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ABSTRACT

This thesis is concerned with the develogment of a general and rigorous broad-
banding theory for varactor parametric amplifiers, Fundamental gain-bandwidth lim-
itations of a varactor parametric amplifier are obtained which are independent of the
equalizer, Results obtained in this theory lead to the design and synthesis of broad-

band varactor parametric amplifiers.

The circuit considered in this thesis is that of linear variable capacitors embed-
ded in an arbitrary, passive, lossless environment in which the signal frequency and
one of the sideband frequencies can exist. In the course of developing a broadbanding
theory, some fundamental inherent properties of a parametric device are revealed.
The first is that the varactor, when embedded in an arbitrary, passive environment,
presents an impedance which can be characterized by a positive function rather than a
positive-real function., The second and more important inherent property is that, due
to the frequency-coupling action of the variable capacitor, the scattering coefficient at
the varactor port is quadratic in nature. A broadbanding theory has been obtained,
taking into account both of these properties, Some realizability conditions are pre-

sented which are indicative of the inherent properties of a parametric device.

A finite gain-bandwidt;x restriction exists for any varactor device because of the
presence of its associated parasitic elements. The limitation on the transducer power
gain function for an optimum nonreciprocal three-port equalizer using a single varac-
tor ig derived, from which we obtain the maximum flat gain attainable over a prescribed
band of frequencies. Furthermore, optimum equalizers may be designed to yield a
modified form of Butterworth or Tchebycheff transducer power gain responses of arbi-
trary order. These responses may be chosen to approach the maximum gain-bandwidth
as closely as desired. Some of these results are generalized for the case of n-varactor

diodes embedded in a passive, lossless environment,

Another part of this thesis deals with the stability of systems incorporating n-

varactors embedded in an arbitrary, linear, stable, time-invariant environment. The




stability behavior must be considered in order for the varactor to be useful as a device
for linear-controlled amplification., A stabili'y criterion for the three-frequency mode
of operation is obtained when we invoke the ici al sideband-termination assumption,
The validity of the usual truncation technique & applied to stability considerations is

discussed,

Without imposing the ideal sideband-terriination assumption, the stability is gov-
erned by a linear three-term recursion relaticn and the derived infinite determinant is
of the special type associated with continued fractions. A real-frequency stability con-
dition is established for the undriven response of n-varactor devices coupled through
linear, =table, time-invariant n-ports. This stability criterion leads to easily obtained
bounds on the pumping ratios of the time-variable elements. Finally, a representation

theorem on the steady-state response of a driven system is presented.
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CHAPTER 1

INTRODUCTION

With the recent advent of semiconductor diodes the design of parametric devices
has become a practical reality of great importance and has stimulated the network the-
orist to investigate the fundamental capabilities of these parametric devices, Past at-
tention has been focused mainly on the physical aspects of the device and performance
limitations of specific circuits which are not fundamental attributes of the device. This
thesis is concerned with the development of a general and rigorous broadbanding theory
for varactor parametric amplifiers. Fundamental gain-bandwidth limitations of a va-
racior parametric amplifier are obtained which are independent of the associated cir -
cuitry., Results obtained in this theory lead to the design and synthesis of hroadband

varactor parametric amplifiers.

The circuit considered in this work is that of linear variable capacitors embedded
inanarbitrary, passive, lossless environment in whichthe signal fx;evguency and one of the
sideband frequencies can exist, We are concerned with a linearized theory of a para-
metric device within the scope of small signal analysis, This theory reveals some
rather fundamental properties of a parametric device that are in markea contrast with
a tunnel diode device, although both are two-terminal negative resistance devices. The
first property is that the varactor, when embedded in a passive environment, presents
an impedance which can be characterized by a positive function rather than a positive-~
real function. The second inherent property of these parametric devices is the quad-
ratic nature of the expression of the scattering coefficient at the diode port. This is
due to the interaction between the signal and the sideband circuits through the mixing
or frequency-coupling action of the variable capcitor., This is also indicative of the
fact that the broadbanding of a parametric device involves essentially the problem of
the design of a broadband equalizer to match a load impedance when the load impedance
is a function of the characteristic of the equalizer under consideration. A broadbanding
theory has been obtained, taking into account both of these properties, and, furthermore,

some important realizability conditions on the transducer power gain function are delin-




eated,

A finite gain-bandwidth restriction exists for any varactor device because of the
presence of its associated parasitic elements. The limitation on the transducer power
gain function for an optimum nonreciprocal three-port equalizer is derived, from which
we obtain the maximum flat gain using a single varactor attainable over a prescribed
band of frequencies. Furthermore, optimum equalizers may be designed to yield a
modified form of Butterworth or Tchebycheff transducer power gain responses of arbi-
trary order. These responses may be chosen to approach the maximum gain-bandwidth
as closely as desired. These results are generalized for the case of n-varactor diodes
embedded in a passive lossless environment, which constitutes a special case of the

traveling wave or distributed parametric device.

The parametric amplifier has become an important and useful device largely be-
cause of its low-noise properiies. The low-noise performance of the varactor arises
from the relatively small dissipation. The noise performance of a dissipationless pa-
rametric amplifier is well-known. When the spreading resistance is not negligible,

there is an ultimate limit on the noise performance. This is briefly discussed.

In order for the varactor diode to be useful as a device for linear controlled am-
plification, the stability question must be carefully investigated. We first show that,
within the framework of small-signal analysis, stability is delineated by the roots of a
transcendental relation derived from the infinite Hill determinant. When we assume
the pump to be purely sinusoidal, a three-term recursion relation is obtained and the
infinite determinant is of the special type associated with continued fractions. We then
show that if we impose the ideal sideband-terminations assumption, stability is implied
if the equation ZS(p) + zD(p) = 0 has no root in the entire closed right-ha.’ p-plane,
where Z3(p) is an arbitrary positive-real function and zD(p) is the varactor diode

impedance. The validity of using this as the stability criterion is discussed.,

Using an energy argument, a stability test for systems incorporating n varactors
embedded in an arbitrary, linear, stable, time-invariant environment is established,

in which the ideal sideband-termination assumption is not imposed. The stability cri-




terion obtained leads to easily obtained bounds on the pumping ratios of the time-
variable elements. Finally, we prove that for a linear variable system, whose param-
eters are periodic functions of period T driven with the excitation ept, Re p > 0, the
steady-state response must be of the form ept V(t), where V(t) is a periodic function

of period T, provided that the undriven system is stable.

A point contact or junction diode, when back-biased, has an equivalent circuitl’2
shown in Fig. 1{a). 1t is composed of a nonlinear capacitance, a constant resistance
Rs' and an inductance L0 in series. Physically, the nonlinear capacitance is the de-
pletion layer or barrier capacity which is voltage sensitive, L0 is the lead inductance,
and Rs is the base or spreading resistance of bulk semiconductor. The voltage sen-
sitive barrier resistance, which shunts the barrier capacitance, is so large in the back-
biased condition that it can be neglected. The value of the barrier capacitance depends
on the voltage (or the charge) across the capacitance; typically, it varies as the square

root or cubic root of the voltage across it.

Within the scope of the small-signal analysis, the pumped varactor appears to the
small signals as a linear time-variable capacitor as shown in Fig. 1(b). The series re-
sistance of the varactor is assumed to be small and is neglected in our broadbanding
work. Similarly, if the frequency band of operation is not too high, the parasitic in-
ductance need not be included and the simplified model of Fig. 1(c) suffices. A network
model which includes the parasitic inductance Lo is treated in Section V.6 to determine

its effect on the gain-bandwidth performance.




CHAPTER 1I

FUNDAMENTAL RELATIONS OF NONLINEAR REACTANCE AMPLIFIERS

II.1 Introduction

Manley and Rowe3 have derived some general energy relations which govern the
behavior of energy flow in circuits containing nonlinear capacitors and inductors. These
important relations form the basis of the theory of parametric amplifiers and other re-
lated devices. The Manley- Rowe relations, which essentially set a weighted sum of
real powers at various frequencies entering a nonlinear reactance to zero, are remark-
able in that they are independent of the shape of the nonlinear characteristic and of the
power levels at the various frequencies. The only assumption that has been made in the

derivation is that the nonlinear characteristic is single-valued.

