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AJS YRACE

Ir tkis paper we g.na.‘l,y;: Ehe correlation coefficient
between members of anv twc ;:ionlgs }o:t of an infinite ensemble
of colonies. 1t is asswmed that cach colony has the same number
of members, that migration takes place between the different
colonies , and that there 15 a constant rate of mutation in each
coleny. Az explicit foxmila i3 dexrived for the correlation func-
ticn and the long distance form of this furction is derived.

%t is shevn that ander rather weak restrictions on the pat-

tery. of migration the asymptotic form of the correlation func-
tion 1s characteristic of the dinernsion cf the model.

\



1. Introduction

The theory of evolution postulates the development of a species
by the fixation of mitant genes. Since the doctrine of survival of the
fittest 1s no longer recognized to hold in its strictest form one can
understand differences in a given species in terms of the development
and viability of several alternate genes for the same characteristic.
Clearly, geographic separation between two colonies of the same species
would tend to promote genetic differences between members of the two
colonies. One can interpret the formation of separate races in this
light. It is the purpose of this paper to analyze a mathematical mod-
el which supplies quantitative information on the effects of distance
and dimensionality on genetic differences between groups isolated by
distance. The model was first proposed by ome of us (M. K.), /17,and
& discussion of the blological implications of this work will appear
in Genetics,/2 7. The present paper is devoted strictly to the mathe-
matical development.

Wright was the first one to discuss quantitatively the pheno-
menen of isolation by distance. He considered a large population in
vhich there are several groups, and analyzed the inbreeding coeffici-
ent of & subgroup relative to the large population by means of his
method of peth coefficients,f3-5/. Malacot has calculated correlation
coefficients for a continuous model roughly similar to ours, [ 6,77.



The present model considers an infinite number of colonies,
each colony containing N individuals. It will be assumed that breed-
ing proceeds by generations, and that migration may take place between
colonies in a manner to be specified more precisely below. We will al-
s0 allow mutations to take place at a finite rate. In this wey the
composition of each colony will change rendomly due to these three
causes. We shall calculate the correlation coefficients B(p(1) p(i+3)
vhere p(i) 1s the frequency of one of the alleles in colony i. We
ignore effects due to the finitemess of the number of colonies, and
we shall only be interested in the equilibrium state of the system,

i. e., the question of the time of spread of a gene through & popu-
lation will not be treated here.

We shall begin by deriving the difference eq,\nti:;ns vhich
describe the stepping stone modsl in any number of dimensions. Then
wve .2l spacialize to the one, two, and three dimensional cases when
migration is allowed between adjacent colonies only. Finally, we shall
discuss the modifications which must be made vhen longsr rangs migretion
is allowed. It will be shown that under certain conditions restricting
the magnitude of long renge migration the form of the correlatiom func-
tion at long distances 1s that predicted by allowing the difference
equations to be approximated by a differential equation. The present
work, in its mathematical details, is the discrete version of the theory
of multidimensional rendom processes recently discussed by Whittle, /B 7.



2. Formilstion of the Model

Let us consider an array of colonies; for simplicity we can
think of them as being found on the coordinate points of & cartesian
&rid vhich will be extended t¢ infinity in all directions. The coor-
dinates of & point will be danoted by € s (®,%,,..,4R,) where -
ly the cases n = 1, 2, or 3 are of any interest, these corresponding
to a linear hatitat, a two dimensional dwelling area, and a three di-
mensional dwelling area. The latter is proposed as a model for micro-
organisms in the ocean. 3By conventior we assume that the components,
‘ﬁ’,,mamrmintegers, positive and negative.

The gene frequency of allele A, at site & will be denoted by
PR) - In our model the gene frequency at any aite changss in any
generation by three machanisws. These are:

1.lhnchmgabetmth§gimsubmmdwothcrmbm.

2. Mutation, or equivalently exchange betwoen the given swhgroup
and one located at irfinity. ' '

3. Random sampling of gawetes in the process of xeproduction.

It vill be assumed that migration and reproduction occur
periodically, allowing us to deal with epochs rather than with a con-
tinuous time variable.

