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Abstract

\l‘he Kolb-Griem theory of spectral line broadening occurring in
plasmas is discussed; emphasis is placed on the importance of the
electric microfield distribution. The Mozer-Baranger calculation of
the electric microfield distribution in & plasma is outlined; its
dependence upon the nature of the component particle correlations is
shown. The electrons and ions must be treated separately because of
their inherent differences; the electrons interact through a Coulomb
field, whereas the ions interact with shielded fields. The Salpeter
cluster-expansion technique is considered in detail. It is applied
to the determination of pair correlation functions and the cor-
responding potentials of mean force for both Coulomb and shielded
fields. g The calculations are made up to second order in complexity.
Corrected, expressions for the potentials of mean force are compared
with the cbrresponding Debye-Hiickel results. Significant differences
are found; this is particularly true for the shielded-field cases.

It is demonstrated that use of the corrected pair-correlation func-
tions in the Mozer-Baranger microfield calculation could signifi-
cantly alter the results. The possibility of including such corrected
results in the line-broadening theory is consideredy it is indicated
that the influence of these corrections on the profifeBsf the Ly-nn~;3

line should be experimentally observable.
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) INTRODUCTION

The theory of spectral line broadening has recently(s)(G) been
improved to the pcint where the profiles of both overlapping and isolated
spectral lines, arising from hydrogen and helium plasmas, are well under-
stood. Two features of these spectral lines are frequently of special
interest: the line half width and the line shift. The first of these
quantities, together with the entire line profile is theoretically pre-
dicted to within 10% of the experimentally determined values. However,
the spectral line shift is generally not in agreement with experiment;
deviations of better than 30% are frequently found. (46) Furthermore,
thege variations are not always in the same direction. It therefore
remains to explain these shifts satisfactorily.

In the construction of the general line-broadening theory, numerous
approximations have been made. A review of the underlying assumptions
leads to the conclusion that the most probable causes of the shift dis-
crepancy are: (1) the crude treatment of strong electron collisions,

(2) the use of the Debye-Huckel pair-correlation function in the calcu-
lation of the electric microfield distribution, (3) the approximate treat-
ment of ion perturbations in the cases where the present theory is not
ldequlte-(SI) Although these quantities will be discussed in detail in
succeeding chapters, it may be mentioned here that the pair distribution
function specifies the spatial distribution of two interacting particles,
while the electric microfield distribution function determines the spatial
characteristics of the electric field in a plasma. Thus, the electric
field perturbs the radiating atom and therefore influences the nature of
the radiation itself. It is known that in some instances the line shift

6




is particularly sensitive to the electric field distribution; thus, a
method of checking these distributions is available.

Current theories of line broadening rely on the Debye-Huckel distri-
bution functioncl) for both the Coulomb and shielded fields. However, as
will be indicated later, the assumptions necessary in the derivation of
this function are not applicable to many plasmas of interest. It is the
purpose of this thesis to calculate the pair distribution function for
the Coulomb and shielded electric fields, to consider in detail the various
orders of correction, and finally to indicate what significance, if any,
the deviations from the Debye-Huckel results have ss related to the shift
of spectral lines.

For the purpose of this investigation, it is necessary to specify a
particular plasma model. The one chosen eliminates infinitely attractive
potentials fron.conoiderntion. The electrons are treated as negatively
charged particles in a uniformly neutralizing background, and the ions are
assumed to be shielded by electron clouds which travel permanently with
them. That such & model is applicable to practical plasma problems may
not be immediately apparent; further discussion and justification will be
presented in Chapter III.

The motivation for choosing this particular model stems from the work
of Mozer and Batanser(l) » which describes a clever method for calculating
the electric microfield. The Baranger approach utilizes a cluster-expansion
program vhich 1is reminiscent of the well known Mayer cluster development.
Particle correlations are included in this theory as a perturbation
expansion: the first group of terms contain the l-body or independent

correlation functions, the second group the 2-body or pair-correlation




functions, etc. For such a process to be valid, increasing orders of
correlation must become very small, in a perturbation sense. Although
both the electrons and ions contribute to the electric microfield, they

do so in & very different manner; in view of this difference, discussed

in Chapter I1I, the two contributions are handled separately. The relation
of the corrected correlation functions to the Mozer-Baranger theory will

be considered later.

In order to effect the desired correction to the pair distribution

function, the method proposed by Salpeter(z)

(52)

is used. This procedure
has previously been applied by Bowers to calculate the Coulomb poten-
tial of the mean force; however, since we consider several aspects of

this work to be incorrect, the present work reverts to (2) as primary
reference. The Salpeter technique embodies onme of the cluster-expansion

methods frequently used in statistical mechanics. It differs from most

other approaches in that it is designed for use with systems of particles

having long-range interaction potentials. Although the most notable of
these is the Coulomb potential, the method should also be useful when
dealing with potentials which are long-range, but finite. The applicability
criterion 1s that the potentials involved should have ranges equal to J
or greater in magnitude than the average particle separation, given by

T, = P -1/3 ( P = particle density). In the cases to be con-
sidered here, this requirement is satisfied; it is automatically satisfied
for the Coulomb case, and for the shielded potential it is also valid in
the range of densities and temperatures of interest to most plasma line

broadening applications. Another aspect of this proposed correction




procedure is that it involves corrections which refer to particle con-
figurations: The first term of the pair-correlation function considers
the most simple clusters of interacting particles; the second correction
takes the next most simple configurations and so on. The details of
this expansion technique are dealt with in Chapter IV.

The corrected distribution function is studied as a function of
particle density and temperature. It is shown that in the given range of
parameters, the second order (complexity) contribution is much less than
the first order term. However, the deviation of the new functions from
those predicted by Debye-Hiuckel theory will be shown to be quite large
in some cases. In light of this last disclosure, the expected influence
of the corrected pair-correlations functions on the microfield distri-
bution is considered and the need for a revised calculation is indicated.

To summarize: In Chapter II some aspects of line-broadening theory
will be discussed in an attempt to point out further the motivation for
the problem. Chapter II1 deals with the electric microfield calculations
of Baranger and Mozer and indicates the importance of the pair-distri-
bution function in this respect. Salpeter's technique of calculating the
pair-distribution function will be the subject of Chapter IV, and its
application to both the shielded and Coulomb cases is covered in Chapter V.
Chapter V1 will present the conclusions of this study, together with

recommendations for future work.




II. SOME ASPECTS OF LINE-BROADENING THEORY

From 1958 to 1962, H. R. Griem, A. C. Kolb, and M. Baranger developed
a theory of spectral line broadening in hydrogen and helium plasmas. This
theory pointed out the importance of electron broadening and provided a
coherent treatment of the joint electron-ion contribution to the resultant
spectral line profile.

The approach is simply this: electrons and ions, treated as clas-
sical particles, perturb & radiating atom, thereby influencing the intensity
distribution of the resulting radiation. Looking more closely at the
procedure one sees that in general, three steps are followed:

(1) The radiating atom is assumed to lie in a static electric field,
E, created by the ions, and hence is subject to Stark splitting.

(2) Electron broadening of the resultant sharp lines is treated
by the impact approximation.

(3) The electron-broadened spectrum is averaged over the probability
distribution of the electric field.

Step (1) amounts to the usual Stark effect, where the electric field E
is calculated for a particular ion configuration.

In carrying out step (2), the electrons are treated in the classical-
path approximation. In order to justify this assumption that the electrons
may be treated as classical particles with straight-line trajectories,
one must state that the momentum transfer in such an impact perturbation
is small, 1.e., -él-’!- << 1 where /\ P momentum transfer and
P = initial momentum. Another necessary restriction is that the perturber
wave-packet dimengion, A X, be saall compared with the impact parameter,

1 . Thus, it is seen that we are dealing with interactions which

10




11

on the average are weak and long range.

The third step requires that an electric microfield distribution be
calculated for the plasma model previously introduced.

Fig. 1 illustrates: (a) the nature of the classical-path approxi-

mation, and (b) the type of overlapping spectral line handled by this

theory
(a) T~ i is referred
v
to as the collision time.
yt
= .+
ti(t) :i(t) 4@‘ Xit
A\l radiating vhere r.(t) 1s the position
~ atom
vector of the i th elec-
tron relative to the
radiating system.
(b)
— ok
«<'\ a
Ll
oL
' A
9 P’ b

where & (o€, o¢', o¢ ") represents an initial level with principal
quantua no. “a” and substates X , o¢ ', o¢ " and b ( lﬂ R f? ') represents

the corresponding final states.

Figure 1.
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The transition between level a( o¢ , ', o ") =~———p b g s /e D)
may give rise to a complicated intensity distribution such as that shown

in Fig. 2.

J (W)

Figure 2. Spectral Line Intensity Distribution

It 18 possible to derive an expression for the spectral intensity
distribution function for a quantum-mechanical radiating system with
time-dependent dipole moment, /4 (t) assuming an equilibrium

situation, (14) The final expression for this quantity is

oD

4 it
J (W)= 29 7 ge dt e OM0) ¢ (2.1)
371rc? r

average
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where

J (W)

]

Spectral Intenmsity

v

Angular Frequency

¢ = Speed of Light

(ad
it

Time

Boltzman Factor = Zal e £ (M, +y(t))

Partition Function

-k T

Ty W
n

Boltzman Constant

T = Temperature in degrees Kelvin
H = Unperturbed Hamiltonian
V(t) = Time-Dependent Perturbation

Dipole moment of the radiating atom at time (t)

JCE)

E z = Aversge over &ll perturber configurationms.

AVG,
The averzge specified in Eq. (2.1) refers to the average over all possible
perturber collisions, e.g., over 211 values of: (1) impact parsmeter;
(2) perturber velocity; (3) collision angles; and (4) collieion time.
This averaging process is necesgary because { M (t) /4 (0)} is
always calculated for £ particular instantaneous perturber ¢:onf.i.gumt1.on.(1"D
Since the interaction is considered weak, it is assumed in the following

that V (t) {< H, or that

/‘3 &gl fY (2.2)
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Thus ﬁ is independent of time and may be taken outside the integral
giving (aside from a constant factor)
->)

J (w) = ﬁ’ Tr Re -}(dt e iwt{/k(g)/x(o) g (2.3)
(o)

average

The problem now is the calculation of { /A (t)/{'{ (O)Z . This function
is frequently referred to as the auto-correlation function; if the dipole

moment of the radiating atom is M (t), and further, if the perturbing
/4

interactions serve to damp the dipole moment, there exists a correlation
time, Tc, past which the time integral over the correlation function
fast approaches zero. The correlation time then sets practical limits
on the time integration performed in the evaluation of J (W ) and thus

represents & messure of the radiating system "memory". In general, it

is not possible to determine this function; fortunstely, there are two
special cases when a solution, using established techniques, can be
obtained. These are:

(1) The collision time ‘T 7 T, , the correlation time;

(2) The collision time T(( T , the correlation time.
c

The first case, (1), is referred to as the quasi-static approximation.
Here the collision is so strong that it completely disrupts the phase of
the radiating system in a time short compared to the collision ti.-e,']' H
the disruption takes place so rapidly that it may be sssumed that the
perturbing particies (ions) remain fixed during '\' . This first approxi-

mation {s useful for dealing with iocn perturbations over major portions
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of most spectral line profiles. It is particularly good in regions well
removed from the center of the line; this of course is true because of
its strong-collision nature.

In the second case, the impact approximation is applicable; here
many collisions are necessary before the phase of the radiating system
is completely disrupted. This implies that interactions treated in this
approximetion are on the average weak. Electrons are very successfully
handled with this technique everywhere but on the far wings of the profiles;
it may also be used in some instances to determine ion contributions at
the center of the line.