The usefulness of the Manley-Rowe power relations can be illustrated by using
the ideal sideband-terminations assumption, i.e., we assume that all sidebands, except
a few of interest, are suppressed. This leads to the so-called "inverting' and "non-
inverting' parametric devices. The plausibility of achieving parametric amplification

in the "inverting" device is demonstrated.

The small-signal analysis is the primary tool employed in this investigation, in
that we assume that the amplitudes of the signal and all the generated sidebands are
small compared to the pump. Hence, we consider only the sidebands generated at fre-
quencies w, + nw, instead of wm,n =mw, + nw_. Although both circuits containing
nonlinear reactance and linear time -variable reactance will be capable of frequency
conversion, they are quite different as far as mathematical analysis is concerned. By

using the linear time-variable model, all the analytical techniques applicable to linear

systems are available,




II.2 Manley-Rowe Formulas

A nonlinear lossless capacitor is, "by definition, a two-terminal device in which

charge q and voltage v are related through an expression of the form
q = f(v) . (2-1)

We shall exclude hysteresis and so require f(v) to be a single-valued function, but

otherwise its shape is arbitrary.

Now assume that signals at two incommensurate frequencies, wl and wo, are
applied by signal generators to the nonlinear capacitor. In general, all of the frequen-
cies wmn= mwl + nwo will be present in the circuit and in the nonlinear capacitor,
where m and n take on all integral values. Hence, the charge q flowing into the

nonlinear capacitor can be written as a double Fourier series in the following form:

J(mwl + nuo)t

o0 0
q = Z Z Qm,n 13 E 2:a2)

m=-00 Nn=-w

Since q is real,

Q =Q : (2-3)

m,n -m,-n

Taking the total derivative of Eq.(2-2) with respect to time, we obtain the current

i flowing into the nonlinear capacitor.

) 0 j(mw1+ nwo)t

1=—%= P Yy 1 e - (2-4)

m,n
m=-w Nn=-o0

[=N

where

Im,n = ;|(m(.‘;1 + nwo) Qm,n = I-m,—n 3 (2-5)




Since the nonlinear characteristic of Eq.(2-1) is assumed to be single-valued,
the voltage v across the nonlinear capacitor must consist of the same frequency com-

ponents as the charge q. Thus v may also be represented as a double Fourier series

0 j(mwl+nuo)t
Y, V. e ; (2-6)

where

v = Vv A (2-7)

The average power tlowing into the nonlinear capacitor at the frequencies
+mw. + nw | is
= 1 [
w = 2ReV_ I_ = -2(mw +nw)Re(jV_ Q_ ) . (2-8)
m,n m,n m,n 1 [o] m,n m,n

Now, since the nonlinear capacitor is assumed lossless, we have from conservation of

energy

o0
B, E w =0 . (2-8)

Equation (2-8) may be rewritten by multiplying and dividing each term by its correspond-
ing frequency:

- o0 o0

E E (mw1+nwo) T

n=-w Nn=-0 1

m,n

R 0o . (2-9)
o

Splitting into two terms, and writing the appropriate range for the summations, we have

0 0 mwmn © © nWmn
- e . + e —— e e = -

{ Z mw, + nw “o Z Z mw + nw gL (eip)
m=0 n-=-w 1 o m=-00 n=0 1 [o]

N7

&

It has been shown‘l‘5 that each of the two terms of Eq.(2-10) may be separately set




equal to zero, i.e.,

0 o0 men
V,‘ ——— = =
Y e o, (2-11)
m=0 n=-w 1 o
and
0 o0 nW
Z Z . =wmn = 0 (2-12)
mw, + nw

These are the energy relations of Manley and Rowe,. The two Manley- Rowe relations

are not independent of the law of conservation of energy; in fact, multiplication of Eq.
(2-11) by W of Eq.(2-12) by W, and addition give Eq.(2-8). The result was origi-
nally proved for a nonlinear capacitor, but the extension to a nonlinear inductor is ob-

vious,

Furthermore, Manley-Rowe relations can be extended to apply to any combina-
tions of nonlinear reactors and linear, lossless, time-invariant networks, First, be-
cause of the linearity and time invariance of the latter networks, no frequency coupling
can take place, i.e., no power can be transferred from one frequency to another in these
networks. In addition, since they are lossless, they cannot change the relation between

average power at frequency muw, + nw_ at the terminals of the nonlinear reactors.

11.3 Inverting and Non-Inverting Parametric Devices

The usefulness of the Manley-Rowe power relations can now be illustrated by con-
sidering two devices in which power flow at only three frequencies of major importance
ig allowed. This corresponds to assuming that the nonlinear element is terminated in
an ideal filter that suppresses the current through or the voltages across the nonlinear
element at all but the significant frequencies. Let the signal generator at w, ® w_rep-
resent a signal source, and the generator at the local oscillator or pump source.

Consider first the case where power flow is allowed at the idler or difference frequency,




wi = wo- ws, then the summations of Eqs.(2-11) and (2-12) reduce to

Wo Wi
—_—+ — = 0 (2.13)
] W,
(o] 1
Ws W:.l
Gy W =0 . (2.14)
8 1

We are supplying powers at W hence Wo is positive. The fact that Ws and Wi
may be simultaneously negative predicts that infinite gain is possible and that such a
device is potentially unstable at both W, and w; when embedded in a linear, passive
environment. This capability manifests itself through the fact that the real part of the
input immitance at the terminals of the varactor is negative for both the signal and idler
frequencies. Eguations (2~13) and (2~14) are often used to demonstrate the plausibility
of parametric amplification in this so-called "inverting" device. It is to be noted from
Eq.(2-14) that idler frequency dissipation is required for the desired amplification at
the signal frequency. This is another fundamental property of this device which can

be deduced from the Manley~Rowe relations.

Next, we consider the case where the capacitor is terminated so that power flows

only at frequencies W, T W, wo, and wu = w0+ Wy the sum frequency. Then this so-

called "non-inverting' device obeys the relations

W Wu
WS, + — = 0 , (2-15)

[A] W

s u

L wo wu
o=k b — (2-16)

w [A]

[+] u

These relations predict that the device is unconditionally stable when embedded in an
arbitrary linear passive environment. Furthermore, the maximum transducer power

gain that can be obtained with such a device is precisely given by the ratio of wu/ws




when used as a frequency up-converter,

The choice of the names "inverting" and "non-inverting" in the two cases dis-
cussed is based on what the devices do to the signal spectrum, as may be seen by con-
sidering not a single frequency but a band of signal frequencies. The distribution of
the frequency spectrums is illustrated in Fig. 2. Of the two cases, the inverting para-

metric device is of major interest and will be our main concern in the subsequent work.

Another significant point needs to be indicated here. It is important to note that
the artifice of restricting the analysis to a particular finite set of desired frequencies
imposes severe limitations on the validity of the results obtained for a specific applica-
tion, For example, when this assumption of ideal sideband-terminations is applied in
the study of the stability behavior of the inverting device, the validity of the results

must be carefully examined.

II.4 Small-Signal Analysis

Although the Manley-Rowe relations provide a basis for deducing some general
properties of nonlinear reactance circuits, they are of course no substitute for a de-
tailed circuit analysis of a particular nonlinear device. Several approximate charac-
terizations of nonlinear elements lend themselves to standard analytical techniques and
give results which are satisfactory in most practical applications. Most of these ap-
proximate methods involve some form of small-signal analysis. We shall assume that
the signals and all the generated sidebands are small in amplitude compared to the
pump.6 Hence, these small signals see the pumped varactor essentially as a linear
time-variable capacitance C(t) at fundamental frequency W instead of a nonlinear
element. In the linear mode we are considering, all the analytical techniques applicable
to linear systems such as the principle of superposition, Fourier analysis, and the
Floquet theory7 are available. But, on the other hand, we can only predict small-

signal properties, not the saturation effects.

