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'*p 
•H Abstract 

. .., A ' 
•^Phis is the first ôf pWeTlés"of papers which treat'both j^onnal and epileptic 

electroencephalographic phenomena;from a new point of view. Phenomena such as 

(1) spontaneity of normal discharges, (2) epileptic involvement of normal neurons, 

(3) epileptic hypersynchrony, (4) "exhaustion, 11 and (5) normal and epileptic excita¬ 

tion and suppression effects are compared to phenomena of nonlinear oscillations 

such as (a) "soft" limit cycle behavior, (b) "hard" limit cycle behavior, (c) non¬ 

linear entrainment effects, (d) oscillation hysteresis and Van .der Pol oscillations, 

and (e) asynchronous excitation and quenching effects, respectively. This-paper 

¿reats {1), (2), and (a), (b), leaving the remainder to future communications. The 

goal of this work is to lead toward a mathematical phenomenological scheme which 

shows relationships between seemingly diverse neuroelectric activity and to suggest 

new experiments which will increase our understanding of the brain mechanisms 

responsible for normal and abnormal activity. 
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Nonlinear Oscillation and Neuroelectric 

Phenomena I 

1. INTRODUCTION 
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(Author's manuscript received for publication, 25 April 1963, 



Nonlinear Oscillation and Neuroelectric 

Phenomena I 

1. INTRODUCTION 

The history of physics seems to indicate that it is essential to construct a 

mathematical phenomenological scheme before one can arrive at a quantitative 

physical theory. Such an intermediate scheme summarizes and interrelates what 

would otherwise be vast quantities of unconnected experimental data. In astronomy, 

Kepler discovered his three mathematical laws of motion which accurately sum¬ 

marized the data of Tycho Brahe before Newton could formulate his theory of 

universal gravitation. In atomic physics, the Balmer formula mathematically 

summarized much of the spectroscopic data before Bohr could formulate his theory 

of the atom. Bohr's theory was superseded by quantum mechanics which in turn 

lested on certain wave and particle models of optical phenomena and also on cer¬ 

tain analogies between the behavior of matter and light. In special relativity, the 

so-called Lorentz transformations already existed as a phenomenological model 

for electromagnetic processes before Einstein re-derived them from a physical 

theory and showed their general and enormous implications not only in physics but 

in epistemology. This last example illustrates that the step from a phenomeno¬ 

logical scheme to a physical theory is very significant. Finally, it might be 

(Author's manuscript received for publication, 25 April 1963) 
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mentioned that present day elementary particle physics is in the "phenomenological 

stage" and that there is tremendous striving both in experiment and in the construc¬ 

tion of phenomenological schemes in the hope of eventually arriving at a physical 

theory. 

A physical theory and its prerequisite* phenomenological scheme is also im¬ 

portant in an investigation of the central nervous system. Obviously,the great 

complexity of this system forbids an exact mathematical description similar to 

Kepler’s approach to astronomy. However, the history of physics is again helpful 

in that it suggests the possibility of considering a system at various phenomeno¬ 

logical levels. One can temporarily (or even permanently, if necessary) ignore 

detailed microscopic events and mathematically describe and interrelate macro¬ 

scopic observations. A specific example is that of thermodynamics. Here, 

macroscopic quantities, such as temperature, pressure, entropy, and enthalpy are 

defined in terms of macroscopic experiments and are related mathematically to 

one another. Microscopic processes are not considered and the so-called "equation 

of state" which defines the physical properties of a thermodynamic system must be 

derived entirely from experimental observation. Such a theory is very practical 

in addition to being useful for the next step toward a microscopic understanding. 

A microscopic theory constitutes a deeper phenomenological level and in a sense 

"explains" the former. The microscopic level of thermodynamics, which concerns 

molecules and atoms, is related to macroscopic thermodynamics by means of a 

statistical theory; hence, state variables such as pressure and temperature can be 

related to the average effects of enormous numbers of moving particles. Of course, 

the brain is exceedingly more complex than any inanimate thermodynamic system. 

Nevertheless, as will be shown, macroscopic electroencephalographic phenomena 

can be mathematically described in a way which displays unsuspected correlations 

in existing data and suggests new experiments. 

There are at least three possible levels of phenomenology in the study of the 

nervous system: the macroscopic, the cellular, and the atomic-molecular. At this 

time one may strongly suspect that the so-called submicroscopic level (involving 

constituents and forces in the atomic nucleus) plays no part in neurology. At the 

cellular level data can be obtained by means of microelectrodes, and at the mole¬ 

cular level by means of electron microscopes. E. E. G. information, of course, 

represents macroscopic data. Although these levels will hopefully become related 

statistically, or in some other manner, and although there already exists data at 

all levels, it is fair to say that an almost purely macroscopic description may be 

sufficient to shed light upon important problems concerning the over-all organiza- 

rPerhaps the need for phenomenological schemes is being reduced by the exis¬ 
tence of large scale computers. An example of an approach based on the latter can 
be found in the work of B. FARLEY. * 
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tion properties and "cooperative phenomena" of the brain. Assuming this to be 

true and that such problems are crucially significant for any future interrelation 

between neorology and psychology, we shall devote most of our attention to macro- 

sopic observations except for those cases where the cellular or microscopic 

information shows a discernible parallelism with the macroscopic information. 

In physics, phenomenological schemes usually take the form of exact formulae 

or symmetry properties. The complexity of biological systems, however, does 

not always allow the luxury of such an exact approach. Therefore, of necessity 

the goal of these papers is merely to compare qualitatively specific mathematicll 

and neuroelectric phenomena and to arrive at a tentative but useful model with the 

hope that subsequent mathematical and experimental work will lead to a more 

general and quantitative phenomenological scheme. In other words, although the 

present scheme is useful for explaining important problems and for suggesting new 

experiments, it is to be regarded mainly as a demonstration that a mathematical, 

macroscopic phenomenological scheme (analogous to those in physics) which uses 

- t-^S 2! oscillation* promises to be extremely useful in the inves- 
tigation of the central nervous system. 

2' THE PROBLEMS OF "SPONTANEITY" AND OF INITIATION ANn 
SPREAD OF EPILEPTIC AFTERDISCHARGES IN NORMALICELES 

In this paper, we shall consider problems of spontaneity and epileptic involve¬ 

ment of normal neurons and leave those of "exhaustion, " "blocking, " "suppression 

and "excitation" phenomena for future publications. The mathematics needed will ’ 

primarily involve so-called nonlinear characteristics and limit cycles. For the 

most part, these will be discussed at an elementary level so that a minimum of 

mathematical background will be necessary. 

To illustrate the importance of the problems of spontaneity and spread of 

certain neuroelectric activity, let us consider what some authors have written. 

With regard to spontaneity, Grey Walter2 emphasizes the paradoxical nature of 

the spontaneity of normal brain rhythms in the first part of the following quotation: 

The word 'spontaneous'. . . introduces the most bewildering of the many unsolved 

problems in central neurobiology. . . Briefly, two inferences may be made when a 

state-determined system exhibits spontaneous oscillations: first, there must be 

some soit of reflexive, retroactive, or feedback pathway whereby two sets of vari¬ 

ables can mutually influence one another; second, in the history of the system there 

must have occurred some event or events that initiated the oscillation. . . Since a 

thporv nf nnl^eSted re^er. WÜ1 find an elementary introduction to parts of the 
theoiy of nonlinear oscillations included throughout these papers. 
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spontaneous oscillation must have been initiated by some event, it may be consi - 

dered Ë? Preserving the information that the event occurred. "* 

As we shall see, Walter's statements concerning history dependence do not 

hold true in the case of nonlinear systems! Although it is true that the behavior 

of linear systems must always depend on initial conditions and thus be, in a sense, 

history dependent, a nonlinear system can exhibit spontaneous oscillations which 

have not been initiated by a definite event. Indeed, they can be triggered by random 

thermal fluctuations and subsequently oscillate in a way entirely independent of the 

conditions or time of initiation. Thus, it will be shown that spontaneity is a well 

understood phenomenon which is exhibited by nonlinear systems and that, although 

we know very little about the causes of neuroelectric oscillations, their spontaneity 

as such should no longer be so bewildering. 

Turning to the problem of initiation and spread of epileptic afterdischarges. 

Merits3 pointed out the present ignorance on this matter and stressed that new 

information would help greatly to understand epilepsy: "A cogent question and one 

winch is misted in obscurity, concerns the mechanisms by which the normal neuron 

may become, through repetitive stimulation, at least temporarily epileptic. put in 

another way, how are we to define the epileptogenic quality of synchronous bombard¬ 

ment ? A better understanding of this phenomenon would do much to further our 

understanding of the basic mechanisms of the hyperexcitable or epileptic nei^n "* 

An understanding of the latter would, in turn, be the key to an explanation of how 

epileptic seizure discharges can spread from foci of abnormal activity to other 
¡jai io ui me cortex wnicn ordinär iiy eAiuoii only normal Jr. E. G. patterns 

Still another aspect of these problems is eloquently described by Penfield who 

analogizes between a glowing coal which can occasionally flare up and ignite the 

surrounding kindling and an epileptic focus which can occasionally produce dis¬ 

charges which spread to other parts of the brain. At the conclusion Penfield states: 

■ • • alter a lapse of time a little coal begins to glow and to warm the area about it. 