The quasi-static approach is used to accomplish step (1) and the
impact approximation is used in step (2). Hence, at the end of these
first two steps, we have an expression for the spectral intensity which

is a function of both the frequency (») and a fixed value of the electric

microfield, E:
= 2 -1
J (W, E) -.?"'_— [_wz + (W -d - C(E)) ] 2.4)

where: w = line half-width as determined from step (2).

a.
I

line shift as determined from step (2).

C(E) = a function of the field strength E; it is proportiomal

to B for the linear Stark effect and to 32 for the quadratic

Stark effect.

In order to find the intensity distribution J (W), it is necessary to

average J ({0 , E) over a suitable electric microfield distribution, W (E).
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Therefore,
o
J (W) = W(E) J (W, E)dE (2.5)
o
or, o0
I (W) =2 YE)JE (2.6)

w2+ (W - d - C(B))?

]

Recall that the function W (E) gives the probability of finding an electric

field of magnitude E, at a particular spatial point which we choose to be
the radiating system. This function is strongly dependent upon the specific
characteristics of the particle correlations. The exact nature of the

dependence is shown in the next chapter.




I1XI. THE ELECTRIC MICROFIELD DISTRIBUTION FUNCTLON
A, Introduction

The lasgt chepter indicated that when the quasi-static approximation
was applicable the perturbers involved may be considered to produce & time-
independent electric field. To srrive at an electric microfield distribution
function, one must average over all possible perturber configurations or,
what amounts to the seme thing, over the possible electric fields.

ﬂ°1t8mﬂtk(4) first calculated this distribution function for &
gas of charged perticles; however, in doing so he neglected to account for

the fact that charged particles intersct with one another and hence are

strongly correlated. He determined thz probability of finding a particular
electric field E, due tc & static rendom distribution of singly charged
ions, in & specific rarge, E°<: E <on + d E. Such a development repre-
sents & strong-ccllision thecry, since it neglects the weaker bug highly

probable perturbstive intersc:ions where correlstions are importsnt. There-

fore, it is not surprising that the Hcltsmark thecry incorrectly describes
the centex of spectral iines; but gives much better resuits when applied
to line wings. This theory will also be briefly mentioned in Chspter iV,
Since this initisl work, others have attempted to improve on
the theory of elecziric microfield distribultons; the primary effort has

been to correctly include particle ccrrelation. Bcker(17), and Hoffman

and Theiﬂet(ls), followed the Holtsmark procedure of assuming statistical
independence, bur replaced the Cculomb field with & shielded field. Broyles(zo)
uses the Bohm-Pines collective-coordinate technique by considering short

and long range interactions separately in his evaluation of the microfield

distribution at & radiating fon. Margenau and Lewis (21) alsc consider the

i7
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electric field at an ion due to perturbing ions, but neglect the inter-iomn
interaction. This lest method also has the disadvantage of not being
applicable to neutral atoms. Although this criticism is not true of the
Broyles® approach, it should be pointed out that his expression for the
microfield distribution, in the limit T approaches infinity, does not

reduce to the expected Holtsmark result.

In two P&Perss(l)uozer and Baranger put forward & new method

of including correlations in the calculation of the electric microfieid

distribution functions. The construction of this theory involves & per-
turbation expansion and has the desirable feature of reducing to the Holtsmark
result in the limit where T approaches infinity. To be practical, we must
restrict its use to plasmas where the interaction energies are considerably
less than the thermtl energies, i.e.. less than kT. It is possible to !

calculate g1l orders of ccrrelstion, but only the two-body example is

developed in deteil.

The actual ceglculetion of the microfield distribution function
will involve the Fourier transform of the distribution function rather than
the function itself; here, &2 in many instances, the transfcrm is easier
to handle. In the following work, E, refers to sn arbitrary electric field;
it will later be used to refer to both the Coulomb snd shielded fields.
Following the notation of Mozer and Baranger, we refer to the collective
electron field as the high-frequency f{eld, and the resultant ion field is
termed the low-frequency field.

B. The Mozer-Baranger Theory(1)

Consider a volume V with & given number of particlies N, the

coordinates of which are I ‘52,..... I the particle density is given
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by /O = % . Furthermore, it is assumed that thermsl equilibrium conditions
prevail. The quasntity to be calculated, W (E), gives the probability of
finding a total electric field E in & range E to E + dE at a given point

in space. It 1s usually convenient to take this point as the origin of

the coordinate system. The Fourier transform of the field distribution
function is

ik.E 3
Fgk = |e W (E) d” E (3.1)

where the field E at the origin is equal to

i=1

‘51 = field produced by one of the particles located at point r Now

T
it is well known that Eq. (3.1) may also be expressed in terms of the
particle distribution function P (;1, I.N)' Thus, we replace

W (® d3 E in the Fourier transform by P (Ll "t Ey) a3r. where

™
P (3‘1 **t Iy ) gives the probsbility cf finding the N particles in a
particular configuration. For a classical gas in thermal equilibrium,

P (x; -+ xy) is the Boltzmann distribution,

apu (& PP sﬂ)
P (r ese EN)= e
b SRR

volume

3.2)

N 3
T
i=1
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Here, we have defined

3, ... 4.3 LI
drl 'druz-r'-d ri

i=1
With the above substitution, Eq. (3.1) becomes

ik B+ - + By) .
PG) = |-oe | e~ PGy - g 1 d’r, (3.3)
i=l

Using a trick similar to that employed in the usual cluster-expansion

procedure, we may write:

ik + E ik .
~ ~i ~
e = e si-1 +1 (3.4)

O +
3 1
Substitution of this expression into equation (3.3) gives:

F(k) =[f E + % P+ > @, ge + ---]r(,r_l---;n)“!! d3r1 (3.5)

1 1<} LN

=F () +E (3)+---+ru(gg+-.. (3.5a)

where

(3.5b )

=
P, ) =ff Z Qpi gﬂi "'%P(ﬁl'”,u)ﬁ‘d"’r
{

1<j< KM 1
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Since P (51 °** Iy) is symmetric with respect to an interchange of particle

coordinates, it is permissible to write F (k) as
o

N
E () = M [..[p e p T 3.6)
" ww - wye f fpl PP B B ) g 4R €

Note that in this expression it is possible to integrate over all but the
specified M particle coordinates thus obtaining a new probability function

PM which depends only on the M coordinates (51 cen EM)’ and is equal to

VM times the M-body correlation function. Hence, we write:

F, (k) = N ¢ ff;p gﬂ P (x. «-- r)-n-dsr (3.7)
M 3 .1
W - M) 1 M M1 M i

i=1

PH can now be expauded in a perturbation series irvolving increasing orders
of correlation. (50 Thus, the first term conteins only theproduct of one-
body or independent probability functione; the seccnd term involves the
two-body interaction corrections, while each successive term includes cor-

rections involving one more particle added to the particle cluster. To

i{llustrate:

3 -
VR, =8 (r,)8,(xy)s(xy) + sl(gl)sz(t > )+ sl(r )sz(nrl s Eq)
(3.8)

+
31(13)52(’ , 52) + 33(}:_1, Xy ,53)
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where 8 (Ei) represents the one-body or independent probability function,
8y is the two-body correlation function, and so on. Since the s func-
tions are also symmetric with respect to an interchange of particle

coordinates, FM (k) becomes

M
F (k) = P ... P (r vee v) T @3
M - M)'f f Poc P M Trl i

i=

M
-M
- L 3
M! (N-M)! C{H?” ],f f77'¢1 '1 (}:_1) d 1‘1
1=l

M
+cM) fj 8, (r,) s (r r)“?d:,r
1. 1,2 Tren g sl 1) T4 4w

13 1=1 ﬁ
+cm) RCIRTINGC I 38 TN )" a’ (3.9
s , T .
1...1, 2, 2 ST % 1% JIRINY r G2
+ e ff L5y 8, TR ¢ ﬁ
s, (r,) 8 (r,, r., T
1--.1, 3 LU ~) =10 L2 TI-(H 1

i=1

v oS sy T,
=6

S TR S
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The coefficients C (M}u oy Hgeee are numbers equaling the number of
ways to choose distinctL gr::p,s oJf /Uﬁlﬂj, ""/“1 particles out of a
total of M identical particles, with Jt < M < /u-l . Distinct
groups implies that all the particles of a specific group are different
from all particles of any other group. In general, if there are

)\i /{i J AJ/J'J etc., with the condition that )\i ,“i + /\j/aj + e

+ A\ /,( = M, the coefficient is
T T

c(M) - M

T AT P e A (,ui:))‘ i }\r:g,t;:)):‘:’. (3.10)

One can define a quantity hﬂ_(k) as
i

p® [ f(pl% « Dy s Sy ~---h)‘['|"dr (3.11)

With this definition, the Fourier transform of the field distribution,

in the limit as N and V approach infinity, while the density /a =

remains constant, is

Ai )Y
F(k) = Z [ cHM) (k) ** b 1(.k):‘

My <o -.)/‘ ‘:“1“' Ve e
all partitions
of M (3.12)
AL
BN D AR L
M=1 N0 M - M

.
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e [5 A m ]
= exp /’i=1 /‘li!

This expression for F (k) is one frequently found in the conventional

cluster expansions(5°), an exponential of a power series where successive
terms contain higher-order clusters. It can be gshown that in the high-
temperature limit only hl (k) remains and that

h, (&)
ra= 1"

ik « E (x)
e pfa-er T ek
=e

vhich with E (r) = sg;_ can be shown{1) ¢5 pe the Fourier transform of
T
the Holtsmark distribution function.

Now consider the pth term in the series argument of the exponential,
%?— hP (k) ; this may be expressed as an integral, as indicated by
Eq. (3.11), the value of which is determined by the properties of 471
and 8p - The salient features of the sp are: (1) They are different
from zero only when the p particles are clustered; (2) The region of
particle correlation is finite due to screening by the charged particles
in the gas; (3) 8p 8oes to zero as T approaches infinity. Since the 991
decrease rapidly as the distance from the field evaluation point is increased,
the integral over all space is convergent. For finite values of k, hP(E) is
also finite., That the convergence of the integral is dependent on the

factor is apparent since for large values of all the 51 the sP does not

necessarily vanish since the particles may still be close together. One
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would also expect that for finite k and large temperatures the successive
terms in the exponential of (3.12) would be proportional to increasing
powers of the inverse temperature. Then only a few terms in the expansion
are necessary to get a good approximation for F (k) in the high-temperature
region.

Eq. (3.12) is quite general and may be of interest, in the
high°tepperature limit, for a number of fields. The electric-field

distribution follows immediately upon applying the inverse Fourier Trans-

form to (3.12),

1 -ik - E
WE) =—— | e F(k) a3k 3.13
@em ~
C. The High-Frequency and Low-Frequency Fields

Before continuing in the calculation of the electric field dis- {

tribution function, we will discuss the physical nature of the electric

field contributions. Due to the differences in the time variation of
their resultant fields, it is desirable to treat separately the electronic
and ionic contributions to the total field. We follow the notation of
Mozer and Baranger, referring to the field of the electron as the high-
frequency component and that of the ions as the low-frequency component. |
That it is reasonable to consider the contributions separately is indicated
not only by the differences in the time characteristics of the fields,

but also by the fact that the collective fields of the electrons and ions
are much different. 1In order to discuss these matters further, it is
necessary to establish suitable time scales which are characteristic of

the ionic and electronic motion. For this purpose, the concept of




26

relaxation times are introduced. If we consider a gaseous system of like
particles which originally have an arbitrary velocity distribution, the
time required for a Maxwellian velocity distribution to be established
through collisions is referred to as the relaxation time.

It has been shown(53) that in a positive ion-electron gas,
where the velocity distributions of both electrons and ions are initially
arbitrary, the electrons will come to Maxwellian equilibrium much more
rapidly than will the ions. The appropriate relaxation times which

govern this approach to the Maxwellian distribution are taken as charac-

teristic of the ionic and electronic motion.