Within the framework of small-signal theory, the pump source and the nonlinear




capacitor can immediately be replaced by a linear time-variable capacitor C(t).
Once C(t) is specified, the actual pumping circuit used is of no more interest and
will not be discussed further in this work, The linear time-variable capacitor, C(t),

relates the charge q(t) on its positive plate to the voltage v(t) across its plates as

follows:

q(t) = C(t) v(t) . (2-17)

The pumped varactor operating in the linear mode is illustrated in Fig.3. In most
parametric applications the varactor is pumped periodically, so that in a small-signal
theory the effect of the pumping is to produce a time-variable capacitor for which the

following Fourier series applies:

cw= Y cC.e ' (2-18)

where

cC =¢C (2-19)

because C(t) is a real function of time.

Now we consider the situation where the parametric element is embedded in an
arbitrary, linear, time-invariant environment (Fig. 4). Suppose the embedding network
is lumped, then the equilibrium state is giverned by an ordinary differential equation
with periodic coefficients of period T = w0/27r. According to Floquet theory, we can
always find initial conditions yielding a solution of the form

v(t) = eu'

t

pit) , (2-20)
where ¢ (t) is periodic with period T = w0/21r and u is any one of the associated Flo-
quet exponents. A real-frequency stability test has been established for the undriven
response of varactor devices coupled through linear, stable, time-invariant n-ports.8

This will be presented in Chapter VIII where we shall treat the stability question more




extensively. For the present purpose, we shall assume that the stability of the undriv~-
en system has been establighed (in the sense that all the Floguet exponents have non-
positive real parts), then it is proved in Section VI11I.4 that the steady-state response

of the system driven with ept, Re p >0, is of the form

view = vy | (2-21)

where V(t) is periodic with period T = w0/27r.

Developing the corresponding periodic function V (t) into Fourier series, we can

write
o0 jkwot
vy = ) Ve . (2-22)

From Eq.(2-17), and using i(t) = -dq/dt,

i(t) = - dit lcwy v =5 (2-23)
or
' a [p+j(r+k)w]t
1.(’c)=-d—t Z CrVke ° ,
r,k
[p + j(r + k)w ]t
- - rzk c v, [Pritr+ke] e - (2-24)

L.et r +k =n, and

ity =- )Y I e ) (2-25)

00 (p +jnwo)t
i(t) =~ Z’ Cr Vn—r (p +jnwo) e f (2-26)
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and
o0
B + 3 =9
I =f(p+jnu) ) C VvV __, (2-27)
= -
where n =0, +1, +2,.,, ,, . Hence, we have succeeded in expressing In in terms

of the coefficients Cn and Vn. For n=0, n=-1, and n=1, we have, respectively,

o0
IO =P Z C V_r »
r=-ow

Q0

L, =l - jol _Z C. V. , . (2-28)
= -o00

and

&

1+1 = (p +on) Zf Cr V+1—r

r=-o

A special but important case is that of a weakly-pumped capacitor:

= + -
C(t) CO 2CL cos (wot) 3 (2-29)
The quantity
2C]
P = G (2-30)
o

is known as the pumping ratio. Typical values of p range from 0.2 to 0.5. For this

case, Eq.(2-27) simplifies to

(2-31)

in which the current generated at each frequency, In‘ '+ determined solely by the vol-
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tages at that frequency and the two frequencies removed by the pump frequency w .
Equation (2-31) is in the form of a three-term recursion relation which characterizes
the case of a weakly-pumped varactor where all the sideband frequencies wy +nw

are taken into account.

II.5 Assumption of Ideal Sideband-Terminations and Derivation of Varactor Diode

Lopedance

The immediate task here is to apply the results obtained in the previous section
to derive the expressions for the varactor diode impedance assuming ideal sideband-
terminations for all sideband frequencies except a few of major importance. First,
let us congider the case in which all Vn =0 except n=0, -1 and +1, but without im-
posing the weakly-pumped varactor or sinusoidal pump condition, For the present ap-
plication, we shall consider the driver to be exp(jwst) rather than exp(pt). From

Egs. (2-27),

-
|

- (st B on) Co V-l * (st 1 on) C-l Vo ¥ (st B on) C—Z vl ‘

-
n

Guv) € V_ + (w) C V + (Gu) C_ |V (2-32)

1 SEN §

il » +. + > +. . .
I+1 (st on)CZV_l (st J«-)O)C1 Vo*'(,]t-:5+on)Co W v

where C =C and C_=C . Changing the notation from V_to V , V to V.,
) 1 -1 2 -2 o 8 =#l i
V+l to Vﬁ, and similarly with the corresponding I's, we obtain
Ii —Jwi Co A C_1 - Jw, C_2 Vi
IB = jw C1 jw Co jw C_l VB (2-33)
Iu jw C2 qucl jw C0 Vu




where W T w - wg is the idler frequency and Dr = + wy is the upper-sideband fre-

quency. The matrix equation (2-33) essentially corresponds to the small-signal varac-

tor diode admittance matrix given by Rowe in Reference 6,

The diode impedance z_ is shown in Fig. 8, in which the d.c. capacitance contri-

D
bution Co is shown explicitly shunting the equalizer. The diode admittance at the sig-
nal frequency is related to the diode impedance at the idler and the upper-sideband fre-

quencies by the following equation:

JZwiwu(Re Cz) zD(j wu) zD(Jwi)+ Cl[wizD(jwi)-wuzD(jwu)]

yD(st) = Cl ") |C |2_z_ AL e (2-34)
Wi 0y 15l Zpley) zplie,
Since the network is excited by a source at Wes the following equalities hold:
Yalw) = -ypGu) (2-35)
Ya(uw) = -ypGu) (2-36)

where Y3 is the admittance seen looking into the equalizer at the diode port 3 (see Fig.

6). Substituting into Eq.(2-34) gives

_]Zwiwu(Re CZ) Z3(_]wu) Z3(_]wi) + C1 wuZ3(_]wu) - wiZ3(Jwi):|
IZ

¥ljw) = w C
D s s 1 = : ,
L~w o |c2 Z,(jw) Z(jw )
(2-37)

In Eq.(2-37), the diode impedance is expressed as a functicn of the impedances looking
into the equalizer at the idler and upper-sideband frequencies, Note that the presence
of terms in C2 meansg that the effects of both the pump and its first harmonic on the

small signals are included.

For a weakly-pumped varactor defined by Eqy. (2-29), C2 = 0, then Eq.(2-37) re-

duces to
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Go) = w €2 [u 2 Gu) - w Z (Gw) (2-38)
Yplivg! = Yg &y [ Y #3N % 7Y 3“’1] :

For the inverting device, the voltage at w, is suvppressed ‘o give Z3(jwu) = 0. Then

Eq.(2-37) becomes

: - A=
yplivg) = -w v, €, 250Gw)
or
z_(jw ) = - 1 (2-39)
D% w sz (jw,) '
T e B L
Since
; . i ; g
Re zD(JuS) = 3 Re Y3(Jui) A (2-40)

w .

s(wo us) Cl

it is clear that the varactor diode impedance will exhibit a negative real part within
the frequency band of interest. Finally, for the non-inverting device, the voltage at

w, is suppressed to give Za(jui) = 0, Now Eq.(2-37) becomes

2
jw) =+ ' -
yD(Jus) W W, C1 Zs(Juu) . (2-41)




CHAPTER III

STEADY-STATE TRANSDUCER POWER GAIN FUNCTION
AND PRELIMINARY RESULTS

III.1 Preliminary Notation

Let A be an arbitrary matrix. Then A', A, A*, A-1 and det(A) denote, re-
spectively, the transpose, the complex conjugate, the complex conjugate transpose,
the inverse, and the determinant of A. Column vectors are denoted by a, Q, y, I,

L]
etc., or in the alternative form x = (xl, x oMo xn) whenever it is desirable to ex~