Why ? What lights the coal? In the answer to this question lies the secret of the 

cause of e_pilepsy. Thus, in addition to the problems of the spontaneit^oñiormal 

oscillations and the spread and initiation of epileptic afterdischarges in normal 

cells, there is another phenomenon which Penfield considers to be one of the most 

important problems of epilepsy: the problem of the spontaneity of epileptic dis¬ 

charges in epileptic foci. Although this third problem involves the first two, its 

elucidation in terms of our phenomenological scheme will not be evident until Van 

der Pol oscillations and oscillation hysteresis are discussed and hence will be 
deferred to the sequel. 

•Words in quotes (") underlined by present author. 
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3. THE MATHEMATICS OF LIMIT CYCLE PHENOMENA WITH 
PHYSICAL EXAMPLES 

From the point of view of cybernetics, it is evident that the brain is a nonlinear 

system; it should therefore not be surprising that, as will be shown, the theory of 

nonlinear oscillations is especially suitable for the problems under consideration. 

In the following pages we shall show that (a) nonlinear systems can oscillate spon¬ 

taneously and in a manner independent of initial conditions and (b) more than one 

mode of self-sustained oscillation is sometimes possible; that is,' a nonlinear 

oscillator can have several stable modes of cyclic behavior (in particular, it can 

have a small amplitude spontaneous oscillation and, in addition, can be excited 

into self-sustained, large amplitude oscillation if perturbed in a certain way). 

Crucial to the understanding of such behavior is the concept of "limit cycles. 11 

Before investigating these in detail, however, it is useful to consider some of 

their qualitative properties. Limit cycles describe oscillatory behavior and can 

be classified into three categories: stable, unstable, and indifferent or neutral. 

A stable limit cycle corresponds to an oscillation which, if perturbed a small 

amount by some external agent, will return to its original mode of oscillation after 

a certain lapse of time. That is, a stable limit cycle refers to a situation quite 

analogous to "stable equilibrium" in which a system will return to its equilibrium 

configuration after being slightly disturbed. (A linear system cannot possess a 

stable limit cycle. ) In contrast, an unstable limit cycle corresponds to an oscilla¬ 

tion which, if perturbed an arbitrarily small amount, will never return to its initial 

so-called "equilibrium" configuration. Instead, it will continue to alter until it 

reaches a stable limit cycle or, if none exists, it will continue to alter indefinitely. 

This is analogous to "unstable equilibrium. " In the neutral limit cycle, the be¬ 

havior is neither stable nor unstable but depends only on initial conditions. The 

latter corresponds to the situation contemplated by Walter and, because of its total 

dependence upon initial events, can be considered to preserve information con¬ 
cerning them. 

finally, stable limit cycles can be classified into two categories: the so-called 

soit and hard limit cycles. A soft limit cycle refers to an oscillation which is 

unstable in the off" configuration and hence will spontaneously build up if perturbed 

by an arbitrarily small amount. The amplitude increases until it reaches a stable 

state of oscillation; that is, the stable limit cycle. On the other hand, a hard limit 

cycle refers to an oscillation which is stable in the "off" configuration and which 

will remain so until it is perturbed or "kicked" into a cyclic mode. An effective 

|.erturbation must be greater than a certain amount; if it is not, the system will 

merely re-establish the off configuration. In other words, such an oscillator will 

not oscillate unless it is kicked with a sufficiently strong influence, but once thus 

started, will continue indefinitely in a way that does not contain information re- 
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garding the initial conditions (other than the fact that at one time there had been an 

adequate stimulus). In general, no stable limit cycle contains a "memory. " 

For clarification, let us consider physical examples of soft and hard limit 

cycle phenomena. Following the examples, we shall consider their mathematical 

descriptions. The mathematical aspects are to be considered the main basis for 

the phenomenological scheme we are seeking; however, one can gain some under¬ 

standing merely by having an understanding of the underlying physical concepts. 

3.1 Physical Examples of Limit Cycle Oscillation 

3. 1. 1 SOFT OSCILLATIONS 

3. 1. 1. 1 Frictionless Watch 

A clock is usually regarded as an example of a hard oscillator because, in 

general, it must be jolted or excited before oscillation can occur. However, we 

can considera "frictionless"watch or a watch which, if fully wound, has effectively 

no friction. In this case, the watch can start to oscillate spontaneously and hence 

its oscillation can be classified as "soft. " 

3.1.1.2 Electronic Oscillator Circuit 

An oscillator circuit generally con¬ 

sists of a nonlinear device such as a tube 

or transistor and a means to couple output 

to input (feedback): for example. Fig. 1. 

When the circuit parameters have ap¬ 

propriate values (this will be amplified 

in the mathematical section), the plate 

voltage will spontaneously oscillate. 

Such oscillators (or others based on essen¬ 

tially the same principles) obviously play 

a large role in technology. 

3. 1. 1. 3 Musical Instruments 

In addition to electronic organs which use the above type of oscillator circuits, 

there are many mechanical self-sustained oscillators among the musical instru¬ 

ments. For example, the organ pipe becomes a soft oscillator when air blows 

across the edge of the lip located at its "foot. 11 An "edge tone" is generated by the 

flow of wind across a thin partition. This edge tone is caused by an interaction 

involving (nonlinear) turbulence; it subsequently drives and is in turn "locked" into 

resonance or "entrained"^ by the resonant column of air in the pipe. Other wind 

instruments work on similar principles. The violin is another interesting example; 

when the bow passes over the string, the string becomes very unstable and spontan- 

Figure 1. Van der Pol Tuned Plate 
Oscillator 
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eously oscillates. Here the nonlinear interaction involves a difference between the 

values of static and dynamic friction. ® 

In all of the above cases, the oscillatio»S'-occur spontaneously simply because 

the "off" state is very unstable. Next, let us consider the case in which this state 

is stable: namely, the case of hard oscillation. 

3.1.2 HARD OSCILLATIONS 

The classic example of a hard oscillation, as mentioned previously, is that 

of a pendulum clock with friction. 7 In this case, the pendulum must be displaced 

beyond a certain amount before the so-called escapement mechanism can drive it 

into self-sustained oscillation. Another example is the circuit in Fig. 1 with the 

parameters (the bias on the tube) arranged so that there is no oscillation unless 

an externally supplied voltage is applied to the grid. Still another example is an 

electric motor having a large amount of static friction and a low amount of dynamic 

friction and which can rotate in a stable manner only after it has received an 

initial push to get it started. 

Finally, there is the familiar example of a gasoline engine which must have 

either an electric starter or a hand crank to initiate self-sustained oscillations. 

However, as will be shown, this example is more complicated than the ones given 

previously and cannot be considered a "hard" oscillator in terms of the usual 

mathematical definition given in section 3.2. On the other hand, this example has 

important properties and is discussed in the section on inertial nonlinearities. 

3.1.3 "INDIFFERENT" OSCILLATIONS 

An oscillation corresponding to a neutral limit cycle is similar to hard oscilla¬ 

tions in the sense that it must be externally initiated. An example is the frictionless 

pendulum. Once started, it oscillates indefinitely. The analogy to hard oscillation 

breaks down when one realizes that the amplitude depends completely on the 

initial displacement and velocity, whereas in the case of a clock, the amplitude 

becomes the same for all initial adequate conditions. The frictionless pendulum 

thus "remembers" its initial conditions and, if not frictionless, the amplitude at 

any time will "remember" information concerning the initial time. This is the 

example contemplated by Grey Walter, and such "memory" properties are shared 

by all linear oscillators. 

3. 2 Mathematical Description of Limit Cycle Oscillation 

Perhaps the most important concept needed for a mathematical understanding 

of limit cycles is that of damping (negative as well as positive). To illustrate^ the 

*For most readers this treatment may seem too elementary at the start, but 
certain obvious details are included for the sake of completeness so that readers 
with a limited mathematical background will be able to grasp the essential arguments. 
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X 

X 

A 
t 

Figure 2. Freely Hanging Pendulum 
on a Rigid Support 

Figure 3. Displacement of a Swinging 
Pendulum as a Function of Time 

meaning of damping with regard to oscillatory motion, consider a swinging friction¬ 

less pendulum hanging from a rigid support (see Fig. 2). Fig. 3 illustrates the 

motion of the pendulum as it oscillates in time. Such oscillation (for a small 

deflection angle) is called simple harmonic motion and is described by: 

(1) 
X = 0 

where x is the deflection, 

g is the acceleration of gravity, 

Jl is the length of the pendulum, and 

x is the acceleration of the bob in the x direction. * 

In general, the differential equation for simple harmonic motion is 

x + kx = 0 , 

where k is a measure of the force which causes the object to return to x = 0; that 

is, F = -kx. In other words, k refers to the "spring constant” in the case of a 

mass hanging on a spring and oscillating without friction (Fig. 4). Wiien friction 

is present, there will be damping forces proportional to the velocity. The motion 

is then described by a differential equation of the form 

x + b x + k x = 0 , (3) 

where x is the velocity and b is a positive constant. 