For simplicity we shall set up the equations for the E (o) '“'i’)
in the one dimensional case. Then we shall indicate the extemsiom to
the n dimensional case. In one dimension we let m; denote the
Probability of exchangs between the colony at s 0 and the colonies

W e e R A



at +) and-j o Since we shall only deal with a symmetric situation the
provability of exchange between 4s 90 and R.4 will de '»3/1 o I piR)
denotes the gene fraction of A at ® at a given epoch and 4 '(R) de-
notes the gene fraction of A, at 4 at the next epoch, we can write

(w) = -.m-M. m . -
i d G :'E s )‘P(‘ﬂ) + _{l (‘p(ﬂ N+ p(R-2)) (2.1)

M S LEUTS L) PR T,

vhere P(@) is a random variable which represents the change due to
random sampling of gametes, and ¢ is the expected fraction of geme A, in
any of the colonies. The term M, § represents the effects of mutation
in changing 4(s) . If it is assumed that there is no selsction of gene
A, then §(g) has the properties with respect to expectation:

E($w) =0, E($%n))s TN U-2@R)
QN

(2.2)

where N, is the effective (constant) size of each subgroup. This pare-
meter is defined in terms of N, the mmber of males snd Ng, the mm-

ber of femnles Ly
(2.3)

L YN )

.N‘: 4 (N.. * 'ﬁ*)
Equation (2.1) can be cast into a simpler form by defining & new vari-
able

B e oy -5 (2.4)
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vhich eliminates the term 4n,p . Furthermore we will only be concern~
ed with the equilibrium case so that we may put

houds -~

P (R) = p(R). (2.5)
Finally, in order to rewrite Et.u.') in a simpler form we shall
introduce a shift operator S. This operator is defined by the proper-
ties:

SFW = flisr), SF flim) (2.6)

Meking the changes indicated, we can wxrite the equilibrium equation for
PN as
A1) = [O-Zrmi-me) smices!) o« m(shs) o

e ) ¢ b(n) (2.7)

4 (R e Lp) « E(g) (2.8)

wvhere L is the operator
oe o . . i 2.9

L (-2 m-ma) s & Rilstes). D
In higher dimensions the operator L takes on a more complicated look-
ing form because there are more indices. For example in two dimen-
sior 3 with a rectangular coordinate system it is necessary to intro-
duce two shift operators 81 and 82 having the properties

S, Fluy) s Rlien5)

Sy FGf) e £l e

(2.20)



The general form of | 1is then

» ¢ . .
L. } - z M:, =m * m-:. 5+ s-‘. . ..
i 5;7% (S5+ 87 )(si+5)  (a.11)
vhere the prime denotes omission of the term ’u,'-o.

In this paper, our principal concern will be the calculation
of the correlation fimction which we denote ty r(gf) and vhich will

be defined by the relation
E[faf@] | o
E[#*@] PLR)

(2.12)

r{pa):

vhere p(g) is the unnormalized correlation function.
In order not to be urdened by an excess of notation let us return to
the one dimensional case to derive the equation satisfied by r(®)
If ve mutiply E¢.(2.1) by £ (0) snd take expectations we
£ind for Re0 the result
p)- E[LFLF @] (2.13)
However, it is shown in Appendix A that

E[LF@)Lg@]- E[BFmF©] = £ pir). (2.14)

Hence r(R) satisfies the equation

(=) rin)= o, RPO. (2.25)
This result is also valid in higher dimensions since the argumssnt vhich

led to this equation does not refer to the number of dimsnsions. In the
case of f(o)nmttahmtoucmttheemumtormm



given in E%_u.;) . The value of r(o) is therefore to be fovnd from

0-2rp s ELE o FO-F)- pro)
¢

2N,

(2.16)
3. Exact Solution to the Equations

We now turn to a discussion of the solution to Eqs. (2.1h)
and (2.16). A necessary and sufficient condition that a set of mum-
bers [r.} to be a correlation function is that it admits of a spectrel
representation, /9 7. Hence it is natural to assume a solution of the
form

