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ABSTRACT

Aluminum projectiles with velocity of 9-7 km/sec and beryllium
projectiles with velocity of 15.5 km/sec have been used to produce craters

in aluminum and aluminum alloy targets. Results indicate that the influence
of the mechanical strength of the target in determining final crater dmen-
rions extends unimpaired for impact velocities up to 15.5 km/sec. These
data have also been used to verify the linear dependence of crater volume

on projectile energy.
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INRODUCTION

Earlier Hypervelocity Impact Symposia have seen the presentation of

a number of papers dealing with observations of crater dimensions in

semi-infinite metallic targets. The linear dependence of crater volume

on projectile energ have been fairly well established, for impact veloc

ities up to 6 km/sec. However, consideration of the effect of target

strength has been limited and at best oblique. The purpose of the inves-

tigation reported in this paper is two-fold: 1. To determine whether or

not crater dimensions are significantly influenced by target mechanical

properties at impact velocities up to 15.5 km/sec; and 2. To examine the

dependence of crater volume on projectile energy at impact velocities up

to 9.7 km/sec.

TARGET STREMTH

Experimental Observations

Previous experimental investigations of the influence of target

strength on the cratering process fall into two categories: studies of

energy absorbing mechanisms, and empirical correlations of crater dimen-

sions with various mechanical properties. Glass and Pond (la)(2a) have

studied the mechanism of energy distribution in the target after impact

by means of static stress-strain relationships. Empirical correlations

have been made of crater data with several mechanical strength properties,

including shear strength ultimate tensile strength (3), Brinell

hardnessi (1b). and yield strength (4a). Several groups (ic,4b) have also
made empirical correlations of crater dimensions with ambient target tem-
perature, with the implication that by varying the temperature some per-

tinent mechanical strength property of the target would also be varied
and thus its influence noted. In general, the temperature correlations,
as well as the strength correlations, have not pinpointed which strength

properties are important, perhaps because the strength-temperature relations
were not measured on the particular target mterials. over the temperature

range used in the impact tests. In most instances, strength parameters are
not sufficiently independent to establish a preference, using handbook
values. However, the empirical correlations have demonstrated, at least
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qualitatively, that final crater dimensions do indeed depend on the mechan-

ical and metallurgical properties of the target, for impact velocities up

to 6 km/sec. At sufficiently high impact velocities, and hence high impact

pressures, it is generally agreed that only the high pressure properties of

materials, the density and the compressibility, are important in determining

material behavior early in the crater formation process. Efforts to compute

the entire crater formation process by a hydrodynamic approximation ("4c)require

neglecting low pressure mechanical properties entirely. The investigation

reported in this paper is designed to determine whether: 1. available projectile

velocities have achieved a regime where density and compressibility predominate

and mechanical strength effects are negligible; or 2. approach to the lower

limit of such a regime is indicated.

These questions have been examined by considering the ratio of crater

volume in a mechanically strong aluminum alloy, to crater volume in a rel-

atively weak material, commercially pure aluminum. While the low pressure

properties differ markedly, the high pressure properties are essentially

identical, as indicated by Hugoniot data in Figure 1, where no difference

is apparent between pure aluminum and an aluminum alloy similar to that used

in this experiment. If, then, the high pressure properties predominate, the

ratio of crater volumes would be expected to be near unity. If low pressure

properties predominate, the ratio should be less than one, and if the role

of the high pressure properties is increasing with increasing impact velocity,

the ratio should be observed to increase.

As a basis for comparison with lower velocity data, 1100 aluminum and

2014 aluminum alloy were chosen as target materials, since, at the Fifth

Hypervelocity Symposium, Halperson and Atkins (4d) of NRL reported crater

data for aluminum projectiles into these materials. In order to assure

quasi-infinite targets, diameters of 25 cm and thicknesses of 20 cm were used.

Impart surfaces were machined in each target, Brinell hardnesses were measured,

and ambient target temperatures at the time of firing were recorded, all as

controls on the reproducibility of the targets used.

