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STUDIES OF THE ELECTROMAGNETIC CHARACTERISTICS 

OF MOVING IONIZED GASES 

The  Project Scientist for this task is Dr.   Manlio Abelo. 

The investigations of the microscopic and macroscopic 

properties in a weakly  ioni/.ed ijas  reported in Chapters II and 111 

of this  summary  report were carried out under the- direction of 

Professors Piero Caldirola and Lui^i Napolitano,   respectively, 

and under the general direction of Prof.  Piero Caldirola. 

The experimental investigation described in Chapter IV has 

been carried out  hy Messrs,   R.   Tomboulian,   M.   Wecker and 

H.  Medeiki under the direct supervision of Dr,   Abele. 

In Chapter V, preliminary -.ab ulations have been Conducted 

by Dr. Bruce Gavrii in the evaluation of the electromagnetic pro- 

perties on the basis of tue experiment,il information obtained with 

tue shock tube facility. 
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CHAPT 

STATUS SUMMARY OF THE RESEARCH 

I 
I 

The present st/mi-ann '.al progress  report covers the theoretical and 

experimental research performed during the period from October   1,   1961 

to April  1.   196Z,   in connection with the study of electromagnetic  properties 

of ^onunii'orm plasmas. 

Detaili'd calculations of the distribution function of the electrons are 

presented,   with the basic assumption of a weakly ionized e<is where only 

elect ron-neutral particle collisions are taken into account,     r'rrlli i .v IHM [\^ 

(»mcedure descrwH'd m ~r'l utpii. i  li. jthe calculations will be extended to the 

case of interactions  between electrons and  lOllB,      The  results obtainedsjl 

ßhapU'i   14 will be applied tirst to a one-dimensional problem where a tempera« 

ture gradient is assumed in the plus : a,  and the electron diffusion and electric 

properties of the  ionized gas will  be computed,     Chaptfet   m  pfeseu's-J-nr-^ 

t heoreLu, at  mtn rosi pph   .IIMI ','M is i H   i hi    pi i ijin i l ii'K •>'<  t—|' 1111      . i—ml he s b—WCe 

oi" ,111 ii|i|ilii d ii    i    flelilj^The electric field,   induced by   nonhomogeneous 

thermodynamic properties,   and the electric conductivity of the plasma are 

evaluated.    The analysis is performed for the case of weakly ionized gas in 

the imperfect Lorentz gas approximation« 

This analysis hail  m i>n extended to the case of a nonisot ropic  plasma, 

which corresponds to an applied magnetic field'.    The results obtained will be 

presented  in an additional  report.. 

The experimental program  lias ftyen conducted,   with the technique 

described in the previous progress reportJ\in a nonuniform argon plasma 

obtained in the  shock tube  facility.     Chapter  IV  presents the experimental 



results of the electron density profile of the ionized argon behind the shock 

for several initial conditions of the driven section.     In the limited range oi 

frequencies which have been used in these experiments,   the  results  show the 

high resolving power of the technique.     In the preliminary part discussed 

herein,   only the case of small    absorption of the microwaves has been 

analyzed. 

In connection with the program of computing the electromagnetic properties 

of the plasma from experimental results,   the analysis of the  propagation 01 

electromagnetic waves in the nonuniform medium inside the cylindrical wave 

guide is still  in progress.    The analysis is carried out assuming that the 

complex dielectric constant of the  medium  is UnknOWl ,   and the propagation 

equations are solved in terms of measured quantities at the surlace OJ the 

wave guide.      The measured quantities  correspond to the  siuuals obtained 

with the electric and magnetic  probes which are located at  the surface of the 

wave guide.'    Chapter  V presents the  results obtained assuming that the 

electromagnetic properties ot the plasma are constant In a cross>section oi 

the tube  and depend only upon the axial distance  from the  shocl-.     These 

results will  be applied to the calculation of electromagnetic  properties on 

the basis of the result! described In Chapter IV.    The analysis will be extended 

to the case of  nonuniform transverse distribution,   assuming a suitable mod« I 

for the   radial dependence  based on theoretical calculations of the  flow  field 

behind the  shock. 



CHAPTER II 

ELECTROMAGNETIC PROPERTIES OF NONUNIFORM PLASMAS 

FROM MICROSCOPIC CONSIDERATIONS 

INTR ODUCT ION 

Thv iriciin object oi our research was to examine,  in a microscopic way, 

sonte effects in a pl.isma,  due lo Inhonogeneitiesi   HO as to estimate the 

importaiiije of such effects on the prim ipa.1 electroinagneti(  properties ol 

the plcisma,  as,  for instancei   conductivity«     In order to reach such results 

from our view point)  it is necessary to i al( ulate certain distribution functions) 

direetly deducible from Boltzmann's equations.    It inhomogeneities arc present 

(due to gradients of concentration)   of temperature)   et< .)■   as far as we know, 

no actually developed method of calculation exists« 

For this reason we decided to examine various models beginning with 

the  simplest  ones: 

1.    Plasma assimilated to a weakU  i.ii i.-.ed Lorent/.ian L;a.-,   i.unsidering 

electrons and neutral molecules and ne   lecting Coulomb interactions« 

1.    Three component plasma (electrons,   ions,   neutral molecules) taking 

Coulomb Interactions into account« 

Since the analysis of model   Z.  aas appeared particularly difficult from 

a general point of view (for the reason that it implies the solution of a system 

of Boltzmann's equations),  first of .ill we decided to carry out in a detailed 

way,   a method of actual calculation, in order to lace the simplest model   I, 

even if it is not very  realistic«    In addition)   lor the  scheme   1.   we have decided 

to examine  separately the various inhomogeneity effects and also,   to keep near 



to the model studied from the macros topic  view point,   we have selected the 

detailed examination of the inflmtnce of temperature gradient in a slab con- 

taining the plasma,   whose walls are absorbing and emitting with a M.ixwellian 

distribution. 

First,  in Section 1.,  the complete mathematical-physical characteristics 

{in our opinion not  so wholly developed in the literature)  of model  I .   art- 

described up to the deduction of linal equationsa 

Next,   in Section 1.,   a known analytical im-thod used for solving   the equations 

of Section I. (series expansion of eigen function,-, of the collision operator) is 

described. 



I.     MATHEMATICAL-PHYSICAL CHARACTERISTICS OF MODEL I 

We  considiT,   .is in the Lorentz gai model«   a binary mixture of a single 

kind of neutral ntoieculei and electrons.    That is to say,   we consider a weakly 

ioni/.ed gas (n « N)  which allows us to neglect (within the limits of an initial 

research whose aim li to test a tnethexnati( al method for studying Holt/.mann 

equation fur a nonnomo^eneous system) the ion    effects,   provided that their 

density is of the order of n. 

We  shall  indicate with  f (x,   V,   t) and  F (\,   y,t)  respectively the electronic 

and molecular distribution functions. 

In the corresponding system of the two Boltzmann equations : 

Df ■ J     (f) f ,1      (f) ee env 

DF - J        (F) '  .1      (F) 
mm nu' 

we can neglect J     (f) and J       (F). <'t, me 

Assuming,   then,   the following  syst. n.for the temporal behavior of 

f and F, 

Df=Jem(f) U.D 

DF i .1        |F) (1.2) 
mm 

we may note that: 

a) From the Equation (1.2) the temporal behavior of the molecules is entirely 

independent of the presence of electrons,   while the electron gas depends  upon 

the presence of molecules,   through the collision term 3 
em 

b) The temporal behavior of the electron gas,   given by Equation  (1.1) is 

affected by the molecular gas,   as we shall see later,   only through the 



followinj; phcnomenolonical parameters: 

molecular density,   mean velocity and mean square velocity. 

As a result it is not necessary in solving Equation (1.1) to integrate the 

Boltzmann Equation (1.2): 

DF = J (F) mm 

for we only need the knowledge of the above mentioned phenomenological 

parameters. 

We shall begin by expanding the electronic distribution function 

f(x,v,t)    in spherical harmonics,   writing: 

I 

f(x.v.t) (i , U.y.t) c      i a     (x, v, t) s em em      ' em   _. — e iii 

" f ■-- o        <- 

0   me 

where 

C        = ve 0       (Ü) cos mo 
em em 

S - v1' B       (Ü) sin mü 

0       (U) being the associated Legendre finctions: 
ein 

(mj 
0      (0) s iin   fl   P      (cos 0) 

em <• 

We may write the expansion (1.3) in tlie   form 

f(v)   :   f   (v)   >    Z.      " i,(v)   ■  /(v) 

(1.3) 

;1.4) 

where f0 represents the  isotropic part of the distribution function 1",   fj    is the 

coefficient of the first anisotropy and   /   is  simply the remaining part of the 

expansion. 



Introducing (1.3) into the Boltzmann Equation (1.1) we obtain a 

hierarchy of equations,   which is easily obtained provided that we know the 

resul* of the application of the linear collision operator .T over each term of 

the expansion (1. 3). 

To this end,   we may note that the operator J,   in an approximation for 

which one has simply   TT " 0 (perfect Lorent/. gas),   possesses the following 

properties,   fur each Isotropie function n(v); 

J       (a) = 0 em 

J       (aC .,, ) * . V   aC 
em        eni <-'      eln 

1       (aS       ) ^  - f  nS 
cm      em e     em 

(1.5) 

In the imperfect Lorentz gas scheme,   we  shall have: 

J       (a) ■ O,  ( —-) 
em M 

Jem««8 

(1.6) 

when- we have used the  Landau symbol 0| (x),   meaning a  quantity   which is 

simply of the order of M . 

The quantity O   ( —) has been calculated by others    ( Z) under the 
1      M 

hypothesis of a Maxwellian molecular distribution F,   obtaining: 

J      (a) enr   ' 
m     i    _a 
M       v7"    5v 

U \     (af ) 
mv    ov 

(1.7) 

On the other hand,   we have proceeded to the evaluation of the quantity 0.(in/M) 

keeping an entirely arbitrary (and hence generally anisotropic) molecular 

distribution. 



The results of our calculation is given by: 

i     a   J v   _ 
3       (a) ^   —   —   < A(v)  I   n(v) -^_.V  f 
em v*     ov      | v     — 

C(v) ^^ VV 1> 
"J 

where: 

A(v)       ill   H v5 a +   l^  v3 

M l 

V2 ÖQ 

3        dv 

(1.8) 

B(v)      Ul  v
2a 

C(v)   .    (V   -^^v2    - 
1    »U 

(v -  - I/,) v - 1      z     ? i  v2     a 

We have followed Chapman and Cowling's notation,  in writing 

(1.9) 

v0v   •    V V = s"    ^    (v v   - i  v2 6     ) VTT 
-  '13 'J J    i 

while I'1, and t'   arc the first two ri laxation frequencies       1 

J 
4{v) ■  ZffNv     \     sin 0 1   -  P,  (cos 0)^(0, \) (IU 

rr 
f 

f (v) a  ZTNv     |      sin 0 

I 

,: 1  -  F    (cos Ü) •   (7(0, v) dO 

(1.10) 

u(ö   Iv - Vi) being the differential cross section for electron«inolecule 

collision,   in a frame of reference fixed with one of the two particles.    The 

determination of 3       (aC._ ),   .1       (aS   _) has been done disregarding the 
em        CI" em       l nl 

02,  Oj terms. 

A general account of the method followed in the derivation of formula 

(1.8) is given in Appendix  1. 



I 
Taking into accout that f    is an isotropic function and f   '.^ is 

amply a linear combination with isotropic coofficients of C10 ,   C,,,  S^  , 

v 
e now able to calculate Jeni (f0),   ^cm l^"   ' i.1' 

If we perform a further approximationi*) forgetting the t.-rm^v) 

we are 

in (1.4),  we at last arrive at the following; 

r 
Df- .i    (f) - -^   ^-  <My) ■ B (v)^- * em v2    dv v 

'V      -  • f. 

V t  C(v)  =. 
V   V 

VV L 
" "J (LID 

where A(v),B(v) and C(v) are given by (l.'O. 

The calculation of Df is  Immediate.    Finally,   by means of the 

orthogonality properties of the  spherical harmonics functions on the unit 

sphere,   we obtain the following system: 
"< 

*   ^_ V  • f, t 
3    -      - 

c ^    /  2 i    /   v      on     1      ^     ij   u3^        —   (v" K.f i )  -   —    —T   ^—   ^i v ^o 
3m v2      dv   M    ^    rv      ' 

M Vz 

3m v 
11.12) 

3f, 

at 
v? f 

m   ^T  —        nu'   _  - v2    dv 
1' f,)  ^   -V      "  (l'ivMj    V -  l^f, 

in the unknown functions f   ,   f 
o      i 

*) As usual in this kind of reasoning,   we may evaluate  "a posteriori1' the 
usefulness of this approximation,   by calculating explicitly the difference 
between the results obtained and those based on the successive approxi- 
mation,   or "a priori" we may introduce some plausible arguments,   like 
those, used by Davydov    ( 3 ) ami Gurevitch ( 4 ) . 

| 
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APPENDIX 1 - DERIVATION OF EQUATIONS Ug ANH Uj 

Let us statt   here some formulas which we shiill use later on, 

directly deducibh   from the dyiuunici of el.istie (elassical) collision between 

two particles (in our case,   electron and molecule). 

Lit us consider an elastic electron-molecule encounter,   with 

velocity v,   V   respectively,   well before the collision. 

Let   us put: 

g « V - v 

where t; is the relativ.' \. locity of approach of the molecule in a frame of 

reference fixed with the electron (see Figures  1 and I at tin- end of this 

Appendix). 

u is the scattering angle; from Figure I we li»\e at once: 

u 
H - n' - ^H sin -   h. = ^ ^M. *  b.^ h. 

where k (apse line unit vector) represents the direction uf the external 

bisectrix of the angle between the asymptotes of the relative molecular 

trajectory. 

We have thus: 

V - v = V'-v'  •   <Jii sin -    k 

from which,   by momentum-conservation: 

m 
V - V ■    - —     (v'-v) 
— — M       —        — 

v'  -  v 
1  I  A 

ZA v - V « - 
—     —        1  .  A 

(g •  k_) k 

(g . k) k 

(Al-1) 

I 
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having stated       A m 

M 

In the frame of reference sketched in Figure   ^,   we see that the 

components of k are 

k      =-cos—   cosü 
2 

k      =-cos—   sinC 
y' 2 

k      = sin   — 0 

2 
We pass from this frame to the one sketchvd in Figure 4 through: 

x = -x' sin (i 4  y' sin f cos ft *   /■,' cos f cos (i 

y = X* COS ß 4  y' sin < sin (5 ♦   /.' cos f sin (i 

z ■ y' cos ( - /.' sin C 

vvheri (sec  Figure -1); 

v       V 
sin f   -   —   - —   cos fi 

cos f i sin a 

So we can caK ulate the cotnponenta   >f k in the frame of r< {erence of 

Figure 4,     Using the first of (A 1-1) v. e have the following: 

v'   (1   •   A) 
x 

(v -  V cos d) sin U sin O - V (l-cos 0)  sin n 

f g sin 0 tin p cos 9 

cos p 

b v'   (   1' A)   -  - j (v -  V cos a)  sin ti sin O   -  V  (1- cos U)  sin a jsin ß 

g sin 0 cos p cos O 

v1   (1(A) = v (A  *   cos 0)  '   V   ' (1-C08 0) cos a -  sin 0 sinn sin Ü 
7, 

(Al-2) 



It 

I 
I 

So,   squaring and summing 

1  4 2A cos 0  •   A2 ^   IB2 (1-cos 0) 

1  1  A L 
(   2B 

WIUTC we have put 

(Al-3) 

1/2 

(A-l) cos a( 1 -   cos   0   )      - tA+1) »in a sin J sin <P  • 

V 
B ■  — 

V 

We now treat A and B as infinitesimal quantities and eliminate 

quantities which contain A  ,   A    , . , ,   B    ,   H     ■ , . . ,   AB,   , , . 

