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THE MAXIMUM NUMBER OF DISJOINT PP-RMUTATIONS CONTAINED 

IN A MATRIX OF ZEROS AND ONES 

I.  Introduction 

A well-known consequence of the König theorem on maximum matchings and 

minimum covers in bipartite graphs'■'>J or of the P. Hall theorem on systems 

Ik] 
of distinct representatives for sets   asserts thi.t an n by n (0,1) - 

matrix A having precisely p ones in each row and column can be written 

as a sum of p permutation matrices: 

(1.1) A ■ P1 + Pg + ... + P   . 

Our main objective is a generalization of (l.l) along the following lines. 

Let A be an arbitrary ra by n (0,1) - matrix.  Call an m by n 

.   . T T 
(0,1) - matrix P a permutation matrix if PP = I , where P  is the 

transpose of P and I is the identity matrix of order m . This definition 

implies m < n and we shall assume throughout that this inequality holds. 

As in (l.l), we seek a decomposition 

(1.2) A = P1 + P2 + ... + Pp + R 

where each Pi , 1 = 1,...,p , Is a permutation matrix,  R Is a (0,1) - matrix, 

and the Integer p is maximal. 

If p is maximal in (1.2), the remainder R of course contains no 

permutation matrix. The converse statement is false, however. For example 

has the decompositions 



and neither R.  nor R^ contains a permutation matrix. 

In Section k a formula for the maximum value of p in (1.2) is derived. 

Letting TT = 7T(A) denote this maximum value, it is shown that 

(1.3) 7;(A) = min 
A1 | s(Al) 

fVA-: 
n  
i-  [ S(A'; 

Here A' is an e by f minor of A , N^A') denotes the number of I's 

in A' , s(Al) = e + f - n , brackets denote biggest integer, and the minimum 

is understood to be taken over all minors A' of A with s(A') > 0 . The 

constructive proof singles out a critical minor A' of A that yields the 

minimum in (1.3).  In the example above, critical minors are the identity of 

order two in the lower right corner, the last column, or the last row. 

Using the formula (1.3) and a result due to Haber,  ^ the integer 

(l.'O 7T ■  min 7r(A) 
A in^lr 

can also be evaluated.  In (l.k)     a    is the class of all m by n (0,1) - 

matrices that have the same row and column sums as A . The resulting 

formula for TT is given In Section 5. 

2. Reformulation 

The problem of determining 7:(A) for an m by n (0,1) - matrix 

A = (a. .) may be reformulated in the following way; Determine an 



m by n (0,1) - matrix X - (x ) satisfying the constraints 

(2.i) I X1J 0 P  '  i - 1,...,ni  , 

■ 

(2'2) ) x^ ^p  ,  J = l,...,n  , 

i-i 

and maximizing p . 

To see this, first note that if (1.2) holds, then X = P. + P0 + . „, + P 
1   Z P 

satisfies (2.1), (2,2), (2,5), On the other hand, if X is an m by n 

(0,1) - matrix with row sums equal to p and column sums at most p „ then 

X is a sum of p permutation matrices. This assertion can be proved in 

various ways. For Instance, a theorem cf Mann and Ryser ^  concerning the 

existence of a system of distinct representatives that includes a prescribed 

set of elements implies that such a matrix X contains a perrrutation matrix 

p  having a 1 in each column of X cf sum p . We may thus write 

X = P^. + Rj^ , where R  has row sums p - 1 and column sums at most p - 1 , 

and apply the theorem to P . Repeated applications produce the desired 

decomposition. 

The construction described in the next section solves the maximum problem 

(2.1), (2.2), (2.3) by increasing the parameter p by one at each major 

cycle until the maximum value TT is obtained. Thus for each value of p 

encountered in the constructior.j there will be a decomposlticn (1.2) for A . 

The construction can be started with p = 0 , X = 0 , although this would, 

in general, be relatively inefficient from the computational standpoint. 
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?. A Construction 

We may suppose, in describing the construction, that A = X -r R , where 

each row sum of the (0,1) - matrix X is either p or p + 1 , each column 

sum of X is at most p + 1 , and R is a (0,1) - matrix. The aim of a 

major cycle of the construction is to produce a decomposition A = X' + R' 

with X' having precisely p + l i"s in each row and at most p + 1 l's 

in each column.  If successful, tne process is repeated with the new 

decomposition and p replaced hy p + 1 .  if unsuccessful, 7r(A) . p , 

We oistlnguish the l's of X in the matrix A and call these 

"marked l's" of A ; other l's of A are "unmarked." A row or column of 

A that contains less than p + 1 marked l's will be termed "short." Thus 

short rows have p marked l's , but short columns may have fewer than p 

marked l's . 