* Sec any elementary physics book. 
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If the system is initially displaced from 

equilibrium, xQJ by an amount x, its 

oscillations are described by Fig. 5 

which shows damped oscillations. ^ 

Next, consider the hypothetical case 

(not realizable in practice) where the 

damping constant is negative. The 

equation is then 

x - bx + kx = 0 (4) 

and its solution is shown in Fig. 6. Such 

"damping" is a form of so-called 

"negative damping. " In this case, there 

is spontaneous oscillation starting with 

essentially zero amplitude and building up 

Figure 4. Mechanical Oscillator Con¬ 
sisting of a Spring and a Mass in a 
Gravitational Field 

to arbitrarily large values. 

x 

Figure 5. Positively Damped 
Oscillation 

Physical systems exist which 

being constant as in the 

amplitude and/or velocity. In this 

b can change sign so as to limit the 

of an equation exhibiting this feature1 

Figure 6. Negatively Damped 
Oscillation 

instead of 

the damping usually depends on 

the damping coefficient corresponding to 

An example 

display negative damping; however, 

hypothetical case above, 

way, 

amplitude build-up to finite values, 

is 

x - px (1 - x2 ) + x = 0 . (5) 

v F°r perhaps the most excellent first introduction to nonlinear phenomena, the 
reader is referred to F. H. CLAUSER. 9 
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This equation5!' describes the behavior of a "feedback” oscillator (Van der Pol) such 

as the one shown in Fig. 1. The presence of negative damping in the region where 

X < 1 is physically due to the fact that energy is fed into the system. The feedback 

or self-regulatory-aspect of the circuit is responsible for the injection of energy at 

the proper time so as to maintain oscillation (like pushing a child on a swing). 

Notice that when x > 1, the sign of the damping term changes from negative to posi¬ 

tive. This, of course, limits the build-up of amplitude which becomes stabilized 

about a certain value. For values of x < 1, the oscillations tend to build up due 

to negative damping while for values of x > 1, they tend to be damped out. Thus, 

there exists a stable amplitude of oscillation and it is called a "stable limit cycle". 

Such limit cycles are clearly independent of initial conditions. Since the damping 

is negative at x = 0, Eq. (5) describes soft oscillation. 

Another way to visualize limit cycles is to consider so-called "phase dia¬ 

grams. " An example of such diagrams is shown in Fig. 7 which corresponds to the 
motion of a simple harmonic oscillator 

such as the frictionless pendulum, x 

is the displacement as before, while p p 

is the momentum or velocity (that is, 

the phase diagram shows the trajectory 

in "phase space" in the sense that 

this term is used in statistical mechan¬ 

ics). In this diagram we see that at the 

maximum value of Ix I (at the extreme 

points of the motion), the velocity of the 

pendulum is zero; while at the midpoints 

of the swings (where x = 0), the velocity 

is at its maximum. The phase plane 

motion of the pendulum is clockwise and 
Figure 7. Phase Diagram for 

elliptical. Readers unfamiliar with phase Simple Harmonic Motion 
1 ? diagrams would gain much insight by 

visualizing the phase plane and physical motion in the above simple example and 
then correlating them. 

Next, let us consider phase trajectories of negatively and positively damped 

systems. Fig. 8 shows a case of positive damping with gradual decrease in 

amplitude until the point x = 0 is asymptotically reached. Fig. 9 shows the 
effect of negative damping resulting in a build-up from x = 0. 

/ 

J 

-For an elementary derivation, see A. A. KHARKEVICH10 or 
MINORSKY. 11 
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Figure 8. Phase Diagram for Figure 9. Phase Diagram for 
Positively Damped Oscillation Negatively Damped Oscillation 

Finally, Fig. 10 shows a stable limit cycle and from this it is clear that the system 

is independent of initial conditions in that any initial condition results in a stable 

oscillation. 

Until now, only soft self-sustained oscillations have been discussed. Let us 

next consider hard oscillations where the damping factor is positive for small 

amplitudes but is negative in some region of larger amplitude as in the following 

equation (see Fig. 11): 

X + ( « - /3 x^ + Sx^)x + X = 0, (6) 

where <* > 0, ß > 0, 8 > 0. 

2.4 
NLDC =a-ßX+8X 

Figure 10. Phase Diagram for a 
Stable Limit Cycle 

Figure 11. Nonlinear Damping Co¬ 
efficient for a Hard Oscillator 
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In this case we see that there would be no 

spontaneous excitation from x = 0, but if 

a disturbance caused the displacement to 

exceed a certain "threshold,11 a spontane¬ 

ous oscillation would become possible be¬ 

cause of the negative damping region. * 

The phase trajectories for this case are 

shown in Fig. 12. Two stable forms of 

behavior are shown in this figure: one is 

the state of rest and the other is the limit 

cycle shown schematically as the outer 

heavy circle. The dotted circle repre¬ 

sents an unstable limit cycle. Trajectories 

starting with displacement and momenta 

on the inner side of the limit cycle spiral 

in toward the origin while those starting 

on the outer side spiral outward toward 

the stable limit cycle. Finally, those tra¬ 

jectories which start outside the stable limit cycle encounter more positive damping 

and hence tend to spiral into the limit cycle just as in the soft case. Again we see 

how initial conditions have very little to do with the ultimate behavior of the system 

other than determining which of the two stable modes will be in effect. 

Next, let us consider an instructive situation where there are two limit cycles, 

one soft, the other hard. Consider the case where the nonlinear damping coefficient 

(NLDC) consists of a sixth order polynomial 

X + ( -a + bx^ - cx^ - gx^ ) x + x = 0 , (7) 

where all constants are positive. The form of the NLDC is shown in Fig. 13 where 

one can see that there are two (shaded) regions where it is negative. The negative 

region around the origin would cause soft oscillation while that at greater displace¬ 

ment would cause an additional hard mode as shown in Fig. 14. In other words, 

such a system would spontaneously oscillate in one mode but, if sufficiently jolted 

in some way, would go into an entirely different mode with larger amplitude and 

different frequency. As we shall see, such behavior is not very unlike that of 

excitation of epileptic macroscopic afterdischarges in normal cortex. 

Figure 12. Phase Diagram for 
a Hard Oscillation 

*A full discussion of this type of behavior will be found in APPLETON and 
VAN der POL. 13 
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Figure 13. Nonlinear Damping 
Coefficient for a Double Oscil¬ 
lator with a Soft and Hard Mode 

Figure 14. Phase Diagram for a 
Double Oscillation with a Soft 
and Hard Mode 

4. INITIATION AND SPREAD OF AFTERDISCHARGES 

4. 1 Definition of "Afterdischarge" 

Because the term "afterdischarge" is used quite loosely in literature, il is 

necessary to define precisely what meaning is intended in this paper. In the first 

place, we shall not refer to the type of "evoked potentials" which, although caused 

by and outlasting a certain external stimulus, are not epileptic in nature. Such 

evoked potentials consist of "ringing" phase-locked rhythms seeming to act as a 

reverberating memory which preserves the significance of the stimulus. 14 It is 

also apparently what Wiener considers1"* in his discussion of the normal activity 

of the "nonlinear oscillations" exhibited in E. E. G. *. Thus, in this paper, we shall 

discuss only discharges which come under the following definition: ". . . the 

epileptiform discharges of neurons following strong tetanic electrical stimulation 

which persist long after the cessation of stimulation. 

Afterdis'charges of this type fall into three classes:repetitious firings of 

single units (cells) which are self-maintained; persistent local afterdischarges 

"‘Wiener observed that in the case of non-epileptic evoked potentials, the amp¬ 
litude and frequency arc related to one another, and he cites this as evidence that 
cortical oscillations are nonlinear. He goes on to describe "entrainment" effects 
in the alpha rhythm; this will be discussed in the sequel. 
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involving a domain of neurons (having a volume of about one cubic cm of cortex);18 

and long chain reverberating neuronal circuits connecting widely separated struc¬ 

tures. The first two types will be discussed below while the third will be postponed 

until the phenomena of nonlinear entrainment and "petit mal" are discussed. 