(Al-3) becomes : 

\ ' » v! 1 • A cos Ü - A   •   B* (l-i -os 0) - B     cos n (l-COi Ü) 

+  sin Ü sin a sin W 

To the  same order: 

B2 

—       COB a (l-cos 0) f   sin a sin Ü sin O 
2       ^ 

\l - \       v   (H2 -  \) (l-cos 0) -  B     cos a (i-.osU) 

1!' 
!■   sin d sin Ü s 

I      B2 1Z  ; 

in Ü I-   —     1 cos a( l-cosO)  t   sin u sin U hin O ^ 

J   2 L J J 
(v'-v)1 « \'- B2   cos a (l-cos U)   ■   sin n sin Ü sin O 

■i 

R = v 
1/2 B2 

1   • B2 -  ZB cos (i « V    1+—     sin2a -  B CO« a | 

B2 

a (0,g) = a{Q,v) t  v 
B2 da        B2   ,       ,    ^^ 
— sin a- Bcosai—   t   —- s^cos^a t   r 
I 9 v       2 Sv" 

sa 
ff (ö.g) g » 0 (0, v) v-Bcosa (v —   •   a)  t   O (B^) 

äv 

We must now simply evaluate the behavior of the   operator Jern over an 

arbitrary isotropic function Q(V),   that is the quantity: 

,i(iIP(a)      \{a,Fl - a F) ga(0,S) dfidV 

(Al-4) 

(Al-5) 

(Al-6) 

(Al-7) 

(Al-8) 

(Al-9) 

(Al-10) 



1) 

The prfceetlinjj collision term has been evaluated by noting that in each 

electron-molecule collision,   the variation of the modulus v of the electron 

velocity is given by: 

M 
(Al-11) 

(see (Al-5) ) 

As a consequence,   the integral operator .1        can be put in a 

differential form,   following the same technique used in the transformation of 

the Boltzmann elastic collision operator into the Fokker-Hlanck form 

(references ( T ) (6 )) 

Let us  introduce a suitable,   but largely arbitrary isotropic function 

/ (v); according to a general well known rule. 

I  J        (a)/(v) dl'-    Mv,) -^<
V
)]K 

n(v)   F0<0'>i) 'l^clVdv 

Furthermore,   retaining only terms of the order of m/M,  we have according 

to (Al-11): 

(Al-12) 

/(V) -^(v)     (v'-v) =-^- ■   (v'-v)2 

2 
2ÜL (Al-13) 

Inserting (Al-1 i) into (Al-12) and integrating by parts,   we find 

where 

1       i 
em V*     ov 

( 

-v2 M(V) a (v)   +   -   i_(vaX(v) o(v)) 
2   8v 

1 
(Al-ll) 

»i(v) = ] a(u,g) gF (v'-v) dtldV 

X(v)  -   I a(u.g) gF (v'-v)2 dOdV 
(Al-15) 

')    See,   for instance references     (2) , (7 ) . 

I 
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I 
I 

So f;ir as wt« choose   $ (v) to satisfy thr foUowing relations 

fiM^V UA 

v-o L 
Ö p 
T7 

V   o 

\ If» 

v =o 

14 

In a way consistent with the approximations used,   the two preceding 

functions U(v)   and A.(v)   have to be evaluated to the first order  in the quantity 

m/M. 

To the first order,  ^Olg)g(vl.v) is given by formulae (AU5) and 

(Al-9) as follows: 

orgCv'-v) = "(0, v) v'B* (l-coa 0) - ff(8,v) v2A (Ucog 0) 

BJ 

- 0\l B cos a (l-coa Ü) - ü v2   _  cos2u (l-cos 0)2 

BJ 

CJv2  —sin2« sin2n sin2C  I   B2 eos2a v2 (v -H-   '   0) (1-oos B) 90 njn  «   am  a  am v   I    n     COB'Q  v"  \v 
' öv 

where quantities containing sin O have been overlooked,   because a  successive 

integration is performed over c, from o to 2ff .    From the definition (A1-1S) „f 

M^) we can obtain it from the preceding relation,   by integration over 0 and ü 

and over all the velocity space V . 

Leaving aside the (direct) integration,   we have: 

H(v ^i   V'-A^v-.,  V,, a   V2   |   b.   V.2   i * 
-H' 

'/ J     ev 
V2 

wile re 

V^   a  ZTTNv    \       sin  0   (l-eos  Ü) 5(0,v) dO 

a = ZTTNv   \    sin 0 (l-cos 0)2 Q (0,v) dO 
1 

o 

b a ZffNv   \   sin3   o cr  (0, v) dO 

o 

(Ai-16; 
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and having stated: 

V      --    -   \   dV    V cos a F 
II        N 

II       N )    " 

i      N) - 

In the same way,  to the first order In m/M,  0 (d.g) 4 (V - vl   (oUowlBg 

formul.ie (Al-M (Al-9) i^ given by: 

»{O-g) gtv'-v)1«   Jv V2cos2..  (l-COi  U)2  I   ffv  V2    ,in2 Ü  sin2n  fiB^P 

overlooking quantities containing sin O. 

FoUowing the definition (Al-IS) we have therefore; 

A fvl  - ■. V2    •    -     V2 (A1-1H) \(v) »a vH       2    Y 

Let us now introduce the quantity; 

1/  = ZffNv  f .inO |l -(^    eos 20.i)ia(0.v)dü (Al-19) 
2 2 

o L 

(A1-1H) can he written; 

with 

A (v)  -  (2^ - ^) V2
( f   j   V 

V7   t   V2 = V2 

11 1 

!    i/    V2 . (Al-ZO) 

Introducing now (Al-HO and (Al-20)  into (A 1-14).   and leaving aside the 

direct calculations,   we have; 

J       (a) -- -  ^^A'M I   l'.'(v)   V,,     l  C'{v)   vp 
em I 



I 16 

where: 

I   .iv' 1 Sa    — 
A(v).   ill   ,   v5a)   v(i.        .)V^a-   -v^   V^a.    -   v^2-v    V^ 

M 2     z ö 6 

1-« (v)     f, vz a 

C'(v)     -3v (i ^ - i/,) a - -   V —  a - v lily   . u,) — 

^. 

Furthtrtr.oro,   by noting that: 

and puting; 

V^ ^   i   v v ;  vT 
II        2  —   - - 

0 '        2 A v    v      v v - —   \    0 

\vu h.ivo at last: 

I a_ 
V2      JK 

where 

■.:A(v) . B(v) =.' W_C{v). 
Bv v 

I 

vT    - 
V n n 

o 
V V 

„2 

M        ' 
A (v) •   ~ V, Va ■  vx V   —   — 

B(v)   ■ f, v4 o 

V Vf       (Al-Zl) 

J 

(Al-22) 

»o 
C(v)      (^.i   ^V   ^   •   3^ 

1        , I    dW z -^)v 
ÖV J 

that is formula!' (1.8),  (1.9) of Section 1. 

(A 1-^2) can be put in the form: 

J     » '   13 
1      ZA 1      oB    v v 

em v'     8v 
» rjr :    V  V   . (A1-Z3) 

I 
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At this point,  we are able to calculate the quantity: 

Jern (f) 

where £ is the electronic distribution function: 

f - f0(v)  H   I_   * fj     (v) 
v — 

Taking account that J.—, is ■ linear operator,   wc have: 

.1 (0  « J (f.,) -V. JL   ■   f, (Mil O' | cm ■    v 

by using the Bayet-Delcroix-Denisse approximation (see Reference (1) )    , 

One can evaluate J       (f  ) from (Al«23) by simply lubstituting n with f    and 

arrive at the formula (I. 11) of Sect ion  1, 



18 

T , (x y) intersection 

FIGURE  1 

- plane through the or,«in.   pernen.Hcular to the l^0«1»« «^•«f»      , 
./half-oiane tern.inatcd by the stra1Rht line a.   over which moves Uu 

T 

T' = 
molecule. 

T "= reference half-plane 
b - inpact parameters 
0= azimuthal angle 
0 = scattering angle 
a- = relative molecular velocity after encounter 

nconung 

I 
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relative molecular trajectory 
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section with T plane 

FIGURE  2 (Ihis Figure is intended to be traced on the 
T' half-piano of the preceding Figure  I; k is 
the unit vector of the so called 'apse" line.) 

y' 

FIGURE  3 



zo 

2' 

FIGURE 4 

section with (x y) plane 

L 

(This part of Figure 4 is traced in (x'y1) plane) 

■ 
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2.        ANALYTICAL METHOD FOR SOLVING EQUATIONS 

We now approach the study of the system (1.12) linntinß ouselves to 

the stationary state when there is no magnetic field. 

It is thus possible to express f, (x, v)   as a function of f^ (x, v)   and to 

reduce the system to only one differential equation in fo (x, \) 

-   o       mf 

5f rr I o    E    l 
—        v'y     dv 

IV. v2 f  )   V 
o     — 

^  V 

I 
J 

o mid      j ,„ MVi^o, 

3mv2     3v -      - M    v-   8v    L 3 v ^ 

(2. 1) 

Then we Studied this elliptic partial differential equation in the variables 

x and v. 

As wo  said before,   the presence of the molecular «as appears only 

through the mean molecular velocity V     . V2   and the molecular concentration N. 

We daveloped tjx.v) In a Beriea expansion of eigenfunctiona of the 

.    In doing  so it was operator .1  -- £f   v2   öv   i'/1 
v   ^o  '     jmv      — j 

necessary to specify the type of electron-molecule Interaction we were 

considerinj;. 

We have considered two cases corresponding to central interaction of 

the  Maxwellian type and the  rigid spheres type (see Appendix 2). 

In the first case the eigenfunctiona of J are: 

i   f ! . mv2 (1/2)     mv2      U^.    -f    (1/2) ^ , 
2k T L 2k T 

,e      L (C) 1      "        1 2.2) 

(where e = ^-      is the non-dimensional electron kinetic energy}] in the 
ZkT 

second case they are: 



I. 

( 

11 

I 
I 

I 

I 

mv 

J    i 
.O-'L'",«. (2.3) 

Tims we havi-: 

a) For Maxwellian intt-raction: 

ÜO 
1 -( 

f >,     an(x) e     L 
O n  — II 

n--0 

b)   For ri^id splu-rrs interaction: 

(1/2) 

;•) (2.4) 

oo 

'n   0 

-c (1) 

a     (x)   e L (C) 
n   — n 

(k) 

(2.5) 

Usinj; the ortlioj;unality propertiei i>f the L_     polynomials,   we arrive at 

two systems of infinite differential equations in an(>0   and an(x) which,   if 

the electric field is neglected and V      0,   takes the form: 

case of elastic   - spheres  interactions: 

of (an{x) )    •   (n  I   L) ^(an(x))  I   (»   •   L) (n I   3)C (an(x) )      - 

-nd (..,..! (x) ) - 2n (n •  2)C(an-1(x) ) * »(„-1 )^ (rln_z(x) )   = 

^ 1,2   Nz    2m (x) 

M n - 

(n  -   0, 1.2. 

(2.6) 
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Case of Maxwellian Interaction: (2.7) 

f 
!.n(n-l) (n.Z)C  U^W    H      M»-!)^ (»n.2W 4  ,1<n-1) I4»* J >C «Vl^ ) 

3      .        9 
-\nl{iiu.\) ■ ^^^ K-l1 •  n(n '  2H6n '  ^^^n-l1      ; 

♦ | (2n ♦ | )^(an) Kn + |) (3n + | «8 (»„) • (« • |) (« • |) (4n+l) ^ (*n)    - 

s 7 1 
- !  (n + -)^(a     ,)  (   (n t  A) (n • -)$(•     ,) I   (lH  1) (n •  - ) (n •  -^(a     ^ 

2 n* 1 2 2 n- 1 2 2 £ 

3m^2   N2 

0 n an(x) 

MkT 

(n = 0, 1, 2, . . . 

where 

r 
X   = 7^ - V log N • 9 

■ ^  as    2V 1^1 T«   £   ■ Vz log T - ( 7 log  D2 - V l-'u N- 7 log T 

£   -      ( flog  I)2 

In the Maxwellian interaction ease we have also evaluated the contri- 

bution due,   separately,   to the presence of ooth an electric field and of a mean 

molecular velocity. 
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APPENDIX 2 - EIGENFUNCTIONS AND EIGENVALUES OF THE 

COLLISION OPERATOR J 

a) Maxwcllian intrraction {♦) 

I 

M M C      l- 

We consider (h«  following eiKenvaluo problem: 

I 

I 

I 

.\r 

u   d^    •  (2. •  3)   ^   M3t^-)o=0 (A2.J) 
de^ dC inif 

[ntroducing the new function 

. (c)     e    o (0 

(A2- 3) becomes: 

C4Ü   f(l.o ^  --^r .-o {A2-4) 
tjfi 2 d( 6iia'2 

Imposinj- on :(().  as boundary condition! in .-space, analyticlty In c= 0 

and polynomial behavior for f >-.>. the solaions of (A2-J) are the Laguerre«. 

generalized polynomials of order  1/2: 

,(1/2),   , n    ^   ,   J   ■  -^      ^ 

r^r / 

(?1 The nwiNW.lHn.! rlertron-inoleeub-  uUrraetion model corresponds to a 
repulsive force varying as the inverse fifth power of their distance apar 
In this  case  the  collision frequency does not depend on the electron 

velocity:    V = I^N. 
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corresponding to the eigenvalues 

6m^ l 

X      =            on 
n          

M 

(n = 0, 1,2,,.) (A2-5) 

b) R ii;i(i spluTf interaction (:) 

6mv        .1   d do 
J    (o ) 2     <    T,    i f M o • -7- ) 

d( 

We consider tin- following eigenvalue problem 

.(     (Ü ) - - Ac 
R 

or 

, 1 , M A 
{
J  d^_    • (2+f)  2S +<2H   7—7 )o    0 

(A2-6) 

{A2.8) 

Introducing the new function 

\   (O      eCC(0 

(A2-H) becomes: 

c      •    2-« )   — 
d«2 df 

MA 
.     0 (A2.9) 

Imposing on   . (0 the same boundary conditions in f-space as in the Maxwellian 

case,   the solutions of (A2-V) are the   I.aguerre's generalized polynomials of 

order 1,11.      (C)      correspondim; to the   eigenvalue! 
I     n 

6niy 2 

An-       2-        " 
M 

(n      0. I, 2,..) (A2-10) 

(:';) In this model we  suppose electrons and molecules are  rigid spheres.    In 
this case the collision frequency depend! linearly on the electron velocity 
V a 1/   N V o 
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SYMBOLS 

c li^M velocity in vacauni 

lt Beltsznann constant 

m ehctron mass 

e electron charge 

r electron (classical) radius 

n electron density 

v electron velocity (modulus  v) 

M molecular mass 

R molecular radius 

V molecular velocity (modulus  V) 

N molecular concentration 

T molecular Temperature 

V mean molecular velocity 

V2 mean squ.ire molecular velocity 

E electric field 

H magnetic field 

D differential Bolt/.mann operator 

D —     —     t   v    •    V    t   x 'V v 
-       dt - -       -   -1 

J integral Bolt/.mann operator 

u- u Nv » ^(R'r)2 Nv   collision frequency for rigid spheres Interaction! 

Waü1   N -collision frequency for Maxwellian interaction 
o 

A=^        constant temperature gradient, 
dx 

T"*1 a knudsen number 
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CHAPTER HI 

STUDY OF ELECTROMAGNETIC PROPERTIES OF NONUNIFORM 

PLASMAS IN T11 l.RMAL EQUI1.1 iUUUM,   ISOTROPIC CASE 

INTRODUCTION 

In this chapter resulti of the study of the electromagnetic properties of 

a nonuniform,  macroacopically neutral plasma are reported. 

The line ui approach is a macroscopii   one,  baaed on the thermodynamica 

of irreveraible processea, 

A tiirt-o fluid niodtl la aasumed; the plaama is >. on side rod to be at real 

in a aUitable reference frame,  the components are In mutual thermal equilib- 

rium and impoaed magnetii   fielda are abaent.    rhe aonuniformitiea arc- those 

connected with the pr( senc e of gradients ol state parametera auch as tempera« 

turc,  denaity and concentrationa. 

The presence of these gradients indu  es an electric tield (i.e.f.) in the 

medium,  even in the absence wf external .le  tri    fields.    Ii will be shown that, 

in the stationary state and in condition    ol mai roscopic neutrality,  the Induced 

e.f.  depends oi.lv on one independent gradient w   ich,   for convenience,   is taken 

to be that of temperature.    An expressi »n for the i.e.f.  la derived,   which is 

valid for a most general medium and which is later simplified to the vase of 

an Imperfect Lorentz gas (i.e.,  weakly ionized plasma for which the mass ratio 

between the neaative i harge and neutral molei ules is mu« h smaller than one). 

The electrical conductivity ddefined as the ratio between the electric 

current 1 and the electric potential gradient in a first-order stationary state 



in which a given nonuniform distribution of Vipis mainUincd on Uu- boundaries 

of a system is also determined. 

The phwkOmenotogicai coefficients arc tir»t expressed in terms of tiiermo- 

dynamic properties of the plasma.    It is shown h..w the«« coefficients can  be 

expressed in terms of only  simple hinar\   molecular diffusion coefficient! and 

thermal diffusion coefficient« pertinent to tne plasma constituents. 

This last step makes it possible,  by utilizing the available experimental 

and/or theoretical data on electron-ion,  electron-molecule, and ion-molecule 

collisions,  to express the phenomenologi ..l ■ oefficienta In terms of the local 

thermodynamic state of the medium. 