w .
rB) = e [ F8, 8, 0a) cats wh,8,48,.40,(3:1)

and try to determine the function F(8,8,,. 8,). We will carzy out
the detailed calculation for m+| and indicate the generalization to
higher dimensions. Substituting Eq. (3.1) with 4., into Eq. (2.15)

we find that
(13
LF(&) (1-2) k8480 gyo. (5.2)
It will nov be demonstrated that
(=M nhgs (- H(wd)) nsnb (3.3)
vhere H(w®) is an ordinary function of W ® . For simplicity
let us set w.t'-‘i"‘;—'ﬂo  Then
[ . . hod ' . -t
P RO = T Mi(sders?) 2 J(S +5™") oo
jte ¥ .o (3.4)

» . . s e _;.'
2 g T Do (3.8, g LS ') en e

i .
o 4%



by straightforwvard mltiplication. But the result of opersting on
ts Ré Dby the operator in parentheses is
(Slﬂs . s\." . soi.ﬁs . S-L's ) e *o
(3.5)
= o (e 3)02 tn (Rei-)D0 + & (ﬁ-i.o—j)e ¢ inir-i~4)0

»2tord [ liei)0s tn (=509 ]

P4 U RO LG W 3B
Thus we find for \* ¢ R @ the expression

Cn RO = E. Z’Z“Lh mi B uni8) wnae (3.6)

. (ima- @i o ae = H(aB)cn b
J’

oo
vhere Hiwn9) = F_"“,"-"i"
*0
Replacing the operstor b Wie6) 1inE. (3.2) ve find
Q‘F")U—H‘Lwo))mnedb-o @ » 0.(3.7)

This is clearly satisfied if we choose F(0) to be

\
F®): T mae) (3.8)

The generel solution for r(w) can therefore be given in the form

L (T war o
ta)s L ® LY -

The constant ( can be fixed by the requirement that r(0) = I.

This pmcedxmyieldsthemsul’cmidform R,

) V‘"‘. s * Jo
LT, W [ hes) ""“")310)
w $
a0 L ) [

v 1= HYn0) Aw S. L\-leo)* \+H(u-0)]

F(R)s




In higher dimensions the same reasoning leads to the representation:

\ r‘ j tr R0, R0 ... tpe.0, 46, d8,.. 40,

fa). Gm" 3,70 T H' (we, we, .., 6.) (3.n)

L I"] 48,48, d8n
(2r) | — H"(u.a“weu....w“)

Finally, we return to the calculation of f(o) from Eq. (2.16) now
knoving the values of the r(%) . The general procedur for finding
this quantity is to substitute o) r(®) for the value of p(n) .
Inthiswmnnq

(3.22)

po) [L-tM) ri0)] - #4=8) _ p(0)
N, TNe

vhich is also true in higher dimensions.
The value of (1-L*)r(0) 15 found from the representation of Eq.
(3.11) using the identity of (3.6). We bave, in fact

\

0- Lz) r(o) = (3'13)
L e
® |- H*(n®)
vhich implies the expression for f(°) '
P(o), ‘;('-;) - ’F('- ‘;) (3.24)
L (- 1)r(0) I WNE
;" a9

o V=W (tnd)



When 7 e . e O Dut 7, is greater than zero then
- . (3.15)
$0-F)

I+ 2Ny, (2- m.)

p(o) =

vhich agrees with a result given earlier by Wright, /3 7. The result
analogous to Eq. (3.10) holds also in higher dimensions.

k. _Specific Solutions to the General Equations

In this section we shall present a study of several specific
examples using the general techniques so far developed. In addition
we shall derive an asymptotic expression for r(f) under the assump-
tion that As4d.ale.-+ RY is large. The simplest example is that
of & linear habitat in which migration can accur between adjacent
colonies only. For this case only m, differs from zero and the fimc-
tion W(>0) 1is given by

H(w8)r 1= mg- ™, (1-w0). (k1)
The relevant integrels can all be derived fiom the single formuls

e
L wombde = L oy " k.2
y TR {X".l( X1 -7‘) , x> (h.2)

