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In this paper vp analyze Pe correlation coefficient

between members of axv twc Joiesout of an infinite ensemble

of olonies. It i&s a v e-A tthat ea h colony has the same number

of members, that migration takes place between the different

colonies , aud that there is a constant rate of mutation in each

Olcy. An explicit fc'mLIxa i der!-.vd for the correlation iAmc-

tlen and the long dlet ance form of this function is derived.

It is vicwn that und.r rTaher weAk restrictions on the pat.

tern Qf migration the a~y ptz,': form of the correlation func-

o I hamcttrlti. of the dii r.sion of the mdel. 'N



1. Introduction

The theory of evolution postulates the development of a species

by the fixation of matant genes. Since the doctrine of survival of the

fittest is no longer recognized to hold In its strictest form one can

understand differences in a given species In terms of the developmnt

and viability of several alternate genes for the sam chacteristic.

Clearly, geographic separation betwen two colonies of the same species

would tend to promote genetic differences between mebers of the two

colonies. One can interpret the fortion of separate races in this

light. It is the purpose of this paper to analyze a nsthustical mod-

el vhich supplies quantitative information on the effects of distance

and dimensionality on genetic differences between grops isolated by

distance. The model was first proposed by one of us (M. K.), Ll J,and

a discussion of the biological Inplications of this work vill appear

in Oenetis,.J. The present paper is devoted strictly to the nthe-

utical developnt.

Wright was the first one to discuss quantitatively the pheno-

menon of isolation by distance. He considered a large population in

vhich there are several groups, and analyzed the Inbreeding coeffici-

ent of a subgroup relative to the large population by mans of his

method of path cofflcients,-5. Wb3Acot has calculated correlation

coefficients for a continuous model rougly similar to ours, f-6,7-.
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The present model considers an Infinite numnber of colonies,

each colony containing N individuals * It Will be smd that breed-

ing proceeds by generations, and that migration my take place between

colonies In a ienoe to be specified more precisely below. We will al-

so allow matations to take place at a finite rete. In this way the

composition of each colony will chane randomly due to these three

causes.* We shall calculate the correlation coefficients R(p( i) p( i+JV~

where p(i) Is the frequency of one of the alleles In colony i. We

Ignore effects due to the finiteness of the number of colonies, and

we shall only be Interested In the equilibrium state of the system,

i. a., the question of the tim of spread. of a gene tbrough a popu-

lation will not be treated here.

We shall begin by deriving the difference equations which

describe the stepping stone model In any number of dimnsions. * Uen

we s~axll specialize to the one, two, and three dimensional cases W=e

migration is allowed between adjacent colonies only. FnlUV, we shall

discuss the mdifications which not be waft when lonser range migrstion

is allowed. It will be shown that under certain conditions restricting

the manitude of long rag migration the form of the correlation fiuc-

tion at long distances Is that predicted by allowing the difference

equations to be approximsted by a differential equation. Thie present

work, in its mtheatical details, is the discrete version of the theory

of ultidimensional random processes recently discussed by Whittle, j5.
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2. Vozimlation of the MOdl

Let us consider an array of colonia;e fo siwlicity we can

think of them as being fomd on the coozAdmate points of a caresian

ndL which will be extended to Infinity in 9.11 i rectons. - o oo-

dinates of a point will be danote. by 4. , *j -t wheoe an-

Jlr the cases n - I, 2j, or 3 Se of OW interest., these correspmdiA

to a le habitat, a two dimnsional dwelling area# and a three di-

imna lanai dwlling area. 2Bie latter is proposed as a model fr micro-

organism In the ocean. By comnention we assum that the coponenta,

4. am over all Integers, positive and negative.

fhe ene frequency of allele AI at site 4t will be denoted IW

In our mdel the Sowe frequency at any site change In any

generation by three me)ianism . 2ese are:

1. kbwhane betven the given subgroup and n y other subgroup.

2. Hatationp or equivallent3. xcag between the Sia Milop

and one located at frtInity.

3. Rmndm sa. 3. of Seauts in the process of repwoductim.

It will be assumd that migration and repaowtion oocur

perodica.3, allowing us to da with epochs rather than with a on-

tinuous tim variable.

