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STUDIES OF THE ELECTROMAGNETIC CHARACTERISTICS

OF MOVING IONIZED GASES

The Project Scicentist for this task is Dr. Manlio Abele.

The investigations of the microscopic and macroscopic
propertics in a weakly ionized gas reported in Chapters II and 111
of this summary rcport were carried out under the direction of
Professors Piero Caldirola and Luivi Napolitano, respectively,
and under the general direction of Prof. Picro Caldirola.

The experimental investigation described in Chapter IV has
been carried out by Messrs, R. Tomboulian, M. Wecker and
H. Medecki under the direct supervision of Dr. Abele.

In Chapter V, preliminary calculations have been conducted
by Dr. Brucc Gavril in the evaluation of the electromagnetic pro-
perties on the basis of the experimental information ohbtained with

the shock tube facility.



CHAPTER 1

STATUS SUMMARY OF THE RESEARCH

The present semi-ann:al progress report covers the theoretical and
experimental rescarch performed during the period from October 1, 1961
to April 1, 1962, in connection with the study of clectromagnetic properties

of yonuniform plasmas,

etailed calculations of the distribution function of the clectrons are

1
1

presented, with the basic assumption of a weakly ionized gas where only

clectron-nentral particle collisions are taken into account, | ohewimre—the

-
procedure described I Ghapiesd, hw caleulations will be extended to the

case of interactions between clectrons and ions,  The results obtained g

Ghrpter—H will be applied first to @ one-dimensional problem where a tempera-

ture gradient is assumed in the plasima, and the electron ditfusion and electric
propertics of the lonized gas will be computed,  Chapter ese

PO TEPNY | -J‘_rl-,k-..‘u N B EVPETR SN pveevapn

theor eticadrrrer UGLU])i( an;uybis rt—tHre Prerpes

efan appliedmapneric ot~ The clectric field, induced by nonhomogencous

thermodynamic propertics, and the electric conductivity of the plasma are
evaluated, The analysis is performed for the case of weakly ionized gas in
the imperfect Lorentz gas approximation,
: L . : .
This analysis ha extended to the case of a nomisotropic plasma.
which corresponds to an applicd magnretic tfield, The results obtained will be

presented in an additional report..

The experimental program has BIen conducted, with the technique

described in the previous progress report)\in a nonuniform argon plasma

obtained in the shock tube facility., Chapter IV presents the experimental



results of the electron density profile of the ionized argon behind the shock
for several initial conditions of the driven section. In the limited range of
frequencies which have been used in these experiments, the results show the
high resolving power of the technique. In the prelimiinary part discussed
herein, only the case of small absorption of the microwaves has been
analyzed.

In connection with the program of computing the electromagnetic propertics
of the plasma from experimental results, the analysis of the propagation of
electromagnetic waves in the nonuniform medium inside the cylindrical wave
guide is still in progress, The analysis is carried out assuming that the
complex dielectric constant of the medium is unknown. and the propagation
equations are solved in terms of measured quantities at the surface of the
wave guide, The measured quantities correspond to the signals obtained
with the electrie and magnetic probes which are located at the surface of the
wave guide. Chapter V presents the results obtained assnming that the
electromagnetic properties of the plasma are constant in a cross-section of
the tube and depend only upon the axial distance from the shock, These
results will be applied to the calculation of electromagnetic propertics on
the basis of the results described in Chapter [V, The analysis will be extended
to the case of monuniform transverse distribution, assuming a suitable model

for the radial dependence based on theoretical caleulations of the flow ficld

behind the shock,



CHAPTER II

ELECTROMAGNETIC PROPERTIES OF NONUNIFORM PLASMAS

FROM MICROSCOPIC CONSIDERATIONS

INT RODUCTION

The main object of our rescarch was to examine, in a microscopic way,

some effects in a plasma, due to inhomogencities, so as to estimate the
importance of such effects on the principal electromagnetic properties of
the plasma, as, for instance, conductivity., In order to reach such results
from our view puint, it is necessary to caliulate certain distribution functions,
directly deducible from Boltzmann's equations. If inhomogenceities are present
(due to gradients of concentration, of temperature, et . oas far as we know,
no i\_illliiil};:]f:‘t_‘l(_)gt'_(l method of calculation exists,

For this reason we decided to examine various models beginning with
the simplest ones;

1. Plasma assimnilated to a vgc.xkl) ia_n i '.c(l_ Lu:cnluhn}_;;g_.z, considering
clectrons and neutral molecules and ne tecting Coulomb interactions,

2. Three component plasma (electrons. ions, neutral molecules) taking
Coulomb interactions into account,

Since the analysis of model 2. has appearcd pdr!icul.n'lyl difficult from
a general point of view (for the reason that it implies the solution of a system
of Boltzmann's cquations), first of all we decided to carry out in a detailed
way, a method of actual calculation, in order to face the simplest model 1.
even if it is not very realistic, In addition, f{or the scheme }. we have decided

to examine separately the various inhomogenceity effects and also, to keep near



to the model studied from the macroscopic view point, we have selected the
; s

detailed examination of the influ¢nce of temperature gradient in a slab con-
taining the plasma, whose walls are absorbing and emitting with a Maxwellian
distribution,

First, in Section L., the complete mathematical-physical «.h.aractcristics
{in our opinion not so wholly developed in the literature) of model 1, are
described up to the deduction of final cquations.

Next, in Section 2., a known analytical method used for solving the equations
of Section I, (scries expansion of eigen functions of the collision operator) is

described.



—

. MATHEMATICAL-PHYSICAL CHARACTERISTICS OF MODEL |

We consider, as in the Lorentz gas model, 4 binary mixture of a sinele
5 8

kind of neutral molecules and electrons, That is to say, we consider a weakly

_i_on_ﬁ_'/L(l] gas (n << N) which allows us to neglect {within the limits of an initial
research whose aim is to test a methematical method for studying Boltzmann
cquation for a nonhomogencous system) the ion  effects, provided that their
density is of the order of n.

We shall indicate with f (i’ Ay t) and F (i’ l’,t) respectively the clectronic
and molecular (listr.ibution functions.

In the corresponding system of the two Boltzmann equations :

Df = Jcc(f) ol (f)

cnl

DF = J (1°) + .]mC(F‘)

nini

we can neglect T (f) and J B
ve negle ('u( ) anc m(‘( }
Assuming, then, the following systen for the temporal behavior of

f and I7,

Df = J (f) (1. 1)

cm

DI.‘ ([.) (102)

mm

i
(4

we may note that:

a)  From the Equation (1, 2) the temporal hehavior of the molecules is entirely
independent of the presence of c‘lcctrons, while the clectron gas depends upon
the presence of molecules, through the collision term Jcm'

b} The temporal behavior of the electron gas, given by Equation (1,1) is

affected by the molecular gas, as we shall see later, only through the



following phenomenological parameters:
molecular density, mecan velocity and mean square velocity,
As a result it is not necessary in solving Equation (1,1) to integrate the
Boltzmann Equation (1. 2):
RE = Jmm(F)

for we only need the knowledge of the above mentioned phenomenological
parameters, ‘

We shall begin by expanding the electronic distribution function

f(x, v,t) in spherical harmonics, writing:

(8 9] s
b i
f(x, v, 1 5, : X, V “
X, Vv, 1) LI Ccm S PR T R
“reo |
c=m e
where
= v©¢ 08 b
am =V cm(o) cos mo
S = v' 8 (9) sin mo
&1 em
Qe (9) being the associated Legendre functions:
309!
- (ny)
© (0)=sin @ P (cos @)
em ¢

We may write the expansion (1, 3) in the form

() = L = 0 W)
v

(1.3)

(1.4)

where f, represents the isotropic part of the distribution function f, f; 1is the

coefficient of the first anisotropy and /( is simply the remaining part of the

expansion,



Introducing (1.3) into the Boltzmann Equation (1. 1) we obtain a
hierarchy of equations, which i1s casily obtained provided that we know the
resul* of the application of the linear collision operator J over each term of
the expansion (1, 3).

To this end, we may note that the operator J, in an approximation for

; . m |
which one has simply == = 0 (perfect Lorentz gas), possesses the following

M

properties, for cach isotropic function a(v):

Jomfa) =0
cm(ac‘”“) S Ucaccxn (1.5)
J (aS )= -V aS
em em e cm
In the imperfect Lorentz gas sclhieme, we shall have:
m
I o ) = Oy | —‘\71')
= v t m
J('nl(accl’n) 1 -L(.“Ccnl |'l t OZ ( W | (l.(\)
} : m
> -V af —_
Jcm(ubcm) "uscm [l k10 ! M)‘
where we have used the Landau symbol Oy {x), meaning a quantity which is
simply of the order of x,
The quantity Ol ( n_1_) has been calculated by others (2) under the
M
hypothesis of a Maxwellian molecular distribution F, obtaining:
~m 12 5. KT 3a,|
Ll o L) ek

On the other hand, we have proceeded to the evaluation of the quantity Ol(m/M)
keeping an entirely arbitrary (and hence generally anisotropic) molecular

distribution,



8
The results of our calcunlation is given by:
1 ) J VAR vy =
3L = T EAL) W B = N+ i) 2= VY (1. 8)
em vZ dv 1 v - A B
\'
where:
PE el
1 o 3 3 o— =
A(v) —MHVQ+UIV 3 el
B(v) = v, via
C i W, }‘U 2 a—a- 3V l_ v .!. aUZ 2 ]'
(v)_(l-2 Z)v i (1'2 Z)v-(‘ = vé |a (1.9)

We have followed Chapman and Cowling's notation, in writing

3

vov vVt (vv -4 we 6, 0 R
= AL 1 3 1 J
e
1y =1

while YV and V, are the first two rclaxation frequencies l.l]l

n
d - 1
Y(v) = 27Nv | sin @ |1 - P, (cos @) 0(0,v) d0
) L}
o
(1.10)
m :
r |
V(v) = 2TNv sin@|1-P (cos 0){ ¢(0,v) do
2 \ i 2 .
o

i

U(Ol v - ! l) being the differential cross scetion for clectron-molecule
collision, in a frame of reference fixed with one of the two particles, The
determination of Jmn(nccm), Jem(uSL_m) has been done disregarding the
Oz’ O3 terms,

A general account of the method followed in the derivation of formula

(1.8) is given in Appendix 1.



Taking into accout that f is an isotropic function and f ,° Y sm
o fin
v

simply a linear combination with isotropic coefficients of C 4, Cy» Sll g

v
(= «f,)

we are now able to calculate J
em ' v

e

eln

If we perform a further approximation(¥) forgetting the term X(v)

in (1.4), we at last arrive at the followiny:

¥ 5 §
L P, vy, Jv 3% L
B Tpalli= 0 5 IA(v) ARt Y e S Nig
5 J (r.1h)
_vl :_- _f_J
v

where A(v), B(v) and C(v) are given by (1.9).
The calculation of Df is immediate. Finally, by means of the
orthogonality properties of the spherical harmonics functions on the unit

sphere, we obtain the following systen:

of v f 4] 9 1 3
2P == £+ — (vih.f1) = 2 = v v
St 3 - = 3w v —= M e LTS
' MV_ efy ll 12)
JIE
3myv v '(
o,
== 2 of ==
i vgf,t — 29 E b HXE) = ae 2 (vr i) Voo v |
- e TRy — 2 WC = vi 3w o' — o
At )

in the unknown functions f , fl 3
o

(*) As usual in this kind of reasoning, we may evaluate "a posteriori' the
usefulness of this approximation, by calculating explicitly the difference
between the results obtained and those based on the successive approxi-
mation, or "a priori'' we may introduce some plausible arguments, like
those used by Davydov (3 ) and Gurevitch ( 4).
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APPENDIX | - DERIVATION OF EQUATIONS 1.8 AND 1.9

Let us state here some formulas which we shall use later on,

directly deducible from the dynamics of elastic {ctassical) collision between

two particles (in our case, electron and molecule},

Let us consider an elastic electron-molecnle encounter, with
velocity v, l’ respectively, well before the collision,

Let us put:

g-_\’_\v

where g is the relative velocity of approach of the molecule in a frame of
reference fixed with the electron (see Figures 1 and 2 at the end of this
Appendix).
0 is the scattering angle; from Figure 2 we have at once:
.
g -g'=2¢sin= k=2(g- k)k
BT R 2 = 8 X
where k (apse line unit vector) represents the direction of the external
bisectrix of the angle between the asymptotes of the relative motlecnlar
trajectory,
We have thus:
’ . -
Vavaz Vievt s 2g sin — k

from which, by momentuin-conservation:

m

'I_,:_——— .l_.
= 4 ol LA
' s e |
vieys g !
£ WA & == |
|
W o s e Rk
=l L R =

(Al-1)
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having stated A = ="
M

In the frame of reference sketched in Figure 3, we see that the

components of k are

k'=-cosg cos ©
X 2
k|=-cos—sino
y 2
k"—'sing
L 2

We pass from this frame to the one Skct(‘l;l‘(l in Figure 4 through:
X=-x"sinp+y' sin€cos P+ ' cos € cosp
y=x'cos P+ y'sin€singt 2 cos € sin
2= y'cos € - 2'sin €

where (sce Figure 4):

d v V
sSin € = — -« — €05 a
’_l‘ ¥
\I
cos €= T sina
14

S0 we can calculate the components of k in the frame of reference of

Figure 4. Using the first of (Al-1) we have the followinyg:

vl (1 + A) = = [(v = V cos a) sin @ sin 0 - v {l=-cos @) sin n-\cos p
X

g sin @ sin f cos ©

- -

|
v;,( 1+A) = = {{v - V cos a) sin @ sin © - V (l- cos @) sin a |sin

(Al-2)
- g sin Q@ cos B cos ©

‘ =
v (I+tAY = v (At co3 Q) t V | (l-cos 0) cos a - sin @ sin a sin ©
Z
1 l.’ __)
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So, squaring and summing:
Gl e Jl +2A cos @+ A%+ 2B% (l-cos Q)
1+ A L (A1-3)
. , 1/2
+ 2B [(A-l)cos a(l - cos Q) - (Atl) sin a sin @ sin © .
where we have put:
\Y
B &, 5
v
We now treat A and B as infinitesimal quantities and eliminate
quantitics which contain AL A%.... B 3, Bt Tenste iy TASBS iinis
(A1-3) becomes :
w! o= v 11A cos @ - A+ B2 (l-cos ©) - B l'cos a (l-cos Q)
{ - {(Al-1)
- . : gl
+ sin @ sin a sin VO |- —l—- cos a (l-cos @) ¢ sin a sin @ sin © S
1
To the same order: J
viav=v (B2 A)(lecos 0) - B cos a (i-cos0)
‘ “ (Al1-5)
L op? | 2
bosin a sin @ sin Ql- — | cos a(l-cos0) + sin a sin @ sin C"i ¢
! 2
J f A
= <2
(v'=v)? = \'ZBZLC()S a (l-cos @) t sin a sin @ sin © ! (A1-6)
‘ T2 132 '
g o= v‘l B2 - 2B cos a } =let——- sin’n - B cosal (A1-7)
= B 2 :
B2 30 B2 #o
0(0,g) =0(Q,v) t v L sinla- Bcosu‘-g-v e vicosla Fywea (A1-8)
0 (0,g) g =0(0,v) v-Beosa (v %‘.’. 1 0)+ O (BY (A1-9)
v
We must now simply evaluate the behavior of the operator J,  , over an
arbitrary isotropic function a(v), that is the quantity:
Jemf(a) = S(Q‘F' -a F) go(e,g) dQdv (A1-10)



f (v); according to a general well known rule:

The preceeding collision term has been evaluated by noting that in each

electron=molecule collision, the variation of the modulus v of the clectron
]

velocity is given by: 3
m | 12

v -vzq = (Al-11)

[
1

(see (Al-53))

As a conscquence, the integral operator J can be put in a

em
differential form, following the same technique used in the transformation of
the Boltzmann elastic collision operator into the Fokker-Planck form
(references (5) (6))

Let us introduce a suitable, but largely arbitrary isotropic function

()

4 rl -—

J (ﬂ)'f'(\) dv = ({‘_7(\") -d(v) ! g a(v) FAO,p) dQdV dv (A1-12)
| Tem = ! A

Furthermore, retaining only terms of the order of m/M, we have according

to (Al-11):

4 . =2
Z(v') - g(v) (v'-\)a_f_ v L ovraey? 2 / (Al-13)
Av 2 aye

Inserting (Al-13) into (Al-12) and integrating by parts, we {ind:

-

= ) _:_3_' 2 . l ] 2\ )
Jcm la) = 3F 3% T e ¥ 2 ;(" A(v) alv) (Al-14)

where
p(v) = (0(0.;:) gF (v'-v) dQaV

(Al-15)
Mv) = 0(0.8) g F (v'-v)? dQaV

(*} Sece, for instance references (2),(7).
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So far as we choose ¢ (v) to satisfy the following relations:

Y i g T i o)
l}MvZJ = {fx C’a—f \.i| = :—v (vzax)ﬁ] =0
=

V=0 V=0 V=0

In a way consistent with the approximations used, the two preceding
functions (v} and A(v) have to be evaluated to the first order in the quantity
m/M.