Two sets of experiments were conducted, one with aluminum projectiles

at 9.7 - 0.1 km/sec, and the second with beryllium projectiles at 15.5 t
0.4 km/sec. In both cases, velocities were determined with multiple flash
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radiographs. The 1100 aluminum projectile was fired from a BRL Inhibited-Jet

Charge, which was described in detail by Kronman in a paper at th(. Sixth

Hypervelocity Impact Symposium (2bll). The projectile is somewhat elongated

in shape, having a length-to-diameter ratio between 2.5 and 3, as shown in

Figure 2. The beryllium projectile is a BRL Jet-Pellet similar to that

described at the Fifth Hypervelocity Impact Symposium (4e). Flash radiographs

indicate that the pellet is not an integral unit, but rather a cluster of

tightly packed particles with a length-to-diameter ratio of five to ten.

A tabulation of crater data appears in Table I, together with a list of

target parameters. Typical craters in each of the materials are shown in

Figure 2. For a given material there was little difference in appearance of

craters at the two impact velocities, although craters made by beryllium

projectiles could not be sectioned because of safety considerations. At
both velocities craters in 1100 aluminum were smooth-walled, with large lips,

i.e., in general gave the appearance of typical hypervelocity craters in

ductile metals. In contrast, the craters in the 2014 alloy were irregular in
shape, with appreciable lip spall, because 2014 alloy is less ductile than

1100 aluminum. Because of this semibrittle behavior there is more scatter

in the depth and diameter data, taken individually, than in the crater volume
data, which represents an averaging over the entire crater. For this reason,

volume was chosen as the basis for comparison.

An insight into the relative importance of target strength in determining

final crater volume can be gained . iFigure 3. The ratio of crater volume

in the high strength material to that in the low strength material is plotted

as a function of the impact velocity. The solid line represents the low veloc-

ity NRL results. The plotted ratios indicate no tendency to increase with

increasing impact velocity, as would be expected if the effect of target

strength on the crater formation process were bpcoming relatively less impor-

tant.

Conclusions
la. For impact velocities up to 15.5 km/sec, the mechanical strength of

the target is a significant property in determining final crater dimensions.
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lb. For impact velocities up to 15.5 km/sec, there is no indicated

tendency that the influence of mechanical strength of the target on final

crater dimensions is decreasing.

ENEMY DEPENDENCE

Experimental Observations

In order to examine the energy dependence of crater volume, it is

necessary to know not onlWy the projectile velocity, but also the projectile

mass. The mass of the 9.7 kmsec aluminum projectile described earlier has

been determined to be 3.7 t 0.3 gram (2b). The mass of the 15.5 km/sec

beryllium projectile is about 0.2 gram, but somewhat uncertain, so beryllium

data have not been used. The fact that the beryllium mass has not been sat-

isfactorily determined does not in any way affect the conclusions of the

previous section, since only ratios of crater volumes were used and the beryl-

lium mass is reproducible within about seven percent, as evidenced by the

reproducibility of the crater data. A plot of crater volume per unit projec-
tile mass as a function of the impact velocity is shown in Figure 4, for both

-100 aluminum and 2014 aluminum alloy. Also plotted, as solid lines up to
6 km/sec, with extrapolations to higher velocities, are the NRL results. The
recently acquired high velocity data are in agreement with the extrapolated

lower velocity curves.

Conclusion

2. The oft-stated conclusion that crater volume is proportional to

projectile energy is further supported for impact velocities up to 9.5 km/sec.

H.
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TABLE I

Target BHN v Temp P Dc V
Material iousec 0C c c cm c mI/ C cm cm cm cm c,, cm

AI-1100 24-25 9.7 5 5.90 0.17 8.44 0.13 230 18
AI-2014 137 9.7 -4 5.oo o.o7 5.6o o.17 92.5 4.0
A1-1100 26-27 15.5 10 4.24 0.31 4.02 0.14 35.6 2.5
Al-2014 146-156 15.5 10 2.97 0.67 3.36 0.37 9.2 o.6
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