2’7

hibit the components explicitly. The matrices ln' gn and Om .. represent, in the

same order, the n Xn identity matrix, the n-dimensional zerc; column-vector and
the m Xn zero matrix, A diagonal matrix with diagonal elemeﬁts ul, u,, 5 un
is written as A = diag [ul, uz, S— un]. For a hermitian matrix A = A*, A >0 means
that A is the matrix of a non-negative quadratic form. If A is positive definite,

A >0, and if A is semi-positive definite, A >0,

A matrix A(p) is said to be real if A(p) = A(P). In particular, K(jw) = A(-jw)
for all real w. Since we will be dealing with functions which are not necessarily real
for real p throughout this work, we must introduce an operation that generalizes the
"

notion of ''replacing p by -p. Let A(p) be an arbitrary rational (or m=2romorphic)

matrix. Then

Ax(p) = A% (-p)

Note that for p = juw, A*(jw) = A*(jw). Also, A**(p) = A(p) and (AB)*= B, A, An nXn
matrix A(p) is said to be paraconjugate hermitian if A*(p) = A(-p), and paraconjugate
unitar}; if A*(p) A(p) = ln. On p = jw, the two conditions reduce to A*(jw) = A(jw)
and A (jw) A(jw) = 1n’ respectively, which are the usual criteria for hermitian and

unitary matrices.
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A scalar function a(p) satisfying a (p) = a(-p) = a(p) is called paraconjugate.
If a(p) is real it is actually even. A rational function b(p) satisfying b*(p) b(p)=1
is called a Blaschke product, i.e., an all-pass factor. A regular Blaschke product is
analytic in Re p >0, Since b*(p) b(p) =1 implies that lb(jm)l2 =1, any Blaschke
product is automatically analytic on p = ju. A regular Blaschke product b(p) may

always be represented in the form

jo r
b(p) = e’ T < (3-1)
+
pit]l G e
where Re pr> 0, r=1,2,...,n If b(p) is real, b(p)b(-p)=1 and 6 =0 or =.
Finally, the norm of a matrix A, I lA| l, is defined to be the positive square

I3
root of the largest eigenvalue of A A,

III.2 Scattering Formulation with Complex and Frequency Dependent Normalization

It is well known that a passive n-port N can always be described in terms of its
. - r . 9
n X n scattering matrix S(p) normalized to a set of real and positive port numbers.

AL L

Recently, Youla1 described a method for defining on the real-freqrency axis the
scattering matrix of an n-port normalized to n arbitrary non-Foster positive functions
z, (jw), zz(jw), ceen 2 (jw). More precisely, it was shown that to any passive lumped
n-port N, and any prescribed set of functions with positive real parts over the frequen-
cy range of interest, it is possible to assign an nXn '"normalized" scattering matrix,

S(p), having all the properties of a scattering matrix normalized to a set of positive

port numbers.

The augmented n-port NA corresponding to the linear, time-invariant n-port
N is derived from N by inserting zk(jw) in the corresponding kth port. This is de-
picted schematically in Fig. 5, where we assume that the impedances z1 (jw), zz(j w),

A zn(j w) have positive real parts over the frequency band W, i.e.,
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Real zk(jw) = rk(w) >0 , wew , (k=1,2,...,n) . (3-2)
The normalized incident wave amplitudes, al, a2, . an, and reflected wave
amplitudes, bl' b2, B30 bn, impinging on the n-port N are defined as follows:
= + -
2/ rooa Vk z, Ik 5 (3-3)
and
2V rk bk = Vk - zk Ik . (3-4)
(k=1,2,...,n) .

All square roots have been chosen positive. In matrix form,

2R1/23=\~7+z;_ . (3-5)
and
2R -y -z21 , (3-6)
where
Z = diag [zl, 2'2’ zn] A
R = diag [rl, r2, cees rn:] ,
+1/2 _ [ +1/2 +1/2 :tl/ZJ
R = diag |r , r Ao GEALT ,
1 2 n
= ( )' (3 7)
g.- al, az,...,an s
t
b = (bl‘ b2, bn) b
V=o(v,V v
=2 wr 1) 2! LI ) n ’
and ’
-
JE= (Il' 12, veny In)
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The n X n scattering matrix S(jw) of N, normalized with respect to a set of pre-

scribed functions zl (jw), zz(jw), ".r zn(jw), is defined by means of the linear ma-

trix equation

E=S§ 4 (3-8)

It has been shownlo that the normalization procedure defined by Eqgs.(3-3) and (3-4)
has succeeded in preserving all the important properties possessed by a scattering ma-
trix normalized to real positive port numbers. Hence, if N is lossless over W, the
"normalized" n X n scattering matrix S(jw) is unitary for we W, i.e.,

*
ln -S (jw)S(jw) = On. From (3-8) and the unitary character of S, we have
*
a=85(wb . (3-9)

Now suppose that port k is terminated in z then Vk =S Zk Ik and, from Egq.

kl
(3-3), a, -~ 0. Also, if port k is termination in -Ek(jw) instead of zk(jw), then
Vk = Ek Ik and, from Eq.(3-4), bk = 0, In short, closing a port on its respective

normalization impedance obliterates the corresponding incident wave, whereas termi-
nation in the negative complex conjugate of the normalization impedance obliterates the
reflected wave. In the first case the port is said to be "matched'" and in the second to

be "paraconjugate matched. "

If port k is energized through a generator Eg with internal impedance zk(jw),

and all other ports are closed on their respective normalization impedances, then

E
a = —E&8 | (3-10)
ks 2T, (jw)
K4
and
a1=0 R 2 fk . (3-11)

Hence, from Eq.(3-8),
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]
w
—~

—
E

(3-12)

Equation (3-11) coupled with (3-4) yields

b!2 = - /rp(jw) L . L # ko, .~ (3-13)

and therefore (see (3-12))

. 2
r o) |1,
2
E
e |
4 rk(jw)

y 2
G, W) = = lspk(_]w)l , 9 ¢k, (3-14)

the transducer power gain from port k to port ¢. In other words, the transducer
power gain from port k to port r under "matched" conditions is measured precisely
by the square of the magnitude of the transfer coefficient 5 k' Tg) determine skk(jw),
let Zk(jw) represent the impedance seen looking into port k under matched termina-
tions. Then Vk = Z. I and the division of Eq.(3-4) by (3-3) yields, with the aid of

k 'k
(3-12),

T
=~
<
1
N|
=~
=
=~
N
£
N
=~

— = 8  (jw) = (3-15)
v o+ +
kk Kk zk Ik Zk zk

=

If the n-port N possesses an impedance matrix, Z_, then it is possible to ex-

N’
press S in terms of ZN and Z. Using V = ZNI, we have e
1/2
5 +
2R a=(2 +2)1 ,
vz . =
AR lome et = BT &

Therefore,




2 R1/2 S

1w
i
mﬁ-‘
~
[¢/]
fos)
'
=
N
+
LY
T
1]
N
1
L
—

and

7M7) (z + Z) "R J (3-16)

I11.3 Derivation of the Steady-State Transducer Power Gain Function

The norinalization procedure discussed in the preceding section will now be uti-
lized to derive an expression for the maximum transducer power gain attainable with
a single varactor device embedded in a lossless environment. The general structure
under consideration is shown schematically in Fig. 6, in which the varactor diode is
placed across an arbitrary, passive, lossless 3-port in which the signal and idler fre-
quencies can exist. Co and C1 denote the first two coefficients of an equivalent lin-
ear variable capacitor defined by Eq.(2-29). The constant capacitance contribution is
sho{avn explicitly shunting the equalizer. Hence, the 3-port N is not an arbitrary loss-
less 3-port but must be subject to the restriction that the diode port 3 is shunted by a
capacitance of value not less than Co' The diode impedance at signal frequency is giv-

en by Eq.(2-39).

