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, , ESTIMATION OF A SYSTEM PULSE TRANSFER FUNCTION

IN THE PRESENCE OF NOISEL ' ' ' " Morris J ei
Lincoln Laboratory, * Massachusetts Institute of Technology

, -) ) t,\ 4. Lexington 73, Massachusetts

n duction the fundamental question of what basic form the estimates
should take to make optimum use of the data available.

I vAccurate measurements of system characteris- The present paper considers this question by assuming
tics from limited amounts of data are important in many additive Gaussian noise and utilizing the method of

I aV ations. Some adaptive control systems carry out maximum likelihood to derive estimates having certain
rfi rements of plant parameters during normal opera- optimal properties. An evaluation of the Cramer-Rao
tilff'In communication systems an analogous situation lower bound provides an approximation to the sampling
arVW in the utilization of time -varying channels (1). variances. Due to mathematical difficulties a complete

. Often the application of a special test signal is undesir- solution is obtained only for a suitably restricted formu-
the information must he obtained from ordinary lation of the problem which does not exploit all the

21 utput data. The presence of random noise and available information. However, the solution is easily
L=i entaion errors can render many measurement modified to incorporate the remaining information. The
spINMY ineffective. Statistical estimation theory pro- results provide considerable insight into the properties
vW' werful methods for dealing with this type of of other previously suggested methods. For a similar
problem. Some of these methods are applied belo.to analysis of impulse response estimation, see (12).
the estimation of the pulse transfer function of a linear Details of some of the results below are contained n (13).
system.

2. Results from Mathematical Statistics
o control system applications Kalman (2) has

shown that characterization of a linear system in The expectation (mean value) is denoted by E.
terms of the oefficients of its pulse transfer function Consider a sequence of S independent vector random
offers many a vantages. Although the complete impulse variables whose probability density is known except for a
response or fr uency response also conveys the same parameter a. Let a e denote any estimate of a. The bias
information a g estimate of one of these functions is of ae is (Eae-a) and the variance is
not readily translated into a good estimate of another. In
addition, the assumptions required to express these dif- Vart ae 2 - (Eae)2  f(J .
ferent functions in terms of a finite number of parameters
suitable for estimation are generally not equivalent. Under general regularity conditions, the minimum
Therefore the estimation procedure should he formulated possible value of Var ae is given by the Cramer-Rao
directly in terms of the desired parameters. lower bound (14). a. is said to be a consistent esil.mate' ,

if ae converges in probability (p lim) to a as S -
Estimates of the coefficients of both conventional

(Laplace transform) and pulse transfer functions have Cramer states, "From a theoretical point of view,
been considered by previous authors. Ellington and the most important general method of estimation so far
McCallion (3) and Shinbrot (4) applied non-linear curve known is the method of maximum likelihood." Under
fitting techniques to this problem. Corbin (5), Lendaris general conditions maximum likelihood estimates,
(6), and Zaborszky and Berger (7) obtained estimates by denoted as &, are consistent, asymptotically Gaussian
solving sets of simultaneous linear equations in deriva- and asymptotically efficient. This implies that as S
tives and integrals of the input and output. Kalman (2) becomes large & converges in a certain sense to a
described a least squares fitting method which was Gaussian distribution with mean a and variance given by
investigated experimentally by Bigelow and Ruge (8). A the Cramer-Rao lower bound. A useful property of max-
similar technique was applied by Kaya and Yamamura (9). imum likelihood estimates (15) is that if P - f(a) and the
Joseph, Lewis, and Tou (10) used a closely related transformation is one-to-one then # = f(&). Analogous
method which avoids bias errors due to correlated properties apply in the case of multiple parameters.
disturbances at input and output. Kushner (11) examined
in detail the properties of a computationally simple The following theorem of Slutsky (14) is used later:
recursive scheme. "If In, in, ... , Pn are random variables converging in

probability to the constants, x, y, ... , r, respectively,
Thus many different types of estimates have been exam- any rational function RQn 1 'n •" •Pn) converges in
Ied. However, none of this previous work has attacked probability to the constant R(x, y, ... , r) provided that

the latter is finite."
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3. Assumptions point. It turns out to be a generalization of the standard
least squares fit.