To the first order, 0(@,g)g(v'-v) is given by formulae (Al-5) and
(A1-9) as follows:

Og(v'-v) = 0(0,v) v2BZ (l-cos 0) - 0(0, v) vZA (l-cos 0)

2
-0vZiB cosa (lecos @) - Ov? BZ_ cos?a (1-cos 0)2

B2 50
- Oy? Z_ 5in%0 sina sin% + B2 cosla v2 (v ?—— + ) (l-cos Q)
ov

where quantities containing sin © have been overlooked, because a successive
integration is performed over O, from o to 27, From the definition (Al1-15) of
K (v) we can obtain it from the preceding relation, by integration over @ and ©

and over all the velocity space V.,

Leaving aside the (direct) integration, we have:

Vi 72 T 11 Vi e & vz 8, w2
A A AT aVEe 2o vzl v (A1-16)
& 2 v 2 ‘iJ v N

where
m
Vl = 2T Nv \ sin @ (l-cos @) 0 (@, v) do
o
4

\

2T Nv sin @ (l-cos O)ZwU (@, v) do

Y
]
QA O

b = 20Nv \ 5in® 0 0 (0, v) d@

c —



and having stated:

1
=v g(l\i V cosaF

.
Vil de V2 cos?a F
i N) -
- 1
V2 = = \dV V% sin%a sino F

15

In the same way, to the first order in m/M, 0(@,g)g (v - v)* following

formulac (Al-6) (A1-9) is given by:

o(Q-u) g(\"-\)Z; Ov VicosZa (l-cos 9)2 + ov V? sin? @ sin%a sin%

overlooking quantitics containing sin ¢,

Following the definition {(A1-15) we have thercfore:

b
A P vh 2, - r2
X{v) = & v” A

Let us now introduce the quantity:
7!’ 3 1
v = 2fNv |\ sin@ |1 - (- cos 20 - =)0 {0,v)do
2 J | 2 2

0 L |

{A1-18) can be written:

= 1
—~ ] e | g re
A (V) (zul-bz)\“, —3 uz\/ ,

with

Vot {TZ—:VE
4

Introducing now (A1-16) and (A1-20) into (Al-14), and leaving astde the

direct calculations, we have:

T j o —
T 1 v 1 v
Jc (a) Y t\ (v) + BY{v) vy +C {(v) I |

(Al-18)

{(Al-19)

(A1-20)
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where:
- m 1 — dv? 1 Rlay | ==
A(v):-—ulv3q+v(_l/-V)Vzu+—'vz—a—,vzu+—\ZV_VZ
M - o a \ 6 2 dv
S B (v) = v, via
1 v, 3
cv) = -v by cvpa.= v 2 a-vigy, - V) —
2 2 Sy Z v
u
Furthermore, by noting that:
a4 v .
Ww==—"x
&
o | —
vi= — vv:VYV
] o = LS
and puting:
2 1
W V V e T \lzb
we have at last: =
| )
l a v — vy — |
T, () = =52 JA(v) s B(v) —  V iClv)==—: V V7~ (A1-21)
i v aV v == vz ==
where '
m v oa i
A(v)=s — 1 \"niVlv)—‘-— [
i ! 3 a\
B(v) = ¥, via k (A1-22)
‘ |
da 1 v
C(v) (V-}-V)vlg‘43(v-—lfz)v--l-dz vi| a
1 2 2 v L ! 7 6 =
v 4 J
that is formulae (1.8), (1.9) of Section 1,
(A1-22) can be put in the form:
=]
L Lo ovy oo
e = =t @ [P EL: (A1-23)
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At this point, we are able to calculate the quantity:
Jem (0

where f is the electronic distribution function:

fafolv)t X "6 (v)

v —

Taking account that J, - is a linear operator, we have:

Jotf) = 3 {ig) = v,

ci en

.f’

<||<

by using the Bayet-Delcroix-Denisse approximation (see Reference (1))

One can evaluate Jcm“,) from (Al-23) by simply substituting a with f and
[§ (o]

arrive at the formula (1.11) of Section 1,
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ersection

7 = plane through the origin, perpendicular to the incoming molecule

7 '= half-planc terminated by the straight line a, over W
molecule.

r "= refercnce half-plane

b = inpact paramcters

o= azimuthal angle

0 = scattering angle

g' = relative molecular velocity after encounter

hich moves the incoming
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FIGURE 2 (This Figure is intended to be traced on the
7' half-plane of the preceding Figure 1; kis
the unit vector of the so called ""apse' line.)

FIGURE 3



FIGURE 4
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=

/_ section with (x y) plane
\ El‘

(This part of Figure 4 is traced in (x'y') plane)




21

2. ANALYTICAL METHOD FOR SOLVING EQUATIONS

We now approach the study of the system (1.12) limiting ouselves to
the stationary state when there is no magnetic field,
It is thus possible to express fl (x,v) as a function of f (x, v) and to
= o -

reduce the system to only one differential equation in fo (x, V)

: " v e S b B = = il
19 v REYgm M LT
v
| ) J (2.1)
e 9 5 m 1l 3 § MVZ 3f,
=4 5 - = — ly, v } = =
Imv? v (V2 E - &) P 7 me (o 3my bv)—i

Then we studied this elliptic partial differential equation in the variables

x and V.

As we said before, the presence of the molecnlar gas appears only

through the mean molecular velocity V ,V? and the molccnlar concentration N,
We developed f (x,v) in a scrics expansion of cigenfunctions of the
m 1 __? 5 MVZ 3 x
|V, v

operator J = {1 2 3v i v . In doing so 1t was

v/
necessary to specify the type of clectron=moleenle interaction we were

considering.
We have considercd two cases corresponding to central interaction of
the Maxwellian type and the rigid spheres type (see Appendix 2).

In the first case the eigenfunctions of J are:
» f

] mv? (12} v L - (12) L
e 2Z%kT L kT e L, 9 (2.2)
: | J
2
(where € = r;—I:—/— is the non-dimensional electron kinetic energy); in the

second case they are:
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N
[ o | |
& I[ . oS L‘”(;){K (2.3)

< ZkT 1_‘(l) (mv )

|e

Thus we have:

a) For Maxwellian interaction:
@ : . (1/2)
£ = P ap(x)e Lo (6 (2.4)
n=0"

b) For rigid spheres interaction:

P S " (1)
f. e a (x) e L (€) (2.5)

O 3 n - n

‘=0
(k)

Using the orthogonality properties of the L polynomials, we arrive at
two systems of infinite differential equations in ap(x) and ap(x) which, if
the electric field is neglected and V - 0, takes the form:

case of elastic - spheres interactions: (2,6)

Llag ) v tne ) Blageh v (ne 2 e 3T (agx)) -

- nﬁ(n“_l (_)i) ) - 2n (n ! &)C((lr_}(i) )+ n(n-l)t(qn Z(\) ) =

= 3y N? Z'_\:I‘ nnn(i)
<) ]

(n=20,1.,2,..)



uﬂ..._-——-—n-uuuﬂﬂ—__-_-_-l—‘—-—h-i

23

Case of Maxwellian interaction: (2
i

a 5 .
J.- n(n-1) (n-Z)C (an_3(§_) ) + n(n-l)ﬁ(an_z(i) + n(n-1) (41\{-2- )t (an-Z(i) V=

, :
-l) :

i 3 9
--Lni(an_l) 4 n(3n¥2),3(nn_l) t n(n + —2-)(6n & C (an

4 ! (2n + % )I(an) + (n 4 %) (3n ¢ ;)b (an) t (nt .;_) (n t -25-) (4n+-2-) f(nn) ' =

3

[
| 3 3 5., 3 5 7
=1 (n+ —)i(aml) t (n 4 "Z) (n ¢+ E)d(aml) t (nt E) (n %+ =) (a4 ;)f(am 1)‘lf=

| 2 ') )
3miv? N?
= (0] nﬂn(_\'_) (n=0,l,2,..-)
MKT
where : .
{ =y -ViegN:* ¥
< B = 2Vlog T* ¢ +9%log T - (glog T)? - ¢ log N* ¢ log T

C = (Vlog 1)?
In the Maxwellian interaction case we have also evaluated the contri-

~ bution due, separately, to the presence of both an electric ficld and of a mean

molecular velocity,



APPENDIX 2 - EIGENFUNCTIONS AND EIGENVALUES OF THE

COLLISION OPERATOR J

a) Maxwellian interaction (%)

2
6mvo (1/2_2

JM(O) 7 de

M

>
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do |
(©+ =—)
C

We consider the following eigenvalue problen::

Igyled=- Ao
or
d2o

2¢ (2€ + 3) i
dfo | .5
de? de

Introducing the new function

+€
()= e o (€)

(A2-3) becomes:

A2 d!
— i ( i L () —
de 2 de

Imposing on v (€}, as boundary conditions in €=sp

b(3|»

3Imv 2
o

AMA

6mvu 2
o

MA

ace, analyticity in € 0

(A2-1)

(A2-2)

(A2-3)

(A2-4)

and polynomial behavior for € »m, the solutions of (A2-1) are the Laguerre's

generalized polynomials of order 1/2:

\ 14

S (=1)
T=o

(1/2) | _
Lo (o) =

nt1/2 .

n=V 1%

€

(*) The maxwellhian cloctron-molecule interaction model corresponds to a

repulsive force varying as the inverse fifth power of their distance apart,

In this case the collision frequency does not depend on the clectron

velocity: V = Y N,
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]
corresponding to the eigenvalues
6bmy 2
)\n = o n {n=0,1,2...) (A2-5)
M
b) Rigid sphere interaction (¥)
; =
bmv <1 d | ‘ de 6
0 = == 1 S
JR(O) € Te l((O& i ) {(A2-0)
M =+
We consider the following eigenvalue problem
J (©)=-20
R
or
p MA
¢t ey 2 gas g V=0 (A2-8)
d("' de )lnl/0
Introducing the new function
€
F(e) = e Of€)
(A2-8) becomes:
d?y d
€ — + (2-€) — 4 MA ¢ = 0 (A2-9)
ae de Gml/é

Imposing on ! (¢) the same boundary conditions in €-space as in the Maxwellian
case, the solutions of (A2-9) are the Laguerre's generalized polynomials of

=
order 1, '-L( )(() corresponding to the eigenvalues
n

= —

by ®
Y = o]

n

n (n=0,% 250.) (A2-10)

M

() In this modecl we suppose electrons and molecules are rigid spheres. In
this case the collision frequency depends linearly on the electron velocity
V= VON Vo
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SYMBOLS
c light velocity in vacuum
k Boltzmann constant
m clectron mass
e electron charge
T electron (classical) radius
n electron density
v electron velocity (modulus v)
M molecular mass
R molecular radius
\L molecular velocity (modulus Y)
N molecular concentration
T molecular Temperature
\Z mean molecular velocity
v? mean square mmolecular velocity
E electric field
H magnetic {icld
D differential Boltzimann operator
— L n § s
= 5 'Ll =t
J integral Boltzmann operator

V= VONv = 7(R+r)? Nv collision frequency for rigid spheres interactions

Vrru‘o N =collision frequency for Maxwellian interaction

.47
dx

Al knudsen number

constant temperature gradient,
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CHAPTER 11

STUDY OF PII.E_(ZFI(OMAGNI'I'FIC PROPERTIS OF NONUNIFORM

PLASMAS IN THERMAL EQUILIBRIUM, ISOTROPIC CASE

INT RODUCTION

In this chapter results of the study of the clectromaunctic properties of
a nonuniform, macroscopically neutral plasima arce reported,

The line of approach is a macroscopic one, based on the thiermodynamics
ol irreversible provessces,

A three fluid model is assumed; the plasma is considered to be at rest
in a suitable reference frame, the components are in mutual thermal equilib-
rium and imposed magnetic fields are absent. The nonuniformities are those
connected with the presence of gradients of state parameters such as tempera-
ture, density und concentrations,

The presence of these gradients induces an ele tric field (i.e.f.) in the
medium, even in the absence of external clectric fietds, 1t will be shown that,
in the stationary state and in condition- of macroscopic neutrality, the induced
e. f. depends only on one independent gradient wiich, for conver ience, is taken
to be that of temperature. An expression for the ivedf. is derived, which is
valid for a most general medium and which is luter simplified to the case of
an imperfect Lorentz gas (i.e., weakly jonized plasma for which the mass ratio
between the negative charge and neutral moleoules is much smaller than one).

The electrical conductivity 0 defincd as the ratio between the electric

current I and the clectric potential gradient in a first-order stationary state
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in which a given nonuniform distribution of ¥ ¢ is maintained on the boundaries
of a system is also determined.

The phenomenotogical coefficients are first expressed in terms of thermo-
dynamic properties of the plasma, Tt is shown how these coeflicients can be
expressed in terms of only simple binary molecular diffusion coefticients and
thermal diffusion coefticients pertinent to the plasma coastituents.

This last step makes it possible, by utilizing the available experimental
‘m(}/or theoretical data on electron-ion, clectron-molecule, and ion-molecule
collisions, to express the phenomenological coetficients in terms of the local
thermodynamic state of the medium.