Returning now to a consideration of the physical nature of the
two field components, we realize that it is not correct to use a
Coulomb field for the individual ions; such a procedure would completely

neglect the ion-electron interaction. The low-frequency component contains

a contribution from the electrons since the ion-electron interaction
establishes a shielding electron cloud about each of the ions. Thus,

the low-frequency component consists of a sum of all the separate shielded
fields. The correct method for obtaining the low-frequency component

is to calculate the time average of the electric field for a given ion
configuration; the time over which the average is computed should be ghort
compared to the ionic relaxation time, but long compared to the cor-
responding electron time. Since we are involved with a time-averaged
component here, it is proper to use a Debye-Hiickel shielded field for
each ion. (1) Note that the shielding is due solely to electrons; ion-

ion interactions are taken into account in the pair-correlation functioms.
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Because the ionic time of relaxation is much longer than that
for electrons, an average of the high-frequency component of the micro-
field over times the order of the ionic relaxation time, will vanish.
Hence, it is reasonable to consider the high-frequency component as a
gas of electrons imbedded in a uniform neutrali?ing background.

The above procedure is essentially that followed by those who

describe plasma behavior by collective coordinates. (26) However, the

arguments presented here are not intended to imply anything more than

plausibility. The concept of low-frequency and high-frequency com-

ponents can be derived more rigorously from the collective-coordinate
approach.(zs)

At this juncture the Mozer-Baranger approach resorts to the usual
Debye-Hiickel method to determine the shielded fields of the individual

ions. The validity condition for this technique is that the volume of

the electron cloud is large compared to the average volume per patticle.(27)
Thus, the ion field is found to be

-r
. TP T 701
13 Y (.14)

i

where \= Debye length. #
Consider now the two-body correlation function which will sub-

sequently be used. For the high-frequency component, treated as a gas of

electrons against a uniform neutralizing background,the potential of the

mean force is given by:

(3.15a)
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and the corresponding correlation function is:

2 = ﬁw (}: s T )
VR (. ) = e 24 2 (3.15b)

These expressions may be derived by the Debye~Huckel method, but for
the purpose of this dissertation they are defined and derived from a
different point of view in the next chapter, as are the following results

for the low-frequency component:

)2
2 —
= €
v, (5, ) = . Az (3.16a)
12
and
- Bw (r,, r.)
Vzl’(f'l, Ez) =e ‘B 2'A" A2 (3.16b)

It is seen from these equations that the only difference between the
two-body correlation functions for the electron and ion cases is contained
in the definition of the shielding length, A\ or A /f 2.

D. The Fourier Transform of the Field at a Neutral Point

The following procedure will be considered in some detail and
is applicable to either the high-or low-frequency case.

The neutral point at which the field is to be evaluated (the
field evaluation point) is chosen to be the origin of the coordinate

system. In this case the s (’1:1 ) =1 and the one-body term, lohl(k) , 18

ik . B
= ~" = 3
Phy k) -/0 f (e -1y dr (3.17)




29

”n
Since EA =‘51(r1) we may set k = 12k with no loss of generality,
and Eq. (3.17) reduces to

oo

_ 2
/Ohl(k) = = 477'/0 - jo(kzl)) r; dr (3.18)
=]

1

where j 1is the zero-order spherical Bessel function(ze), and E, is

o
the magnitude of the single-particle field; a shielded field is used for
the low-frequency case and a Coulomb field for the high-frequency case.

In the latter instances (3.18) may be evaluated analytically, yielding

3/2
h (k) ==4_
F o0 SPem e (3.19)

which depends only on the magnitude of k. Prior to writing a similar
expression for the low-frequency case (L.F.) it is convenient to make

the following definitioms:

(a) A unit of length r 1is defined by
o

3/2
4 T 3o _
15 @m) ro’ =1

L
ro is almost equal to the radius r , where
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(c) Two additional units are

S=;_.L1
E
o
and
x=}k|E

o

These units will be employed in the remainder of this chapter. Thus,

(3.19) becomes:

3/2
H.F. /‘Dhl (k) =-x (3.19a)

The one-body term for the shielded field is given by

[- -]

3/2
/0h1 k) =~ 15 J- [1 +3 (;)] 224z (3.20)
(81)1/2 A °

where
2

- 1/2 c. 172
zZ Q+%/A)x 2 exp[- (.:\‘2) x z]

a4
]

1/2
Z = r coordinate divided by (ek)

Further let us define
0
y& =——x (3.21)
A

Hence, Eq. (3.20) may be written as

3/2
Ly w=-x Y o
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This relation, which defines \H (y), must be evaluated numerically.

Now the two-body term, h_, is found by letting /Ai =2 in

28
Eq. (3.12). Thus, we have

2
- 3 3
G (k) e J (Pl [PZ sp(ys £,)) 7 &y (3.22)
where from Eqs. (3.8) and (3.15)

~Pw(r , o)
= 2°° ~27
s2 (;1, r)=e 1 (3.23)

In the high-temperature limit one may linearize this expression:

5 (), 1) S -Bv, (540 Xp) > (3.24)

which implies that

£ : =z P : 33
7T TS Row, x5 4 rodr s (.25
or in dimensionless units,
/02 ~ 372
7 h@=x Y, »m (3.25b)

Here W z(y) contains the two-body correction term. Thus, vll (y) and
SU 2 (y) refer to the appropriate one-body term and the two-body cor-
rection respectively. For the very high-temperature cases where the

function "2(3;1! 52) is given by the Debye-Hiuckel theory, it is possible
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to evaluate this expression by expanding the various terms in the inte-
grand in spherical harmonics. However we are not interested in this
solution here. Attention will be confined to comments about the general
character of Eq. (3.24) and its application to the calculation of micro-
field distribution function. It has been shown that the value of
h2 (E) for the high-frequency component is much larger than the cor-
responding quantity for the low-frequency case; this is of course due
to shielding effects.

The Fourier transform of the field distribution at a neutral
point, Eq. (3.12), to the order of approximation used here can be

expressed in dimensionless units as

3/2
F (x) = exp [-x { ‘V, (y) -l'uz &) ] (3.26)

An example of the two-body correction, 4)2 (y) for the low-frequency
case is shown together with the corresponding one-body term for com-
parison in Fig. 3. From this graphic illustration it is apparent that
for values of x which do not make the exponential exceedingly small,
and for values of tol A from zero to one, W 2 (y) is indeed much
smaller than 9”1 (y). When the two-body correction is small compared
to the one-body term, corrections from higher-order correlations should
be negligible for the range of parameters in which we are interested.

E. Microfield Calculation

The Fourier transform of the field distribution, F QE), wvas
shown to be independent of the k direction. This implies that the dis-

tribution function itself should also be independent of the k direction;
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therefore, we define a function H(E) for the scalar quantity, E, or in

dimensionless units H( 8 ): (49)
H8) = 4T &% w () (3.27)
~~

If we now substitute the dimensionless form of Eq. (3.13) into

Eq. (3.27) we find

n) = 275":— sin (x8) P(x)xdx (3.28)

This final expression has been evaluated numerically for both high-
and low-frequency components at a neutral point. Results are presented

in terms of the parameter r /'),

- 153 g V2 _1/6 -1/2

—xo' = ( '-4-) (T) /0 T (3.29)

where

electron charge

q

k = Boltzmann's constant
f = particle density
T

= temperature in degrees Kelvin.

This quantity indicates the departure of the field distributions at
finite temperatures from the infinite temperature or Holtsmark result,

vwhich is characterized by r_ /X =0,
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Several graphs representing H(§) for various cases and values
of ro / A\ have been prepared. However, only the graph in Fig. 4 will be
discussed. Here, for ro/)‘ = 0.6, the low frequency H(8) is shown
for two cases: (1) only one-body terms included, (2) one- and two-body
terms considered. Note that even though le(y)<< Ll)l (y), its
inclusion has a pronounced effect on H(S), the microfield distribution
function; specifically, it raises the distribution maximum and shifts
it markedly towards weaker fields. The conclusion is that even though
V)Z (y) is a very small quantity, its nature strongly influences the
form of H(8). It will be shown in chapter V that the corrected th.F.
is considerably different from the Debye-ﬂﬁckel result. Hence, this

correction might be expected to alter W (E) or R (S) considerably.
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1V. CALCULATION OF PAIR-CORRELATION FUNCTYONS
A. Introduction

A large number of problems in statisticel mechsnics is con-
cerned with calculation of correlatiom functions for systems with
large numbers of particles. The method of ¢luster expmnsions(zz)’ 23)
has been most successful in this regard when applied to systems of
particles with very short range interactions. Using this techmique,
one is able to derive infinite expansions in powers of the particle
density,/‘D s for the many-body correlation functions. If the density
of the system is sufficiently low and if the particle interactions have
short range these expansions converge rap:dly; this is true when dealing
with neutral molecules.

However, in the case of long-range potentisls, of which the
Coulomb intersaction is the prime example, this cluster expansion approach
is not applicable regardless of how dilute the system may be. Debye
and Huckel proposed & method (1923) for tresting wery low density systems
involving Coulomb interactions. Since this work, several authors(9)(22)(47)
have developed techniques for use with systems of finite density which
yield for the Debye-Huckel result as & first spproximation end which,
at least in principle, alsc offer higher-order correction terms.
Generally, these improved methods express the correlstion functions in
terms of complicated integral equations.

The present chapter will essentislly present the Salpeter
approach to the problem of calculating correlsation functions for a
collection of particles which intersct through long-rsnge potentials.

37
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The problem of how to regroup the terms of & cluster expansion so &s to
give meaningful results when applied to sitd@tions involving long range
potentigls, is considered in detsil. In this development of the
expansion approach it will be assumed that we are dealing with an
equilibrium system of volume V which contains N particles of mess M;
there exists a central interaction potential U(rij) acting between

any pair (i, j) of particles. The thecry is classical in nature and
assumes only two-body interactions. In order thet the classical assump-

tion be correct, infinitely attractive potentials are forbidden.

B. Preliminary Statistical Mechanical Considerations

In this section, some general concepts from statistical
mechanics, which will be necessary in the discussion of the Salpeter
theory, are discussed. Of central impcortance in statisticel mechanics

is the partition function. It is defined as

- B
1
z= L\ l.xr 3 3 3
h%! d pl eee d pn d tl s e daru (4.1)
vhere:
3
d =
P, =d Py dpyi dp . *
d3 =d d dz
r,Tdx;dy; dzy
N
ig; L (p + p 2 +p 2) +U(xr .- 1)
T xi zi awl ~N
i=

H is the Hamiltonian of the system.

U is the potential energy of the gystem.
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p; = momentum of theAiﬁh particle.

>~

Iy coordinate of the ith particle.

r
h

Planck’s Constant

Note, also, that N and V are considered large; it is frequently con-
venient to have both V &nd N approach infinity in such & wey that the
density, f’ = N | remains constant.