= (“)“. ("'I"T')n; x & =1,

With these results we find for r(R)
(&.3)
ray. Als A
A, (0) + A,(O)
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vhere

A\(‘h)za ;M‘M.#M: [“ ::‘: - m)‘.]“ (b

A‘(‘).a‘(:'-m'-n.)‘-m:‘ [R__————%',:))‘:" - z—-—-ﬂ:-"']“'

Although the solutions 5o far have been perfectly general, there are
approximations possible in writing the solution based on the fact that

e << ™, (4.5)

for all realistic situations. In fact we shall generally assume that
™, 1is of the order of /p~' and "ae 1s roughly 4x /0~ .

This implies that A () is small in comperison to A, (R) . This is
also true in higher dimensions. For example, in the present case,
with the parameters that we have just mentioned

(4.6)
A we 177 (472)"

A, (=) = 0263 (-0.26)%

It will be noted that with the present, general method of solution,

one does not have to choose the solutions with the property r(fR)-+ ¢
This comlition is insured by the trigunometric representation of r(a)
given in Eq. (3.11) and the Riemann-lebesgue lemms, / 10 7.



Let us next consider a two d.imsiml rectangular lattice
of colonies in vhich migretion can take place only to the nearest
neighboring colonies, as pictured in Fig. 1. To be completely
generel let us suppose that migrstion in the 4 direction is differ-
ent from that in the ) directimf We may use the general form of
Eq. (3.11) and introduce the fmction of two varisbles H(ces 8, tes 01)
by

H(wse®, en ) e 1= Mu- m, (1= tng ) m, (-cnl), (5:T)

The two integrals which figure in the evalustion of v (w, n,)

are:
W
Aty b H wan, b, e n 6, 49, 49,
eeMut M (1eel)r mii-tnd,) (4.8)

A ¢ ar
L (n,, ") = i‘;'& ( e 0,9, U""\!_““,do; .
¢ o 3"“\»’”‘. ('-““)- '“\,('.b &)

These may be transformed into single integrals vhich preserve the sym~
metyy inherent in them by use of the identity

(-
J— = - ‘*
S (5.9)
to put the denominators in an exponential form. In this way we find
that K, (»,n,) and A\_(n.)n‘) can be expressed alternatively as
[}
Alymye & [ etmememit g (4.20)
L £ 0 A

e mtiunbd " t“l';
” ‘l tnn 6 nn,b e ‘ et 49,49,
[ 2N -]
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~ " A
- - - -
A‘L“u;“\)' ‘L‘,\, S‘ (1=wy, =My ‘,f' \ ‘ (YO 3 m"l“.'
[ o °

Lt omtin g 0,40, .

The step of interchanging orders aof integretion can be Justified in
detail. The angular integrations can be carried out by msens of the
Bessel function represenmtation, /11 7,

'

S S.... no "t yg . T.(mi) (v.22)

vhere I ix) 1is & Bessel function of imaginery srgusent. In this way
we find

Aonmye & (e eeme Wb T () T, (i (h22)

A (n,n,): (_;_) RS (e.a.n.-n.-mt 1"'(..\1;)1%(..‘1)&.

o
It is clear from this representation that for the values of w, W,
ad m considered here A, (%, ") 1s always grester than the ab-
solute value of A‘(a,,n;) since T, () is positive for a30 snd the
quatity My +mem,  ismch less than 2= ™g = ™M, > W, ,
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The diagonal terms A‘;‘_(n,n) can be evaluated exactly in
terms of Legendre functions of the second kind or in terms of complete
elliptic integrals. It is kmown that

" et Soaty e (#13)
¢t bt) J.(ct)dt = — e i
IREATORAC, e @ L (=)

80 that if we replace b by ib and ¢ by (¢ we obtain
: =y Bt. -0t (k.24)
T, ()T, (ct)at = = Q""-(T