The situation analyzed- is shown in Fig. 1. The
following assumptions are initially made: Koopmans' results will now be applied to the

estimation of the pulse transfer function. To obtain
a) The input r(n) and output c(n) are sampled independent errors in each coordinate of each observed

quantities with sampling interval unity. point the x(n) and y(n) sequences are initially split into
non-overlapping sets. Each observed point consists of

b) r(n) and c(n) are related by a stable linear K+ 1 consecutive values of x(n) and the corresponding
constant-coefficient difference equation, values of y(n). Take

c(n) + f c(n-1) +... + fKc(n-K )  )x} = x(K), xxl) x(K-l)... K x()

- ntr(n) - alr(n-l)-... -Kr(n-K) = 0 (1) x(
2

)= x(2K+1), x(2 ) = 
x(2K) ... , x (2) = x(K+ 1)u 1 K 0 1l K=xKl

where P K -d 0, K is knownand the "k and fk are to be
estimated. The pulse transfer function is then x(s[K+l] -1-k)

0+a z l +... +aKz K etc. with a similar notation for y(n) and for the other
sequences. Here s indexes the observed points and k

l+plz-l+... +iKz indexes their coordinates. Let s=l,2,... ,S so that

S is the total number of observed points where we must
with z =e s  

have

c) The quantities 2K+I < 
S 5 N/K+Il

x(n) = r(n) + u(n) y(n) - c(n) + v(n)

are observed for 0 
< 

n : N. This notation is illustrated in Fig. 2 for K = 2.

d) The obscuring noise sequences u(n) and v(n) The following vectors are now defined where T
are each sequences of independent Gaussian ranom indicates the transpose:
variables with mean zero and known variances a-. and oT
respectively. The covariance Y T =[ K "ac'" aK]

p- E un)v() (sT Cs) o.S) ros)... rp
is not necessarily zero and is known. 0 1 .() K 0 )

X (s)T . ) ... (s) ... X(s)

4. Maximum Likelihood Estimates 0 1 K 0 K,_<s)T. [v<0 (v(s, ( .. (),
The problem is now cast into a form for which 0 1 K 0 K

maximum likelihood estimates can be obtained. Consider _ (s) (s) + (s) and from (1)
a P = 2K+2 dimensional Euclidean space with axes r(n), us =_ _

r(n-I), ... , r(n-K), c(n), c(n-),..., c(n-K). (If some (s)T = 0 for s= 1,2,...,S (2)
of the coefficients are known to be zero the dimension-

ality of the space is correspondingly reduced.) For each Therefore the points ,(s) lie in a hyperplane. The coeffi-
value of n the corresponding set of values from the r(n)
and c(n) sequences determines a point in this space. By cients of the equation of this hyperplane are the elements
virtue of (1) these points all lie in a hyperplane passing of " Considered as a vector y passes through the
through the origin. If no noise is present any P-1 origin and is perpendicular to this hyperplan.
linearly independent points determine a hyperplane whose For each observed point X(s) the random compo-
equation provides the P-I values of the ak a n nents have covariance matrix
noise is present and the x(n) and y(n) sequences are
considered then the observed points are scattered about F2 1 ]

these points is required to estimate the coefficients. Z = E C(s) CWT

Since the observed points have added random -
p _  I

disturbances in all coordinate directions the standard
least squares method,which assumes random errors where I is a (K+I) dimensional identity matrix. For all
along one coordinate axis only, is not entirely appro- S points the probability density of the Xs) is the multi-
priate. The problem of fitting a hyperplane when the variate Gaussian distribution
random errors occur along more than one coordinate
axis has been examined by many authors (16,17). The
most pertinent analysis has been made by Koopmans (18),
who derived the maximum likelihood solution for the
case of Gaussian errors, independent from point to
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Prob :S X() <(l) (1) 1 s) (s)T

_ < I + di M= Z _()8s

I(S) Z X(S) <I(S) + d(S)1 
Note that =1

(2 )°SP/2 I-S/2 EA = M+Z (5)

expi - a()- P(s)]T z_1 [I ( (s (3) Second, the expression (4) is minimized with respect to
It to provide . This is done by employing the extremal
properties of generalized eigenvectors (19). It is found