\

Explicitly using the above H and carrying out the integration

over the momentum, we have

N
v
z = %N'-_/\?“— (4.2)
where
-N “u(r; *-- 1)
QN=V ess e ~L wdag oo der
1
=_h_ . u(t eoe T, ) — 1 (
(2T|‘Mk-r)1/2 ’ 'Ad ~N/ T u‘£—l “.»EN) (4.3)

kT

Now QN is referred to as the configuration integral. Making the
assumption that the potential energy ugil v+ Iy) is equal to the sum of

pair potentials,we write

uE e E) = 2 i) (4.4)
P T B

2

121 j4N

uij
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Then

=N - 3

_ . 1<y "3 3 ...
Q=v . e d’r, dry (4.5)

(1) Distribution and Correlation Functions(3)

It is now possible to define a distribution function.
Suppose we observe a particular equilibrium configuration of N particles
whose interaction potential is given by u gil coe EN)' The probability

that particle 1 will be in d3r1, 2 in d3r2, and N in d3rN, is given by

-N -1 e-ugsl...xu)

PN (51 ves m)drl...dtu =v QN d3r 3

L d7ry (4.6)

The probability P, (r1 cee £n) d3r1 eee dsrn that particle 1 will be in
d3t1, 2 in d3r2, ***, nin d3rn regardless of the arrangement of the
remaining N - n particles, is the sum of all probabilities (4.6) con-

sistent with the specified (1 -++ n) configuration: 1i.e.,

=N -1 =u(5 ves 1)
sece = LR 1 A'N 3 s e 3
subject to the normalization condition
3 3.
g Spn ({1-.-:n)dr1-n drn—l . (4.8)

If we remove the restriction that particle 1 be in

d3r1, 2 in d3t2, etc., and specify only that one particle be in each

St alifetthe £




element dari’ the correct probability function to use is/on(}-’l cee g ) ;

it is related to P, (£1 ses fm) by

= N !
r sess T T et seo YT 409
Son € e 5 p— Py 1ot &) (4.9)
1
where the factor —(s—TT gives the number of possible ways such an
-ny; .

arrangement can be made. The normalization condition here is

3 ....3 _ N!
YR‘ @, e ) A dr_ = (4.9)

Now, since this dissertation is concerned with plasmas,
let us consider the application of thege distribution functions to
gaseous, or more generally, fluid systems. As examples, we choose /’1 r

and/az. From Eq. (4.9)

L&) =8 ) (4.10)
=N Q“'1 vi .. e““(lr‘1 2”)43:2 e &

fom o= a0 @5 %.11)
=N - 1) %-1 B T W B2t ey o dny

The normalization condition, Eq. (4.9a), with n =1 yields

3
P dr. = N =N 4.12
f R Y @12
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In & fluid all points £1 are equivalent if we neglect the

boundary layer; that is, /01 (fl) is independent of I,. Hence, from Eq.(4.12)

1

N

/01 v

/0 , the particle density

]

The two-particle distribution function for the fluid case is only a

function of the distance between two points. This may be expressed as

/02(11’12)=/02 €, -

Again, using Eq. (4.9a) ve find,

3 3 '
(r. , r,) d d = N

3
- -1
J‘fz (ru) dr, = ﬂ__v)_u

An examination of Eq. (4.8) shows that if the distribution of particles

or

is completely random,
p_=V (4.13)
p and /D a are said to be "independent" if they satisfy the following
n
relations:
pn ('tvl eee En) =p1 (:1) s pl (En)

(4.14)

s g = A e fl e
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If, however, the n probabilities, Pl (ri), are not
"independent”, it is possible to define a correlation function, gn,
which provides a measure of the deviation of p or /On from the
n

"independent" value, Considering only /0 , Wwe can write
n

/Dn (E,l ce En) =/01 (—f.l) /1 gn) & (E.‘I. ”'»\En)

Returning to the fluid case, (4.15)

n
n(Ll cee &):ﬁ sn (};1 es e En)

From Eqs. (4.7), (4.9), and (4.15),

n=-N
. -1 ~u(r ...r )
8 (r see Y ) = ¥ N: eee e ~1 ~n d3r ---d3t (4.16)
n -l ~n nn (N - n)! QN J\ \j' ntl N

=

Since N =1 .21 4 ...
N (N-n)! 2N

we can simplify Eq. (4.16) when terms of order %are negligible.

Thus, we write

n=N -1 ~u(r. *++r.)
R ] = se e ~1 ~n 3 L3 Y 3 .
&, x) Q. e d T d’r %.17)
=V p (r ...'3)
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Closely connected with the correlation function is the potential of the
mean force, defined by the equation(3)

n -

g (r:1 ces f.n) = exp {'- v (51 ---:n),i s (4.17a)

where w_ (r, «+- r ) is the potential of the mean force expressed in
n 1 r-fl

units of kT. Now recall that we are considering a system of N particles

which interact through a potential u(rl ‘EN ), and that of these, only

n have their coordinates 9;1 /En ) specified. For such a system it

3

can be shown'>) that the appropriate negative gradient of w (r_ +++ r )
n.l ~n

gives the mean force acting on any one of the n particles, e.g., particle

o4 . The mean potential differs from ordinary static potentials;
in addition to the usual contribution from the n specified particles,
it also has a contribution from the remaining (N - n). Hence, if we

hold the n particles fixed and average over the other (N - n), we find

that the mean force acting on particle oX is

-

F,‘ = - uwn .

(2) Cluster-Integral Expansions
In equation (4.5) there is a term in the integrand,
= MJ .
exp [- z uij] . Now introducing the functA:ion f“ =e 13 1, it is
possible to write: 2
- u -u
e TTH T M
=Ta +£, (4.18)
141< jEN

=1+ 3 £ + ZZfU £

g 4 Ok

P~ VNS
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where (i, j) refers to any one of the possible N (N-1)/2 pairs. Each
term in this expansion can be represented graphically by a diagram
which corresponds to a factor f (rij); the total number of connecting
lines in the graph equal the number of factors, fij » in the particular
term under consideration. Note that for a finite-range potential fij

goes to zero rapidly as the separation rij becomes large. To illustrate

the cluster principle further, consider the various possibilities for a

set of three particles:
2 3 3 x 3 2 3
fll Fﬂ fia ﬁ's f|3 ﬁ.f{ fu. 'Fz.‘sfﬂ

Figure 5 Clusters of Three Particles

The terms and corresponding diagrams comprising the
expansions (4.18) can be classified and simplified systematically. For
any diagram there is a definite number of poipta,,ﬂ, which are at least
singly connected to particle 1. The portion of the diagram which involves
the .R + 1 connected points is designated a cluster; the remaining
N - (5{+ 1) points are not connected with the given ( A+1) cluster,
and may be arranged in an arbitrary manner.

Now consider the contribution to QN from & configuration
involving an ( 2 4 1) particle cluster with the remaining K - ( 2+

particles arbitrarily distributed.
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The contribution from the ( 2 + 1) cluster is given by

A % e (4.19)
1 =V dr ... d’r 4.19
1+ 1 ij

1 )+
where the product of fij includes all such factors occurring in the
diagram. IX +1 multiplied by an integral over the remaining N - ( +1)
particles yields the contribution to QN from the above arrangement. The
sum of all possible distriputions of the N - (L +1) particles, while

holding the ({ + 1) fixed, gives a total comtribution to QN of

1 Q
L+1 N-(Q+1)

where (4.20)
N+ (Q+1) %
- -/
Q =v P N T L A L
N-(+1) R+ 2

Multiplying by a factor 7_@_:_1)_!_ allows for the fact that any
v - ]t
of the (N-1) particles can be used together with particle 1 in making

up the (9.+ 1) cluster. At this point, we define a cluster integral as

(+1)
= 1 veeldd ... &3
by 1™ ST z Or oo O LEN (4.21)

+ 1)
where z indicates summation over all possible single cluster
diagrams which can be found from ({+ 1) given particles.
Many of these cluster integrals can be further simplified.

Suppose that a cluster of (2 4+ 1) points may be disconnected by breaking
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it at a single point, r . Then b | may be written as the product
of two integrals, one cirresponding {:\:nch of the two component clusters;
the integration is carried out over relative coordinates (ri - rs) » Ty
being considered fixed; in principle these two independent integrals
will depend on the fixed position of L relative to the volume boundaries.
By requiring the interaction potential to be finite, and by having V go
to infinity, this dependence is eliminated.

A cluster of k points, in addition to particle 1, which

cannot be reduced by a single break is termed irreducible; irreducible

cluster integrals ng are given by

- 1 3 3 (k)
= oo e cee d f .
B 1 a’r, r 1'2' LEN (4.22)

(k)
wherejEZ indicates summation over all possible irreducible cluster
diagrams which can be formed with (k + 1) given particles. For k = 0

there is no connection between point 1 and any other point; other examples

are
Irreducible Integral Diagram
3 1 2
= \dr f
1 , f2 o——O
3
i 3 3
,82- 2 &r, &y £, £ F, 1 2

If it is possible to define other even more specialized classes of cluster

integrals, but further comments about this will be deferred until the
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discussion of the cluster expansion for the pair correlation function
8, (11, 5p)-
C. Cluster Expansion for the Pair Correlation Function
In this section a cluster expansion for the pair correlation
function and for the potential of the mean force will be considered.
In the limiting situation where both the particle number N and the system
volume V approach infinity while the particle density /D = % remains

constant, g, (EJ.’ 1:4) =8, (rlz). From Eq. (4.16) it is seen that

<1 2-N - 2
8,(r1) = Qy o | o d e 1 " @2

The first step in the expansion development is the introduction
of the "general 12 cluster"; this refers, by definition, to any diagram

in which a number of, { , particles are at least singly connected to

either or both of the fixed points 1 and 2. See, for example, Fig. 6.

O

I oL / -2

DY WSS~ =W S .

Figure 6 Two Examples of a General 12 Cluster

The corresponding cluster integrals are

"2
bo (ru) =14+ f12 =e (4.24)

¢
= L T X 3 e 3
b‘ (tlz) x! d r3 d 3+ 2 z Trf“
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where :E:(n) refers to summation over all possible cluster diagrams
involving in addition to points 1 and Z,Qother points which will now
be called field-points. The contribution to the integral in (4.7) from
a diagram containing such a l2-cluster plus other disconnected diagrams,
factors into a product of bl (rlz) and the integrals involving the
remaining N - ({+ 2) points.

Many of the general 12-cluster integrals can be reduced
even further., We define a "general 12-irreducible cluster” with k given
field-points as a diagram in which each of the k points lies on at least
one continuous path which goes from point 1 to point 2 without passing
any point more than once; such diagrams for k = 1, 2 and 3 are given in

Fig. 7.

(a) ' (b) (c)

[ K I - 3 ]  y
k=1 k=2 k=3

Figure 7 Examples of General 12-Irreducible Clusters

An even more restricted classification may be effected if the
k field-points fall into two or more groups such that points in two dif-
ferent groups are interconnected only by paths which pass either through

point 1 or 2. If this is the case, the diagram splits into independent
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sub-diagrams by cutting at both point 1 and point 2. The corresponding
general 12 cluster integral can then be written as a product of indepen-
dent integrals, but where each fact:pr is a function of rl 2° A diagram

in which no further cutting is possible is called "simple 12-irreducible";

see, for example, Fig. 8.

Figure 8 Examples of Simple 12-Irreducible Clusters

"Simple 12-irreducible"” cluster integrals, F k, are defined as

. ()

= 3 3
= —. POPIPe r ees dr f 4025)
/Bk k! [ 3 K+ 2 z m 13 ¢

where Z ® denotes summation over all possible *simple 12-irreducible"”

cluster diagrams that can be obtained with the points 1, 2,and k given ﬁ
field-points. The factor £12 is not included in any of the products in
this definition. For finite k and with both N and V approaching infinity,
thege integrals are functions only of the temperatures T and the relative

distance tu,‘ Hence,

_ 3
ﬁl— fd 5, £5 £y (4.26)
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1 303
B ek 2 . +
A, - S g T, dr, £13 £, £, [ Hof HE fzgl

where the numerical factor in brackets refer to the number of diagrams
in which only the ordering of field-particles is different.

It is now possible to write down an expression for gz(rlz);
it requires only that one be able to find an expansion in powers of
density, P » Which has simple 1 2-irreducible cluster integrals as
coefficients. Since further detsil is concerned only with counting and

collecting the various contributions, the result will be writtean down

immediately, (2)
o0 X
= - 4.27
wy (5,) = u(ry) kz_l: Pi ©2 P “.27)
-w, (r..)
2 2
8, (x)))=e 1 (4.28)

These last two expressions are the desired result; their
application to the case of the long range potentials is the subject of
the next section.

