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THEORY  OF  MECHANICAL   flEI'AVIOR  OF  HETEROGENEOUS   MEDIA 

Dy 

Zvl Hashin 
The Town« School, University of Pennsylvania, Philadelphia, Pa. 

1,  Introduction 

The purpose of the present survey 1' to review theoretical 

methods and results in the field of prediction of bulk mechanical 

properties of heterogeneous media, in terms of mechanical 

properties and geometry of constituents.  The tern heterogeneous 

medium Is here understood as a mixture of discrete homogeneous 

phases which fcrr.i regions that are largo enough to be regarded 

as contlnua.  The mechanical behavior of each phase is known in 

terms of stress-strain relations and at phase Interfaces usual 

continuity conditions on stress vectors and displacements 

(or velocities) are specified. 

The following terninology will be adopted:  A heterogeneous 

medium,consisting of an arbitrary number of phases, will be 

called a multiphase medium.  It's phase geometry is in general 

random.  An important special case of this is a two phase medium, 

A more special kind of multiphase medium Is named suspension 

and is defined by the restriction that one phase is a matrix 

in which all other phases are embedded In the form of inclusions. 

The inclusions may be of arbitrary shapes or specified 

geometry (e.g. spheres).  They may be randomly dispersed in the 

matrix or form a regular array.  Another important special kind 

of heterogeneous material is a polycrystal which is an aggregate 

of single crystals, of one kind, whose crystallographic axes 
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•re differently oriented in space, the most important case being 

that of random orientation.  A polycrystal may be regarded as 

a multiphase material consisting of an infinite number of 

anisotropic phases.  In the case of different kinds of consti- 

tuting crystals, the term polycrystalline mixture will be used, 

A phase volume fraction is the ratio of the volume of a phase 

to the volume of the multiphase body. 

Analysis of mechanical behavior of heterogeneous media 

is important for the following main reasons.  First, many 

materials of technological importance are heterogeneous (e.g. 

reinforced rubbers and plastics, multiphase alloys, concrete) 

Second, ability of prediction of properties is prerequisite 

for design of materials having required properties.  Last, but 

not least, postulates on which continuum theories are based 

could be critically examined if bulk properties could be 

predicted on the basis of material structure.  The most notable 

case in point is perhaps the relation between the continuum 

theory of plasticity and the problem of prediction of plastic 

behavior of metals in terms of plastic behavior of the 

constituting crystals. 

The starting point of the subject is apparently Einstein's 

investigation [1]* of the viscosity of a dilute suspension of 

rigid spheres in a Newtonian viscous fluid, in 1906.  Since 

then a very large number of papers dealing with heterogeneous 

media of various mechanical properties and geometries has 

been publishod.  The present survey does not aim at documentation 

*  Numbers in brächets indicate appended references. 
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of this field, the contributions to which aro scattered in 

journals of applied mathematics, mechanics, physics, chemistry, 

metallurgy and polymer science.  It is to bo regarded as an 

attempt to review theoretical methods and results from a 

unified point of view. 

There also exists a vast amount of literature on the 

problem of prediction of dielectric and magnetic behavior, 

conductivity and diffusivity of heterogeneous media.  Since 

these four problems are mathematically analogous they will be 

referred to in the following as the dielectric problem. 

Methods here discussed are mostly applicable to this problem. 

Work on this problem will be cited only for the purpose of 

reference to particular uethods of investigation. 

While the theory of bulk mechanical behavior already 

incorporates a considerable number of valuable theoretical 

results, the theory of actual field analysis in heterogene JUS 

media is much less developed and results are available only in 

very special cases.  In fact, achievement in the theory of 

bulk behavior of heterogeneous media is largely due to the 

possibility of bypassing the much harder problem of field 

determination. 

2.  General Formulation of the Problem 

The physical constants of a heterogeneous medium are 

in general random smce functions.  Consequently one would 

expect theories of such r.adia to be of statistical nature. 

However, most of the work done to date is based on methods of 

continuum mechanics in which the statistical nature of the 



problem has been inpiicitely incorporated by postulates. 

Systematic statistical work is of very recent date and only 

few results have been obtained so far.  Statistical formulation 

of the problem is however indispensable for understanding of 

the assumptions and limitations of the continuum mechanical 

approach.  While the latter approach has yielded a considerable 

number of useful results, there are strong indications that in 

many cases continuation of work will have to be based on 

statistical methods.  In the following both approaches will be 

discussed. 

For completo statistical description of the physical 

constants as random space functions all their joint probability 

distributions with respect to any n  point system in space, 

of any configuration, must be known.  (For further details 

here and in the following, see for example, Batchelor [2]). 

These probability distributions determine the  n  point averages 

of the random functions.  At present an average is defined in 

the ensemble sense, by which is meant an averaging process for 

a fixed system of n points in space over a very large number 

of specimens of a heterogeneous medium.  The theory of bulk 

behavior is concerned with statistically homogeneous 

heterogeneous media, by which is meant that all  n point 

averages of the physical constants are independent of the 

location (but not of the relative configuration) of the  n 

points in space.  Any kind of statistical symmetry is defined 

by invariance of  n  point averages with respect to space 

rotations and reflections of the  n  point system.  Mostly one 

is concerned with statistically Isotropie media, in which the 



n point averages are independent of any rotation or reflection 

of the  n  point system.  It is generally postulated that in 

a statistically homogeneous medium the ensemble average can 

be replaced by the volume average over a sufficiently large 

region of one specimen, (ergodic hypothesis).  In most 

investigations statistical homogeneity has been defined by 

spatial independence of the volume average (see below) and 

has mostly been described by the terms r.acroscopic or quasi- 

homogeneity.  The volume retrion over which the average is taken 

is necessarily representative of the statistically homogeneous 

medium and will be referred to as representative volume element 

(RVE).  In the following, unless otherwise stated, the term 

average will be used for the usual one point, first order 

volume average, whereas n  point volume averages for n >, 2 

will be denoted by the usual term correlation functions.  The 

problem of bulk behavior can now be formulated as follows: 