These results provide the necessary preliminary inflormation nceded to
proceed to the actual solutions of fluid dynami .nd/or electromagnetic phenomena
in a nonuniform plasma. In addition, they already lend themselves to interesting
order of magnitude analysis on the c¢ffcects induced by the nonuniformities, They
can be used, for instance, to define ranges wit in which these inhomogeneties
can be neglected and the medium treated as homogeneous, and to lend theore-
tical substantiation to experimental findings. During the last two years, for
instance, some experiments were made by S, Kl in at Saclay (France) on the
direct conversion of thermal energy into clectrical enerey (Reference 1),

The experiments were performed with a glass ball in which two muuetallic
clectrodes were immersed in an ionized mercury gas at rest, The clectrodes
were kept at two different temperatures and the ionization was obtained through
an H.F. source. As a consequence of the temperature gradient an induced

clectric field was detected and measured as a pot ential drop between the two
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electrodes. It was possible to observe that the i, ¢, f. increased with the
temperature difference and the degree of jonization. These results qualita-
tively agree with the theoretical conclusions which are arrived ut in the present
report.,

The steps of the analysis herein reported are as follows: In Section 1.,

Part L., the irreversible thermodynamic description of tise system is performed.
The extensive and intensive state parameters and the pertinent mass and energy
fluxes for a mixture of three fluids, one with negative and one with positive charges,
are defined. The dynamic relations between (luxes and generalized forces are
established and, through suitable use of the basic theorems of the thermodynamics
of irreversible processes, the general expression for the mass fluxes in terms

o! clectron concentration, temperature, and electric potential gradients is

arrived at,

In Section 1., Parts 2. and 4., the general expressions for the i, e.{, and
the electrical conductivity are obtained,

In Section L., Part 3., the problem of relating these phenomenological
coefficients to binary transport coetficients is considered. By suituble trans-
formation of fluxes and affinities it is shown how they can be expressed in terms
of three binary diffusion coefficients Dy,, D,y, Dy, and two thermal diffusion
cocfficients })r,r, l)}‘ , which refer to the plasnmia constituents.

In Section &, Part L., the evaluation of the molecular and thermal diffusion
coefficients for a plasma is carried out and in Part 2. an analysis of the order
of magnitude for the transport cocfficients is performed for the case of a weakly

ionized imperfect Lorentz's gas,
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Section 3. deals with an actual determination of the order of magnitude
of the phenomenological coefficients, with discussions of their properties and

with their actual evaluation for indicative cases.
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SECTION 1

l.1. IRREVERSIBLE THERMODYNAMIC DESCRIPTION OF THE MEDIUM

We consider a plasma formed by electrons (subscript 1) ions (2)and neutral
molecules (3) in mutual thermal equilibrium (i.e., T, =T, =T,;=T). Itis
further assumed that the plasma is at rest in a suitable reference frame and
that no imposed magnetic field is present.

It is of basic immportance, for a clear nnderstanding of the physics of the
phenomena being studied, to proceed to a rigorous irreversible thermodynamic
description of the system. This procedure will also help, on one hand, to point
out the number and types of simplifying assnmptions which will be made and,
on the other hand, to have a clear overall picture of the kind of results that
can be obtained with this approach,

The fundamental extensive thermodynamics variables X for the subject
system are: the internal energy U, the volume V, the masses M, M, , and M,
of the three species and the total electric positive and negative charges E; and
E, present in the volumme V. The fundamental relation S =S (Xk) (see Reference

23) can then be written as:

3 2

TS =U + pV == & Mi - il 315, (n
i=l i=l
where S is the total entropy; T the temperature, p the pressure of the misture,
The quantities g; and {; are, respectively, energies per unit mass and energies
per unit electric charge and arve thermodynamically defined in terms of the

partial derivatives of S with respect to the corresponding extensive variable.
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We make the following fundamental hypotheses:

Ei = Ci h’{i

g; (X)) = pi (G V, M)

H
<

£ (X))

That is:

The total electric charges are proportional to the total masses M, and M, .
This implies, among other things, that there is only one type of negative and
positive charge carrier,

The quantities g; coincide with the chemical potential pi pertinent to the
mixture considered in the absence of clectric charges (e =0).

'l'l‘w quantities f; are independent of the extensive variables Xy and thus
coincide with the electric potential ¢ .

It can be shown that these two latter hypotheses are equivalent to the
hypotnesis of separability of the eneruy* U, in the seuse that the total energy

of the system is simply the sum of the "mechanical enerey' of the noncharged

1

system for given 5, 'V, Mi (ci =0) plus the "clectrical energy' (e M) +e; My)o,
This hypothesis is certainly valid in the subject case (cfr. Reference 19).

Equation (1) can then be written as:

3
..U p T
5__..+.___v-S 1 : 2
T T L M (2)

i=1
whcrc—lf.i is the clectromechanical potential defined as;
By =Ry it ey & (3)

and, obviously, Ty =p,.

* A rigorous statement would involve the concept of free energies (cfr.Ref. 19),
It can be shown, however, that if the "{ree energy!" is separable, so is the

internal cnergy.
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IfJ, and J, (i £1, 2, 3) arec the energy and mass fluxes, respectively,
using the basic assumption of the thermodynamics of irreversible processes

one writes:
] 1., . % (l) L Ill\ v mn T
J, =L RO E I =LA o -t sa Vif=lEd
1 10 T 11 (T) 12 ( '1'>+ Ly ( T) (4)

The last relation follows from the mass conservation, The quantities Lij
are the phenomenological (or kinetic) cocfficients whicl,in the subject case of
absence of imposed maygnetic field, are scalar quantities. The Onsager's re-
ciprocity relation l‘i) £ LJiholds. The gradients of the intensive variables
appearing in equations (4) are the generalized forces, or affinities.

Different alternative forms, each suitable for a number of specific uses,
can be given to the system (4) by performing suitable linear transformations
of the affinities and /or the fluxes. according to a well defined set of rules,

It ‘A‘i indicates the direct affinity for the flux J; and if a prime indicates the
transformed quantities, then the following relations hold: {Ref. 23)

e

it > ﬂ;'ka (5)

1 i 1 2 ST -1 -1
Lim = %(— ﬁik Likﬂr‘nj

=l q : ;
where ﬁik is the reciprocal of the element By N the square matrix

Bikl

which defines the linear transformation of the affinities.
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We shall make use of few such transformations during the development
of the analysis. A particular transformation is however very instructive

for an introductive survey of'the nature and types of results which we

will get, |

We notice first of all, that the local thermodynamic state of the

mixture, in the subject case of thermal equilibrium among the con-
stituents, is characterized, as follows from eq. (2) when accounting |
for the presence of the electric potential ¢, by five independent variables.
Going from one sct of variables to another is accomplished through the
"state equations'’ of the mixture, It proves convenient to assume the
following set of parameters ¢ T, p. ¢, (i=1, 2), where the ci' s are
the mass concentrations of the charged components, as the basic set of
independent thermodynamic variables.,

The gradients of these variables are not all independent since there
arce a number of conservation equations to be satistied and there is, in
addition, the requirement of macroscopic neutrality, The latter amounts
to the relation

Voo 4 e, Vo

2V o = 0 ()
between the two concentration gradients, while the momentum conservation
requires, under the subject assumptions of macroscopic neutrality and
absence of mass motion, that the gradient of p vanish identically throughout
the field.

One is thus left with only three independent grédi('nts: say VT, Vé

and V¢, .



36
It is most profitable and instructive to assume as new generalized forces
these three independent gradients and express, accordingly, the dynamic
equations (eqs.4) in terms of these forces, This can be done by expressing,
through the pertinent state equations, the gradients appearing in eqs. (4) as
linear combinations of VT.9$ ,Vc, and then applying eqs. (5).

As a result, the dynamical equations will read:

0V t e t E t
JO = LOOV it I.Aol th + l‘()l V¢

e Lo¥WT + iy Yo + L), e (7)
! [} ’ 1 [}
J, = L,o VT + L,y Vo + L,; Vo
Ag=VT
N v/
"\l - <y (8)
Ay = Vo
and the new fluxes Ji' will be given by:
J‘
L 7117' [Jq - {51y sy 0, 408y J‘)J B __:[_5_
Pleozaan - diatw
Jn' r I‘ "( }11 H;__ 241 M1 }l_‘___ g
rI |L -d(‘l ez ()(z
(9)

Jl

4

- [3&*___»1 e olps )

d e, 0C,

[(‘ljl -1 &) Jz] = -7}‘—

1
-

i
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where si's are the specific entropies of the constituents, and Jg is the total

entropy flux:

Ju ) B By
L g0 v 30

The quantity J:) can be thought of as the '"conduction" flux of entropy,

Jg = (10)

The flux TJ; has the clear physical meaning of the electric current, No
direct physical interpretation can be given to the flux Jl' which is a partic-
ular linear combination of the mass fluxes J; and J; . The thermodynamic
derivate appearing in eq, (9) are computed holding T and p constant,

The L:J 's are the new phenomenological coefficients in the present
context; there is no need for expressing l‘i'j in terms of the original
ones Lij d

The system of eqs, (9). containing the three truly independent gradients
vé, VT, Vc;, is in the appropriate form for the proper application of the
thecorems of the thermodynamics of irreversible processes,

Suppose we maintain, from outside , & constant temperature gradient
on the boundaries of the systemn,

Eventually a steady state will be reached, referred to as a stationary
states of first order, in which the direct flux Jz) is the only flux different
from zero. System (9) will then contain only four '"unknowns' (the
aforementioned gradients plus J(') ) so that three of them can be expressed
as function of the gradient of temperature, One thus obtains relations of
the type:

V¢ = (1(5) VT
Ve = w(s) VT (11)
IS

I USSR (- P v
0% -5

(4
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where the symbol (5 ) stands for "function of the local thermodynamic state
of the fluid",

The first relation gives the electric field dnduced by the non-uniformity
(under the restraint of constant gradient on the boundary). The pliecnomeno
logical coefficient a(s) is thus one of the required electromagnetic prop-
erties'" of the medium. The sccond relation gives the gradient of concentra-

tion induced by the temperature gradient in the presence of the induced

electric field, The last equation relates the temperature gradient to the
energy flux into the system (notice that J; = 1} = 0 implics absence of any
mass {lux throughout the system). When computed at the boundaries, it can
be interpreted, in the light of an overall energy balance, as the energy to be
supplied from the "ambient’ to mantain the induced electrie field (or, what
amounts to the same, the induced concentration gradients).

Equations (9), as they stand, can be used for order of magntitude
analyses of the effects of the non-uniformity herein considered, their degree
of accuracy depending, apart from the approximations involved in expliciting
the phenomenological coetficients. on the overall dimensions of the system.

Obviously, the thermodynamic state of the medium will be a function of the

point so that, for instance, the first of eqs. (11) should be written as;

vé(r) = a [s(r)] v T(r) (12)

where r is a space coordinate. Thus the ncomplete' solution of the problem
calls for the determination of the state parameters throughout the medium

(in order to answer, for instance , the question of what is the value of VT
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throughout the system when a given non-uniform temperature distribution is
maintained on its boundaries). This is, obviously, a much more complex
matter which must be handled by solving the energy and mass equations
VeJss ¥+J; = 0 subject to suitable conditions on the boundaries of the
medium,

However, order of magnitude analyses can always be carried out by

1

taking suitable "average' values of the state parameters.
Since, in this case J; £J] =0 implics also Jy 23, =0,this type of
information can also be obtained directly from the system ( 4) by setting in
it Jy=J, = 0, This simpler procedure will indeed be followed in the next part.
Consider now the other case in which a given non-uniform distribution of
electric potential @ is maintained on the boundaries, As before, the principle
of stationary states implies that the only flux different from zero is the
direct flux Jz' that is the clectrical current 1. Notice that neither the
energy flux nor the mmass tlux is singularly equal to zero: what vanishes is
rather two linear combinations of them, as expressed in terms of J(') and
J;_' . This clearly shows why the principle of stationary states could have not
been applied to the dynamical equations in the form given by equations (4) .

System (9) contains once again only four unknowns so that it can be solved to

obtain the following relations:
1 = 0(s) V9
VT = w,(s) V¢ (13)

veg = w4(s) vé
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The first equation is of foremost interest for the present analysis. It yields
the steady state "electrical conductivity' of the non-uniform medium subject
to the conditions of a given distribution of electrical potential on its boundaries.
In the preceeding case an encrgy exchange between the medium and its sur-
roundings was necessary to maintain, in the stationary case, the induced
clectric field, Now an exchange of electric charges between the medium and
its surroundings is necessary, its amount being determined by eq. (13)
evaluated along the boundaries of the region, Once again, complete quanti-
tative solution of the problem calls for the solution of the mass and energy
conservation equations to determine the actual distribution of the state para-
meters throughout the system considered,.

This is the type of information which can be obt ained from the present
analysis. The remainder of the body of the chapter is devoted to obtaining

explicit expressions for the coefficients o (s) and 0 (s).

2 - Determination of the cocefficient a .

From the last section it follows that to determine a one must consider
the stationary state for which a given nonuniform temperature distribution
is kept constant on the boundaries of a system and the mass fluxes J;, and
J, vanish throughout.

It here proves convenient to adopt the following form of the dynamical

cquations:
2 =
i=1 Y Jo =)
.. e
4 >
To =g Mo (Age- Ay v Q5 Ay )

k= |
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where the affinities Ai are now defined as:

= l
Au_-_'f—VT

Ay = - ¢ v¢-'rV(J§rL)
(15)
A‘\l = - QJ V¢’-TV(_}‘&5_)
Ay ® - TV (3
T
and where the quantities Qi( i= 1,2) are the heats of transfer (Ref, 19)
defined in terms of the coefficients Lij appearing in e¢q, (4), as:
Lio Lo - Ly: Lyo
==y
Ly Ly, - Ly,
(10)

Lll L,y - I‘IO l‘.!l

O S o

Ly Lo - Ly,

Expressing the gradients ol‘pi in terms of the independent gradients
VT, v,V and proceeding as indicated in the last section it can be shown

that the coefficient ¢ has the following expression:

S (bz/".: = ag /*—'l) +oqp (ay/¢ - bn/t‘l)

a z - R——— e i
a; + by b, a (17
¢ &y S Tl
1 € e €1
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with:

ag = oy -k, )/ 0a

b, = d(pi-p,)/i)cz

(18)
™, = Vi -V
g = %(Qi-h1 + hy)

where v; and hy are the specific volume and enthalpy of the j-th
constituent, respectively,

It appears that the ni’bi' %i are completely determined once  the
pertinent ''state cquations’ (Ref.23) of the constituents are given, The
gquantities ¢; depend, in addition, upon the phenomenological coefficients
Lij through the heats of transfer Q; .

Thus, to make any use of eq. (17) one must make some assumptions as
to the state equations of the plasma constituents and must determine, either
experimentally or by means of statistical mechanics, the phenomenological
coefficients LU o

The expressions for a;, bi and mi are herein derived on the assumption
that the plasma constituents are per fect gases. The quantities gqj will be

dealt with in the next paragraph,
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If one makes the perfect gas assumption, the following relations hold

(ref.23).