D. The "Debye-Chain" Type of lxpnnuon(z)

The irreducible cluster expansion in powers of the particle
density, /O , for the pair correlation function, gz (ru) and the cor~
responding potential of the mean force, v, (tlz), was the subject of the

previous section. It was indicated that it is possible to lsbel each

il et e et
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irreducible cluster by the number of field-points k, and the number of
connecting lines, f » occurring in the given cluster. For a specific
k value, the smallest possible value of ,Q is given by k + 1, and the
largest by [‘;’ (k+2)(k+1) -1 ‘\ . In the usual expression for the
irreducible cluster expansions, as shown in Eqs. (4.27) and (4.28),
the diagrams are classified solely by k, all values af.‘Q corresponding
to this k being grouped together. When the particle system under
consideration involves very short range interactions, i.e., neutral

molecules, there is no trouble; in faci:, this procedure proves quite

satisfactory; when the range of the interaction rM
-1/3
the average particle geparation, r X /O . Thus, the condition for
o

i8 much less than

3
the "k only" grouping to be valid is that Pru <<{1l. Now consider such
a short range potential, Ugye which is large and repulsive at very small

distances, slightly attractive at the potential minimum, and drops to ,J

gzero rapidly for ; 7 r“ « In this instance £ 1 is or order unity
inside the region l:u > and drops to zero rapidly outside; the con-
tributions to the cluster integrals ,@ K from an irreducible diagram
wvith k field points and ! "lines" is then of order ( IDru)s , regardless
of the ) values; here we are excluding factors outside the integral,
such as '112'! , etc.

An effective expansion parameter here is P r: , and there is
no need to regroup any terms according to k values. In the event that
the potential u, j has a large (attractive) potential minimum, f1 5
becomes large and pogitive in the vicinity of this minimum. Thus, for

a given value of k the largest contribution to ,3 K comes from diagrams
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with fairly large x values. Again, there is no reason to regroup the
expansion terms. The situation is much different when the interaction
potential is long range; here the "k only" arrangement is not correct.
In accordance with both classical mechanics and chapter three,
a plasma model will now be adopted which involves only long-rsnge,
repulsive interactions; thus, consideration of attractive potentials in
general, and infinitely attractive potentials in particular is avoided.

This plasma is composed of singly charged ions and electrons, and involves

interaction potentials (at the average distance of particle separation)
that are small compared to thermal energy: 1i.e., “13 (rijl'/o.ln) << kT;
this condition implies a high-temperature, low-density system.

In this instance one hopes to find another small parameter
in terms of which the cluster expansion may be constructed. The potential

model will now be specified in three distinct regioms:

(1) r less than some small distance, ru;
u“ (r) is large and positive.
(2) rud_ré N\, where )\ )4 L uij(t)
is small, positive, and of order of magnitude € ,

where ¢ is a constant much less than 1.

A3) r >y ) I.ltj(t) decreases more rapidly than r°3.

-u(r)
It is further assumed that (t'!l INYSL €4 1. The function f(r) = e -1

is then approximately equal to -1 in the region (1), of order € in region

(2), and is negligible in (3). Therefore, the total volume integral
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(over all space) is of oxder & )\ 3. Now only cases where the range of
the potential is long compared to the average particle separation, i.e.,
A >/O-1/3, or /0)\3 ) 1 will be considered. Returning to the order
of magnitude of the irreducible cluster integral, ,8 k » it is assumed
{ and .»Q
"lines". T}'le order of magnitude here is given by GQ(IDA:’)I‘ , OT

-k
EQ (loe)\a)k. Although &€ 1is by definition small, the quantity

that each integral contains k field-points with coordinates r

3
)0€'>\ may be large for sufficiently large )\ . It is therefore useful

to regroup the cluster expansion terms for 32 (rlz) according to the

value of | - k; the summation is over k values for fixed L - k. This
procedure is known as the cluster expansion in complexities.

Terms in Eq. (4.27) which correspond to values of k=1,
correspond to the "simple chain'" diagrams illustrated below in Fig. 9.

Recall that the term f12’ corresponding to k = 0, is missing from

Eq. (4.27).

Figure 9 Clusters of the "Simple Debye Chain" Type

The sum, 81 (r,,); of the terms in Bq. (4.27) with Lk=1(k21)

is given by

00
n 3 3
81(1'12)=le0 o dt3 eee d7r

f(rn) cee f(x ) (4.29)

ot2 at2, 2
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Setting [—Erlz) = 51 (rlz) + £ (rlz) (4.30)

it is observed that 51 (r12) is the Neumenn-Liouville expansion for

the function [—ltIZ) ; thus,

[Ty =y +p Jim, £ ¢ )F ) (4.31)
T12? T Yo /D T3 LA, T32 .

Taking Fourier transofrms, we find that the resulting equation may be

solved by convolution techniques, yielding

[ ) = £ () - P [ )

or, (4.32)

The solution of Eq. (4.31 or Eq. (4.32) repregents in closed form, the
summation of all diagrams with § - k = 1, for avbitrary k; convergence
is now a question. It can be shoun(z) that in the range -w{pf(k){+ 1,
Eq. (4.32) is justified.

I1f only the % - k =1 terms are used in the expansion, we

get as an approximation to the potential of the mean force, wzz

]

v, (r;) =u (rlz) - Si (r12)

(4.33)

=/-tt12) + u(rlz) + f(rlz)
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If u and f are of order &€ << 1 throughout the range of the potentisl
2
then the error made in omitting terms with £ -~ k = 2 is of oxder & .

Also note that

(4.34)

iy
N

o
2

and hence is, in the first approximation, of order & 2. Using this

first approximation £ 1is replaced by, -u , in Eq. (4.31) giving

—wy (x)) =u () - fj‘d:’rau (x),) w2° (r5,) (4.35)

Applying the transform, convolution technique to this equation,

“o(k)z —u (k)

2 1- fu (k)
If
€ "%t
{ =
u \ru) Tis e (4.36) 1
2
q
where € = T and r,, is measured {n
units of the Debye length, A . Then,
oo
3 1 ~Kr
_ = 4TE ) L 12
u (k) — dry, 19 sin(krlzl ), e {4.37)
°
_ _4Te¥
k2 +ot?
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Now it can be shown(52> that 4TF€/0= 1. Thus, we have

3
o]
v’ ()= —4TEX (4.38)
2 K2+ + 1
(- 2]
o - 2€&
w, (r,) = &= dk k sin(kr) [—_L___]
2 12 g, kK +et2+1
o
4.39)
-‘/ 2.
_ 26€ [1 . A+l ‘12}
Tl'rlz 2
Fore = o
Ll ¢
v'm= & . 12 (4.40)
2 12
which is just che Debye-Huckel result., IfeX =1,
o -2«
v, (r) = £ e 12 (4.41)
F12

Note that if u (r) is large and positive over even a2 small
region of space, Eq. (4.35) becomes a very poor approximation to Egs.
(4.31) and (4.32). However, terms corresponding to 2 - k 2 2 which are
neglected in equation (4.33) are still of order € 2. This implies that
for small € they involve integrations to which this small region of

space contributes little.
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E. Higher-Drder Terms

Thus far, only the { - k = 1 summation has been discussed.
Terms for f - k ;> 1 may also be included as a sum of a finite number of
integrals involving the [ﬂ (r) previously defined in Eq. (4.30).

Choose a typical irreducible cluster diagram occurring in Eq.
(4.27) with arbitrary values of k and l such as the diagram shown in

Fig. 10-a.

3

(a) (b)

Figure 10 An Example of a Simple 12-Irreducible

Cluster, In Terms of '"Wiggly Line" Diagrams.

In this diagram, each of the numbered points 3 to 7 are connected directly
to at least three nearest neighbor points, whereas each of the unnumbered
points are connected to only two neighbors. Fig. 10-b again shows this
cluster diagram, but this time in terms of "wiggly lines", where each
"wiggly” line represents a "simple chain" (Fig. 9). Now all diagrams
vhich correspond to the same "wiggly line'" diagram are considered together;
although, the number of 1ines or links making up each "wiggly line'" may

be different in each case, the numerical value of f{ - k is the same for

all these diagrams.
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In way of summery, the following "wiggly line" characteristics
are listed:

1. Eeach field point lies on &t least one continuous path
between pointe 1 and 2.

2. Any pair of field points is connected by at least one
continuous path which passes neither through point 1 nor 2.

3. Each field point is directly connected to at lesst
three nearest neighbor points; if it were connected to only two nearest

neighbors, it would be a mere link in the chain which contradicts the

definition of a "wiggly line" diagram.

4. Any peir of points may be joined by more than one

wiggly line.

Note that point 3. is in general not applicable to the usual irreducible
cluster diagrams and that point 4. never applies to such diagrams.
Finglly, an examination must be made into the nature of the
wiggly line factors which occur in the integrands of the summed cluster
integrals. Consider two points, ( i, j ) connected by & single wiggly
line. This line, 1()—~nnv-hﬁ<pj , represents the sum of the direct

link, £ (tij) s Plus a1l the simple chains with an arbitrary number of

ettt

links (see Fig. 9). But, this sum is simply the function f—'a £+¢
defined in Eq. (4.30). The general rule is that a single wiggly line
between points i and ] stand for a factor in the integrand; this may H
be compared with f (tij) for the ordinary cluster integrals. We next

consider n parallel connections between i and j; here at most one of the

n connections can stand for the direct link, £ (r1 ). The factor in

J




€0

the integrand is then the sum of two terms; the first term which does
not contain the direct link, f (rij) > consists of theproduct of n
simple-chain fectors, §1 » and to account for the possible chsin permu-

tations, & factor l ;5 included. The second term contains the direct

n!
f-link, and in addition, n - 1 simple chain factors. For each n-fold
wiggly line connection between i and j, there is a factor in the integral

of the form,

n=1

n
[:(’13)= 3, Sl(tij)+ il IR I

Ty 13 rij) (4.42)

Heving thus obtained the function F or g 1 from Eq. (4.31)
or (4.32) we have sn explicit integral for each wiggly line diagram.
The value of ,Q - k is equal to the number of wiggly lines minue the number
of field points; { - k = 1 implies a single such diagrem while L - k = 2

gives rise to three graphe as seen in Fig. 1ll.

'me& \WWOL
Qoo oo,

Pigure 11 The Wiggly Line Diagrams For § - k = 2.

Returning to the potential of the mean force, and considering
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terms up to and including k =k =2, we find

2
3 2
v r)y) vy () = Sl () * {10 d ’3[F (£330 = £ “13&/-'(’32)

(4.43)

2
2 2
+€_!. d3r3 a3, [—'(:13)[[" (ry,)- £ (r%)]ﬁru)

This is the expression we have been seeking.
In order to make some comment about the magnitude of successive

terms in this expansion, we again consider & repulsive potential of
range A , with u and f of order €41 (r (>\), but with |P€X3’ 2 1.
From consideration of the Fourier transform it may be shown that /l £f(k) '
1s large for smsll k which in turn implies thet | (k) %=1 for smell k.
Thus, it might be expected that r (r) is comparable with f (r) ~ € for
small enough r, but decresses more rapidly than £ (r) for r 7 A

,/_'(k) , for smell k is of order Sd3r /"(r)«-é )\3 and we therefore
further expect that ( IDG X3) will be of order unity. If this is the case,
the order of magnitude of any term for any value of 9. - k may be estimated

to be

k L -k
€ (fe%z‘) kne (4. 44)

Hence, terms corresponding to large complexity — (1 - k) = large — may

be expected to contribute little to the cluster expansions.