Maximum likelihood estimates are those values of thaty is given by the solution of P simultaneous linear
the unknown parameters maximizing the likelihood equations
function. This function is obtained by substituting the
observed values of the random variables into the proba- 6 ] 0 (6)
bility density (3). In the present case this maximization
is equivalent to the minimization of where 0 is the smallest value of 0 satisfying the

S (s)jT (6)] determinantal equation

s= IA- zI = 0 (7)

The solution is complicated by the fact that the points p(s) It can be shown that 0, is non-negative. If Z = I, 0 is
are not explicit functions of 1 but are merely restricted the smallest eigenvalue of A andy is the corresponding
by (2) to lie in a hyperplane with coefficients.Z eigenvector. Otherwise this is a generalized elgenyalue

problem. Note that Z need be known only to within a
We now briefly sketch Koopmans' solution (18) for constant multiplier. If Z is singular the derivation must

the maximum likelihood estimate j. The minimization be modified but the solution is still valid.
of D is carried out in two steps. First, for any trial
hyperplane with coefflcientsZ, points wc(s ) which lie 5. Geometric Interpretation
in this hyperplane are substituted for the y! and those
which minimize D are determined. It is found that the It is now demonstrated thaty satisfies a general-
resulting value of D becomes ized least squares fitting criterion. Define a generalized

T squared distance between any two points A(s) and w(
s) 

as.,t A Ift- -
min D(-7t) = -t (4)

(7 ~l:t)  It z t

where

A S (s) x(s)T
- 1

-Y())2Z a . . Z )(). . .: Z -. ) -

(a) ~ ~ ~ (a a s) (s .s . )

and all sums run over s = 1,2,..., S. The elements of
A are seen to be sums of cross-products of the x(n) and
y(n) sequences. Also used later is the related matrix
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d )= -( ()())zl(x(s) w(s)) (3) Variance. Under the condition (9) but without
s I i j- j - using the assumption of Gaussian noise Koopmans has

obtained, by an involved matrix series representation, an
approximation to the covariance matrix of the ^-i,

= (s) (s)]T-Zl 1 _(s) (s) (8) T -
s ) s(] K Y ) M-u ij $1 (10)

-1 -1
where the Z are the elements of Z . Consider an
observed point l&( ) some trial hyperplane, and the Here Mll is the matrix formed by deleting the first row
"adjusted point7 -(s) which lies in this hyperpane in and firgrzolumn of M. The values for ij 1 do not
such a position that d

2 
is a minimum. For example, if appear in this covarie. 1nce matrix since yl - 1 by assump-

Z.1 is the unit matrix, ds is the length of the perpendic- tion. The matrix M..i is proportional to the covariance
lar from X(s) to the hyperplane and _(s) is the point matrix of the estimates that would he obtained if the

lying at the foot of this perpendicular. For a set of errors occurred along just one coordinate axis so that
observed points the sum D of the d

2 
depends upon the the standard least squarea estimates were appropriate.

hyperplane. The generalized least squares criterion The scale factor - (J Zy) depends upon the true
selects the hyperplane minimizing D. parameter values and the noise covariance matrix and is

inversely proportional to the number of observations. We
The standard least squares fit along the y0 axis have established by a rather intricate computation which

corresponds to the matrix will not be repeated here the basic result that for Gaussian
noise (10) is the same as the covariance matrix given by

S 1,jf I the Cramer-Rao lower bound for joint unbiased estimates.

j J 1d IThe quantity 01 in (7) is the sum of the squared
0 otherwise deviations from the hyperplane of best fit. If (9) holds

then it can be shown that E a1 = (S-F)/S and the order of
The sum of squared deviations is measured along the magnitude of the standard deviation of 01 is q . Thus
(1= 1, j = 1) axis only. Deviations along any other axis 01 indicates how well the data fits the estimated coeffi-
are weighted by Zj1 = and are therefore forced to be cients. An excessively large value may suggest that the
zero. order of the system which has been assumed is not large

enough. Alternatively, if the scale factor of Z is unknown
If the maximum likelihood estimates are to he it can be estimated by 01.