4. 2 Initiation of Local and Unit Afterdischarges 

4.2.1 LOCAL AFTERDISCHARGE 

4. 2. 1. 1 Parameters of Stimulus Efficacy 

The electrical stimulation which is used to induce a local epileptic afterdis¬ 

charge in the cortex (henceforth, the abbreviation AD will be used to mean epilepti- 

iorm afterdischarge) usually consists ol a train of rectangular pulses administered 

by means of an electrode directly to the cortex. Experiments indicate that the fol¬ 

lowing parameters are relevant for determining whether or not a particular stimu¬ 

lation will be efficacious:*pulse width (PW), pulse repetition frequency (PRF), pulse 

amplitude (PA), and pulse train duration (PTD). Fig. 15 shows the relation between 

minimum effective PA and PW upon PRF when PTD is constant. ** One should 

notice here that up to a certain point an increase of PW results in the lowering of 

minimum effective PA for a given PRF. Fig. Ifr-* shows how minimum effective 

PA decreases as PRF is increased when PTD and PW are held constant. This curve 

shows a relation which is of crucial importance: for PRF there is a region between 

Figure 15. Amplitude-Duration 
Curves Showing Excitability 
Characteristics 

VOLTS 
I« 

K3 io io 70 loÕ 300 300 

PULSE REPETITION RATE (PULSES/SEC) 

Figure Ifi. Variation of Threshold with 
Pulse Repetition Frequency (inset) 
Log/Log Scale Showing Negative Slope' 
oí 1:3 for Constant Energy Requirement 

* Here we follow GREY WALTER (op_. çiL ) where he stimulates the human 
visual cortex with a pair of fire electrodes (2 square mm area) separated by 8 

— Fig. 15 is taken from GREY WALTER: op_. cit , p. 228, Fig. 7-1A 
*** Fig. 1G is taken from Ibid.. , p. 228, FÎgT 7-IB 

m m. 
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10 to 100 cps (approximately) where the product of PRF and the square of PA (the 

square of the voltage) is constant. 19 Such a square law suggests, as Grey Walter 

points out, 20 that there is a constant energy requirement in the production of AD's. 

Another notable feature is that this requirement fails at very low PRF in that a 

single isolated pulse, even if it is quite powerful, is incapable of eliciting an AD. * 

4.2. 1.2 Evolution oí the Initiation Stage of .Local Afterdischarges 

In Figs. 17A-G** we see the cortical response (detected by means of single 

electrodes near the site of stimulation and by using the skull as a "ground" to com¬ 

plete the circuits) changes during the application of an effective stimulation. Fig. 17A 

shows the spontaneous activity before stimulation and Fig. 17B, the initial negative 

pulse output of the cortex in response to the stimulation. Notice that there Ts a 

gradual decrease in response until it reaches essentially zero (as seen in Fig. 17C). 

I I I ! « I I 11 I 11 I I 1 I I I I I 11 

Figure 17A. Spontaneous Resting Activity. Marks indicate 20 ms 
intervals, voltage scale at right 

1'igure 17B. hirst Stage in which Response to Stimulation involves a 
Negative Pulse which Decreases with Stimulation Time 

• BURNS: Journ. Physiol. , 112, 150 (1051) was able to induce AD's from 
single shocks, but, as BONNET and BREMER (Journ. Physiol. , Paris, 1950) have 
pointed out, this seems to be an effect of the anesthesia used by Burns. 

BONNET., BREMMER : op. cit. : Here the AD's arc induced by means of elec¬ 
trodes 1-2 mm apart placed on the suprasylvan gyrus of a cat brain which is, in 
some sense, electrically isolated from the rest of the cat's body (a "preparation" 
known as encephale isolé"). In these experiments, the AD's are not significantly 
disturbed by stimulae coming from the cat's receptors or from subcortical in¬ 
fluences, the latter being assured by the choice of site. 
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frrrrrrrrrrrrrrrrrrrrrr 
Figure 17C. Cortical Inertia Stage 

Figure 17D. Positive Response Stage with Increasingly Delayed Response 
and Evolution to Alternation Stage 

Figure 17E. Alternation Stage 

Figure 17F. End of Stimulation Followed by Start of AD 

il 1121 This phenomenon of unresponsiveness has been called "cortical inertia!' Next, 

there suddenly appears a positive pulse (Fig. 17D) which occurs with an increasing 

delay with respect to the stimulation pulse. This process continues (Fig. 17E) until 

an alternation occurs, seen at the end of Fig. 17E and more obviously at the begin¬ 

ning of Fig. 17F. When the alternation reaches this stage there invariably follows, 



17 

Figure 17G. More Advanced Stage of AD 

I Sec. 

Figure 17I-L An Overall View of the Evolution of the AD 

after a brief period of latency, the gradual build-up of an AD (Fig. 17C). At its 

height and under certain circumstances22 the AD voltage can exceed normal vol¬ 

tages by a factor of 10. It is important to notice that the alternation is both a 

-ecessary — ?llfficient for epileptic activation and that such activation 
has a definite "all or none" quality. 

The subsequent evolution of the AD, shown in Fig. 17H, will be discussed in 

the sequel where oscillation hysteresis and Van der Pol oscillations will be des- 
cribed. 
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4.2.2 UNIT AFTERDISCHARGES 

4. 2. 2. 1 Parameters of Efficacy 

The meaning of the word "afterdischarge" as applied to single cortical cell 

units is obscured by the fact that normal unit activity can involve repetitive self- 

sustained discharge. We shall therefore define*^ "afterdischarge" in this case to 

refer only to long duration, high frequency discharges such as those initiated by 

means of strong, repetitive electrical stimulation. The stimulation used to provoke 

these discharges is essentially the same in all respects as that used to provoke 

local AD's. 

As for the "parameters of efficacy,11 Gerin*^ has demonstrated that they are 

essentially the same as they were in the case of local AD's: namely, PRF, PTD, 

and "strength,11 the latter being a composite of PA and PW. Unfortunately, it 

appears that the "constant energy" requirement found in local AD's has not yet been 

demonstrated in the case of the unit. 

4. 2. 2. 2 Evolution of the Initiation of Unit Afterdischarges ^ 

If the "parameters of efficacy" are set at such low levels so as to be very weak, 

then the stimulation can cause no unit response at all. As these parameters are 

increased, then the following sequence takes place: (1) a single spike appears with 

each pulse, (2) a burst of spikes appears with each stimulation, (3) if an AD is to 

follow, the response bursts decrease in amplitude until they vanish (see Fig. 18). 

This vanishing of the spikes is a sufficient condition for producing AD's. The 

necessary amount of spike amplitude decrease has apparently not yet been ascer¬ 

tained. After the vanishing there is a latency from a fraction of a second to several 

seconds following which the AD occurs. The duration of this latency depends some¬ 

what upon the time that the stimulation is turned off, the longer latency time cor¬ 

responding to the longer stimulation time (Fig. 18). ^ 

It should be noted here that the vanishing of unit spikes is quite analogous to 

the "cortical inertia" observed in local AD's and that in both cases a latency is 

involved. Also, in both cases the AD is definitely an "all or none" phenomenon. 

One difference between the microscopic and macroscopic AD's, however, is that 

in the latter case, the amplitude of the AD far exceeds that of the normal resting 

level, whereas in the unit case, the AD never exceeds the resting spike amplitude. 

* In the experiments about to be described, the stimulus had the following 
characteristics: (a) square waves were used, (b) space between electrodes was 
1 mm (like Bonnet and Bremer but unlike Grey Walter who used 8 mm spacing), 
(c) stimulation was applied to the suprasylvian gyrus (like Bonnet). In contrast, 
the pickup electrode was 1 mm away from the stimulated area as opposed to 5 mm 
in Bonnet's case, and its cross section size was only 2/j so that it could presum¬ 
ably measure the electrical activity of a single unit. 
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Figure 18. Initiation of Afterdischarges. A, B, C, show the typical 
repetitive bursts with their peculiar size evolution (see text). The silent 
phase is much shorter in B (where pulses stop when spikes disappear 
in X) than in C (where the stimulation is continued 1 sec later). There 
is an interval of 3 sec. between C and D (at 0). Parameters of stimula¬ 
tion: 8 V, 20 sec., 2. 5 msec pulse duration. Records read from bottom 
to top. Note progressive amplitude increase in the course of the 
afterdischarge (B, D, E). 
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5. THE MATHEMATICS OF INERTIAL NONLINEARITIES * WITH 
LIMIT CYCLES 

In the proceeding paragraphs, we have seen that at both the macroscopic and 

microscopic levels the brain is capable of generating oscillations falling into two 

classes: normal and epileptic. On both levels, the abnormal activity is (at least 

in its initial stages) of a higher frequency than the normal. At the macroscopic 

level, epileptic voltages can be far greater than normal; at the unit level, although 

amplitudes do not exceed normal values, the epileptic activity is far more self- 

sustained than normal activity. This situation is somewhat analogous to the 

phenomenon of limit cycles, the epileptic activity corresponding to a sort of "hard" 

oscillation. This analogy, although extremely suggestive, fails in two important 

aspects: (a) the limit cycle analogy does not take into account that PA and PRF 
9.. 

obey a PRF (PA) constant energy law for the case of local AD's (and presumably 

also for unit AD's), and (b) it also does not explain why a single pulse cannot evoke 

an AD. ** In addition, it also does not explain such things as the "latent period. " 

To remedy this situation, we again turn to the mathematics of nonlinear phenomena 
and consider a more sophisticated approach. 