L oy B
P-l - [‘l_‘ll- RT ¢1 (T) +In (])Li rni>‘!
4 Ty RT
L 5 B
T
hi = hio + f Cpi dT
Iy

wherein (bi (T) is an arbitrary function of the temperature, m; is the

molar mass of the ith component, m is the molar mass of the ith com-

ponent, m is the molar mass of the mixture, h, a reference specific

o
enthalpy, and R the mwolar gas constant,

With these expressions one has:

1
_m[ L L /m _m), L L /m m
T Lglm, m; \m, m, amy o omy \my my, /|
d
J

. i [ I /m m 1 m m
iy 0y, WP S e e e e b
5 ].m,. m, c;m,; my \m, ml_J
b, = RT

al, T m,  m
00 S =
pm ¢ Cy

~ RT m, m,
n]z = -
pm \ Cy C}

Ky
3
3|~
N
Bl
e
i
»‘3 -
3
-1ER
‘I
3
NS
L——V

(19)
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In the case of an imperfect lorentz's gas (i.e.mi /m3<t ; NI/N <<|;
3

N?./N3<<l ) these formulas are greatly simplified and one obtains:

a, RTN m
— - P
€ <) m,
b, = a, =40
(21
b, RTN m
—_— - —
¢ € m,

&
i . .
where €= = are the electric charges per unit volume,
miing
The explicit expression for the coefficients a, is found by substitutiing
cqs. (20) into eq. (17},

In the case of imperfect Lorentz's gas one obtains:

Yy q;
m

da & = Nm 2% SSL - (22)
€) + €

(Z“ll(l (llnlcl

The formulae so far developed are all that one can do without specifying
the nature of the phenomienolopical coefficients }"ij' Any order of magnitude
analysis can be furthered only after having obtained suitable expressions for

these coefficients or, what amounts to the same, for the quantities gj.
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This is considered in the next part, where it will be shown how the

Lij's can all be expressed in terms of transport coefficients.

3. Expressions of the pertinent phenomenological coefficients in
terms of transport coefficients

To express the coefficients L‘ij in terms of transport coefficients the
following consideration is essential,

In the subject case we have two independent mass fluxes and one energy
flux. The number of independent phenomenological coefficients is therefore
six, accounting for the three Onsager reciprocity relations. It follows that
the behavior of the system is completely characterized by only six indepen-
dent coefficients, One such a set is that of the rAhrcc binary diffusion co-
efficients D,,, D4y, Dy (i.e., coefficients of diffusion of electron-ion,
electro-molecule and ion-molecule mixtures) plus the two thermal diffusion
coefficients D',‘ . 1)5 (i.e. the coefficients of thermal transport due to dif-
fusion of the electron gas and the ion gas into the neutral-ion and neutral-
clectron gas, respectively) and the heat conduction cocfficient,

It is then natural to think that a suitable linear transformation of fluxes

and forces will make it possible to express everything in terms of the above

transport cocfficients,
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This is considered in the next part, where it will be shown how the

Lij's can all be expressed in terms of transport coefficients,

3, Expressions of the pertinent phenomenological coefficients in
terms of transport coefficients

T6 express the coefficients L'ij in terms of transport coefficients the
following consideration is essential,

In the subject case we have two independent mass fluxes and one energy
flux. The number of independent phenomenological coefficients is therefore
six, accounting for the three Onsager reciprocity relations. It follows that
the behavior of the system is completely characterized by only six indepen-
dent coefficients, Omne such a set is that of the tﬁrcc binary diffusion co-
efficients Dy, Dy, Dy (i.e.. coefficients of diffusion of electron-ion,
electro-molecule and ion-molecule mixtures) plus the two thermal diffusion

23

cocfficients Dil , })F

N
4

(i.e¢. the coefficients of thermal transport due to dif-
fusion of the electron gas and the ion gas into the neutral-ion and neutral-
clectron gas, respectively) and the heat conduction cocfficient,

It is then natural to think that a suitable linear transformation of fluxes
and forces will make it possible to express ¢verything in terms of the above

transport coefficients.
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This is indeed so., In fact, by defining new generalized forces A;' as:

1
Ars A + by Ay (i=1,2, 3)
(23)
1S
B K By
we find, according to eqs. (23), the following expressions for the new
fluxes:
1"
Ji .y
3 {h = 1y 2p 3)
1
Jo = & ‘>_ h J,
T
and the new phenomenological coefficients L;‘,:
" . .
Vi = 1 vd= 2, 3
L Ligs (i, )
(U
s~ Yy
(24)

LA

Ige = - lay (“1 ~hy) = Ly, (hy -hy) + Lo

Lo = = Ly (hy -hy) - Iy, (hy -hy) + Ly
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These new coefficients L.i',' are just those used in reference (1) and it is
therein shown how they are related to the binary diffusion coefficients Dij'
to the thermal diffusion coefficients I)’.lr (i= t,2) and to the thermal con-
ductivity coefficient \ . |

The ultimate goal of expressing the qi's in terms of transport coefficients

is thus achieved by performing the necessary substitutions, One gets:

1 1" " " 1t I
e ! (Lyo + Lpo) Ly tLyg Ly
ql—-—'_r ——— e i e e e S e e ey g
T 1 1] " T [
(L Lys 4 Ly Lyt Lys L)
(29)
'i‘, 1" " " 1t T
(1, ¢ _ —!- (Lq + Lz ) Lll ‘{ 1_42 l“l‘
2 R A Lt

" 1" " t ' 1"t
L (Lys Lyg # Lyy Lgy ¢ Lya Loy

and by using the expressions for Lij reported in Ref.(1):

q = - L J[I)ll t Dfl nin;n, mm, [:n3 m$ Dy, D;, - m, (p-n;m;)

=
AT
Dy, Dy = my (p=npmy) Dy, DIZ\ + LD1] n® n, nym, m;y
(26)
[nlml& Dy, Dy - my (p-nymy) Day Dyy -

S
-

|
~m, (p - n, my) Dy Dl.:-l,
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and:
l r a0 r 2
q-,- = - -\—T Ll)l + D;r] [ns l’n, I)I5D35 = n\z (p -nz mz) Dll I)z, =
4

1.2
-my (p-nymy ) Dy Dyl n®nynymym, + [D;r]
-
g 2
n nngny my (n, m; Dlz D:; - my (p -y m,) DI;ng -

- nll (p - nl n\’) l)15 Dll]

where:
-l
- L

.
. »
A= Ip"p (ny Dy + 0y Dyt 0y Dy,)| Ju ny Ny my [nz m}_2 Dy, Dsy -
¢ -
[

-

: 2
-my (p - nymy) Dy Dy =y {p -ny my) D“D“-_j nonn, mym,

A
Ln,mf Dy Dy -my {p - npmy) Dy, Dy = my {p - nypmy) Dy, D,,:I +

t 1f ny nymy m,[l,_: m; Dy, Dy - my(p - nymy) DyyDyy -

T
il >
= my(p - nypmy ) Dy D“] n"n, nym, my {mmy Dy, Dy -
g L

-my{p - nymy) Dy Dy - my (p - mymy ) Dy Dyl 4
-

+n® npn, mym,; * Lns mf DyyDyy - my {p - np my) Dy, Dy =

L e : 2
-my {p - nymy) Dyy Dyp| 07 np nym, my |1y 1y Dya Dyy -
=

-vm_} (p -n;rns) Dl‘ Dz3 -m)_(p -112 In)‘) Dll Dz;]:‘r N (&8)

]
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4. - Determination of the electric conductivity of a plasma

As shown in the preceeding parts the determination of the coefficient a
in terms of thetransport coefficients of the mixture involves essentially two
steps, First the dynaniical equations are written in the form which is appro-
priate for the subsequent application of the principle of stationary state which

1

yields the expression of a in terms of some sct of kinetic coefficients Ljj
and some thermodynamics derivatives, To express the latter ones some
assumptions must be made as to the nature of the state equations of the con-
stituent gasses (in particular, the perfect gas hypothesis has been made).

In the second step, suitable linear transtormations are introduced which

"

related the kinetic coefficients l"ii to a new set of coefficients Ly

j which, as
shown in Ref, (1), is directly expressible in terms of the transport coefficients.

This same procedure must be followed to determine the electrical conduc-
tivity 0, and can be reported now in a condensed form, by skipping all
details,

The appropriate form of the dynamic equations is that given in eqs. (7).

By definition, the electric econductivity given by the ratio I/v o between the
electric current density and the electric tield,

This ratio depends on the particular assumptions about the order of the
stationary state in which it is evaluated and thus to a certain extent on the
number of ""constraints' which are imposed at the boundary of the system,

It acquires a definite meaning, that is, it can be given a unique ¢xpression

in terms of the state parameters, only in a particular first order stationary

state,
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Indeed, in the subject case of a ternary plasma, one could define a
third ordcx'-\;tationary state in which a given non-uniform electric potential
distribution and a uniform temperature and clectron concentrations are
maintained on the boundaries of the system. In such a state, however, the
plasina would certainly not be uniform throughout the region (i.e, VT and V¢
would not be identically zero) and the ratio between I and ¥4 would also be
a function of the other gradients (and/or fluxes) present in the systen,
Similar considerations hold for a second order stationary state in which a given
non-uniform electric potential distribution and a uniform temperature (or
clectron concentration) are maintained on the boundary of the system,

Once again, the gradient of T (or of ¢;) would not vanish identically
throughout the system, two independent fluxes would be different from zero
and no unique definition for the electric conductivity could be given (i,e¢. the
ratio 1/ v ¢ would not depend only on the state of the system but also on some
gradients of the state parameters),

Thus the electric conductivity must be detined in a first order stationary
state for which a given non unitorm distribution of clectric potentive is
maintained on the boundaries of the system, In this case the electric current
will be the only non-vanishing flux and equations (7) can be solved for the
ratio 0 = (I/Ve) giving:

©=candt,

=L, +~— — e —————— (29)

Lis Ly =mi2

' ' 1 1 12 ' 02
0 é l‘lo Ly L - Log Lgy - Ly Le;
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It is of interest to notice that in a fully ionized neutral plasma (i.c. in a
system with one less degree of freedom) in which the clectron concentration
gradient v, is no longer an independent gradient, the expression for ¢ in

the first order stationary state becomes by formally putting L.. = 0 in £q.(7):
y y yp g 1j q

' Lo,
J=L,, - = (30)
LOO

This relation, when expressed in terms of the only binary diffusion coeffic-
lent existing in this case, reduces, as it is easy to verify, to the well
known Einstein-type relation,

To obtain U interms ol the set of transport coefficients, onc only
needs a set of relations between the L{J and the Lll 's, which, as said
before, are related to the transport coefficients as shown in Ref, (1) The

subject relationships are:

] 1"
Loo l‘o >

i}

' = " =
Ligi = by L+ by LY,

L('): = e Loy + # Lp
(30

1 » - -

= & " - :
l¢“ = bl 14“ # i‘)l bz L‘l.: t b l‘.!'

" Tl 18] 2 "
2 E byt le e Ly, 40k Ly,

= T o = -
Loy = epby Ly 4 (e Byt ooy by ) Lptoep by Ly,

with:

Iy Iy € <0Hl 3#;)
by == m e = — [ o

Jd 1 ()Cl e, Ok,: agz
b, = OBz _ Bpy e O, gy
2 a('l 2) (.l (.‘Z () C2 - BCZ

where all the symbols have the already defined meaning,
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SECTION 2

2. l.- The transport coefficients for a plasina.

In the preceeding section the general expressions for the coefficients
. i LTl
a and 0 interms of the transport coefficients D) ,, D)3, D30 Dy Dy
have been derived,

The next step toward the ultimate goal of expressing a and 0, to
within a given degree of approximation, in terms of the thermodynamic
Parameters of the mixture and of the physical charateristics of the con-
stituent gases requires then the evaluation of the above mentioned transport
coefficients in terms of these paramieters.

This will be done in this section,

We recall some basic facts on the determination of the transport co-
efficients,

For conditions not too far from equilibrium the determination of the
transport coefficients hinges on the evaluation of the following integrals
(sce Refs. 1 or 6 details):

1} The deflection angle:

(e 8} d ¥/ ¥

* /3
e : _ ‘ 2
X.(h Wby = -2 b J* ([ -ngr., _{'_(ﬁr‘) e (32)
Tm L <
o g
where:
* . # KT 2
Marfos Web/un el Tao—; M =lmydis
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and where: My is the reduced mass, defined as my;= mimy{'ni+mj where my

and m; are the masses of the particules of species i and j; g is the initial

relative velocity of the two particles; b is the impact parameter; r the

distance between the mass centers of the two colliding particles; ¢ (r) is the

interaction potential; r  the distance of closest approach.

Eq.(32) is valid for clastic collisions between particles agsumed to be

centers of force fields with spherical symmetry.

The potentials which we shall deal with are all expressible as:

& (r) = (f(-:—;)

where € and 0 depend on the particular "molecular model' assumed, In

particular, U corresponds to the molecular diameter in the case of the

rigid sphere model.

. . . . e
2) The non-dimensional collision cross svctioh Q (g"):

o , d
RESE ) o
e Q@7 2 et 0t !
ale) L ir(-i)¢ .
r. s, 2 ‘*‘C 1 Vo

where the subscripts r,s. indicate values for the rigid sphere model.

It is:
fy e 1
| -1
Q(:)‘5 ='l__l_ + (-1 Lt
t i ¢ i +e 4

with 0 defined as betore,



3) The non dimensional collision integrals:

- a0
i 7 3 ] (es)
sz((.b)*__. 2 2 C-B*/T L"*.‘..s+) Q(e)*d *_ 0
5 L L —XTs)
(s+1)? i i T
3
where:
Jesh J (KT s+t | (o) '
res. 2nm, . 2 B

1)

Notice that, by definiton, all starred quantities are equal to one for the
rigid sphere model,
Any transport coefficient is expressible in terms of the above quantities.
Indeed, indicating by the subscripts i,j, quantities related to collisions
between particles of the ith and jth species one has:
a) Dij - (diffusion coefticient for the ith and jth species in a multi-
component gas nrixture) is related to the binaty diffusion coeffici-
ents Dij of each pair of species (see ¢q. 8-2,49, in Ref, (1)),
These relations involve in addition, the concentrations of the
single species, and the molecular masses,

The coelficient Dij' in turn, is expressible as:

/ T s
b, = 31 Vmmyj 'T) . (33)
8 P 2 U)x%
nOij (s

wh(‘rc:
. A .
0, = = (0;+05)

is the collision diameter,
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b) The coefficients of thermal diffusion, Dir, can be evaluated in terms

of the coefficients of binary molecular diffusion and of the coefficients
of thermal conductivity for each spccivs()\i) and for each pair of species

( )\-1) ) . The pertinent explicit expressions are too cumbersome to be

reported here; they can be found in Ref.( 1) page 543,

It is important, however, to notice that they involve the integrals

2 )* (ospe
S.ZiJ and “i_] s (s =1, 2,3).