V. CORRECTION TO THE DEBYE-HUCKEL THEORY AND ITS APPLICATION
A, Introduction |
In this chapter the theory developed in the preceding chapter
will be used to derive an expression for the potential of the mean force,
Wy s which is then applicable to either the Coulomb or shielded potential.
Correction to the usual De§ye=Hﬁckel expression for w2 will be given to
second order in complexity. Furthermore, the results of these corrections
will be scrutinized in light of the discussion in Chapters II and ILI.
Corrections of the nature proposed have previously been calcu-

52
lated by D. L. Bowers °2) for the case of the Coulomb potential; however,

in his work he made the error first of using insccurate tables, and
secondly, of using an incorrect computer technique. Since his calcula-
tions and detailed deta are not a&vailgble in the open literautre, it is
not possible to determine the exact importance of these errors. In view
of this uncertaintly it was felt worthwhile to repeat the Coulomb calcu- +

lation in addition to considering the shielded field case.

The expression for the potential of the mwan force, , will

Y2
be evaluated using first only the ﬂ,w k = 1 term and then including the

L - k = 2 contribution. Thus, we must consider

il st st

wylryy) = ulryy) + ey - [ ) - 3y, (5.1)
U (r35)
where u(r, ) = e is
12 =
=u(r_,)
f(rlz) = @ 12 =1

[12)

3
f(rlz) +/0 J d t3 f(rn) erz)

62
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_ 3 2 2
x(rlz) —f Jd r3 [/—' (r13) - f (r13)j| F(rSZ)

+ /02 3, & : :
-2—2 d r3 d r:4 /—'(rla) [[-' (r34)- £ (r34)] /_'(réz)

Thus, /—' corresponds to the,Q = k = 1 contribution while X indicates

the contribution of the 2 = k = 2 terms.

Now, consider that we have a potential of the form

-Xr
u(r),) = ri e 12 (5.2)
12
where R

r = 12 _ )Y

= = radial separation in units of

12 ) D

>\D = ["_k%—] v = Debye length

4Mq°p
€ =

2 3 ‘1
-4 = [_' 4PN ]
Ap kT D
X = adjustable parameter , o4 ol% |
Note that € gives a measure of the strength of the interaction energy

relative to the thermal energy.

As was shown in Chapter IV, in the event &€ approaches zero, F
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approaches /-1 which is just the Debye=Hﬁcke1 result. In the present
o

notation,

- V‘x? +1 .,

e (5.3)

[:;(1'12) = -

ry2

The valuesof € which will be considered are € = 0.1 and 0.2. These are
considered small velues; from Eq. (4.54), it is known that the order of

magnitude of the ratio of the ﬁ - k = 2 termsto those for which Q.= k=1

will be € , while the ratio of higher order terms to the ( R - k) =1
2

terms will be &€ . Therefore, it is expected that the ﬂ_- k = 2 terms

will provide & satisfactory stopping point.

To simplify notation, we will set T, =T in the remsinder

of this chapter. {

B. Evalusticn of l grg

Frce the theory of Fourier integrals we may write the fol-

lowing 3-dimer:zfonal transforms,

-

o0
F (k) = 417 ( dr = sin{kr)F (x)
ko
A (5.4) <
0
F ()= 1 dk k sin (kr) F (k)
2".21: '
3
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= u (r) € -l r
Since £ (r) = e =landu (r)= = e we may write the
r

transform of £ (r) as
0

im
X
"

AR

£ ==

- e
dr r sin (kr) [:e ¥ - i] (5.5)

It is possible to effect an approximite solution of this integral by
brute force techniques, but the solution for oX¥ 0 is so cumbersome
that it is of little use. In the event that one is interested in the
limiting case of o —» 0 , the resulting solution may be expressed in

terms of ker2 functions:(38)

= - 4TUE
£, W 4TE - 2 kery(1)

where (5.6)
1/2
M= wew

If, however, it is desired to solve the expression for f (k),
for arbitrary o{ , another method must be devised. An approach which

avoids the difficulties menticned hefore is as follows:

-Kr

-R
Let e =R . The, the expression (e -1]

nim

can be expressed in terms of Mellin transforms,

O+ 100

1 =38
e -1 =2 | [&r ds -14T¢0  (5.7)

T - 100
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Inserting the correct form for R and substituting in Eq. (5.5), we find

00 T+i0
~ 4Tr ) . 1 e -xr] -
f(k) = —m d k: — -
(k) X r r sin (kr) o r(s)[ - e ds
o .
g=- 10

Simplifying and inverting the order of integration, we have

G440 o0
£(k) = % . E'l?r'i ]_'(s)e-s i | ac e sin e (5.8
G-ioco o
Now define:
t=rfle 3> r=¢€t
(5.9)

R€=a D> «r= €t =at

Using these definitions, we get

r sin(ke)dr = ¢ ¢ sin(ke€ t) dt

=&t sin(bt) dt b =zk
Thus, ,
T+ 10D o0
2 s+l ast
£) = A& . 1 | Pe)das | ae e sin(bde (5.10)
k 21
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Now cbserve the integral

o0
s+l ast
t sin(bt)e dt
“e
Since the real part of s is negative, the equation may be solved(39)
o0
. - si2
s+ ast 2 2 2
-1
t sin(bt; e dt = F(s+2) [(as) + b ] sin [(s+2) tan b_.]
~as
© (5.11)
Substitution back into Eq. (5.8) yields
T+ (0
P
2 \ -1, b
) = 4TTE . [o) [6%2) sin [ (st2)ean” (- &)
K 2T s 52 ds (5.12)
2,.,27] 2
(as) + b 4
C~(0 <

This integral may be solved by contour integration. We choose

the contour as shown in Fig. 12.

Imaginary

Ca

Real

Figure 12
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By Cauchy's residue theorem,

g + g =2 Ti Z Residues (5.13)

c c
1 2

It is shown in Appendix A that the contribution from C_ = 0. Thus,

, 2
a+ (o0
ﬂs) /7(5-9-2) sin [(s+2) tan 1 (:%5)]
2 ds = 2T i Z Regidues (5.14)
[(as)z + b2 ] 2
G-1%

Included inside the chosen contour are pcles at all integer values on the
negative real axis; these are due to singularities in the product of gamma
functions. At s = =1 there is & single pole while for s 2 =2, the

poles are ull double. At 8 = -1 the residue is

c1 [(s+2) stn [ (s42) tan'{2)]

Residue, single pele = a8

!
ﬁ

it

R
sp s+2
s ! [(as)z + sz 2

-1
sin [t&.n g—]

2 152
[a.z. + sz

- k
€ [ogz + kzj

For all other peles,

RDP = Residue, double pole, = [f; {(m)z /_'(s) r' (s+2)?(s)}] (5.16)

8 = =-n
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where
-1
si +2) t S
oo L o (3]
g+2
[(as)z + bz:{ 2
/
RDP= 1 [ngsz _ n- n+1 ] (5.17)
LD L ds [ (n-1) [ (at1)
8% an
Performing the operation dF (s) ‘ yields,
ds § = =-n
n=2
2 -1
M [(an) + b ] {cos X _a_b_(l.l:l)_— - tan (_b;)]
d s s = wn (an)2+ b2 an
2 2 1/2 2 -2
+ sin X | 1In ((an)“+ b°) +_____§__)__ann }
(an)2+ b2
where
-1
X= [.. (n-2) tan (:—n\]
Using this expression for dF (s) I in Eq. (5.17) gives for

d s 8 = =n
the residue at a double pole,

n-2

~Z

- [(a“)z + bz] ab (n-2) -1

= = Cos X ——5 "> - tan (_b.
r(n+1) /-'(n-l) an
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(an)? + b2

1/2 2
+ sin X [m ((an)2+ bz) + a0 (n-2) -V (n-1) - L') (n+1)-_|§ ¢5.18)

where

/
‘-P (n) = _&T_‘l
[ (n)

Substituting Eq. (5.15) and (5.18) into Eq. (5.14) one finds that

(5.12) becomes

3
£ (k) = 47;':6 Z Residues
B2 -
X " 2 ..
_ 4T’ _ sin[tan (%ﬂ +Z l—i‘“)2+b2j {} (5.19)
b 2 +bz) 1/2 n=2 r'(n+1)Rn-1) '

where
-1
{} ={ cos X [.‘_E_(‘l‘i) — tan (L)]
(an)% b2 an

1/2 2
2 2 -2) ;
+ sin X [ln((an) +b%) + aam:2) (otl) — ¥(n-
(an)2+b2 ¥ e Vi 1)]

1f 4 = 0, and if the definitions in Eq. (5.9) are recalled, this general

expression reduces to

o0 n-1
£ (k) =-4T€E [ 1+ Z __(.G._k)___{:rc cos( 2L)

K2 5 [yt |2 2 (5.20)

+ sin 1‘-2‘1 [m (€ x)-/h) - ]"(n-l)]}

——
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As is shown in Appendix B, this may be expressed in terms of modified

Bessel functions:

1/2
£ (k) = - 4T, -
(k) " 2 ke, 7l V( G €k) (5.21)

For & = 1, corresponding to the Debye-HEckel shielded field, £ (k)

becomes n-2

c0o mnl 2 2, 2
£ (k) =-—%€_ |:1 _¥n e (v )
Tt 2 [ [

(5.22)

< feor [ow o ()] [ (B - xen)]

1 2.2 1/2
+ sin [Sn-Z)tan (—)][ln;G (“+%) + 12 n-Z% - W(n-l-l)—su(n-l)]
n n“+ k

It is interesting to note that in Eqs. (5.20) and (5.22),the
first term, due in each case, to the single order pole, corresponds to
the Debye-Huckel result: if only this term is kept and the analysis

o
carried on one finds that /_’= /—7 =—w, . The fact that all othex
o

2
terms arise from double poles is interpreted in the following manner:
In the first approximation one takes only the first term in the expres-
sion. If higher order corrections are desired, it is necessary to
include the entire summation over double poles and not just the first
few such terms. Actual calculations confirm this last statement.

The above analytic expressions allow one to determine /q(k).

However, it is not possible to get the inverse transform, /7(r), analytically.
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Thus, the equation
[o72]

Moo = —3— | dk k stn (k) [—-—f—@——- (5.23)

27T r lw/0f(k)

o
is solved by computer techniques. Pertinent information gbout the
computer approach is contained in Appendix D. It should be mentioned
here, however, that in both instances for which numerical work was
done, ¢ = 0, 1, the needed values of f (k) were generated by the
machine from Eqs. (5.20) and (5.22) and are not tabular values. The
above integration was performed for € = 0.1, 0.2 for both& = 0 and
ol = 1; the results are listed in Table I. Once F(r) is known,

it is immediately possible to find expressions for wz(r) and gz(r):

wo(r) = u (r) + £ (r) = I (x)

o Wz(t‘)
g, (r) = e

The expressions found for wz(r) by this method are compared graphically
with the corresponding Debye-Huckel results, r' o(r) = wzo (r) , in

Pigs. 13, 14, 15, and 16. It should be pcinted out here tha: g, can

be related to the function s discussed in Chapter 111(50) ; specifically,

gsetting n = 2, we find for a fluid system that
gz(r) =1+ sz(r)