5.1 Physical Examples of Inertial Nonlinearities 

An inertial nonlinearity is that type of nonlinearity which depends upon the 

average or other "cumulative" value of the dependent variable over a certain period. 

As we shall see, such nonlinearities have an important bearing on our problem. To 

familiarize the reader with this concept, we next consider physical examples. 

5. 1. 1 GASOLINE ENGINE 

The following properties of a gasoline engine are analogous to AD's: (a) there 

is a sort of hard limit cycle which cannot be initiated unless the motor has been 

externally forced to oscillate several times with a certain rapidity, (b) a single 

revolution is, in general, not sufficient. These properties depend partly on the 

fact that rotation of the engine is responsible for the supply of gasoline in the com¬ 

bustion chambers (available energy). Unfortunately, this analogy is complicated 

by the need for angular momentum in the starting process of an engine; hence, we 

next turn to a better analogy concerning electronic circuits. 

|t '•See N. MI NORSK Y : op. cit, Ch. 25, KHARKEVICH, pp. cit. , uses the term 
'delay nonlinearity" instead of "inertial nonlinearity. " 

** This fact is no longer true when the subject is under the influence of chloro¬ 
form or metrazol. That is, under the latter'conditions, single shocks can be 
effective. See BONNET and BREMER: pp. ciL and GREY WALTER: gp_. cit. 
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5.1.2 THERMISTOR CIRCUIT 

A thermistor is a device which has a temperature-dependent resistance, and 

the temperature m turn depends upon the square of its average current. For cur¬ 

rent frequencies With periods much smaller than times involved In temperature 

c anges, one can see that the average current can reach a steady value. Since 

such devices for certain values of average currents can have negative resistances 

(for example, the electric arc), they can be used to cause self-sustained oscillations, 

we imagine a case where a thermistor exhibits a negative resistance only 

when the average current is above a certain level, then we have a situation like the 

gasoline engine in that the circuit will not spontaneously oscillate until it has been 
externally driven for a length of time. 

The behavior of systems with inertial nonlinearities is governed by a nonlinear 

integrodifferential equation. Generally, this type of equation is impossible to solve- 

hence, we are quite fortunate that the needed information can be extracted from the ' 
equation with little difficulty. 

5. 2 Mathematical Description of Inertial Nonlinearities 

To tie the following general mathematical treatment to the above physical 
examples, let us begin by considering a 

definite illustration of inertial nonlinear¬ 

ity. For generality we shall consider the 

case where the usual and inertial non¬ 

linearity exist side by side. Such a case 

is a Van der Pol oscillator circuit with a 

thermistor element of resistance r1 as 

shown in Fig. 19. Letting R be the total 

resistance in the circuit and S be the 

transconductance of the tube, we have27 

X - a< (nS - R)x + X = 0, (g) 

where n is a constant and p is small. 

The question now arises as to how the 

dependence of R upon the current x can 

be taken into account since it depends 

noi only upon the instantaneous values 

Figure 19. Van der Pol Oscillator 
with Thermistor in the Tuned 
Circuit 

by Minorsky28, when 

is solved, the solution 

the square of the amplitude of 

In the limit where there is a long time 

of x but also upon some sort of average value. As pointed out 

the differential equation for the temperature of a resistance 

has two parts: one is a constant proportional to x2, 

the current, and the other is oscillatory 
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lag between the change of x and the consequent temperature changes, the oscilla¬ 

tory part becomes negligible and the temperature simply is proportional to x2 , 

which in turn is proportional to the mean square value of the current. Thus,° R 

can be taken as a function of x2. Approximating R by a polynomial, we then have29 

S = 1 - x2 , 

R =R0+blXo +b3x° +b5x( 

Letting 1 • RQ = A, we obtain 

-h [A - ^2+b1x2+b3x® + b5x¿°) ] x + x = 0. 

(9) 

(10) 

The important fact about this equation is that the NLDC depends on both the instantan¬ 
eous value of x and the average of x0 . 30 The following treatraent wiU hold for the 

more general case: 

x - M f (x, x ) x + x = 0 , 
(11) 

where p f (x, x0 ) is a general NLDC with the desired properties. 

The stroboscopic method (to be discussed next) makes use of the transformation 
to polar coordinates in phase space: 

2 • 2 
P=x +x , tan 

x = Vp~ cos \jj, and y =Vp" sin 
(12) 

where y = x . The physical meaning of p and 0 is best illustrated by the case of the 

simple harmonic oscillator (S. H.O. ) x + x = 0. Here 

(13) 

and the motion in the phase plane traces out a circle of constant radius at a constant 

angular speed equal to unity. Notice that the expression > equals a constant" cor¬ 

responds to energy conservation ¿vhen x and i are regarded as position and velocity 
of an oscillator). 

If this transformation is performed on Eq. (11) we obtain 

i 

- 2¿i y2 f = -2/Jp sin cos 0, pQ ) f 
(14) 
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where we have used the identity 

1 dp ■ * 
I dt ~ x x + y y * (15) 

This equation shows the connection between the rate of change of p and the NLDC 
(f ). Notice that becomes pQ. 

5.2.1 THE STROBOSCOPIC METHOD31 

In the following discussion, we shall assume that the parameter /u is much less 

than one so that, to the zeroth-order approximation in a perturbation series, the 

oscillation is simple harmonic. In addition, we shall be concerned with the motion 

in phase space as it would appear under the illumination of a stroboscope tuned to 

the frequency of the approximate S. H. O. For example, if an exact S. H. O. were 

examined in this way, one would "see11 a stationary point (p, \¡j). Looking at the 

motion of a system spiralling in to an equilibrium rest point (a positively damped 

oscillation), one would see a continuous decrease in p at constant ip (assuming no 

change in frequency). On the other hand, if the NLDC tended to perturb the fre¬ 

quency from the S. H.O. approximation value, then a stroboscopic change would be 

seen in 0. Obviously, the stroboscopic motion in the phase plane would allow one 

to determine whether or not a system can exhibit stable limit cycle oscillations5- 

or stable equilibrium behavior. As will be shown, when the equations of motion 

are transformed into stroboscopic equations of motion, the latter are often much 

simpler to treat than the former and indeed seem to be the only analytical way of 
treating inertial nonlinearities. 

Let us now turn to the mathematics of the stroboscopic method. Suppose the 
equation of motion is given by 

X +pf (x, x) X + x = 0. /ifH 

This second order differential equation can be transformed into two first order 
equations by defining y = x : 

X =X(x, y, t) , y = Y (x, y, t) (17) 

In the case where p = a constant and = constant, one would have a stable 

oscillation. To perceive it as being stationary, one would merely re-adjust the 
fi equency of the stroboscope (the mathematical method of doing this is merely to 
introduce a constant speed rotation transformation). 
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Transforming these into polar coordinates and using the identities 

1 dp _ 
1 HF = XX + yy and xy - yx = p 

_d¿_ 
dt 

(18) 

one obtains the forms 

^ = F (p, i¡j, t) and = G (p, ¢, t) . (19) 

Since p is very small, the motion must be nearly S. H. 0. , and hence F and G can 

be assumed to have a period almost equal to 2 tt . From Eq. (13) we see that for a 

S. H. 0., F = 0 and G = -1; thus, for nearly harmonic motion one has 

^ = p h (p, 0, t) and = -1 + p g (p, t) , (20) 

where one re-obtains the S. H.O. equations when p = 0. Using perturbation expan- 
32 sions in powers of p. 

P (t) = Pq (t) + P P1 (t) + p p2 (t) + . . . and 

^(t) = (t) + p ^ (t) + p2 iA2(t) + - 

We obtain for the zeroth-order terms 

(21) 

P0(t) = p0 and ^Q(t) = 4>0 - t ; (22) 

that is, the same values as for the S. H.O. The next approximation gives 

P (t) = P0 + P P1 (t) and <Mt) = (<£0 - t) + p (t) 

where 

(23) 

P1 (t) = / h (p0, 0O, t) dt 

and 

(24) 

(t) = / g (P0» 0Q» 0 dt . 
0 

(25) 
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Using these relations, we can construct our mathematical stroboscope by letting 
t = 2 Tr (that is, letting the time jump from 0 to 2w) and determining 

P1(2tt) =K(p0,^0), i[/ x (27t) = L (pQ, ^ q ) , (2 

where K and L are defined as p1 and at t = 27t . Thus, 

p(2?r) = p0 + jj, K (p0* , 

\}j(2t!) =4>0 - 27t+a<L (p0, (¡,0) . (2 

Letting 

p (2tî) “ Pq - Ap , 0 - + 27T = A0 , 

we can write 

(28) 

Ap = p K (p0, 0O)> A0 ^L(p0, (29) 

Notice that Ap is the change of p in the time 27r (that is, the time corresponding to 

flashes of the stroboscope) and that A0 is a similar change of 0. If this is con¬ 

tinued in an iterative manner, one can obtain the equations of motion of the "strobo 
scopic image. " To do this we define At = p. * This gives 

SF= K(p 0’ V andsf L (p0, i0) (30) 

where t can be considered as a sort of synthetic time which describes the motion of 

the stroboscopic image. Now, since p is very small, 2 tt is a short time compared 

to the duration of changes of p and the "phase" of 0 . We can therefore pass to the 
limit and obtain the stroboscopic equations 

ïï£ = K (P, ¿ ) ' -IF = L (P, * ) . (31) 

The limit cycles and equilibrium points will therefore correspond to 

ÏF = K(p, ÿ ) = 0 and = L (p, 0 ) = 0. (32) 

- Since the integrations for pj and 0 , usually have a factor 2 tt , one usually 
uses At - 27rp in practical applications. 
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Returning to the original equation (Eq. 16) and obtaining the stroboscopic 

equation for p, we get 

§=-P07 (P0> - * (P0) ■ (33) 

where y involves an integral of the NLDC over 0 (for one period) and Pq corres¬ 

ponds to the magnitude of p (proportional to its average) over an entire cycle (a 

virtue of crucial importance for the analysis of inertial nonlinearities). 