Let S(jws) be the scattering matrix of N normalized to z, = Rg at port 1,
z2 = RL at port 2, and

. [ T L 1 E
zS(st) = zD(st) = Cz - (3-17)
=% Th FSa

at port 3. Note that Re z3(jws) is positive over the frequency band of interest. Using
the normalization technique defined by Eqs.(3-3) and (3-4), S is unitary and Eq. (3-9)
holds. From the termination conditions at each of the ports, we have a

and a = Eg/z \/Rg . Therefore,

2=0, b3=0,




By Eqs.(3-18) and (3-19),

5, . a
12801
bZ St e} (3-21)
A
where
A = 511522—512521 . (3-22)
Furthermore, using the unitary condition, it can be shown12 that lA(jw)l = |533 (@] w)l.

The steady-state transducer power gain, Gt(ws)' is by definition the ratio of the
average power absorbed by the load RL to the maximum available power from the gen-

erator. From Eq.(3-21) and a2=0,

2
S
B 2 2 I 2
R Rsl= =M 1 = [l = (TS el (3-23)
33
Therefore,
2 2
B ic] s, (Gw) |
ey - 2 LI (3-24)
t s IE IZ 833(st)
B
4R
g

*
The unitary condition, S (jw) S(jw) = 13, implies that {slz(jw)l < 1. Consequently,

1
GBS == 2 G (3-25)

. 2
1833(;'“8)1
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Applying (3~15) and (3-17), 933(3' ws) can be expressed as

Z (jw ) -2z, (jw) Z (jw)+z_ (jw)
333(j“’s) - 3 8 3 sul 1 3 8 : D 8 ) (3-26)
Z3Gw ) +z.(jw) Z4Gw,) - ZpGw)

w wiC - Ya(st) Ya(Jwi)

833(jws) = 3 (3-27)

- N—= DN

W, C. + Y3 (6] ws) Ya(jwi)

This expression demonstrates clearly the quadratic nature of the scattering coefficient
at the diode port, i.e., 333 is quadratic in Y3 whereas in the case of equalization of
passive load or tunnel diode the corresponding expression is linear in Y3. This i8 an
inherent property of a parametric device, The amplifying capability of the varactor
parametric amplifier can be attributed directly to the frequency coupling mechanism
inherent in the device. The quadratic nature is due to the interaction between the sig-
nal and the sideband circuits through the variable capacitor. It indicates that the
broadbanding of a parametric device is analogous to the problem of the design of a
broadband equalizer to match a load impedance when the load impedance itself is a
function of the characteristic of the equalizer under consideration, It indicates in gen-

eral the complexity of this particular broadbanding problem.
Substituting into (3-25),
Za(st) - zpGey)

G (w) < = Gl , (3-28)
Z Gu) +zGw)

and, finally,

2
wow CO+Y (jw) Y. (ju)
Gy < || el PR BSNFVEL o oagliay (3-29)
s 0 C2 - ¥ (ju) T Gw) -
We ¥y &y T ¥glawg) Xy
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Relation (3-28) actually embodies the solution to the broadbanding problem for both the
tunnel diode and varactor with the loss and parasitic inductance taken into account, A

systematic treatment on the broadband tunnel diode amplifiers has been published by
2,13

»

Youla and Smilen.1 It can be concluded that the ultimate power gain for both the
tunnel diode and varactor devices is completely delimited by the equalizer impedance
Z3 facing the respective negative impedance element. For the varactor case, how-
ever, the ultimate power gain is delimited not only by the equalizer impedance at the
signal frequency of interest, but also by this same impedance at the idler frequency.

This is exhibited explicitly by (3-29).

I1II.4 Reciprocal and Nonreciprocal Equalizations

To actually realize the gain in (3—2?), it is necessary to use an equalizer incor-
porating a 3-port circulator since the l512|2 must be made unity, irrespective of
33l2 The nonreciprocal structure is shown schematically in Fig. 7. The circulator
is used to connect the generator, the varactor and the load. A lossless reciprocal 2-

|s

port equalizer is placed between the circulator and the varactor, and a lossless filter
is also shown (in dotted lines) which may be used if frequency shaping at the high fre-

quencies is desired,

Now we shall consider briefly the reciprocal equalization case. If N is restrict-
ed to be reciprocal, S must be symmetric and we can no longer adjust lslz(jw)l2 and
|s33(jw)lz independently by using a circulator as the isolating element. In this case

12
it can be shown that

Sl ls33(‘1(‘)3)l

s, Gu)l < 5 . (3-30)
and hence
, 2 . o 2
le(st) 1 Z3(st) - zD(st)
G legh =Sl =G T VY Z G2 Ge) : (F=n)
33'% 3'1Y% D%




Consequently, for the same ZS' optimum, lossless, nonreciprocal equalization yields

at most 6 db more gain over optimum, lossless, reciprocal equalization, This funda-
mental result was originally derived for the tunnel diode case - and was found to be a
general property applicable to any 3-port equalizer when one of its ports is paraconju-
gate matched. From this point on, we will not discuss the case of reciprocal equaliza-
tion any further, because without the facility of using the circulator as the isolating ele-
ment, |512| and |533| cannot be adjusted independently and the situation is quite com-
plicated. We shall consider only the nonreciprocal amplifier in which the ultimate
transducer power gain is realized, i.e., Gt(us) = G(ws), and would be used interchange-

ably in our subsequent work,




CHAPTER IV

A BROADBANDING THEORY FOR VARACTOR PARAMETRIC AMPLIFIER

IV.1 Introduction

The broadbanding problem for a prescribed passive load and a resistive genera-
tor was treated by Bode14 and Fano.15 A new broadband matching theory has since
been developed by Youla,16 based on the princinle of complex normalization, The new
theory is applicable to the problem of designing an active equalizer incorporating an
active impedance, which is a prescribed function of frequency, to achieve a preassigned
transducer power gain working between a resistive generator and resistive load. For
the varactor parametric amplifier, the varactor diode impedance is not prescribed in
the sense that it depends directly on the impedance looking into the equalizer at the di-
ode port. In essence, the equalizer and the active load cannot be treated independently
because they interact with each other through the frequency-coupling action in the varac-
tor. We present in this section a broadbanding technique which takes this effect into

full account.

When the load, passive or active, is prescribed, the transmission zeros of the
load impose certain inherent restrictions which are reflection onto the transducer power
gain function, In the varactor problem, since the load and the equalizer a1 e interrelated,
we cannot talk meaningfully about transmission zeros of the load; instead, we define the
transmission zeros of the device as a whole which characterize the equalizer as well as
the varactor load. It is shown that these transmission zeros are specified from the pre-
assigned transducer power gain function and that they again impose restrictions which

are reflected onto the transducer power gain function.

In Section IV.5, the broadbanding technique is applied to the case where ws wi 5
Woo%io and YS(jws) = ?S(jwi), and an illustrative design example is completely worked
out starting from the prescribed transducer power gain function (Appendix A). A more

exact theory applicable to this case is presented in Chapter V. The purpose here is to
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demonstrate that the general broadbanding theory does not only present a solution in
principle. In fact, for the general case, this is at‘present the only technique at our
disposal. Morecver, although only the d.c. capacitance C0 is considered in this chap-
ter, the broadbanding theory presented is valid for varactors with additional parasitic

elements.