-
b E
vhere the argument of the Legendre function is negative since &> bece .
For ms0 we use the integrel respresentation of the Legsndre function
to transform this into & form more convenient for calculatiom:
by
Qe & iﬂi G &t_:'.’_— (4.25)

2-tnt {vei-arutt

vhere
A

K(‘\) - s ‘ (u‘m)

A \]..%mo
is a complete elliptic integral of the first kind. Thus the normalis-
ing constant C 1is found from

- ' Y
¥ /M‘:' ¢ Wmg (wys my) o A m, I+ ?(&a"}";)'am

e gl
=My, ) (1= me = M) 2+ (-ma)™_ (z-m.)(*'o--!ﬁ)

amm,
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Whenm.lm‘andm./n‘_ are small in comparison to | we
may derive a simpler expression for ¢! « Let us consider the first
elliptic integral in Eq. (4.17) and set

(4.18)
W‘a

€= ? M“) Qnm

i. e., ¢ is also small in comparison to | . The argument (V¢ ¢)"'
is therefore close to | and we may then approximate the elliptic
integral by
K== o 2 O(edne). (4.19)
(n-e)‘ =" ( )

In the second elliptic integral to appear in Bq. (4.17) we notice
that the tem
(2- "".)L
- (-mu){ L + 1L
amm, )(mn ™

is large in comparison with | so that the argument is small. Ve

(4.20)

can therefore use the approximation
K= TLe e g e oup)] (b.22)
Hence an approximate value for C' 1is

C-“ ] |

v Wn o-zm.(mom \J (R"'L‘)
I' J=-‘.ﬂn—— [Io !
(=M )" 2(1- Mg ) (Mt M, ) 2(1e Qeme)*_ (2. M.)(.'.u

Zm,

(4.22)

-
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We have neglected temms of the order of Wy /WY  and wy /my
since these are O (10°*) for all problems of interest.

Exact results can be obtained for the diagonal elements by
recursion. The expression for r(n, n) is

AN)2 e -la My _M_;' (h°23)
povs e [ Qo (- melieb) - 22 )

+ Quog (- (}_'::)z-.. (a-m.)t' + 4 )]

MM, ”‘-

We have alTeady related O_k(-u) to the complete elliptic integral
k(%) « A similar calculation shovs that

Q, @) =ifaGe ) EE,)-wfE k(&) &

vhere E(x) 1s the complete elliptic integral of the second kind
i

EW). | fmanTs s8. (b.25)
[-]

Values of Q"'t('" for m > | can be obtained from the recurrence re-
lation, /M1 ]

Quoy C0e B [-4)O,_ (9)- 2n Q. (-0)]. (4

It does not seem possidble to derive values of f("'* ) in general for
™ # m,_ in terms of tabulated functions. mr, in the symmtric
case, WM »m, , it is possible to derive expressions for "P(n,, n.)
either by appealing to the difference equation or by retuming to the
integral expression for the A's . For example to get plo) w
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note that vhen e m,
Ao,1)a AC,0) = & [Ato,ne A(,0] . (k.27)

Hence

(4.28)
A lo,nr A (0)) s "““%‘t)‘t.‘(%” + £(a- i:é':-)p“(o,o)

from vhich P(o)o) can be calculated. In theory it would be possi-
ble to build up & complete set of the 'A(n,,n‘) for the symmetric
case by recurrence. However, this quickly becomes tedious and is in-
deed quite special because of the restriction Mm,=w, . Hence we
tuwrn to a different renge, namely large values of M, « My .

For large ", + n,  another approach is possidle. Let us
return to the expression of A, (n,n.) in terms of trigonometric
integrals (Eq. (4.8) Wemmutheexpmlliol;tor A.(n,,n‘)u

A ) ”mvnu.noctoah. (k.29)

oo Myt m lie e )+ m‘(l- ua’;)

by symmetry.