The stability of the limit cycles and equilibrium points can be determined as 

follows: Let Fig. 20 represent $ (p) 

graphically. Since $(p) = dp/dt, p will 

tend to become larger when $ (p) is posi¬ 

tive and vice versa. As can be seen by 

the arrows in the figure, stationary points 

A and C are stable whereas B is an un¬ 

stable point. From the figure we there¬ 

fore see that the mathematical condition 

for stability is given by 

d$ (p) / dp < 0. 

A.S a simple illustrative example, let 
us consider the Van der Pol equation (Eq. 

5) from the stroboscopic point of view. 

Here f(x, x ) = 1 - x2 and it can be 

shown33 that $ (p) = p (1 - p/4). It is 

clear from Fig. 21 that p = 0 is an un¬ 

stable equilibrium point and that p = 4 

is stable; hence, x = 2 is the ampli- 

tude of a stable limit cycle. The con¬ 

nection between (p) and the NLDC (cf. 

Eq. 14) should be noted. 

Figure 20. <£> (p) vs. p for an Oscil¬ 
lator with Two Stable Limit Cycles, 
an Unstable Limit Cycle, and an 
Unstable Equilibrium Point 

Figure 21. $ (p) vs. p for Van der 
Pol Oscillator 

5.2.2 MATHEMATICAL TREATMENT OF INERTIAL NONLINEARITIES 

Returning to Eq. (10) and applying the stroboscopic transformation, we obtain‘d 

$(p0) = p0 [A-^Po + b^ + b^ + b^n • (34) 
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There are several things to notice here: (a) there is a relationship between the 

NLDC and $ (p^) as pointed out above; (b) a factor ^ results from the integration of 

X2 over a cycle; and (c) $ (pQ) depends solely upon the amplitude, x^, and hence, 

the difficulty presented by the original equation is removed. Assuming A, bj, and 

are Positive and bg < 0, one can obtain a curve of the form shown in Fig. 19. 

It is clear that the tube contributes to a soft limit cycle at p = Ã and that the non¬ 

linear resistor, if driven at sufficiently high amplitudes, will cause a sort of 

stable limit cycle when the average value of p reaches the value E. Of course, 

such a "limit cycle" differs from the type considered in Section 3 in that it involves 

averages rather than instantaneous values of the displacement in the NLDC. * 

6. PHENOMENOLOGICAL EXPLANATION OF AFTERDISCHARGE 
INITIATION 

We have seen in the previous physical examples and in the mathematical 

illustration, situations in which a certain type of self-sustained oscillation can be 

initiated only by driving the oscillator for a duration of time sufficient to cause the 

average value of p* * to reach a certain value. In particular, we have considered 

Eq. (10) which has a soft limit cycle and a hard inertial limit cycle. The behavior 

of this equation is analogous to macroscopic neuronal behavior in that normal 

activity is spontaneous (soft) while epileptic activity can be induced by repetitive 

stimulation. Although this sort of behavior is analogous to that associated with AD 

initiation, one additional refinement is needed if Grey Walter's "constant energy" 

requirement is to be adequately represented^in the scheme. This consists of 

replacing p in the inertial nonlinearity by f p (t) dt where T is a given time 
t-T 

interval of integration relating to physical properties of neurons. Details of the 

quantitative connection are to be found in Sec. 6. 1. 

To mathematically incorporate this form of history dependence, one need only 

to substitute Pq, defined by Pq = f p(t) dt, into the above formalism. Of course, 
t-T 

p is essentially constant in neighborhoods sufficiently close to the point where 

$ (p) = dp/dt = 0; therefore, ^J^p(t) dt can be replaced by p^T (where Pq is the 

value at the equilibrium point). The determination of the stationary point now 

consists of solving $ (p^T) = 0 instead of the previous equation $ (Pq ) = 0. As 

-This property of inertial nonlinearity (i. e. , the fact that NLDC is constant 
over a period) gives rise to much smoother wave forms than can be obtained by 
means of tube circuits with time-dependent NLDC; hence, thermistor circuits are 
used in technology when very pure sine waves are needed. Of course, the equation 
for such circuits would resemble Eq. (10) without the x term in the NLDC. 

** In the case of the S. H.O. , p is essentially the energy while in the thermistor 
case, it is proportional to the power. 
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for the stability determination, this consists merely of ascertaining the sign of 

d<$ <p0T)/dp0 since we can again use the fact that ~pQ can be considered constant at 

the point of interest. 

In what follows we shall employ the preceding mathematical approaches to 

formulate a tentative partial phenomenological scheme which explains and links 

together the main features of the initiation of AD at both the microscopic and cellu¬ 

lar levels. Although this scheme may seem somewhat arbitrary when considered 

with respect to AD initiation alone, we shall show later that it has increasingly 

greater value as more of the other aspects of AD are considered. The high degree 

of analogy between unit and macroscopic activity makes it necessary to treat them 

together in the next sections. 

6.1 The Constant Energy Requirement 

As mentioned previously, Grey Walter has shown that a certain minimum energy 

is needed to start a local AD and that such an amount is relatively constant at fre¬ 

quencies from approximately 10 cps to 100 cps. Also, Gerin found that the "parameters 

of efficacy" are essentially the same for unit AD’s as they are for local epileptic 

activity. This, of course, suggests that it is possible that tne constant energy re¬ 

quirement also holds at the unit level and should therefore be checked experimentally. 

For the sake of discussion, we shall assume this to be the case. 

The constant energy requirement suggests that electrical stimulation can alter 

the integrated value of a parameter (proportional to energy received over a time 

duration, T) which can in turn alter the NLDC of the oscillation. When this para¬ 

meter (p in Eq 34) reaches a critical value, a stable limit cycle becomes possible. 

In the case of a local AD, the epileptic oscillations can be regarded as corresponding 

to a limit cycle which (after build-up to full amplitude) is characterized by a voltage 

far exceeding that of normal activity. On the other hand, in the case of microscopic 

epileptic activity, the amplitude is almost never greater than normal, and its charac¬ 

teristic is the long duration of self-sustained oscillations. Heretofore, the long 

duration of the AD has been essentially unexplainable. 

We can now make quantitative connection with experimental data. The energy 
" n 

absorbed by the phenomenological oscillator is proportional to (PA) times the 

number of effective pulses (PRF)(T), (where T is the time of integration in the 

inertial nonlinearity) times the width of each pulse, and the constant energy re¬ 

quirement becomes 

(PA)2 (PRF) (T) (PW) = CONST . (35) 

* Notice that energy constraints are usually found at both the microscopic and 
macroscopic levels (e. g. , thermodynamics and statistical mechanics). I was re¬ 
minded of this circumstance by E. P. Gross in a general discussion of phenomeno¬ 
logical theories. 
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Since each PA of the stimulation is the same, Eq. (35) simply states that f p(t)dt 

-, t-T 
equals a certain value if an AD is to be caused; that is, the term p is to be identi¬ 

fied^ with(p^2 and the terms (PRF), <T), and (PW) are related to the integration 

over time so that 

/ p(t) dt = (PA)2 (PRF) (PW) (T) 
t-T 

(36) 

When the value of this integral reaches a certain critical point, the AD oscillation 

starts. In our model we assume that this 

critical value corresponds to astable point 

of $ (p) which gives rise to a hard limit 

cycle of the inertial nonlinearity. The value 

of T can be immediately obtained from Fig. 

22^ which relates (PA)2, PRF, and PTD. 

This is done by noticing where the (PA)2 

value "levels off" with respect to PTD; 

that is, where a further increase in PTD 

no longer lowers (PA)2. This value of 

PTD must be equal to T since only pulses 

in this range are integrated into the effec¬ 

tive integrated energy, p. From.the figure 

we see that T~ 7 sec; thus in ^ p(t)dt, 

the integration time at the inertial non¬ 

linearity is about seven seconds. 

