

Finally in Figures A-lk  to A-17 we see the effect on the project distribution 

of using various activity distributions. The distributions used are uniform 

and triangular applied to the network of Figure A-10. Recalculating the 

project mean and variance as predicted by PERT using the correct activity 

means and variance we obtain, in the triangular case a ■ 69 and  0 ■ 92.77. 

The actual values as determined by the simulation are a ■ 71.70 ± .15 and 

a    m  58.9IJ. ± 3. When we use uniform distiribution the PERr approach yields 
ir 

2 
n a 72.0 and a ■ 172. Using simulation we obtain p, » 77.6l ± .2 and 

2 
a    m  92.51 ± 5. We notice however, that for planning puiposes the results 

in all three cases are essentially the same, in each network the same 

activities have high criticality indices. 
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EFFECT OF NUMBER   OF PARALLEL   PATHS 
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