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Abstract

\he Kolb-Griem theory of spectral line broadening occurring in
plasmas is discussed; emphasis is placed on the importance of the

electric microfield distribution. The Mozer-Baranger calculation of

the electric microfield distribution in a plasma is outlined; its

dependence upon the nature of the component particle correlations is

shown. The electrons and ions must be treated separately because of

their inherent differences; the electrons interact through a Coulomb

field, whereas the ions interact with shielded fields. The Salpeter

cluster-expansion technique is considered in detail. It is applied

to the determination of pair correlation functions and the cor-

responding potentials of mean force for both Coulomb and shielded

fields. The calculations are made up to second order in complexity.

Correcte expressions for the potentials of mean force are compared

with the c rresponding Debye-Hckel results. Significant differences

are found; this is particularly true for the shielded-field cases.

It is demonstrated that use of the corrected pair-correlation func-

tions in the Mozer-Baranger microfield calculation could signifi-

cantly alter the results. The possibility of including such corrected

results in the line-broadening theory is considered4 it is indicated

that the influence of these corrections on the profi kef the Lyman-

line should be experimentally observable.
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I. INTRODUCTION

The theory of spectral line broadening has recently (5 ) (6 ) been

improved to the point where the profiles of both overlapping and isolated

spectral lines, arising from hydrogen and helium plasmas, are well under-

stood. Two features of these spectral lines are frequently of special

interest: the line half width and the line shift. The first of these

quantities, together with the entire line profile is theoretically pre-

dicted to within 101 of the experimentally determined values. However,

the spectral line shift is generally not in agreement with experiment;

deviations of better than 301 are frequently found.(4 6) Furthermore,

these variations are not always in the same direction. It therefore

remains to explain these shifts satisfactorily.

In the construction of the general line-broadening theory, numerous

approximations have been made. A review of the underlying assumptions

leads to the conclusion that the most probable causes of the shift dis-

crepancy are: (1) the crude treatment of strong electron collisions,

(2) the use of the Debye-Huckel pair-correlation function in the calcu-

lation of the electric microfield distribution, (3) the approximate treat-

ment of ion perturbations in the cases where the present theory is not

adequate. 5 1) Although these quantities will be discussed in detail in

succeeding chapters, it may be mentioned here that the pair distribution

function specifies the spatial distribution of two Interacting particles,

while the electric microfield distribution function determines the spatial

characteristics of the electric field in a plasma. Thus, the electric

field perturbs the radiating atom and therefore influences the nature of

the radiation itself. It is known that in some instances the line shift

6
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is particularly sensitive to the electric field distribution; thus, a

method of checking these distributions is available.

Current theories of line broadening rely on the Debye-H ckel distri-

bution function(1 ) for both the Coulomb and shielded fields. However, as

will be indicated later, the assumptions necessary in the derivation of

this function are not applicable to many plasmas of interest. It is the

purpose of this thesis to calculate the pair distribution function for

the Coulomb and shielded electric fields, to consider in detail the various

orders of correction, and finally to indicate what significance, if any,

the deviations from the Debye-HUckel results have as related to the shift

of spectral lines.

For the purpose of this investigation, it is necessary to specify a

particular plasma model. The one chosen eliminates infinitely attractive

potentials from consideration. The electrons are treated as negatively

charged particles in a uniformly neutralizing background, and the ions are

assumed to be shielded by electron clouds which travel permanently with

them. That such a model is applicable to practical plasma problems may

not be 1inediately apparent; further discussion and justification will be

presented in Chapter III.

The motivation for choosing this particular model stems from the work

of Hozer and Baranger (1 ) , which describes a clever method for calculating

the electric microfield. The Daranger approach utilizes a cluster-expansion

program which is reminiscent of the well known Mayer cluster development.

Particle correlations are included in this theory as a perturbation

expansion: the first group of terms contain the 1-body or independent

correlation functions, the second group the 2-body or pair-correlation
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functions, etc. For such a process to be valid, increasing orders of

correlation must become very snmll, in a perturbation sense. Although

both the electrons and ions contribute to the electric microfield, they

do so in a very different manner; in view of this difference, discussed

in Chapter III, the two contributions are handled separately. The relation

of the corrected correlation functions to the Mozer-Baranger theory will

be considered later.

In order to effect the desired correction to the pair distribution

function, the method proposed by Salpeter (2 ) is used. This procedure

has previously been applied by Bowers(52) to calculate the Coulomb poten-

tial of the mean force; however, since we consider several aspects of

this work to be incorrect, the present work reverts to (2) as primary

reference. The Salpeter technique embodies one of the cluster-expansion

methods frequently used in statistical mechanics. It differs from most

other approaches in that it is designed for use with systems of particles

having long-range interaction potentials. Although the most notable of

these is the Coulomb potential, the method should also be useful when

dealing with potentials which are long-range, but finite. The applicability

criterion is that the potentials involved should have ranges equal to

or greater in magnitude than the average particle separation, given by

r°  1/3 ( P = particle density). In the cases to be con-

sidered here, this requirement is satisfied; it is automatically satisfied

for the Coulomb case, and for the shielded potential it is also valid in

the range of densities and temperatures of interest to most plasma line

broadening applications. Another aspect of this proposed correction
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procedure is that it involves corrections which refer to particle con-

figurations: The first term of the pair-correlation function considers

the most simple clusters of interacting particles; the second correction

takes the next most simple configurations and so on. The details of

this expansion technique are dealt with in Chapter IV.

The corrected distribution function is studied as a function of

particle density and temperature. It is shown that in the given range of

parameters, the second order (complexity) contribution is much less than

the first order term. However, the deviation of the new functions from

those predicted by Debye-Hckel theory will be shown to be quite large

in some cases. In light of this last disclosure, the expected influence

of the corrected pair-correlations functions on the microfield distri-

bution is considered and the need for a revised calculation is indicated.

To summsrLze: In Chapter II some aspects of line-broadening theory

will be discussed in an attempt to point out further the motivation for

the problem. Chapter III deals with the electric microfield calculations

of Baranger and Mozer and indicates the importance of the pair-distri-

bution function in this respect. Salpeter's technique of calculating the

pair-distribution function will be the subject of Chapter IV, and its

application to both the shielded and Coulomb cases is covered in Chapter V.

Chapter VI will present the conclusions of this study, together with

recommendations for future work.



II. SOME ASPECTS OF LINE-BROADENING THEORY

From 1958 to 1962, H. R. Griem, A. C. Kolb, and M. Baranger developed

a theory of spectral line broadening in hydrogen and helium plasmas. This

theory pointed out the importance of electron broadening and provided a

coherent treatment of the joint electron-ion contribution to the resultant

spectral line profile.

The approach is simply this: electrons and ions, treated as clas-

sical particles, perturb a radiating atom, thereby influencing the intensity

distribution of the resulting radiation. Looking more closely at the

procedure one sees that in general, three steps are followed:

(1) The radiating atom is assumed to lie in a static electric field,

E, created by the ions, and hence is subject to Stark splitting.

(2) Electron broadening of the resultant sharp lines is treated

by the impact approximation.

(3) The electron-broadened spectrum is averaged over the probability

distribution of the electric field.

Step (1) amounts to the usual Stark effect, where the electric field 9

is calculated for a particular ion configuration.

In carrying out step (2), the electrons are treated in the classical-

path approximation. In order to justify this assumption that the electrons

may be treated as classical particles with straight-line trajectories,

one must state that the momentum transfer n such an impact perturbation

is small, i.e., .A-P << 1 where P momentum transfer and
P

P = initial momentum. Another necessary restriction is that the perturber

wave-packet dimension, A X, be mall compared with the impact parameter,

.Thus, it is seen that we are dealing with interactions which

10
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on the average are weak and long range.

The third step requires that an electric microfield distribution be

calculated for the plasma model previously introduced.

Fig. 1 illustrates: (a) the nature of the classical-path approxi-

mation, and (b) the type of overlapping spectral line handled by this

theory

(a) -- is referred
v

to as the collision time.

Vt
i~~t) Ai (t ) = ,+ Vit

radiating where ri(t) is the position

atom
vector of the I th elec-

tron relative to the

radiating system.
(b)

where a ( o, oK', aC") represents an initial level with principal

quantum no. "a" and substates ac , " , o" and b ( /T represents

the corresponding final states.

Figure 1.
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The transition between level a( *4 o ', e ") -<. b( , )

may give rise to a complicated intensity distribution such as that shown

in Fig. 2.

J (.)

Figure 2. Spectral Line Intensity Distribution

It is possible to derive an expression for the spectral intensity

distribution function for a quantum-mechanical radiating system with

time-dependent dipole moment, ,* (t) assuming an equilibrium

situation. (14) The final expression for this quantity is

00

2 ) 4 Tr Re dt e io (t)/A.(O (2.1)

7C 
average
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where

J (() - Spectral Intensity

LA)= Angular Frequency

c = Speed of Light

t = Time

)? = Boltzman Factor = 3° e" ' (HO + V (t))

Z = Partition Function

P= k T

k = Boitzman Constant

T = Temperature in degrees Kelvin

Ho = Unperturbed Hamiltonian

V(t) = Time-Dependent Perturbation

,L(t) = Dipole moment of the radiating atom at time (t)

I = Average over all perturber configurations.
AVG.

The average specified in Eq. (2.1) refers to the average over all possible

perturber collisions, e.g., aver all values of: (1) impact parameter;

(2) perturber velocity; (3) collision angles; and (4) collision time.

This averaging process is necessary because F /A(t) /A(O) is

always calculated for c particular instantaneous perturber configuration.(14**

Since the interaction is considered weak, it is assumed in the following

that V (t) << Ho or that

^1o a 31 e F HO (2.2)
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Thus is independent of time and may be taken outside the integral

giving (aside from a constant factor)

CO

TrRe (dt e iWt[WP (0) (2.3)J I)= o Tr 1^ t

0 average

The problem now is the calculation of IV. (t)1A (0) This function

is frequently referred to as the auto-correlation function; if the dipole

moment of the radiating atom is ,4 (t), and further, if the perturbing

interactions serve to damp the dipole moment, there exists a correlation

time, T., past which the time integral over the correlation function

fast approaches zero. The correlation time then sets practical limits

on the time integration performed in the evaluation of J (CA) and thus

represents a measure of the radiating system "memory". In general, it

is not possible to determine this function; fortunately, there are two

special cases when a solution, using established techniques, can be

obtained. These are:

(1) The collision time e T , the correlation time;

(2) The collision time < T , the correlation time.
c

The first case, (1), is referred to as the quasi-static approximation.

Here the collision is so strong that it completely disrupts the phase of

the radiating system in a time short compared to the collision tim, t ;

the disruption takes place so rapidly that it may be assumed that the

perturbing particles (ions) remain fixed during r . This first approxi-

mation is useful for dealing with ion perturbations over major portions
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of most spectral line profiles. It is particularly good in regions well

removed from the center of the line; this of course is true because of

its strong-collision nature.