Por siualicity we shall set up the equations for the ~(' ~t)

In the oe dimn ionl case. 2en we shall indicate the extension to

the n dimnsimal case. In one dimnsion we letm, denote the

probability of exchange between the colony at ft. o and the colonies
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at +i aMd- . Since me shall omV deal with a symetric situation the

probability of exchange between *. and *.a will be 4)/A If *)

denotes the gene fraction of A at 4 at a given epoch aM - '(*) de-

notes the gene faction of AI at A at the next epoch, we can w te

, it *) 0 ,do ) I O + MI ( -pit-a)

2 (2.1

vbere i () s a random variable vhIch represents the chane due to

randoim samling of gmntes, and F is the ezpected fraction of gene A, In

any of the colonies. Me term 9 f represents the effects of mitation

in changing lb(t) . If it Is assed that there Is no selection of gene

A$ then tt*) has the properties with respect to enpectation:

%here e is the effective (constant) size of each subgroup. MU pus-

meter is defined in term of N. the nber of =ae an Nf, the -

bar of femles by
I a (... -1 _I (9.3)

3QJation (2.1) can U cost Into a sip ler form by defining a nw vt,,-

able
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which eliminates the tern m " . fuzhermore we wil only be ccsoezn-

ed with the equilibrium case so that we my put

'( -) (2.5)

Inally, In order to rewrite E . I. ) in a simpler form .s swhll

Introduce a shift operator S. This operator is defined b, the woper-

ties:
SfL)- ((, 3'¢ - , 2.6)

Making the changes Indicated, we can write the equilibrium equstlon fr

# *) as

or

where L is the operatorL'(-~".F~ ("3 s-i) (2.9)

Zn hi~ber diemsions the operator L. tahes on a nore ocWlcated loot-

Ing form because there are mfre Indices. For e a in two dim-

sior ; with a rectmnalar coordinate system It is necessary to Intro-

duce two shirt operators 01 and 82 having the properties

S1 kLj) -, f(-"j)(.0
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Th1e general form of L is then

L a I -i (2. )
.,A'.o 

+

where the Prim denotes caisl. of the tei' vim o.

In this paper, our principal concern will be the calculation

of the correlation Amction which we denote bV reg) and which vll

be defined b the relation

- E [p (90)Jga-(2.12)

mbere (s the muaormliued correlation fuction.

In order not to be 1wraned by an excess of notation let us rekm to

the one diemnsionml case to derie the equation satisfied bW r ( tJ

If we vultiply E%.(2.1) by 0() and take epectations me

find for .tJ*0 the result

P (* 4 [L (* Lf (0)J (2.1.3)

Noveve it is shown In Appendix A that

E CLOO(~ L .(0)]3.E CO (0 - aO~ L~(0), 2i

nce r(le) satisfies the equation
(I-L')rot) 0 t . (2.15)

U result Is also valid In hi*ier im-sions anc the ara'ent which

led to this equation does not refer to the numer of &umnsions . In the

cae of (0) we mst tabs into accomt the expression for the variance
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given in Mo e value o is therefore to be foVu' from

* w e 2 N ( 2 .1 6 )

We no tn to a discussion of the solution to Zqp. (2.1)

and (2.16). A necessary and sufficient condition that a let of n-

bars [rj, to be a correlation function is that it admits of A sPectra

repwsentation, L.91. hence it is natural to ason a solution of the

fozm

aMtzy to detanu the function P( ~.We wiUl.carout

the detailed calculation for n I' and indicate the .eneralization to

higer dimensions. Substituting Eq,. (3.1) with .L) into B,. (2.15)

w find that
F11- ) - 9 A .0 1t# 0.

(3.2)

It v=~ now be diUAt'tithat

wher 1 (w. 9) 1Is an ordinary function of ass . For swIcitr

letusseot "s~'e IL1 WS o'

i " (3.4)
q ,)el
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by stra .tbrwmrd. mltipl cation. Bat the result of operati g on

eft 11 by the operator In psreaqteses is

4S* 4 '" . 5- '  r A

=~4 S.4.- j ))P tJ, * La *4
(3.5)

t~ 4+0, O&t Li L'o4)e 4. AM

Thus we find for ~ -4r A 8 the expression

b"s* 3t (3.6)

J&G

(he)U 4I- U.Ib *a 0 ) 42 * tO.(.)