A statistically homogeneous heterogeneous body of Infinite 

extent is subjected to space constant (ensemble) average strains 

(or strain rates) Z^A   ■ c0.,.  The averages and correlation 

functions of the physical constants are given.  Find the 

average stresses a^. and define the effective stress strain 

relation by 

°ij " LFij (1> 

Conversely the average stresses o.. ■ o0..  may be prescribed, 

the average strains sought and the effective stress-strain 

relation defined by 

'"ij - Rcfj. (2) 



-6- 

Here R or L at* operators which for heterogeneous media composed 

of linear elastic phases consist of constant elements and for 

linearly visco-elastic (including Newtonian viscous fluids) 

phases of constants multiplied by differential or integral 

time operators.  The material constants entering into the 

operators will be called effective physical constants.  Their 

number depends on the case treated.  For example, for a 

statistically Isotropie elastic medium only an effective bulk 

modulus and shear modulus are needed.  It is in general to be 

expected that the parameters appearing in the L and R operators 

are functions of all the averages and correlation functions of 

the physical constants and it is the purpose of statistical 

analysis to find these functional relations. 

The problem thus presented is very difficult and to date 

there has been only little work done from this point of v4.ew. 

In one approach tho field equations of the random medium 

(linear differential equations with random coefficients) have 

been used.  Work has apparently bean limited to the dielectric 

case (see for example. Brown [3], Prager [4], Beran and 

Molyneux [5].  In [3] and [4] series solutions for the effective 

dielectric constant of two and multiphase media were developed 

in terms of averages and correlation functions.  It was shown 

that the correlation functions become unimportant only for the 

case of very small fluctuations of the medium dielectric 

constant with respect to it's average.  In [5] a complete 

statistical field solution for the electric Intensity vector 

was obtained for the caso of small fluctuations).  In another 

statistical approach (Prager [27,   28])the effective-stress 



strain relation Is defined by energy (or dissipation) snd 

•xtremun principles are used to bound the elements of the L 

and R operators.  (The equivalence of the average and energy 

definition of effective stress-strain relations will be 

discussed below) . 

In the statistical approach the correlation functions are 

considered as given information, in practice they are however 

very difficult to obtain, especially for higher order.  The 

most easily available information are the one point averages, 

that is to say, the volume fractions of the phases.  It is 

therefore very useful to consider the following limited aspect 

of the problem:  Given the phase volume fractions and phase 

stress-strain relations of a statistically homogeneous and 

Isotropie (or other symmetry) heterogeneous medium.  What can 

be found out about the bulk stress-strain relations on the 

basis of this limited informationt  Most of the work done 

and discussed here is of this nature and is based on methods of 

continuum mechanics.  Surprisingly enough a considerable amount 

of useful information has been gathered within this limited 

framework.  It should however be emphasized that the effective 

stress-strain relation is in general not determined by such 

limited information, (except for some very special cases in 

random geometry or for completely specified phase geometry 

such as a regular array of identical Inclusions) This indeter- 

minacy is a fundamental aspect of the problem.  It has, however, 

been disregarded in many continuum mechanical investigations. 

For discussion of the continuum mechanics approach it is 

useful to cite formulae for average strains and stresses in 
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terms of boundary values of displacements and tractions.  (In 

the following discussion displacements and strains may  be 

replaced by velocities and strain rates).  These formulae are: 

'ij " 7V / fu0lnJ * u0jn1)dS (3) 

(S) 

'"iJ * 2V L^Vj + WS «4) '(S) 

Here V is the volume and S the boundinrr surface of a 

heterogeneous body, u0. and T0. are surface values of displace- 

ments and tractions respectively, n* are the components of the 

outward normal and x, the cartesian coordinates of surface 

points.  Equ. (3) is based on displacement continuity and 

small strain definition only, while (4) is based on the stress 

equilibrium equations, stress vector continuity and zero 

body forces (it is easily generalized to take account of body 

forces).  In a wide class of homogeneous (space constant 

properties) media, boundary displacements of the form 

u0i " '0ii*i CS) 

where e0.. are space constant strains, or boundary tractions 

of form 

TOi ' o0ijnj (6) 

where o . . are constant stresses, produce space constant strain 

and stress fields and are thus suitable for experinental 

determination of stress-strain relations.  The theory of bulk 

mechanical buhavior is concerned with heterogeneous bodies of 

very large oxtent (compared to phase region size), subjected 

to such boundary conditions.  It follows from (3) that (5) 



produces average strains e0.■   and from (4), that (6) produces 

average stresses cr0^*  Macroscopic homogeneity is defined by 

postulating that strain and stress averages, for each of 

conditions (5) and (6), are the same over randomly chosen RVE 

(see above).  This is then equivalent to postulation of space 

independence of ensewble strain and stress averages.  Effective 

stress strain relations can then again bo defined by (1) and 

(2).  If it la desired to proceed only on the basis of the 

limited information (soe above) the definitions (1), (2) are 

not very useful, because they are now indeterminate.  They 

can be successfully used only in the rare cases where they do 

become determinate in terms of the limited information and 

have also been used In approximate treatments, where Indeterminacy 

has been disregarded.  Even in determinate cases, such as 

periodic specified geometry, the use of (1) or (2) is very 

difficult since the strain or stress fields have first to be 

found, which in most cases is an impossible task.  A more 

fruitful approach is that of bounding (1) or (2) in terms of 

the limited information.  For this purpose it is very 

advantageous to define effective stress-strain relations in 

terns of energy expressions, since then all the powerful 

energy theorems and in particular variational principles, become 

available tools.  For any heterogeneous elastic body with 

boundary condition C5), the strain energy is rigorously given by 

u"ie0ijLeV (7) 

and for boundary condition (6) by 



-10- 

where L and R are given by (1) and (2), respectively.  Accordingly 

the elements of the L or R operators may be bounded by bounding 

of the strain energy with aid of variational theorems.  A 

number of useful results have been found by this method and in 

certain cases it could even be shown that the bounds obtained 

are best possible in terms of the limited information.  Energy 

expressions of type (7) or (8) can also be derived for dis- 

slpative iiotoroguneous media and similnT bounding methods then 

become applicable. 