These results provide the oeceesary preliminary information n«eded to 

proceed to the actual solutions of fluid dynamic   and/or electromagnetic phenomena 

in a nonuniform plasma.    In addition,   they ..heady lend themselves to interesting 

order of magnitude analysis on the effects induced by the nonuniformities.   They 

can be used,   for instanc« ,   to define ranges within which these inhomogeneties 

can be neglected and the medium treated as homogeneous,  and to lend theore- 

tical substantiation to experimental findings.    During the last two years,   for 

instance,   some experiments were made by s.   Klein at Sai la> (France) on the 

direct conversion of thermal energy into electrical energy (Reference 1 i). 

The experiments were performed with a glass ball In which two   metallic 

electrodes were immersed in an ioni/ed mercury ga« at rest.    The electrodes 

were kept at two dilferenl temperatures and the ioni/.ation was obtained through 

an H.F.   source.    As a consequence of the temperature gradient an induced 

electric field was detected  and measured as  a  potential drop between the two 

I 
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olectrodes.    It wai pOSalbU to observe th.it the l.e.£.   iiuroased with the 

tempi-rature dSff«r«ncc and th« deurce of iuni/.ation.    Thcso results qualita- 

tively a^rce with th« theoretical conciuslona which arc arrived at in the present 

report. 

The steps ol the analysis herein reported are as follows:    In Section 1., 

Hart l.,  the irreveriiU« thermodyaamic description of tr.e system is performed. 

The extensive and intensive state parameters and the pertinent mass and energy 

fluxes lor a mixture of three fluids,  one with negative and one with positive- charges, 

are defined.    The- dynami.   relations between fluxes and gem-rali.-.ed forces are 

established and.   through suitable uae of the basi<   theorems of the thermodynamics 

..i irreversible proceises,  the general expression tor the mass fluxes in terms 

ol electron concentration,  temperature,  and electric potential gradients is 

arrived at. 

In Section I. ,   Part- i,  and 4.,   the general expressions for the  i.e.f.  and 

the electrical conductivity are obtained. 

I 

I 

I 

In Section 1.,   Part   ,.,  the problem of relating these phenomenological 

coefficients to binary transport coefficients is considered.    By suitable trans- 

formation of fluxes and affinities it is shown how they can be expressed in tern 

of three binary diffusion coefficients Du, Dti,  I),,    and two thermal diffusion 

coefficients D,,   D|   ,   which refer to the plasma constituents. 

In Section 4   Part  I.,   the evaluation of the molecular and thermal diffusion 

coefficients for a plasma is carried out and in Part 2. an analysis of the order 

of magnitude for the transport coefficients is performed for the case of a weakly 

ioniaed Imperfect Lorents's gas. 



»1 

Section 3.  deüls with .»n actual determination of th* order of magnitude 

of the phenomenological coefficients,   with discussions of their properties and 

with their actual evaluation for indicative cases. 



12 

SECTION 1 

I. I.  IUREVERSIüLE THERMODYNAMIC DESCRIPTION OF THE MEDIUM 

We consider a plasma formed by elcctroni (subricripl I) ions (^)aiid neutral 

molecules (i) in mutual tnermal eottilibrium (i.e.,   T! = T. =Tj-T).    It is» 

further assumed that the plasma is at rest in a suitable referciu e frame and 

that no imposed magnetic lield is prosei.l. 

It is of basic impo rtuici-,   for a clear understanding of the physics of the 

phenomena being studied,   to proceed to a  rigorous irreversible thermodynamic 

description of the system^    This procedure will also help,   on one hand,   to point 

out the number and types nf simplifying assumptions which will be made and, 

on the other hand,   to have a clear overall picture of the kind of results that 

can be obtained with this approach. 

The fundamental extensive thermodynamics variables Xu tor the subject 

:^y-item are:    the internal energy U,   the volume V,   the masses M^   M. ,   and M, 

of the three species and the total electri*  positive and negative charges Ei and 

Cj present in the volume V.    The fundamental r< lation S «S (X.) (see Reference 

li) can then be written .is; 

TS =U + pV  ->    gj   MJ   -       -       f.   K. 
-^ ! I ..11 

i=l id 
(I) 

where S is the total entropy; T the temperature,   p the pressure of the mixture. 

The quantities  gj   and fi   are,   re spectivt I y,   energies per unit mass and energies 

per unit electric charge and are thermodynamically defined in terms of the 

partial derivatives of S with  respect to the corresponding extensivt; variable. 
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We make tlu- {oilowiflg fundamental hypoltifSes: 

Ei   =   "i   Mi 

gjCX^  =■   Mi (U V.   Mj) 

Tlial i.s: 

Tht- toi.il electric charge! art- proportional tu the total matsei Mi  and M^. 

This implies,   anion^ other things,   t.iut there is only one type of negative and 

positive charge uarricr. 

The quantities .j coincide with the chemical potential (ij pertinent to the 

mixture considered in ti.»  abseuce of electric   chargei (e^ =0), 

The quantities tt  are independent of the extensive variables X|; and thus 

eoim ide with the elettri.   potential o . 

It can be shown that these two latter hypotheses are equivalent to the 

hypothesis of separability of the energ) ': U,   In the sense that the total energy 

of the system is simply the sum of the "mi • hanical energy" of the noncharged 

system for given S,  V,  M    (e^  =0) pius the    "electrical energy"  (S|M] I-«j Mi)o 

This hypothesis is certainly valid in the subject eise (cfr.  Reference 19). 

Equation (I)   can then be written as: 

I _2 

in •   T * f V - Z      'r   Mi W 

where  u .  Is the  electromechanical potential defined as: 
I 1 

and,   obviously,     p(   ^P* • 

A  rigorous statement would involve the concept of free energies (cfr.Ref.   19). 
It  can be  shown,   however,   that  if tile  "iree  energy" is  separable,    so is the 
internal energy. 
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II J     and J.   (i « I,   Z,   i) are the energy and mass fluxes,   respectively, 

using the basic assumption of the thermodynamics of irreversible processes 

one writes: 

Ju «Loo^ f   ' A$ ̂ iVf-lrt + L^vf.^ 

h   -l.loV   (I,   ,  I-nV^y  I-..^(-^)* ^^(-T) (4) 

.'   [4$ « L^vf-^L).! 

The  last   relation follows from the mass conservation.    The quantities L — 

are the phenomenolonu a I (or kinetic)  coeffi. ients which,in the Mihject case of 

absence of imposed magneti«   field,   are scalar <|"antities.    The Onsager's re- 

ciprocity relation I,     = L   . holds.    The gradients of the intensive variable! 

appearing in equations (1) are the generalized CorceSi  or affinities« 

Different alternative forms, each euitable for a ntunber of specific uses. 

can lie given to the system (4)   by performing euitable linear transformations 

of the affinitiea and/or the fluxes,   according to a well defined set of rules. 

If A-   Indicate! the direct affinity for the flux J] and If a prime indicates the 

transformed quantities,   then the following  relations hold:    (Ref«23j 

i 
i 

1 k~l 
P,kAk 

PikJk 
(5) 

-i 
L!    « L* ,«   >   r-.,   L.. p mi nu <   ,        ik       ik 

j. k 

-1 

-1 
where   p..   is the reciprocal of the element p.k   In the square matrix 

which defines the linear transformation of the affinities. 

'ik 
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We shall make use of iVw such tratisformat ions durint; the development 

of the analysis.    A particular transformation is however very instructive 

for an introductive survey of-the nature and types of results which we 

will get. 

We notice first of all.  that the local thermodynamic stale of the 

mixture,   in the subject case of thermal equililir ium among   the con- 

stituents,   is characterised,  as follows from eq.   { 1)  when accounting 

for the presence of the electric  potential   * ,   by five independent variables. 

Qoing from one set of variables to another is accomplished through the 

"state equations" Of the mixture.     It  proves    convenient to assume the 

following set of parameter!     <J).   T.  p. » |   ( i=  1 .   ^) ,   where the    e-'s   are 

the mass concentrations of the charged components,   as the basic  set of 

Independent t hermodynamic va r iables. 

The gradient! of these variables are not all independent since then- 

are a number of conservation equation! to be satisfied and there is,  in 

addition,   the requirement of macroscopic neutrality.     The latter amounts 

to the  relat ion 

e|V c,    I  e, V  i .        0 (t,) 

between the two concentration gradient!i while the momentum conservation 

requires,   under the subject assumption! of macroscopic  neutrality and 

absence of mass motion, that the gradient of p vanish identically throughout 

the  field. 

One is thus left with only three independent gradients:  say     V T .   V ct> 

and     V ([ 
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It is most profitable and instructive to assume as new generalized forces 

these three independent gradients and express,  accordingly,  the dynamic 

equations (eqs.4)   in terms of these force«.   This can be done by expressing, 

through the pertinent state equations,  the gradients appearing in oqs.  (4)   as 

linear combinations of VT.V^ .Vc^ and then applying eqs.   ( 5) . 

As a result,  the dynamical equations will read: 

Jo ' t-io^T f  Lo, Vc, l i.;, V« 

•^ ■ Lio ^T   +   L2i ^'i  *   l-\i Va, 

A'0-VJ 

A,   » Vc, 

and the new fluxes J. will bi- given by: 

,,]4 
•       i ['■(pi -t^j)    £i_   ''(HI -y-* 

L   »c, '  e2 8c, 
.1,     ► 

Be, »a       Bcj 

Ji  ■ ^       *! Ji  + •« Ji j   "   Y 

.1. ■ 

(7) 

(8) 

(9) 
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where a-'s are the specific entropies of the constituents,   and Js  is the total 

entropy flux: 

_   Ju        pit J| jt« J|        Ki J< fiot 

The quantity J     can be thought of as the    "conduction" flux of entropy. 

The flux   Tj]  has the clear physical meaning of the electric   current.    No 

direct physical interpretation can be given to the flux   Jj    which is a partic- 

ular linear combination of the mass fluxes  J|   ami   Jj  .    The thermodynamic 

derivate appearing in eq.   ( 9)   are computed holding T  and  p  constant. 

The   L!.  'S arc the new phenomenological coefficients in the present 

context; there is no need for expressing   LJ.       in terms of the original 

ones L-■   . 

The system of   eqs.   ( 9) i   containing the three truly independent gratiients 

V0 ,  VT, VC| ,   is in the appropriate form for the proper application of the 

theorems of the thermodynamics of Irreversible processes. 

Suppose we mairtain.   from outside ,    a   constant    temperature gradient 

on the boundaries of the system. 

Eventually a steady slate will be reached,   referred to as a stationary 

states of first order,   in which the direct flux   J1       is the only flux different 

from zero.    System (9)   will then contain only four  "unknowns" (the 

aforementioned gradients plus   J1     )   so that three ot them can be expressed 

as function of the gradient of temperature.    One thus obtains relations of 

the type: 

V$   =   a(s)    VT 

Vc, •   wi(i) VT (H) 

I 

i: 
i 

i 

i 

i 

u 

rC 

J' - 1?-   :    ^(*)    ^T o        T 

IM.H lim   ' wiiüiis*im%- 
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where the symbol ( I   )    stands for "function of the local thermodynamic state 

of the fluid". 

The first relation glv«l the electric field «ndured by the non-uniformity 

(under the restraint of constant gradient on the boundary).    The phenonu-no 

logical coefficient   a(«)     >» tl'>'S one of the required    electromagnetic  prop- 

erties" of the medium.    The second relation gives the gradient of concentra- 

tion induced by the temperature gradient in the presence of the induced 

electric field.    The last equation relates the temperature gradient to the 

energy flux into the system (notice that  J^   = .1,'   ■   Ü   implies absence of any 

mass flux throughout the system).    When computed at the boundaries,   it can 

be interpreted,   in the light of an overall energy balance,  as the energy to be 

supplied from the  "emhlent" to mantain the induced electric field (or.   what 

amounts to the same, the induced concentration gradients). 

Equations ( 9) ,  as they stand,  can be used for order of magntitude 

analyses of the effects of the non-uniformity herein considered,   their degree 

oi accuracy depending,   apart from the approximations  involved in expliciting 

the phenomenological COeffil lenti,   on the overall dimensions of the system. 

Obviously,   the thermodynamic   slate of the medium will be a function of the 

point so that,  for Instance, the first of eqs. ( 11)  should be written as: 

«MO  ■   a [»(r)] VT(r) (1~) 

where  r  is  a space coordinate.     Thus the   "complete"  solution of the  problem 

calls for the determination of the slate parameters throughout the medium 

( in order to answer,   for instance   .   the question of what is the value of VT 
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throughout the system when a given non-uniform    temperature distribution is 

maintained on its boundaries).    This is,  obviuusly.   a much more complex 

matter which must be handled by solving the energy and mass equations 

V« J0= r« Jj =   Ü       subject to suitable conditions on the boundaries of the 

medium. 

However,  order of magnitude analyses can always be carried out by 

taking suitable "average ' values of the state parameters. 

Since,   in this case J,   • J,1 = (J     implies also J, = J2=ü,this type of 

information can also be obtained directly from the system (4)   by setting  in 

it  J, = J,  = U.    This simpler procedure will  indeed lie followed in the next part. 

Consider now the other cast- in which a given non-uniform distribution of 

electric potentialO is maintained on the boundaries.     As before,   the principle 

of stationary states implies that the only flux different from zero is the 

direct flux    J_,      that  is the electrical current  I,     Notice that   neither the 

energy flux nor the mass flux is singularly equal to zero; what  vanishes is 

rather two linear combinations of them,   as expressed in terms of    jl  and 

J2    ,    This clearly shows why the principle of stationary states could have not 

been applied to the dynamical equations in the form given by equations ( 4) . 

System ( 9)   contains once again only four unknowns so that  it can be solved to 

obtain the lollowing relations: 

j 
I     -   0(s)  V* 

VT  -   Wj (■)  V4> (l3) 

L 
i; 

Vc, • »4(i) v4> 
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The first equation is of foremost interest for the present analysis.    It yields 

the steady state  "electrical conductivity" of the non-uniform medium subject 

to the conditions of a given distribution of electrical potential on its boundarie 

In the proceeding case an energy exchange between the medium and its sur- 

roundings was necessary to maintain,   in the stationary case",  the induced 

electric lield.    Now an exchange of electric charges between the medium and 

its surroundings is necessary,   its amount being determined by eq.   ( M) 

evaluated along the boundaries of the region.    Once again,   complete quanti- 

tative solution of the problem calls for the solution of the mass and energy 

conservation equations to determine the actual distribution of the state para- 

meters throughout the system considered. 

This is the type of information which can be obtained from the present 

analysis. The remainder of the body of the chapter is devoted to obtaining 

explicit expressions for the coefficients     a (s)  and tr(.~). 

Z -  Determination of the coefficient  a . 

From the last   section it follows that to determine   u   one must consider 

the stationary state for which a given nonunilorm temperature distribution 

is kept constant on the boundaries of a system and the mass fluxes   ij     and 

j,     vanish t hroughout. 

It here proves convenient to adopt the following form of the dynamical 

equal ions: 
Z 

Ju -2 
ii I 

A.. 

Qi    Ji  t   (L itr LJOQJ)A« 
(14) 

J;   =   ^       l-i     (A,  - A. + Q,   A    ) i       ^        ik    v    k        3 k     u ' 
k- I 



! 

[ 
1. 

where the affinities   A.   are now defined as: 
i 

A,,=   -   -i-  VT 
u T 

I 
I 
I 

A,   =   -    o,    V*-  TV (J|H 

(15) 
A.   =   -   e,   V* - TV (J^) 

A,   =    -   TV    OLi) 

and where the quantities QAis  I. Z)     an- the h<-ats of transfer (Ref. 19) 

defined in terms of the coefficients   L...      appearing in «•?),   (4),   as: 

0, .  

(16) 

'•II    I'iu   "  J'lo   L-J 1 
Qi  =— r— 

Flxpressinu the t-radients ofji.    in terms of the  independent  gradier.ts 

V I", V9,V'i.and proceedinij as indicated in the last  sei lion it can be shown 

that the coefficient   ,i   has the following expression: 

(17) 

I 
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with: 

LI 
I. 
1 
I 

I 

(18) 

iii   -   0(1^ - hi. ) / »c, 

bi   ■   fi( jij- H,) / J«-: 

mi '   vi    " ^ 

q, =   -L (U, - hj   f h,) 

vyhert'   v-   and   lu   arc llu' spec ilic volum.- a-..", enthalpy of t he   i-th 

constituent,   respectively. 

It  appears that the  »j.bj,   m|      are completely determined once    the 

pertinent  ■state equat ions'   (Ref.23)   of the constituents are given.    The 

quantities  qi   depend,   in addition,   upon the phenomenological coellicienls 

L        through the heats of transfer  (J1  ■ 
ij 

Thus,   to make any use of er,.   ( 17)   one must  make some assumptions as 

to the state equation« of the plasma constituents and must determine,   either 

experimentally or by mean« of statistical mechanic», the phenomenological 

coefficients    I-j j • 

The expressions for   ^ .   b.      and   B5.  are herein derived on the assumption 

that the plasma constituents are perfect   «ases.     The quantities    qi    will be 

dealt    with in the next paragraph. 