2his Is clearly sti sf ed if w choose F(G) to be
IF(OP) a •

1 - :k (b 0)(3.8)
The geneural soluationi for r(lk) can therefore be given Ina the forA

SW I- H ' T (39)

Te co steant C a be fixed by the reiT~Aimnt that r (O) - I

Ths Procedure yields the result valid for sJi A s

r (") , 1-I £( t ____),, I * ____ _._O )r fi)2• .... . ... .h

- (u~o) u~e)+  -10,u. )

1% 1-4ts-104L
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In higber dimen ions the sam reasoning lead to the repreentation:

, ~W 44%9 ^-,,-40.. AD.0 , ,k.. 48.

ut -1 le (te A, Lab
Finally, me retuxn to the calculation of rlO) from Eq. (2.3.6) nov

knowing the valmes, of the r(t) . Mie general ymcshai f~ar finding

this q tity is to substitute p(0) rC*) for the valme of (hf.

In this mywefind

p(o)[(c iO) - o)(.)

,which is also true In higber dinns ions.

Mmvalue of 0. - L ) r (0) Is foud from the representation of Eq.

(3.11) using the identitY of (3.6). we ave, in fact

ibich implies the expression for

-, - . (3.14)

I
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When . + 0 but A is greater than zero th

eC0) * IN__ _?" (3.15)

vch agrees vith a result given earlier by Wrigt,1 7J. mw result
analogous to Eq. (3.10) holds also In higher diusions.

lb. -specific, Solutions to the General Nwations

In this section ve shal present a studr of several specific

ezmples using the gmeral tecniques so far developed. In addition

w shall derive an asymtotic expression for rtt) under the asp-

tion that ALx*,*4+-- * * A' is large. - e sixi2ast exole Is that

of a linear habitat In -hich migation can acur beften adjacent

contes only. For this case only on differs from zero and the fmc-

tion 14(t" 0) Is given by

H (wm 0) •- - , 0'- e) .( .

Ze relevant Integrls can al be derived fzom the single fbzmula

-71) (l&.2)

With thes results we find for r( *)

(4O.3)
r(. )z A,(*) + AL t)

A, 1o 0 A, (0)



where

Althou~t the solutions so :faw have been perfectly seamial, there ame

approximations possible in writing the solution based on the fact that

or% (.5)

for all realistic situations. In fact we shall gsneza.ly asse that

+"i, is of the order of /O"I and "a is r0o 2y 4iO .

This i4ies that A.(.*) is a-,, in convarison to A,). This is

also true in higber dimensions. For exaniple, in the present case,

with the paraeters that we have Just mentioned

A()- 177 M2)I (4i.6)

A,4., t) a, O~l' .)z)

It will be noted that with the present, geneal mithod of solution,

one does not have to choose the solutions with the property r (it) -o o

M ois cdltkio is insured by the trigonomtric representation of r()

given in Eq. (311) ad t RMn-Lebeg ,-oJ.
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Let us next consider a two dimmsional rectangular lattice

of colonies In which migration can tAdm place on4~ to the neamet

nei~iborlng colonies, as picturedi In Fig. 1. To be omp~letely

general let uas suppose that migration in the -* direction Is differ-

ent from that in the adirection. We my use the general form of

Eq. (3.1l) and Introduce the function of two variables f4 too #0)c.

The two integrals which figure In the evaluatilon of r 0%)

are:

A, L (j t. 9 eo

Mmse my be transformed Into single Integrals which presm the sys-

metry Inherent in the. by use of the identity

to Pot the denontors in an exponential foru. In this way w find

that N, (." 'n) aa& d can be exqpressed alternatiw3er a

A, VIZ.) I t(r~~~ dt (4i.10)

$Ift ne
afn1 A 0.4I
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On step of Imbeyebmi13 ordws at lategzst~oa can be Jurbtleda in

detail. Me ra aw1t~s1. m be carWxa owt by - at Us

Umsel function assem*Atons LfuJ,

I %n ItOPI -

ibus low is a Umesel funtion of Smsglmy az'mat. thMU~is

A ~ ~ ~ v% mot, n)a )s~ Aw t)(S )dt.

It Is cle fkm this reemtation that for the yam f q at v%) I'

.d 0%% coms1ized huee (0I, -3n-) is almss peate l tn aso

sobfte vw~w of Aaisince Z(It Is positive for' ao ant

qumtity M , +V 9% Is much 3oss than a - VI
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Mab diagonal1 term YO (i can be evaluated exctly i

term of Lesendre functions of the second kind or in term of camalte

e31 tic integral. It is known that

soJT C) -I rt. ML. L ___

so thatifwereplace by and C. i i. ve obtain

((bt) (tt 14).

vhere the awont of the Legsndwe function is negative since ..

