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This report derives a mathematical model that describes the minimum- 

weight design of a horizontal beam under an invariable,  concentrated, 

vertical load moving slowly from one end to the other.    Beams of this 

type,  although possibly impractical in earthbound structures,  may 

someday become interesting for applications in a weightless environment 

such as that of a space station. 
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PREFACE 

Plastic design of structures has received considerable 

attention in recent years.  To the authors' knowledge, the 

present Project RAND memorandum is an innovation in this 

field and also In the domain of linear programming — in the 

former because the beam design is to withstand a one—parameter 

family of load conditj ons rather than a -single load distribu- 

tion, and in the latter because the program involves a continuum 

rather than a finite number of variables. 

The basic mathematical treatment of the continuous version 

of the problems presented in this paper is contained in RM-2993 PR, 

"A Linear Program of Präger's:  Notes on Linear Programming and 

Extensions — Part 60," now in the process of publication.  In 

the present paper, which Is to be submitted for presentation at 

the Fourth U. S. National Congress of Applied Mechanics at 

Berkeley, California, June, 1962, the mathematical model is derived 

from physical considerations and solved In a form readily accessi- 

ble to the structural engineer. 

It might be added that beams of the type considered in this 

paper may be impractical (i.e., expensive to manufacture) for 

earth—bound structures.  They are, however, important for theo- 

retical reasons since they represent, in a sense, the ultimate 

In weight design.  It is of course conceivable that such designs 

might become more important In the future as actual components 

of nonearth—bound structures such as space stations. 
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SUMMARY 

The main problem considered and solved AwWtti-payer 

Is  the minimum-weight design of a horizontal  I—beam of con- 

stant web and variable flange  thickness.     The  beam Is simply 

supported at one end and built In at the  other and Is designed 

to withstand   (in plastic  flow) a concentrated vertical load 

of fixed intensity moving slowly from one end to the other. 

To introduce  thr  raadw Irn   the general techniques 

employed, a  few discrete  versions of the  problem are first 

presented and solved as  linear—programming problems. 

■t 
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MINIMUM-WEIGHT DESIGN FOR MOVING LOADS 

INTRODUCTION 

Plastic design of continuous beams and frames for mini— 

mum weight has been extensively studied in recent years- 

Almost without exception, earlier studies dealt with structures 

of given over—all dimensions (widths of bays and heights of 

stories) that are subjected to a single system of concentrated 

loads Judged to be the most dangerous combination of the 

groups of loads that the structure has to carry.  For practi- 

cal reasons, the beams and columns of steel frames are 

usually prismatic, so that the designer disposes of only a 

finite number of design parameters (the yield moments of the 

beams and columns).  If, within the range of practical 

structural sections, the unit weight of a section can be 

approximated by a linear function of its yield moment, 

designing for minimum weight can then be formulated as a 

problem in linear programming (see, for Instance, [I]*,p. 84 

ff.). 

While designs with beams or columns of continuously 

varying cross section would not, in general, be practical, 

they are worth investigating because they furnish the 

theoretical minimum of the structural weight, against which 

practical designs may be checked. 

^Numbers in brackets indicate items in the list of 
references at the end of the paper. 
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The mlnlraum-welght design of a beam with continuously 

varying cross section subjected to a single system of loads 

has been discussed by Heyman H 2 ]. Consider, for Instance, 

a sandwich beam with a core of given constant height h and 

breadth b, and flanges of constant breadth b and variable 

thickness t. Since the designer controls only the thickness 

t, the variable part of the structural weight Is proportional 

to the Integral of t extended along the beam. Using a theorem 

of Drucker and Shield C 5 J » Heyman has shown that the abso- 

lute minimum-weight design of such a beam can be based on a 

deflected shape for which the curvature has constant abso- 

lute value. Figure 1 shows deflections of this kind for a 

beam that Is simply supported at one end (x = 0) and built 

In at the other end (x = i).  The curvature Is found to 

change sign at x = i/^/ST". Accordingly, the bending moment 

must vanish at x = l/'i/T~,    Since the Indeterminacy of the 

beam is removed by this condition, the bending moments can be 

obtained from the design loads without reference to the cross- 

sectional dimensions of the beam.  The flange thickness at 

each cross section Is then determined from the bending 

moment at this section In such a way that the yield limit of 

the flange material is reached at all sections when the beam 

Is subjected to the design loads. 