In the second case, the impact approximation is applicable; here

many collisions are necessary before the phase of the radiating system

is completely disrupted. This implies that interactions treated in this

approximation are on the average weak. Electrons are very successfully

handled with this technique everywhere but on the far wings of the profiles;

it may also be used in some instances to determine ion contributions at

the center of the line.

The quasi-static approach is used to accomplish step (1) and the

impact approximation is used in step (2). Hence, at the end of these

first two steps, we have an expression for the spectral intensity which

is a function of both the frequency W and a fixed value of the electric

microfield, B:

W_ +(i () -d -[w. C(Z)) 2] -1 (2.4)

where: w = line half-width as determined from step (2).

d = line shift as determined from step (2).

C(3) = a function of the field strength 3; it is proportional

to I for the linear Stark effect and to B2 for the quadratic

Stark effect.

In order to find the intensity distribution J (W.), it is necessary to

average J W , 2) over a suitable electric microfield distribution, W (3).
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Therefore,

J (W) = W (E) J (W, E) d E (2.5)

0

or,0

o=W r (E) d E (2.6)
T w2 + (W- d- C(E))2

Recall that the function W (9) gives the probability of finding an electric

field of magnitude E, at a particular spatial point which we choose to be

the radiating system. This function is strongly dependent upon the specific

characteristics of the particle correlations. The exact nature of the

dependence is shown in the next chapter.



I1. THE ELECTRIC MICROFIELD DISTRIBUTION FUNCTION

A. Introduction

The last chapter indicated that when the quasi-static approximation

was applicable the perturbers involved may be considered to produce a time-

independent electric field. To arrive at an electric microfield distribution

function, one must average over all possible perturber configurations or,

what amounts to the same thing, over the possible electric fields.

Holtsmark(4) first calculated this distribution function for a

gas of charged particles; however, in doing so he neglected to account for

the fact that charged particles interact with one another and hence are

strongly correlated. He determined the probability of finding a particular

electric field E, due to a static random dlstribut-.on of singly charged

ions, in a specific range, _< E< 0 + d E. Such a development repre-

sents a strong-ccllision theory, since it neglects the weaker but highly

probable perturbative interactions where correlations are important. There-

fore, it is not surprising that the Hcltsmark theory incorrectly describes

the center of spectral lines, but gives much better resuita when applied

to line wings. This theory will also be briefly mentioned in Chapter V.

Since this initial work, others have attempted to improve on

the theory of electric microfield distrilbuttons; the primary effort has

been to correctly include particle correlation. Ecker(17 ), and Hoffman

and Theimer (18 ), followed the Holtamark procedure of assuming statistical

independence, but replaced the Coulomb field with a shielded field. Broyles(20)

uses the Bohm-Pines collective-coordinate technique by considering short

and long range interactions separately in his evaluation of the microfield

distribution at a radiating ion. Margenau and Lewis( 2 1) also consider the

17
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electric field at an ion due to perturbing ions, but neglect the inter-ion

interaction. This last method also has the disadvantage of not being

applicable to neutral atoms. Although this criticism is not true of the

Broyles' approach, it should be pointed out that his expression for the

microfield distribution, in the limit T approaches infinity, does not

reduce to the expected Holtsmark result.

In two papers,(1 Mozer and Baranger put forward a new method

of including correlations in the calculation of the electric microfield

distribution functions. The construction of this theory involves a per-

turbation expansion and has the desirable feature of reducing to the Holts-mrk

result in the limit where T approaches infinity. To be practical, we must

restrict its use to plasmas where the interaction energies are considerably

less than the thermal energies, i.e., less than kT. It is possible to

calculate all orders of correlation, but only the two-body example is

developed in detail.

The actual calculaticn of the microfield distribution function

will involve the Fourier transform of the distribution function rather than

the function itself; here, as in many instances, the transfcrm is easier

to handle. In the following work, 3, refers to an arbitrary electric field;

it will later be used to refer to both the Coulomb and shielded fields.

Following the notation of Mozer and Baranger, we refer to the collective

electron field as the high-frequency field, and the resultant ion field is

termed the low-frequency field.

B. The Mozer-Baranger Theory
(1 )

Consider a volume V with a given number of particles N, the

coordinates of which are 11' r2 ...... rn; the particle density is given
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by /0 = Furthermore, it is assumed that thermal equilibrium conditions
V

prevail. The quantity to be calculated, W (), gives the probability of

finding a total electric field E in a range E to E+ dE at a given point

in space. It is usually convenient to take this point as the origin of

the coordinate system. The Fourier transform of the field distribution

function is

F() e d 3 E  (3.1)

where the field E at the origin is equal to

N

i=l

Ei = field produced by one of the particles located at point r1 . Now

it is well known that Eq. (3.1) may also be expressed in terms of the

particle distribution function P (4, ... , Thus, we replace

W (E) d 3 2 in the Fourier transform by P (r - 4) d3rN where

P (. 1 "'" ) gives the probability of finding the N particles in a

particular configuration. For a classical gas in thermal equilibrium,

P ( .l - ) is the Boltzmann distribution,

P (r " . )= e (3.2)

volme U N d3 r

volume i1-
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Here, we have defined

d3r 3 N 3
Nrdr d r.

i=l

With the above substitution, Eq. (3.1) becomes

F(k) e) TF d (3.3)
i=1

Using a trick similar to that employed in the usual cluster-expansion

procedure, we may write:

e = 1 - + 1 (3.4)

+1i

Substitution of this expression into equation (3.3) gives:

1(k f f i ++ I ~+ *..] Pr... N)N d3 r (3.5)
£ i i,< j l

i=l

P (k) + F( + + F + (3.5a)

where

(k) T..
i<j< ... <' ' ' i(d3r .
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Since P Q, EN) is symmetric with respect to an interchange of particle

coordinates, it is permissible to write F (k) as
m

N! 3
NM k)1 MH (r - rN )lT d ri (3.6)

H!(N - M)! %N

Note that in this expression it is possible to integrate over all but the

specified M particle coordinates thus obtaining a new probability function

PM which depends only on the M coordinates (r1 ... XM), and is equal to

V"N times the M-body correlation function. Hence, we write:

FM (k) N ... 9 2P (El..r) dr (3.7)
M!(N -H)!JM)!~

P can now be expanded in a perturbation series involving increasing orders

of correlation.(5 0) Thus, the first term contains only theproduct of one-

body or independent probability functions; the second term involves the

two-body interaction corrections, while each successive term includes cor-

rections involving one more particle added to the particle cluster. To

illustrate:

V3P s (r )s (r )a)+ r)s (r , r )
3=11 - s -2  -3 1(2 1 33

(3.8)

+ S(r)s r r) + s(~
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where s1 (r) represents the one-body or independent probability function,

a2 is the two-body correlation function, and so on. Since the a func-

tions are also symmetric with respect to an interchange of particle

coordinates, FM (k) becomes

FH(k) (N - M)! f f " .. P. "'" . . -d3r

N r TC(M) fVwc it (y,) d3r,
M! (N-M)! [ 1 i...

i-l

M

H
+ C(M) f . rj) 2(rl, 1) -T d3r,

1 ... I1J f2, -
J=3

M

+C(M) " - (r)2(r r)(r 3 , 4)- d3r (3.9)
I...1, 2, 2 IT qj82- -J 1 d1

J-5

+
M

MM
+ C(M) 1,3/T'l(j)'2(rl' 2'3)rl IT' T dr iI... , 3[i=l

+ -6-



23

The coefficients C (M) are numbers equaling the number of

ways to choose distinct groups of ,' 0 14j, 1/1 particles out of a

total of M identical particles, with P i< / . ° Distinct

groups implies that all the particles of a specific group are different

from all particles of any other group. In general, if there are

, i Li etc., with the condition that )i ,i +A +"

+ r /Ar = M, the coefficient is

C(M) Mr' ** ~ /~AA
c (0.10)

One can define a quantity h (k) as

h.a,(k 'i !,A,)~ 7T dr (3.11)

With this definition, the Fourier transform of the field distribution,

in the limit as N and V approach infinity, while the density ,=
V

remains constant, is

F(k) = ELfCM h (k) .. h (k)l"'a0M -*i --... ',"r)K
all partitions
of M (3.12)

00 AL

-1Tx[~ hiV

'i
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00

-exp[Z/h~

This expression for F (k) is one frequently found in the conventional

cluster expansions(50), an exponential of a power series where successive

terms contain higher-order clusters. It can be shown that in the high-

temperature limit only h1 (k) remains and that

ph1 C )
F (k) = e

T - - -).. c _ ei k .- ( r ) ) ~

which with E (r) = can be shown(l) to be the Fourier transform of
r
3

the Holtsmark distribution function.

Now consider the pth term in the series argument of the exponential,
hP

~h ( ; this may be expressed as an integral, as indicated by

Eq. (3.11), the value of which is determined by the properties of p

and sp . The salient features of the sp are: (1) They are different

from zero only when the p particles are clustered; (2) The region of

particle correlation is finite due to screening by the charged particles

in the gas; (3) sa goes to zero as T approaches infinity. Since the 91

decrease rapidly as the distance from the field evaluation point is increased,

the integral over all space is convergent. For finite values of k, hpQk) is

also finite. That the convergence of the integral is dependent on the

factor is apparent since for large values of all the rI the sp does not

necessarily vanish since the particles may still be close together. One
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would also expect that for finite k and large temperatures the successive

terms in the exponential of (3.12) would be proportional to increasing

powers of the inverse temperature. Then only a few terms in the expansion

are necessary to get a good approximation for F (k) in the high-temperature

region.

Eq. (3.12) is quite general and may be of interest, in the

high-temperature limit, for a number of fields. The electric-field

distribution follows imediately upon applying the inverse Fourier Trans-

form to (3.12),

1 f ik -EW (E) 3 31(2) 3 J F(k)d k 3.13

C. The HLah-Frequency and Low-Frequency Fields

Before continuing in the calculation of the electric field dis-

tribution function, we will discuss the physical nature of the electric

field contributions. Due to the differences in the time variation of

their resultant fields, it is desirable to treat separately the electronic

and ionic contributions t the total field. We follow the notation of

Hozer and Baranger, referring to the field of the electron as the high-

frequency component and that of the ions as the low-frequency component.

That it is reasonable to consider the contributions separately is indicated

not only by the differences in the time characteristics of the fields,

but also by the fact that the collective fields of the electrons and ions

are much different. In order to discuss these matters further, it is

necessary to establish suitable time scales which are characteristic of

the ionic and electronic motion. For this purpose, the concept of
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relaxation times are introduced. If we consider a gaseous system of like

particles which originally have an arbitrary velocity distribution, the

time required for a Maxwellian velocity distribution to be established

through collisions is referred to as the relaxation time.