IV.2  Analytic Extension of the Steady-State Transducer Power Gain Function

In order to proceed with the broadbanding, it is necessary to extend the steady-
state transducer power gain expression to the entire p-plane. There are various ways
of extending the variables wy and w; . since the only constraint to be satisfied is that

at real frequency

w tw =w , (4-1)

where the pump frequency is prescribed. Two possible schemes for the extension are:
a) jws and jwi are extended into p and jwo—p, respectively; and b) jws and jwi
are extended into jwso+ p and jwio - p, respectively. In the first case, the extension
of Za(jws), where Z3 is the impedance looking into the equalizer at the diode port,

is a positive-real function and that of ZS(j wi) is a positive function (in the sense of
Baum17). In the second case, both extensions of Za(jus) and Za(j wi) are positive

functions,

Using the first scheme, the diode impedance at the signal frequency becomes

1

ZD(p) S e ) (4-2)

2
p(p - P, C, Z,,(P -P)

where P, = jwo and f*(p) E_f'(-ﬁ) for any rational function f(p). It can easily be
shown that Za*(p0 -p)= Ea(po + ) is a positive function, It should be brought to at-

tention that the impedance of a varactor embedded in a passive medium will, in general,
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not be a real function of p due to the frequency coupling inherent in the parametric de-

vices, It follows that G(w) is in general not an even function of w,

The steady-state scattering formalism described in Section IIL.2 can be extended
to the entire p-plane. In short, the complex normalization technique can be extended
to the entire p-plane by defining ak(p), bk(p), and S(p) normalized to any prescribed
set of rational, non-Foster, positive functions z1 (p), zz(p), e zn(p) such as to pre-
serve the rationality, the unitary property of a lossless n-port, and the analyticity of

S(p) in the closed right-half p-plane. This is summarized a8 follows:

i zk(p) + zk*(p)
)y 2 ,
rk(p) = hk*(p) hk(p) 5 (4-3)

th(p) ak(p) = Vk(p) + zk(p) Ik(p) 2

"

2h (p)b (p) = V (p) -z (P (P ,

b (p) = S(p)

14

(p) ,

where rk(p) is said to be paraconjugate, i.e., rk*(p) = rk(p), and the factorization of
rk(p) is such that hk(p) and hk(p)/hk*(p) are analytic for Re p > 0. For matched

termination at port k, ak(p) = 0, and for paraconjugate termination, bk(p) =0, And

— ha(p) Za(p) = 23*(p)
33 hs*(p) Zs(p) + za(p)

(4-4)

will be analytic in Re p > 0 provided the normalization impedances are non-Foster

positive functions.
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For the varactor device, we shall retain the paraconjugate termination condition

at the diode port, i.e.,

2. (p) = -z (p) = L , (4-5)

2
p(pO - Py S Z3(pO - p)

but now za(p) is not a positive function. Hence, the analyticity of 533(p) in Rep>0
will not be satisfied, although the factorization of ra(p) is still valid, We then modify

the normalization scheme to

th(p) ak(p) = Vk(p) + zk(p) Ik(p) ;

(4-6)
2h (p) b, (p) = V, (p) -z (P (P)
Hence
2
Zg(p) + 1z, (p) plp, - P, C - Y (p) Yy, (P, - P)
"33 " Z e, B T T ey v w
plp, - P, C| 3P Yqlp - p

which is the analytical continuation of Eq.(3-27). As expected, saa(p) is not regular
in the right-half p-plane. The r.h.p. poles of saa(p) are due to the r.h, p. zeros of
2
= a + o i = i
Zs(p) Zn*ép) or p(pO P, C, Ya(p) Yalp p). Note thatif p=p isa zero of
( - + - = - + i i
PP, p)* Cl Ya(p) Ya(pO p), then p P, +iw, is also a zero. Bsa(p) may

have poles on the jw-axis (which will lead to a zero of G{(w)), since
W (w -~w)C +Y (u)Y, (o -ju)=0 (4-8)
pWo 9T Yy glwl Ygliuw, = Ju ) = .

may have a solution for wr(wo = wr) < 0.

Stability consideration restricts that

Zglp) + zD(p) #0 (4-9)

or
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2
PP, - P, Cl - Y (p) Y  (p -p)# 0 (4-10)

for p inthe closed r.h.p. Consequently, the only permissible r.h. p, zeros of s

(p)

33
are those due to the r.h, p, poles of Ya(po- p). Evidently, if p = pk, Re pk <0 is a
2 —
3 _ _ - o ; :
zero of p(po p)*C1 Y3(p) Y3*(po p), then p Py .on is also a zero. Fig.8
shows some typical locations for the zeros and poles of 533(p)'

Denote the strict r. h, p, poles of 533(p) by pr and define the rational function
bo(p), which is not real for real p, by
n p-p
b_(p) = (RS Rep >0 , r=1,2,...,n . (4-11)
r=1 p+ EI‘

Then bo(p) is analytic in Re p > 0 and bo(p) bo*(p) = 1. Thus

2
plp, - P), C| - Y (p) Y, (p_ - p)
s(p) = b_(p) 5,5(P) = b_(p) 3 (4-12)
plp - P), C + Y, (p) Y (p - p)

is a rational function which is analytic in the strict r.h.p., having the same real fre-

quency magnitude as 8,_,_(p). The transducer power gain G(p) is given by

33

2 2
i p(p,-P),C  + Y (p) Yylp -p) PP -P),Cl +Y (DY, (P -p) —
2 2
PP, -P),C - Y P Y  (p -p) | | p(P_-P),C, - Y ,(p) Yo(p -Pp)
and
G{(p) = L = ! A (4-14)
845(P) 8,4, (P 8(p) 8.(P)

valid in the entire p-plane,
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IV.3 Realizability Conditions and Factorizations

We have shown that the transducer power gain of a lossless, nonreciprocal, 3-
port equalizer operating between a resistive generator and load with the third port ter-

minated by the varactor is completely determined by the real-frequency magnitude of

the rational function

2
Zs(p) + zD(p) p(po— P, C, - Ys(p) YS*(po- p)

R e T 2 =
3 D* PP - P, C +Y (p) Y (p - p)

2
since G(w) = 1/ ls33(jw)| - The purpose of this section is to delineate the realizability
conditions of a prescribed transducer power gain function for this varactor parametric

amplifier.
For p = jw,

dulv - w cf Re [Y3(ju)] Re [Y3(jwo- J'w)]

2
laggtaol? = 1 -

2 2 (4-186)
1 o . S
Iu(wo w) C1 Y3(Jw) YS(JwO JU)I
Because of the positive character of Y3(p) and Y3*(po— p),
|s33(3u)| < n when w(wo— w) >0 ,
(4-17)
|s33(,]w)| ol s when w(wo- w) <0 .,

This stems from the fact that Re 23(_jw) - 0 for w(wo- &) > 0 and Re za(jw) <0
for w(wo- w) < 0 (see Eq.(3-17)). Physically, when the signal frequency equals or
exceeds the pump, there will be no gain. Consequently,

G(w) > 1 , when w(wo- w) >0

(4-18)
Glw) < 1 |, when w(wo- w) <0
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Furthermore, since G(w) = G(wo- w), the prescribed transducer power gain function

must be symmetrical with respect to wo/2. Fig. 9 shows explicitly the permissible re-

gions for the magnitude G(w). Transition points at w =0 and w= W and a possible

shape satisfying the symmetry condition are also presented.

From Eq.(4-13), we obtain

2 2
; p(po- p)*C1+Y3(P) Y3(p°-p) plp - p)*C1+Y3*(p)Y3*(po-p)
G(p) = = 2 >
843P 8520p) | PP - P) C - Y (p) Y, (p -P) | | PP -P) C-Y,(pP) Y (p -p)
(4-19)
2
Bk plp - p),C, [Ya(p)+Y3*(p)] [Ya(po- PI+Y . (p - p)] t | A
2 2
[p(po- P), Ci- Y3(p) Ya*(po- p)] [p(po- PI,C - Ya*(p) Y3(po- p):l
{ 2 :
T plp - ), C| [Ya(P)+Y3*(p)] [Ya(po- PY+Y, (P - p)] -
2 2 :
G| [ptpy 1y €5 +¥ 40 Yylo~ 0] [plp - 21, €1 + Y5 (P Yy (0 - P [
The above expressions infer immediately that
G(p) = G (p) , (4-22)
and
G(p) = G, (p_-p) (4-23)
Furthermore, it can be shown from Eq. (4~21) that, for p=o + jwo/2,
. . 2
w 2 Jw Jw
2 [e} 2 l o] =i [o]
- s e [" *‘7’]01 BT e e -
G( +j—wg) 2 Y% % 2 9% Ju,
i 2 g +(7) C1+Y3(0+T) Ya(-0'+—2—)

Therefore,
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1

i = ——-3:)—0— >0 (4-25)
G(O + T)
or, alternatively,
Gl + —Z—)_l <L (4-26)

for all real o, and zeros of 1 - [1/G(p)] onthe p=o+ (jwo/2) axis must be of even

multiplicity.