It i3 interesting to note that the corrected curve for

¥, { €=01,x= 1} lies just sbove the Debye-Hiickel curve, while
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the result for Wy { € = 0.2,0¢ o= l}lies considerably below the cor-
responding Debye-Huckel curve. This implies that in the first instance
the Debyeal{ﬁ'@kel approximation overestimetes the shielding, while in

the second case, it underestimutes the shielding. That such a result

is at least possible may be seen by considering the graphs of £ (k)

for various values of € as shown in Fig. 17. The Debye-Huckel

result corresponds to &€ = 0 , which fact implies that it is walid

only in the infinite temperature limit, T .—p & . Now observe that
as the magnitude of € increases, the slope of the curve for smaller
values of k increases noticeably, while the positive region of the curve
becomes much laerger and shifrs toward the smaller k values. From actual
computer runs, it is known that k vaelues sbove ~~ 150 mske negligible
contributions tc the integral expression for f ’(r) . As € 1is increased,
the curves for £ (k) change as indicated above, but the positive portion
of the curve doec not become importanmt uacil € 77 0.1; the change in the
curve which <& tmportant below £ %2 0.1 48 the alteration of slope. This
importance 1is apperent when one realizes that this funccion is multiplied
by sin (kxr) in the integrand. Thus, the slope change in the region
below € = 0.1 is the primsry csuse of deviation from the Debye-Huckel
curve. When the pasitive segment of tke £ (k) curve becomes appreciable,
in the range of significant k values, this festure of the curve becomes
the more importamt fector, and the corrected expression for vz(t) lies
below its Debye-Huckel counterpart. This brief discussion is designed

only to indicare that such an & dependent shift 1is plausible.
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TABLE 1
f"(r) vs. ¢
o =0

€ =0.1 € = 0.2
(o) T [
=1.33390 0.0 -0.82915
-0,83742 0.1 ~0.68575
-0.10685 0.5 -0.16869
-0.03620 1.0 -0.04958
-0.01523 1.5 -0.01857
=-0,00705 2.0 -0.00681
-0.00177 3.0 -0.00125

oL =1,0

€ =o0.1 € =0.2
I (x) r @
-0.99404 0.0 -0.91017
-0.51042 0.1 -0.62486
-0.09401 0.5 =0.15745
-0.02454 1.0 ~0.03720
-0.00853 1.5 ~0.01233
-0.00304 2.0 ~0.00377
=0.00049 3.0 ~0.00040

Constants employed in these calculations were: ﬁ

TT = 3.14159265

P = Euler's Constant = .577215665
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Figure 13
W (r)y vs r for
a= 1-0, € = ooI

0.075 - Il -k=1
wolr)
0.050

Debye-Hiickel

Corrected
0.025
—
0.0 1.0 2.0
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Figure 14
wa(r) vs r for
a =10, ¢=02
| -k=1

Debye-Hiickel

0.0
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0.20
Figure 16
wo(r) vs r for
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For the cases ©L = 0, € = 0,1, 0.2, the corrected wz(r)
curves lie below the corresponding Debye=ﬂﬁcke1 graphs until r spproaches
unity; in this region the corrected curves cross the approximate curves
and remain above as r is increased. The wz(r) curve, for € = 0.2,
deviates more from the Debye-Hiuckel result than does the& = 0.1
figure; furthermore, the crossing point in this case occurs for lsrger
r values than is the case with€ =0,1, See Figs. 15 and 16. This

implies that for r < 1 the Debyenﬂ‘u'ckel approximation overestimutes

the shielding, while for r > 1 it underestimates it.
Now consider the contribution of the 2 = k = 2 term which

are contained in X (r). From the preceding chapter, we use Eq. (4. 3).

( ,
3 42 2
X (r) = /’Jd e [ e [ £ tey)] l

Pl [3 3 { 2 2
+ <
> Jd r3 d T, / (t:13 / (r%) f (r ) F(r42)

Also, from arguments presented in the previous chapter, it is expected
that the magnitude of this term will be ¢f order & 2. Now, since the
expressions for r' (r) derived for }9\., k = 1 do not vary gregtly from the
Debyg-ﬂ.t;ckel results, X (r) will be evaluated setting /_'(r)".: /—'(r) ;
this implies that X (r) is calculated to first order in € . Wizh this
substitution, X (r) may be evaluated snelytically; this calculation

for arbitrary o4 1is shown in detail in Appendix C. The final expression
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is

X (r) e

‘, 2,
ez {- o+l r 2!/&2“' - 20L

2
8(ac™H) ¢ 6otfocd+l + 3062 43

- 2 p
- I_, S G H3 ] [1,,( 3. 2o )+ E_({r-24+L 1)~ z_((zwmh)]
\Joczﬂ 2o Hfods1

1

< (2 - 03+1):_1) N (e-t/pe?ﬂ r-1)

(5.24)
Vo241
+¢}+1 r 2
- e [(r+ i%-ﬁ) (x__(s o241 1) - x_(zu+«2+1)z))
o+l
- 2 2
+ 1 . (2eX H +1)t- 1 e-3 ol+1 r]:}
204+Jo“+1 ﬁ«c——?
For < = 0 this reduces to:
Nl T
X(r) = = {e [3 (e =1)=(r=3){(E (r)-E_(r) - 1ln 3)]
8r i
(5.25)
+r -
-e [(r+3) (E_(r) - E_(3r))]j
where co

-x
=X
s_(:)=j £ ax E,(r) = S e dx
h. 4

+r -r

S
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Foro{ = 1, the expression (5.24) becomes

2 _,\’2' p
=€ * ‘2 -1 7y2 1 , s
X(r) e -fr - ny . 242 V7' r)- -/Dr
16 3“"_2-' +3 (r 2 ),:1 3 2‘.\/2'-’- B2 E_((Z 2 jl

L [ e ) ) A7

- ll+= 1| e -1
2-y2" © 2’
(5.26)
+H2'r
-e (r + -7—;-.21) (E_(32'r) - E_ ((2+E1)r>)

1 e-(2+ﬁ1)r 2 e-3V’i‘r
2+Y2° 7

-

These functions are shown graphically for both values of ©{ in Figs.
18, 19 and 20, 21. Note that the contribution of the { - k = 2 terms
is much less than that from the corresponding R =k = 1 expression; this
is especially true in the shielded field case.

In the next chapter further implications of the results dis-

closed in the present chapter will be discussed.
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8.0
Figure 19
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8.0 | Figure 20
X{r) vs r for
a = 0.0, € = O.I
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Figure 21

X(r) vs r for
a =0.0, ¢« =0.2
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VI. CONCLUSIONS

Chapters II, III, IV, have been designed to show the interrelation
between the spectral line profile, the electric microfield distribution,
and the pair correlation functions or potentialsof the mean force; it
was seen how the correlation function influences the microfield distri-
bution which in turn modifies the spectral line shape.

In Chapter V the method of correcting the Debye-Huckel pair cor-

relation function was indicated and some aspects of the results were

disclosed.

We want to work in reverse in the present chapter, that is, to con-
sider first the implications of Chapter V and then to apply these to a
discussion of the preceding chapters. For this purpose, it is found
most convenient to consider two-body effects expressed in terms of the
potential of the mean force rather than the pair correlation function;

this is due to the fact that in Chapter 1II, it is this quantity, con-

tained explicitly in l]JZ (y), which finally enters the microfield
calculation. First, the potential of the mean force will be considered
for the Coulomb example; then, due to its direct application to the
quasi-static aspects of the line broadening theory, the case of the
shielded potential will be discussed in some detail.

For the Coulomb case, the corrected expression for the potential 1
of the mean force indicates that the Debye-Huckel result overestimates
the effective repulsive potential for smaller values of r, while under-
estimating it at the larger r values: Close interactions are more
favored, weak ones, less so. From Figs. 20 and 21, it is seen that the
contribution to wz(r) over the entire r range from the L ~ k = 2 temm
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is much smaller than that due to the - k = 1 term. Even though
rigorous proof is missing, the supposition that higher complexity
terms (L - k 2 3) will be negligible seems reasonable.

The € = 0.2 curve differs from that for € = 0.1 in two respects:
.(1) the magnitude of its deviation from the Debye-Huckel graph is larger
over most of the range of r values, the region of crossover being the
only exception; (2) the point at which it crosses the Debye-l-h'ickel
curve occurs at a larger value of r.

The shielded-field case provides results which are more interesting
than those found in the Coulomb case. A comparison of Fig. 13 and 14
shows that the deviations of the € = 0.1, 0.2 cases from the cor-
responding Debye-m';ckel results are not only different in magnitude,
but also in direction; as the parameter € is varied from 0.1 to 0.2,
the relative position of the Debye-Hiickel graph and the corrected curve
reverse. For € = .l the corrected curve lies above the Debye-Hiickel
figure thus implying that the latter result underestimates the shielding
effects. When € = .2, the correction lies below the Debye-Hiuckel
curve, implying an overestimation of the ghielding. For neither value
of € does the correction lie equidistant from the Debye-Hickel
expression: the percent difference between the graphs is a function
of r.

Now let us consider how this behavior of the shielded field might
affect the ionic microfield distribution. As was indicated in Chapter 11I,
the low-frequency microfield distribution is strongly dependent upon the
nature of the pair correlation function or the potential of the mean force,

even though these quantities are much smaller than their companion one-body
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terms. Note (see Fig. 3) that the effect of including Debye-Hickel pair
correlation is to shift the most probable field strength merkedly toward
veaker fields, while simultgneously increasing the magnitude of this pesk.

It is now possible to conjecture about the effect c¢f the corrected
potentials of the mean force on the microfield distribution. In the

€ = .1 case, the new potential is everywhere greater, which means
that all possible fields are slightly less probable than indicated by
the Debye=Hﬁckel<mpproximmtion. Therefore, it would be expécted that
the corrected microfield distribution would be shifted little if any,

For £ = .2, the relative correction becomes larger, a5 r is increased;
thus, although larger fields become a little more likely, the weaker fields
are much more probable. The microfield distribution would have its peak
slightly lowered ind shifted noticeably toward weaker fields, while the
strong field wing woqld‘be raised a small amount.

It is fully recognized that the above discussion is only supposition,
and that the microfield calculation must be carried ocut for various
values before any definite statements can be made. However, the need
for such & reviged calculation has been demonstrated.

It is interesting to consider further whether it is possible to verify
or disprove a given set of microfield calculations. One such possibility
exists in the case of the low-frequency or ionic microfield distribution;
this involves the shift of gspectral linme profiles as shown in Chapter II.
In order tc separate the microfield effect from the other gshift-inducing
possibilicies, we must choose a spectral line for consideration where the

desired effect would be expected to be large. With this requirement in
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mind, it was first proposed that the shift of the peaks of the Lyman -f3
line be examined experimentally, and the results compared with those

predicted by theory; a typical Lymnp profile is shown in Fig. 22,

J (W)

Figure 22  Typical Lyman ﬁ Profile

The experimental study of the Lyman ﬁ line has recently been done

for a given temperature and density condition by Blton.«’s)

However, his
results are not conclusive since the position of the line peaks, strongly
affected by self-absorption, do not allow one to discriminate between
currently proposed distributions. There is another possibility which

also concerns the Lyman ﬁ line; in this case the line profile would be
determined holding T relatively constant, for several values of density.
In this fashion, one should be able to observe the trend in the pesk shift.
Such an experiment is definitely possible. (48)

It has been established that the correction of the pair correlation

function and corresponding potential of the mean force should produce a

et e
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considerable change in the electric microfield distribution function cal-
culated using the Debye-Huckel expressions. This change will result in

the alteration of spectral line shifts, which, in certain cases, are subject

to experimental verification.




APPENDIX A

In the evaluation of the integral in Eq. (5.13), it was stated
that the contribution of jc was zero, i.e.,
2

/-'(s) F(sz) sin [ (s+2) tanl(- ﬁ)J
52 —
2

Lim
R — o2

€y [(as)2 + bz_-]

ds = 0 (A.]

It is the purpose of this appendix to verify this assertion.