£) The coefficients of thermal conductivity for the ith species can be

evaluated as:

25 /T my KT ‘_i _K__ (34)

\ =z
. e — -
13 n gy 3.“2” 2 m;

This expression is valid for monatomic gases; Eucken's corrections are to be

added for polyatomic gases,
The coefficient of thermal conductivity for a binary mixture is given by:

25 P Dy;

Noe o= D W (35)

Y 8 \IJ T

¢
where Aij is a combination of the collision integrals "2‘1) . Its value is very

close to one,

Table I summarizes the fundamental dependence of the discussed trans-

port coefficients for multicomponent gascous mixtures {first column) on the

related binary transport coefficients (column two) and on the related collision

integrals (column three).

The next step is a discussion of the actual evaluation of the transport
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coelficients for the particular potentials related to the interactions between
the particles present in a plasma.

a) Interaction electron-ions

The force between two charged particles is coulombian.
The interaction potential is given by the equation:

) e
Z.¢) € e,

$(r)=x - —— = - = (30)
r

r

where Z indicates the number of electric charges carried by the ion and
the sign ''-'"" takes into account the attractive nature of the force for dis-
tances greater than the threshoid of actions of quantic type, for which lire
force is repulsive,

With the potential given by ¢q. (36} one faces the well known fact that
the collision cross section, as (l(‘-fmc(l by ¢q. (32) assumes an infinite
value.

This problem has been studied extensively, and the ditficulty eliminated
by a "cut off" of the upper limit of the inl(.-qr:ll. The cut off distance must be

-1/3

the smaller of the mean distance between the gas particles D=n and the

Debye shielding length:
Y

epe 2z
ZD = (}\1/41:11101 )
Consider at first, as pertinent, the collisions for which the impact

distance b is less than D,

One evaluates eq. (32) wherein the upper limit becomes b= D.

1

> M ,8 its mean value 2kT and

Substituting for the expression
neglecting the small variations of the kinetic energy of the particles within

the sphere of radius D, one obtains:
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2P E2INE N2
9 &
Q(l) (g) = .;l_ (%—:{% tn l‘l + K "o (37)

where, for mixture of electrons-ions it is:

- =}
D= [n, + n, /) (38)

-

The corresponding binary diffusion coefficient is obtained by sub-

stituting eq.(37) into eq. (33) which results in:

.
; f f 2
/mg, KTV 72k 11 [0 /2KTD\ |
S E 2 o T ‘> Melm|ies ] L 39)
J m /o arve) plf 4] \eyes /|
e ) § &k -J
In the sccond case, when the upper limit is put cqual to ]D the col-
lision cross section will be:
4
2 we
Q(l) = —-—f’——‘ n A (40)
(/, KT)
where:
£
T e
3 5
A o (k'1’
- U Ton
VoLt ™ J
The corresponding expression for D]& is readily obtained by substituting
eq.(40) into eq. (33) and is:
3 "8 fmy KT 1/47."3 N /"
S p- } \—&'hl) l", 21 ¢ ln/\} (41)
L Jl‘ (8

More recently a new method to evaluate the coefficient Dy, has been

proposed (Ref. 12) which does not use the cut off for evaluating the collision



o

58
cross section. Such a method furnishes, with a more complicated process,
an approximation higher than that necessary for our purposes, and it is
therefore not used here.

b) Interaction of electrons-neutral molecules and ions-neutral
molecules

The interaction between charged particles (electrons or ions) and the

neutral molecules can be treated by the following procedure (Ref, 3),

The charged particle produces an electric field that induces an electric
dipole into the neutral molecule, which undergocs a separation of electric

charges. The induced electric dipole produces an external potential given

by:

where a is the polarizability of the molecule, ¢; the inducing charge, and
® the position angle referred to the axis of the dipole.

The interaction potential will then be written as:

¢
Al 42
-4 (42)

(

-

6 (r) = -

I\I

The negative sign indicates that the forces are attractive up to the distance

U, quantic threshold. It should be noted that the energy of interaction
expressed by (42) is only a first approximation to more complicated express-
ions, because it neglects, for instance, the London's dispersion enecrygy,
related to the mutual action between the molecular dipole and t.};‘c dipole

induced by this into the ion. Such a dispersion cnergy, proportional to the
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inverse sixth .power of the distance, can amount to 25% of the interaction
energy given by (42) for distances between the particles of the order of one
collision diameter (Ref, 1, ch, 13),

The polarizability of the atoms and of the molecules has been studied
theoretically and experimentally; its values vary, tor polyatornic molecules,
with the direction of the inducing electric field, It is always possible however
to introdnce a mean value taken over all directions., This value increases with
the molecular complexity; for instance, the mean pelarizability varies from
- -25 3 25 -3
.9%x10 cm to 103,2 x 10 "cm” for the molecule of hydrogen and the
molecule of benzone, respectively. Tables, given in Ref. (1) furnish the more
important data,

For a potential expressed by ¢q. (42) which is nothing but a particular
form of the Sutherland's model with Y =4, one notices, from the tab, 4 of
Ref. (1) that for not too high values of the particle energy, the collision
cross scctions become very close to the collision cross sections for rigid
spheres. For first approximation calculations and for orders of magnitude
evaluations and in view of the uncertainty as to the value of g , we can
therefore use the results obtained for the simple potential of rigid spheres
without too large errors,

We write therefore:

-3 { KT L
Dy = == - = o (43)
015 J 7“'1‘ !
_ 3 ( BT -
Dy e g T == (44)
Oy Tm, D
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where:

Uij B o (U-i 1 UJ)
is the collision diameter,
An alternate procedure for the determination of Dy3(i= 1,2),
bascd on experimental data, can be used,
Recently, experimental evaluations of the total elastic collision cross
scctions were made for the ions-neutral molecules and the clectrons-neutral

molecules mixtures,

The total elastic collision cross sections are defined by:

(()) SV
Q =22 bdb (45)
“o
and one can write:
M- @ (T (46)

where (-l_- cos r) indicates the mean value of the term (1 -cos / } taken
over all angles of collision. Such a mean value, for collision angles equally
probable, is equal to one, This occurs for not too elevated values of the energy
of the particles,
With this limitation and with not too large errors, one can then assume
(1) . . . 2
for Q the values experimentally obtained for Q and hence compute
D)3 and D,3 by substituting these values in egs. (43-44).

A more extended discussion of this procedure can be found in Ref, 9.



pree—

61

c) Interaction between neutral molecules

The interaction potential is expressed by:

$lr) = - % (47)
since the two molecules behave as two mutually inducing dipoles, This
potential, corresponding to the Sutherland's model, was studied by
. : ) - sy : :

Kotani ( Ret, 4) and the values of are available in tabulated form,

The evaluation of the transport coefficients for this model is thus
reduced to the substitution of these tabulated values into the previously
described formulaec.

The resulis thus far described are sununarized in Table I For cach
of the three types of interactions the corresponding expressions for the
potential are reported together with the available references for the theoretical
and/or experimental evaluation of the collision cross sections,

2. - Analysis of the orders of magnitude of the transport coetflicients

The determination of the transport coetticients. as described above,
will now be specialized to the case of a weakly lonized, imperfect Lorentz's

gas for which, as said, the tollowing inequalities hold by definition:

Ny~ My, N e M2,
m, m, 1y n

It will be found that in such case a number of terms and/or contributions can
be neglected because of smaller order. To lend rigorousness to such an order

of magnitude analysis, we shall assume as a reference "order of smallness"
Y,

the square root of the mass ratio 6 = (ml/m%) . For the neutral particles
-2

we shall be interested in, & is of the order of 10
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Let us begin with the binary diffusion coefficients. It is pointed out that
evaluation of their comparative orders of magnitude will be m.adc for given
temperature and number density of the plasma.

Eqs. (39-41-43-44) indicate that for given n and T the order of magnitude
of the coefficients of binary molecular diffusion depend on both the ratio of the
colliding molecular masses and the ratio of the related collision cross sections,

The reduced masses in the present approximation are given by:

my, ~ ny

m, my
n]” ot e Pl e
- p— ) - )

- -

The orders of magnitude of the ratios between the collision cross sections are
immediately evaluated for any energy level (this being the only parameter on
which the Qi_j depend) . As discussed in Section II, Q,, can be obtained theor -
ctically, while either rigid sphere model formulae or experimental results,
[rcporlc(l. for instance, in Retls. (11,9,3,21,18) | can be used tfor Q3.

Q)3

It is important to observe that the ratios between the collision cross
sections, to a first approximation, do not depend on the state parameters.
Indeed, consider, for instance, the ratio Ql.’.'/Qli in a plusma, when
ny=n,= 106 part./cm;.

In the range },000< T < 10, 000° K, such a ratio varics between 1, 68x] 0°
and 1. lelOé. For n = n,= ]0]% pnrt/cm;, the ratio is roughly doubled, The
above reported values for the clectron number density are limiting values for

the range of variation of n,, corresponding to the weakly ionized gases of the

ionospheric F layer and of the clectric strong discharges, respectively,
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As a consequence:

Qn/ Q. =0 [10'2 H o[s]
T I« O [10‘]5 0[6"] (48)

These particular values have been obtained for a plasma whose con-

) +
stituents are NZ' I\"

o

, ¢, and at T= l,OOOoK, ny=n,= }06 part/cm3. The
orders of magnitude of these ratios do not essentially vary as functions of
the state parameters or, for the usual gascs, of the chemical nature of the
particles,
Thus, we obiain, for the diffusion coefficients:
D,/ Dy 20

Dy 4/ Dy (49)

1"

[

on
'

D/ D, &

I
o
c
t
beed | 0wy

.

(b) The evaluation of D] » D, and of their ratio now constitutes the
second step,
As mentioned previously, the coeflicients of thermal diffusion for cach
consitiuent species of the mixture is a function of the coefficients of binary
molecular diffusion Dij and of the coefficients oi thermal conductivity
N N2 Ny

Since:

Q/Q 2 r:&]

n
<

—

C

/a0 s8] (50)

Q/Q =0 Ll]l
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one has;

0 [6'5]

ISVANEE
Ne/Ny 20 [e,‘i] (51)
Ny s & O [b'lj )

The various terms in the equations (or D} and D, can be noticeably simplified
from (49) and (51).
Neglecting all the necessary long manipulations, we only state here the

pertinent results as follows:

pf /) =0 ot (52)
T 5 I,
Dy = 4[_;2. %‘;- mn IT(DZ, (53)

where:
'm= M, (I M‘/ Mz)/(.:l ‘\1:“1\1,+ 53/4 M,/M,_ + 12)
For convenience, a list of the relative orders of magnitude of all the

quantities involved is reported in TABLE 111,
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SECTION 3

On the basis of the results of the last sections, one can examine more
accurately the phenomenological coefficients describing the electrical prop-
erties of a non-uniform plasma. Namely, at this point it is possible to

evaluate their expressions in terms of the thermodynamic state parameters

of the plasma.,

1} The Coefficient a .

In section I we have obtained for o, Jor the imperifect Lorentz’s gas,

the expression:

q /egm, + q./q m

G /(_._ my m,n, + (:/tlm, m;n

Since it is possible to evaluate for Uy and q, a relative order of

(54)

magnitude q,/q =0 [b] by analyzing their expression (26-27), one obtains

as a conscequence;

(ll (: nln: ml

Q.= —_— ———.

P 2
(l nz +(z nl

where q, assumes now the following form:

Ay
A KD; /l n, 1),,)

q2= - —— e —— ———

. myn; Dy ny Dy,

Thus:
n D
a = - Ko AmF ) 13
S

(55)

(56)

(57)
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where:

3 2 < X
F = ‘_5__"’____“774; moe, &
n& C, el

The coefficient a is dimensionally expressed in volt/cm/®K/cm and
represents a measure of the electric field induced by a unit gradient of
temperature in a plasma.

It has, for an ionized gas, the same significance of the Seebeck's coefficient,
usually treated for solid substances. [Il is recalled that the Seebeck's
coefficient S for solid conductors is defined in the same way as the coefficient

a . Indeed S is the ratio between the gradicnts of electric potential and
temperature in a first order stationary state in which no electric current
flows, (See lef.23, for inslancc)] .

Examining the expression for a one observes that the only fundamental

parameter upon which it substantially depends ié the degree of ionization,

Indeed, for a weakly ionized gaseous mixture, one can suppose that:

n e | n m ) - )
|t T g T, o are only slightly different from unity; and

the coefficient KcAmF is a constant depending on the mean molecular mass
m = €, mi"i/" only,

The ratio between the coefficients of the binary molecular diffusion
D}3/D12' as we have shown, does not depend on any state parameter, The
only parameter that, as a consequence, affects a is the degree of ionization,

An indicative value obtained for ain a particular interesting case follows,
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2- Value of a obtained for the ionosphere F layer

Considering a plasma, whose characteristics are those of the air in the
ionspheric F layer, we have:
T = 1,000°F

n .
e 0.5 = 074

n (day values).