A similar reduction in the area of integration of A, (",4,)
also holds. In the limit M, N\ » we notice by asymptotic ar-
guments similar to those given by Duffin, [ 12 7, that the main

contribution to the integral comes from the neighborhood of (8, 6,)~ (0,0)

since the denominator is a minimm there. Hence the integrel can be
approximated by expanding the denominator around (0,0)'0



-
WA N6, Lmn, 8, 46,d0,

AWy~ L
' ) ar* ‘. ™, g. 'Q\' ’-:_“.9:- (%.30)

[ ]
Again, in the limit MmN - » the limits of integration can de
fixed as (0,») with an exponentially small error. Thus we find

A (wn, yM) ~ -L ‘ '-ﬂ“o wany Oy 48, “" (4.31)
o o My M‘.:\:’o‘

=;‘hﬂ- enn & %) e (na&, *) dx, dxy |

1o © LY
Am, e 2t e n}

malwnwitcmumtmtmnmtemsion‘m
A‘(n,, n,) 1is

A, A O [E =) w( ( } d
ﬂl, Vs W :—'——— n' ‘
any,n) o j j ( m " *) '\‘ ) dx, day ‘

* 0 Al-me- 2mpamy)) 4 a2, o2

Both of these integrel depend, aside from the trigonomstric factors,
only on  %'+x) . Bochner has shown, [i13/, that if an integrel is of
the form

ey Xy,)

DU 4y, Q) = S J Flryx, . %,0) € v du dx,... by (4.33)
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vhere  f(v, ¥\,.,%,) e tp(\j,,t, *:",—‘,43“) Hhen  Uls,g,,.. o)
depends only on the quantity & =z («t4ede-- *d})""
and the mtcgnl can be reexpressed as

- - (4.34)
U(«):L_"_'_),‘ S () T (wp)d
o0 .‘Off > tf
where J.:_.e(t) 1s the Bessel fnction of oder W _,,
In the present case we may set
R b,
*s (v;\:‘, _;”_;) (4.35)
and
o (k.36)
Alr, m)~, Lpdt L (T
’ “*“‘-'"s%:—;' gm, e L)

bty [/vhere K,b) 1s a modified Bessel function of the thind kind.
In a similer vay ve find that A, n n,) 1s

"+ Ay (%.37)
A,(V\.,M)-. :2_ K, (qu(t—m. -IM,-M\\J) .

47w o,

The paramesters m, and M, are of the order of magnituds of §x;0"%

and W, is roughly 4x 0" . Hence if M, and %, are both 5 or
greater then o is greater then 70 snd the argument in the Bessel
function approximation for A (w,n,) is roughly 6 vhile the
argument in the expression for A‘_(n,’n\) is over 100.



Considering that the function K, (%) has the asymptotic expansion
Kol(¥)o | X o-% (.38)
a2

ve see that A (A, 4) is negligitle in comparison with A, (")
and that for N, A,3§ one can satisfactorily write for

(4.39)

(3 LY _OA
_._\,_-_ 2N | 2Pen,
P(A.,ﬂg) .ac ”M'M‘ ( ml M‘ ) »

ol (e e Y

=

In particular if ~m s, and we set Jnﬁn‘f = R , We find

(k.40)
R¥T

) | m, \ M
er)'lr‘l_f '::E m-)

£
=

Thus we see that in contrast to the one dimensiommal case in which the

correlation falls off exponentially at large distances, the two dimen-
sional correlation function falls off as an exponential divided bty J& .
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It might be objected that such a conclusion depends critically on our
model, i. e., that if longer vange migrations are included the asymp-
totic form of the correlstion function would be changsd. In the next
section we shall show that if the long range migrations are sufficient-
ly wesk the general form of the corvelation function will remain wn-

" " changed except that W, andw, are replaced by differemt combina-

tions of the wm's,
A closer analysis shows that the next term in the expansion

e"Fﬂ;.

is of the orxder of

R

which is smaller then the result of Eq. (4.40) by a factor of R

Finally ve may tum to the three dimensional case in which
migration is characterized by three exchange coefficients, ™, M,
mdm, as shown in Fig. 2. For this case we use the same reason-
ing as in two dimensions and thereby f£ind the results

v
A (n ) e S ( wrn® nn, 0, Ly ““’&(h.u)
v ')“".N art o My+ M.(l-"ﬂ") s (1-m@) ¢ M‘u_ m..)