Boundary conditions of typo (5) and (6) are, however, too 

severe for random media.  One may superpose on them displacements 

u'^ or traction;; l'^, rospectivoly, for which (3) or (4) vanish, 

respectively, without affecting stress or strain averages, 
i      , 

If u i and T . are fluctuating functions whose wavelengths are 

of tho order of phase region typical dimensions and thus 

very small compared to the whole body dimensions, then macro- 

scopically the heterogeneous body will be insignificantly 

perturbed.  In particular,the additional work done by such 

u . and T   will be insignificant in comparison to (7) or 

(8).  All which has boon  said here also applies to a RVE and 

thus the equivalence of average and energy definitions of effective 

stress strain relations is also satisfied in the limit for 

averages over RVE,s of statistically homogeneous media.  (For 

related discussion see Bishop and Mill [62]).  Consequently 

(7) and (8) may bo taken as energy densities if V is the volume 

of a RVE considered as unit volume.  Similar considerations 

apply to dissipative media.  In the following results will be 
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termed exact if tho analysis leading to them is based on no 

approximations beyond the definition of effective stress-strain 

relations by either averages or energy.  While discussion of 

such results is the main purpose of this survey, a number of 

useful approximate treatments are also included.  In what follows 

all the heterogeneous media considered are assumed to be 

statistically homogeneous and unless otherwise stated, also 

statistically Isotropie. 

3.  Theory of dilute suspensions 

A dilute suspension is defined as one in which the 

fractional volume of inclusions is very small compared to 

unity.  It is generally assumed that in a dilute suspension 

distances between inclusions are so large that the interactions 

of their perturbation fields may be neglected.  Accordingly 

the field produced in and around an inclusion when either (5) 

or (6) is prescribed on the boundary of suspension volume, 

can be found with sufficient accuracy from the boundary value 

problem of one inclusion embedded in an infinite matrix where 

(5) or (6) is prescribed at infinity.  Once this problem has 

been solved the bulk stress-strain relation can be found from 

(1) or (2) or from (7) or (8) or their analogons.  Such 

Inclusion problems can mostly be solved only for spherical 

or ellipsoidal shape.  Accordingly dilute suspension theory is 

generally limited (with a few exceptions) to such shapes. 

On the basis of the foregoing assumptions and simplifications, 

the ensuing stress-strain relations are determinate in terms 

of volume fractions and phase constants.  If the inclusions are 
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actually of spherical or ellipsoidal, shape the results which will 

be here discussed are exact for vanishingly small fractional 

volume of inclusions.  Although identical results have been 

obtained by  different methods, the amount of difficulty 

involved (primarily because of integration over infinite regions) 

varies from one method to another.  In this respect the author 

believes Eshelby's [6] energy method is the most advantageous 

since his space integrations are confined to inclusions only. 

For the sake of compactness discussion will be limited to two 

phase dilute suspensions.  Extension  to arbitrary phase 

number, i.e. inclusions of different kinds, involves no difficulty. 

A bulk material constant of a dilute two phase suspension 

may in general be expressed in the form 

Itj- - 1 * ac (9) 

where 

M* - Bulk material constant 

M  - Matrix material constant 

c  - Inclusions volume fraction 

a  - Non dimensional constant, dependent on matrix and inclusion 

material constants and inclusion geometry.  For spherical 

inclusions of any sizes, a is independent of geometry. 

The range of validity of (9) is usually not more than 

1-2%.  The primary importance of this expression is in that it 

gives the slope of the II  versus  c  curve at the origin, for 

a suspension of finite fractional inclusions volume. 

VJhen the matrix is a Newtonian viscous fluid, analysis has 

been carried out only on the basis of the linearized Navier- 

Stokes equations (neglect of inertia terms).  Since viscosity 
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neasurements can be carried out at low Reynolds numbers, this 

does not seem to be a serious approximation.  M* and M in (9) 

are now the suspension and fluid matrix viscosity coefficients, 

respectively.  Some of the more important results are the 

following:  Viscous-rigid spheres (in the following the first 

adjective refers to matrix and the second to inclusions or 

particles), Einstein [1].  In this case a - 2.5 in equ. (9). 

Viscous-rigid ellipsoids, Jeffory [7].  Viscous-viscous spheres 

(different viscosity) with surface tension, Taylor [8]. 

Viscous-viscous spheres (different viscosity) with surface 

tension, friction and slippage at interfaces, Oldroyd [9]. 

Viscous-elastic spheres. Fröhlich and Sack [10].  In this 

case the suspension is viscoelastic and relaxation and 

retardation times have also been calculated.  For a detailed 

account of theory of viscosity of dilute suspensions, the 

reader is referred to Sadron [11] and Frisch and Simha [12]. 