43 

If one makes the perfect gas assumption,   the following relations hold 

ref, 23). 

H   m+ln(pci   ^ 

1. 
1 

[ 
[ 

114        RT 
(19) 

h.   =  h.      f 
1 10 r c       <1T 

Pi 

wherein     «j>.   (T)   is an arbitrary function of the temperature,   m- is the 

molar mass of the ith component,   m is the molar mass of the ith com- 

ponent,   m is the molar mass of the mixture.   h0 a reference specific 

enthalpy 1  and R the molar gas constant. 

With these expressions one has: 

K'l _1 1_   / m   _     m \ .     __!_        _l_    ^m_      21L}[ 
•■ iirn   m,   V in, m,y        ' iiiij       m,    Im, m,) 

b,   =  a2 = RT s 
I   /m      m \        1 I     /m 
ni|\ni]      mj      Ljin,    m,  (m, 

m 
1:. 4 

b, =   RT < I        m 

ic lmZ 

m, 

m. 

RT / m, 
pin l. 
RT ' mj 

pm 
1 

m.   I m 

m. 

rtlij      c.m, m,     m.     tn,J\ (20) 



44 

mi 
In the case of an imperti'ct Lorent?'s gas ( i. e.       /ni^«l    ;   N./N«l; 

1      3 

N./N'  ■^<1 )   these formulas are greatly simplified and one obtains: 

1. 
I 

I 
1 
I 
[ 

a, RTN      m 

e, i, ml 

b.   =   .i.    =   0 

b, RTN       m 

RT       mi 
1       P'"       Cj 

(11) 

where €j= —^    are the electric charges per unit volume. 

The explicit expression for the coefficients   a ,   is found    by subst itut iing 

eqs.   ( 20)   into eq.   ( 17) . 

In the case of imperfect Lorentz's gas one obtains: 

Mm    '«"'* (-) 

The formulae so far developed are all th.it one can do without specifying 

the nature of the phenomenological coefficient! Ly. Any order of magnitude 

analysis can be furthered only alter having obtained suitable expressions for 

these coefficients or,   what  amounts to the same,   for the quantities qj. 
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This is considered in the next part,   where il will be shuwn how the 

1.-   's tan all be expressed in terms ot transport coefficients. 

*.      Expressions of the pertinent phenoineiiulo^ical coefficients in 
terms of transport coefficients 

To express the coeffic ient s L;: in terms of transport coefficients the 

following consideration is essential. 

In the subject case we have two independent mass fluxes and one energy 

flux.     The number of independent phenomenoloKical coefficients is therefore 

six.   accounting for the three Onaager reciprocity relations.    It follows that 

the behavior of the system is completely  characterized by only six   indepen- 

dent coefficients.    One such a set is that of the three binary diffusion co- 

efficients D,2.   D, ,,   D^j ( I.e. ,   coefficients of diffusion of elect ron-ion, 

electro-molecule and ion-molecule mixtures)   plus the two thermal diffusion 

T       T coefiicients  D,   ,   Dj   (i.e.   the coefficients of thermal transport due to dit- 

fusion of the electron t:as and the ion ^as  into the neutral-ion and neutral- 

electron «as,   respectively)   and the heat conduction coefficient. 

It is then natural to think that a suitable linear transformation of fluxes 

and forces will make it possible to express everythinu in terms of the above 

transport coefficients. 
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L-'s can all be expressed in terms of transport coefficients. 

*,.     Expressions of the  pertinent phenomenuloüic al coefficients in 
•   terms of transpurt coefficient» 

To express the coeffic ients Ly in terms of transport  coefficients the 

following consideration is essential. 

In the subject case we have two independent mass fluxes and one energy 

flux.    The number of independent phenomenological coefficients is therefore 

six.  accounting for the three Onsager reciprocity relations.     It  follows that 

the behavior of the system  is completely  characterised by only six   indepen- 

dent coefficients.    One such a set is that of the three binary diffusion co- 

efficients D,2,   Dj,,   DJJ ( i.e. •   coefficients of diffusion of electron-ion. 

electro-molecule and ion-molecule mixtures)   pl.it. the two thermal diffusion 

coefficient!  Df  ,   Dj   (i.e.   th« coefficients of thermal transport  due to dif- 

fusion of the electron gas and the ion gas  into the neutral-ion and neutral- 

electron gas,   respectively)   and the heat conduction coefficient. 

It is then natural to think that a suitable linear transformation of tlux.-s 

and forcei will make it possible to express everything in terms of the above 

transport coefficients. 
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This is indeed so.    In fact,   by defining new generalized forces A-   aa: 

A,   ♦   hi    Au (!■ I, 2. 3) 

UJ) 

we find,   according to eqt.   (.iM,  the following expressions for the new 

fluxes: 

j,  . j, 

I 
1. 
L 
[ 
I 
1 
I 
1 
I 

r" = ^   -^__    hi  Ji 
i= I 

(i ■ I, 2. 3) 

and the new   phenomenological coefficients L! 

L"    =  L.. 

L"     ■-  L 
oo OÜ 

1J 

(i.j ■   I.   i,   3) 

L1O    -   -  I.,,  (.., ■ i,) - L,, (hj -h,) ♦  l-nj 

L20   -  - L,, (h, -h() - L,, (h, -h,) ♦  L 

(24) 
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These new coefficients L" are just those used in reference ( 1)  and   it is u 
therein shown how they are related to the binary diffusion coefficients  Djj, 

to the thermal diffusion coefficients   Dr  ( i=  1.2)   and to the thermal con- 

ductivity coefficient \ . 

The ultimate «oal of expressing the qjS  in terms of transport coefficients 

is thus achieved by performing the necessary substitutions.    One >;ets; 

I 
I 

^i 
i 
T 

ii ll ll li M 

(Liu + l*o) Lii *Mo Iv 

lii - " - 
T 

n     II        . II   .n     .ii    ,'' . 

f       •• II II ii       M 
(L,    + L,   )  Lu 1   L,     Ln 

(1^1.,, k Ln LM + LI, LM)J 

(2») 

an (1 by using the expressions for L;;  reported in Ref. ( I)". 

Ml = [D? ► ot ir ii, nz m, m n, m* l)n 1)^,   - mj (p- m m^) 

i r T! , 
Du DJJ   - m1   (p-n|mt)   Du Du    + I D,  I n- m n, m,, m, 

(26) 

I" mf   Di. Du   - m,   (f)- B,m,)  D,, Dj, 

m I (p  - n^ tlij ) Du   Dj J r 
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I 
and: 

I 
I 
1 
I 

1 
I 
I 
I 
I 
I 

92 ■ 
I 

AT 
[..I* «*| rij nij   IJ,, U^, - in2 (p - n2 m^) 1),^, 1),, 

1  . r Ti 
- nij (p-ii! ni, ) I),^ I),,   n" n, n, m, rn^   +     D> 

n' n, n, m, m,    n2 m2   D12 D., - m,   (p - n, m,) Dj, D,, - 

(27) 

- m, (,. - n, m,) Dii Dwjl . 

where: 
-If 

A =  ! p^P (n, D., t n, I),, + n, D,,) j     } n" n, n, m, m,   n2 ni2 Dl2 D, , - 

L J ^L L 

1  I 
- ntlj (p - n, m,) D,, D.,  - m, (p -n, m, ) D,, D,2 ,  n   n, n2 m, m, 

D, m' Dn n2t - m, (p - n2 m,,) D^ O., - n , (p - n, m,) D|] DgJ 

t  rf D| nj in, in,   Dj III2   1),2 D2, - in, (p - n, m,)  I),, I);, - 

- in, (p - n, in, ) DtjDiji n nj nj m, m, j n, tn,"    1),^ H,,   - 

m, ((> - n, in,)  I 'n [)2,   - m2 (p - n2 m,, )  1), >lj Dal    )- 

+ uz  n, iw m, m^ •    a, mf   D,, D2, -  m^   (p  -  Qj tn,)  DJJ D^,  - 

i,   (p  - Hi tu, )  D,, 1),2!    n" n^ n, m, m, In, in,     D,2 I)n 

— L 

,mj   (p - n,ni,)  DJJ DJJ   - m2 (p  - at m, )  D,, D2, (Z8) 
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4. -  Determination of the electric conductivity ol' a plasma 

As shown in the preceedinn parts the determination of the coefficient a 

in terms of the iransjjort coefficient s of the mixture involves essentially two 

steps.     First the dynamical equations are written in the form which is   appro- 

priate for the subsequent application of the principle of stationary state which 

i 
yield« the expression of   a   in terms of some set of kinetic coefficient! Ljj 

and some thermodynamics derivatives.    To express the latter ones some 

assumptions must  he made as to the nature of the state equation! of the con- 

stituent yasses ( in particular,   the perfect gas hyiJothesis has been made) . 

In the second step,   suitable linear transformations are introduced which 

related the kinetic coefficients L-- to a new set of coefficient! LJ; which,   as 

shown in Ref.   ( 1) ,   is directly expressible  in terms of the transport coefficients. 

This same procedure must  be followed to determine the electrical conduc- 

tivity Ü    ,   and can be reported   now in a condensed form,   by skippini; all 

details. 

The appropriate form of the dynamic equation! is thai given in eqs.  (7). 

By definition,  the electric conductivity given by the ratio   l/v *   between the 

electric current density and the electric   field. 

This ratio depends on the particular assumptions about the order of the 

stationary state in which it  is evaluated and thus to a certain extent on the 

number of "constraints" which arc imposed at the boundary of the system. 

It acquires a definite meaning,   that   is,   it can be  eiven a unique expression 

In terms of the  state parameters,   only in a particular first order  stationary 

state. 
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Indeed,   in the subject case of a ternary plasma,   one could define a 

third order stationary state in which a ^iven non-uniform electric potential 

distribution and a uniform temperature   and electron concentrations are 

maintained on the boundaries of the system.    In such a state,   however,   the 

plasma would certainly not  be uniform throughoul the region ( i.e. VT and   Vc, 

would not  be identically zero)   and the ratio between I and V ♦ would also be 

a function of the other gradients (and/or fluxes)   present in the system. 

Similar considerations hold for a second order stationary state in which a «iven 

non-uniform electric potential distribution and a uniform temperature (or 

electron concentration)   are  maintained on the  boundary of the system. 

Once again,  the gradient of T (or of c,)   would not vanish identically 

throughout the system,  two independent fluxes would he different from zero 

and no unique definition for the electric   conductivity could be given (i.e.   the 

ratio 1/ V^-  would not depend only on the state of the system but also on some 

gradients of the- state parameters) . 

Thus the electric conductivity must be defined in a first order stationary 

state tor which a uiven non uniform distribution of electric  potentive is 

maintained on the boundaries of the system.    In this case the electric current 

will  be the only non-\ anishiug  flux and equations  (7)   can  be  solved for t lie 

ratio   Ü s ( l/Vo) giving: 
Vo- cens. 

0   ^LL + - 
ID l^i   L^ji - LO0 Lui  - L,!   Lt 

I '     l' 

oa 

"lo 
U9) 
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It is of interest to  notice that in a fully ionized neutral plasma ( i.e.   in a 

system with one less decree of freedom)   in which the electron concentration 

gradient Vc, is no longer an independent gradient,   the expression for    0     in 

the first order stationary state becomes by formally putting   1.'    - Ü in Kq.(7): 

0 - !/„ 
Li, 
'ÜO 

(30) 

This relation,   when expressed in terms of the only binary diffusion coeffit' 

ient existing in this case,   reduces,   as it  is easy to verify,   to the well 

known Kinstein-type relation. 

To obtain   iJ in terms of the set of transport   coefficients,   one only 

needs a set of relations between the !.•■ and the 1,:    's,  which,   as said 

before,   are  related to the transport coefficients as shown in Ref.   ( 1)     The 

subject relationships are: 

L'     =   L" oo oo 

L'ol =h   L^ + b, L''z 

Lo^   " ej L-",,   +   e, L 01 

(31) 

ii :-,     L||   f ^olbi Li_, +   IJ_,   Lw 

L«  ■ e* L|j  * -e,   Bj Lu  i t\  L,2 

-Jl  a 'i bi L\i +  («i °i + "i bz ) ! u + Bi   ■>,  I,., 

with: 

8< , 8 

') |j i        9 p 

<J^ 

0cl e2      \ c)c2 ^ci / 

where all the symbols have the already defined meaning. 
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I.    1 • - The transport coefticients for a plasma. 

In the preceedin^ section the general expressions for the coefficients 

T       T 
8    and    U   in terms of the transport coefficients  Dj^.   D.,,   D,v   D. ,   D,,\ 

liave been deri\ed. 

The next step toward the ultimate goal of expressing   g    and   Ü   ,   to 

within a given degree of approximation,   in terms of the thermodynamic 

para-neters of the mixture and of the physical charateristics of the con- 

stituent gases requires then the evaluation of the above mentioned transport 

coefficients in terms of these parameters. 

This will be done in this section. 

We recall some basic facts on the determination of the transport co- 

effic lent s. 

For conditions not too far from equilibrium the determination of the 

transport coefficients hinges on the evaluation of the following integrals 

( see Reis.   1  or 6 details) : 

1)   The deflection angle: 

d r*/r^ 
XU*."+) »tr-ib* 

rm    V      r^ „♦-  J 

(32) 

whe re: 

r*.r/gj     b* -b/ffl       ^-^Ai     T* ^I_ .      f.^^ffi 
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and where:    my is  the reduced mass,   defined as my« mjti^ty^«*"" nii 

and m. are the masses of the particules of species i and j; g is the initial 

relative velocity of the two particles; b is the impact parameter; r the 

distance between the m.ss centers of the two coUiding particles; o( r)   is the 

interaction potential;  rm the distance ol closes,  approach. 

Eq.( U)   is valid for elas.u   collisions    between particles assumed to be 

centers of force fields with spherical symmetry. 

The  potentials which we shall deal with are all expressible as: 

♦ (r) « • M J) 

where  c   and 0  depend on the particular    molecular model- assumed.    In 

particular.     0    corresponds to the molecular diameter  in the case of the 

rigid sphere model. 

2)   The non-dimensional collision cross secliui.   Q      U  K 

(e) 
(•)*    Q L  

O = ■  r ;     •\*»~l 

u(e) i-i  ' 
r. s. 2 

.1. 

♦ ,, ♦ 

>(-i)C  | 

l+e   J 
Jo 

(I - .:oseX) ^    db 

whe i ■e the subscripts  r.s.   indicate values for the r.^id sphere mo del. 

i. 

I 

It is: 

Q 
,(e) L.l.       l*l-* 

e    I 
IT   0 

r.s.        L        2 I + e 

tith   0   defined as before. 
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i)  The non dimensional collision integrals: 

.,00 

i: 
(c^* 

L(»+W   I -»J "r. s. 

where: 

U 
(•    ) KT (si   I)] 
r. s. -irni. 

IJ 

Q 
c. 
r. ■. 

Notice that,   by cleliniton,   all starred quantities are equal to one for the 

riijid sphere model. 

Any transport coefficient is expressible In terms of the above quantities. 

Indeed,   indicating by the subscripts i.j,   quantities related to collisions 

between particles ol the  ith and jth spci ies one has: 

a)   Djj - (diffusion coefficient for the ith and jth species in a multi- 

component Has mixture)   is  related to the binaty diffusion coeffici- 

ents   Djj of each pair of species ( see eq,   H-2,49.   in Ref.   (1;). 

These relations involve in addition,   the concentrations of the 

single species,   and the molecular masses. 

The coefficient  I)...   in turn,   is expressi Me as: 

1) ~    J_    /.L1.llil_KT 

'J 

1J 
(33) 

whe re 

^   . i-  (a^or.) 

is tlie collision diameter. 
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b) The coefficients of thermal diffusion,   D- ,   can be evaluated in terms 

of the coefficients of binary molecular diffusion and of the coefiicients 

of thermal conductivity for each spec ics ( \.) and for each pair of species 

( \.    )  .    The pertinent explicit expressions are too cumbersome to be 

reported here;     they can be found in Ref. ( 1)   pai^e  543. 

It is important,   however,   to notice that they involve the integrals 

«??>•     and    nf1'-*    (.-   I,   2.3), 

c) The coefficients of thermal conductivity for the ith species can be 

evaliated as: 

\   - Z5    \/n n'i ^r i       K (34) 

This expression is valid for monatomic liases;  Bucken'l corrections are to be 

added for polyatomic uases. 

The coefficient of thermal conductivity for a binary mixture is uiven by: 

.'.b       p Di. 

8 -ij   T 
(35) 

(es) 
where A;;  is a combination ol the collision  inleurals W..      .     Its value is very 

close to one. 