One can assume that the particles present are essentially of the following
. . " 1 * A
three species: electrons, ions N, and neutral molecules 1\& and thus
m,/m,;= 2,8 x 104
AN Q
In thiscase ( ref, 2)

6
n =n, =10 purt/cm’ (day values, ¢ electron charge)

Q;; and Q) are respectively:  (Ref. 2l tolb):

-2
Ql: (4 8, 4 1O Cll\l

o - 2
cm

Qg ® 50 2+ 107
Therefore:

-3 volt/cm
UK/\m

a 2 =l

This value is of the same order of magnitude as the corresponding
Seebeck coefficient for semiconductors (Ref, 20) whose indicative values

are rcported below:

Material Seebeck coeff.
Ge (n-type) 850
Biz T‘-’s 250

5y = Ge - alloy 1
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3. - The electric conductivity,

The expression for the electric conductivity (29) can be simplified under

the assumptions of the Lorentz's imperfect gas,

It can be shown that the following relationships between the coefficients

Li'j' and the transport coefficients hold:

Lgg'® Ns 1
1‘:1 ] D;l
L'a'o i D:'r
n n n, mf Dy Dy, (58)
nos "EIZ(“.,'D“ + .1-1', D;)
Ly = Batemime Dy Dy
KT (n, Dyy+ nyDy,)
Lt . n, mi Dy,

Pertinent orders of magnitude of these parameters are shown in Table 111,

When the proper substitutions in the expression for 0 are made one finds

that:
1 1] ] b 1 1 ] ]
o Lio Lo: Ly Ly Lo, Loo Ly 1

T e 4 e I e T TR

Loo Lai=Lao Lor Ly Lol Loa_!
(59)

12

O R TR
Ly,

since the first two terms in the squared bracket are of order one, while the

-5 st I ——
third term is of order ( & " ). The vanishing of ¥ is to within terms of order

(L aE e

This important result indicates that in the present case the plasma
behaves essentially as a dielectric medium since, in the steady state, a

given distribution of a constant electric field on its boundaries does not
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originate any appreciable current but produces only a "polarization! of the
medium, as indicated by the induction of electron (and ion) concentration
gradients. As a matter of fact, it is just the presence of this induced
electron concentration gradient which causes the vanishing of the electric
current. That this is so can be readily realized by the following consider -

ations. As shown by eqs.(7) the clectrical conductivity 0 for an isothermal,

uniform three-fluid plasma would be simply given by L:)_Z or, for a

Lorentzian gas, by: )
2 l -1 -
n e n, Q 3
Ol =2 s R | SR (60)

1 \"'anI Q‘) n, Q” 2 n‘/n .

which is obviously the Lorentz' formula when the ion contribution is
neglected. If now we consider, instead, a plasma with uniform composi-
tion but non-isothermal, we find, according to ¢qs. (7). that the conductivity
g, would be given by: 1'2'2 - (LZ)IZIL'OO) . But the second term is of order

{ §° ) so that U, is practically equal to 0; . Thus the presence of the
temperature gradient would not alter U provided the electron distribution
remains uniform. If however we consider the opposite case of an isothermal
plasma with non-uniform electron concentration, then, in the steady case,
the conductivity 0, would be equal to LZ'Z - L';}/L'”. That is, accounting
for the relative orders of magnitude, it would vanish identically. Thus it is

just the ''reaction' of the electrons, so to speak, which makes the total

current vanish identically in a first order stationary state.
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CONCLUSIONS

We state the more important conclusions reached in this chapter:

i) For a ternary macroscopically neutral plasma in thermal equilibrium

i1

—~—

iii)

there are five independent state parameters but only three gradients of
these parameters are independent.
Chose the gradients of temperature T, of clectric potential ¢ and of
electron concentration €] as such a set of independent gradients, Then,
when a given non-uniform temperature distribution is maintained on the
boundarics of the sysiem a steady state is eventually reached in which an
electric field V¢ is induced throughout the system, and it is given by:
Vo =qV T
where a is a Phenomenological coefficient (lcp<~11d'i;;.\;. in general, on the
local thermodynamic state ‘of the medium, Similarly, an electron concen-
L]
t,ra‘tion gradient is induced, which is Proportional to VT according to a
state dependent Phenomenological coefficient.
The coefficient a, for a weakly ionized imperfect Lorentz-type plasma,
is practically a function only of the degree of jonization. inc reasing with
it,  Values computed for an indicative case (ionospheric F layer) show that

=3 -4
a is of the order 10~ Volt/°K for a degree of jonization of 10 ',

iv) When a given non-uniform distribution of clectric potential is maintained

on the boundaries of the system (i.e. when the plasma is imbedded into a

time independent electric field) a first order stationary state is reached in
which the electrical conductivity 0 will depend only c;n the local thermodynamic
state of the medium and not on the temperature gradients, say, which are

induced by the electric field,
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v) For a weakly ionized imperfect Lorentz-type plasma, 0 is practically
zero, thus indicating that the plasma, in this condition, behaves essentially
as a dielectric.

vi) Points ii) and iii) give qualitative theoretical support to some experiments

reported in the literature, {(Ref.13).



TRANSPORT COEFFICIENTS INVOLVED

TABLE I
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Transp. Coefficient Dependence On:
Binary Transp, Coeffi- Collision integralﬂ
cients
D,
Dy; D {11)
19731
B
o (22) )
22 LS .
Dij » N “ij ’ Ssij (s=1,4,3)
I
D,
N 9 .
DIJ R
;I_‘_ABLE I
Interaction Potential Collision cross section
Theory | Ref, Exper., | Ref.
_1/
Cy €5 D=n 3 L
Electron-ions ¢ =- "lr . cut -off { L
D= ‘D 15 available
no cut-off 12
Electron-neutral o? 5
molecules b=-a =il Not ll' lé
lon-neutral molecules r4 available 2:[ 2
Neutral-neutral el _(_3_ Tabhulated TP N
oolacutes ¢ =% i A 4, IAvailable Rit{.c l




TABLE III

ORDERS OF MAGNITUDE FOR LORENT ZIAN GAS *

Of = (my /m,)l/l = 0 [10—1]

my,
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my, 2my gy ¥ —i B ; Y oS g [62]
T n, ny
Quantity Order Quantity Order Quantity Order
Q3 / Qi 5 Dy /Dy 1 @ /q o
-1 =) a
QZ’/QI‘ 6 Dli/l)l‘ 6 Ul /Uz 6 Z
2 2 =)
Qs / Qe b B’ /D14 6 b, /b, o
) 7 - 1
Q/Q 6= N /Ny Y 1';,1/1‘1.: L
.2 -2 1" 1 2
Qz /Ql o] )\4/\, 6 1412 /I.nz 6
-1 G 2
Q/Q t M/, b 1 b
A/ l ) -1
—j
Loz
o, T 4
Dy, /15 e
" 1" 4
lqo/ 02 b
1
Lz /1, l
] §
L, /Lu
1 '
L’l L?, E)“5
] ]
Ly, Ly

*NZ,Nt,e_
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SYMBOLS

impact distance

molecular specific heat

Mmass concentration of the i-th component
molecular mean distance

coefficient of thermal diffusion for the i-th. species
coefficient of molecular diffusion for the species i and j
electric charge per unit mass of the i-th component
electrie charge of the particle of the i-th species
electric charge of the electron

electric field

velocity distribution function

force

specific Gibbs potential

relative spceed between two colliding particles
specific enthalpy for the i-th specics

Planck's constant

Mass flow of the i-th species

Energy flux

Boltzmann's constant

molar mass for the i-th species

mass of the particle

reduced mass

particle weight with reference to the H, atom

molar mass of the mixture



$(r)

number density of the mixture

number density for the i-th species
molar concentration of the i-th component
pressure

distance between two particles

gas constant

specific entropy for the i-th species

time

temperature

specific internal energy

specific volume

volume

velocity of the particle of i-th species
molecular concentration for the i-th species
reduced velocity

number of positive clectric charge of an ion
electric charge per unit volume
clectrochemical potential

clectric potential

angular wavelength

coefficient of binary molecular diffusion
Kronecker's del

collision frequency

thermal conductivity coefficient

density

interaction potential
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es)
s}ijb

collision angle

collision integral
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CHAPT iR 1V

THE EXPERIMENTAL INVESTIGATION

INTRODU CTION

The general aim of the experimental part of this ~tady i+ to determine
the electrodynamic properties of a nonuniform plasma.  In particular, the
plasma propertics of air about a supersonic venicte at Ligh altitude are of
interest,

As was discussed in tne first semi-annual report, this investigation would
be made in two distinet steps. First, the expernmental apparatus and method
would be tested and eviabuated using an casily Cenerated plasma of the desired
characteristics, Only after the tirst <tep ftes been satisfactorily completed,
would the more sopai-tic oted measuren ent- in air be attempted, The experi-
mental report will deal primarily witn tae evabiation of the apparatus and
techudgques vlso proocotod will be the daty obtained by utilizing tnis technique
to exandine the plosmo production relaxation tinme in argon. OQur purposc in
presenting tais data on arson is not so muon for its intrinsic value (which is
dunious because of impuritie-), but ratuer to show the type of problem and
the accuracy to wnich tne technigue can be meaningfully employed,

The experimentat tochinique will be discussed in the following order:
First, the sbock tuve will be constdered as thie plasma-producing agent;
scecond, the cquipment to mea are tae clectrodynamic charvacter of the plasma
will be discussed; and tisl, toc experimento technique will be evaluated
using the data obtained from experiments run using an argon plasma. This

section will conclude with our futurce objectives,
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I.  THE PLASMA GENERATOR

Numerous methods of generating plasmas are available to the experi-
mentalist. Unfortunately, at this state of the art, no one has yet devised
a plasma generator where all the prop.,crli«-» are controllable. At best, it

5
is necessary to make a compromise between the characteristics important
to a given experisnent and the failings of the plasma production »y stem,
<t .

The important recqui-ite for the plasmas in this experiment is that the
density can be controlled not only in magnitude hut also spacially. Additional
requirenients are that the gas density and type be controtled and that the
plasma can be contained so that the electromagnetic character can bl deter-
mined, To these ends, a shock tube as « plasma generator is a suitable
compromise,

It was shown in the first scmi-annual report that the shock tube was capable
of producing known plasma densitics with or witnout axial nonuniformities,
Further, a discussion was presented as to the controllability of the plasma
composition and the use of the shock tube as a wave guide for clectrodynamic
measurements,  As is usually the case, it i= nat the general behavior of a
device that is important, but rother the specitic departures that must be
analyzed,

In a conventional shock tule, o pressore ratio is established across a
diaphragym. When the diapnragm either bursts or is broken, the tiermo-
dynamic character of the =luy of air behind the shock that is formed can be
computed a priori. In principle, by adjusting the initial conditions (in both

the driver and driven scctions), a plasma can be generated with specific
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properties. However, energy dissipation processes which cannot be accurately
considered in the predicted shock calculation may substantially attenuate the
theoretical shock velodity in the driven section. With a decrease in velocity

of about 20%, the predicted electron density in the plasma may be reduced by
more than an order of maynitude,

To compound this prediction error, in a shock tube where the diaphragm
is sclf-rupturing, there is an additional uncertainty, The variation of mechani-
cal properties of the diaphragm may introduce an additionil order of magnitude
of uncertainty in the cloctron density valne,

Since it is desirable in this experiment to obtain plasma densities within
a small range for cach operstion of the shock tuse, the followinyg techniques
have been cinploved,  Fir-t noth tae initial driver and driven pressures are
measured by mochanical ganges, A Wallwoe and Tiernan 0 - 50 mm gauge is
nsed to measure the initial driven pressure, Untortunately, this gauge when
used below 2 mm Hg requires a long time betore an equilibrium value is ob-
tained. In principle, however, the driver-driven pressure ratio can be main-
tained to within 39 for a driven pressurc of t mun Hyo  Atter calibration, toe
absolute value of the initial driven pressure is alooaccurate to about 3% at
I mm Hg, improving to . 3% at 10 mm Hy,

It might be noted that many shock tubes arc operated using metallic
diaphragms where the rupture pressures are predictable to within 5%.  lHowever,
it was deemed imperative that no metallic fragments exist in the shock tube
since these might damage the tube and microwave cquipment and possibly

produce ervoncous clectrodynamic measurcements,



3 l l v

82

In order to maintain the driver-driven pressure ratio precision, it is

necessary to break rather than pressure-rupt ure the main diaphragm. In
the first semi-annal report, « method using hot wires stretched .;u' ross the
diaphragm was described, While this method produced satisfactory breaks
with the conditions the tube was thien operating, the method was cumbersome
since the wires required replacement atter eacl shot,  In addition, leaks
developed in the complicated nonnietallic diwpirraem holder.,  Further, since
in the future it is expected that the temperature of the driven tube would be
clevated, tests wore run to fiad o plastic saitable at hich temperatures that
could be broken using the hot wire technigue,  No such plastic could be found.
The hot wire technique was ubandoned in favor ¢l w mechanical cutting system

descrined helow,

) I —
I tJ 1
| 3
I
)
1 b ' $ 3

.,
N
4

a [n d - { i I i
a4 Nitrogen chaanber ¢ Driver tube
b second diaphraom 1 Rod
¢ Piston v Cutter
d Stop: A Madn diaphragm

i Driven tube

Figure 4o Diaphragm Breaker
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The main diaphragm consists of four sheets of L 010-inch Lexan*. This
combination has a rupture strength of about 200 psi for the three-inch tube
diameter in this experviment,  In normal operction, the pressure differential
across the diaptiragm is about 150 p=i, As shown in Figurel above, a fonr-
bladed pointed cutter is attached to a quarter-inch rod that extends the length
of the driver tube, On the opposite cud of the rod {rom the cutter, a piston
is attached., The piston operates in o chamber which is divided by a sccond
diaphragm consisting of tour shecets of Lexuan, To break the main diaphragm,

the section of the chhanber not including tie piston is pressurized with nitrogen

until the scecond diaptragm rapture o Pressure is then exerted on the piston
which wecelerates the cutter attudning « velooity sufticient to cut the madn
diaphragm in about one rilliscecond,

This system has proved Lichly successful but slightly cumbersome because
of the second diapuragm,. lHowever, it ofiers tne advantage that any reasonable
driven pressure can be used since the taickness of the main diaphragm is not
critical. Further, it allows the use of any plistic sheet that can be cut, thus
permitting the use of Ligh temperature material-.  Modifications of this system
are now In progress s0 as to replace the scecond diaphragm with a monostable
valve assembly,

The present shock tube system operating at an initial driven pressure of
about | mm Hg and driver pressure of 150 psi has an average deviation from
the mean running conditions of about 70 tt/scc at 7000 it/sce shock v«-lucit'y

or about 1% mean deviation in velodity,

« Produced by General Flectric Co,
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In argon at 7000 ft/sce, this deviation in velocity correspoids to about
30% in the equilibrium clectron density. It should be noted that these figures
dare obtained from t:'no t‘Xp(.'l’iln(‘.hl.ll runuing conditions of this sho k tube and
represcut the mean shot to shot \’illill:i()li that can be expected, H the theore-
tical equilibrium clectron density caleubations are made using the actual shock
velocity, the initial driven pressure amd tue gas composition, the cquilibrium
clectron density of any given shot can be deterniined to about 3%, This is
because, for cacn shot the velocity {(whicn is the important variable) can be
determined to about o1 usine tne vreflected nio rowave siznal. M is well known
that in the particular case of argon, the approach to cquilivriuwm jonization is
stow. Thus the cquilibrium celculations must he used only as an indication
ot tire asymptotic value of clectron density behind the shock interface.