For t 0 ve use the Integral respwsentation of the Iapndre fmuction

to trwnsfoim this into a fona more convenient for catculstion:

Q.L-k)a I __ 41

Where

19%..

K ( * ) - (i s. 6)

is a complete elliptic Integral of the first kind. Taus the noimals-

Ing constant C. is found fromc' .__________

+f K



When rwI end r/%. are smallincomparisonto I w

may derive a simpler expression for C7". Let us consider the first

elliptic integral in E. (4.17) end set

I.o e, 4 is also small In comparison to I . fte ar'mpnt ,kt "

is therefore close to I and we my then approzimte the ejptc

integral by

In the second elliptic Integral to appear in Eq.. (14.17) v notice

that the teo

(2 - + (4.20

is large In comparison with Iso that the urgimmnt is sall. We

can therfore use the approiation

L-'...... ' ,, (14.21)
Hence aapproite value tbr V' is

(~ m. __ ____ _ 4(14.22)

( a [t .I. 4 - 1



We have neglected tens of the order' of P% / M,' and m'O wit

since these ae 0 (,O') fbr aU problem of Interest.

Lact rsalts Can be obtained for the diamo-s eamnts by

recursion. Owe expression for Is

PQ4 A ) -- . " *4 4 ) ( .2 3 )

+ t

We hane already related Q (i) to the complete e.iptic, Itegra

K ~ A slulma calculation shovs that

ere E ( . the cOMlO Oeptic Integral of the secn d kind

0

Valiues of 9,*, -) for ON 0 1am be obtained from the recurrence re-

lation, flJ

It does not sem possible to derive values of p ( , ) :In general for

0, 0 6, in tezm of tabulated fwctions. owver, in the syintric

case" "0# mr, j it it s possible to derive ex IMstim for ' (n,".

either by appealing to the diffeence equation Or by retUzing to the

integral empession for the A'& . For exmmol to get P (0) 1) we
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note that Vheu fUt, r

A (o) O A'o a A (0) A(1,o0) . (4i.2T)

,(4.28)

A, (o,).AOe)~ ('~ I % ~ oo .t(2- I:-) A, (0oe

from Wich P (0) t) an be calculated. In theory It vould be possi-

bl, to build up a ca~1et set of the 0,4 j for the siintric

case by recurrence. Nover. this quickly becomis tediom and Is In-

deed quite special because of the restriction Moir . Bence w

turn to a different *in nemy larg Y&2bas of .'i. A L

Ibr la e , ,I. saother aproach Is possible. Lot us

return to the empesion of A,, (,,, ,..) J In terns of trigomtric

intepgls (Eq. w1.8 e can write the expression for A,tv'.,."4 as

V i, i J o4 l LA@ ,,S4,O d ,i., (4I.29)

*S," • V,,. ,AA,, 9,- ,,,),* ,i,(,- ,,,nO,)

by symetry.

A n4-4"ai reduction in the ans. of intepatlon or~ 434.

also holds. In the lit OK., Ivm,-% wm notice by asynWtotic ar-

gamnnta similar to those given by DuffnE, -12, that the mmn

contribution to the integl coms from the neiiboziood of (6,39o . (0 0)

since the denominator is a uini u there. Dunce the Integral. can be

ax~oxite4by expading the denominator around (0,1 0 )0
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A (.A,,fri.) -w . J t4IA'i l *1 I'" II LeuAi , ' I(I4 Io

ft + tk (4-30) ~I
T .

AgpIn, In the liit m., -s -, n the 3,,it. of Intep'tin a , be

fi~ced as Co,,o) with an ezponentilW- smfl error. Mmu ve find

1 1

*o

In a saiilar vay it can be show that an appro dte expression for

Bfth of these Intep'al depend, aside train the tioosrcfcos

cmV an 10' + 1 7. Dochner has show~, that if an Integral Is of

the fr
St-X 'A)9)

SOtt )(J. .
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ubere A (~~I4.7g~ itm~ &A~~ ~.

depends only on the quantity %. (e .t .. %)i -

and the IntalrW can be reeparessed as

where J ()is the Bessel function of order -

In the present case we m set

+

and

A s(Ok .'- -A % ) ( 4 3 6

by Elgfere K.6) Is a =xified Bessel f1"Itit of the xh ind.