Imaginary axis

Real Axis

First consider the term:

sin [(s+2)tan'1(- %)] = gin [(- ...l’s_)- _%_(- .‘l’s_)3+nn] (s+2) (A.2)
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which for large Re s

=sin|:-L+_1. b3 +nu]
a 3 ad §2

For Re s 0 o0

sin [(s+2) t:an'l(-L)] ———3 - gin b (A.3)
as a

From Sterling's Theorem,

ln/—'(s) = ln(s-1)! E’(s-lf—lz-) In(s-1) - (s-1) + lanTI

1n [ (s+2) = 1n(s+l)! = (s+3/2) ln(s+1/2) - (s+1) + lnﬁﬂ'

Therefore,

1n [/"(s) ﬂs+2;J = (s=) In(s-1) + (s+3) 1n (s+1)

- 28 + 1n 2T
T (2s+1) In s - 28 + 1n 2T (A.4) q
or,
[) [(st2) T2 528 + 1 -2 (A.5)

Also, for large Re s

842 2
fwe)? + b2] 2 % o) s+ (A.6)




9%

This implies that for large s,

s . F(s) Rsz) ~ 2T g25+2 e28
8t2 s+2 gt+2
2 a 8

[(as)2+b2]

8 -
27Ts e28

= A.7
a8t 2 ( )
Including the sine term we find that the product of s times the
integrand for large values of s becomes
s -2 b
s - Integrand = 2T s® % sin (- §) (A.8)
a® + 2

This 1s in general not equal to zero, which is what must be shown.
After a change of variables from s to é =38 - \(r‘ we

determine the log of s + I and take the real part. This must be equal

to — o0 if lim g__+ 0.
i—-—)“ Cz

in [ :] =2 + (4+0) 1n (§+0‘) -2 ($+¢)

- (i+0"+2) na - In sin (- 2)
a

ln 2T + (§+0) Ing -2§ -20

-(C+2)Ina - glna
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Let
g =Re-j"P =R[cos?+ 1sin(/]
Then,

Re In [] = [anTT - 20 - (T +2) lnl]
+(R(:os<p +0) lnR-R?sin?

-ZRcosq-Rcosiﬂ In a
For R very large, this reduces to
Re 1n [s' ] =R1chos¢-R¢s’in$0 (A.9)
Subject to the restriction % 4 §0< _3_27_1.— ,

lim

2 | Re 1ln [s . I] —_ - o (A.10)

But, this is just the region of integration; hence, Eq. (A.1) is shown

to be valid.




APPENDIX B

In Chapter V it was stated that Eq. {5.19) reduced to Bowers'
expression for 04 = 0. This will be demonstrated in this appendix.

Setting A = 0 in Eq. (5.19) yields,

[ ]
-1
£ (k) =-——~“"T€[1+ (€ k) .2

2 Zz [(ot+1) [(n-1) (3.20)

where

= -—-727- cos (5271-)+ sin(Bzw——) [lnEk - W(n+1) - (r(n-lzl

In order to prove the above assertion, Bowers' result will be shown to

be identical to Eq. (5.20). From Chapter V, Bowers' result is

, 1
£ (k) = - %_e . 2 ker, () ;'Zs 4ex) ? (5.21)

By definition, (38)

kerz (}l) = - .Re [Kz ( V(im)] (B.1)
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where KZ is a modified Bessel function which is defined as

1
2 = 2r
= 1 5! 2
=0

(B.2)
2r + 2

S,
3 b deneveod

In view of B.1 and B.2,

2 [(e+1) [(z-1)

r+1
U o ¢l [z

2
+ sin (%}En(izl-)- Y(r+1) - lf'(r-lj}

TE

Multiplying by - 2
2

we find

il
i

£ (k) 2 m——— e 2 kerz

o0
ATE [os
K2 =2 /"(r+1) /‘(r-1)

i
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where

= _11 cos(.l;zlf)"i- sin(_rzy[ln (Ek) -P(rtl) -ll/(r-l)]}

which is identical to the result derived from Eq. (5.19) by setting¢{ = 0.




APPENDIX C

Solution of the expression

2 2
X (r),) =P dr3f(r13)[ [, -t (r32)]

(4.43)

2 2 2
* %‘ dry dr, ﬂrn’[/" (r3,) - £ “3JF (r42)

using the Debye-HGckel expression for /ﬂ , and letting £ = fo ,

.
- ie-“o(+1r

F(r) :/:(r)

L2}

fE()=f (x) =- & & %7 (5.3)
[o] r

It is here convenient to introduce bipolar coordinates, see Fig.(C.1).

y

3 dxdy

Figure (C.1) Bipolar Coordinates
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So r12

It
]
o]

.1)
3
d t3= 2Wy dxdy
Transforming to s, r coordinates, we use the relation
X Y
8 8
dsdr = dxdy (c.2)
X-R b4
r r
Therefore,
3
d’r = 2T y dxdy = 2Isr ds dr (c.3)
R
First, consider the evaluation of

2 2

/,, - ,3 +1s
o(r13) =a-2e

-¢°3+1r 1

LRIy

e

[oteap) = -

n b

-Xr
e

fo(r32) = -

" D

Before proceeding any further, it should be noted that as in the

text, the interparticle distances are given in terms of the Debye length, )~.




101

A consequence of this is that for every volume element appearing in the
integrals to be evaluated, a factor /\ 3 must be included. Furthermore,

as a result of the definitions (5.2) in the text,

E = 1 _
47rf>A3
or (C.4)
4TPEN =1

Using the preceding information and definitions, one has

ol
Ptr
€)3).€2 -2yk2+1r  -2&r -{,3+1‘s
1 GTLEN) l[e -e dr e (-ds) €.5)
2R T
o 1R-rl
r R+r
- 62 1 '2J°‘2+]‘ T -2«xr -Vo%ﬂ s
2R ?[e -e dr | e (4% 241" ds)
o R-T
oD R .6)
‘[ 2
] LR ST . -fqzﬂ s
+ | ® -e dr e (-J“z+1 ds)
{,g!ﬂ{
R

r-R
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- e —
2 q&i+l R r

o0

-Jd.2+1 R +a¢2+1 R -vai+1 r -2« -y-(z-i-l T
[e -e e dr

+(e -e )

L

If one pursues this calculation further and in doing so introduces the

functions
o0
-r
NB. (R) = £ dr .7)
r
R
()
-r
E;. (R) = e dr , & final expression
r
-R

for I (R) can be found:

IR) = e e | i ﬁi@ + E (Yyo{+1 R)-E Ez ~fol+1)
zﬂﬂ‘-n 3 x ‘{“1‘*_1‘ - -

(c.8)

W'

+e E_ (2t +fal+l )R -E_(3\«?+1 R)

e? -¢-<2+1 R [ [ Yl w -2 otj[ -J&zﬂ r +¢o<2+1\ r]d
e - e -e r

oo W
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Now the second integral to be evaluated is, II,

2
2 2
> fd.rl’ (r")f; T, /—'(rn)[/—' (r34) - f (r34ﬂ ©.9)

It will be noticed that the second integral in this expression is equal

to I (r14) // , 80

11 = é I (r,) [, () d3:4 (c.10)

Again, using bipolar coordinates,

tllo = 8
T = r
42
3 2% sr
ar, = =X ds dr €.11)
Therefore,
II = -‘q S‘I (s) sds r'(r) T dr (C.12)
[

Making the appropriate substitutions and carrying out the rather complicated
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calculation, an expression for II (R) is determined:

2
2 =W+l R
m=--_ {e 2 Y241 -2 %

8(o¢ 241)R 6oL fo L + 306243

2
- (R~ —;1- ) (tn [1 2ty g (f2i1'R) - E_[(2 -fuzﬂ )R] )
v&

3 20K fx41

(c.13)

1 Ce - e )R-1)+ -¢¢2+1n
2 i1 e

+ oL2+1 R

- e (R +{:‘zi—1\-) (E__(:i oz+1 R) - E_ (2%« +1 ) g)

e ——— +

2x+f°<2+1 3fef+1

1 -(2K Hod+1 ) R L Weduw }
e

Thus,

X R) =1 (R) + I1 (R)

{E?R 2a2+1-2p<

6o Yoo+l + 30843

X
8 (og +1)R

2 '5 l f l
-@&- 4 O:::,)(ln ; i: A+l ]+ E_( 2+1 R) -E_ (2 - o}+1 )R))
oA - ﬂ
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=1) “V?]i-\ (e- o4 R-1)] (C.14)
+1

= (2K = e(z+1 R

- 1
2K - frxz-l-l ( ¢

o +1

2
=(2A+f AL “+1 IR -
. 1 . 2 ) i 1 . 34 ex2+1 R
2 X+ ol +1 3 i ui+1

+}L3+1 R 2
- (R + f.}‘;*%) ( E_Gle+1 R - E_(2o<+f o241 )n)




APPENDIX D

The machine calculations for the work reported here were performed
on an LGP=-30 computer.
The numerical work may be sepersted into two steps: (1) the calcu-
lation of £ (k), and (2) the evaluation of /_kr)o
1. Calculation of f (k)

From equation Chaptex V,

o0 n=1
.4 TE [HZ__@Q___ ]

£ (k)
k2 =2 fq(n+1)/rzn=1)

(5.20)

]

{—TZ-; cos (921)4' sin (n—;;) En (€ k)- Y(n+1)- ‘F(n“lil

This is the expression derived Srom equation {5.19) for o = 0; the remarks
to be made in this appendix will also eépply tc the more general result.

In cerrying out the computer cslculaticn, some problems were encountered
which 2re worthy of note; in crder tc establish & series cutoff criterion,
it was specified that when 2 term conuributed less than 0.1% to the
preceding summetion, the 3exles was to be terminmted. However, upen
attempting to verify this step it was found that it is necessery to require
that not one, but two successive terms be less than 0.1% before termination
is accomplished; this requirement is due to the oscillatory nature of the
series terms.

An additional feature of the f (k) computation which should also be
noted is that for large values of k, £ (k) becomes very small and if
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accuracy 1s to be maintained, care must be taken to &ssure that sufficient
terms are included in the series.
2, Evaluation of /ﬂ(r)o

From Chapter V we have,

[
[[@= —1— |auxsn() [ __fﬂs)___] (5.23)
21« 1 = pECK)
[

In performing this evaluation, tabulated values of £ (k) were
employed. The initial attempt at this computstion involved the generation
of sufficient £ (k) vs k points to allow & smooth curve to be drawn.

From this curve, additionzl values of £ (k) were determined by means of
interpolation; these values &along with those actually generated by the

computer were used in the tabulsction. Subsequent investigation disclosed

that F (r) was extremely sensitive to the accuracy of the tebulated f (kj
values. A detailed study was th:n conducted to ascertain the number of
generated points necessary to insure the desired a&ccuracy.

An additional independent study was made to evaiuate the sffect of
various Ak increments on the F (r) computation. Finslly, the expression L |
for F (r) was carried out to the point where additionsl integration incre-
ments contributed less than 1.0%.

It was stated in the text that the numerical work of Bowers was
considered incorrect. In his paper(‘sz) he specified that tabulated values
of kerz( '1) were used in his calculations; the tables he referenced were:

Tables of Integrals, by H. B. Dwight, The Macmillan Co., New York, 1949.
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These tables only provide tem points om an f (k) curve. It has been clearly
established, during the course of the present work, that the Bowers' treat-

ment is incorrect.
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ERRATA

Item
R rlZ . rlZ
ead exp(- : /\I—Z‘) instead of exp (-m )

The sentence beginning at the end of this line
should read: Each term in this expansion can
be represented graphically by a diagram
which consists of a system of points repre-
senting particles, and a number of connect-
ing lines each of which corresponds to a
factor f(r..); the total number of connecting
lines in tlfe graph equals the number of fac-
tors, f(r..), in the particular term under

.

consideration.

3 3,k
(prM) should read (prM )

4wep= 1 should read 41T€D)\3 =1

[In (&) - T(n + 1) ~ Mn - 1)}] should read
[In (&) -¥(n+ 1) - {n - 1)]

i

underestimates

The sentence beginning on this line should
read: Therefore, it would be expected that
the corrected microfield distribution would
be shifted little if any, but that the peak
would be raised and the distribution nar-
rowed slightly.

Insert the factor 1 in front of the first
Vi + 1)

integral inside brackets; change the upper

. limit of integration in this integral from

r to R.