The basic routine in the construction assigns "marks" to certain rows 

and columns of A using the iterative procedure (3.1), (3,2) below. 

(5.1) Mark all short rows of A . 

(3.2) Repeat the following two steps in order until there are either no 

newly marked rows or no newly marked columns of A .  (The short 

rows of A are called "newly marked" after application of (5.1), 

and any other row or column marked in the immediately preceding 

application of (5.2b) or (5.2a) is called "newly marked.") 

(a) For each newly marked row^ mark each unmarked column 

containing an unmarked 1 in that row, 

(b) For each newly marked column, mark each unmarked row 

containing a marked 1 in that column. 

At the conclusion cf the row and column marking process, we distinguish 

two cases. 
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CASE 1: A abort column of A has been larked.  In this case tbe marking 

procedure bas located a sequence of r ^ 1 unmarked and r - 1 marked 1's 

bavlng tbe form 

(3-3)       ai J ' al j ' a^ j ' ••• ' ai 1   ' ai i 
T.*!   l2Jl   -2J2       1rJr-l   irJ r 

wltb a. ,  unmarked, a ,  marked, ..., a.    unmarked, and sucb that 
11J1 l2Jl irJr 

row i^    and column A      are short. We then interchange marked and unmarked r 
*        * * 

I's in (5.3), This yields a new decomposition A = X + R* , with X* 

containing one more 1 than X and having row sums p or p + 1  column 

sums at most p + 1 . With reference to the new marking of I's given by 

X , A has one less short row. The procedure (5.1), (5,2) is then repeated 

with the new set of marked I's of A . 

CASE 2: No short columr of A bas been marked. If A bas no marked rows 

(and hence no short rows), replace p by p + 1 and repeat (5,1), (5,2) with 

the new meaning for short row and column.  If A has marked rows (and hence 

short rows), the construction ends. 

It is clear that tbe process terminates. We shall show in the next 

section that tbe terminal value of p is 7T(A) , 

k.    A Formula for 7r(A) 

To establish the formula (l.j) for 7r(A) , we show first that if (1.2) 

holds, and if A'  is a minor of A with s^1) > 0 , then 

"N, (A») 
(^.1) p^  -i • 

. "(A'). 
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Thus, assume (1.2) and let A' be an e by f minor of A with 

s(A,)«e + f-n>0. Rearranging rows and columns of A , we may write 

[*        A"J y*        X"J y*        R"J 

It follows that 

(M) p(e + f - n) < ^(X') - ^(X") l^CA')  , 

verifying (k.l). 

To complete the proof, it suffices to show that there is a p corresponding 

to a decomposition (1.2), and an e by f minor A1 of A with s^') > 0 , 

for which equality holds in (if.l). Let p be the terminal value in the 

construction of the preceding section, let A' be the e by f minor 

corresponding to the terminal sets of marked rows and unmarked columns, and 

let A" be the m - e by n - f complementary minor. By (3.2a), A' 

contains no unmarked I's ; by (5.2b), A" contains no marked I's , More- 

over, by (j.l), each unmarked row of A contains p + 1 marked I's ; 

and, by the Case 2 hypothesis, each marked column of A contains p + 1 

marked I's . Let t be the total number of marked I's in A . The 

above remarks provide a count for t s 

(h.k) t =. (p + l)(m - e) + (p + l)(n - f) + N^A')  , 

Since the construction has ended, there is at least one row of A having 

p marked I's. Consequently 

CO) t < (p + l)a  . 

-6- 



It follows from (k.k) and (4.5) that 

(k.6) (p +l)(e + f - n) > ^(A1) 

In peurticular,     s(A,) =e+f-n>0. 

Since    A    has a decomposition  (1.2)  for the terminal value    p ,  we have 

from (4.5) and (4.6), 

(*.7) p(e + f - n) ^^(A') < (p + l)(e + f - n)      . 

This shows that the terminal p is 7r(A) and establishes the formula (1.5) 

for 7r(A) . 

In case A is n by n with precisely p I's in each row and column, 

the formula (1.5) reduces to 7r(A) ■ p , This may be checked as follows. 

Let A1 = A in the right side of (1,5) to get 

-iTiy3 n =p 

On the other hand, if such an A contained an e by f minor A' with 

s^') > 0 and 

N^A') 

s(A1) 
< P 

then 

But writing 

\U')  < p(e + f - n)  . 

/'A1  * 

*   A" 7 

-7- 



we see that 

p(e +f - n) -Sj^A') - ^(A")  , 

a contradiction. Hence for such an A , the right side of '1.5) is p . 