To sum up, we have shown that a realizable G(w) must satisfy the following con-

ditions:
a) G(w) rational;
b) G(w) real function of w;
c) G(w) symmetrical with respect to wolz;
d) G(w) >0 for all real w;

e) G(w) > 1 for w(wo—w)zo,

G(w) <1 for w(wo— w) <0;

0 [Glo+ jwo/Z):l-l < 1 for all real a.

From b), G(jw) = a(jw); hence, G(p) = G*(p), i.e., G(p)= G*(p) if and only if G(w)
is a real function of w. From the symmetry condition c), G(jw + (on/Z)) =G (—jw +
(on/Z)) =G (—jw + (jwolz)), or G(jw) = a(—jw +( wo/2)). By analytic continuation,
G(p) = G*(po- p); hence, G(p) = G*(po— p) if and only if G(w) is symmetrical with

respect to wo/‘z.

Since G (p) satisfies G*(p) = a(—;_)) = G(p), G(p) is paraconjugate, From d),
any zero of G(p) on the real-frequency axis must be of even multiplicity. By factor-
ing its numerator and denominator polynomials into products of Hurwitz and anti-

Hurwitz factors, it is possible to write




, (4-27)

where so(p) is rational and analytic in Re p> 0 and s;l(p) is analytic in Re p > 0.
The factorized function so(p) is uniquely determined up to a constant scalar multiple
e‘]e. The most general rational solution s (p) of the equation G (p) = 1/8(p) s*(p) is

given by

s(p) = b(p) so(p) , (4-28)

b(p) being a Blaschke product; b(p) is regular if and only if s(p) is analytic in
Re p > 0.

Using similar reasoning, we can show from conditions c) and f) that 1 - D/G(p)]

admits a factorization

1
] =« —— = o o
G(p P P =P, (4-29)
where no(p) is rational and analytic together with its inverse in the half plane below
the axis p = o + jwo/z. The factorized function no(p) is uniquely determined up to a
constant scalar multiple e‘w and the most general rational solution n{p) of the equa-

tion 1 - EI/G(p)J = n(p) n*(po— p) is given by
n(p) = d(p) n,(p (4-30)

d(p) being a modified Blaschke product defined by d(p) d*(po- p) = 1. Moreover,

d(p) may always be represented in the form

33 | p-p
d@ =e® T —2 (4-31)
r=1 p+(~p0-pr)

and ld(o + ja..vo/Z)I2 = 1, hence, d(p) is automatically analytic on the entire p=o+ 1

Juo/z axis.
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IV.4 Broadbanding and Inverse Theorem for the General Case

We can solve for Z3(p) from the expression (4-12) for s(p) as

b_(p) [Y3(po =Pt Y (P - ) ) Y(p - P)

ZB(p) = . (4-32)

2 2
plp, - P), €] [bo(p) E s(p)] p(p_ - P), C]

Now, the above expression for varactor diode corresponds to the passive load case16
with zf(p) substituted by Y3(p0- p)/p(pD - P, C? . In the passive load zf(p) is
prescribed, whereas here it is directly related to the equalizer impedance to be de-
signed, Hence, instead of using the above expression, we must provide other means

to solve the synthesis or inverse problem,

To solve for Y3(p) in terms of the transducer power gain function G{p) =

1/833(p) 833*(p) = 1/s(p) 8, (p), we proceed from Eq.(4-12) as follows:

b
Y (o) [Y4(p, = P) + Yy, - DY)
bo(p) - 8(p) = bo(p)

) (4-33)
2
p(pD - P, C1 +Y3(p) Y3(p0 - p)

Y (o, - P [Y 00+ Yy (0]

bo,,‘(pD -p) -8, (p, - p) = bo*(pD - p) (4-34)

2
p(p, - P, C| + Y, () Y, (p - p)

and, when multiplying Eqs.(4-33) and (4-34), and dividing by 1- [1/G(m] =1 - s(p) 8 (p)
of Eq.(4-21), we have

Yo(0) Yyu(p, - @) [Bo (P - 8(p)] [byy(Py - P) - 5,0, - PI]

2
: pp, - P, C b (p)b_, (p, - P) [1 - 5(p) a,(p)]

. (4-35)
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Now,

1-Gm = 180 s, = aip) n,(p, - p) ., (4-36)

where, from (4-28) and (4-30), s(p) = b (p) so(p) and n(p) = d(p) no(p). 8(p) is de-
fined by Eq.(4-12) and n(p) is given by

PpC, [Y3(p0 -p)+ Y3,,:(po = p)]

nip) = bo(p) 5 . (4-37)
plp, - P, St Y3(p) Y3(p0 - p)
Therefore,
[b, (P) - S(p)]
Y3(p) = pCl —‘——ﬁm—* (4-38)

Equations (4-35) and (4-38) serve as the starting point of the broadbanding theory to be

presented. ¥

First of all, we can ascertain quite easily that Y3(p) is real for real p if and

only if
b_(p) - s(p) n(p)
b, P -5, (-p) | m(p) =
and that Re Y3(jw) > 0 for all real w if and only if /
o {l:bo(jw) - sG] 7w - [b, (e - 5G] n(jw)} >0, (4-40)

for all real w.

From Eq.(4~7), and using s(p) = bo(p) 933(p),

- [zp) +2p, ()]

bo(p) - 8(p) = bo(p) 3 (4-41)

Z,(p) - zD*(p)
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we see that every pole of zD*(p) on Re p=0 and every zero of ZD(p) + zD*(p)]
in Re p >0 must be a zero of bo(p) - 8(p). It will be shown later that bo(p) - 8(p)
has only one intrinsic zero at infinity due to the presence of the d.c. capacitance Co
at the diode port, all the other zeros being characteristic of the combined effects of
the equalizer and the varactor diode load, Similarly, from Eq,(4-37), zeros of n(p)

in Re p >0 are restricted.

Define a function X (p) by

I:Ya(po -p)Y+ ¥ (e, - p)]

Ap) = b_(P) , (4-42)

2
plp, - p), C, +Y. (p) Y (p -P)

and denote any zero of A(p) in Re p >0, B 4o + jwa, o, >0, of multiplicity ka’
as a transmission zero of the device of order ka. Then each zero of transmission im-
poses certain restrictions on s(p) and n(p). It will be shown that the restrictions on
s(p) and n(p) at the transmission zero at infinity, which in turn is reflected on G (p),
lead to the gain-bandwidth limitation. At present, we can conclude that the multiplicity

of transmission zero at infinity is at least one, due to the shunt capacitance Co'

In essence, we are given a prescribed transducer power gain function satisfying
the realizability conditions we have presented earlier; we wish to delineate further con-
ditions such that Y3(p) given by Eq.(4-38) would be positive-real with the prescribed
residue at infinity. Although the function XA (p) is not known from G(p), all the infor-
mation on the location and multiplicity of the transmission zeros, P, is specified from
the prescribed transducer power gain function (see Eq.(4~21)), It should be noted that
bo(p) as defined previously is the regular Blaschke product formed with the strict r,h. p.
poles of 833(p). But now bo(p) as defined originally cannot be obtained from the pre-
ascribed data; instead, we shall specify bo(p) to be formed from the poles of G(p) in
the upper right quadrant bounded by the p = jw and p=o + jwo/z axis, Then bo(p)
is uniquely determined, but it is, in general, not the Blaschke product that renders

833(p) analytic in Re p > 0. q
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Each zero of transmission imposes certain restrictions on s8(p) and n(p) which
are reflected onto G(w). To formulate these restrictions quantitatively, let us repre-

sent the power series expansions of bo(p), s(p), n(p) and X(p) about P, by

"
018

a i
b_(p) Ll Bp-p) .
o0 @ q
s(p) = iZO L5 (R N
(4-43)
o0 .
- o i
n(p) = i_ZO Nip-p)
and
Q0 & i
A(p) = A, (P i ) ’
i=0 * =
where |pal is finite. In addition, represent
= a i
s (p) = i§0 a(p-p)
Q0 @ i
b(p) = )} b (p- EIE |,
i=0
(4-44)

00 ]
- a - 1
n(p) = ; mpic BN §
and

a i
d(p) = ) d(p-p)

For |pa| =w, (p- pa) is to be replaced by 1/p and coefficients are A‘;, B?, N:o,
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etc. From s(p) = b(p) so(p) and n(p) = d(p) no(p), then Aoil and Nci' can be repre-

sented as Cauchy products as follows:

- (4-45)
i r i-r
r=0
and
a 1 a a
N, = n d, . (4-46)
i r i-r
r=0

From the prescribed G{(w), B;z, a? and n: are known, and bf and d‘: are to be de-

termined using the restrictions on the coefficients to be derived.
We now formulate the restrictions according to the location of the transmission

Zeros:

1. Transmission zeros in the strict r.h. p. of order ka, o, > 0 (due to the strict

s " -k 1
r.h.p. zeros of [Ya(p0 p) Y3*(p0 p)] of multiplicity ka).