It has been shown(53) that in a positive ion-electron gas,

where the velocity distributions of both electrons and ions are initially

arbitrary, the electrons will come to Maxwellian equilibrium much more

rapidly than will the ions. The appropriate relaxation times which

govern this approach to the Maxwellian distribution are taken as charac-

teristic of the ionic and electronic motion.

Returning now to a consideration of the physical nature of the

two field components, we realize that it is not correct to use a

Coulomb field for the individual ions; such a procedure would completely

neglect the ion-electron interaction. The low-frequency component contains

a contribution from the electrons since the ion-electron interaction

establishes a shielding electron cloud about each of the ions. Thus,

the low-frequency component consists of a sum of all the separate shielded

fields. The correct method for obtaining the low-frequency component

is to calculate the time average of the electric field for a given ion

configuration; the time over which the average is computed should be short

compared to the ionic relaxation time, but long compared to the cor-

responding electron time. Since we are involved with a time-averaged

component here, it is proper to use a Debye-Wickel shielded field for

each ion.( 1 ) Note that the shielding is due solely to electrons; ion-

ion interactions are taken into account in the pair-correlation functions.
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Because the ionic time of relaxation is much longer than that

for electrons, an average of the high-frequency component of the micro-

field over times the order of the ionic relaxation time, will vanish.

Hence, it is reasonable to consider the high-frequency component as a

gas of electrons imbedded in a uniform neutraliting background.

The above procedure is essentially that followed by those who

describe plasma behavior by collective coordinates.(2 6) However, the

arguments presented here are not intended to imply anything more than

plausibility. The concept of low-frequency and high-frequency com-

ponents can be derived more rigorously from the collective-coordinate

approach. (26)

At this juncture the ozer-Baranger approach resorts to the usual

Debye-Hckel method to determine the shielded fields of the individual

ions. The validity condition for this technique is that the volume of

the electron cloud is large compared to the average volume per particle. (27)

Thus, the ion field is found to be

Ii= 1+ VA.
(3.14)

where = Debye length.

Consider now the two-body correlation function which will sub-

sequently be used. For the high-frequency component, treated as a gas of

electrons against a uniform neutralizing backgroundthe potential of the

mean force is given by:

w2  A (3.15a)
r12
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and the corresponding correlation function is:

2 -l w2(2 l ,  )
VP 2 (rr 2 ) e (3.15b)

These expressions may be derived by the Debye-Huckel method, but for

the purpose of this dissertation they are defined and derived from a

different point of view in the next chapter, as are the following results

for the low-frequency component:

r1 2

2 (;4 ) =  .. _e (3.16a)
r 12

and

V2 P(r, ) e - A w2(!. r-2) (3.16b)

It is seen from these equations that the only difference between the

two-body correlation functions for the electron and ion cases is contained

in the definition of the shielding length, A or Z\ /7'.

D. The Fourier Transform of the Field at a Neutral Point

The following procedure will be considered in some detail and

is applicable to either the high-or low-frequency case.

The neutral point at which the field is to be evaluated (the

field evaluation point) is chosen to be the origin of the coordinate

system. In this case the s 1 (r) - 1 and the one-body term,fp hl(k) , is

phl (k) f (e 1 )- (3.17)
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Since =El(r ) we may set k k with no loss of generality,

and Eq. (3.17) reduces to

fhl(k) - 4 1ff(l- jo(kE)) r 2 dr (3.18)

where j is the zero-order spherical Bessel function (28 ) , and El is

the magnitude of the single-particle field; a shielded field is used for

the low-frequency case and a Coulomb field for the high-frequency case.

In the latter instances (3.18) may be evaluated analytically, yielding

3/2

,h l (k) 1 -fP(27 ek) (3.19)

which depends only on the magnitude of k. Prior to writing a similar

expression for the low-frequency case (L.F.) it is convenient to make

the following definitions:

(a) A unit of length r is defined by
0

4 27)3/2 r 3
4 (2W' j0 =
15 0 f~

r is almost equal to the radius r , where
0 o

(b) The "normal" unit field strength E is defined by

E= e
o 2r

0
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(c) Two additional units are

E
0

and

x=)klE
le 0

These units will be employed in the remainder of this chapter. Thus,

(3.19) becomes:

3/2
H.F. fh I (k) = - x (3.19a)

The one-body term for the shielded field is given by

fPh1 (k) 15 x 3/2 + [1 + J()j Z2 d Z (3.20)(810 1/2

where

-2 1/2 [ ex rS 1/2

=Z (1 + r0 /)) x Z exp ) x z

1/2
Z = r coordinate divided by (ek)

Further let us define

ro  1/2

Y T - x (3.21)

Hence, Eq. (3.20) may be written as

3/2
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This relation, which defines $ (y), must be evaluated numerically.
Now the two-body term, h29 is found by letting/A 2 in

Eq. (3.12). Thus, we have

/ h2 (k) 2 ... W 2(,r 2) d3 r1 d3 r2  (3.22)

where from Eqs. (3.8) and (3.15)

s (r , r2) = e -1 (3.23)
2 111 -2

In the high-temperature limit one may linearize this expression:

s (r, r ) '-,w (r ) , (3.24)
2

which implies that

h2  2 (k r A w2 (r r) d r d 3r ; (3.25,)

2 2" 2! kT f 1 2 2

or in dimensionless units,

p02 3/2

2 2 () t2 (y) (3.25b)

Here W 2(y) contains the two-body correction term. Thus, V1 (y) and

S2 (y) refer to the appropriate one-body term and the two-body cor-

rection respectively. For the very high-temperature cases where the

function w2 (I, 52) is given by the Debye-HUckel theory, it is possible
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to evaluate this expression by expanding the various terms in the inte-

grand in spherical harmonics. However we are not interested in this

solution here. Attention will be confined to comments about the general

character of Eq. (3.24) and its application to the calculation of micro-

field distribution function. It has been shown that the value of

h2 (V) for the high-frequency component is much larger than the cor-

responding quantity for the low-frequency case; this is of course due

to shielding effects.

The Fourier transform of the field distribution at a neutral

point, Eq. (3.12), to the order of approximation used here can be

expressed in dimensionless units as

F (X) = exp j (3.26)

An example of the two-body correction, q) 2 (y) for the low-frequency

case is shown together with the corresponding one-body term for com-

parison in Fig. 3. From this graphic illustration it is apparent that

for values of x which do not make the exponential exceedingly small,

and for values of r0/ X from zero to one, 2 (y ) is indeed much

smaller than 1 (y). When the two-body correction is small compared

to the one-body term, corrections from higher-order correlations should

be negligible for the range of parameters in which we are interested.

R. Kicrofield Calculation

The Fourier transform of the field distribution, F (), was

shown to be independent of the k direction. This implies that the dis-

tribution function itself should also be independent of the k direction;
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therefore, we define a function H(E) for the scalar quantity, E, or in

dimensionless units H( 9049)

H(S) = 47T 2 W (S) (3.27)

If we now substitute the dimensionless form of Eq. (3.13) into

Eq. (3.27) we find

00

H()= sin (xS) F(x)xdx (3.28)

0

This final expression has been evaluated numerically for both high-

and low-frequency components at a neutral point. Results are presented

in terms of the parameter r / \,
0

151/3 2q 1/2 1/6 -1/2

_T- T (3.29)

where q = electron charge

k = Boltzmann's constant

= particle density

T = temperature In degrees Kelvin.

This quantity indicates the departure of the field distributions at

finite temperatures from the infinite temperature or Holtsmark result,

which is characterized by r / = 0.
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Several graphs representing H(6) for various cases and values

of r / Xhave been prepared. However, only the graph in Fig. 4 will be

discussed. Here, for r0/\ = 0.6, the low frequency H(6) is shown

for two cases: (1) only one-body terms included, (2) one- and two-body

terms considered. Note that even though Y 2(y)< TI(y), its

inclusion has a pronounced effect on H(;), the microfield distribution

function; specifically, it raises the distribution maximum and shifts

it markedly towards weAker fields. The conclusion is that even though

Y2 (y) is a very small quantity, its nature strongly influence$ the

form of H(S). It will be shown in chapter V that the corrected w2L'F"

is considerably different from the Debye-Huckel result. Hence, this

correction might be expected to alter W (E) or H (6) considerably.
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Figure 3

The One-ion Term Compared with the
Two-ion Term for the Low-Frequency
Component at a Neutral Point
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IV. CALCULATION OF PA;R-CORREIATION FUNCTIONS

A. Introduction

A large number of problems in statistical mechanics is con-

cerned with calculation of correlation functions for systema with

large numbers of particles. The method of cluster expansions (22 ), (23)

has been most successful in this regard when applied to systems of

particles with very short range interactions. Using this technique,

one is able to derive infinite expansions in powers of the particle

density, P - for the many-body correlation functions. If the density

of the system is sufficiently low and if the particle interactions have

short range these expansions converge rap.dly; this is true when dealing

with neutral molecules.

However, in the case of long-range potentials, of which the

Coulomb interaction is the prime example, this cluster expansion approach

is not applicable regardless of how dilute the system may be. Debye

and H ickel proposed a method (1923) for treating very low density systems

involving Coulomb interactions. Since this work, several authors(9 )(22 )(47 )

have developed techniques for use with systems of finite density which

yield for the Debye-Hckel result as a first approximation and which,

at least in principle, also offer higher-order correction terms.

Generally, these improved methods express the correlation functions in

terms of complicated integral equations.

The present chapter will eseentially present the Salpeter

approach to the problem of calculating correlation functions for a

collection of particles which interact through long-range potentials.

37
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The problem of how to regroup the terms of a cluster expansion so as to

give meaningful results when applied to situations involving long range

potentials, is considered in detail. In this development of the

expansion approach it will be assumed that we are dealing with an

equilibrium system of volume V which contains N particles of mass M;

there exists a central interaction potential U(r ij) acting between

any pair (i, j) of particles. The theory is classical in nature and

assumes only two-body interactions. In order that the classical assump-

tion be correct, infinitely attractive potentials are forbidden.

B. Preliminary Statistical Mechanical Considerations

In this section, some general concepts from statistical

mechanics, which will be necessary in the discussion of the Salpeter

theory, are discussed. Of central importance in statistical mechanics

is the partition function. It is defined as

h1!kT d3p ... d3 p d 3 r1  d3rN  (4.1)

where:
3
d Pi d pxi dpyi dpzi

d r: d x i d yi dzi

dr = 2 + p2) + Ux 1 ...x
2K i Px d yi

i=l

H is the Hamiltonian of the system.

U is the potential energy of the system.
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pi = momentum of the ith particle.