Table I summarizes the fundamental dependence of the discussed trans- 

port coefficients for mul1 icomponent  gaseous mixtures (lirst column)   on the 

related binary transport coefiicients (column two)   and on the related collision 

integrals { column three) . 

The next  step is a discussion of the actual evaluation of the transport 
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coefficients for the particular potentials related to the interactions between 

the particles present in a plasma, 

a)    Interaction electron-ions 

The force between two charged particles is coulombian. 

The interaction potential is uiven by the equation: 

^(r) ^  - -lllL .   .    2LIL. (36) 
/.. , 

r 

where Z indicates the number of electric charues carried by the ion and 

the sii>n "-" takes into account the attractive nature of the force for dis- 

tances greater than the threshuid of actions of qumntic type,   for which tin- 

force is repulsive. 

With the potential given by eq, ( M>'\  one faces the well known fact that 

the collision cross section,   as defined by eq,   ( iJ)   assumes an infinite 

value. 

This problem has been studied extensively,   and the difficulty eliminated 

by a    cut off" of the upper limit of the Integral,    Th«- cut off distance must be 

the smaller of the mean distance between the uas particle!  I)- n and the 

Debye shielding length: 

lD -   (KT/4TTn1e1' ) 

Consider at first,   as pertinent,   the collisions for which the impact 

distance b is less than D. 

One evaluates eq.   ( ^Z)   wherein the upper limit becomes b=  1). 

Substituting for the expression   ^m     g     its mean  value ZW'T and 

neglecting the small variations of the kinetic energy of the particles within 

the sphere of radius D,   one obtains: 



! 57 

where,  lor  mixture of electrona-ions it is: 

■y, 
D ■     "i   + "i 

1 

(37) 

(38) 

The correspondinj; binary diffusion coefficient is obtained by sub- 

■thuting eq.( IT)   into eq.   ( }})  which results in: 

D»   - 
i     'n.,, KI     '- 

h      ' '} v ^ •»; ,. / i        v ^i «i y! 

In tlie second case,   when the upper limit is put equal u. !„ the col- 

lision cross section will he: 

Q^.      i üi    .   to A 
o, KIT 

where: 

A  = 
•i e.' 

L '    J 

(J9) 

(40) 

The corresponding expression lor  I)   , is  readily obtained by substituting 

eq.(40)   into eq.   (5i)   and is: 

D..   B  — 
J      mu KT     « 

'U 

L8 

I r- 

' — KT]     I I        i      4 . 
J     \i     J   pi ;   in,'i (nA (H) 

More  recently a new method to evaluate the coefficient  Dj ^ has been 

proposed (Ref.   12)   which does not use the cut off for evaluating the collision 
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cross section.    Such a method furnishes,   with a more complicated process, 

an approximation higher than that necessary for our purposes,   and it    is 

therefore not used here. 

")    Interaction of electrons-neutral molecules and ions-neutral 
moleculei 

The interaction between charged particles ( electrons or ions)   and the 

neutral molecules can be treated by the following procedure ( Ref. i) . 

The charged particle produces an electric field that  induces an electric 

dipole into the neutral molecule,   which undergoes a separation of electric 

charges.     The  induced electric dijxde produces an external potential given 

by: 

ei 
V « +   a      co.s  <» (i s I, i) 

r4 

where   a   is the poUrisability of the molecule,  e- the inducing charge,  and 

®   the position angle  referred to the axis of the dipole. 

The interaction potential will then be written as: 

i        r4 {^) 

1 
1. 
L 
; 

i 

i 

The negative siyn indicates that the forces are attractive up to the distance 

0 ,       quantic threshold.     It   should be noted that the energy of interaction 

expressed by (IZ)   is only a first  approximation to more complicated express- 

ions,   because il neglect«,   for  instance,   the London's dispersion energy, 

related to the mutual action between the molecular dipole and the dipole 

induced by this  into the ion.     Such a dispersion energy,   proportional to the 
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invers..   sixth powor of the distance,   can amount to 25% ol the interaction 

energy i-iven   by ( 42)   lor distances between the particles ol the order of one 

collision diameter ( Ref. 1 , ch. 1 }) . 

The polarizalnlity of the atoms and of the molecules has been studied 

theorencally and experimentally; its values vwry,   tor polyatomic molecules, 

with the direction of the inducn« electric field.    It  I. always possible however 

to introduce a mean value taken over all direct u.ns.    This val.e increases with 

the molecular complexity; for instance,   the mean pula r izabilit y varies from 

7.9 x  10   "   cm    to  10^,2 x I025cm3 for the molecule of hydrogen and the 

molecule ol bensone.  reepectively.    Table«,  giver in Ref.(l) furnish the more 

important data. 

For a potential expressed by eq.(42)   which i« nothing but a particular 

form of thfl Sutherland's model with V = 4.  one notices,   from the tab. 4 of 

Kef. ( 1) that  for not loo high values of the part ich-  energy,  the collision 

cross sections  become very close to the collieion cross sect.ons lor nyid 

spheres.    For tirst approximation calculations and for orders of magnitude 

evaluations and in view of the uncertainty as to the vain« of     „ ,    we can 

therefore use the res..Its obtained for the simple potential of rigid spheres 

without too lart^e errors. 

We write therefore: 

" 8 

D„    =_>_ 

KT 

'1J 

'13 

V    ^"'n    " 

KT 

IT m .        n 

(43) 

(44) 
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whore: 

is the collision diameter. 

An alternate procedure for the determination of D\^{ I" 1,2) , 

based on experimental data,   can be used. 

Recently,   experimental evaluations of the total elastic collision cross 

sections were made for the ions-neutral molecules and the electrons-neural 

molecules   mixtures. 

The total elastic collision cross sections are defined by: 

^uo 
(O) 

<J       ■ 2 «   t       !) d b (15) 

and one can wrile 

^)   -     .i') .osj) (46) 

w here   ( 1 - ciiTJT )   indicates the mean value of the term ( 1-cos  /   )  taken 

over all angles of collision.    Such a mean val le,   for collision ancles equally 

probable,   is equal to one.    This occurs   for not too elevated values of the energy 

of the particles. 

With this limitation and with not too large errors,   one can then assume 

I \\ ( ") 
for  CT        the values experimentally obtained for Q and hence compute 

Dj 5 and D^ ^ by substituting these values in eqs,   ( 13-44). 

A more   extended discussion of tins procedure can be found in Ref, 9, 
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c)    Interaction bt'twoon neutral molecules 

The interaction potential is expressed by: 

«Mr)   -    -   -^r- (47) 
r 

since the two molecules behave as two mutually inducing tiipoles.    This 

potential,   corresponiiinn to the Sutherland's model,   was  studied by 

(es)* 
Kotani ( Ret.   4)   and the \alues ot   .!■ are available in tabulated form. 

The evaluation of the transport coefficient! for this model  is thus 

reduced to the substitution ol these tabulated values into the previously 

described formulae. 

The results thus (er described are summarized in Table II.    For eai h 

of the three types of interactions the corresponding expressions for the 

potential are reported together with the available references tor the theoretical 

and/or experimental evaluation of the collision cross sections. 

I.   - Analysis of the orders oi magnitude of the transport coefi'icicnts 

The determination of the transport coefficients,  as described above, 

will now be specialized to the case of a weakly ionized,   imperfect Lorentz's 

Has for which,   as said,   the following inequalities hold by definition: 

m;    ^   rn. 
m2 m. «  1; 

n, 
n. n. 

It will be found that in such case a nut iber of terms and/or contributions can 

be neglected because of smaller order.    To lend rigorousness to such an order 

of magnitude analysis,   we shall assume as a reference  "order of smallness" 
i/2 

the square  root of the mass ratio   6 s    (m./nii)      .     For the neutral particles 

we shall be interested in,   6 is of the order of  10 
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Let us bej;in with the binary diltusion coefficients.    It is jxnnted out that 

evaluation of their comparative orders of magnitude will be made for f-iven 

temperature and  number density of the plasma. 

Eqs.   ( ?9-4 1-4^-44)   indicate that for (Ivan n and T the order of magnitude 

of the coefficients of binary molecular diffusion depend on both the ratio of the 

colliding molecular masses and the ratio of the related collision cross sections. 

The reduced  masses in the present approximation are uiven by: 

m,^ ^ m, 

na»   ^  'IT, 

The orders of magnitude of the ratios    between the collision cross sections are 

immediately evaluated for any energy level (this being the only parameter on 

which the Q^-. depend) .    As discussed in Section II,   Uj^ can be obtained theor- 

etically,  while either rii>id sphere model formulae or experimental residts, 

[reported,   for instance.   In Kefs.   ( 11,9.3.21,18)1   can be used for QJJ, 

Q23- 

It is important to observe that the ratios between the collision cross 

sections,   to a first approximation,   do not depend on the state parameters. 

Inde.'d,   consider,   for instance,   the  ratio Qj^/Q^  i'1 a plasma,   when 

n, = n , = 10    part. /cm   . 

In the range  1 , Ü00< T < 10,000   K,   such a ratio varies between  1,68x10" 

' 1 *S ^ 
and 1.10x10   .     For n,= n  =  10       part/cm   ,   the  ratio is roughly doubled.    The 

above reported values for the electron number density are limiting values for 

the  range of variation of n, ,   corresponding to the weakly ionized gases of the 

ionospheric  F layer and of the electric  strong discharges,   respectively. 
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As a consequence: 

Q» / Ql» ■ 0    [lO'fl 3  o[6j 

Qa/Qis i   o    [lO2 ] s  oli"1] (48) 

Fheie particular values have been obtained for a plasma whose con- 

stituents are K,,   N     ,   e   ,   and at Ts    1,000   K,   n,     a,      10    part/cm3.   The >  /-3 

orders of magnitude ot these ratios do not essentially vary as functions ol 

the state parameters or,   for the usual eases,   of the chemical nature of the 

particles. 

Thus,  we obtain,  for the diffusion coefficients: 

D, z / D» 3 o [l] 

D, ,/ n., i  o (V-j (49) 

D, ,/ DM= 0 \y] 
T     _' 

'1 ( b)  The evaluation of D.   ,   D,   and of their ratio now constitutes the 

second step. 

As mentioned previously,   the coefficient! of thermal diffusion for each 

COnsitiuent species of the mixture  is a function of the coefficients of binary 

molecular diffusion  D-; and of the coefficients of thermal conductivity 

Since: 

Qi /Q, « 0   [6 J 

Q-/U, =   0   lbc\ (50) 

Q, /Q,  3   0    [l J 
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one has: 

^iAi    =0    [6"2] (51) 

The various terms in the equations for  D.   and D^ can be noticeably simplilied 

from ( -49)   and ( 51) . 

Neglecting all tlu1 neci-ssary long manipulations,   we only state here the 

pertinent results as   follows: 

D* / Dj    =  0    [64_ (52) 

T        15    " LK1   .   i=    HL  mn   TU Di, (53) 

whe re; 

11^= M, (1 • M(/ M, ) /(-l M./M(4 i V-i M^Mj * li ) 

For con\enierue, a list of the relative order* of magnitude of all the 

quantities involved is  reported in TABLi    III. 
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SECTION   3 

On the basis of the results of the last sections,  one can examine more 

accurately the phenomenolo^ical coefficients describint; the electrical prop- 

erties of a non-uniform plasma.    Namely,   at this   point  it is possible to 

evaluate tbeir expressions in terms of the thermodynamic stale parameters 

of the plasma. 

I 
1)   The Coefficient    a  . 

In section I we have obtained for    \ ,   for the imperfect Lorenlzs yas, 

the expression: 

fh/tjm.      +    q./«i mi 
u   =-  13«| 

c, /c, m, m.nj + i,/ilnliin,ni D 
Since it is possible to evaluate for   q.,   and   q^, a relative order of 

magnitude   q^/qi- 0   [öl   by analyrinn their expression ( Zb-ll) ,  one obtains 

as a conseriuence; 

4,   t ,  n. n ,  m , 
a  =   -  _2_J_J_i L_ (55) 

i i 
t,   n,   + €2  n, 

where   q, assumes now the following form: 

^..JLÜJ^A.i ^ ,56, 

Thus: 

/ n.       D,, \ 
<i   =  -   K., AmF       1+ —     -J±-] (57) 
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where: 

The coefficient   a is dimensionally cxpressed in voll/cm/0 K/cm and 

represents a measure of the electric field induced by a unit gradient ol 

temperature in a plasma. 

It has,   for an ionized gas,   tho same significance of the Seebeck's coefficient, 

usually treated for solid substances.       I It  is  recalled that the Seebeck's 

coefficient   S   for solid conductors is defined in the same way as the coefficient 

0     .    Indeed   S   is tue rain. U-twcen the gradients of electric potential and 

temperature in a first order stationary state in which no electric current 

flows.     (See Ref.23i   for  instance) I    . 

Examining the expression for   a one observes that the only fundamental 

parameter upon which it substantially depends  is the degree of ionization. 

Indeed,   for a weakly ionized gaseous mixture,  one can suppose that: 

IJlL-j    .      _      ;      are only slightly different from unity; and 
[ e^  1    •       n,     '        m, 

the coefficient K  AmF is a constant depending on the mean molecular mass 

m = € ■    mjiij/n only. 

The ratio between the coeffic ienls of the binary molecular diffusion 

D     /Di,»,   as we have shown,   does not depend on any stale parameter.    The 

only parameter that,   as a consequence,   affects   a is the degree of ionization. 

An indicative value obtained lor a in a particular interesting case follows. 

2» 
»I 
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2- Value of   a obtained for the ionosphere F layer 

Considering a plasma,   whose characteristics are those of the air in the 

ionspheric F layer,  we have: 

T =   l,000OlC 

i 
=  0.5  x   10 (day values). 

One can assume that the parlules present are essentially of the following 

three species: electrons,   ions   N«    and neutral molecules N^, and thus 

4 
m^/nij^ ZjS x 10   . 

In this case ( ref. <L) 

b /i n,   ■ r^   = 10    part/cm (day values,  e, «lectron charge) 

Qj, .md Qn   .ire respectively       (Ref.   -1 to lt>) 

-U 
Qli v  8,  4 • I'J    " cm1 

Qn 9£ 5. 2« 10 
16 

Therefore: 

-  10 
-3     volt/i rr 

0K/cm 

This value is of thfl same order of magnitude as the   corresponding 

Seebeck coefficient for semiconductors (Ref. 20)   whose indicative values 

are  reported below: 

Material Seebeck  coeff. 

Ge (n-type) 

Bi2   
Te, 

850 

Z5Ü 

Si - Ge - alloy 1 
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3. - The electric conductivity. 

The expression for the electric conductivity (29)   can be simplified under 

the assumptions of the Lorentz's imperfect yas. 

It can be shown that the following relationships between the coefficients 

L;;   and the transport coefficients hold: 
U 

Co "  ^ I   X 
M T 

It,   ■  Dl 

L.o   '   D: 

II 
"!»> "H    5a  pi» 
KT(n.  I),, +  D] Dla) 

(58) 

L"    -    "t '^ mi ""i 1:)n PM 
^(n^ 0»,+ n,Du) 

D| m/   D2, 

KT 
Jii 

Pertinent orders of magnitude of these parameteib are shown in Table III. 

When the proper substitution« in the expression for Ü  are made one finds 

that: 

i'     i*     i ' I Mo ^oi l-ii 

''UIJ    'U    ''1" 

L, 

L'     l' L*     li   1 
1 , i   '-JI Loi   LJo^ J 

(57) 

since the first two terms in the squared bracket are of order one,   while the 

third term is of order (   o      ).     The vanishing of li  is to within terms of order 

u5). 

This important result indicates that in the present case the plasma 

behaves essentially as a dielectric medium since,   in the steady state,   a 

given   distribution of a constant electric field on its boundaries does not 
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originate any appreciable current but produces only a "polarization? of the 

medium,  as indicated by the induction of electron (and ion)  concentration 

gradients.    As a matter of fact,   it is just the presence of this induced 

electron concentration gradient which causes the vanishing of the electric 

current.    That this is so can be readily realized by the following consider- 

ations.     As shown by eqs.(7)  the electrical conductivity   (J   for an isothermal, 

uniform three-fluid plasma would be simply given by LZi> or,   for a 

L.orentzian gas,   by: 

1        — '       ——; -~' ■" 
«i     Ui: 

n,    Q,, 
+   l 

2   nyAT 
(60) 

which is obviously the Lorentz' formula when the ion contribution is 

neglected.    If now we consider,   instead,  a plasma with uniform composi- 

tion but non-isothermal,   we find,   according to eqs.   (7).  that the conductivity 

(ft     would be given by:  LJ ,  - ( L^L'OQ) .     But the second term is of order 

(O5)sothat0,    is    practically equal to   0',    .      Thus the presence of the 

temperature uradienl would not alter   0    provided the electron distribution 

remains uniform.    If however we consider the opposite case of an isothermal 

plasma with non-uniform electron concentration,  then,   in :he steady case, 

the conductivity   0,    would be equal to L^ -  L^/L^.    That 1s,   accounting 

for the  relative orders of nia^nilude,   it would vanish identically.     Thus  it is 

just the  ■reaction" of the electrons,   so to speak,   winch makes the total 

current vanish identically In a first order  stationary state. 
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We state the more important conclusions reached in this chapter: 

0 For a ternary macroscopically neutral plasma in thermal equilibrium 

there are five independent state parameters but only three gradients ol 

these parameters are independent. 