Another important point concerns the PW. From Fig. 15 we see that an in¬ 

crease of PW beyond 350 psec does not increase its effectiveness. This implies 

that we have an inertial nonlinearity within an inertial nonlinearity and that thePW 

is integrated over a time t = 350 jusec. W^ thus have the following approximate 

relation between the data and the value f p(t) dt : 
t-T 

4 6 8 

SECONDS 

Fig. 22. Variation of Threshold 
with PTD; PRF as Parameter 

• Strictly speaking, p is not constant but decreases during the period of stimula¬ 
tion due to cortical inertia. To take this into account, one would have to take a sum 
£ ¿(PA) kj (PW) where i goes from 1 to (PRF) (T) and where k: is the ratio of the 
response (p) to the applied voltage (PA). However, this complication need not 
enter our calculations at this point since the actual numerical value of p is not yet 
needed. On the other hand, if additional inertial nonlinearities enter (for example, 
Eq. 34 and 35) which involve a different period of integration, call it T1, then the 
factor kj must definitely be taken into account since it would then have qualitative 
experimental meaning: namely, interrupted stimulation experiments would enable 
one to get relationships between k¿, T, and T'. In the following, however, we 
shall assume T = T1 and this complication will therefore be at least temporarily 
avoided (cf. sec. G. 2). 
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/ p(t) dt = (PRF) (PA)2 (T) (r) (W) , 
t-T 

where the 

W 

(PW) for PW < t 

1 for PW > t 

(37) 

(38) 

W is the effective pulse duration per unit time which when multiplied by r gives the 

effective pulse duration. 

Considered from the point of view of our model, Fig. 15 reveals a very inter¬ 

esting effect of a certain anticonvulsant drug known as epanutin. Most striking 
o 

about this curve is the increase of (PA) needed for a given frequency, but one 

should also notice that t has altered from 350 psec. to 250 ^sec., a fact which may 

account in large measure for the drug's effectiveness 1 We see that any drug which 

lowers T or t (other factors held constant) generally will have anticonvulsant pro¬ 

perties. 

6.2 Cortical Inertia 

Another phenomenon which occurs at both the unit and cortical levels is a 

stage during stimulation when the oscillation cannot be driven. This unresponsive 

state or "cortical inertia"* occurs on both levels immediately after a stage in which 

the amplitude of the driven response goes steadily down to zero¿ But here the 

similarity between the two levels ends, for in the case of the unit, the attainment 

of the zero amplitude stage is the sufficient condition for AD, whereas in the 

macroscopic case, it is necessary but not sufficient. Let us assume that this 

inertia at the macroscopic level is caused directly by inertia at the unit level. This 

assumption could be tested by measuring the time it takes both levels to reach the 

inertial stage. If this would occur earlier at the macroscopic level, then the dif¬ 

ference in times might be explained by masking of unit activity through noise and 

lack of synchronization. ** If experiments show both times to be equal, then the 

difference in the necessary and sufficient conditions might have to involve unit 

synchronization. In any case, the steady decline of amplitude at both levels, in¬ 

volving as it does a cumulative effect, would be explained by an inertial nonlinearity 

of some sort. 

We shall now discuss the microscopic and macroscopic cases separately. 

* The use of this term in this context has, of course, no direct semantic con¬ 
nection with "inertial nonlinearity. " 

**This will be discussed in the sequel when nonlinear entrainment effects are 
examined. 
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6. 2. 1 MICROSCOPIC LEVEL 

A mathematical model of the phenomena associated with the initiation of AD’s 

at the unit level is complicated by the fact that the unit response to stimulation 

consists of bursts of repetitive relaxation oscillations*. Such oscillations corres¬ 

pond mathematically to the case of very large ju rather than the situation where 

M « 1. For this reason, the previous mathematical discussion is not helpful at 

this point, and hence, further discussion must be postponed until the topic of 

relaxation oscillations is treated. 

The model to be described later, however, makes two predictions: (a) the 

necessary and sufficient condition for unit AD's is that the amplitude of the res¬ 

ponse must be driven to zero. Gerin has established the sufficiency of this condi¬ 

tion and suggests that variation of PTD could be used to find the necessary condition, 

(b) the integration time, T, of the inertial nonlinearity responsible for eventual 

self-sustained oscillation is the same as the time T* in the mechanism causing 

cortical inertia. To experimentally test the latter, one would make use of inter¬ 

rupted stimulation. Each interval of stimulation would be arranged so that it is 

inadequate, yet these intervals would be spaced close enough in time to allow the 

occurrence of a cumulative effect. If T = T', then the necessary and sufficient 

conditions for AD would occur for a unique response amplitude, whereas if T ^T1, 

this amplitude could be varied by altering the length of the stimulation and rest 

intervals. 

6.2.2 MACROSCOPIC LEVEL 

As we have seen, the initiation of AD's at this level differ from the unit level 

in that the response to electrical stimulation involves neither spontaneity ( bursts ) 

nor relaxation oscillation. The explanation of the cortical inertia can therefore be 

related to previous mathematical arguments. For example, consider the following 

equation: 

t 
A J g(p) dt 

t-T 
X + f í X, j q (p) dtj + B f g (p) dt 

t-T 
X = 0. (39) 

Here the "spring constant" and "mass" involve the same inertial nonlinearity so 

that the amplitude of the response will go down (without altering natural frequency) 

as the integrals become larger. Notice that, as written, T' need not equal the 

integrating time for the NLDC and we leave the determination of this equality, if 

it exists, to interrupted stimulation experiments similar to those described for the 

unit case. Notice, however, that since it seems likely that cortical inertia might 

^Relaxation oscillations are those waveforms which contain sudden transitions. 
In this case, the waves consist of a series of spikes (see GERIN: op_. cit. ) 

i 
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be a direct result of unit unresponsiveness; and since the model for the latter 

implies T = T1, we are led to expect that T = T' also at the macroscopic level. 

6. 3 Latent Period 

Another stage of initiation common to both levels of activity is the latent 

period between the cessation of stimulation and the onset of the AD. In this period 

there is very little activity at the local level and none at the unit level. As in the 

case of cortical inertia, it is natural to suppose that latency at the unit level is the 

basis for latency at the macroscopic level. Again, careful simultaneous measure¬ 

ments of the times involved at both levels could check this supposition. One would 

expect that the start of the latency stage at the macro-level would definitely com¬ 

mence before the unit level latency, and that generally, AD would commence at the 

unit level before it does at the macroscopic level. 

6.3.1 MICROSCOPIC LEVEL 

Let us assume that the latency effect is due to an inertial nonlinearity and that 

the same mechanism is responsible for an AD. One would expect then that stimu¬ 

lation, up to but not beyond the point where both necessary and sufficient conditions 

are met for initiation of AD, would be followed by zero latency time and that stimu¬ 

lation beyond this point would tend to increase the latency time. * Gerin's results 

are consistent with these expectations in the sense that if stimulation is stopped at 

almost the exact point of zero amplitude response, then AD follows almost im¬ 

mediately, whereas prolonged stimulation gives rise to sizable latency times. 

6.3.2 MACROSCOPIC LEVEL 

Unlike the unit level, AD does not immediately follow the latent stage at the 

macroscopic level. Instead, a switch in polarization results and the response 

waveform evolves into a period of alternation before the spontaneous discharge 

occurs. This period of alternation, as mentioned previously, is the necessary and 

sufficient condition for AD. It would indeed be interesting to see if it correlates 

with specific unit events. Since^ macroscopic AD's can occur during prolonged 

stimulation, we must expect them to occur at the unit level if the above view is 

correct. In any case, latency at the macroscopic level is much more complicated 

than at the unit level. We shall see that in spite of this complication, the nonlinear 

oscillation point of view is enlightening. 

^This will be made clearer when the model is actually explained in detail. 
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6, 4 Alternation 

Since the alternation phenomenon at the macroscopic level does not seem to be 

reflected at the microscopic level, it could be related in some way to the overall 

interaction of the units. When such phenomena (for example, entrainment) are 

treated in the sequel, we shall see how a property of an entire system can mani¬ 

fest itself from the totality of all the nonlinear interactions. Viewed in this per¬ 

spective, it is natural to suppose that alternation is a form of "démultiplication. " 

The latter effect (to be described later) is a typical nonlinear resonance phenomenon. 

In other words, it is possible that the interaction of units could give rise to an over¬ 

all integrated behavior which is representable as a single nonlinear "phenomeno¬ 

logical oscillator and that, as such, it could exhibit démultiplication. It is note¬ 

worthy that there is a stage (as mentioned before) just preceeding this effect which 

begins with a very sudden switch of polarity and increasing delay of response. This 

switch, which does not seem to reflect unit polarity changes, might actually signal 

the start of the existence of the "mass oscillator" which is not yet spontaneous. If 

so, one would expect that, at this point, many of the units would have already 

started AD activity. This could be tested experimentally. It is crucial to these 

ideas that the over-all unit AD activity precedes the local AD. 