Work on the problem of dilute suspensions in a linearly 

elastic matrix has begun at a later stage.  (For discussion see 

e.g. Reiner [13]). (For this problem M  and M in (9) are an 

elastic modulus of suspension (most convenient-bulk and shear 

moduli) and matrix, respectively.) The elastic-elastic case 

(henceforth stands for elastic spherical inclusions dispersed 

in a matrix, having different clastic moduli) has first been 

treated by Bruggeman [14].  He found the correct expression for 

the bulk modulus and an erroneous expression for the shear 

modulus.  The reason of Incorrectness has been pointed out by 

Eshelby [6].  The correct expression for the shear modulus has 

apparently first been derived by Dewey [15] .  (This work seems 
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to have been overlooked.  It was called to the author's 

attention only very recently).  Without knowledge of [IS] the 

more special elastic-spherical voids case was solved by 

Mackenzie [16] and the elastic-rigid spheres case by Hashin [17]. 

The results given in [IS] were later derived Independently by 

Eshelby [6] and Hashin [18].  Eshelby also gave a method of 

solution for ellipsoidal inclusions.  Results for elastic- 

viscous spheres suspensions were derived by Oldroyd [19]. 

This is the counterpart of [10]. 

The elastic-elastic result occupies a central place 

in dilute suspension theory.  The Einstein formula can be 

derived from it as a special case, [17], by use of a mathematical 

analogy between linearized viscous flow and incompressible 

linear elasticity proposed by Goodier, [20].  On the other 

hand it may be shown that vlsco-elastic stress-strain relations 

of dilute suspensions,consisting of any linearly viscoelastic 

matrix and inclusions, may be derived by directly applying the 

correspondence principle (see e.g. [21]) to the elastic-elastic 

suspension expressions.  (Hashin [22]).  Special cases of this 

are the above mentioned results found in [10] and [19]. 

4.  Theory of Finite Suspensions 

When the fractional volume of inclusions is finite, 

suspension theory becomes extremely difficult.  It is an 

interesting fact that the general multiphase medium is more 

amenable to theoretical treatment than the finite suspension. 

Obviously results for multiphase media, which will be discussed 

below, also hold for suspensions.  This paragraph, however, is 
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concerned with treatments which are specific to suspensions and 

thus in saneral are not valid for multiphase media. 

Work on the theory of viscosity of finite suspensions 

began very soon after publication of Einstein's result [1] for 

dilute suspensions and is being continued up to this day. 

The problem in its full physical generality is very complicated. 

Such factors as interaction of flow fields around particles, 

Brownian movement, rotation and collision of particles, non 

Newtonian and turbulent behavior of the suspension nay be 

regarded as the principal theoretical obstacles.  The problem 

has been mainly considered from its simplest aspect in which 

theory of bulk viscosity is based on the slow motion steady 

Newtonian flow field in the presence of many interacting 

spherical obstacles.  Even this idealized problem has proved 

to be a very formidable one and a satisfactory solution has 

not yet been found.  Discussion or even montion of the over- 

whelming number of results which have been obtained is beyond 

the scope of this survey.  For such reviews the reader is 

referred to [12, 23, 24].  ([24] lists close to a hundred 

different results).  Treatments have been generally based on 

intuitive assumptions which are hard to justify on theoretical 

grounds.  A considerable number of investigations is of a 

semi-empirical nature, requiring fit of undetermined constants 

to experimental results.  A paper by Kynch [25] will here be 

mentioned.  His treatment is based on potential theory and the 

flow field in the presence of many interacting spheres of equal 

sizes is considered in terms of contributions from multipole 

distributions.  Results for suspension viscosity, valid for 
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moderate fractional volume were obtained.  Maude [26] has 

given an argument whereby the relative viscosity coefficient of 

a suspension, l.e the ratio of effective suspension viscosity 

coefficient to fluid viscosity coefficient, should be of the 

form 1/ (1-2.5c), which is the nonllnearized form of the Einstein 

equation.  This expression does indeed agree well with a 

number of experimental results for moderate concentration. 

It can however not be valid for the whole concentration range 

because it takes no account of the statistics of sphere 

distribution and also because it becomes infinite at c ■ 0,4. 

In most of the existing work on suspension viscosity 

the Implicit assumption has been made that the relative 

viscosity coefficient is a function of the fractional volume of 

particles only.  This assumption cannot be valid for finite 

suspensions since it disregards the statistical aspect of the 

problem (compare par. 2).  For example:  If only fractional 

volume is specified the fundamentally different cases of 

concentrated suspension and a porous medium filled with viscous 

fluid, would fall under the same category.  Also experimental 

results have shown that considerably different values of relative 

viscosity coefficient can be obtained for the same fractional 

volume of spherical particles.  The importance of the statistical 

aspect has been emphasized in [25].  It is only very recently 

that systematic statistical treatment of the problem has begun. 

Variatlonal bounding techniques with use of correlation functions 

have boon Initiated by Prager [27,'28] . Woissborg and Prager [29] 

treated the spherical suspension problem and gave a lower bound for 

tho effective viscosity coefficient in terms of two point correlation 
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functions.  A closed form lower bound in terms of fractional 

volume only was obtained, disregarding overlapping of randomly 

placed spheres.  The last result is thus restricted to moderate 

fractional volume.  The major difficulty in statistical 

treatment is the determination of the correlation functions. 

It is a characteristic feature of heterogeneous media that the 

effect of correlation functions increases with th  ratio 

between phase constants, the largest effect being obtained 

for a rigid phase (or voidsj which is the present case. 

A lower bound , in terms of fractional volume only, for 

the effective viscosity coefficient was obtained by Hashin [30] 

for arbitrary particle shapes by another variational method 

(see par. 6, below).  For moderate fractional volume this 

bound is only slightly lower than the one derived in [29] for 

spherical particles. 