Ü) ChoM the gradients of l.-.-.perature T.  of electric potential o  and of 

electron concentration Cj.   as such a set of independent «radienls.    TIUM,. 

when a tiven non-uniform temperature distribution is maintained on the 

Ixmndaries of the system a steady state i« .-ventually reached m which an 

electric field Vo   is induced throughout the system,   and it  is .iven by: 

where a   is a phenomenoloj-ical coefficient depending.   i„ jener«!,  on the 

local thermodynamic stale of the medium.    Sin.UarlV,  an electron concen- 

tration gradient is induced, winch is proportion*! to VT eccordinf to a 

Stale dependent phenomenological coefficient, 

Ui) The coefficient a . for a weakly Ionised    Imperfect Lorent.-typs plasma, 

is practually a function only of the degree of ioniration.   increasing with 

it.     Values computed for an indicative case ( ionospheric  K layer)   show that 

a   is of the order lo"    Voh/0K for a degree of loniaation of lü"4. 

lv)When a given non-uniform distribution of electric potential is maintained 

on the boundaries of the system ( I.e.   when the plasma is imbedded into a 

time  independent electric field)   a first order stationary slate is reached in 

which the electrical conductivity  (T will depend only on the local thermodynamic 

state of the medium and not on the temperature gradients,   say,  which are 

induced by the electric field. 
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v)    For a weakly ionized imperfect Lorentz-type plasma.   0" is practically 

zero,   thus indicating that the plasma,   in this condition,   behaves essentially 

as a dielectric, 

vi)    Points li)   and iii)   |iva qualitative theoretical support to some experiments 

reported in the literature.   ( Ret. H) . 
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TRANSPORT COEFFICIENTS INVOLVED 

11 

Transp. Coefficient 

Dp 

Dli 

T 

T 

D c p i- n d o n c e On: 

Binary Transp.   Coeffi- 
cient s 

D. 
IJ 

Dlj    • V 

Dij    '   V I 

Coilision inteurala 

ij        ij 

Interaction 

FUectron-ions 

TABLE II 

Potential 

Cj c* 

Electron-neutral 
molecules y (J) = -  a 

Ion-neutral molecules 

Neutral-neutral 
molecules 

<!>= - 

Collision cross section 
Theory 

D«n '/, 
cut-off 

D=ir 
no i:ut-off 

Not 
available 

Tabulated 
values 

Ref. t.xper. 

15 
M 

Not 

available 

Ret", 

*i.   l    Uvailable 

3.9, 
U, 18, 

Zl 

See 
Ref.   I 
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ORDERS OF MAGNITUDE EOR LORENTZIAN GAS 

mj, SJ m,     ; . m, m, 
ü   =   (m, /m,)1/-   x  0  [[()""] 

n, 11, L     J 

Quantity                ( Drder                i Quantity Order Quantity Order 

<WQu 6 \\L /Dfc 1 42 All Ö 

Qz./Qn 6-1 
DM/DM 6-2 ^x hi h'Z 

U,,/Qu 6^ Dw/D,, 
J 

6" b|Ai 6-* 

Qi/Q, 5^ ^iAi 6-J C./In". i 

Q. /Q. 62 lk.aAi 6-2 t^a/lSi 

Qi/Oz I ^Ai a"1 
i'n/i.y. 62 

vA. 1 ill I " Mi l'oo 

52 
6-1 

T.   T 
Dj/D, 

.4 
0 

" /" 
•lo I^Ol 64 

1 

L'u   4 
Ö-5 

^u M i 

• 

* N. i   Nj i   e 
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1) 

D: 

T 

F, 

f 

F 

''.! 

h 

J. 

MJ 

m 

impact distance 

molecular spocitic hent 

mass concentration of the i-th component 

molecular mean distance 

coefficient of thermal diffusion for the i-th species 

coefficient of molecular diffusion for the species i and j 

electric charge per unit mass of the i-th component 

electric charge of the particle o! the i-th species 

electric charge of the electron 

electric field 

velocity distribution function 

force 

specific Gibbi potential 

relative speed between two colliding particles 

specific    enthalpy for the i-th spec ies 

Planck's constant 

Mass flow of the i-th species 

Einergy flux 

Boltcmann1 s constant 

molar mass for the i-th species 

mass of the particle 

reduced mass 

particle weight with reference to the H, atom 

molar mass of the mixture 

• 
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ni 

Ni 

P 

r 

R 

si 

t 

T 

U 

v 

V 

V. 
i 

x. 1 

o 

Dij 

6 

\ 

p 

number density of the mixture 

number density for the i-th species 

molar concentration of the i-th component 

pressure 

distance between two particles 

uas constant 

specific entropy for the i-th species 

time 

temperature 

specific internal energy 

specific volume 

volume 

velocity of the particle of i-th species 

molecular concentration for the i-th species 

reduced velocit y 

number of positive electric charge of ;m ion 

electric charge per unit  volume 

electrochemical potential 

electric potential 

angular wavelength 

coefficient of binary molecular diffusion 

Kronecker's del 

collision frequency 

thermal conductivity coefficient 

density 

interaction potential 
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"V collision kagl« 

"j: collision inle^ral 

I 
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CHAPTER  'V 

THE EXPERIMEN1  \L INVKSTIC ' J lO?; 

INTROEÜCTION 

Tlic general aim >)i the experimental part >)i t:..      t i<l\  i • to determine 

liif electrodynami«  properties of a nonuniform plasma.    In particulari  the 

pi ism.i properties of air ,i!)<)iit a supersoni«   %.•   i< le .il i.i^li dltitude .ire ot 

interest. 

As w.i    discussed in i ic iir-t semi-annual reporti  this Investigation would 

be made in two diätinet step«.    First!  t i<   ■■s|>. rimental apparatus and metiiod 

would be tested and evaluated using an easily  generated plasma (JI the desired 

charai i<:-i sties.    O; ly    :'.   r I te first step h is IM.MI sati «fa« torily > ompleted, 

would the mor«   sophisti<  itcd measure) in .iir be attempted.  The experi- 

mental report will deal primarily with i le evaluation of the apparatus and 

technique.     .1 so pn   ci t- •: will be t ic flat i obtained by utilizing this technique 

to examine t:i<' pi     m;i  production relaxation timc in   ir^on.    ünr purpose In 

presenting t-u^ d.it.i on .1 r :<>IJ i    not so mu  h for its intrimii   /alue (wh 1  ii is 

diuiinvi- because of impurities),   but  rather Xn show the type of problem and 

the accura« y to whi« h t .•   te( hnique « an be mcinin^fully t-mployil. 

The experimental l< chnique \sill be discussed in the following order: 

Firsti  the shock tube will be considered .ir- t ic plasma-producing agent; 

second, the equipment to mea   nre tne ele«.trodynamic character of the plasma 

will be discussed; and t     .■■!,  1 "■ experimcnt.tl technique will be evaluated 

usiny, the data obi.lined from experiments run using an argon plasma.    This 

section will conclude with our future objective«. 
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I.      THE PLASMA GENERATOR 

Nunu-j-ous methods ol generating pl.i3in.is arc available to the experi- 

mentalist«    Unfortunately,  .it thi:-' st.itc ol the art« no om; lias yet devised 

a plasma generator where all t!u> properties .ire contröTlable.   At besti  it 

is necessary to make .t compromise between the characteristics important 

to a given experiment and tiu- failings of the plasma production system. 

The Important requisite for the plasmas in tnis experiment  i> that the 

density can be controlled not only in magnitude Imt also spacially.    Additional 

requirements are that the ^as density and type be controlled and that the 

plasma can he contained so that the c lei tromagnetic character can be deter- 

mined.   To then; ends,  a shock tube as a plasma generator is a suitable 

compromise. 

It war: shown in the fir t semi-annual report that the shock lube was capable 

ol producins; known plasma densities with or without axial nonuniformities. 

Further,  a discussion was presented as to the > ontrollability of the plasma 

composition and t; e use of the shock tube as a wave guide for electrodynamic 

measurements.    \s is usually the case,   it is not the general behavior of a 

d- vice that Is Important,   but  rather the spi « Lfic departures that must be 

analyzed, 

In a conventional shock tub',  a pre   sure ratio U established across a 

diaphragm.    When t'.ie diaphragm either bursts or \?  broken,  the i lermo- 

dynamic character of the slug of air behind the shock that is formed can be 

computed a priori.    In principle,   by adjusting the Initial conditions (in both 

the driver and driven  sections),   a plasma can be generated with  specific 
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properties.    Howevor,   «narg« dissipation prui. esses which cannot be accurately 

considered in the predicted shock calculation may suhstanlially attenuate the 

theoretical shock velocity in the driven section.    With a decrease in velocity 

of about .10%, the predicted electron density In the plasma may be reduced by 

more than an order of magnitude. 

To compound this prediction error,   in a shock tube where the diaphragm 

i    self-rupturing, there Is an additional uncertainty.   The variation of mechani- 

cal properties of the diaphragm may Introduce an additional order oi magnitude 

of uncertainty in tue cK . iron den.-ity value. 

Since it i-> desirable in this experiment to ui<t.iin plasma densities within 

a small range for each operation of the sioik tu »e,  the following techniques 

have been employed.    Fir~t both the initial driver and driven pressures are 

measured by mechanical ^.iu_.--.    A Wallace and Tiernan 0 - 50 mm gauge is 

used to measure the initial driven pres-ure. rlun.itcly,   thi-   L;a\i^<- when 

used below i mm H^ requires a long time before   m equilibrium value Is ob- 

tained.    In principle ,   however,   the driver-driven pressure ratio can be main- 

tained to within  i% for a driven pressure of 1 mm Hu.    After calibration,   the 

absolute value of the initial driven pressure is al; o a> i urate to about i% at 

I mm Hj^,   improving t^) . J% al   1 I mm IIJ. 

It miglit be noted thai many .-.hock tube.-- are operated using metallic 

diaphragms where the rupture pressures are predictable to within 5%.    However, 

it was deemed Imperativi   that no metaUi<   fragments exi-t in the shock tube 

since these might damage the lube and n:ii rowave equipment and possibly 

produce erroneous electrodynamic measurements. 
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In order to maintain tliL- driver-driven pressure) ratio precisioni  it is 

necessary to break rather than pressure-rupturs th« m.iin diaphragm.   In 

tin- tirf-t semi annual reporti •> method using hot wins stretched across the 

diaphragm was d.s. ribed.    While t:.i-. metiioci produced satisfactory breaks 

with the conditions the tuij«  was t ten operati     .  I le method was cumbersome 

since the wires  required replacement after each »hot.    In addition,   leaks 

developed in the complicated nonmetalli    diaphragm holder.    Further,   since 

in the future it i- expected t....t the temper<iturc ol the driven tube '.«.wiild be 

elevated)  te  tu were run to find a pla8ti<   suitable  a i.i^h temperatures that 

could in  broken usinn th(      ■(   .. ■    te     niqu« .    No such plastii   could ':»■ found. 

1   .   iiot wi r<  ti-* Kni iu>   wa - abandoned i:i i . /or i :   i im-, h mical > vilting system 

des( ribed below. 

TT 

* 

, ci 

a Nitrogen in be r 
b Sii. ond diaph r i jm 
c Piston 
d Stop 

e Driver tube 
i Rod 
■'. Cutter 
h Main diaphragm 
i Driven tube 

Figure I.    Diaphragm Breaker 
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The main diaphragm consista of four sheeta o£ .OiO-inch Lexaa*i   Tliis 

comhination iuis ,i rupture .-trc-iii;th of about 100 p.-i for the three-inch tube 

diameter in this experimenta    In norm.il opiriiioi.,   tlu' prcsMin- (iillfri-niüil 

across the diaphragm In aboiU 15») [)>i.    As shown in Figure*i above!  .1 four- 

bladed pointed cutter la attached to a quarter-inch rod that extends the length 

of the driver tube.    On t .<   oppo:-ilc end of the  rod from the cutter,   .1 piston 

is attached«    The pi  t m oper ites in .1 chamber which is divided by .1 second 

diaphragm consisting of four sheets of Lexan.    Fo break the main diaphragnii 

the section of the chamber not in< Iniin. the pistol   i    pressurized with nitrogen 

until the second diapl ragm rupture   .    Pressure i- then exerted on the piston 

which accelerate» the cutter attaining a velocity  sufficient to cut the main 

diaphragm In about one n lllisecond. 

This system has proved ..i^i.ly successful hut  ülightly cumbersome because 

of the second diaphragm.    However,   it off« :■ - the   idvantagc that any  reasonable 

driven pressure can be used since the t ti   km ss of the main diaphragm is not 

■ riticali    Further)   it allows 1 .e use of any plaMh   sheet that can be <ut,   thus 

permitting the use of high temperature materials.    Modifications of this system 

are now in progress so aa to replace the sei ond diaphragm witii a monostable 

valve assembly. 

The present shock tube system operating at an Initial driven pressure of 

about I mm U^ and driver pressure ol 150 psi has an average deviation from 

the mean running conditions of about 70 ft/sec at 7Uüü ft/sec shock velocity 

or about 1% mean deviation in velocity. 

Produced by General Eld trie Co. 
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In »rgoo .u 7000 ft/se.C|  this deviation In vulocity correaipondt to about 

iü% in tho aquiUbriuni electron density.    Ii should be noted tint these tigures 

are obtained trom the experimental running conditions u\ this sho. k tube and 

represent the mean shot to shot variation that . .m !;.■ ixpctlol.    Ii t;ic- theore- 

tical equiiibrium electron density calculations are made using i-n- actual shock 

velocity, the initial driven pressure and the 4.1- compositioni  the equilibrium 

electron density of .my .civon >'m.t ».HI he determined to about 3%i    This i.- 

.<•■ ause,   tor «■.>>  .     .  t the veloi ity {.v;.i. Ii is t >e important variable) can be 

determined to about . 1% using the reflected mi   rowave signal.    It i- well known 

tii a in the particular case ni argon,  tu.- approach to equilibrium iunization ir 

slow.    Thus the equilibrium calculation» must :;<   used only as an indication 

of the asymptotii   value ol electron den   ity behind the shock iulerfacc. 

It Ins been    hown i IUS  far 1 uit the shock tube i- experiment illy capable 

of generating known av< rage plasma den   ill' a in a repeatable manner. 

Another sourc«   oi error    in 1 ic intc rpr« 1   ti m of the experimental results 

is the nonuniforn   radial distribution ol 1 u   plasma properties due to boundary 

Layer effects.    For in   tance,  the estimated radial nonuniformity lor  iir is 

shown in Figures 1 and :>.    In the present series of experiments,  the microwaves 

propagate behind the  -hoik Interface .ii a distance where the distortion of the 

radial distribution of the electromagnetii   ii> M is still negligible.    Thus these 

effects were not taken into .i> count In the interpretation of the experimental 

re suits.    At the present time,   calculations are being conducted to Include the 

radial nonuniform Hi  trihuliun in the analysi    oi the wave guide fundamental 

mode. 

The 1"'1  ■'■iii  '■ ■•. pi' r 1M ir ni ,11 Invustigatiun i ■   1 onfinod to the ..n.i l\ sis of tiu 

a -,,,, 11 _, nonunlfoi m electron donnlty in a rgon, 
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Th« ci)ntri»ll.iijility ut the density gradient In air, as described in the 

first report,  has not yd been attempted« 

2.     ELECT ROMAG N ETIC MEASUREMENTS 

In the previous section the shock tube was described .is a plasma generator. 

The aalienl feature i>i this experiment Is that t :._■ shock tube also can hu used 

.is a wave guide whose properties depend upon the electromagnetic properties 

of the generated plasma.    The range 01 trequenciea that can be propagated in 

the fundamental transmission mode TK,,   is small,  which limits the range of 

electron densities that can be measured.    However,   it will be shown that within 

this range, a remarkable de   ree of precision van be obtained. 