It Las been shown thus far that the shock tube is experimentally capable
of generating known average plaama densatic s in a repeatable manner,

Another source of errors in the intorprot tion of the experimental results
is the nonusiform radial distribution of the plosma properties dur to boundary
layer effects, For instance, the estimated radial nonuniformity for air is
shown in Figures 2 and 5. In the present series of experiments, the microwaves
propagite behind the shock interface at a distince where the distortion of the
radial distribution ot the clectromagnetic tivid s stitlb neglivible. Thus these
cffects were not taken into account in tue interpretation of the experimental
results, At the prescnt time, catceubdions are being conducted to include the
radiad nonuniform di-tribution o the anatysic of the wave guide fundamental
mode,

The present experitnental investigation is confined to the analy=is of the

axiatly nonupiform cloctvon denelty inoavgon,
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The controllability of the density gradient in air, as described in the
first report, has not yet bheen attempted,

2. ELECTROMAGNETIC MEASUR EMENTS

In the previous section the shock tube was described as a plasma generator.
The salient feature of this experiment is that the shock tube also can be used
as a wave guide whose properties depend upon the clectromagnetic properties
of the generated plasma. ‘The range of frequencies that can be propagated in
the fundamental transmission mode TE[, is small, which limits the range of
clectron densities that can be measured, owever, it will be shown that within
this range, a rema rkable decree of precision can be obtained,

It is well known that a cylindrical tube can act as a transmission line for
certain frequencices ot clectromaenetic waves, I the medium in the wave cuide

is a vacuum, for the T, mode the cut- olf frequency is given by

where R is the tube radius and ¢ is the velocity of light in a vacuum.  All
frequencics above this Mcut-ott! trequency can be propagated, but the geometric
ficld configurations become very complicated.  Since It is necessary to measure
the clectric and maunctic tiekds in this experiment, itis desirable to have a
situation where only one mode can propagate in the wave cuide, Thus, ouly
frequencics between the cut-off frequency given by the above equation and the
cut-off frequency for the next mode are used. This upper frequency limit then
is given by

2,405 ¢
2R

which corresponds to the cut-oft trequency of the TM ) mode.
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For our shock tube with a radins of 3,75 ¢m, the cutoff values
establish the frequency range from 2350 to 3065 mc/sec. Furtner limitations
on this range are imposed by the inability to tune the system as the low fre-
quency limit is approached because the wave cuide wavelengeth become s very
long, extending to infinity at cutoff. Fiznre 4 shows tue relation between the
wave guide wavelengta and tie gencrated {requency for this shock tube.  The
propagation limits for the TE); mode are stiown, When the wave guide wave-
length exceceds about 49 iy, thie sy=tem becomes difficult to tune., Hence the
practical operating ranse 15 about 2400 - 3050 m /sec,

When the wave suiae or shock tbe contains o« nniform plasma the propa-
gation depends upon tne plasma trequne oy and the electron collision frequency
in the plasma. o the fdeal case where the ol ion Irequency is assumed zero,

the propagation constant ko for the Tiy, mode is given Ly

0" 55 1. ot
R (n
e i K

Nhere odis the angular fre juency ot tae electromasuetic wave and

w15 tne plasma frespuency. W s related to tie clectron den =ity 1,
l’ 1 b 2 t

It
by the equation:

4 R
Wy, < 5,04 8 1) / W (2)
where L. measnres the number of clectrons per cubic centimeter. From
cauation (1), tne cutoff frequency we is given by

B - ] ‘l.)_ 2
»k—.’.,ltl.\lu) —wp (3)

Relating up to the clectron density, one obtains:
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w .

é [0

__-__———--—-6——*" =i D% 82 X lu = nL‘ (4)
3.18 %10 '

we must be smaller than the cutoff angular frequency of the TM o mode of
the wave guide ahcad ot the plasma interface,

Therefore, with the maximum {requency 3059 me/see, the upper limit
of vlectron density at whic the ¢lee tromuagnetic ficld can propagate in the
plasma is:

- L)
n . w~ 5.2 x 17 cledtron=/u (5)
Umax

To measure tie propertics of the plosma, two types of ficld detectors
are usced, First, the electeie field detector i= on antenna whicn i= mounted
flush with the wall of the shock tube. T s anteara is connccted to a4 micro-
wave diade type IN L300 I the detector 1= operating in the Vseprare law' reuion,
the output voltage trom Lo diode 1= proportionsd to the s(quare of the average
electric field at the wall, The musimnm output from a typical detector for
an input power of 29 rvillhiwatt= is about 40 noallivolts,

The magnetic detector is like tue clectric tield detector except that
between the wall of the tube and antenna, o loop is made. The plane of the
loop lies in aplane including the axis of the tube and the microwave antenna.
An output comparable to the clectric dgtector i¢ obtained if the diameter of
the loop is about o4 .

A spurious signal was noted on the electric probe carly in the investi-
gation (shown by the arrow in Figure 5). Subscquent invvstigdliun. without
the microwave signal fearly showed that a current was generated in the

crystal probe which was directly associated with the shock arrival (sce Fig. 6).
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Figure 5.

Shot Number 23

Sweep Speed 50 psec/cm.

Wavelength 22 cm.

Upper Trace; Pressure
Detector

Lower Trace: Signal from
microwave
detector

Note: White arrow indicates

interference signal.

Figure 6.

Shot Number 24

Sweep Speed 50 psec/cm.

Upper Trace: Pressure
Detector

Lower Trace: Interference
Signal.

Figure 7.

Shot Number 51

Sweep Speed 100 p.sec/cm.

Wavelength 22 cm.

Upper Trace: Signal from
electrostatic probe
(Amplification L V/cm)

Lower Trace: Signal from
Microwave detector



P

A high impedance probe was made and inscrted into the shock tube in place
of the crystal detector, Following tests with and withont microwave signal,
typical voltage curves like thet in Fignre 7 were obtained,

Caltculations conducted for a steady =tate condition of a nuiform plasma

in contuct with a metallic woll indicate= that . potential difference @, wiven by

—{-.FO(—)--'V l fn Mi
Kt 2 M (v)

must be established in order to have « zero clectron cnrrent from the plasma

/7 M

to the wall,” With the value of ion-clectron mass ratio { i\ for argon, and
M
4

an clectron temperature (T ) on the order of DL

I, cquation () sives a valne
of &, in the range of 3 volt-. This valu incides with the measured potential
on the clectrostatic probe in Ficure 7. 1 interivren ¢ signal was removed
by introducing a small paralled inductance on tne RF side of tae electric field
probe,

The coupling of the microwave gencerator to the wave cuide is an important
consideration. The specitic coupling condition i~ taat it the wave wnide was of
infinite length, tae reflected powcer throudn the (o tenna would be zero.  Stated
differently, if W metallic piston is placed in the wave suide, o st inding wave
pattern would be established such that o linear displacement of the piston would
result in a proportional threor shift in o mirinu of the standing wave pattern,
Or, if an clectric ficld dotector is stationary to the wave guide and the piston
is linearly displaced, the magnitude of the ficld will vary sinusoidally with the

piston motion.
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In the previous scction, the character of the plasma generated in the
shock tube was described. For the simplest approximation, the generated
plisma could be considerced as a unifornly ionized slug of gas radially filling
the tube and extending about one meter behind the shock front, The electron
density of this plasma denoted by ng could He tuken as the therm odynamic
cquilibriwm value, It 5, i< 5o Lorge that the propagation constant k, in
cquation (1) bicomes= an imavinary quantity, the hock front acts like a reflect-
ing pistou. The sional from a stationary clectric field detector in front of the
shiock would vary sinusoidally with timne as the shock moved towards it.

The time required to complete one sine cyvole inthe detector sivnal is

related to the shock velocity by
N\

T n)

"3
where \L' is the wave guide wavelenoth and v is toe shock velodity,

Since \% and T can easily be deterniired to better than 0, 1%, the shock
velocity can also measure to at least o, 1.

In Figure 8a, « veloaty history can be determined as the shock moves
toward tae detector ot the end of the tube. Tris history is shown in Figure 8b
and is typical of shock tube behavior, In Ficure 8a, the increase in amplitude
of the detected signal is due to the fact that the microwave signal is attenuated
in the wave guide, Hence, the standing wave ratio decreases as the shocek
interface distance from L( detector increasces,

As the shock passes the detector, the character of the detected signal

changes, To illustrate these changes, the set of yraphs in Figure 9 have been

prepared, In all cascs, the time average of the transverse clectric and ma gnetic

fiold at the wave guide surface are shown, The dotted lines represent field
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Figure 8a.
Shot Number 103

Wavelength  44.4 ¢m.

l Shock Velocity
m/s

Sweep Speed .5 msec/cm.

Upper Trace: Signal from
microwave detector

Lower Trace: Signal from
electrostatic probe
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Figure 8b. Shock Veloc.i.ty Vs Distance from Test Section
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i - Figure 9%a
l}%\v:\?‘?:? i Metallic 1°§|ton
x=0
\E
Figure 9b.
Signal from
™N 2 N Electric Field Detector
\ / N -
Z N ’ / %
Distance
x=0
H
Figure 9c¢c.
Signal from
[\' ; Magnetic Field Detector
A W w &
Distance
Plasma
I' T 7 Figure 9d.
il
” [ m Steep Gradient Non-
. e Uniform Plasma
4 E X = 0
Figure 9e.
2 Signal from
Electric Field Detector
{ /
Distance
H x=0
‘ Figure 9f.
| t k ' Signal from
/ ‘ Magnetic Field Detector
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Figure 9g.

i HIH lﬁ:ﬂl;nm G“‘M:‘nma

A

Figure 9h.
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. / \ / Electric Field

y \ \ / \_ / Detector
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- X
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Figuxéo 91.
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0N Magnetic Field
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Figure 9 j.

Slow Gradient
Non-Uniform Plasma

Figure 9k.
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/[ r Electric Field
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‘Y’ |

x=0

| _ Figure 9¢.
~ 7
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conditions of the previous cycle so as to contrast the change. If the reflecting
surfaces (piston or plasma) are assumedinoving, the field conditions are
drawn in the frame of reference of the m:)\'in_q system. Hence a stationary
detector would measure the field distributions in the reverse order. Since
the experimental data have all been obtained using argon shocks, the plasima
examples in Figure 9 illustrate. ficld conditions for various axial electron
density gradients, assuming some absorption inside the plasma.
In the case (a) of Fig., 9 the penetration inside the metallic piston is
very small diminishing to zero as the resistivity approaches zero, Note that
the transition in the transverse magnetic ficld occurs at its maximum and the
converse aoccurs tor the clectric field, Case (d) for a steep plasma gradient
s similar to (o) except that the penctration depth is greater, A typical
expernmental example of this case is shown in Figure 10, Similarly with
case {g), where the plasma gradient is less steep than case (d) the penetra-
tion depth has increased and the depariure points on the electric and magnetic
ficld increase and decrease respectively,  Note that the electric field inside the
plasma decreases with a rate changing exponential since the electron density is
increasing,  Experimental behavior of this type is shown in Figure 11, An en-
largement of Figure 1} has been made in Figure 12 where the detected electric
field inside the plasma and the clectrie field of the previous cycle are compared,
Figures 13 and 14 were taken so that it would be possible to discern the
departure points. These pictures were made using two electric field detectors,
One amplified detector signal was fed to the horizontal deflection plates of a
cathode ray tube, the other to the vertical plates. Spacially, these crystals were
located several wavelengths apart on the shock tube, The trace becomes un-

blanked about three cycles before the shock passes the first detector. Hence,
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Figure 10.

Shot Number 179

Sweep Speed 20 psec/cm.

Wavelength  18.9 cm.

Upper Trace: Signal from
electric microwave
detector

Lower Trace: Signal from
magnetic microwave
detector

Figure 11.

Shot Number 116B

Sweep Speed 50 psec/cm.

Wavelength 44.4 cm.

Upper Trace: Signal from
electric microwave
detector

Lower Trace: Signal from
electrostatic probe.
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Figure 13.

Shot Number 110
Wavelength 44.4 cm.
Horizontal: Signal from
microwave detector
Vertical: Reference signal

Figure 14.

Shot Number 118
Wavelength 44.4 cm.

Horizontal: Signal from
microwave detector
Vertical: Reference signal



100

the normal standing wave sinusoid is established as an ellipse, (The non-
symmetry is due to the nonlinearity of the detectors,) As the shock passes
the first detector, the departure is clearly evident,  The tocation of the
departure relative to the shock front can be nade by using the corresponding

linear time scale picture,

< ]
'/
o
= = Fig., .
sl
*
£
'
Fis. b,
Vertical - Reterence Sional
ftorizontal - Detector Signal .

Ficure 15,

Referring to Figure 154, note that if tae departure occurs on the outside
of quadrant 2 or 3, the function is decreasing faster than the sine function and
presumably denotes the rate-increasing type of exponential function. [lowever,
if the departure is oppo-ite as showrn in Figure 15b, the detected signal in the
plasma is decreasing stower than the sine function and corresponds to the

casce described below, The arrows denote the direction of trace.,
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Case (j) of Figure 9 represents a possible ficld configuration if a slow
axial gradient exists behind the shock, Inthis case, the critical cledtron
density, where the Propuagation constant, k, is zero, is located a long
distance behind the physical shock front. Hence there is a region of the

Plasma behind the shock interface where:

' U
wp ~ \/J" - 2.7 x 10

In this region, the wave guide wavelengli increases as N, increases, In
this casce, no well defined point of total retlection ovaurs, and there is a
continuous transition {from the propagating wave to a dec reasing amplitude
of the stunal which d4pproaches zeroin the recion of high ¢lectron densities,
This phenomena is illustrated in Ficures 1y and 17,

It could be neted from Figure 2 that {or ali vases, the transverse
magnuetic teld plot exhibits an « Srupt chasico i character at the "reflecting
point"”. This is bgcause the mugneti field is alvays ing reasing on approich
to the trausition revion, Ience, an o ITEPL L anze an ~lope should occur at
the critical region in the case of o sharp transition of the plasma properties,
Since the electron density increases as 4 continuous tunction, the critical

plane of "total refle ction cor responds to w masimuny in the Mugnetic detector signal..

Sk II\'VE:‘;S'I_'_I‘G_.-‘:! [ON OF V‘J:I_Il-,"‘kill_-‘\._S'_r\I:\ DEN 1TY }H-,HH\'D_ZA._I\' ARGON SHOCK
In the previous section, the ted mique for measuring vlectric und magnetic

tields and their rel dion to the electron density were discussed,  In particular,

referring to Figure 9 (J and €), the maximum of the magnetic field indicates

the "reflecting point". This point is related to the electron density through
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Figure 16,

Shot Number 101

Sweep Speed 50 psec/cm.

Wavelength 44.4 cm.

Upper Trace: Signal from
microwave detector

Lower Trace: Signal from
electrostatic probe

Figure 17,

Shot Number 101}

Vertical: Signal from
microwave detector

Horizontal: Reference signal

Figure 18,

Shot Number 164

Sweep Speed 20 psec/cm.

Wavelength 22.49 cm.

Upper Trace: Signal from
electric microwave detector

Lower Trace: Signal from
magnetic microwave detector

Blanking: Pressure detector
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equation (4) assuming the collision frequency zero. tlence, for cach micro-

wave frequency used, the clectron density at the "reflecting point "' is known,
Thus, in principle. by repeating the same shock and changing the microwave

frequency, a plot of clectron density vs distance behind the shock can be made
for the range of densities described in Section 2.

This general procodure was used to estantish the density profite beliind
an argon shock for severad shock velodities, Hlowever, rather than change the
froquency between cack snot (woron is o taborious procedure since the system
must be retuned a4 serics of tests were conducted at cach frequency.

To mark the pry=ical arrival of the shock, o crystal pressure probe was
mounted flush with the tube's surtice. Toe ontput from this crystal was fed to
a pulse cricuit which in turn cut off the bean: intensity of the measuring scope
for 5 microsccond=, A typroal trace ol tne clectric and magnetic probes is
shown in Fivure 18.