reliable the observed points must not satisfy, even
approximately, more than one relation of the type 7. Estimates with Overlapping Sets of Values
expressed by (2). In other words the observed points
must not be concentrated in any linear subspace of The estimates t are maximum likelihood only with
dimension less than P - I or the hyperplane of best fit respect to the observed points constructed from the non-
will not be well defined. This requires linear independ- overlapping sets of values of the x(n) and y(n) defined in
ence among the rk

s
l for each value of s and therefore it Section 4. Since these points do not contain all the

is necessary that the r(n) sequence not he the solution of information in the data it appears that improved results
any linear constant-coefficient difference equation of would be obtained by taking as observed points every
order K+1 or less. Therefore exponential or low-order successive set of (K+1) values of the x(n) and the
polynomial inputs are undesirable for estimation corresponding y(n) which would increase the number of
puposes. points S by a factor of (KI+1). The noise components are

then no longer independent from point to point and although
6. Properties of the Maximum Likelihood Estimates the maximum likelihood equations are easy to derive it

has not been found possible to solve them in a useful
(I) Consistency. Maximum likelihood estimates form. If the matrix A is calculated from overlapping sets

are, in general,consistent so that of values and employed with (6) and (7) it can he shown
that no additional bias errors are introduced and it

p lim .=Y appears that the variance is reduced by a factor of almost
S- "1/(K+I). It is conjectured that when the noise compo-

nents are large compared with r(n) and c(n) this pro-
(2) Bias. For finite S, . is generally biased. cedure is efficient but that when they are small a better

However, Koopmans has shown that if method may exist. For this procedure, which seems
most useful for practical purposes, A becomes

Zii < Mu for all i (9)

so that the noise variance is small compared with the
mean-square values of r(n) and c(n) then the bias is
negligible compared with the standard deviation of1 .
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"y 2 (n) y(n) y(n-1) . I y(n) x(n) . . . y(n) x(n-K)

1i
A= yn-i) y(n) Y,(n- I) y(n-1) .n-.)

L x(.-K) y(n-n I x(n-i) x(n) .y.-. x2(n-K )

where all summations run over n= K, K + I, . .. , N. The By Slutsky's theorem (Section 2)
elements of this matrix are measured auto- and cross - p lira 1i
correlation functions of the x(n) and y(n) except that dif- p lim . (14)
ferent summations include slightly different sets of values
of the products.

so that knowing M and Z these values can he calculated.

8. Properties of the Estimates for Other Types of Noise The asymptotic bias introduced by the non-zero elements
of Z can be evaluated by noting that from (2)

If the noise obeys the assumptions of Section 3
except that it is non-Gaussian then the estimates (6) and M Y = 0 (15)
(7) are no longer maximum likelihood. Howevertthe
geometrical interpretation and the fact that the variance Whether this bias is significant depends upon the magni-
is primarily influenced by only the covariance matrix of tude of the noise and the desired accuracy. An example
the noise suggests that these estimates are still reason- is given in the next Section.
ably good. It can he shown that under general conditions
these estimates remain consistent. It is apparent that the solution (6) subtracts out

from the matrix A the best estimate 81 Z of the compo-
If u(n) and v(n) are sequences of correlated ran- nents due to noise. A simpler estimate which is not

dom variables then the noise components of the X(s) are asymptotically biased is given by the solution of
not independent and again the maximum likelihood esti-
mates are not known. If they are stationary time series [A - Z] = 0 (16)
and the covariance matrix Z is used with (6) and (7) then
consistent estimates are still obtained. but this is presumably not so efficient as the maximum

likelihood estimates.
9. Discussion of Other Estimates

If no noise is present in the x(n) sequence then it
It is of interest to compare the properties of the has been shown (13) that a set of simultaneous linear