In a similar W we find that A20A, is

The pmtere W, and VAI. are of the order of mogn1tude of So so-&

and ., is ou" . Hence if 0%, and %, are both 5 or

greater then, st is greater then 70 and the argient in the 33essel

fimation appmoIiintion for A, (%%,3 A,) is rauay 6 wtile the

arginmnt In the expression fnr Aoi is over ion.~
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Considerzg that the function K( (K) has the asyu totic expansion

I O( )- ", (4..38)

w se that is negligible in comariso with A, (Ii, l

and that for n,). one can satisfactorily write for

"<>,,",)I % .. , _., ,.... -' (4.39)
- B\IfFo 2 ,1 2 -

F Ot V I
- 16

In pmticular if ,,.,"vu and we set $t -u we fin

r(.Y), -" '- /4 . e'  . +,(=.O

Ms we see that in contrst to the one dimnsitl case In which the

correlation falls off exMentiallr at large distances, the two dImn-

sional c elation. function falls off as an exponential divied by Jr,
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It nigt be objected that such a conclusion depends critialy on our

nodel, i. e., that if lcngsr vinge migetions ae included the asymp-

totic form of the oo0 i felatuon otion woulA be ohmSed. In the next

section we a.l show that if the long rz e mitiams are uaff calent-

1Y we k the genral form of the cor-owelatlon fmation will remin -

chuwm ept that V%, ad m%, amrezep3aced by d±Ufeat codm-

tim of the "'.

A close analysis shows that the next term in the expansion

is or the order of

which Is uler than the result of Bj. (4i.l0) tv a factor of

71=12y we my turn to the three dimnsional ase In %blob

niptim Is charactezed by tbree ewhange coefficients,, Ms,

and m as show In Fig. 2. For this case we uise the sammzeesn-

Ing as in tw dimnsions and thereby find the results

( ( W* A2 Oj
* (,+h1,-)

Iv ( 4 I. :,% 0% so too .. 2C)V Ilo
0 1- M. M, (I- too G, - ,,.- t*- (I,- ,3)

" , +"." Wo (. -,,. ,,- ,--V t I,.-,.)I , )
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In Ibis caseI a emession In cl.osed fom for p(04o, ) Is kno onl

fn-,r M- 0 a "d I,' "'- '3 p tVIU e .I Zlal. itods mt be

used. Iarbste tables ame&v 'a ble htich m useful f'r the cae

V%, % Al LD&7. SU Is the Case of isaot'de u1gntia In s, P2=e

but a different ammut of dmition in tie third dimuln. Such a

ds3 would be useful to desczibe the composition of an ocemaul habi-

tat In i.ih it nliht be suwosed that then is no distinction be-

tween the two directions of horizontal mipation, but there is a dis-

tUnction betwusa migration In a horlsontaml or a vertical direction.

2ae tab3 s in &7iJars eWmpesed ft terms of tim functian

0 tit -- ) -. OL. x- t. - - &4 a(.

Performing the neoesazyU roicto, w ca el ess the A'S In te

of thi tipe integsal:

pt A%+

mhe l of mso)0)0) mt be obtai d from the tab3es. When

n + , VOS is mchgmetew than i, the vam of

is given by the asyptotic expansion:
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whbere

R'. n' t~

In pusatcular if A,- M., then the correlation fumction has the chma-

teristic toz=

4rf

where R". This In seen to fn off h

quickl. than the me or two d. iuonul cases. Corections to Eq.

(4i.I6) are given In (ila.J.

In Figure 3 w have plotted, for the purpose of cqarison

sam results for ., two, and three dimnsions. In these ve have set

Me a x O-t and all of the other o't am set equml to oman-

other. In one dinsion ve have put , - I I n two dinmusions

rAAA% ra,or aMn ntbm d&1ism5In 0, 0 73

It can be seen that an increase in the number of dimsoen has a crit-

Lealeffect on r()4t



5. Gera Interactions

So far we have restrictecl ourselves to a rectalar lttioe

with migration peziitted between nearest colonies on32. It mlht be

thougit that the concluions 'that we have dramn concerning the long

rang. form of the correlation f'mction daymnd, an the paricmlar nodl

whave chosen and. that if logr rang. miations are allowed a

conclvsions are incorrect. We shall bow that If U lang-imae ai-

gationsufficienty eak, In a sense to be specifled, ore eactly.

the correlation function ret4ns the sam stbz for long distances as

that fond for near coly migration. For s4=lcity we shall derive

the result In an& dimension and indicate the extensim to h4as dL-

mansioal habitats. Me reasoning for these reains eactly the

am.