= coordinate of the ith particle.

h = Planck's Constant

Note, also, that N and V are considered large; it is frequently con-

venient to have both V and N approach infinity in such a way that the

density, 0 = R , remains constant.
V

Explicitly using the above H and carrying out the integration

over the momentum, we have

N

z3 (4.2)N • N

where

N .. r • .... dl3 3
=N V d d rN1 Ns

h ""3 N) _ 1 Uq ... ) (4.3)

(21T'VfmkT)1/ 2  AkT

Now QN is referred to as the configuration integral. Making the

assumption that the potential energy u(r .-. I) is equal to the sum of

pair potentialswe write

u(r ... u (r (4.4)

11: < Ja N ij
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Then

NN (45
-x " i<j uij d3 o r4d3r 4.5)

(1) Distribution and Correlation Functions(
3)

It is now possible to define a distribution function.

Suppose we observe a particular equilibrium configuration of N particles

whose interaction potential is given by u (rl .. r ). The probability

that particle 1 will be in d3r 2, and N in d3rN,
1 inr2 ,ad~inrNis given by

-N -l url.
PN (El ... 1N)drl..drN = V - N e d3r, ... d3rN (4.6)

The probability pn rl "'" !n) d3r 1"'". d3r n that particle 1 will be in

d3rl, 2 in d3r29 ...' n in d3r nregardless of the arrangement of the

remaining N - n particles, is the sum of all probabilities (4.6) con-

sistent with the specified (I ... n) configuration: i.e.,

Pn(r r." r -) v 3 -1 e uq "- d3r n .d "'" (4.7)

n 1-1 -n.. n+l s

subject to the normalization condition

" .n . r ) d 3r ... d 3r = 1 "  (4.8)

If we remove the restriction that particle 1 be in

d 3r, 2 in d3r2, etc., and specify only that one particle be in each
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element d3rir the correct probability function to use isPn(r1

it is related to p (r ".. r by
n 1 A

on ((r ... r (4.9)
(N-n) n Al1 ^b

where the factor N gives the number of possible ways such an
(N-n)

arrangement can be made. The normalization condition here is

(rl "'r) dP3r "'" d3r - N !N (4.9a)

... un - IEn~ d rn (N-n)!

Now, since this dissertation is concerned with plasmas,

let us consider the application of these distribution functions to

gaseous, or more generally, fluid systems. As examples, we choosefl

and/0 2. From Eq. (4.9)

l (rl) = N p (r 1 ) (4.10)

= N N 1 u( / "" 3 dr 2... d3rJ J 2 N

Ez2() = N (N -l)p,(,r 2 ) (4.11)

-1 -N C-u(r .. r 3~ 3
N (N -1) v V .. e .1 .N 2 ... d rN

The normalization condition, Eq. (4.9a), with n = 1 yields

d r -N (4.12)d(N
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In a fluid all points r are equivalent if we neglect the

boundary layer; that is, P1 (,) is independent of r1. Hence, from Eq.(4.12)

f - N
1 V

= P, the particle density

The two-particle distribution function for the fluid case is only a

function of the distance between two points. This may be expressed as

ft(r )P r .

Again, using Eq. (4.9a) we find,

2(Zl3Z dr dr N !

r1 2 (N - 2)!

or

r 12 d r12
jP2 V

An examination of Eq. (4.8) shows that if the distribution of particles

is completely random,

-nPn = v n  (4.13)

Pn and jn are said to be "independent" if they satisfy the following

relations:

Pn (r ..' r p (r) "'" p1 (r)

(4.14)
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If, however, the n probabilities, P1 (r ), are not

"independent", it is possible to define a correlation function, g ,

which provides a measure of the deviation of pn orPn from the

"independent" value. Considering only /n, we can write

Returning to the fluid case, (4.15)

n

Pt (r,... r f= f n X... <;1 -. n)

From Eqs. (4.7), (4.9), and (4.15),

n-N - -u(r
gn '"r ... r n .. r .. d rN (4.16); ̂on Vn (N- n)! Q " n+l

Since N! - 1 n(n-1) +

xn.(Nn) ! 2N

we can simplify Eq. (4.16) when terms of order I are negligible.
N

Thus, we write

n-N -1 3ur .
r . V Q N 0.1 ) d3r .. d3r (4.17)an(lNn+l n

nn

V p (r ... r)
n ;_I
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Closely connected with the correlation function is the potential of the

mean force, defined by the equation
(3)

g rl "'" r) =exp Wn (rl ""rn)? (4.17a)

where w O ... r) is the potential of the mean force expressed inn _1 ,A.n

units of kT. Now recall that we are considering a system of N particles

which interact through a potential u(r ... r ), and that of these, only

n have their coordinates .. r ) specified. For such a system it
shw(3)

can be shown that the appropriate negative gradient of w (r * " n )

gives the mean force acting on any one of the n particles, e.g., particle

4. The mean potential differs from ordinary static potentials;

in addition to the usual contribution from the n specified particles,

it also has a contribution from the remaining (N - n). Hence, if we

hold the n particles fixed and average over the other (N - n), we find

that the mean force acting on particle O( is

(2) Cluster-Integral Expansions

In equation (4.5) there is a term in the integrand,

exp - uj] . Now introducing the function fj= "u
5 

j -1, it is

possible to write:

e uij  = ueeUij

+= (i + fij )  (4.18)

l i< j4I

S+ z fj + Zzj f +.
ij ii iJ k1 ij kl
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where (i, j) refers to any one of the possible N (N-l)/2 pairs. Each

term in this expansion can be represented graphically by a diagram

which corresponds to a factor f (rij); the total number of connecting

lines in the graph equal the number of factors, fiJ 0 in the particular

term under consideration. Note that for a finite-range potential fiJ

goes to zero rapidly as the separation r becomes large. To illustrateiJ

the cluster principle further, consider the various possibilities for a

set of three particles:

I I I

3 A. 3 a. 3 2- 3

fm LfZ3  f.. f's fn 3.3 fsf

Figure 5 Clusters of Three Particles

The terms and corresponding diagrams comprising the

expansions (4.18) can be classified and simplified systematically. For

any diagram there is a definite number of points,,j , which are at least

singly connected to particle 1. The portion of the diagram which involves

the I + 1 connected points is designated a cluster; the remaining

N - (3L+ 1) points are not connected with the given ( + 1) cluster,

and may be arranged in an arbitrary manner.

Now consider the contribution to QN from a configuration

involving an (9 + 1) particle cluster with the remaining N - ( +1)

particles arbitrarily distributed.
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The contribution from the ( + 1) cluster is given by

1 +1 -V 3d3r "'" d3 r fij (4.19)
II =V

I+

where the product of fij includes all such factors occurring in the

diagram. 1+ 1 multiplied by an integral over the remaining N - ( Z+l)

particles yields the contribution to 0 from the above arrangement. The

sum of all possible distr*utions of the N - (1 +1) particles, while

holding the (Q + 1) fixed, gives a total contribution to QN of

I Q
1+ 1 N - Q+ 1)

where (4.20)

N N+ (I+ 3 d1)Nq, -( + 1)= V "'". d r + 2"' -'dUr.

Multiplying by a factor ( -(1, allows for the fact that any
- (1+l]!

of the (N-1) particles can be used together with particle 1 in making

up the (I + 1) cluster. At this point, we define a cluster integral as

b 1 d,3r... d~r1  ... d3r Tf f (4.21)b1+ 1 4t+l)'- E- i

where z indicates suamation over all possible single cluster

diagrams which can be found from Q + 1) given particles.

Many of these cluster integrals can be further simplified.

Suppose that a cluster of QR + 1) points may be disconnected by breaking
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it at a single point, r . Then b may be written as the product

of two integrals, one corresponding to each of the two component clusters;

the integration is carried out over relative coordinates (ri - r) , rs

being considered fixed; in principle these two independent integrals

will depend on the fixed position of rs, relative to the volume boundaries.

By requiring the interaction potential to be finite, and by having V go

to infinity, this dependence is eliminated.

A cluster of k points, in addition to particle 1, which

cannot be reduced by a single break is termed irreducible; irreducible

cluster integrals Pk are given by

1k- 1J d3r2 . d3r .. ( Tr fij (4.22)

(k)

where indicates summation over all possible irreducible cluster

diagrams which can be formed with (k + 1) given particles. For k = 0

there is no connection between point 1 and any other point; other examples

are

Irreducible Integral Diagram

3C3  3

2 d r 2d r 3 f12 f 13 f 3

If it is possible to define other even more specialized classes of cluster

integrals, but further comients about this will be deferred until the
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discussion of the cluster expansion for the pair correlation function

92

C. Cluster Expansion for the Pair Correlation Function

In this section a cluster expansion for the pair correlation

function and for the potential of the mean force will be considered.

In the limiting situation where both the particle number N and the system

volume V approach infinity while the particle density P = ! remains
V

constant, 92 (r, Z2) = g2 (r 1 2 ). From Eq. (4.16) it is seen that

N
l2-H 3 M

g 2 (r 1 2 = V J ... d ... r • 0- J uiJ (4.23)

The first step in the expansion development is the introduction

of the "general 12 cluster"; this refers, by definition, to any diagram

in which a number of, k , particles are at least singly connected to

either or both of the fixed points 1 and 2. See, for example, Fig. 6.

Figure 6 Two Examples of a General 12 Cluster

The corresponding cluster integrals are

b0 (r12) 1 + f12 1 2 (4.24)

b (r . ... r

12 3' A+ 2~r *.
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where refers to summation over all possible cluster diagrams

involving in addition to points 1 and 2,jother points which will now

be called field-points. The contribution to the integral in (4.7) from

a diagram containing such a 12-cluster plus other disconnected diagrams,

factors into a product of b (r 2) and the integrals involving the

remaining N - (t + 2) points.

Many of the general 12-cluster integrals can be reduced

even further. We define a "general 12-irreducible cluster" with k given

field-points as a diagram in which each of the k points lies on at least

one continuous path which goes from point 1 to point 2 without passing

any point more than once; such diagrams for k = 1, 2, and 3 are given in

Fig. 7.

(a) (b) (c)

Ia I a I
k=l k=2 k-3

Figure 7 Examples of General 12-Irreducible Clusters

An even more restricted classification may be effected if the

k field-points fall into two or more groups such that points in two dif-

ferent groups are interconnected only by paths which pass either through

point 1 or 2. If this is the case, the diagram splits into independent
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sub-diagrams by cutting at both point I and point 2. The corresponding

general 12 cluster integral can then be written as a product of indepen-

dent integrals, but where each factor is a function of r 12 A diagram

in which no further cutting is possible is called "simple 12-irreducible";

see, for example, Fig. 8.

IA IV.7 11

k=l k=2 k=3

Figure 8 Examples of Simple 12-Irreducible Clusters

"Simple 12-irreducible" cluster integrals, P k, are defined as

.' "'" dr 3 ... dr + 2 i j (4.25)

-(k)
where E denotes suiation over all possible M.simple 12-irreducible"

cluster diagrams that can be obtained with the points 1, 2,and k given

field-points. The factor f.2 is not included in any of the products in

this definition. For finite k and with both R and V approaching infinity,

these integrals are functions only of the temperatures T and the relative

distance r 1 2 ' Hence,

S= d3 r 3 f32 (4.26)
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-2 d 3rd 3 r f1 f34 f4 2  + f14 f2]

where the numerical factor in brackets refer to the number of diagrams

in which only the ordering of field-particles is different.