simpler standard least squares estimates y* described equations can be formed which provides consistent esti-
by Kalman (2). These estimates minimize the sum of mates of I without further knowledge of Z. With noise
squared distances measured along a single coordinate present in both the x(n) and y(n) sequences the method of
axis and are given by the solution of a set of simultane- Joseph, Lewis and Tou (10) provides estimates without
ous linear equations. With the distance measured along requiring a knowledge of Z. They form a set of simulta-
the y0 axis and y, = 1, they satisfy neous linear equations in terms of the cross-correlation

functions of x(n) and y(n) with a signal elsewhere in the

A ,. = 0 (1I) system related to x(n) and having uncorrelated noise
components. If such a signal is available the method

so the i'th component of 2: is appears quite useful although any optimum properties
remain to be established. Since an unfavorable input
signal could cause the equations to become singular or

-- ( poorly conditioned and therefore produce estimates with
I(1 large variances the necessary restrictions on the input

should be investigated.

where the Pli are the cofactors of A. 10. Example

It can be shown that the variances for these esti-
mates are approximately the same as for j.. Unfortunate-Thcaultosftepretisfjaneaemate ar aproxiatey te sae a fo ~. tunte- now demonstrated by a simple example. Consider the
ly they are not consistent when noise is present. To
demonstrate this suppose S is large and that r(n) has pulse transfer function
reasonable characteristics so that M converges to some ao
constant matrix. Then under general conditions H(z) - -+--- (17)

p lim A = M +Z (13)
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where < 1, a and P are to be estimated, and u(n) From (10), 2 2 2 2
and v(n) ley assumption ) of Section 3 with p = 0. De- aa v I (1+P1) + U 0
note auto- and cross-correlation functions of the actual Var p1 Z (28)
r(n) and c(n) sequences by cc

N 0' ~2 I2 )a2 a2

Zrr N r(n) r(n+m) (18) Var &0  v I (0) (29)
Om I n0- rr(O

1 N The asymptotic values of the standard least squares
cc N g+1 estimates along the y0 axis are found from (14) to be

n=0O

N plim P9; = l+Ov/ c(0) (30)
m) = i N , r(n) c(n+m) (20) v cc

n7-0
• 1

[Cov i , can be obtained by using the approximation, p lim a 01+ r(0) (31)

valid for lUrge S, u rr

'$cc(0) CC(1) rc(0) ] The biases are seen to depend on the ratio of the noise

variance to the mean-square input or output.

M'cc() Occ(O) Orc(-) (21) 11. Conclusions

L rc(O) Orc(-1) rr(0) The contribution of the present paper lies in
applying the method of maximum likelihood to the problem

The elements of M can be calculated from at hand by utilization of Koopmans' general solution to the
Thehyperplane-fitting problem. Some of the properties of the

0rctmn = W h(p) M( mp (22) estimates which have been discussed are based on Koop-
mans' work and others are original results.

and These estimates are valid for. arbitrary inputs and
automatically take into account the initial conditions (stored

S h) henergy) of the system. The method can easily be extended
Occ (m ) = ,Z h(p) h(q) Orr(m-p+q) (23) to include an unknown additive constant (d.c. level) in x(n)

pO q=0 and y(n). A continuous system can be handled by approx-
imating it as a sampled-data system. However, the

where h(p) is the impulse response given by the inverse optimum choice of the sampling interval remains to be
z-transform of H(z). investigated.

The simplest case is when r(n) is a white-noise- Maximum likelihood estimates of the poles and
like sequence such that for large N zeros of the system can be obtained from the maximum

likelihood estimates of the coefficients by virtue of the

-rr(0) d 0 transformation property mentioned in Section 2. The same

(24) applies to parameters of a controller which are functions

rr(m) = 0 moo ~0of the coefficients.

Some sampling experiments have been carried out
Then it is found that on a desk calculator and have generally supported the

theoretical analysis. In applications a digital computer
O , = Orr(

0
) a 2 AI1- 2 (25) could solve the equations (6) and (7) routinely. Experience

0/(1 indicates that estimates of this nature which are not sensi-
tive to errors in the observed data nevertheless require

O cc(1) = - P1 0cc(O) (26) accurate solutions of the resulting equations. The intro-
duction of approximations such as (16) will often deterio-
rate the estimates considerably, especially for small S.

There follows
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