. * S e (Maememe W)*I“ (“'t)I«(“Q’ I“(M.t) dt )
’ ‘ (CR

win® w0, wen, 6, 46,40, 46

<
A (», Wy N,)a -‘-—
e ’) ar? SI. A=My = m,(i-mﬂ,)-n\,u-iﬂ\) -N;(‘-‘"’:)

- (;‘i'um.o "y f - @-Mg =™ =M o m, )ttn (M.Q)In‘("bt) In’(mgt)“ .
2 > ! '



In this case, an expression in closed form for 'o(o,o'o) is mown only
for Ma~>0 and ™M * M.*W, otherwise mmerical methods must be
used. Fortunately tables are available vhich are useful for the case
wmem, [Iy]. This is the case of isotropic migration in & plane
ut a different amowmnt of migration in the third dimension. Such &
model would be useful to describe the composition of an oceanic habi-
"tat in vhich it might be supposed that there is no distinction be-
tween the two directions of horizontal migretion, but there is & dis-
tinction between migration in a horizontal or a vertical directiom.
The tables in [1k 7 are expressed in terms of the function

(h.k2)

I(&,b,&;g-”) - bi ir‘ Lea O hbcamf.. d“ihj‘

° (ius)f—h-.x- try — dtnd

Performing the necessary reductions, we can express the A'S in texrms
of'thutnplamteyu:

(5.43)
. m
A ma,my) - -‘le.I("') ™, %5 7':"’,5 Ie zf;m)
N Ay ¢ Ny
A tmarssm) = CD TR T (e ma s T e ),
: im, M amen,

The value of r(o,o,o) mst be obtained from the tables. When
'\-‘."‘:’%u‘; is mich greater than | , the value of (™, ","%)
is given by the asymptotic expansion:



n - AR bl
Plryny,ny) = T':'; e ¢ (b.kk)

vhere

? 2 “*
Rsﬂ,vn,.v_’;,n\;
]

Ats alas ::)(L )

m, 2m,+m,

(k.k5)

In particular if m - WA, then the correlation function has the charmc-
teristic form

- R (k.46)

Plrny, nyy s e '

4r R

where R v e L + wd . This is seen to fall off much more
quickly than the one or two dimensional cases. Corrxections to Eq.
(4.46) are given in [2k 7.

In Figue 3 we have plotted, for the purpose of comparison
some results for one, two, and three dimensions. In these we have set
Me® #x:10"5 and all of the other m's are set equal to one an-
other. In one dimension we have put ™,» 0./ , in two dimensions
mam 20,05 and in three dimensions m,» m, » M ;s 0.02332,

It can be seen that an increase in the mmber of dimensions has a crit-
ical effect on r(R) .
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5. Qeneral Interactions

So far we have restricted ourselves to a rectangular lattice
with migration permitted between nearest colonies only. It might be
thought that the conclusions that we have drawn concerning the long
range form of the correlation function depend on the particular model
welnnehocen,mdthﬂtiflmaerm@ﬂmﬂmmdlmdm
conclusions are incorrect. We shall show that if the long-renge mi-
mtint}:suﬂicmm weak, in a sense 0 be specified more exactly,
the correlation function retains the same form for long distances as
that found for near colony migretion. For simplicity we shall derive
the result in one dimension and indicate the extemsion to higher di-
mensional habitats. The reasoning for these resains exactly the
sams.

In one dimension the representation of Eq. (3.10) is val-
1d. For large M we expend A(*) and A (%) as indicated in Bq.
(4.30). For A,ln) we find

.

46

A = frs o d (5:2)
°

my +m (1-n 8+ m (1- n26)4..
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vhere we have defined the paremeter 7% by

_ (5.2)
A= 2 Q'xmi .