It is now possible to write down an expression for 2(r12

it requires only that one be able to find an expansion in powers of

density, p, which has simple 1 2-irreducible cluster integrals as

coefficients. Since further detail is concerned only with counting and

collecting the various contributions, the result will be written down

immediately, (2)

00

w2 (r12) u (rl2) -. Z Pk (r12)/P (4.27)

- W2 (r12)

g2 (r12) = • (4.28)

These last two expressions are the desired result; their

application to the case of the long range potentials is the subject of

the next section.

D. The "Debye-Chin" Type of 3xpansion ( 2 )

The irreducible cluster expansion in powers of the particle

density,/P , for the pair correlation function, 82 (r1 2) and the cor-

responding potential of the mean force, w2 (r12), was the subject of the

previous section. It was indicated that it is possible to label each
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irreducible cluster by the number of field-points k, and the number of

connecting lines, 9 , occurring in the given cluster. For a specific

k value, the smallest possible value of I is given by k + 1, and the

largest by 2 (k+ 2)(k + 1) - l}\ • In the usual expression for the

irreducible cluster expansions, as shown in Eqs. (4.27) and (4.28),

the diagrams are classified solely by k, all values oficorresponding

to this k being grouped together. When the particle system under

consideration involves very short range interactions, i.e., neutral

molecules, there is no trouble; in fact, this procedure proves quite

satisfactory; when the range of the interaction r is much less than
-1/3 N

the average particle separation, r - ) . Thus, the condition for

the "k only" grouping to be valid is that )OrM << 1. Now consider such

a s1ort range potential, uijp which is large and repulsive at very small

distances, slightly attractive at the potential minimum, and drops to

zero rapidly for r r N . In this instance f is or order unity

inside the region r3 , and drops to zero rapidly outside; the con-

tributions to the cluster integrals #k from an irreducible diagram

with k field points and I "lines" is then of order (Dr) 3  , regardless

of the t values; here we are excluding factors outside the integral,
1

such as k, etc.

3
An effective expansion parameter here is p rN , and there is

no need to regroup any terms according to X values. In the event that

the potential u ij has a large (attractive) potential minimum, fiJ 9

becomes large and positive in the vicinity of this minimum. Thus, for

a given value of k the largest contribution to 1k comes from diagrams
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with fairly large values. Again, there is no reason to regroup the

expansion terms. The situation is much different when the interaction

potential is long range; here the "k only" arrangement is not correct.

In accordance with both classical mechanics and chapter three,

a plasma model will now be adopted which involves only long-range,

repulsive interactions; thus, consideration of attractive potentials in

general, and infinitely attractive potentials in particular is avoided.

This plasma is composed of singly charged ions and electrons, and involves

interaction potentials (at the average distance of particle separation)
-1/3

that are small compared to thermal energy: i.e., uij(rij'f ) << kT;

this condition implies a high-temperature, low-density system.

In this instance one hopes to find another small parameter

in terms of which the cluster expansion may be constructed. The potential

model will now be specified in three distinct regions:

(1) r less than some small distance, r ;

uij (r) is large and positive.

(2) rM 4r!S where r ;u r

is small, positive, and of order of magnitude

where ( is a constant much less than 1.

-3
(3) r , A ; uij(r) decreases more rapidly than r .

-u(r)
It is further assumed that (r. /1)( E I. The function f(r) = e -1

is then approximately equal to -1 in the region (1), of order F in region

(2), and is negligible in (3). Therefore, the total volume integral
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(over all space) is of order E X 3. Now only cases where the range of

the potential is long compared to the average particle separation, i.e.,

>1P or 3> 1 will be considered. Returning to the order

of magnitude of the irreducible cluster integral, fig , it is assumed

that each integral contains k field-points with coordinates r and

"lines". The order of magnitude here is given by C (?A3)k , or

e -k ) . Although C is by definition small, the quantity

loc3 may be large for sufficiently large X . It is therefore useful

to regroup the cluster expansion terms for g2 (r 12) according to the

value of - k; the summation 1t over k values for fixed l - k. This

procedure is known as the cluster expansion in complexities.

Terms in Eq. (4.27) which correspond to values of )-k = 1,

correspond to the "simple chain" diagrams illustrated below in Fig. 9.

Recall that the term f 1 2 ' corresponding to k = 0, is missing from

Eq. (4.27).

(0-2) ,W~ C19 Q.,wW

Figure 9 Clusters of the "Simple Debye Chain" Type

The sun, 6 1 (r12), of the terms in Eq. (4.27) with A-k = 1 (k > 1)

is given by

S 1(r 12) 3r ... d3r f(r f(r (4.29)
n-1 n+2, 2
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Setting [r 12 (r )+f (r 12)

it is observed that 1 (r12) is the Neumann-Liouville expansion for

the function F ir12) ; thus,

Fr 1 2 ) f (r 12 ) +Y d r 3 f (r 13) Fr 32) (4.31)

Taking Fourier transofrms, we find that the resulting equation may be

solved by convolution techniques, yielding

/(k) f (k) - )Of(k) r(k)

or, (4.32)

(k) f W)

1 -)Of (k)

The solution of Eq. (4.31 or Eq. (4.32) represents in closed form, the

summation of all diagrams with y - k = 1, for avbitrary k; convergence

is now a question. It can be shown(2 ) that in the range -w(ff(k)<+ 1,

Eq. (4.32) is justified.

If only the X - k = 1 terms are used in the expansion, we

get as an approximation to the potential of the mean force, w
2

2 (r12 ) 'u (r12) - 1 (r12 )

(4.33)

= f(r 1 2 ) + u(r12) + f(r 1 2)
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If u and f are of order C << 1 throughout the range of the potential

2
then the error made in omitting terms with 2 - k - 2 is of order iE

Also note that

U

u+f e -l+u

(4.34)

2
U +

2

and hence is, in the first approximation, of order e . Using this

first approximation f is replaced by, -u , in Eq. (4.31) giving

-W 2
0 (r) = u (r12) d3r3u (r13) w2

0 (r32) (4.35)

Applying the transform, convolution technique to this equation,

o (k)- -u (k)
2 1 -)0u (k)

If

u (r1) -12 e 12 (4.36)
'12 r1

2q
where q = kT and r12 is measured in

units of the Debye length, X . Then,

u (k) dr1 2 r12 sin(kr - • (4.37)

k 12 12 (4r12

0

= 4+0_ _
k2 + 2
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Now it can be shown (5 2) that 47M~f= 1. Thus, we have

2 (k) = TrP (4.38)
2  k2 +0 2 + 1

w2° (r2 -  2  dk k sin(kr) r 2
1

2 12 rJ r 12  L2+C 1

0

(4.39)

2 e -V O -+ 1 r12,

- Tir 1 2  2

For o4 = o

w (r) = - r12 (4.40)2 r12

which is Just the Debye-Huckel result. If o( 1,

-- (r) = E e (4.41)
r 12

Note that if u (r) is large and positive over even a small

region of space, Eq. (4.35) becomes a very poor approximation to Eqs.

(4.31) and (4.32). However, terms corresponding to = k 2 2 which are

2neglected in equation (4.33) are still of order E . This implies that

for small E they involve integrations to which this small region of

space contributes little.
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E. Higher-Order Terms

Thus far, only the - k I summation has been discussed.

Terms for I - k I may also be included as a sum of a finite number of

integrals involving the f (r) previously defined in Eq, (4.30).

Choose a typical irreducible cluster diagram occurring in Eq.

(4.27) with arbitrary values of k and A such as the diagram shown in

Fig. 10-a.

(a) (b)

Figure 10 An Example of a Simple 12-Irreducible

Cluster, In Terms of "Wiggly Line" Diagrams.

In this diagram, each of the numbered points 3 to 7 are connected directly

to at least three nearest neighbor points, whereas each of the unnumbered

points are connected to only two neighbors. Fig. 10-b again shows this

cluster diagram, but this time in terms of "wiggly lines", where each

"wiggly" line represents a "simple chain' (Fig. 9). Now all diagrams

which correspond to the same "wiggly line" diagram are considered together;

although, the number of lines or links making up each "wiggly line" may

be different in each case, the numerical value of 2 - k is the same for

all these diagrams.
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In way of sumry, the following "wiggly line" characteristics

are listed:

1. Each field point lies on at least one continuous path

between points 1 and 2.

2. Any pair of field points is connected by at least one

continuous path which passes neither through point 1 nor 2.

3. Each field point is directly connected to at least

three nearest neighbor points; if it were connected to only two nearest

neighbors, it would be a mere link in the chain which contradicts the

definition of a "wiggly line" diagram.

4. Any pair of points may be joined by more than one

wiggly line.

Note that point 3. is in general not applicable to the usual irreducible

cluster diagrams and that point 4. never applies to such diagrams.

Finally, an examination must be made into the nature of the

wiggly line factors which occur in the integrands of the summed cluster

integrals. Consider two points, ( i, J ) connected by a single wiggly

line. This line, i0 --- v j , represents the sum of the direct

link, f (r i) , plus all the simple chains with an arbitrary number of

links (see Fig. 9). But, this sum is simply the function /- r + f

defined in Eq. (4.30). The general rule is that a single wiggly line

between points i and j stand for a factor in the integrand; this may

be compared with f (rj) for the ordinary cluster integrals. We next

consider n parallel connections between i and J; here at most one of the

n connections can stand for the direct link, f (r ij). The factor in
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the integrand is then the sum of two terms; the first term which does

not contain the direct link, f (r ij) , consists of theproduct of n

simple-chain factors, C! , and to account for the possible chain permu-

tations, a factor I is included. The second term contains the direct
n!

f-link, and in addition, n - 1 simple chain factors. For each n-fold

wiggly line connection between i and J, there is a factor in the integral

of the form,

n(r * g n (r) f~ nlI

--(rij n (r)) + I f((rn-i) (rj) (4.42)

Having thus obtained the function or 31 from Eq. (4.31)

or (4.32) we have an explicit integral for each wiggly line diagram.

The value of A - k is equal to the number of wiggly lines minus the number

of field points; A - k = 1 implies a single such diagram while . - k = 2

gives rise to three graphs as seen in Fig. 11.

Figure 11 The Wiggly Line Diagrams For 9 - k = 2.

Returning to the potential of the mean force, and considering
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terms up to and including - k = 2, we find

2

u (r 12  w w2 (r 12) 1 (r 12) + [{g d 3r 3~ (r 13) f '3 ~ 2

(4.43)
2

jj! 3  13 3 4 )]Fr4 2 )

This is the expression we have been seeking.