0 el Emte by e ok = 5 be .
. (P - - LP-p) =Y p) Y Ap-R)
i=0 =0 i=0

a2 a i = a i
L Np-p) =p,C L Nlp-p)

i=0 i=0
Vo0 , i=0,1, ...,k -1
1 a
Therefore,
a
B, = A |, i ENORT, | ek = 1
i a
(4-47)
N=0, i=0,1,..., k-1
i a
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2, Transmission zeros at p = jw_ of order ka' |wal<uo.

(a) If Ys(p) has a zero at p = jwa, then

) . 0 0 E 00 2
120 By (p-ju) - izo A;’(p - ju) = P'(wa)(p - jwa)] 'Zo N - ju)
=] = - i=

o0 = oo i
a i a et
120 N(p-ju) = (u)C 120 Np-iu)

where ~ lim Ya(p)/(p-jwa) = ﬂ'(wa). Therefore,

P> ju,
BY SR R, L i T
i a
(4-48)
o
N, =0 h i=0,1, yk -1
i a
in addition, by dividing
a o a
B o = sy EEER
a o o
a .
Nk SN S C 2 )
a a
one obtains
a a
B s SIAL oy B'(w)
. a a
Jw = >0 . (4-49)
a Na C1
k
a
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(b) If Ya(p) has neither a pole nor a zero at p = jwa, then

B = AT , ¥ 'S¥08 findye vl 1
1 1 a
(4-50)
N=o0 |, i=0,1,...,k -1
] 1 a
(c) If Y3(p) has a pole at jwa, then
st a i g a i a(wa) = a i
Y Bl(p-ju) - B - g = I == || B Ap-gasl
i) = B P=J¥ ] i%0 ? .
S .a i o & i
L Np-ju) = GupC T afp-gu)t
i=0 i=0
AW=0 i=0,1,...,k -1 ,
1 a
where a(wa) is the residue of Y3(p) at the pole, Therefore,
B, = AY , i=0,1,...,k -2 ,
1 a
(4-51)
N=0 |, P=Nlhly .. .k 2
1 a
in addition, by dividing
a a ! a
B o1 T A L mealwda
a a a
a . a
B ~liw)e,x .

one obtains
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a a
Bka - Aka-l a(w)
jw = SHON (4-52)
a Na Cl
k
a

From the prescribed transducer power gain function, we would not know, a priori, which
of the above cases will apply. It can be shown, by examining conditions (4-48), (4-49),

(4-50), (4-51) and (4-52), that the following restrictions

BY = AY N =0 |,
1 1
and (4~53)
a a
B =i B =0
. a a
jw, 3 20
s
a

will suffice.

3. Transmission zero at infinity of order k
-]

i’ ooli io w, 11 io ooli
B, (=) - A" (-) =pC AT(=)
i=o ' P i=o * P ® jso P
c0 o] i
1.1 A 1 R
D, INE(S) = pe) AT,
i=¢ L3 i=o 5
A% =0 , i=0,1,...,k -1 .
1 [ o]
Therefore,
B® = A® , i=0,1,...,k -2 ,
1 1 o 0
(4-54)
N® =0 i=0,1,...,k -2 ;
00
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in addition, by dividing

CY) ) . L]
Pl o SlosiChriy, o
> ¢] [ ] > ]
[ o] [>¢]
= b
Nk -1 Cl k o
[+ o] 0
one obtains
o0 [+ o]
BE o - Sgee - c,
= 2= = > =2, (4-55)
Noo C1 - C1
k -1
[>¢]

where C> C .
- o

Conditions (4-47), (4-53) and (4-54), when coupled with relations (4-45) and (4-48),
can be used to determine b(p) and d(p). Thus, by using the above information, we can
obtain the gain-bandwidth restriction from the condition (4-55) and also, at the same
time, completely solve the inverse problem starting from the prescribed transducer
power gain function. In summary, the necessary and sufficient conditions are presented

in Theorems 1 and 2.

Theorem 1:

Let zD(p) =z - l/p(po- p)* Ci ZB*(pO— p) be the impedance of a varactor diode in
an inverting parametric device, where P =W is the pump frequency and Y3(p) is
the input admittance looking into the equalizer at signal frequency at the diode port with
a d, c. capacitance Co shunting the port; and let bo(p) be a regular all-pass formed
with half of the right half plane poles of 1/G(p) in the upper right quadrant bounded by
the p=jw and p=og¢ +(juo/2) axis. Then Eqs.(4-33) and (4-37) define a rational
positive-real function Ys(p) with residue at infinity not less than the prescribed Co

if and only if:

1) s(p) and n(p) are rational functions of p satisfying the following conditions:




44

(a) ls(ju)[ <1 for u(wo ~w >0
ls(jw)[ >1 for w(wo -w)y <0
b (p) - s(p) n(p)
(b) 5 ;
b «-P) - 8,(-p) ~ n (-p)

(¢)  jw {[bo(jw) - S(jw)] 7w - [Eo(ju) -E(jw)J n(jw)} >0

for all real g,

2) Any strict right half-plane transmission zero, pEe= o, + jwa, c, >0, of

multiplicity ka must be a zero of both bo(p) - 8(p) and n(p) of at least order ka'

i.e.,
BY = o7 (ST T S S
1 1 a
N =0 (i=0,1,...,k -1)
1 a

3) Any finite jw transmission zero, p = jua, lua[ < o, of multiplicity ka

must be a zero of both bo(p) ~8(p) and n(p) of at least order ka; i.e

B = A% (i=0,1,...,k -2) ,
1 1 a
N =0 |, 050= (08 s o=ty
1 a

and, in addition,

jw,
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4) The transmission zeroat p = o of multiplicity k°° must be a zero of both

b (p) - 8(p) and n(p) of at least order k -1, ie.,

B A | (L, =0y W, 0, e oy
i i [
N'=0 (i=0,1,...,k -2) ,
i o
and, furthermore,
o0 o0
Bio=n = 8k.-1 C
= 2. . fp Do
) C = € ’
Nk -1 1 1
o0
where C > C .
o
Proof: Necessity: already shown.

Sufficiency: Using Eqgs.(4-33) and (4-37), we have

bo(p) - s(p)

Y (p) = pC, = (4-38)

From coundition 1), we know that Y3(p) is rational. It follows from 1)(b) that Y3(p)

= ?('p); thus the reality of Y3(p) is established. And from 1)(c) we see that Eq.

(4-38) always defines a Y3(p) with non-negative real part on p = jw

Condityons 2), 3) and 4) guarantee that Y3(p) is analytic in Re p> 0 and has,
at most, simple poles on the finite jw-axis with a non-negative residue, and a simple

pole at p = o with at least the prescribed residue Co'

The real rational fun«-tion of frequency G(w), which is symmetrical with respect

to uo/z, is realizable ag the transducer power <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>