In contrast with the viscosity problem, the problem of the 

elastic behavior of a suspension of inclusions in a matrix of 

different elastic moduli has received little attention.  The 

first investigation known to the author is an approximate 

treatment by Keiner [31], (see below).  Prom the mathematical 

point of view the problem is very similar to the simplified 

viscosity problem, if the inclusions are approximated by 

spheres.  However, tills model of an elastic suspension is 

much closer to physical reality than the corresponding one of 

a viscous suspension,since all the other complicating factors 

listed in connection with the latter do not enter.  On the 

basis of the fcrcoing one has to expect all the theoretical 

difficulties encountered in the simplified viscosity problem. 
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If rigid (or empty) inclusions are considered.  However, if the 

ratio's between inclusion and matrix elastic moduli are not 

too large, restricted treatment is possible.  In a paper by 

Hashin [32], upper and lower bounds for the effective elastic 

moduli of elastic-elastic suspensions, composed of homogeneous 

isotropic phases, have been derived by use of the variational 

principles of minimum potential energy and minimum complementary 

energy.  The following geometric approximation was involved: 

the suspension was subdivided into composite elements, each of 

which contained one inclusion.   Each composite element was 

approximated by two concentric spheres, conserving volumes. 

The method is valid for multiphase suspensions.  Closeness of 

bounds depends on magnitude of ratios between phase elastic 

moduli, except for the bulk modulus of a two phase suspension 

where the bounds coincided.  At very small fractional volume.of 

inclusions the bounds coincide with expressions for dilute 

suspensions.  The method is rigorously applicable to regular 

arrays of equal spheres where the above mentioned approximation 

is not necessary (however, the distance between the bounds is 

larger than in the approximate treatment).  In such cases the 

particular symmetry of the array determines the symmetry 

properties of the effective elastic moduli.  Krivoglaz and 

Cherevko [33] treated the elastic spherical two phase suspension 

with moderate difference between phase moduli, approximately, by 

a perturbation method. 

The important problem of the elastic behavior of fiber 

reinforced materials can be treated by related variational methods. 

The first investigation of this kind was undertaken by Hill and 
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Crossley [34] who considered the case of an elastic matrix 

reinforced by an equally oriented square array of elastic 

fibers of equal square cross sections.  Thu reinforced material 

is anisotropic and has six elastic moduli.  Rigorously valid 

bounds for five of these were obtained.  Hashin and Rosen [3S] 

treated the case of equally oriented fibers of hollow or 

solid circular cross sections, arranged in an hexagonal or a 

random array.  The reinforced material is transversely isotropie 

and has five elastic moduli.  All these moduli were rigorousx 

bounded for the hexagonal case and approximately (by composite 

element method described above) for the randon case, for which 

coincident bounds were obtained for four of the five elastic 

moduli. 

Finally an approximate method, which is here termed the 

"smearing out" method, which has been used by several authors, 

will be mentioned:  A typical inclusion  is approximated by 

some regular mathematical shape; at a chosen distance from the 

inclusion it is assumed that the heterogeneous medium can be 

replaced by a homogeneous medium whose elastic moduli are the 

unknowns of the problem.  Finite elastic suspensions have 

been treated in this way by Kerner [31] (also the dielectric 

case in an adjoining paper) who assumed spherical particles, 

embedded in concentric spherical matrix shell, then embedded 

in smeared out suspension material.  (In [31] it is implied 

that the results are independent of matrix shell sixe. 

This is not clear to the author).  Kerners results for two 

phase suspensions have been derived by a different method by 

Ament [36],  Rosen and Ketler [37] applied similar  ideas to 
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fiber relnforcod materials.  Budiansky [38] assumed spherical 

particles embedded directly in smeared out suspensions.  (The 

same method has been applied by Landauer (J. Appl. Phys. 

23, 779, (1952)) to the dielectric case.  The results compared 

well with experimental results).  Wu [38] treated analogously 

the case of ellipsoidal particles. 

The problem of the linear viscoelastic finite suspension 

has to the author's knowledge not been theoretically treated. 

A viscoelastic suspension can be formed in various ways.  One 

such possibility is an elastic matrix containing voids filled 

with Newtonian fluid, another one is a viscoelastic matrix 

containing elastic particles.  It is evident that there is an 

enormous number of different kinds of viscoelastic behavior 

which can thus be obtained.  It is a major difficulty of the 

problem that the form of the visco-elastic stress strain relation 

is not a priori known.  It has been shown(Hashln [22]) that the 

effective elastic moduli of elastic suspensions and the stress- 

strain relations of viscoelastic suspensions are related by 

the correspondence principle.  However, this relation holds 

only for exact results.  It is not known whether any information 

can be extracted from approximate results or bounds for the 

elastic case. 

Finally a curious experimental result will bo mentioned. 

It has been found by Arnstein and Reiner [39,40] that a visco- 

elastic suspension composed of a cement matrix and sand 

particles, obeys Einsteins viscosity law for dilute suspensions 

up to 50-60% tractional volume of sand particles.  There is 

to date no satisfactory explanation of this phenomenon. 
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5.  Theory of tiultlphase Media 

The general multiphase medium is of completely random 

geometry.  Most of the work in this field has been done for 

elastic multiphase media, consisting of Isotropie phases, and 

is very recent.  A discussion of work for two phase media has 

been given by Hill [34].  Treatment mostly consists of bound 

construction for effective elastic moduli by use of the 

variational principles of the theory of elasticity.  Paul [41] 

derived such bounds on the basis of the variational principles 

of minimum potential energy and minimum complementary energy. 

The central problem in bounding methods is to find admissible 

(compare e.g. Sokolnikoff [42]) displacement and stress fields. 

In [4i]i (5) or (6)  applied throughout all phase regions, were 

used as admissible fields.  Bound derivation then becomes an 

elementary problem.  It is most convenient to separate the 

strains and stresses in (5) and (6) into Isotropie and devlatoric 

parts, since then separate bounds for the effective bulk and 

shear moduli follow immediately.  The results are 

(10) 

(11) 
r-l 

where K* and K* are lower and upper bounds respectively for the 

effective bulk modulus K*, Kr nnd v1. the bulk modulus and phase 

volume fx-action of the rth phase and  n  the number of phases. 