In order to make some comment about the magnitude of successive

terms in this expansion, we again consider a repulsive potential of

range X , with u and f of order E4< 1 (r < X ), but with IpeX31 Z_ 1.

From consideration of the Fourier transform it may be shown that/I f(k) j
is large for small k which in turn implies that r(k) - 1 for small k.

Thus, it might be expected that f(r) is comparable with f (r) - E for

small enough r, but decreases more rapidly than f (r) for r .

Pi k ) for small k is of order Sd3r f(r) -C X3  and we therefore

further expect that (p eX3) will be of order unity. If this is the case,

the order of magnitude of any term for any value of . - k may be estimated

to be

SeX 3), k (4.44)

Hence, terms corresponding to large complexity - (1 - k) = large m- ay

be expected to contribute little to the cluster expansions.



V. CORRECTION TO THE DEBYE-HUCKEL THEORY AND ITS APPLICATION

A. Introduction

In this chapter the theory developed in the preceding chapter

will be used to derive an expression for the potential of the mean force,

w2' which is then applicable to either the Coulomb or shielded potential.

Correction to the usual Debye-H~ckel expression for w will be given to2

second order in complexity. Furthermore, the results of these corrections

will be scrutinized in light of the discussion in Chapters II and III.

Corrections of the nature proposed have previously been calcu-

lated by D. L. Bowers (5 2 ) for the case of the Coulomb potential; however,

in his work he made the error first of using inaccurate tables, and

secondly, of using an incorrect computer technique. Since his calcula-

tions and detailed data are not available in the open literautre, it is

not possible to determine the exact importance of these errors. In view

of this uncertaintly it was felt worthwhile to repeat the Coulomb calcu-

lation in addition to considering the shielded field case.

The expression for the potential of the mian force, v will

be evaluated using first only the R - k = I term and then including the

A- k = 2 contribution. Thus, we must consider

w2(r12) = u(rl2) + f(r F(r 2) - X(r12) ,  (5.1)

12 r(r, 5.1

where u(r 1 U (rl2)
kT

f(rl2 ) = eU(r12

r(r 1 2 ) =f(r 1 2 ) +f $d 3r3  f(r13 ) fr 32)

62
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X(r,> =1 }d3 /- 2 (r < 1,) f 2<, r(r 32)

+ )2 d dr d3 r F(r 3 [ (r3 4 " f (r3 4  F(r 4 2 )

Thus, F corresponds to they - k = 1 contribution while X indicates

the contribution of the R - k = 2 terms.

Now, consider that we have a potential of the form

u(rl2) - e 12 (5.2)12 r12

where R12
r 12 D radial separation in units of D

1 21D

D 4qp Debye length

Q 2 [4 3

>'DkT Lr'\D

O= adjust-able parameter , o £ oC - I

Note that gives a measure of the strength of the interaction energy

relative to the thermal energy.

As was shown in Chapter IV, in the event E approaches zero, r
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approaches which is just the Debye=Hickel result. In the present

notation,

r(r,2) e + e 12 (5.3)o r12

The valuesof e which will be considered are e = 0.1 and 0.2. These are

considered small values; from Eq. (4.54), it is known that the order of

magnitude of the ratio of the k- k = 2 termsto those for which - k = 1

will be E , while the ratio of higher order terms to the ( - k) = 1

terms will be e 2. Therefore, it is expected that the A- k = 2 terms

will provide a satisfactory stopping point.

To simplify nctation, we will set r12 = r in the remainder

of this chapter.

B. Evaluaten of ! t n r).

From the theory of Youriez integrals we may write the fol-

lowing 3-dimenal.onal transfoams,

F (k) Alf ('u znk) r)

0 (5.4)

00
F(r) I dk k siLn (kr) F (k)

2 Trr

The Fourier transform r (k) has been shown in Eq. (4.32) to be simply

1"f f (k)
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Since f (r) e - and u (r) - e we may write the
r

transform of f (r) as

f (k) dr r sin (kr) eo (5.5)

It is possible to effect an approximate solution of this integral by

brute force techniques, but the solution for o( 0 is so cumbersome

that it is of little use. In the event that one is interested in the

limiting case of 0( - 0 , the resulting solution may be expressed in

terms of ker functions:( 38)
2

< =0 k2  
2  )

where (5.6)
1/2

(4 F k)

If, however, it is desired to solve the expression for f (k),

for arbitraryo< , another method must be devised. An approach which

avoids the difficulties mentioned before is as follows:

Let e = R . The, the expression e -I
r

can be expressed in terms of Mellin transforms,

0C+ ico

e2ri r(s) R ds l(1'< 0 (5.7)

a-- icc
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Inserting the correct form for R and substituting in Eq. (5.5), we find

41T -I.-. r

f(k) 4 7r dr r sin (kr) •) [ (s) e j dsk 21T 1 r

Simplifying and inverting the order of integration, we have

(r~t;-O00

f-(k) -i (s) ds dr sin (kr) e (5.8)

Now define:

t r/ > r=Et

e =a :;; ac r = o.C t =at (5.9)

Using these definitions, we get

-8

r sin(kr)dr 2 t sin(kE t) dt

2
= E t sin(bt) dt b =?k

Thus,

f(k) k47M 2  r (s) ds dt t sin(bt)e (5.10)k 2 T i 
f
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Now observe the integral

rs+1 att
t sin(bt)e &~t

Since the real part of s is negative, the equation may be solved(
39 )

s~~l ast 2 2
t sin(bt) e t (s+2) [(as) +b7 sin [s+t2) 1a-

0 (5.11)

Substitution back into Eq. (5.8) yields

f(k) 1 7r 7()f s2 sin (s+2)tan- b 5  (.2

k 2 T i I ,11+2 s(.2

(o as) 4- b 1 2

This integral may be solved by contour integration. We choose

the contour as shown in Fig. 12.

Imaginary

CA
3 Real

Figure 12
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By Cauchy 's residue theorem,

+ 2 =2 i - Residues (5.13)

C C1 2

It is shown in Appendix A that the contribution from C = 0. Thus,
02

T f-(s+2) sin [ (s+2) tan-,1,7
, +2ds = 2 TF i Residues (5.14)

[(sj + b
2 j 2

Included inside the chosen contour are poles at all integer values on the

negative real axis; these are due to singularities in the product of gamma

functions. At s = -1 there is a single pole while for s k -2, the

poles are al1 doublc. At a = -1 the residue is

R ResFdue, single pole sin [(s+2) tan-.b (5.
asp ~ ~ ~ ~ ~ s Rsdsilepl[()2 + b23 s+2-r(515

sin [tan' I b

1& 2 b 2j lj2

E [2, + kT

For all other poles,

SResidue, double pole, F (s-) "2 r(s) r (s+2)F(s (5.16)
DP da

s -n
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where
sin (s+2) tan 1(b

F(S) 6+2
[(as) 2 + b2J 2

F /

P F'rn-l)Pn+1) ds )(n-) p(n+l)

S= -n

Performing the operation d F (s) yields,
ds s =-n

n-2

d F s) = [(an)2+ b21 n2Cos X a b (n-2) - tan b
d s s -n I [(an) 2+ b2  an

+ sin X In ((an)2 b2 ) 12 +a 2 n 0-2)

L n)+b) +(an) 2+b2  J

where

X -(n-2) tan (b__
an

Using this expression for d F (s) J in Eq. (5.17) gives for
d s a = -n

the residue at a double pole,

n-2

R [an)2 + b]- Cos X a b (n-2)- _ tanb- 1 (L
P r(n+l) 1n-1) (an)2 + b2 n)]
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+ sin x FIn ((an)2+ b2 1/2 + 2 (2) l (n+ (5.18)
(an)2 + b2

where

4(n) 'n
1r1(n)

Substituting Eq. (5.15) and (5.18) into Eq. (5.14) one finds that

(5.12) becomes

f (k) = 47T" 3  7 Residues
b

4_ sin, [tan, 7 + z [(,,,2+ b, (519
(a2 + b2) 1/2 ,2 r2,+l/rn-1)

where

= Cos x Lab (n-2) -tan -L(an)2+b2 t an

+ sin X [ln((an)2 + b2) + a2n(n-2) - (n+1)
(an)2+b2  "

If 0e, = 0, and if the definitions in Eq. (5.9) are recalled, this general

expression reduces to

00o n-l

f k 2 (E ) _2 ,(n2 (5.20)
nr (n+l)/7n-l)

+ sinfl!L[ln (e k) -r(n+l) -r1(n-1)J
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As is shown in Appendix B, this may be expressed in terms of modified

Bessel functions,.

f (k) 4 _ o1/2

2() 2ker2V4 . = (4Ek) (5.21)k2 2

Foro( = i, corresponding to the Debye-Huckel shielded field, f (k)

becomes n-2

Li 2+ 00 nfl~n2 2) 2y~
f (k) 4k+l E n

k2 + 1 k n=2 f"n lfn-l }
(5.22)

= Jos [(n-2) tan ( n)][ tan-(n) 1 k(n-2)]

+ sin n-2)tanl 1)][lnE(n2+k2) + n -+ k) ii
nn +k 2

It is interesting to note that in Eqs. (5.20) and (5.22),the

first term, due in each case, to the single order pole, corresponds to

the Debye-Huckel result: if only this term is kept and the analysis

carried on one finds that /= / =-w 2  . The fact that all other
0

terms arise from double poles is interpreted in the following manner:

In the first approximation one takes only the first term in the expres-

sion. If higher order corrections are desired, it is necessary to

include the entire summation over double poles and not just the first

few such terms. Actual calculations confirm this last statement.

The above analytic expressions allow one to determine F(k).