6. 5 Build-up of Afterdischarges 

6. 5. 1 MICROSCOPIC LEVEL 

The build-up of the amplitude at this level starts from zero amplitude to a 

maximum amplitude approximately equal to that of the normal resting activity. 

During this build-up, the frequency decreases from a high value to zero where the 

discharge ends (see Fig. 23). These characteristics will be explained later when 

the model is given. In any case, the duration of the AD far exceeds the stimulation 

time, and hence it cannot be simply explained as a re-polarization process as Gerin 

has attempted. As we shall see, a much more natural explanation in terms of 1 ini it 

cycles is possible involving "oscillation hysteresis. " 

6.5.2 MACROSCOPIC LEVEL 

At the macroscopic level the initial build-up probably correlates in part to 

synchronization of unit activity. The explanation of the time evolution of macro¬ 

scopic AD's - involving as they do gross changes in amplitude, frequency, and 

waveform - will be discussed later when Van der Pol oscillations are more fully 

treated. The continued spontaneity of macroscopic discharges can be explained by 

the fa^ct that the abnormally large amplitude of such oscillation can cause the value 

dt in the NLDC to maintain itself at the stable equilibrium value, or in 

other words, the continued spontaneity corresponds to an inertial limit cycle. The 

cause of the final cessation will be deferred until later. 
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Figure 23. Evolution of Afterdischarges. A, B; evolution of spike size 
(black line) and frequency (dotted line) during two different afterdischarges 
for the same unit. Frequency (c/sec) on the right, amplitude (arbitrary 
units) on the left ordinate. Time in sec (from the end of the stimulation). 

6. 6 Discrepancies in the Constant Energy Requirement 

On the macroscopic scale we have seen that outside of the 10-100 cps range, 

the energy required for AD is no longer constant but can be greatly increased. 
Assuming this is true for both levels, a question arises as to how it can be explained 

by the idea of inertial nonlinearity. To explain the low frequency discrepancy, we 

need only assume that the height of a pulse which could be absorbed within the 

maximum effective PW cannot be greater than a certain amount. Such a constraint 

is natural in view of the analogous restraints on T and r. Mathematically, this 

could be done either by making the damping very great at high velocity or by 

making the spring constant increase very rapidly at large displacement (that is, 

modify the NLDC or "k" appropriately). At the high end, another such energy 

"leakage" could be incorporated and clearly the model could be adjusted to take 

such things into account. Of course, such modification could be reflected in the 

waveforms and response properties to other types of stimulae. Hence,such modi¬ 

fication could, in principle, be "checked" experimentally. 

Perhaps a more interesting question is why such departures exist. Grey 
o n 

Walter0' points out that the low frequency limitation serves the important purpose 

of limiting the ability of normal activity from causing epileptic AD's. Could it be 

that the "window" at the high frequency end also serves a purpose? Perhaps lower 

voltage with high frequency signals play an important role in the normal function of 
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brain rhythms. Such a possibility will be discussed when asynchronous quenching 

is treated later. 

7. PHENOMENOLOGICAL EXPLANATION OF AFTERDISCHARGE 
SPREAD 

The mechanism of initiation of epileptic discharges in normal’ cells by repetitive 

(tetanic) stimulae perhaps also accounts for initiation of such discharges by "spike 

foci. " The latter, also known as epileptic foci, could play the role of electrical 

stimulator; and when surrounding cells are sufficiently stimulated, they could go 

into self-sustained epileptic oscillations. As we have seen, sychronization ap¬ 

parently can cause relatively large voltages at the macroscopic scale: and it is 

easy to see, following Penfield J how the spread could occur by means of a "chain 

reaction. Hyperactive domains could repetitively stimulate neighboring domain 

oscillators until their inertial nonlinearities are "heated up" to where they attain 

their hyperactive state. * 

The usual direction of spread has been observed to be along synaptic pathways. 

Two modes of spread are possible; (a) spread to neighboring cells, and (b) spread 

via projection to distant structures. At this time, the factors which determine the 

mode oí spread seem to be unknown; however, a possible factor might involve the 

resonant properties of the structures involved. This last possibility will be further 

discussed when the phenomenon of "petit mal" is treated. 

8. POSSIBLE PHYSICAL PROCESSES CORRESPONDING TO 
NLDC PROPERTIES 

In his attempt to explain unit epileptic activity, Gerin tried to analyze his find¬ 

ings in terms of membrane polarization. Independently, Tower39 has experimentally 

investigated the differences in membrane properties of normal cells and cells taken 

from epileptic foci. He finds that the epileptic cells display a very strong inability 

to exchange ions across their membranes in an appropriate manner. As we shall 

see, our approach - when used to examine the phenomenon of "exhaustion" - implies 

that the epileptic character of focal cells depends upon a large alteration of the 

NLDC. The implication is that the NLDC is directly related to membrane polariza¬ 

tion properties. 

:Tt is important to notice that the high voltage of macroscopic AD can be re¬ 
garded in two ways: one can consider it to be (a) simply the result of a NLDC which 
gives rise to a high-voltage, "hard" inertial limit cycle, or (b) the result of entrain¬ 
ment of microscopic oscillations summing up to a high voltage. The difference in 
point of view is merely the difference of phenomenological level. In either case, 
the high voltage is the cause of the chain reaction. 
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It is important to note that a relationship between NLDC and membrane activity 

is implied in the works of both Gerin and Tower. Of course, as Tower himself 

points out, the observed property of cells in epileptic foci may be a result of their 

epileptic activity rather than the cause. However, it is rather difficult at this time 

to imagine a means to relate the NLDC to physical neural processes other than the 

activity of their membranes. We shall therefore hypothesize that at the unit level, 

there is a direct correspondence between them and that at the macroscopic level, 

this correspondence continues to exist in a form modified by the role of nonlinear 

mutual interaction. Such a hypothesis could be proved false if one could show that 

the malfunction of epileptic cell membrane is in reality not the cause of their 

activity but only the result of it. 

Assuming the above hypothesis, the parameters would then correspond in some 

way to polarization, and the NLDC's functional dependence upon it would be related 

to membrane properties and especially to the metabolism of the cell which in turn 

"operates the ion transport pump. 11 

9. CONCLUSION 

In the preceding pages, we have discussed the nature and the role of phenomeno¬ 

logical theories and certain aspects of nonlinear oscillation theory. After consider¬ 

ing bioelectric data obtained from externally induced AD's, we considered this data 

from the point of view of a mathematical model involving nonlinear oscillations. 

A general equation of the form 

g(x,x,p) X + f (x, X, p ) X + g (x,x,p) X = 0 , (40) 

where 

P = f x2 dt , 
t-T 

was proposed as one which could "explain" many of the phenomena associated with 

the initiation of AD's. The following table summarizes the connection between the 

model and the EEC observations up to this point. 
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TABLE I. 

EEG Phenomena 

1. Normal spontaneity 

2. Excitation (constant energy 

requirement) 

3. Evolution of initiation of unit AD's 

4. Cortical inertia and latency 

5. Alternation 

6. Long duration of AD 

7. Spread 

Model 

1. Limit cycle activity 

2. Hard limit cycle with inertial 

nonlinearity 

3. Relaxation oscillator model 

(to be discussed in next paper) 

4. Inertial nonlinearities limiting 

the amplitude of oscillation 

5. Entrainment and démultipli¬ 

cation (to be further discussed 

in later paper) 

6. Self-sustained limit cycle 

oscillation 

7. Tetanic stimulation of normal 

cells by focij subsequent AD's 

with entrainment giving rise 

to tetanic stimulation in neigh¬ 

boring cells, and so on in 

chain fashion 

1. In this report, an inertial nonlinearity was introduced into all three terms of 

the oscillation equation. The coefficients of the "mass'1 and "spring constant" terms 

(g in Eq. 40) were inserted to account for "cortical inertial" and "latency" in macro¬ 

scopic EEG afterdischarge initiation. Further examination, however, has shown 

that it is not necessary to include these two "g" terms since an appropriate value of 

b. in the damping coefficient (Eq. 10) is sufficient to account for these effects. 
1 2 

This is because an increase of xq (or p) causes the b^ term to make the damping 

become positive for all values of x. Sufficient positive damping would account for 

"cortical inertia". Continued stimulation would eventually make the b^ term become 

dominant and the "paroxysmal mode" of oscillation would then become effective. 

The "latent" period would be "eliminated" by overstimulation (as observed by 

Penficld) while a stimulation which succeeded only making the NLDC slightly nega¬ 

tive would result in a period of "latency" during which the oscillation would "build 

up" very slowly at first and then with increasing rapidity. The elimination of the 

g terms of course, implies that T = T". 



38 

2. Although the square of the voltage (PA) corresponds to a power, it is the 

integral of this power or the energy which determines the effectiveness of a stimu¬ 

lus for provoking AD's. Hence the term "energy requirement" is not a misnomer 

as might appear at first. 
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