As this example shows, an absolute minimum-weight design 

for a single system of loads Is essentially a statically 
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determinate  design.     This   feature,  which greatly  facilitates 

the  design.   Is   likely  to  be  absent  when  a  structure   has   to 

be  designed   for more  than  one  syntem  of  loads.     To  illustrate 
■ 

the arguments that arise in the solution of problems of this 

kind, the sandwich beam in Pig. 1 will be designed for a 

moving load of constant intensity P that may act at any^ 

section of the beam.  Calling for the determination of the 

flange thickness at each station x, this problem involves 

an infinity of design parameters or, what amounts to the 

same, a design function t(x).  Since there are as yet no 

general methods of solving continuous problems of this kind, 

a discrete analog will be discussed In Sec. 2 as a guide 

to the solution of the continuous problem, which will be 

given in Sec. J. 

2.  DISCRETE POSITIONS OF TIK LOAD 

The general features of the desired design can be 

explored in the following way.  Dividing the span £ of the 

beam into n equal segments, suppose that only the partition 

noints are eligible as points of application of the load, and 

that the flange thickness t is a segmentwise linear function 

of the distance x measured along the beam.  This kind of 

design is specified by the n values of t at the points x = £/n, 

2£/n, ..., (n—l)£/n, £ , the flange thickness being zero at 

the simply supported end x = 0.  It is to be expected that 

the desired design with continuously varying flange thickness 
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results as n —> oo . 

If h denotes the constant height and b the constant 

breadth of the core, and s the tensile or compresslve yield 

stress of the flange, and if the flange thickness t is 

treated as small in comparison to h, the yield moment is 

(2.1) Y = so bht. 

For a unit length of the beam, the variable part of the 

structural weight, that is, the weight of the flanges, is 

proportional to the flange thickness t and hence to the 

yield moment (2,1). 

For n = 2, a design of the considered type is specified 

by the yield moments Y, and Yo at the center of the beam 

and the built—in end.  Only one position of the load and 

one yield mechanism need to be investigated.  With the 

deflections and hinge rotations shown in Fig. 2, the condi- 

tion that the energy dissipated in the plastic hinges equals 

the work of the load takes the form 

(2.2) 2Y1 + Y2  =  Pi/2. 

Since the yield moment vanishes at the simply supported end, 

the average values of the limiting moment in the two halves 

of the span are Y-^/2  and (Y-j^ + Y2)/2, so that the variable 

part of the structural weight is proportional to 

(2.5) W = (2Y-L + Y2)l/h. 
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The yield moments Y-^ and y2 of a minimum-weight design must 

satisfy (2.2).  Substitution of this equation Into (2.3) 

shows the variable part of the structural weight to be 

proportional to 

(2.4) W = F£%. 

Thus  there exist infinitely many minimum-weight designs 

for n = 2. 

For a greater value of n, a yield mechanism is defined 

by the locations of Its two plastic hinges, say x = h£/n 

and x = ki/n with k > h.  From the deflections and hinge 

rotations Indicated in Fig. 3, the condition that the energy 

dissipation in the plastic hinges must not exceed the work 

of the load becomes 

(2.5) kYh + hYk 2 Ph(k-h)i/n. 

The  variable part of  the  structural weight is proportional 

to 

(2.6) W =   (Yj + Y2 +   ...  + Yn__1  + 0.5 Yn)i/n. 