In om dinnsion the e sentation of Bq. (3.10) Is ml-

id. ibrlarem me wexmd A,(o' and Av) as Indicated In Eq.

(4.3o). For A we fin

2.1r1

jai

V e 4 "1
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where we have deflned the parameter by

(5.2)

Ths it can be seen that vnder the hypothesis that p'L it' finite

A, (w) decr=ses -_- tl with " , the coefficiet of .

being - (2 r U,, I L as was fondm earlier for the special ae

of nearest coloy migration. The fmotiou A. (v%) for laxs m

is given, In the sam manner, by

( 1)0 " ( I (5.3)

In which
(5.".)

It is necessary to find the val= of P (0) by some mrical or apWoz-

taste method in the present instance. Notice that the inequality

I ) -W -L (5.5)

always 4%v3ies that Ajn(") IA.('n)l ' or that the first teo= is

al.WS dominant in the limit n --- m . However, the possiblt11y of

long range migration can malpe the contribution of A. (.) aigaifi-

cant in the range of rt which my be of interest.



In two dimnsons we mist consider m amy of quantities

VI ij nwih II~i is the Prtt40Of thacOWnat (0o 0)

which is exchanged with the colariy at (U, j ) . In termi of these

.ntities and auiliary functions ,. dsfle ed by

ve find In two dlm lmsions that

< (5.1

"~ . ' ,- t ('.iJ2(sws .tL3a)

ir

where

Wnve wesea that the only difference bet ma results drived, f r

nearest colony alp'tion an for the present nresrictd ase Is

that A nd m.M axe to be replaced by p'.k, and $L respective.1.

When $AI* and 4,aze not finite this accout Is not islid and

other foris are possible fur f



Bowever 'whenimtIon can tabs place between a finite StmoV of colon-

ies ax2y, the asymptotic fori of t~a corselatioc fuctifs vwIl alway's

be as given in Eq,. (5.7). Me conclusions fo1 the thime dimninaul ase

case ae also the saw.

Results for WD±-rmRt periodic Irsget of cam

reuemN~s those givau in this paper. ftnal expressions can be deulve&

for r~ (t) In term of mltiple tzg Ictz tc Integrals " In th w

sent analsis. Mhe conclusions wbdcb can be dz&Am caoendmg ** 2=

distance form of r4)ams the sam as given In the preent paper,

anG. depend sot slg-ifcantly an the diuinns1ality of the hbitat.

Nstuaul3~, the wm of r~j) for small & vwbwa between 4Sfftzem

types of lattices and ant be ealaulated -ni1~~ & e Ow m wit.

down a continwus weso of the present model. So amesla lal

to parbial diffozuitlal equations anmlogmu to ow partial diffierec

eqatins,p and indeed the saw fors of r 01) for lare A can be

recovered.. Hwever, in two end three dimensions ft 902stcms to the

partial Mifferential equations ame singula at the origin end ad boo

zntbods are required to fix the normlizing constant. It Is litem

felt that the present mdel is a ~saccur'ate ormematn at zal.

JAY.
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Appendix A: Proof of the E3ity E [ L ."L )) 'E

In this appendix e rove the equlity stated in the tit1e

for the one dimansimal case. A slval1 extension of the notation suf-

fices to Prove the rmat for hiaber dim ns e proof is stasiebt-

fbzrad and consists of a direct calculation of the'texin involved.

We =y vite for the eft side of the equation

E A+ -f--

4 VI

f- (E , (ftft3) +-(-

.3' + r
J Ot r/"
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Paz the r1it sift we findi

-- G [fAO;

. LL f Lw o](0

Awother proof -of this equlty can be derived tb means of the somatam

reeentation of. 4 7
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Fla=U oaptim~s:

Fig. 1. Plot at r 4)a a ftJnctiau of 4t for oo tv ma

tbMe Ajusiaong.

Wig. 2. Bcbuitdc repzeseetatimof 6tezlwMg betIMen ColonIe

in a tw di- mnalo habitat.-

Wig. 3. Sctic r~rsttcn Of .chmw btvsm colonie8

ini a thme diainmional habitat.
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