However, it is not possible to get the inverse transform, "(r), analytically.
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Thus, the equation

00

(r)- 2t~r jdk k sin (kr) f (k) (5.23)

0

is solved by computer techniques. Pertinent information about the

computer approach is contained in Appendix D. It should be mentioned

here, however, that in both instances for which numerical work was

done, o = 0, 1, the needed values of f (k) were generated by the

machine from Eqs. (5.20) and (5.22) and are not tabular values. The

above integration was performed for E v 0. 1, 0.2 for bothX = 0 and

= 1; the results are listed in Table I. Once F(r) is known,

it is immediately possible to find expressions for w2 (r) and g2 (r):

w2(r) = u (r) + f (r) r (r)

92 (r) 
= e 2(r)

The expressions found for w2 (r) by this method are compared graphically

with the corresponding Debye-Huckel results, r (r) w 0 (r) , in
0 2

Figs. 13, 14, 15, and 16. Mt should be pointed out here that gn can

be related to the function a discussed in Chapter 111(50); specifically,n

setting n = 2, we find for a fluid system that

g2 (r) = 1 + s 2(r)

It is interesting to note that the corrected curve for

w2 [ E 0.1 13 lies just above the Debye-Huckel curve, while
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the result for w, , E O.208 llies considerably below the cor-

responding Debye-Huckel curve. This implies that in the first instance

the Debye-Hukel approximation overestimates the shielding, while in

the second case, it underestimates the shielding. That such a result

is at least possible may be seen by considering the graphs of f (k)

for various values of E as shown in Fig. 17. The Debye-HUckel

result corresponds to E = 0 , which fact implies that it is valid

only in the infinite temperature limit, T - c . Now observe that

as the magnitude of E increases, the slope of the curve for smaller

values of k increases noticeably, while the positive region of the curve

becomes much lrger ind shLfta toward the smaller k values. From actual

computer runs, it is known that k values above - 150 make negligible

contributions to the integral expression for F(r) . As C is increased,

the curves for f (k) change as indicated above, but the positive portion

of the curve doet not become important u til C / 0.1; the change in the

curve which Is Impartxt below E 0. 1 is the alteration of slope. This

importance is &ppent when one realizes that this function is multiplied

by sin (kr) in the integrand. Thus, the slope change in the region

below C = 0.1 is the prlAmry euse of deviation from the Debye-Hckel

curve. When the positive segment of the f (k) curve becomes appreciable,

in the Yange of significant k values, this feature of the curve becomes

the more important fsctor, and the corrected expression for w 2(r) lies

below its Debye-Hickel counterpart. This brief discussion is designed

only to indizte that such an E dependent shift is plausible.
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TABLE I

F (r) vs. r

4.0

E =0.1 E =0.2

r r (r) rr(r)

0.0 -1.33390 0.0 -0.82915
0.1 -0.83742 0.1 -0.68575
0.5 -0.10685 0.5 -0.16869
1.0 -0.03620 1.0 -0.04958
1.5 -0.01523 1.5 -0.01857
2.0 -0.00705 2.0 -0.00681
3.0 -0.00177 3.0 -0.00125

O- 1.0

E o.1 E =0.2

r 1- (r) r F' (r)

0.0 -0.99404 0.0 -0.91017
0.1 -0.51042 0.1 -0.62486
0.5 -0.09401 0.5 -0.15745
1.0 -0.02454 1.0 -0.03720
1.5 -0.00853 1.5 -0.01233
2.0 -0.00304 2.0 -0.00377
3.0 -0.00049 3.0 -0.00040

Constants employed in these calculations were:

T= 3.14159265
R," = Euler's Constant = .577215665
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Figure 13

w2 (r) vs r for

1 .0, a =0. 1
0.075 1 -k=

W2(jr)

0.050

Debys-Huckel

Corrected

0.025

0.0 1.0 2.0
r
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0.20

Figure 14
W2 (r) v s r for

a 1 1.0, a =0.2

0.15 k Ik=

w 2(r)

0.10 Debys-HUckel

Corrected
0.05

0.0 1.0 2.0
r
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0.20

Figure 16

w2(r) vs r for

a = 0.0, a=0.2

0.15 I -k= 1

w2(r)

0.10

Debye-Hiuckel

Correction

0.05

Region of Crossover

0.0 1.0 2.0

r



79

+6.0
Figure 17

0.2 f (k) vs k

a = 1.0

A4.0

+2.0

f (k) = .
X 106

0.0

-2.0

-4.0

-6.0
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For the cases 04- 0, = 0.1, 0.2, the corrected w2(r)

curves lie below the corresponding Debye-Ruckel graphs until r approaches

unity; in this region the corrected curves cross the approximate curves

and remain above as r is increased. The w2 (r) curve, for E 0.2,

deviates more from the Debye-Hickel result than does the E 0.1

figure; furthermore, the crossing point in this case occurs for larger

r values than is the case with E =0.1. See Figs. 15 and 16. This

implies that for r < 1 the Debye-H'uekel approximation overestimates

the shielding, while for r > I it underestimates it.

Now consider the contribution of the - k = 2 term which

are contained in X (r). From the preceding chapter, we use Eq. (4. 3).

r~ 3 2 2

X (r) = d 3r f'r{f r3 2  f (r3 2 )

2E2Jrd 3r (r f (r) - f(r 3 4 4](r)

Also, from arguments presented in the previous chapter, it is expected

2
that the magnitude of this term will be ef order & . Now, since the

expressions for r(r) derived for k " 1 do not vary greatly from the

Debye-Huckel results, X (r) will be evaluated setting r(r) /(r)
0

this implies that X (r) is calculated to first order in £ . With this

substitution, X (r) may be evaluated analytically- this calculation

for arbitrary M' is shown in detail in Appendix C. The final expression
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isF

X(r) = -8(~ 21 r 2 2+71 2042:

8(&,-2+1)L 6q(.3+1 + 30O 2 + 3

2 2

- ~~ +-~i -K )l~~ii))

+ (2c - 1~)r _ r 1 (5.2]2

e~ r+3)(K2 r) -(31r) l_jIf 2l~)

whroe 0ti eue o

+-r
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ForC= 1, the expression (5.24) becomes

X(r) e - r - 7 i -+ E(( 2 iti
16- 3 2

(5.26)

e (r, + -F) (3o2,r) E;,_ ((2+ C2)r))

2+2 -

These functions are shown graphically for both values of oC in Figs.

18, 19 and 20, 21. Note that the contribution of the k- k = 2 terms

is much less than that from the corresponding 9 = k = 1 expression; this

is especially true in the shielded field case.

In the next chapter f, rther implications of the results dis-

closed in the present chapter will be discussed.



83

2.0

Figure 18

X(r) vs r for

X (r)

1.0

0.0
1.0 2.0

r
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8.0

Figure 19
X(r) vs. r for

a = 1 .0, a 0.2
6.0

X(r) X 1

4.0

2.0

0.0
1.0 2.0

r



85

8.0 Figure 20

X(r) vs r for

a =0.0, q =0.1

X(r)

x10

4.0

2.0

0.0 1.0 2.0
r
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Figure 21
X(r) vs r for

3.0 a =0.0,' c0.2

X (r)

2.0

1.0

0.0 1.0 2.0
r



VI. CONCLUSIONS

Chapters II, III, IV, have been designed to show the interrelation

between the spectral line profile, the electric microfield distribution,

and the pair correlation functions or potentials of the mean force; it

was seen how the correlation function influences the microfield distri-

bution which in turn modifies the spectral line shape.

In Chapter V the method of correcting the Debye-Huckel pair cor-

relation function was indicated and some aspects of the results were

disclosed.

We want to work in reverse in the present chapter, that is, to con-

sider first the implications of Chapter V and then to apply these to a

discussion of the preceding chapters. For this purpose, it is found

most convenient to consider two-body effects expressed in terms of the

potential of the mean force rather than the pair correlation function;

this is due to the fact that in Chapter III, it is this quantity, con-

tained explicitly in T2 (y), which finally enters the microfield

calculation. First, the potential of the mean force will be considered

for the Coulomb example; then, due to its direct application to the

quasi-static aspects of the line broadening theory, the case of the

shielded potential will be discussed in some detail.

For the Coulomb case, the corrected expression for the potential

of the mean force indicates that the Debye-Bckel result overestimates

the effective repulsive potential for smaller values of r, while under-

estimating it at the larger r values: Close interactions are more

favored, weak ones, less so. From Figs. 20 and 21, it is seen that the

contribution to w2 (r) over the entire r range from the J. - k = 2 term
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is much smaller than that due to the I - k = 1 term. Even though

rigorous proof is missing, the supposition that higher complexity

terms (L - k k 3) will be negligible seems reasonable.

The E = 0.2 curve differs from that for E = 0.1 in two respects:

(I) the magnitude of its deviation from the Debye-Hickel graph is larger

over most of the range of r values, the region of crossover being the

only exception; (2) the point at which it crosses the Debye-Hackel

curve occurs at a larger value of r.

The shielded-field case provides results which are more interesting

than those found in the Coulomb case. A comparison of Fig. 13 and 14

shows that the deviations of the E = 0.1, 0.2 cases from the cor-

responding Debye-Hackel results are not only different in magnitude,

but also in direction; as the parameter E is varied from 0.1 to 0.2,

the relative position of the Debye-Hickel graph and the corrected curve

reverse. For C = .1 the corrected curve lies above the Debye-HUckel

figure thus implying that the latter result underestimates the shielding

effects. When e .2, the correction lies below the Debye-Huckel

curve, implying an overestimation of the shielding. For neither value

of F does the correction lie equidistant from the Debye-a'ckel

expression: the percent difference between the graphs is a function

of r.

Now let us consider how this behavior of the shielded field might

affect the ionic microfield distribution. As was indicated in Chapter III,

the low-frequency microfield distribution is strongly dependent upon the

nature of the pair correlation function or the potential of the mean force,

even though these quantities are much smaller than their companion one-body
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terms. Note (see Fig. 3) that the effect of including Debye-Hu'ckel pair

correlation is to shift the most probable field strength markedly toward

weaker fields, while simultaneously increasing the magnitude of this peak.

It is now possible to conjecture about the effect of the corrected

potentials of the mean force on the microfield distribution. In the

= .1 case, the new potential is everywhere greater, which means

that all possible fields are slightly less probable than indicated by

the Debye-H~ckel approximation. Therefore, it would be expected that

the corrected microfield distribution would be shifted little if any,

For = °2, the relative correction becomes larger, as r is increased;

thus, although larger fields become a little more likely, the weaker fields

are much more probable. The microfield distribution would have its peak

slightly lowered and shifted noticeably toward weaker fields, while the

strong field wing would be raised a small amount.

It is fully recognized that the above discussion is only supposition,

and that the microfield calculation must be carried out for various

values before any definite statements can be made. However, the need

for such a revised calculation has been demonstrated.

It is interesting to consider further whether it is possible to verify

or disprove a given set of microfield calculations. One such possibility

exists in the case of the low-frequency or ionic microfield distribution;

this involves the shift of spectral line profiles as shown in Chapter II.

In order to separate the microfield effect from the other shift=inducing

possibilities, we must choose a spectral line for consideration where the

desired effect would be expected to be large. With this requirement in
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mind, it was first proposed that the shift of the peaks of the Lyman -

line be examined experimentally, and the results compared with those

predicted by theory; a typical Lyman P profile is shown in Fig. 22.

J (W)

Figure 22. Typical Lyman P Profile

The experimental study of the Lyman 15 line has recently been done

for a given temperature and density condition by Elton.(45) However, his

results are not conclusive since the position of the line peaks, strongly

affected by self-absorption, do not allow one to discriminate between

currently proposed distributions. There is another possibility which

also concerns the Lyman ig line; in this case the line profile would be

determined holding T relatively constant, for several values of density.

In this fashion, one should be able to observe the trend in the peak shift.

Such an experiment is definitely possible. (48)

It has been established that the correction of the pair correlation

function and corresponding potential of the mean force should produce a
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considerable change in the electric microfield distribution function cal-

culated using the Debye-Hickel expressions. This change will result in

the alteration of spectral line shifts, which, in certain cases, are subject

to experimental verification.