For- n - 4, for instance, the (nonnegative) yield moments 

of the minimum-weight design must minimize the linear form 

(2.7) W r.   {Y1  + Y2 + Y3 + 0.5 Y4)V\ 
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FIG.   1 

FIG.   2 
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while satisfying the inequalities 

(2.8) 2Y1 + Y2 ^ Pi/2*, 

5*1      ^5 ^ Pi/2, 

4Y1          + Y4 ^ 3PiA, 

5y2 + 2Y5 1    Pi/2, 

^Y2      + 2Y4 >  Pi, 

4Y3 + 5Y4 ^ 3PiA, 

which are obtained from (2.5) by letting h and k vary from 

1 to 4 subject to the condition that k )> h. 

In general, the n yield moments of the minimum-weight 

design must minimize a linear form, which represents the 

variable part of the structural weight, while satisfying 

n(n—1)/2 inequality constraints.  Expressed in structural 

terms, the essential features of the solution of this 

linear-programming problem are as follows (see, for instance, 

t^D).  The yield moments of the minimum-weight design ful- 

fill n of the n(n—l)/2 constraints as equations rather than 

inequalities.  Each of these equations corresponds to a 

yield mechanism that becomes critical for some position of 

the moving load; it states that the energy dissipated in 

the plastic hinges of this mechanism must equal the work of 

the load if the mechanism is to be critical.  The n equations 

can be linearly combined with nonnegative factors in such 

a manner that the coefficient of each yield moment in the 
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linear combination equals the coefficient of this yield 

moment In the expression for the variable part of the 

structural weight. 

For n = *+, the use of the equality sign in the second, 

fourth, fifth, and sixth relations (2.8) furnishes the yield 

moments 

(2.9)        Y1 = 5Pi/32, Y2 = 7P^A8, Y^ = Pf/52, Y^ = 5Pi/24; 

which are readily seen to satisfy the remaining two relations 

(2.8).  Moreover, when the four equations corresponding to 

critical yield mechanisms are combined with the factors 4/12, 

4/2^, i/52, 4/^8, the coefficient of each yield moment in 

the linear combination is found to equal the coefficient of 

this yield moment in (2.7).  The yield moments (2.9) there- 

fore represent the minlmum-welght design. 

In Pig. ^, the line OABCD represents the variation of 

the yield moment along the beam; and OA'B'C'D' is the imago 

of this line, by symmetry with respect to the x-exls.  For 

the considered positions of the load at x = i/^, x = 4/2, 

and x = 5ü/^» the bending moments arc represented by the 

lines OAC'EjOBC'D1, and OCD", respectively.  For none of 

these load positions does the absolute value of the bending 

moment at any section of the beam exceed the yield moment 

at this section, while for each load position the absolute 

value of the bending moment attains the yield moment in at 

__^_^^^_ 
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least two sections. 

With the yield moments (2.9), (2.?) furnishes 

(2.10)       W = 7P£2/6^. 

3.  CONTINUOUSLY VARYING POSITION OF THE LOAD 

The solution of the discrete problem in Sec. 2 suggests 

that for continuously varying position of the load the yield 

moments of the minimum weight design are represented by arcs 

such as OABC and CD in Fig. 5. Denoting the abscissa of C 

by x,, suppose that the load acts at the section x = x < x, 

and that a plastic hinge forms at this section. The bending 

moment at this section then equals the yield moment Y(x ), 

and the reaction at the simply supported end equals 

(5.1) R(x0) = Y(xo)/xo. 

To the left of the load, the bending moments are given by 

(5.2) M(x;xo) = x R(xo) = x Y(xo)/xo , 0 < x ^ xo 

(line OB in Fig. 5).  If the arc OABC is concave with respect 

to the x-axis, these bending moments nowhere exceed the 

yield moment.  To the right of the load, the bending moments 

are given by 

(3.5) M(x;xo) = x R(xo) - (x - xo)P , xo < x O 

(line BE In Pig. 5).  Since there must be a yield mechanis m 

  .   .^ ,  ^  . ^^_ 
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corresponding to the considered position of the load, the 

absolute value of the bending moment must attain the yield 

moment at some abscissa x = x^ ^ x, without exceeding the 

yield moment at any other abscissa.  In other words, the 

line BE must be tangent to the Image CD1 of the arc CD with 

respect to the x-axis.  Thus, one obtains 

(3.^) y(x) + M(x;xo) ^0  , x1 < x <^ i, 

with equality for one value of x. With the use of (3.1) 

and (5.5)* one finds 

(3.5) y(x) I {x -  xo)P - x Y(xo)/xo , x1 ^ x < i. 