^. A Formula for TT 

Let -t   denote the class of all m by n (0,1) - matrices having row 

sums 

(5.1) ^^...^r^O 

and column sums 

(5.2) S-L ^s2^ ... > sn> 0  . 

The class <*   can also be viewed as generated from an arbitrary A in tX 
[7] 

by interchanges.    Here an Interchange is a transformatioo on the elements 

of A that changes a minor of type (a) be-low into one of type (b), or 

vice versa, and leaves all other elements fixed: 

w C 3 w C 3 • 
In this section we describe a formula for 

(5.5) TT a  min  7r(A)  , 
A in ^r 

which is similar to those for maximal term rank,   minimal term rank, 

[9] \2\ maximal and minimal trace,   and minimal width.    Note that the normali- 

zation assumptions (5.1) and (5.2) axe no restriction in determining TT . 
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The key additional result need'd In evaluating rr has been furnished 

by Haber In his study of minimal terx rank.    To  describe this result, 

we begin with the function 

(5.1*)      t(e,f) - ef + (re+1 + ... + rm) - ^ + ... + sf) , 

(0^e^m,0^f^n)  . 

This function, introduced in [9], can also be viewed in the following manner. 

Let A in ^ be written 

(5.5) 

with A.  of size e by f . Then t>'e,f) is the number of O's in A. 

plus the number of I's in Api 

(5.6) t(e,f) = N0(A1) + ^(Ag)  . 

Next define, as in [Jj, 

(5.7) V(e,f) =•  min   ti e 1 i lm 11  ' e 1 i lm 

(5.8) 0(e,f) =  min   (t.- + t. + (e-i)(f-j)) 
0 ^ i ^ e Xl       KJ 

OU ^f 
e ^k <;m 

f 1 i S r' 

Now let H(e,f) denote the maximum number of O's that any matrix In the 

normalized class <t   can contain in its leading e by f minor. An 

ingenious argument in [5] shows that 



(5.9) H(e,f) - min iv{9,f) ,  ^(e,f)) 

From (5.6), if A in ^ contains the naxinum number of O's possible 

in the leading e' by f' minor, then A contains the minumm n'jmber 

(5.10) t(e',f) - H(e',f') 

of I's possible in the conplenentary e=m-e' by f = n-f' minor. 

Thus, provided it can be shown that the mintmum number of I's possible in 

any e by f minor of matrices in £   is achieved in the lower right e by f 

minor of some A in ^ , it would follow from (1.5) and (5.10) that 

(5.11) 7T ■ min 
e^f 

tCe'.f) - H(e'.f') 

m - e' - f' 

the minimum being taken over e',f:  satisfying 

(5.12) e' + f < m 

The proviso above can be established by an interchange argument. Let 

e and f be fixed and considei  an e by f iT'nor    A1    of A in the 

normalized class rf . Let i be a row of A that is not a row of A! , 

and let i' be a row of A that is a row cf A , with i' < i .  By 

(5.1), interchanges confined to rows i' and :. of A can be applied in 

such a way that the transformed matrix B has an e by f miner B' with 

the following properties: Columns of E' have the same index set ae those 

of A1 ; rows of B' have the same index set as these of A' , except that 

1 has replaced i1 ; N (E') ^.^(A') ,  Repetition of this argument, first 

on rows, then on columns, shows that the e by f minor vith the minimum 

number of I's possible in the normalized jlass <Z   can be assumed t:. be in 
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the lower right corner. Hence (5.11) is valid. 

6. Remarks and Questions 

The recursive procedure (3.1), (5.2), which was the main tool in 

establishing the formula (l.j) for 7r(A) , is a variation, suitable to 

the problem at hand, of the labeling method for constructing maximal flows 

in capacity-constrained networks.    Formula (l.j) can  also be deduced from 

known theorems concerning network flows. 

There is an analogue for matrices over non-negative reals.  Specifically, 

suppose given an m by n A = (a ), a  > C , and ask for a non-negative 

matrix X= (x ) satisfying (2.1), (2.2), (2.5) with p maximal.  If we 

let N^A') denote the sum of all entries of A' , s^') the sum of the 

dimensions of A' minus n , then the maximum value of p is given by 

dropping brackets in (1.5). 

Returning to (0,1) - matrices, other related questions are suggested. 

For example, what is the minimum value of p in a decomposition (1.2), for 

a fixed matrix A , assuming that the remainder R contains no permutation 

matrix? Or what is the maximum value of F(A) over the class generated by 

A ? Both of these questions seem harder to answer than these considered 

here. 
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