APPENDIX A

In the evaluation of the integral in Eq. (5.13), it was stated

that the contribution of c2  was zero, i.e.,

1s) f(s+2) sin [ (s+2) tan(- b
Lim as ds = 0 (A.l)
R -- o 

s+2

c2 [(as)2 + b27 a

It is the purpose of this appendix to verify this assertion.

C'

-L

Real Axis

First consider the term:

sin [(s+2)tanl(- b sin b 1 ~ ) 3 + 1 1(2j (A.2as 92 as8 3 as
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which for large Re s

=sin + +lo
[-a 3 a 3 s 2

For Re s 0

sin [(s+2) tan-l(--k.)1- 4 - sin ±(A. 3)
1as- a

From Sterling's Theorem,

lnf-(s) = ln(s-l)! V-(s+iL) ln(s-l) - (s-i) + lnf2rr-f
2

in /(s+2) = ln(s+l)! -- (s+3/2) ln(s+l/2) - (s+l) + inIiff

Therefore,

in 8F() Jis+2]) = (s- 1 ) in~s-i) + (s 3. in (s+i)
Ln 2 2-

-2s + In 27r

Q-(2v+l) ln a- 2a +1n 2t (A.4)

or,

ry(a) r(,+2) 2 2'r a2 (A1.5)~

Also, for large Re a

[ +2 s+2
[(as) + b] T (as) (A.6)
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This implies that for large s,

r"(s) /"(s+2) = 27r 2s+2 -2s

S s+2 s+2 s+

Lkas)2+b2 2 
a 8

2lTs e (A.7)

as + 2

Including the sine term we find that the product of s times the

integrand for large values of s becomes

a - Integrand = 2 "2s sin (- T) (A.8)
as+ 2
a

This is in general not equal to zero, which is what must be shown.

After a change of variables from a to = s - 1c- we

determine the log of s I and take the real part. This must be equal

to - 6 if lim 0 0

-- c2

In ] =21T + ( l+)In (j+T)- 2 ( +)

- (1+ a-+ 2) In a - In sin (-b)
a

-- l 2r + (i +o) 1n - 2 - 2-

- (Cr+ 2 ) In a ln a
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Let

~ Re =a cosp+ isno

Then,

Re in Li=[in 2Tr - 20- - (Q-+ 2) In a]7

+ (R cos f + 0r) in R - R f sin

- 2 cos -R cos F in a

For R very large, this reduces to

Re in I I] =KRin R cos9- R or sinV (A. 9

Subject to the restriction M < (P < 3
2

R Re in s - - (A.10)R --

But, this is just the region of integration; hence, Eq. (A.1) is shown

to be yalid.



APPENDIX B

In Chapter V it was stated that Eq. (5.19) reduced to Bowers

expression for 04 = 0. This will be demonstrated in this appendix.

Settingo( = 0 in Eq. (5.19) yields,

f (k) = - 1 = (C-)n-1) (5.20)

where

77- ~ os ( f) + asin(fl T [1ne C- )(n+l) (n1

In order to prove the above assertion, Bowers' result will be shown to

be identical to Eq. (5.20). From Chapter V, Bowers' result is

1
f k) --- . 2 ker 2 (M - (4E k2 (k2 2 (5.21)

By definition, (38)

ker 2 (Re 1K 2  ((B.91)
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where K is a modified Bessel function which is defined as
2

1 2 2r
2 2 

r=O

(B.2)

00 2r+2

z~ a~ [n () .L(r+l) + t(r- 1]
r'= 2 r - 2). 2

In view of B.1 and B.2,

00 2]r + 1

2k ,r- + 2 -o [(Zf
2 f/r+l) F(r-l)

2

+ sin ( f 1.7,~ (!)- 'f(rFl) -f~-

Multiplying by we findk2

k2  • 2 ker 2

k2 r=2 r(r+l) /(r-1)i
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where

Cos (r2E)+ sin(fl)[1n (E k) -1/(r+l)- rl

which is identical to the result derived from Eq. (5. 9) by settingo( 0.



APPENDIX C

Solution of the expression

X (r12  fdr3F(r)[ r (r3 2) - f (r32

(4.43)

2 2
2+ Lj 3 d 4 /r 13 { f( 3 4) -f ( 34 ]fr(r42)

using the Debye-Huckel expression for , and letting f = f

ro
0 rrr) =f'r) = -e-

f (r) f (r)= L e"
0 r

It is here convenient to introduce bipolar coordinates, see Fis. (C.1).

did

3 dxdy

s r

y

x 2 x

Figure (C.1) Bipolar Coordinates
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So r R , r s r r
12 13 2

(C. 1)
3

d r 3= 27 y dxdy

Transforming to s, r coordinates, we use the relation

8 S
dsdr f  dxdy (C.2)

x-R y

r r

Therefore,

d3r3= 21 y dxdy = 2 sr ds dr (C.3)
R

First, consider the evaluation of

I M/Ofd3r 3 F(r13t (r 3 2 ) f (rj32)

f (rl3) - e

(r 3 2 ) - e

r

Before proceeding any further, it should be noted that as in the

text, the interparticle distances are given in terms of the Debye length,
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A consequence of this is that for every volume element appearing in the

integrals to be evaluated, a factor / 3 must be included. Furthermore,

as a result of the definitions (5.2) in the text,

47r/oA 3

or (c.4)

471e A3 = 1

Using the preceding information and definitions, one has

00

.+r

- (4"r C- 3)2 2 -2,+-1 rr - s

2 R [ e J- dr e (-ds) (C. 5
0 IR-rl

0 R-r

00 rift (C.6)

+ R e

R r-R
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R

2 -1
-77 R 1 -fe.77+1 -2 r+ PT 1 r]

e -J -e r

If one pursues this calculation further 
and in doing so introduces the

funct ions

I .e

. (R) = dr 
(C.7)

R

E:. (R) = dr , a final expression

-R

for I (R) can be found:

I(R2 Q eP In ( .1 20 7 7 + K T TT1 ) -! [2 ( ,-'+l
2P 1'R3 ,X -

L (C.8)
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Now the second integral to be evaluated is, II,

)0 d3r4  r4) 3r3P(rlL (r4)" f (r34  (c.9)

It will be noticed that the second integral in this expression is equal

to I (r14 ) / , so

Af I (r 14 ) 1 (r 4 2 ) d3r 4  (C.10)

Again, using bipolar coordinates,

r14  a a

r r
42

d r 4 = -j- ds dr (C.l1)

Therefore,

I I ubsitI (a) ads r(r) rdr (C. 12)

Making the appropriate substitutions and carrying out the rather complicated
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calculation, an expression for II (R) is determined:

E2 F. + _E1 e2 K+-2C(
8(04 2+1)R 6 -P++ 3 OL2+3

) (7n [-3 +20 -F771 (~c+R [(20< r 1 ,~~* i

(c.13)

( ()( -1

20, - 1)+ P71

-e (a) (E+y/ ')-

_____ ~(2 OIL +P7x+1) R -f1

Thus,

X (R) =I (R) + 11 (R)

1(1) 2 f-f+it o+l CC

8(+1)KRL 60' ;oZ+ + 3Wt+3

( 4 2142+11 J - " "
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1 ~~(2k -CIl)R~ i-'P

+fl (R+ 40 +3) E(3~fo. 2+ R E-(20e,+fZFi )R)

+1 e-2k+) 1 -3 1

2 O(+F~T' ee



APPENDIX D

The machine calculations for the work reported here were performed

on an LGP-30 computer.

The numerical work may be separated into two steps: (1) the calcu-

lation of f (k), and (2) the evaluation of r(r)o

1. Calculation of f (k)

From equation Chapter V,

n-60 r-l
k2 1 = r/(n+l) /n-1) (5.20)

fCo (k)n

22  
2 +I

This is the expression derived frcm equaltfion (5.19) for O = 0; the remarks

to be made in this appendix will also apply to the more general result.

In carrying oLt the computer calculation, some problems were encountered

which are worthy of note; in order cc establish a series cutoff criterion,

it was specified that when a term conrfrbuted less than 0. 1% to the

preceding summation, the seriee was to be terminated. However, upon

attempting to verify this step it was found that it is necessary to require

that not one, but two successive terms be less than 0.l before termination

is accomplished; this requirement is due to the oscillatory nature of the

series terms.

An additional feature of the f (k) computation which should also be

noted is that for large values of k, f (k) becomes very small and if
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accuracy is to be maintained, care must be taken to assure that sufficient

terms are included in the series.

2. Evaluation of /(r).

From Chapter V we have,

O(r (r) (dk ksin(k r)[f (k) J(5.23)
2 Tr 1 Li Pf(k)

0

In performing this evaluation, tabulated values of f (k) were

employed. The initial attempt at this computation involved the generation

of sufficient f (k) vs k points to allow a smooth curve to be drawn.

From this curve, additional values of f (k) were determined by means of

interpolation; these values along with those actually generated by the

computer were used in the tabulition. Subsequent investigation disclosed

that /(r) was extremely sensitive to the accuracy of the tabulated f (k)

values. A detailed study was thtn conducted to ascertain the number of

generated points necessary to insure the desired accuracy.

An additional independent study was made to evaluate the affect of

various A. k increments on the P(r) computation. Finally, the expression

for f (r) was carried out to the point where additional integration incre-

ments contributed less than 1.0.

It was stated in the text that the numerical work of Bowers was

considered incorrect. In his paper (5 2) he specified that tabulated values

of ker2,() were used in his calculations; the tables he referenced were;

Tables of Integrals, by H. B. Dwight, The Macmillan Co., New York, 1949.
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These tables only provide ten points on an f (k) curve. It has been clearly

established, during the course of the present work, that the Bowers' treat-

ment is incorrect.
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ERRATA

Page Location Item

8r 1 2  riEq. (3. 1 6 a) Read exp(- r 2  i o28 ) instead of exp (

45 Line 1 The sentence beginning at the end of this line
should read: Each term in this expansion can
be represented graphically by a diagram
which consists of a system of points repre-
senting particles, and a number of connect-
ing lines each of which corresponds to a
factor f(r..); the total number of connecting
lines in tde graph equals the number of fac-
tors, f(r..), in the particular term under
considertion.

52 Line 18 (prM)3 should read (pr M 3) k

57 Line 1 4rep= 1 should read 4EPX 3 = 1

70 Eq. (5. Z0) [In (Ek) - P(n + 1) - Un - 1)] should read

[In (Ek) - T(n + 1) - (n - 1)]

Lines 15 and 17 Interchange the words overestimates and
underestimates

89 Line 8 The sentence beginning on this line should
read: Therefore, it would be expected that
the corrected microfield distribution would
be shifted little if any, but that the peak
would be raised and the distribution nar-
rowed slightly.

1
101 Eq. (C. 6) Insert the factor in front of the first

N/(-'C + 1)

integral inside brackets; change the upper
limit of integration in this integral from
r to R.