It is well known that .. cylindrical tune can act as a transmission line tor 

certain frequencies of electromagnetic waves.    11" the medium In the wave guide 

is a vacuum,   for the T i.,,   mode the cut-off frequency is given by 

c in R 

where R is the tube radius and c is the  •■ lo« ii\  of li^ht in a vacuum.     \U 

frequencies above this "cut-off"  frequency can be propagated,  but the geometric 

field configurations become very complicated,    since it is necessary to measure 

the electric and magnetic   fields in this experiment,   it is desirable to have a 

situation where only one mode can propagate in the wave guide.    Thus,   only 

frequencies between the cut-off frequency given by the above equation and the 

cut-off frequem y for the next mode are used.    This upper frequency limit then 

is given by 

fc 
2.405 

lich corresponds to the cut-ofj frequency of the TM j   mode 
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For our shock tub.- with .1 radiui of i.75 » m,  th« > utoff   valuei 

eitabtish the frequency range fron -350 to JVJOD nu/si-. .    Furt i. r litr.itationi 

on this range are ImpoHed by the inability to tune the lystem as the low fro- 

quency limit is approa« tied o. . au <  the wa\ <   guide v. »vi i.'n^tli becomes very 

Ion.;,  extending to Infinity at «.utoff,    ]■ i ur<   l shows t ..• relation between tiu- 

wave guiiK  wavelengt i  ind the generated frequency ior this slunk, tube.    The 

propagation limits for thi   T Ku   mode are uhovi   .    When the wave guide wave- 

length exceeds about 40 . m,  the system bei omes   liili  ult to tune.    Hence the 

practical operatiny ran^<   i- about --ioU •   JÜ50 mc/sec. 

When the wave guide or shock uii>i- .ont..ii.    .i uniform plasma the propa- 

gation depends upon t ..   plasma frequei cy and the electron collision frequency 

in the pi.ism.i.    In the ideal    ■<•>   « !»■ r.   t ..     . m   ion frequency is assumed /.ero, 

the propagation constant k.   for I ..   I'i;,,   mode L« given by: 

W i t 

i   i<   y 
(i) 

* •''r'   "   is the angular fr<  [uency  ol th»- eleitromagneti«  wave and 

^    i - the plasma frc [uen« y.    j    is related tu the 'i' i tron density n(. 

b)  the equation; 

*p -   5...4   x  U4   /u~' [i] 

wh< re ne measures the number of electrons per >ubii; centimet« r.    From 

equation (I),   the cutoff frequency u . is given by 

171  x Id ZO 
(3) 

Relating ti    to the electron density,   one obtains: 
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u) . 

i. I« s IU 

10 
-   t,.bZ N 10       =   n. (D 

Wc   musi be »mailer than the cutoff angular frequency of the TMoi mode of 

the wave guide .meal >)i the plasma interfat e. 

Therefore,  wit!   I ic maximum frequency J050 mc/sec,  the upper limit 

of electron density at whi.     the electromagneti(  field can propagate in the 

plasma i- 

L'max 
-^   5. ^ x I'J l   elet I ron*   i ( (5) 

To measure tho properties of the plasma,  two types of field detectors 

are used.    Fir.t,  the electn.   field delator i- an antenna which is mounted 

flush with the wall of th,   shock tube.    T   i    auU.ma is connected to a micro- 

wave diode typ.    IN ^i      If the detector i    operating in the "»quar,   law" region. 

the output voltage from l   •   diod.   is proportional to the square of the average 

electric field at the wall.    The maximum output from a typical detector for 

an input power of .iü milliwatts  is about   P millivolts. 

The magneti.  detector is like the electri(   field detector except that 

between the  -vail of the lube and antenna,   a loop is mad..    The plane of the 

loop ties in a plane including the axis of the tube ,.nd tu.- microwave ant.nna. 

An „utpu, comparable to the electri.  detector is obtained Li  the diameter of 

the  loop is about   .4  cm. 

A  spurious signal was noted on the electri.   probe early in the investi- 

gation (shown by the arrow in Figure 5 ).    Subsequent investigation without 

the microwave signal ■ learly showed that a current was generated in the 

cry8ta! probe -huh was directly associated with the shock arrival (see Fig.  6) 
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Figure 5. 

Shot Number Zi 
Sweep Speed SOjisec/cm. 
Wavelength   ZZ cm. 
Upper Trace: Pressure 

Detector 
Lower Trace: Signal from 

microwave 
detector 

Note:   White arrow indicates 
interference signal. 

Figure 6. 

Shot Number   24 
Sweep Speed   50 |isec/cm. 
Upper Trace: Pressure 

Detector 
Lower Trace: Interference 

Signal. 

Figure 7. 

Shot Number 
Sweep Speed 
Wavelength 
Upper Trace: 

51 
100 |i,sec/cm. 
IZ cm. 
Signal from 

electrostatic probe 
(Amplification  I V/cm) 

Lower Trace:  Signal from 
Microwave detector 
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A  high impedam i   prob.- W.IH made and  inscrtrd  into the  shock tube in place 

of the cry.-t.il dit. .lor.     Kullowir.^; teatfl with and without mit rowavi- signal, 

lyim.il voltage curves lik.- th.it In Figurt; 7 were obtained,   : 

Calculationfl conducted for a steady state condition of a uniform plasma 

in contact with a muUlli«   wall indicates that a potential difference 4)     given by 

C6 

Kl 
— fn    —'_ 
- M :o) 

iui.-.t bi- istaidishcJ  in order to liave a zero ele« Iron . urrent from the plasma 

to the w.ill.    With t'i.- v'.ilin   of ion-electron mass  ratio (     *   ]   for   irgon    and 

an electron temperature(Tc)   on the order of lü-1   UK,   equation (6)      ives a value 

ol <J)0 in the  rant;,- of  i volt.-.    This value  toil    ld(      with the measured potential 

on the electrosUtii   probe in Figure 7.     1    .    ii.i. rfcren   <• signal was removed 

by introdm ing .. small paralU i inductanc .   on the RF side of the ele< trii field 

probe. 

The coupling ol the n Lcrowavc generator to the wave guide is an important 

consideration.    The specifi    coupling condition i- that it the wave guide was of 

infinite length,   i n   reflected power through the antenna would be /.i-ro.    Stat.-d 

differently, if a metalli    piston is placed in the wave guide,  a standing wave 

pattern would be established such that a linear   lisplacement ol the piston would 

result in a proportional linear shift in   i minimum of the standing wave pattern. 

Or,   ii an electrii   fii Id d( lector is stationary to the wave guide and the piston 

is linearly displaced,   the magnitude of the field will vary sinusoidall)  with the 

piston motion. 
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In tin- previous lectioni the character oC ih<- plasma gMerated in the 

shock tub« was dea« ribed.    For the simplesl   ipproximation,  the generated 

plasma could be cmisidered as a oniforn l> ionized slug of 4as radialt) filling 

thi! tube and extending about oiu' meter behind the shoi k front.    The electron 

density of lia^ pla ima denoted by n(. coul     ><• taken as the them  odynamic 

equilibrium value,    Ii i.t. i    so L.r^«. thai the propagation constant k^ in 

equation (I) become« .in imaginary quantity,  the .-iiock front acts like a reflect- 

ing piston.    The signal from .1 stationa ry .■!>.•> 1 rii   field detector In front of the 

shock wouhi \.iry -inusoidall)  with time as the slunk moved towards it. 

The timt.' required to i omplete one sine < y< le in the detei tor .--i^iial Is 

r.  lated to the  shot k  Velo« ity  by 

\  . 
T    =   -   " 

l\ 

where \    is the wave ^uide wavelength and v i.- the slunk velocity. 

Since \4 and T cai   easily be determined to better than 0.1%,   the shock 

velocity  1  in also measun   i<.ii least 0. 1%, 

In Figure 8a,    1 velocity history (an i>r deli-rrniiu-d a    the sho>.;k moves 

toward the detector at 1 if 1 nd of the tue .     I his  history is shown in Figure 8b 

and is typical of shoi k tube behavior,    [n Figure 8a,   the in« ri-a-c in amplitude 

of the detected signal i- due to the fait that the microwave signal is attenuated 

in the wave guide.    Hence,   the  standing wave  ratio decreases as the shock 

interface distance from the detector in» reases. 

As the shock passes the detector,   the character of the detected signal 

changes.    To illustrate these changes,   the set  of graphs in Figure 9 have been 

prepared.    In all cases,   the time average of the transverse electric and magnetic 

field at the wave guide surface are shown,    The dotted lines represent field 
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Figure 8a. 

Shot Number   10 i 
Sweep Speed       . 5 msec/cm 
Wavelengtli      44.4 cm. 
Upper Trace: Signal from 

mil rowave detector 
Lower Trare: Signal from 

electrostatic probe 

Shock Velocity 
m/s 

I I 0 

Diitance from test section (meters) 

Figure 8b.    Shock Velocity Vs Distance from Test Section 

; M m sa» . 
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Figure 9a. 

Metallic Piston 

x«0 

E 
- 

,/ 

Figure 9b. 

Signal from 
Electric Field Detector 

Distance 

H 
X ■0 

> 

Figure 9c. 

Signal from 
Magnetic Field Detector 

Distance 

Plasma 
"TT 

urn 

E 
x '0 

/      s / 

Figure 9d. 

Steep Gradient Non- 
Uniform Plasma 

Figure 9e. 

Signal from 
Electric Field Detector 

■■ 

\y / _ J 
Distance 

H x ■ 0 

S 
- 

\ / 
\   / 

Figure 9f; 

Signal from 
Magnetic Field Detector 

Distance 
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Figure 9g. 
Medium Gradient 
Noa-lMferm Plasma 

Figure 9h. 

Signal from 
Electric Field 
Detector 

Figure 9 i. 

Signal from 
Magnetic Field 
Detector 

Figure 9j. 

Slow Gradient 
Non-Uniform Plasma 

Figure 9k. 

Signal from 
Electric Field 
Detector 

Distance 

Figure 9i. 

Signal from 
Magnetic Field 
Detector 

Distance 
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conditions of tlu- previoui cycl« so as to contrast the change,    Ii the reflecting 

suriaci-s (piston   or plasma)   arc assumed moving,   the field conditions are 

drawn in the frame of reference of the moving system.     Hence a stationary 

detector would measure the field dislrihutions  in the reverse order.     Since 

the experimental data luve .ill been obtained using argon shocks,  the plasma 

examples in Figure 9 illustrate-    field conditions for various axial electron 

density gradients,   assuming some absorption inside the plasma. 

In the case (a)  of Fig.   9 the penetration inside the  metallic piston is 

very small diminishing to /,ero as the resistivity approaches zero.     Note that 

the transition in the transverse- magnetic  field occurs at   its maximum and the 

converse occurs for the electric field.    Case ( d)  for a steep plasma gradient 

is   similar to (a)   except that the penetration depth is greater.    A typical 

experimental example ot this case  is shown in Figure  10.    Similarly with 

case ( g) ,  where the plasma gradient is less steep than eise (d)  the penetra- 

tion depth has increased and the departure points on the electric and magnetic 

field increase and decrease respectively.    Note that the electric   field inside the 

plasma decreases with a rate changing exponential since the elect run density is 

increasing.    Experimental behavior ot this type is shown in Figure  11.    An en- 

largement of Figure  11 lias been made in Figure  1^ where the detected electric 

field  inside the   plasma and the  ele« trie  field of the  prev ions c yc le a re co: n pa red. 

Figures  I J and 14 were taken BO that  it would be possible to discern the 

departure points.     Fhese pictures were made using two electric field detectors. 

One amplified detector signal was fed to the horizontal deflection plates of a 

cathode  ray tube,   .he other to the vertical plates.     Spacially,   these crystals were 

located several wavelengths apart  on the shock tube.    The trace becomes un- 

blanked about  three    cycles  before the  shock  passes the  first defector.   Hence, 
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Figure 10. 

Shot Number   179 
Sweep Speed      20 p,sec/cm. 
Wavelength       18.9 cm. 
Upper Trace:  Signal from 

electric microwave 
detector 

Lower Trace:   Signal from 
magnetic microwave 
detector 

Figure 11. 

Shot Number     116B 
Sweep Speed        50 |i sec/cm. 
Wavelength 44.4 cm. 
Upper Trace:   Signal from 

electric microwave 
detector 

Lower Trace:   Signal from 
electrostatic probe. 
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Figure 13. 

Shot Number     110 
Wavelength        44.4 cm. 
Horizontal:   Signal from 

microwave detector 
Vertical: Reference signal 

I 

I 

I 

I 

I 

Figure 14. 

Shot Number   118 
Wavelength        44.4 cm. 
Horizontal:        Signal from 

microwave detector 
Vertical: Reference signal 
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the normal Btanding wave  sinusoid is established as an ellipse.    (The non- 

symmetry is due to the nonline.i rity of thr detectors.)   As the shoek passes 

the first deteetor,  the departure la clearly  evidenta    The location oi the 

departure relative lu the shock front can be made by using the corresponding 

linear time scale picturi . 

Fig. ... 

Fia.  h. 

Vertical - Reference .'-.i   nal 

Horizontal - Detector si^n.il 

Fiture I i. 

Keterrin^ tu fi^ur«' IJ.I, note that if the departure occurs on the outside 

of quadrant - or 3, the function i dot reasing faster than the sim function and 

presumably denotee the rate-increasing type of exponential function. However, 

if the departure is oppo Lte as shown in Figure LSb, the detected signal in the 

plasma is decreasing slower than the sine function and corresponds to the 

c.ise described below.    The arrows  denote the direction of trace. 
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Case- (.,) of Figure 9 repre.eat. a poa.ible field configurati« if a slow 

axial gradient exist, behind the .hock,    [n thi. ca.e.  the < ritical elect] 

deneity.  where the propagation contUnt.  kz   i. wro.  is located • long 

di.tance behind the physical .ho. k front.    Hence there is a region of the 

pUsnu. behind the shock interface where- 

iron 

up  ■     W ^    - -.17 x ld'iU 

In this region,  the wave «aide wavelength in. rease. as ne In. rease«.    In 

this case,  no well defined point of total reflection occurs,  and there is a 

continuous transition from the propagating wave to a de. reasing amplitude 

of the signal which approache. «ro in the reRion of high electron densities. 

This phenomena is illustrated in Figures 1,, and 17. 

H could be noted from Figure 9 that for all cases,   the transverse 

magnetk  field plot exhibits an abrupt    ban   ,   in cl  .racter at   the "reflecting 

POint"'    Thisi8be  —   •"   -^neti,   fM-ldi.   always increasing on approach 

to the transition region.   Hence,   an abrupt  .gc in slope   should occur at 

thc ' nli•■,l rCBion in l"1' '-'■ "f " ^arp transition of the plasma properties. 

Since the electron density   increases as a continuous function,   th.      ritical 

Plane of "total reflection.- correspond, to a maximum  in the magnetic detector signal. 

>. INV^TIGA-, lOT^q^THE PLASMA DENSITY BEHTNn ^ ^r^;^^^ 

I« the previous section,   the technique for measuring electri.   and magnetic 

fields and their rd ition to the ele. tron densit 

referring to Figure 9 (j and ().  the 

the "reflect ing point ".    This point 

ity wore discussed,    in particular, 

maximum of the magnetic field indicates 

'■- r"1"'' '' to the ele< Iron density through 
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Figure 16. 

Shot Number      101 
Sweep Speed        5 0   ji, sec/cm. 
Wavelength 44.4 cm. 
Upper Trace:     Signal from 

microwave detector 
Lower Trace:    Signal from 

electrostatic probe 

i 

Figure 17. 

Shot Number      101 
Vertical: Signal from 

microwave detector 
Horizontal:        Reference signal 

Figure 18. 

Shot Number 
Sweep Speed 
Wavelength 
Upper Trace: 

electric microwave detector 
Lower Trace:    Signal from 

magnetic microwave detector 
Blanking: Pressure detector 

164 
20   ji sec/cm. 
22.49 cm. 

Signal from 
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equation (-\) assuming the «Dili-ion frequency zero,    Heace,   for each micro- 

wave frequency used,  t .<   . lectron density .>i the "reflecting point " is known. 

Tims,  in principle,  by repeating the sann   sho« t- and changing the mi< rowave 

frequency,  a plot of electron densit) vs distance behind the shock can b«- made 

for the   ran,4e of densities des. ribed in Section   1. 

This general procedure w.is used to establish the density profile behind 

.m argon shock for several  shock vi locities.    However,   rather than change the 

fr<  [uency between i  icl   shot (A   i   h i,-. a laborious procedure since the system 

n ust b«   r< tuned ,   .>  seri< - o( t»-.-!- wer"    onducted at eai h frequency. 

To mark t ■<■ p iysical arrival of thi   shock,   J I rystal pressure probe was 

mounted flush with t .<   tube's surface.    The outptit from tiii« crystal was fi-d to 

a pulse cricuil which in turn «.nl ofi the beam intensity of tat- measuring scope 

for 5 microeeconds.     \ typical trace of the electrü  and magneti(   probes is 

shown in Figure ifi. 

Note that .i displa< ement correi ti<in must !JI- made betwe« n the signals 

since th(   probes are located  3    m apart alon^ the axis of tin-  tube.    This 

i or ret tion is made by first determining i n   veld ity as rU-si ribed in Se< lion £. 

Since the distance between probi s is known,by using the measured velocity,   a 

time correction of events is made,   and the distance between shock arrival and 

"reflecting point'' can be determined. 