To find the abscissa of the point of contact E of the line 

BE and the arc CD', equate the derivative of the right—hand 

side of (3.5) to zero and replace x by x«. Thus, Xp Is given 

by 

(3.6) x? = - F r—=r » 0 < xn < xl ' 

where the prime denotes differentiation with respect to x . o 

V/lth this value of x^, the yield moment Y(Xp) is found by 

setting x = x2 and using the equality sign in (3*5)• As 

x varies from 0 to x-, the point of contact E moves from 

C to D' as indicated in Fig. 5.  Accordingly, the arc CD1 

is uniquely determined by the arc OABC. 

The variable part of the structural weight is proper— 
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tional to 

(5.7) w = J 1  Y(x)   dx +   f    Y(x)  dx* 
O X, 

Let Y(x  )  be an arbitrarily defined positive  concave   function 

In  0 <^ x    £ x,   that  vanishes   for x    = 0,  and x =  f (x   )  an arbi- 

trary increasing function that maps  the  Interval   (Cx, )   onto 

(x,,i).     When  the  second integral in   (5.7)   is   transformed by 

the use of the   Inequality  (3-5)  and  the change  of variable 

x =  f(x   ),   the   relation 

(3.8) W ^   l^1   CY(:<0)   (1 - 1^-)   +  (f - xo)fP J  dxo 
' o o 

is obtained.  To render the lower bound (3.6) for the struc- 

tural weight Independent of the choice of Y(x ), set 

(3.9) ff = xo, 

or 

(3.10) f =V^ + c2 , 

v;here c is a constant of integration. 

Since f is to map the interval (O^x,) onto' (x-,,i), f satisfies 

(5.11) f(0) = x1 , f(x1) = i . 

It follows from (3.10) and (3.11) that 

(3.12) c = x1 = i/yr . 
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and 

(5.15) f  =lAo + xl  * 

In view of  (5-9) and   (5-15),  the  inequality   (5.8)   reduces  to 

(3.14) W ll{l -V? + log(l +1/?))Pi2 = o.iieepi2. 

To obtain   the  function Y(x   )   for which W equals   this 

lower bound,  identify  the   function   (5.14)  with the  right-hand 

side  of (5.6)   to obtain 

'^ ■ v^ ■ 
or 

(3.16) Y(x0)   =  Pxo  {k - log   [(xo +i/x^ + xj)/i]},  0 <  xo < x1, 

where  k is a constant  of  integration.     To determine  this  constant, 

note   that Y(x1)   evaluated  from   (3.16)  must equal  Y(x1)   obtained 

by substituting  x0 =   0 and  x =  x^^  into   (3-5)   and  using  the 

equality sign  in  this  relation.     Thus,   the value   of k is 

k  = ^(1  +  log  1 1^). 

With f =  x2,  it  follows  from  (3.15)   that 

(5.18) xo  =1/x2 - x^, 

and  from  (3-5)  and  (5.16)   that 

(3.19)   ______ 
Y(x2)   =  P  |x2 T/xp ~  xi   ~  x2l'x2  - xi k 

- 10g[(x2  + i/>'2 - x-j/e]},   x1 <  x2 <  £, 

■   ■ ■   - 
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where k Is given by (5.17).  The arcs OABC and CD In Fig. 5 

represent the functions (3.16) and (5.19). 

It Is Interesting to note that the abscissa x, defined 

by (3.12) Is identical with the abscissa at which the curvature 

in Fig. 1 changes sign.  An analogous Identity was found to 

exist for the doubly built—In beam, which was treated along 

similar lines, but no general reason for this has been dis- 

covered. 
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