Shear modulus bounds are obtained analogously and the expressions 

are of the same form as (7) and (8).  (In [41] the effective 

r-n 

K*       r-l 
vr 
*7 

1 

r-n 

2        r-l 
Krvr 
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Young's modulus was bounded instead of the bulk modulus.  The 

Young's modulus bounds are more complicated than the simple 

expressions (10), (11))»  The treatment is rigorous for 

arbitrary phase geometry.  The bounds however are not of much 

practical value since they become close only for very small 

differences between the largest and smallest phase moduli. 

Formulae of type (11) have been used in the older literature 

as approximate expressions for effective physical constants 

of multiphase media and have become known as the "law of 

mixtures". 

Hashin and Shtrikman [43,44] constructed improved bounds 

for arbitrary phase geometry.  They derived a class of new 

variational principles for linear elasticity theory [43,45] 

which involved the elastic polarization tensor.  (The polarization 

tensor has been implicltely introduced into the theory of 

elasticity by Esholby (e.g. [6], [46]).  The name hes been 

coined by Kroner [47] in analogy with the electrostatic 

polarization vector.)  A different proof of the variational 

principles has been given by Hill [48].  The bounds were 

derived by use of piecewise constant polarization fields. 

The method involved formal Fourier transform operations whose 

mathematical rigor has yet to be established.  It is however 

believed that the results are exact in the sense of the 

statistical formulation of the problem (see par. 2)  The results 

for the  n  phase medium are too lorg to quote, and only 

results for the two phase case will here be written down. 

The lower bounds are: 

K, » Kt ♦ —i -J-—2- 1    *      SCKj-Kj) 
1* 'yKl  *  4G1

Vl 

(12) 
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I C: - G, ♦ (G2-G1)V2    (13) 
1.6 CG2-G1)(K1.2G1) 

5  G1(3K1*4G1) 

Here K, and G denote bulk and shear moduli respectively, 1 and 

2 indicate the phases and v stands for volume fraction.  The 

upper bounds are obtained by interchanging 1 and 2 everywhere. 

(An idea of closeness of bounds may be obtained from the 

following numerical example:  For Gj ■ Kj ■ 1, Gj - K, - 4, 

bounds for bulk and shear moduli of type (10) and (11) are 

1.6; 2.S.  Bounds of type (12) and (13), for bulk modulus 

1.91; 2.21, for shear modulus 1.85; 2.14).  The bounds are 

well confirmed by available experimental results [44].  In the 

cases of a rigid phase or voids,all the bounds given are of no 

practical value.  In the first case, the upper bound is infinite 

and in the second the lower bound is zero.  It has been shown 

that the bulk modulus bounds for a two phase medium, given 

above, are the most restrictive ones that can be obtained 

in terms of phase elastic moduli and volume fractions.  (The 

dielectric problem has been similarly treated by the same 

authors, J. Appl. Phys. 33, 312S, (1962).  The bounds for the 

two phase case are also most restrictive).  Consequently for 

improvement of bulk modulus bounds it becomes necessary to 

take into account second and higher order correlations of the 

space distribution of the phase moduli.  Whether or not the 

shear modulus bounds are best, possible in terms of the information 

used is at present an open question.  The bulk modulus bounds, 

for two phase materials only, have been rederived by a simpler 

and mathematically rigorous method by Hill [34].  It is 

interesting to note that the bulk modulus bounds coincide for 
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tha case of equal phase shear moduli.  Hill gave an exact 

solution for the stress and displacement fields In the phases, 

for arbitrary phase geometry, in this case, (subject to prescribed 

average homogeneous Isotropie strain or stress).  The bounds 

wore derived on the basis of this solution.  Hill's solution 

is the only case of exact field analysis for arbitrary phase 

geometry and arbitrary relative phase constant magnitudes which 

is known to the author.  The method seems to be restricted to 

the case which has been solved. 

An emulsion of  several fluids may be regarded as a 

multiphase fluid medium.  It is obvious that for this emulsion 

to remain a statistically homogeneous multiphase medium for 

an appreciable period of time the differences between phase 

densities must be very small.  It is also evident that shear 

flow will produce orientation effects which will tend to 

destroy any initially existing statistical isotropy.  Another 

complicating factor is the effect of surface tension at the 

fluid phase interfaces.  It is consequently evident that 

from the physical point of view the multiphase fluid problem is 

more difficult than the multiphase elastic problem.  For 

review of various approximate results, see e.g. [23,49].  A 

method similar to the one used in [44] has been applied by 

Hashin [30] to bound the effective viscosity coefficient of 

a fluid emulsion, consisting of Newtonian fluid phases in 

slow motion.  Bounds were obtained for (assumed) initially 

statistically Isotropie and ultimately statistically transversely 

Isotropie (in plane normal to flow direction) phase geometries. 

Surface tension was not taken into account.  The bounds 
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obtalned at« of the same order of clQ««a«»fl as bot»i)dB of typ« 

(12) and (13).  In fact the bounds iu.   ehe stat .~cically 

isotroplc case can be directly obtained from these bounds by 

letting Kj and K2 assume infinite values.  The lowet bound 

for a suspension of rigid particles, mentioned in pAr. 4, 

follows by assigning infinite viscosity to one phase. 