Note that a displacement correction st he made between the signals
since the probes are located 3 cm apart along the asis of the tube. This
correction is made by tir-t determining tae velooity as desoribed in Section 2,
Since the distance betwoen proves is known,by =ing the measured velodity, a
time correction of events i< made, and the distance between shock arrival and
rreflecting point” can be determined,

Using this procedure, Figures 19, 20, and 21 were obtained. From these
curves, a composit curve can be drawn showing the clectron density as o function
of distance behind the shock for various shock velodities (Figure 22). The de-

gree of randomness in the experimental values is due to the uncertainties which
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were previously discussed,  Actaally, the results arve surprisingly good

taking into account that tue i(miz.lti(ml rate of argon is a very sensitive function
of impurity content,

S.oce the purpose ot tiais particular investigation was to demonstrate

the capability of the measuring technique, no special precauations regarding

the impurity of the arcon were taken. 1t miight be noted that the data presented

was obtained by using argon from the same tunk.  Upon changing tunks, a com-

pletely ditferent set ot curces was obtuined,  The estimated impurity content

-3 -
15 between 1) and 1y for the data presented,

The theoretical .-:ll.il‘fm‘imn cleetron dens=ities for arzon are computed
as an appendix to tis scction. From taes results, asymptoles can be ]0&'._:[0(1
on the curves in Ficures 13, 20, 21, and L1 The relation sthrown between
measured and theoretio ol eleetr on densities indicates the high precision which
can be attained wita tias Lecanique,

An independont correlation of these resalts is presented in Figure 23,
The relaxation time defined by the other anvesticators reters to the degroe of
jonization ag measured by the Luinosity of the plasmua, These authors claim
a dircet relation between tae himinosits and the ¢lectron density. The point
plotted from our data represent a relaxation time defined as the time required
for the plasma to attain 0% of its equilivrinm value,

Because of the possible ambiguity in the detinitions of T, only an orvder
of magnitude agreement is meaningful, 17 the results for impurity content
in the range of llJ-5 to lx)~l are extrapolated, such an agreement is clearly

evident,
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4. FUTURE WORK

Since the argon shock his been demonstrated to be 4 simple and
predictable method of obtuining an axially nonuitorm plasma, further ex-
perimients will e made using argon to check the anatys=is of Chapter V.

When satisfactory correlation of this analy =i= has been accomplished, our

investigation will be directed toward plasma vradients in air shocks,

(Y
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APPENDIX A TO CHAPTER IV

_EQE!LIB&E{M_SHOCK CALCULATION FOR PURE ARGON

Equilibrium conditions behind normal shock waves in a reon have been

computed using « motaod outlined by . L. Resler, 5. C, Lin, and A, Kantrowitz
Y y

in The Production of High Temperature Gases in Shock Tubes, Journal of A pplied

Physics, Yol, 23, No. 12 {(December 1952). The caloulation considers single
iontaation of the urgon ate v, but clectronic excitation and multiple ionization
: i - ; NdA N )ap . 5 000w
are ignored. The assun dons used introduce vrrors of 1 - 2% at 15, 0007k,
and are considervably more acourate at lower temperatures.
The conservation equations for mass, momentum, and con. reyv, plus
LUie equation of state and pertinent thermodynamic rel wionships hoove been

written for arvgon undergoing the fonization revction:

The supscript= Land 2 denote conditions in front of and behind the shock, and
the unit= usced are:
. 3
density, . olugs/ft
pressure,  p, atim
velocity, u, u, ft/se
temperature, T, “K
cnthalpy, he 117 /sec
. ‘ 3
electron density, n_, particles/om

and n 1s the fractiond degree of lonizetion of arron,
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1t

P Mg =P, (Mb~-:;)
o
¥ A 2 ug it
2116.8 py + pp ay M, =2116.8 p, +p, ay (M, - sl
3 s iy
hy v 4y My o=h, ¢ bWl (M, - 2y
- . 111

h = 5.637 = ll)j (Liag)T + 4.075 x tu”

. 4y
= / . 5 /2
.. . 52l x 102
a = | 2,540 x 107 b 5 CNp ( By 3 v _> l
|. 572 NoooT

,.
hM
-

]
o
—
[
—

-
~.

a
7.39 x ! —— P
I+ a T

An iterative solution scheme was procremmed for the Bewdix G-15

digital computer u=ing the overrvelaxation method.  Thus, given input con-

ditions M, pp, and 1, “un(iitiuu;.l)r_-'.il.w the shock may be obtained,
Ficures L’.-{. and 25 present some coloulted clectron densitieos as

functions of shock velocity and initial pressuro . The initicl temperature

was 300K, and it wis found that the same results are also valid for some-

what tower initial temperatures,
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CHAPTER V

et e -t i -

ANALYSIS OF THIE ELECTROMAGNETIC FIELD WITHIN A CIRCULAR

WAVE GUIDE CONTAINING AN AXIALLY NONUNIFORM PLASMA

INTRODUCTION

The purposc of this chapter is to relate analytically the local clectromagnetic

properiies of the plasma with measurements of certain field parameters at the
boundary of the wave guide  In order to fix ideas consider a semi-infinite cir-
cular wave guide of radius R whose walis constitute a perfect conductor.  Let
this guide be filled with a plasma having properties that may vary arbitrarily
only in the axial or u-direction. The configuration so described is a simplified
representation of the shock tube at any given time during the propagation of the
pressure pulse down the tube.  Ahead of the disturbance the medium is yet
unaffected, and all properties are uniform. As the disturbance is transversed
in the z-direction, the pressure and temperature of the medium are drastically
altered, as wre its properties. Variations of propertics and purameters in the
radial direction are neglected here, and such effects are discussed clsewhere*.,
If electromagnetic radiation is introduced into the end of the tube toward
which the pressure pulse is moving, the radiation will progress down the tube

through multiple reflections from the perfectly conducting walls of the tube

until it encounters the ionized medium at the shock front, At this point reflection

and absorption of the radiation will begin to occur and this phenomena will con-
tinue as the radiation advances into the plasma until the energy is completely

returned or dissipated, The resulting field at any point within the tube is thus

% For example, see General Applied Science Laboratories, Inc.. Technical
Report No. 255,
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a composite of the original radiation introduced and that reflected back from
that portion of the plasma extending beyond the location in question. Clearly
the field pattern will be characteristic of the axial distribution of electro-
magnetic propertices within the tube, for any alteration in this distribution
would result in different degrees of absorption and reflection at ecach point
along the tube, and thus the resultant field would be changed,

It will be shown in this chapter that for the simple plasmia model studied,
namely one described by the two independent properties of collision frequency
v and plasma frequency < the two characteristic properties may be measured
indirectly through measurement of the time-average of the square of the radial
component of the clectric field and a similar average for the tangential component
of the magnetic field and the axial derivatives of these quantitics,

In view of the fact that we have assumed that the propertics are uniform
at any given axial position, such measurements may be carried out at the wall
of the tube where r = R rather than by the usc of probes immersed in the medium
and tending to alter the environment, In order to measure the axial variation,
the detector need mierely traverse the tube in the axial dircction, or, what is
equivalent and actually used, a stationary detector measures the desired para-
meters as the pressure pulse moves down the tube carrying with it the charac-
teristic field distribution,

In the analysis to follow the rationalized mks system of units is used

throughout, and the nomenclature is the conventional one and is thus self-

explanatory.
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L. FLiiLD EQUATIONS

The clectromagnetic field within the wave guide described in the preceding

section is determined from the Maxwell equations

oH

be.'—~}10t (0

Vst - J4+¢ 2F (2)
at

their associated initial conditions, with the assumption of no net space charge,
V . l.: - 0 (3)
vV.Bn =19 ()

and @ momentum equation relating the current density to the electric fields

T8 oJ .
G;,)p = W ’—()L (D)

The plasma is nonmagnetic and unpolarized so that the permeability p and
permittivity € are the free space values, The plasma frequency wy, and collision
frequency v are assumed to depend upon the axial coordinate z with the former

defined by the relation

2
ne

2 g 7
p me ( ))

W

where n is the electron number density, ¢ its charge, and m its mass.

It is of interest to note that for a transverse clectric mode (£, =0) the
current given by (5) is also transverse and is thus perpendicular to the gradient
of the electron density or plasma frequency. This behavior is consistent with
our assumption of « steady distribution of clectron density depending upon the
axial coordinate alone, and the TE mode will be the only mode considered in

this analysis.
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The natural system of coordinates for this problem is the circular
cylindrical system (r, 8, z) with the positive z-direction being taken as
opposite to the direction in which the pressure pulse is moving, The bound -
ary conditions are the conventional ones. namely that the tangential compon-
ent of the electric field vanish at the surtace of the perfect conductor, that
the field be finite at the axis of the tube, and that the field vanish infinitely
far into the plasma, Expressed mathematically, we have,noting that we have

postulated a TE mode for which ¥, =J everywhere,

at r =R By =0 (7
at r =0: I finite (8)
as z=» w: E-—0;, T->0 (9)

i may be shown that the necessary condition that the normal component of the
magnetic field vanish at the wall is automatically satistied by tae above con-
ditions,

Following the usual procedures, the pertinent components of the field

satisfying the above relations may be shown to be, apart from « factor (’-i“"",
. l ind . )
B2 I (Ykl') ¢ w(z) (n 2 1) (LO)
i W 1 ’
o Toeok TLE w's dw (1
@ Lo w T 5% dz ) (e

where J, is the Bessel function of the first kind of order n and the constant
Yi roay have any of the discrete values given by the roots of
t
Jp (Y R)x 0 (12)

The function w{z) is the solution of

we

e LS Yk w =0 (13)

w o= w' as oz —y {13a)
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where w is the circular frequency of the introduced radiation and ¢ the
free space velocity of light,
> 1
¢t B o
poe (14)

The parameter « is the so-called compiex refractive index of the medium

and is defined by the expression

»
-

Wi M s 2 (15)

L - iy
with o= :::IL (16)
W = :V)- {l6a)

It should be noted that x is a function of z so that the solution of cquation (13)
must in general be deterniined numerically.
Finally, we define for convenience the quantity

T oy IR :
. "n(\k ) in®
Ak (8) & 1 ———me e

(17)
ol

so that at the surface of the wave guide we may express the two ficld components

of interest in the form

Ep ® - dwip Ay wiz) (18)

r=R

Hg = A w'i(2) (19)

In all that precedes it is of course undurstood that the actuat field is

given by the real parts of the complex expressions which appear above after

: : . ) 1wt
first multiplying by the factor A
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2. EXPRESSIONS RELATING AXIAL VARIATION OF FIELD TO

. e . &
(hr );\V AND (”9

)AV

It may be shown that the value of (II; ) 7’ which denotes the lime-average
A
of the square of the radial component of the clectric field is given exactly by

the relation

<2 | & PRy
(& 0, T EEP (20)

where Er on the right side of the equation i the complex expression given

Ly equation (10) wr (18) and Ii: denotes its complex conjugate obtained by

replacing i with -i in the originad exXpression imilarly,
2 : * ,
(Hy )4\V ; II” H (21)

where Hy on the right side of the equation is the complex representation of
the lield given by equation (L) or (19}, In each case the factor gliet disappears

and further, because of the manuer in which the 9 -dependence enters, namely

A . inw S ) - . .

in the form e¢ 7, this factor also disappears when multiplied by its conjugate,
b o . .

Thus, the quantities kb and H, ”6 depend upon onty the radial and axiat

coordinates. In particular, at r =R, we have using equations (18) and (1,

) 5 = 5 » %k = 2 “ S x o X 2
...(Lr) v Lrhl' W ‘\nk Mok e (22)
A
r =R
; " s
) . E % ok 2
..(Hd )_\V ”8 ”,; ‘\nk Ank W (23)

The importance of these relations lies in the fact that the axial distribution
of the quantities ww* and w'w ' may thus be determined at the surface of the

wave guide for any mode through measurement of the two quantitics (Elf)\v
A
2

and (“5)\'\/' We may now use these measurements to determine « |,
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3. DETERMINATION OF THE 5QUA RE OF THE LOCAL COMPLEX

REFRACTIVE INDEX, wt

The complex retractive index is related to the function w(z) through

the differential equation (13), or cquivalently

W g 3
He W5 = oms X (24)
¢ K W

For convenience, we now define the complex function F(z) by the left side of
(24), namely

F(s) = S abeyd (25)

"

We desire the real and imaginary parts of F(s), and thus through (25), deter-

mine K .

The recal part of F(z), using (44) and (25) i- cvidently given by

*
. D% w!'' wh whawk s w o
JReF 82F, 8 = = = — = - =y (26)
W wi W

Noting that the derivative ot the conjugate is equivalent to the conjugate of

the derivative, 1.c¢.,

*aowr’ (27)

W £ w

and using the identities

'
(\\-'w*)‘ 2 owlwk owlw¥ (28a)

(wtw) = W' b owE ! (28D)

Equation (2b) may be written

n
. 23 ) ' *‘
2y =~ L) - W
*

WW
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and
] >‘c'
EL = WA B _[— (w w*) 2
wwk 2 T wwx he
Referring now to equations (22) and (23), we have
' n "
: gy ( (EEH I ¥
= 2 CRRC IF g z(l ) (hr),
F, e e _LJY_-%___E;\.Y_ (30)
ey “ptr (‘-.1.)\\/ (Hr)r\V

and thus F is determined in terms of measured quantities.
The procedurce for determining the imaginary part of F is similar, but

not as straightforward, Analogous to cquation (20),we have

~ - !
w'' w"* Iw w = - LA )
2i Fo=- 24 R Wk v/ | (31)
W wk Wk

and by an obvious transformation

F. = - L ) W (3))

The function w'/w may be determined in the tollowing way. First we

note that

| (B .
W W («v W)
1 U SO 'Y 33
w Wi WK ‘ Las

where a is a measurable function.,  Also, another measurable function is

1
w ke

b {34
Wk AR

Solving (33} and (34) simultancousty for w'/w, we have

e T BT A L T Y A i M o
w 2 A 2 wwe) \1

{wwik) '] 2

— —_
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Returning to equation (32) we now have, substituting from equation (35),

o e e =\
Im ¥ o ¢ 1 (ww) \ﬁ-(w'w*') () _ |
W ) P 2
. W & ( \V\\"") [( \v\\-*) ]"

[ o \/ wwk ) (W\\___ _ 1\
(wwt) LW'W —]-

2 wwk

Using again equations (22) and (23), we have tinally

[ = e , — '
JL»H (He) (h,) BF“) ] l

i ._._. — S

2 1,z
( \V

(36)

(37)

(38)

The choice of sign in equatior (38), as will be scen in the next section,

is made to yield i positive cotlision frequency.

The real and imaginary parts of x or « > may now be determined directly

from equation (15),

ké¢=Z_F+ S Y. g R+il
o n k
Thus,
Rew?® § Rs—7 |F_ +y*
R Y‘.J
) "
Imk =1 - F.
< i

(39

(40)

(41)
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4. PLASMA FREQUENCY AND COLLISION FREQUENCY
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The desired quantities wp and v, or what is equivalent, ¢ and ¢ are now

readily found. From the definition of k%, cquation {(15), we have

. , ;
wdw (v Lo}t B e g
U y? By ?

Solving for ¢ and ¢, we have

I

U E e

R-1

2 i 2
o = [ —— = ] - R L 5
( %) +(l—1~) (L= By (Lt )

Using equations (40) and (41), we have

F.
i
Y, = ————ar— —= e > 0
3 4 0w’
Fp & Yy = =3
e
and
T b a
o = h - =5 (Bt Y ) (1 u7)
w -

(43)

(44)

(45)

(16)

The plasmit propertics are thus determined by the measured quantities

through the use of equations (30) and (38) for k. and F, .
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