Using this procedure,   Figures 19,   --').   and 11 were obtained.    From these 

curves,   a composit  curve can be drawn showing the electron density as a function 

of distance behind the slunk for various shock velocities (Figure IZ),    The de- 

gree of randomness in the experimental values is due to the uncertainties which 
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were previously dUcus«ed.    Actually,  the. results are surprisingly good 

t.tkinv; into account that t ic ionization rate of argon is .1 very sensitive function 

»I Impurity content. 

v i- the purpose ol this particular investigation w.i^ to demonstrate 

the capability of the measuring technique,  no spr« i.d precautions regarding 

the impurity 01 the argon were taken,    ll might  ■>*• noted that the data presented 

was obi.lined in u-inu argon from the >;ime lank.    U.'on changing tanks,  a 10m- 

pletely different sot of curves was obt. ined.    The estimated impurity content 

-i -i 
is between 10      and 10       [or the data prosenled. 

Tiie theoretical equilibrium electron densities for argon are computed 

as an appendix to this  -.    lion.    From thes«   results,   asymptotes can be located 

on the curves in Fi   ures  19,   10,   .A,   and .: :       l  ■•   relation shown between 

measured and t leoreti   a I el( ctr on densities  indicates the high precision which 

can be attained with tais technique. 

An independent correlation of thesi   results  is presented in Figure -5. 

The relaxation time defined by the other in., ttigators  reters to the degri e of 

ionization as meas»ired in  tin   luminosity of the plasma.    Thes,   authors claim 

a direct  relation between the luminosilv  and the electron density.    The point 

plotted from our data  represent a   relaxation time defined as the time   required 

for the plasma to attain 60% of it- equilibrium  •alue. 

Because of the possible  ambiguity in the definitions of T,   only an order 

of magnitude agreement is meaningful.    II the results for impurity content 

in the range of IÜ      to Lü"     are extrapolated,   such an agreement is clearly 

evident. 
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■I.        FUTURE WORK 

Since tho .ir^on sinn k has been demonstrated to be a simple and 

predictable method of obt.iii.iii^ an .ixialU  nonuniform plasmaifurther ex- 

periments will   <<   mado usinj; ar^on lu    iu-i k the analysis of Chapter V. 

When satisfactory correlation of this analysis lias been accomplished,   our 

investigation will be directed toward plasma 1 radiunts in air shocks. 
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APPENDIX A TO CHAPTER IV 

HPy Ll1!!RJUM SHOCK CALCULATION FOR PURE ARGON 

Equilibrium i onditiona behind normal shu. k waves in argon have been 

computed using a method outlined by E.   L.  Rcsler,  S.  C.   Lin,  and A.  Kantrowits 

in The Produi tion ol High  Femperaturt! Gases in  vhock Tubes,  Journal of \pplled 

Physics,  Vol.  £i.  No.  IZ (December I95i).    The calculation considers single 

ionization of the argon ate-n,   but electronii   fxi llation and multiple Ionisation 

are ignored.    The assun..   ions used introduce . rrors ol  I - i% at l5,000oK, 

■ itifl are con side rabl) more m curate ai lower temperatures. 

The conservation equations lor mass, momentum, and eni rgy, plu.s 

liiu equation of -tale ,ind pertinent thermodynamii relationships have been 

written for argon undergoing the ionization reaction; 

N s=* /        e' 

The subscript:   1 .md i denote conditions in front of and behind the shock,   and 

the vu.it- used d re: 

dent ity, p ,   -lu^s/ft 

pressure,      p,   ,itm 

velocity,       u,   a,    ft/see 

temperature, T,    K 

entha li»\ ,       h,   ft" /sec 

electron den- ity,    nc,   parti< leä/cm 

and a  is the fraclional degree of ionization of ar^on. 
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Pi   Mg  =   P2   (M. 
u. 

Z116.8 p,   + p    a?   M"   -^116.8 p, + a,   a.2.  (M . ^ ) 
»a, 

h,   i i a[    Mg   =h,   f   -I-   4    (Ms -  ----T 
a, 

i K 
h   ^  5.637 x 10     (I . ,, ) T  f   -4,075 x I >    a 

a   =   L540X105  -^     exp   f±¥}JLl±5.   )        t    , 
1 

p   =    1.065   (1   •   n)   pi 

a,   =  61. J J , 

7. 39 x 10-' 
+ (i 

JP_ 
r 

- Vt 

An iterative solution scheme was programmed for the Bcndix (j-!5 

ili^it.il computer  using the over relaxation method.    Thus,   given input con- 

ditions Ms»Pj ,   ami T| ,   conditions behind the shock may be obtained. 

Figures .'.-1 and .15 present  some calcul.iti'd electron densities an 

functions of shock velocity and initial pressun .    The initial temperature 

was iUU   K,  .uid il was found tiiat t'ne same results arc .il.so valid for .sonn,' 

vs'iiaL  lowiT initi.il li'inpcr.itu res . 
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CHAPTER_V_ 

ANALYSIS OF THE ELECTROMAGWETIC FIELD WITHIN A CIRCULAR 

WAVE GUIDE CONTAINING AN AXIALLY NONÜNIFORM PLASMA 

INTRODUCTION' 

Tlu' purpose of thi^ chapter is to relate analytically the loc.il electromagnstic 

propertiea of the plasma with meaiurementa of certain field parameter! .tt the 

boundary of the wave guidi      In order to fix Ideas consider .1 •emi-iiuinite < ir- 

cular wave guide of radius K whose walls constitute a perfect conductor.    Let 

this guide be filled with a plasma having properties that may vary arbitrarily 

only in the axial or x-direction.   The configuration so described is a simplified 

representation of the shock tube at any given time during the propagation of the 

pressure pulse down the lube.    Ahead of the disturbance the medium is yet 

unaffected,   and all"properties are uniform.    As the disturbance is Iransversed 

in the s-direction,  the pressure and temperature of tne medium are drastically 

altered,   as ..re its properties.    Variations of properties and parameters in the 

radial direction are neglected here,  and such effects are discussed elsewhere''.'. 

It electromagneti«   r idiation is lntrodU( ed into the end of the tube toward 

which the pressure pulse is moving, the radiation will progress down the tube 

through multiple reflections from the perfectly conducting walls of the tube 

until it encounters the ionized medium at the shock front.    At this point reflection 

and absorption  of the  radiation will begin to occur and this  phenomena will con- 

tinue as the  radiation advances into the plasma until the energy is completely 

returned or dissipated.    The resulting field at any point within the tube is thus 

*  For example,   see General Applied Science Laboratories,   Inc..   Technical 
Report No.   Z55. 
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.1 compotit« of tin- original radi.ition Uitroduced and that reflacted back from 

that portion of llu- ptaimi extoading beyoncl Ihc location in question.    Cloarly 

the field pattern will be characteristic of the axial distribution of electro- 

magnetic properties within the tu:.>e, for any alteration In tiii.^ distribution 

would result in different degrees of absorption and reflection at each point 

along the tube,   and thus fie  resultant field would be changed. 

It will be shown in this chapter that for the simple plasma model -studied, 

namely one des< ribed by the two independent properties of collision frequency 

v and plasma frequency ^ ,  the two characteristi«, properties may be measured 

indirectly through measurement of the time-average ol the square of tne radial 

component of the electric   field and a similar average for the tangential component 

of the magnetic field and the axial derivatives of these quantities. 

In view of the fa« t that we have assumed th it the properties are uniform 

at any given axial position,   sudi measurements may be carried out at the wall 

of the tube when- r r-K rather than by the use of probes immersed in the medium 

and tending to alter the environment.    In order to measure the axial variation, 

the detector need mi rely traverse the tube in the axial direction,  or,  what is 

equivalent and  actually used,   a  stationary dele, tor measures the desired para- 

meters as the pressure pulse moves down the tube carrying with it the charac- 

teristic field distribution. 

In the analysis to follow the rationalized mks system of units is used 

throughout, and the nomenclature is the conventional one and is thus self- 

explanatory. 
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I.      FlSLD EQU AT IONS 

The eld-troma^iielic tiuld within tho w.ive t;uido described in tin- proceciini- 

section is determined from the M.ixwell equations 

V x E 
an 
üt 

Vx w   -   j + « 3E 

(I) 

(2) 

their associated initial conditions,  with the .issumpiion of no net space charge, 

V. K   = 0 

V .   H    r.   u 

(3) 

(4) 

and a momentum equation relating the current density to the electric field: 

• Up   E - 
T      _<)J_ 

t)t (5) 

The plasma is nonmagnetii  and unpolarized so that the permeability ^ and 

permittivity « are the free space value-.    The plasma frequency {O- and collision 

frequency  v are assumed to depend upon the axial coordinate z with the former 

defined bv the relation 

ne 
mt (6) 

where n la the electron number density,   e its charge,   and m il> mass. 

It is of interest to note that for a transverse electric mode (E    =0) the 

current given by (b) is also transverse and is thus perpendicular to the gradient 

of the electron density or plasma frequency.    This behavior is consistent with 

our assumption of a  steady distribution of electron density depending upon the 

axial coordinate alone,   and the TE mode will be the only mode considered in 

this analysis. 
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The natur.il syrilcm of coordinates for thU problem is the circular 

cylindrical system (r,^.   /.) with the positive /.-direction being taken as 

opposite to the direction in which the pressure pulse is moving.    The bound- 

ary conditions are the conventional ones,  namely that the tangential compon- 

ent of the electri«  fi<'hi vanish at the surface "f the perfect conduitor,  that 

t ie field be finite at the axis of tue tube,  and that the field vanish Infinitely 

far Into the plasma.    Expressed mathematically,  we have^oting that we have 

postulated a TE mode tor which Kz = J everywhere, 

at r -- K: Eg =0 (7) 

at r =0; E   finite (8) 

as /.-> on: K —> i),   n —> 0 (9) 

It may be shown thai th<   necessary condition that t:>e normal component of the 

magnetic field vanish at the wall is automatically satisfied by tue above con- 

ditions. 

Following the usual procedures,   the pertinent components of the field 

satisfying the above  relations may be    shown to be,   apart  from a fat tor e 

l inri 
Er =    i  Jn (Ykr) e      w(s) 

• p -J      w 

(n  >  I) 

^•S) 

(10) 

(H) 

.here  J     is the Bessei  function  of the first  kind  of order n and the  constant 

Vi<  may have any of the discrete values given by the roots of 

(12) 

The function w(z)  is the solution of 

W T K-      -     Y 

U2        v 

w    =   w ~>  0     as   z —^ oo 

(13) 

(Ua) 

■' \ 
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where u is the circular frequency ol the Introduced radiation and c the 

{fee space velocity ol li^ht, 

d   .   1 (14) 

The parameter M  is the so-called complex  retractive index ol the medium 

and is deiincd by the expression 

=    I  - <l> 

I  -   iy 

with <p = ^ü_ 

v - 

(15) 

116) 

(16a) 

It should be noted that K  is a function of z BO that the uolution of equation (ü) 

must in general be detern ined numerically. 

Finally,   we define for convenience the quantity 

Jn^kR)        ln8 
Ank(«)     =   i (17) 

P   uji 

so that at the surface of the wave guide we may express the two field components 

of Interest in the form 

H,   -Ankw'W — ("I 

In all that precedes it is of course understood that the actual field is 

given by the real parts of the complex expressions which appear above after 

first multiplying by the factor  e 
iu)t 
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Z•     SaCPRESSIONS RELATING_AXIAL VARIATION OF FIELD TO 

(Er ^V  AND  (HQ Uv 

It m-.y be .how,, thai the value of   (i:; ) ^ , which denote, the time-avarag« 

of the square of the radial component of the electric field is given exattly by 

the relation 

(Er)        B   —   E    E* U0) 

I 

where Er on the right side of the equation i- the complex expression given 

by equation (10) or (lb) and Er* denotes it« complex conjugate obtained by 

repUcing i with -i in the original expression.    Similarly, 

[H ''*v:: i,i^11* (-0 

where HQ    on the right side of the equation i. the complex representation of 

the field given by equation (11) or (19).    In each case the factor   eiut disappears 

and further,   he. au se of t .,■ manner in which the Ö-dependence enters,   namely 

in the form e1"8,   this factor also disappears when multiplied by its conjugate. 

Taus,   the quantities ErEr* and He H*   depend upon only the radial and axial 

coordinates.    I,, particular,   at  r = R.   we nave using equation. (18) and (19). 

1 AV 
; E* r    r 

■MiO        it  H' 
ö AV        ^    ^ 

^ Ji* A ,   A*   ww* r      nk     nk 

A        .■■>*     w  v. 
nk     nk 

r = R 

Ui) 

(23) 

The importance of these relations lies in the fact that the axial distribute 

of the quantities ww* and w'w«* may thus be determined at the surface of the 

wave guide for any mode through measurement'of the two quantities ( F -) 
* AV 

and ^'ö'AV     
We  "Uiy  n0W U9e  the8e measurements to determine   K . 
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3.      Pj^T^M^JlON OTJTHEjQUAHE OF THE LC^L_COMlPLJ^ 

REFRACTIVE INDEX. ^ 

The complex refractive indeic « la related to the function wU) through 

th« differential equation (li),  or equivalently 

K w 

(24) 

c 

For convenien< e,  w 

(l\),  namely 

,. nov. define the complex function V(.-) by the left side of 

F(z)   s   -r- K--y' 
(25) 

We de.ire the real and Imaginary part, of F() .  and thus through (25) .  deter- 

mine K . 

The real par,  of F(«).   U.ing  (24)  and (lb) i* evidently given by 

w " w " 
KeF i iF,. =   - --    -   —r 

\v''w*  f w"* w (26) 

loting that the derivativ« of the conjugate is equivalent to the conjug, ite of 

the derivative,   i.e. , 

r* -     .;• r 

and using the identities 

(w«w*)   =  W'vv*  I  w'w* 

(w*Kv)   ■=   w*   w  + W*  w' 

(27) 

(28a) 

(28b) 

Equation (26) may be written 

2Fr ■ - 
(ww*)     - iw'W1 
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and 

w \\ * 
( W W* ) 

(29) 

Referring now to equations (22) and (ZJ>),  we have 

(30) 

and thus Fr is determined in terms of measured quantities. 

The procedure for determining the imaginary part of F is similar,   but 

not as straightforward.    Analogous to equation (26)iwe have 

Zi F.   =  - w' •        w " 

W V.* W .'.* 
(31) 

and by an obvious transformation 

_    r. Ivvw7'-  im 
(i. 

The function w'/.v may be determined in the following way.    First we 

note that 

'L   i    *'"   = (ww*)' 
W^ v\ w* 

where a is a measurable function.    Also,  another measurable function Is 

w'w'* 

(33) 

ww* =   b (34, 

Solving (3 3) and (34)   simultaneously for w'/w,   we have 

W a 
w   ~ T 

l 
Jl.4 ^      _ 1    (^w*) ,:  ^.4(wy)(wy) 

-       (WW*) \ („■,,.,;: \'r.'. (ww*) 
; 
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Heturninj; to equation (3-)  wo now have,   .substituting from equation (35), 

Im   El I    (ww*) /    (W'MV» ) (w\v*)      _ 

1   ( ww*)     V4 "   [(wvv*)T 
(36) 

fW 

(w'w*Tj (wvv^) X 

4      H-..1..1« ' '  J 
r 

. V ]ww*)'Ji 
,37) 

Z ww* 

Using again equations (-Z) and (-3),  we have finally 

S j F.   .   .     0 
f4W

2^     (Hy)..v   (Ej)A '« 'AV '"■■ '..V 
(38) 

2(E'r AV 

The choice of sign in rquatioi  (38),  as will be seen in the next section, 

is made to yield a  positive collision frequency. 

The  real and  imaginary  parts  of K   or K
2

    may  now  be determined directly 

from equation (-5), 

K ' = fl F __.     V,      =     R +  i (39) 

Thus, 

c"     r 
Ke K -   6 K--T     iF     f Y 

2 C „ 
Im K     = I -   —,-    F. 

(40) 

(41) 
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4.      PL A SMA FREQU l^NCY AND COLLISION F REQUENCY 

The desired quantities Wp and  v,   or what is equivalent,   4? and ^ are now 

readily  found.     From the definition of K"  ,   equation (15),   we have 

i     W-,     ■  R + i I (4i) 

Solving for y ani' ♦ •  we 'iaVL' 

R- I 
(43) 

*   =   ( I- R)   +    = (I- R) (I + 4»  ) 
(L-R) 

(44) 

Using equations  (40)   and (41),  we have 

>    0 

^r   + Vk 1 
e' 

45) 

ind 

I  -   -V   (Fr    h Vk)      (M  y-) (lo) 

The plasma properties are thus determined by the measured quantities 

through the use of equations (30) and (5H) for Fr   and Fj . 

I 
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