6.  Elasticity of Polycrystals 

Analysis of bulk elastic behavior of polycrystals Is 

related to the corresponding problem for elastic multiphase 

media.  The constituting crystals are anisotropic homogeneous 

elastic phases.  It is generally assumed that the orientations 

of the crystallographic axes of the crystals are random or 

uncorrelated.  On tho basis of this assumption the polycrystal 

is taken to be statistically homogeneous and Isotropie.  The 

first contribution was apparently by Voigt [50] who assumed that 

when a displacement of type (5) is prescribed on the boundary 

of a polycrystal the displacements in all the crystals would 

be of the same form.  Stress vector continuity at crystal 

interfaces is not satisfied in this approach.  The bulk elastic 

moduli according to this approach are simply expressed in 

terms of orientation averages of the single crystal anisotropic 

elastic moduli.  The counterpart of this approach is one given 

by Reuss [51] in which (6) is prescribed on the boundary and 

the associated stresses are assumed as stress fields in all the 

crystals.  In this approach displacement continuity at crystal 

interfaces is violated.  The bulk elastic moduli so found are 

expressed in terms of compliance orientation averages of the 
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single crystals.  Hill [52] has shown that the Voigt results 

•re rigorous upper bounds and the Reuss results rigorous lower 

bounds for the bulk elastic moduli of the polycrystal.  It 

is easily realized that the bounds of type (10), (11) for 

the multiphase elastic material are of the same kind as the 

Voigt and Reuss Bounds. 

The Voigt and Reuss bounds are close only for slightly 

anisotropic crystals.  Several approximate methods have been 

devised to obtain better results.  A review of some of these 

has been given by Kroner [S3] and Eshelby [54].  Hershey [55] 

and Kröner [S3] have used the "smearing out" method described 

in par. 4.  A single crystal was approximated by an anisotropic 

elastic sphere imbedded in an infinite homogeneous isotropic 

elastic medium whose elastic moduli were assumed to be the 

unknowns to be determined.  For cubic crystals the effective 

shear modulus was thus determined by a third order algebraic 

equation.  (The effective bulk modulus for cubic crystals is 

rigorously equal to the single crystal bulk modulus).  The 

numerical results obtained are in good agreement with experiments 

[53]. 

Hashin and Shtrikman [56] derived improved bounds for the 

effective elastic moduli of polycrystals of arbitrary crystal 

geometry by a method similar to the one used by them for 

elastic multiphase materials.  (The same author's treated the 

problem of the conductivity of polycrystals by a related method, 

Phys. Rev. 130, 129, (1963)).  Explicit results were given 

only for cubic polycrystals.  Good agreement with available 

experimental results was obtained.  The following numerical 
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results are given for comparison:  For copper polycrystals, 

Reuss and Voigt, 4.0; 5.4, Hashin and Shtrikman, 4.48: 4.72 

11 9 
(10 dynes/cm*).  The method has recently been extended to 

polycrystalline mixtures of several kinds of cubic crystal« 

[57].  The bounds thus obtained include as special cases both 

the bounds of type (12) (13) and the cubic polycrystal bound*. 

7.  Plasticity of Polycrystals 

The fundamental problem in polycrystal plasticity is to 

predict the macroscopic plastic behavior of a large polycrystal- 

line specimen on the basis of the plastic behavior of the 

single crystals.  because of the magnitude of plastic strains, 

crystal lattices are subjected to large rotations when 

considerable plastic flow sets in.  These rotations are 

usually neglected and it is assumed that the initial macro- 

scopic isotropy of the polycrystal is retained during plastic 

deformation.  The theory is thus restricted to not too large 

plastic deformation.  The problem is conceptually similar 

to that of polycrystal elasticity, which has been discussed 

above; it is however much more difficult. 

The usually assumed idealized continuum mechanical plastic 

behavior of single crystals has been postulated by Taylor 

and his associates on the basis of their experiments [58, 59, 60, 

61].  Discussion will here be confined to face centered cubic 

(f.c.c.) crystals, which is the most widely treated case. 

These postulates are:  (a)  The plastic strain in a crystal Is 

duo entirely to slip on it's twelve slip systems (A slip system 

is a slip direction in a slip plane.  In f.c.c. crystals there 
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•re four slip planes, each of which contains three slip 

directions.  The slip systems form the ed!*es of a regular 

tetraeder, each edge corresponding to two slip systems in 

opposite directions) (b)  For proportional loading the shear 

stress operating In a slip system is a function of the shear 

strain in the same slip system only.  The functional relation 

is the same in all slip systems. 

When a polycrystal is loaded from the elastic into the 

plastic range, single crystals will progressively plastify. 

It is neither known in which crystals plastic strains appear, 

nor which slip systems become activated.  This may be regarded 

as the major difficulty of the problem.  An account of 

earlier work has been given by Bishop and Hill [62] and by 

Cottrell [63].  A well known fundamental Investigation is due 

to Taylor [64, 65] who derived an expression for the uniaxial 

plastic stress-strain relation on the basis of the following 

additional simplifications:  (c)  Plastic strains are large 

enough to permit neglect of elastic strains (rigid-plastic 

crystals).  (d)  The crystals are all in the same state of 

uniform strain.  The problem of the determination of the operative 

slip systems was resolved by introduction of a minimum 

principle for the sum of the plastic shear strains in all 

operative slip systems of a single crystal (on the basis of an 

assumed principle of minimum plastic dissipation and postulate 

(b)).  After choice of the operative slip systems on the 

basis of crystal orientation and the minimum principle, an 

average stress-strain relation of type (1) was calculated. 

The result is: 
o " mT(me) (14) 
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where o and e are macroscopic uniaxial stress and strain 

respectively, the functional relationship T( ) stands for the 

shear stress-plastic shear strain relation for any slip system 

of a single crystal and m  is an average orientation factor 

for which Taylor found the value 3.06.  Tt is evident from (14) 

that for ideally plastic crystals  w  is the ratio between 

macroscopic unlaxial yield stress and single crystal yield shear 

stress.  In an earlier calculation by Sachs [66], who assumed 

equal uniform stress in all crystals, the value 2.2 (approximately) 

was obtained for m.  In Sachs* calculation displacement continuity 

at crystal interfaces is violated whereas Taylor's calculation 

disregards stress vector continuity.  Taylor's result is in good 

agreement with experimental measurements [64, 69]. 