Y
Thus it can be seen that under the hypothesis that P‘t ir finite
A, (n) decreases expomentially with n , the coefficient of
being ‘(Zmol;u.t)"" as vas found earlier for the special case
of nearest colomy migretion. The function A, (n) for large n

is given, in the same manner, by

e S e 53
\laf“\(ﬂ" Me "lh)

(5.4)

It is necessary to find the value of f(o) 'bysonmﬁric&lorm—
imate method in the present instance. Notice that the inequality

Iy Ma+ Ko (5.5)
alvays Luplies that A,("3 |A (n)] , or that the first term is
alvays dominant in the limit n - o . However, the possibility of
long renge migration can make the contridution of A, (n) signifi-
cant in the range of n which may be of interest.
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In two dimsnsions we must consider an arrey of quantities
{Mi;} inwhich m; is the percentage of the colony st (0,0)
vhich is exchanged with the colony at ((,j) . In terms of these
quantities, and suxiliary functions u.; defined by

P m 2 Zi'is”"j (5.6)

J.". -0

we find in two dimensions that

A’ Lﬂp)“‘b)\v -—'— K ol J—. (5.7)
| w1 L)
AL ()~ D™ K (w{TGome- T 2Ra) )
e Fe
vhere
508
ot 1'1 N ) 8
Mo e

Thus we see that the only difference between results derived for

nearest colony migretion and for the present wnrestricted case is
that M, and m, are to be replaced by j., snd fi,, Tespectively.
When J,, and j,, are not finite this sccownt 1s not valid and

other forms are possibls for r(n, n.) .
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However vhen migration can taks place between a finite group of colon-
ies only, the asymptotic form of the correlaticn functiom will alweys

be as given in Eq. (5.7). The conclusions for the three dimensional case
weuw;mothesm.

nesulurord:xfemtpenodicWOfm

resemble those given in this paper. .Pomlmuion'lm‘bohﬁnd
for r(&) in terms of mltipls trigmometric integrals as in the pre-
sent analysis. The conclusions vhich can be drawn concerning the long

distance form of v(a) are the same as given in the present paper,
and depend most significantly om the dimsnsionality of the habitat.
Natuarelly, the value of r(4) for smll A& varies between different

types of lattices and mmst bde calculated individually. One cam write
down a contimous version of the present model. The amalysis lesds
to partial differential equations analogous to our partial difference
equations, and indeed the same form of r(®) for laxge R cen be
recovereds However, in two and three dimemsions the solutions to the
partial differential equations are singular at the origin and &d hoc
methods are required to f£ix the normalizing constant. It is therefore
felt that the present model is a more accurate representation of real-
ity.
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Appendix A: Proof of the Equality E [LF(w) LFw@)] =€ e ;m;(o)]

In this appendix we prove the equality stated in the title
for the one dimensional case. A simple extension of the notation suf-
fices to prove the result for higher dimensions. The pxoof is straight~
forwvard and consists of a direct calculation of tbatem involved.

We may write for the left side of the equation

£ LFwLF@]= te [T m; (3% ) g en) i.m'(3'+ sTYFO)

*e

* 1B [T m(Foi)e Faeg) I m, (FEr)s §m) ]

jto rs o

s é £ [Z p X m;m, (ﬁ(r)?(id) v f(—r)f(\tj)

jlg rso
R FIR-g) 4 T FR-j) ]

* 3 i Z mm f(«.,’ér) +piRejer) + p(R-9-r)

jso rs0

i-f(‘k-jo-r))'
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For the right side we find

ELt s wmg)] = E [Fo) Fm)]
c[FO T Fmim, (Sirsd)(sme 577) Fem) ]

z j'\? Lk 'Y
) = ] . (Res=r)+ (R . e
= : z z mjmr(f(“’“')‘ P ry- f +r-1)4 P(*"'"S)

10 T3

s ElLfFmLFo]-

Ancthormcbotthhemﬂitycmhodeﬁndhymoftholmm
representation of . F(R). [
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Figaxre Captions:

Fig. 1.

Mg. 2.

Hg. 3.

Plot of r(&) &8 & function of R for one, two, and
three dimensions.

Schematic representation of exchange between colonies
in a two dimensional habitat.

Schematic representation of exchange between colonies
in a three dimemsional habitat.
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