Taylor's analysis was generalized in a series of papers, 

retaining the sssuuption of uniform strain in all crystals. 

Bishop and Hill [62, 67] (further discussed in [68, 69]) 

treated the rigid-plastic polycrystal for poiyaxial loading 

and gave results for the yield locus.  A principle of maximum 

plastic work was developed for single crystals and polycrystals, 

which in their analysis replaced Taylor's postulated minimum 

principle.  In [62] a bounding technique for the yield locus 

was described, in which the uniform strain assumption was not 

involved.  Expressions for bounds wore, however, not given 

(because the bounds were not sufficiently close. Hill [70]). 

In [67] the yield locus was calculated on the basis of the 

assumption that the worl: done in polycrystal loading can be 

computed from a uniform strain field.  The yield locus 

obtained is between the Tresca and Mises loci and is in fair 
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agreement Mith experimental results for copper and aluminum. 

The Taylor method was extended to elastoplastic crystals by 

Lin [71] who described a procedure for calculation of the 

stress-strain curve in proportional loading on the basis of 

total (elastic plus plastic) uniform strain in all crystals. 

The method was extended by Payne [72] to arbitrary loading paths. 

The elastic anisotropy of single crystals was here neglected. 

Numerical results for torsion-tension strain history were 

calculated by Pa/no and Czyzak [73],  Comparison with 

experimental results for thin walled cylinders showed consider- 

able discrepancy.  In a later application Czyzak, Bow and Payne 

[74] computed a polycrystalline stress-strain relation for 

tension-compression strain history. 

In another group of papers dealing with polycrystal 

plasticity,the assunption of uniform strain was not involved 

and instead various other assumptions were made,  Budlansky, 

Hashin and Sanders [75] considered the problem of initial 

plastification of polycrystals on the basis of the following 

approximations;  (a)  The elastic anisotropy of single 

crystals is neglected.(b)  Each crystal may be regarded as a 

sphere imbedded in a homogeneous elastic medium ("smearing out" 

method).  (c)  It is assumed that local slip occurs in a crystal 

when the macroscopic resolved shear stress on it's slip system 

reaches the critical single crystal shear stress (This is 

strictly true only for Isotropie crystals and can be regarded 

as a good approximation only for slight anisotropy e.g. 

aluminum).  (d)  Interaction of the perturbation fields due to 

the slipped crystals is neglected.  Considering only single and 
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doubl« slip, a stress-strain curve for simple tension was 

calculated.  Because of neglect of interactions the results can 

be expected to hold only for the very first stage of polycrystal 

plastification.  On the basis of the foregoing it is easy to 

realize that this work is similar to dilute suspension theory, 

where here the slipped crystals take the place of embedded in- 

clusions.  Kroner [75] devised an approximate method whereby inter- 

actions among single crystals could be taken into account, but did 

not derive explicit results.  Kroner's indications for poly- 

crystal stress-strain curve calculation were also based on 

assumptions (a) and (b) listed above.  Budisnsky and Wu [77] ex- 

tended the treatment given in [75].  In their work assumption (d) 

was not used and slip on all twelve slip systems was taken into 

account.  The "smearing out" method was usod by the assumption 

that in any stage of polycrystal plastification a single crystal 

was regarded as a sphere embedded in a strain-hardening medium 

whose characteristics are the unknowns to be determined.  Kroner's 

method for accounting for slipped grain interactions was used. 

The general method was based on arbitrary loading history and 

ideally plastic or strain hardening crystals.  In the latter 

case the Prager-Ishlinskii [78, 79] law of kinematic hardening 

was adapted to single crystal plasticity.  The stress-strain 

curve computed for ideally plastic crystals is below the one 

derived in [74]:  (when taking stress as ordinate and strain 

as absclsra)  For the sane uniaxial stress the macroscopic 

uniaxial strain computed in [77] is -—£*---•«- times tiiat computed in 

[74], whore  v  is the elrstic Poisson's ratio cf the polycrystal, 

(Hutch Innon [80], rorortod by Budlansky [3!]J.  For ierge 

strains the Taylor limit is obtained. 
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All tho investigations discussed in this paragraph are 

based on approximations.  It should also be noted that none of 

the theories discussed can take account of the grain size effect 

of polycrystal plasticity.  For discussion and literature 

concerning this topic, see e.g. [63], p. 124. 

8. Conclusion 

It has been here attempted to givo a unified survey of 

existing theories of prediction of macroscopic mechanical 

behavior of heterogeneous media.  In spite of the not inconsider- 

able number of valuable results already available, the whole 

subject is still in an evolutionary stage.  Most of the work 

discussed is based on the easily available data for a hetero- 

geneous mediun, i.e. phase volume fractions and physical con- 

stants.  Even within this restricted frame there remains much 

to be done, in particular in the area of more complicated 

mechanical behavior.  For example, to the author's knowledge 

investigation of elasto-plastlc behavior of multiphase materials, 

except for crude approximations, is not to be found in the 

literature. 

From the general point of view, extension of existing 

theory to make it possible to take into account correlation 

functions of heteroRcnoous media, is   obviously needed.  It 

seems that this calls fur a systematic statistical theory of 

the piecewise constant random medium.  It also should be noted 

that the present subject matter deals exclusively with 

statistically homogeneous stress and strain fields pnd is only 

concerned with their averages.  The subjects of statistically 
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nonhonogeneous fleltls and of microscopic field analysis seta 

to be virtually unexplored. 

Finally, the need for extensive experimental work to 

check the results already obtained and to provide directions 

for further investigation should be emphasized. 
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